\pm xamgle Let X1, Xv rs of Bin(u,p). Find estimators of u, q using the method of moments. Solution We have $f[x] = \mu = \mu_{q}$ and $f[(x-\mu)^{2}] = \sigma^{2} = \mu_{q}(1-\rho)$
We equate with $\overline{x} = \frac{4}{3}\sum_{i=1}^{3}x_{i}$, $M_{2} = \frac{4}{9}\sum_{i=4}^{3}(x_{i}-\overline{x})^{2}$ So $u_q = \overline{X}$
 $u_q(1-q) = M_g$ $B_{i4}(n,q) = \mu > 5^{\alpha}$ $Poisson(\lambda) : \mu \approx \sigma^2$ $NegBin(u,q)$ $k < 5^2$

 f xamgle Let x_1 , x_2 r.s. with PDF $\lambda(x; \theta) = \frac{3x^2}{\theta}$ exp $\{\frac{-x^3}{\theta}\}$, x?0
Find MLE of θ , check if it's unbiased /consistent. $L(\theta) = \prod_{i=1}^{5} \frac{3x_i^2}{4(x_i + \theta)} = \prod_{i=1}^{5} \frac{3x_i^2}{\theta}$ exp $\frac{x_i^3}{\theta} = \frac{3}{\theta}$ $\prod_{i=1}^{7} x_i^2$ exp $\frac{1}{2} - \frac{4}{\theta} \cdot \frac{5}{2}x_i^3$
 $\int (\theta) = \log L(\theta) = \sqrt{\log 3 - \sqrt{\log 4 - \log 4}} = \frac{1}{2} \cdot \frac{1}{2}x_i^2$
 $\frac{2}{\theta} \cdot \frac{2}{\theta} \cdot \frac{4}{\$ \Rightarrow $\hat{\theta} = \frac{1}{V}$ $\sum_{i=1}^{V} X_i^3$ $\frac{\partial^{2}}{\partial \theta^{2}}$ $(0)|_{\theta=\hat{\theta}}=-\frac{y}{\theta^{2}}-\frac{z}{\theta^{2}}\sum_{i=1}^{z}\times i^{3}|_{\theta=\hat{\theta}}=-\frac{y\theta-2\Sigma x_{i}^{3}}{\theta^{3}}|_{\theta=\hat{\theta}}=$ = $\frac{\sqrt{2x_i^3}/\sqrt{-25x_i^3}}{(\frac{5x_i^3}{\sqrt{3}})^3}$ = -3. $\frac{\sqrt{3}}{(\frac{5x_i^3}{\sqrt{3}})^3}$ < 0 so $\frac{\sqrt{3}}{9}$ is M) f

We have $f(\hat{\theta}) = f\left[\frac{\sum x_i^3}{y}\right] = \frac{4}{y} \sum_{i=1}^{y} f(x_i^3)$ For $Y=x^3$ we have $F_Y(y) = P(Y=y) = P(x^3 \le y) = P(x \le y^{4/3}) =$ = Fx(y^{1/3}), so $\lambda_4(y) = \frac{3}{2y}$ Fy(y) = $\frac{3}{2y}$ Fx(y^{1/3}) = $\frac{1}{3}y^{-\frac{2}{3}}$ $\lambda_4(y^3)$
= $\lambda_4(y) = \frac{4}{3}y^{-\frac{2}{3}}$ $\frac{3y^{2/3}}{9}$ exp {- $\frac{2}{9}$ } = $\frac{4}{9}$ e^{-1/9} ~ $\lambda_4(y)$ S_{o} $Y=X^{3} \sim f_{Xg}(4/6)$ so $f[X^{3}]=\Theta$ and $E\{\hat{\theta}\}=\frac{4}{3}\sum_{i=1}^{n}\theta=\hat{\theta}\cdot\sqrt{\theta}=\theta$, so $\hat{\theta}$ is unbiased For consistency we already have $f(6)=0$ = 0 and $V(\hat{\theta}) = V(\sum_{i=1}^{4} x_i^3 / v) = \frac{1}{\sqrt{2}} \sum_{i=1}^{4} V(x^3) = \frac{1}{\sqrt{2}} v \cdot \theta^2 = \frac{\theta^2}{v} \to 0$ so à is consistent. $Note (Adtenuative)
 $V=\chi^3 \sim f_{x\varphi}(\frac{1}{\varphi}) \implies T=\sum_{i=1}^{\infty}\chi_i^3 \sim Gamma(x, \theta)$, so $f_{x\varphi}(T)=\sqrt{\theta}$$ </u> Contidence Intervals $\hat{A}(\times;\omega) \longrightarrow \hat{\theta} \longrightarrow$ Statistic (1B(X), UB(X) Lower Bound Rupper Bound We want $P(LB(\underline{X})<\theta<\cup B(\underline{X}))=1-a$ $Osvally, a=1\% 5\% 10\%$ Definition 1-a is called contidence level. f xample Let x_1, x_2, x_3, a^2 $N(\mu, \sigma^2)$, where σ^2 is Krown. Find CI (contidence interval) for µ.

we $\overline{2}$ uat $\hat{\mu} = \overline{\times}$ and $X \sim N(\mu, \overline{v}) \Rightarrow Z = \overline{\sigma/\pi} \sim N(\rho, 1)$ $P(-Z_{\alpha_{12}} \lt Z \lt Z_{\alpha_{12}}) = 1 - \alpha$ PNOT $P(-\frac{2}{\alpha/2} < \frac{2}{\alpha\sqrt{11}} < \frac{2}{\alpha/2}) = 1 - \alpha$ $P(-\angle a_{12} = \frac{2}{\sqrt{3}} \times \frac{1}{2} = \frac{1}{2} \times \frac{2}{\sqrt{3}} = 1 - a$ $P(X - Z_{\alpha_{12}} \cdot \overline{s_v} \cdot \mu \cdot X - Z_{\alpha_{12}} \cdot \overline{s_v}) = 1 - a$ $100.(1-a)\%$ CI $\frac{2}{10} \mu$: $\sqrt{X}-2\frac{5}{100} \times \sqrt{2}a/2\frac{5}{100}$, or \overline{X} = $2a/2\frac{5}{100}$ General Method Let $I = T(X)$ estimator of We search for a $r.v.$ $Y(T,\theta)$, function of T , θ and perhaps more parameters ms $Y(T, \Theta)$ follows a Known distribution, independent of the other parameters involved and By choosing constants GCe we can have P (crcY < 1e)=1-a \sim By solving for Θ we get the boundaries $LB(\star)$, $UB(\star)$ so that $P(LBCx) \geq 02 \text{ }UB(x) = 1-a$ In the previous example $Y=Z=\frac{X-Y}{\sigma/\sigma_v} \sim N(\sigma, 1)$ $Expampe$ Let $X_1, X_1, Y_2, \ldots, Y_n$ of $N(\mu, \sigma^2)$, μ, σ^2 both unknown $Find (I - 70)$ $\hat{\mu} = \overline{\mathsf{x}} \sim \frac{\mathsf{Solution}}{\mathsf{N}(\mu, \overline{\mathsf{x}}^2)}$ and $Z = \frac{\overline{\mathsf{x}} - \mu}{\sigma / \overline{\mathsf{x}}} \sim \mathsf{N}(o, 1)$

and $\frac{(v-1) s^2}{\sigma^2}$ $\sim \frac{12}{2}$ $\frac{1}{x}$ $\frac{s^2}{\sigma^2}$ are independent
So $T = (\frac{\overline{x}-\mu}{\sigma/\pi})/\sqrt{\frac{(v-4)s^2}{\sigma^2}}/1-1 = \frac{\overline{x}-\mu}{\sqrt{3}\sqrt{\pi}} \sim +1$ $P(-f_{v-1, a/g} \le \frac{\overline{x} - \mu}{5/\sqrt{x}} < f_{v-1, a/g}) = 1 - a \implies$ = $P(\bar{x}-t_{v-1,}^{q_{e}})^{\frac{s}{s}}$ < $\mu \leq \bar{x}+t_{v-1,}^{q_{e}}$ = 1 - a