EFFICIENCY

Definitions

If an estimator $T = T(X)$ of the parameter θ is unbiased and reaches the C-R lower bound then T is called a e fficient estimator of θ .

 $a(1) = \frac{CR - LB}{v(1)}$ is called efficiency of 1 and so 1 is e^{2k_1} cient i^2 \rightarrow $\alpha(1) = 1$ \rightarrow β lso: $-a(1)=1 \implies 7$ m.v.u.e \bullet T m.v.u.e \neq a(T)=1

 II $U(x)$, $I(x)$ unbiased estimators of θ then $\frac{V(0)}{V(T)}$ is called the relative efficiency.

Example

Let $X_1, ..., X_v$ r.s of Poisson (e) Find m.v.d.e of g(0)=0²
Solution We already y you that $T = \sum_{i=1}^{N} X_i$ is sutticient and complete $P_{\alpha\beta}$ and $T_{\alpha}P_{\alpha}$ (v), so $fT=v\theta$, $V(T)=v\theta$. But $V(T) = f[T^2] - (f[T])^2 \Rightarrow f[T^2] = V \theta - V^2 \theta^2$ $50 \text{ } f57^{2}-f57 = 80^{2} = f7^{2}-7=0^{2}$ Hence, $U = \overline{v}$ $u.e.$ $v = \theta$ $g(\theta) = \theta^2$ and is a function the sufficient and camplete estimator T , so U is m.v.u.e of Θ^2 .

We have: $V(U) = V(\frac{7^{2}-1}{y}) = \frac{1}{y^{2}} [f[(7^{2}-1)^{2}] - (f[7^{2}-1])^{2}] =$ $=\frac{1}{\sqrt{3}}(f_1f_74)-2f_1f_73]+[1f^2]-(f_1f^21)^8+2f_1f_73^8+f_1f_7]-f_1f_7^2$ and after calculating the moments $f17$, $f17^2$, $f17^3$, $f17^1$, So U is my ye but yot efficient f xamgle Let X_1, \ldots, X_r r.s of $N(\mu, \sigma^2=25)$ $q\text{ }F_{\text{in}}\text{ }J_{\text{D}}(p)$ b) Prove that \overline{x} is an efficient estimator of μ . Solution a) $J_{x}(\mu) = v J_{x}(\mu) = v \int_{\frac{4}{\sqrt{3}}\mu}^{2} \int_{\frac{4}{\$ S_0 $\frac{2}{84}log\{(x, y)\} = \frac{1}{60}$ $2(x-y) = \frac{x-y}{25}$ and $\frac{2}{24} \log 2(x^{3}y) = -1/25$ Finally: $I_{\pm}(\mu) = \sqrt{I_{\pm}(\mu)} = -\sqrt{I_{\pm} - \frac{1}{2}} = \frac{1}{25}$ b) We Know that \overline{X} is an ue of K
 $(R - 1B : \frac{1}{\sqrt{3}x(k)} = \frac{1}{\sqrt{2}(k)} = \frac{1}{\sqrt{25}} = \frac{25}{\sqrt{25}}$ $V(\overline{x}) = V(\frac{1}{v}\sum_{i=1}^{v}x_i) = \frac{1}{v^2}\sum_{i=1}^{v}V(x_i) = \frac{1}{v^2} \cdot V25 = \frac{25}{v}$ Hence, \overline{x} is an efficient estimator of μ , $a(\overline{x}) = 1$ Wessem Let X1, X r.s of PDF f(x; 0) and suppose we are

estimating $q(\theta)$. For $T=T(X)$ an u.e of $q(\theta)$, $V(T)$ is equal to the CR-LB iff there exists a real function of θ $k(\theta)$ so that: $\sum_{i=1}^{5} \sum_{i=1}^{5} \log \lambda(x_i; \theta) = \gamma(\theta) \cdot (7(\ge) - q(\theta))$ $\Rightarrow \frac{\partial}{\partial \theta} \prod_{i=1}^{n} log(1(x_i; \theta)) = V(\theta) \cdot (7(X) - q(\theta))$

Proof (We skip the groof, it is borsed on the equality in the C-S inequality stayling true iff the 2 quantities are livearly degendent)

Framgle (cartinuation)
Let XI, X V.S 07 N(M, 25)
We have $\sum_{i=1}^{n} \frac{1}{25} \left(\sum_{i=1}^{n} x_i - v_{1i} \right) = \frac{1}{25} \sum_{i=1}^{n} \frac{x_i - v}{25} = \frac{1}{25} \left(\sum_{i=1}^{n} x_i - v_{1i} \right) = \frac{\pi}{25} (\overline{X} - v_{1i})$ $=25(\bar{x}-\mu)$

framgle
Let X1, X V.s of N(n, O), where µ is Known.

 $S_{\times}(\Theta) = \frac{1}{2}[(\frac{3}{50}log\frac{1}{x}, \Theta)] = \frac{1}{4\Theta^{2}} + \frac{3}{4\Theta^{2}} - \frac{1}{2\Theta^{2}} = \frac{1}{2\Theta^{2}}$
So the $(R-LB) = \frac{1}{\sqrt{10}} = \frac{1}{\sqrt{10}} = \frac{2\Theta^{2}}{10^{2}}$

 $We set I=f(x)=\frac{1}{v}\sum_{i=1}^{v}(x_{i}-\mu)^{2}$ and it is:
 $f[f1=\frac{1}{v}\sum_{i=1}^{v}[f(x_{i}-\mu)^{2}]=\frac{1}{v}\cdot v\cdot\theta=\theta \implies fue.$ of θ $V(1) = \frac{1}{v^2} \sum_{i=1}^{v} V((x_i - \mu)^3)$, and we have: $(\frac{x-k}{\sqrt{2}})^e$ \sim $\frac{y}{\sqrt{2}}$ \Rightarrow $\frac{y}{\sqrt{2}}$ $(\frac{x-k}{\sqrt{2}})^3$ = 2 \Rightarrow $\frac{4}{\sqrt{2}}$ \cdot $\sqrt{(x-y)^2}$ = 2 $= V((x-y)^{9}) = 26^{9}$ $S_{0} V(T) = \frac{4}{v^{2}} \cdot 2\theta^{2} \cdot v = \frac{2\theta^{2}}{v}$ and T is efficient