

Let X_1 , X_2 r.s of $M(\mu, \sigma^2)$, where μ, σ^2 are unitypy.
Let $S^2 = \frac{4}{\sqrt{3}} \sum_{i=1}^{\infty} (x_i - \overline{x})^2$ u.e. of σ^2 . Find the value of the carstant c so that c.s² is a minimal-MSS estimator 03θ . Solution The MSE of an estimator Y of O is: $MSF = \int (Y-\Theta)^{2} = V(Y) + b^{2}(\Theta)$ where $b(\Theta) = f(Y) - \Theta$ We are looking for c so that $f(csc^2-\sigma^2)^2$ is minimal. $I = \frac{5}{5}$ is: $\frac{1}{5}$ $(cs^2 - \sigma^2)^3 = V(c^2)^2 + \frac{1}{5}c s^2 - \sigma^2^2 =$ $= c^{8}V(s^{2}) + (c\sigma^{2}-\sigma^{2})^{2} = c^{8}V(s^{2}) + \sigma^{4}(c-1)^{2}$ (1) We Know that $\frac{(v-1)s^2}{\sigma^2} \sim \frac{1}{\sqrt{5}}$
So $V\left[\frac{(v-1)s^2}{\sigma^2} \right] = 2(v-1)$ $\Rightarrow \frac{(v-1)^2}{\sigma^4} V(s^2) = 2(v-1)$ \Rightarrow $\Rightarrow \bigvee (\varsigma^{\alpha}) = \frac{\varsigma \sigma^{\alpha}}{\varsigma - 1}$ Hence, (4) \Rightarrow $f((s^2-s^2)^2) = c^2 \cdot \frac{2s^4}{s-1} + \sigma^4(c-1)^2$ To find the minimum we set the devivative Cwith respect $(a + b)$ equal to zero: $2c\frac{207}{11} + 204(c-1) = 0$ $\Rightarrow 2c + (c-1)(v-1) = 0$ = $c = \frac{v-4}{v+2}$ The 2nd derivative is >0, hence the statistic $\frac{v-1}{v+1}$. se= = $\frac{4}{\sqrt{72}}\frac{\dot{z}}{z}(x;-\bar{x})^2$ is the minimal-USE estimator of σ^2 .

Reminder Let $U=U(x)$ a.e. of Θ and $T=T(X)$ subdicient, $R-B$ Theorem: then $W = f[U|T]$ are of θ and $V(w) \le V(u)$

Generalization of $R-B$ Let $X_1,...,X_r$ r.s. of $\lambda(x, \theta)$ If $U=U(x)$ we of $q(\theta)$ and $T(\Sigma)$ sufficient statistic for Θ , then the statistic $\overline{\partial}$ = $\delta(x)$ = $\varphi(\tau(x))$ = $f(u|\tau)$ is an u.e. of g(0) and $V(x)$ = $V(x)$ Theorem (Lehmann-Scheffé) With the same assumptions as the R-B Theorem and the assumption that $T=T(\Sigma)$ is also complete, we have that $\delta(x) = \Psi(T(\le)) = \underline{f}(\cup |T)$ is mulle of $g(\theta)$ $P_{Y \circ \circ f}$ Let 40(+) and 42(+) functions of the sufficient and camplete statistic 7 and $40(7), 41(7)$ a.e. of $9(6)$. Then: $f_{1}(\theta_{0}(t)) = g(0) = f_{1}(\theta(t)) = f_{1}(\theta_{0}(t) - \theta_{1}(t)) = 0$ yoed Proposition If $T=f(x)$ sufficient and complete statistic for 0 and
4(T) u.e. 07 g(O), then 4(T) is m.v.u.e of 0 $P_{r\infty}$ From I-S Theorem we get a function $\varphi(T) = \frac{1}{2} \int_0^1 1 dt$ is an U.e. of g(0) and has minimal variouce among the estimators of $q(\theta)$. Then: $f(x)f(x)-f(x)]=0$ and since T is complete $f(x)-f(x)$ hence, $44(7)$ is much e of $q(\theta)$.

txample Let $x_1, x_2, x_3 \circ x_5 \circ x_6 \wedge (0, 4)$ a) Find m.v.a.e of 0 b) Prove that $\overline{x}^2 - \frac{4}{v}$ is my.d.e. of θ^2 Solution alve are looking for a sufficient and complete statistic for 0. We have greviously graven that $T=T(X)=\sum X_i$ is sufficient and complete $\overline{a}a \theta$. We have also groven that $f[\overline{x}]=f[x]=\theta$ Hence, $f[x] = f[x^x] = f[f] = 0$, so from $f-S$ theorem $\varphi(\tau)$ = $\frac{1}{v}$ is m.v.u.e. of Θ (as it is an u.e. of Θ and a Zunction of the sufficient and complete T. b) $T=\sum_{i=1}^{\infty}X_i$ is sufficient and complete for θ so, we just have
to grave that $\overline{X}^2-\frac{4}{9}$ is an u.e. of $g(\theta)=\theta^2$ (because it is a function of T) $f[x^{2}-\frac{1}{v}] = f[x^{2}] - \frac{1}{v} = V(x) + f[x]^{2} - \frac{1}{v} = \frac{1}{v}V(x) + \theta^{2} - \frac{1}{v}$ $=$ $\frac{1}{4}$ $1+0^2$ $\frac{1}{4}$ $=0^8$ Finally, $\overline{X}^2 - \frac{4}{v}$ is mude of θ^2 . Alternatiely: $X_i \sim N(\Theta, 1) \Rightarrow \overline{X} \sim N(\Theta, 1) \Rightarrow$ $\Rightarrow \frac{\overline{x}-\theta}{\sqrt{3\lambda}} \sim N(o, 1) \Rightarrow \sqrt{(x-\theta)^2} \sim \chi_1^2$ $f(x-\theta)^{2} = 1 \Rightarrow f(x-\theta)^{2} = \frac{1}{2} \Rightarrow$

 $=$ $f[x^2+0^2-2\theta\overline{x}]-\frac{4}{v}$ $=$ $f[\overline{x}^2]+6^2-2\theta[f]\overline{x}]=$ $\frac{4}{v}$

 $= f[x^{2}] + \theta^{2} - 2\theta \cdot \theta = \frac{4}{3} \sqrt{2} = \frac{4}{3} \sqrt{2} = \theta^{2}$

 $txaangle$ Let X_1 , X_2 Y_3 of $U(0, \theta)$ $q)$ Find mune of $q(\theta) = \theta^{\kappa}$ b) F_{ind} m.v.u.e of $E[X]$ and $V(X)$ Solution a) $\{x : \Theta\} = \frac{1}{\Theta} \cdot \mathbb{I}(\Theta \leq x < \Theta)$ where $\mathbb{I}(\Theta \leq x < \Theta) = \{1, \Theta \leq x < \Theta\}$ We have groven that $T=X_{cv}$ =max{Xi} (0, otherwise is a sufficient statistic for O. For completeness we need $f_{g(1)}=0$ $\forall 0>0 \Rightarrow g(f)=0$ $\forall f$ f_{α} all functions $g(1)$. $F_7(t) = P(T \le t) = P(x_0, \le t) = P(x_4, x_1 \le t) = \prod_{i=4}^{4} P(x_i \le t) = [F_8(t)]^{\circ}$

but $X \sim U(0, \theta)$ so $F_7(t) = \int_0^t \frac{4}{\theta} dx = \frac{1}{\theta}$

Hence, $F_7(t) = (\frac{1}{\theta})^{\circ}$ \Rightarrow $F_7(t) = \frac{\sqrt{t}}{t}$ \Rightarrow $f_7(t) = \frac{\sqrt{t}}{t}$ Then $E[g(t)] = 0$ $\forall\omega>0$ \Rightarrow $S_{0}^{0}(t)A_{t}(t))dt = 0$ $\forall\omega>0$ \Rightarrow $\frac{1}{\frac{1}{\sqrt{2}}\int_{0}^{\infty} \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}}{\sqrt{2}} = 0 \quad \forall \theta > 0 \implies \int_{0}^{\infty} q(t) t^{-1} = 0 \quad \forall \theta > 0 \implies$ Finally, $T=X_{cv}$ is camplete.

To find a murre of $q(\theta) = \theta^k$ we just need to find a function $\varphi(t) = f[\varphi(t)] = \Theta^{\kappa} \ \ \forall \Theta > 0$ $E[Y(t)] = \Theta^{\mathsf{M}} \Rightarrow \int_{0}^{\infty} \varphi(t) \, \lambda_{t}(t) \, dt = \Theta^{\mathsf{M}} \Rightarrow \int_{0}^{\infty} \varphi(t) \frac{\nu t^{\nu-1}}{2^{\nu}} \, dt = \Theta^{\mathsf{M}}$
 $\Rightarrow \int_{0}^{\infty} \varphi(t) \, t^{\nu-2} = \frac{\Theta^{\mathsf{M}+\mathsf{V}}}{\nu} \Rightarrow \int_{0}^{\infty} \varphi(t) \cdot \Theta^{\mathsf{V}-4} = \frac{\nu + \mathsf{M}}{\nu} \cdot \Theta^{\mathsf{V}+\mathsf{N}-4}$ Hence, the mulle of θ^{μ} is $\varphi(\tau) = \frac{v+\mu}{v} \cdot \Theta^{\mu}$

 F_{0y} $V=1$: $f[y_{0}^{+4}.T] = 0$ \Rightarrow $f[\frac{y+4}{2y}.T] = 0$ so $\frac{y}{2}(T) = \frac{y+4}{5y}.T$ MV.UL 07 EIX] $For k=2: f[x|^{12}7^{2}]=0^{2} \Rightarrow f[x|^{12}7^{2}]=\frac{6^{2}}{12}$ $50 \frac{4}{3}(1) = \frac{v+2}{12v}T^2$ un v u e of $V(X)$