(This lecture's notes are not based on the actual live lecture, they are a transcript of grotessor Siannis' notes and are added only for co eletion)

 $txample$ Let x_1, x_1 y_1 s of $N(\mu, \sigma^2)$, where σ^2 is unknown.
a) Find (I with confidence level (1-a) for μ b) Find a relation that must be satisfied by the magnitude of the sample v, so that the width of the CI is less t liau 2σ with probability $100(1-8)\%$ a) We proved in the last lecture that the CI is $(\bar{x} - t_{v-1,9/2} \cdot \vec{x} + t_{v-1,9/2} \cdot \vec{x})$ b) The length of the cs is $2\epsilon_{\nu\lambda\alpha/2}$ $\overline{5\sigma}$, hence we have $P(2t_{v-4}, a_{12}) = \frac{1}{10} < 26$ = 1 - 8 \Rightarrow $P(\frac{2}{10} < \frac{10}{10} < a_{12}) = 1 - 8$ P a_{12} $\begin{array}{c} 3 & 11 & 11 \\ 3 & 11 & 11 \\ 3 & 11 & 11 \\ 3 & 11 & 11 & 11 \\ 3 & 11 & 11 & 11 \\ 3 & 11 & 11 & 11 & 11 \\ 3 & 11 & 11 & 11 & 11 \\ 3 & 11 & 11 & 11 & 11 & 11 \\ 3 & 11 & 11 & 11 & 11 & 11 \\ 3 & 11 & 11 & 11 & 11 & 11 \\ 3 & 11 & 11 & 11 & 11 & 11 \\ 3 & 11 & 11 & 11 & 11 &$ بر
ا $P(\frac{(v-4)S}{\sigma} \geq \frac{v(v-4)}{tv-4, a/2}) = 8$ s_{0} $\frac{1}{t}v_{1, \alpha/2} = V_{v_{1, \alpha/2}}$ where $K_{v_{1, \alpha/2}}$ is the point for which $P(X > X_{v-1,8}) = 8$ for $X \sim X_{v}$. So $v(v-1) = 1/2$, $g - 1/2$, a/s , which is the sought relation. Note CI for the mean ^p of normal distribution i) If o² is Known and v>30, then from CLT (Central Limit Theorem) $\frac{\overline{X}-\mu}{5/5} \sim N(0,1)$ towards infinity

and the cs is $X \pm 2q_e \cdot \overline{x}$ (i) If s^2 is unknown and v>30 the v.v. $\frac{\overline{x}-\mu}{5/\sqrt{x}}$ wtw-1
towards infinity and the $(1 \times \overline{x} \pm \frac{1}{1-\frac{1}{2}})$ (I Par the difference of means of two normal populations (It the populations are not normal, but the magnitudes
of the samples are vays>30, then the following still hold true because of the CLT) Let X_1, X_{v_4} r.s. of $N(\mu_A, \sigma_A^2)$ and Y_1, Y_{v_4} r.s. of
 $N(\mu_B, \sigma_B^2)$ We have $\overline{X} \sim N(\mu_A, \frac{\sigma_B^2}{\nu_A})$, $\overline{Y} \sim N(\mu_B, \frac{\sigma_B^2}{\nu_B})$ and $\overline{X}, \overline{Y}$ are independent so $\overline{X} - \overline{Y} \sim \mu(\mu_1 - \mu_2, \frac{\sigma_4}{\sigma_3} + \frac{\sigma_3^2}{\sigma_4})$ $M_{\text{oment-gementing} }$ function: $M_{\overline{x}-\overline{y}}(t)$ = $\int e^{t(\overline{x}-\overline{y})}$ = = $f[e^{t\overline{x}}]$ $f[\overline{e^{t\overline{Y}}}]=M_{\overline{x}}(t)$ $M_{\overline{y}}(-t)$ Fa X~ $N(\mu, \sigma^2)$ we know that $M_{x}(t) = exp\{ \mu t + \sigma^2 \frac{t^2}{2} \}$
so $M_{\overline{x}} - \overline{y}(t) = M_{\overline{x}}(t) \cdot M_{\overline{y}}(-t) = exp\{ \mu_1 t + \frac{\sigma_1^2}{\nu_1} \cdot \frac{t^2}{2} - \mu_2 t + \frac{\sigma_2^2}{\nu_2} \cdot \frac{t^2}{2} \} =$ = $e_{xq} \{(\mu_1 - \mu_2) + (\frac{\sigma_1^2}{\sqrt{1}} + \frac{\sigma_2^2}{\sqrt{2}}) \cdot \frac{f^3}{2}\}$ which is the moment-generating function of $N(\mu_1-\mu_2,\frac{\sigma_4^2}{\sigma_2}+\frac{\sigma_2^2}{\sigma_2})$ $Finally: Z = (X-Y) - (\mu_1 - \mu_2) \sim N(0,1)$ $53/4 + 53/4$ i) If σ_1^g , σ_2^g are Known, then the boundaries of the CI with contidence level 1-a 800 11-12 are: \overline{X} - \overline{Y} ± $Z_{\alpha_{12}}$ $S_{\alpha_{14}}^{\beta_{14}} + S_{\alpha_{12}}^{\beta_{2}}$

 $\lim_{x\to 0} \frac{1}{2} \int_{0}^{2} \frac{1}{2} \int_{0}^{2}$ are unknown then:

a) if v_4v_2 > 30, then an an approximate C_5 with contidence level 1-a for $\mu_1-\mu_2$ is: $\bar{x} - \bar{y} \pm Z_{q/g}$ $\frac{s_4}{v_1} + \frac{s_2}{v_2}$ $b)$ if $v_1, v_2 < 30$, then the case is complicated. We usually suppose that $\sigma_1^2 = \sigma_2^2 = \sigma^2$. Then $\frac{(\nu_{4}-1) S_{4}^{3}}{s^{2}} \sim \frac{\gamma_{4}}{s^{2}} \frac{(\nu_{2}-1) S_{2}}{s^{2}} \sim \gamma_{4-1}^{2}$ and these are $int\frac{C(y_4-1)5x^3+C(y_2-1)5x^3}{5^2} \sim \gamma_{y_4+1}^2$ $Z = \frac{(x-y) - (y_1 - y_2)}{\sqrt{3}y_{y_1} + \sigma^2 y_{y_2}} \sim N(0,$ $Since X, Y are indeed another, X, S₁Y, S₂ are also independent$ $x-y$) - C_{12} - 12 $so \t= \frac{\sqrt{3}^{2}(\frac{2}{\sqrt{3}})}{\sqrt{(1654) \cdot 536}}$ $\frac{1.53+(v_2-1)58}{08}$
 $\sqrt{4+v_2-2}$ $\sqrt{u_2-1}$ $\frac{2}{3}$ $\sqrt{(u_2-1)52+(v_2-1)52}$
 $\left(\frac{4}{v_2}+\frac{4}{v_3}\right)$ and the boundaries for the CI with c.l. 1-a for M1-ne are $(\overline{x}-\overline{y}) \pm \frac{1}{x} \left(\frac{y_{11}+y_{2}-z}{x_{1}+y_{2}-z}, \frac{y_{12}-x_{1}+y_{1}+y_{2}-z}{x_{1}+y_{2}-z}, \frac{y_{12}-y_{1}+y_{2}-z}{x_{1}+y_{2}-z}, \frac{y_{12}-y_{1}+y_{2}-z}{x_{1}+x_{2}-z}, \frac{y_{12}-y_{1}+y_{2}-z}{x_{1}+x_{2}-z}, \frac{y_{12}-y_{1}+y_{2}-z_{2}+z_{2}+z_{2}+z_{2}+z_{2}+z_{2}$ $Example$ If d is ^a predetermined value for the error margin find so that the $100(1-a)\%$ CJ for μ is not larger than $(\bar{x}-\lambda, \bar{x}+\lambda)$. Solution
Essentially, we want $P(|\overline{x}-\mu| \leq \lambda) = 1 - a$ $P(-) \le \mu - X \le \delta$) = 1-a $\Rightarrow P(X - \delta \le \mu \le X + \delta) = 1 - \alpha$ but $P(\bar{x}-2a_{12}\bar{x}=\sqrt{x}=2a_{12}\bar{x})=1-a_{12}=\sqrt{2}a_{12}\bar{x}$ \Rightarrow $\int^2 = Z_{a_{1a}}^2 = \frac{5^2}{3}$ \Rightarrow $v = Z_{a_{1a}}^2 = \frac{5^2}{3^2}$

Fxample Let X_4 , X_{46} r.s. of $N(\mu, \sigma^2=1)$ with $\overline{X}=2$
Find a 95% (I for μ . It is given that $Z_{9,025}=1,96$ Solution The 12 is $\overline{X} = 2_{\alpha/2}$ $\frac{\sigma}{\overline{W}} = 2 \pm 1,96$ $\frac{4}{\sqrt{16}} = 2 \pm 0,49$ $SO (I : [4.51, 2.49]$