(I for σ ? (Normal gogerlation)

Let $X_1, ..., X_v$ rs of $N(\mu, \sigma^s)$

a) If μ is Known: We can find the MLE $\frac{\lambda}{\sigma^2} = \frac{4}{v} \sum_{i=1}^{\infty} (x_i - \mu)^2$ We are looking to a givet turction $V(\frac{12}{5}, \frac{9}{5})$
We have $\frac{X-h}{\sigma} \sim N(0,1) \implies (\frac{X-h}{\sigma})^2 \sim \chi_1^2 \implies$
 $\implies \frac{X-h}{\sigma^2} = \frac{\sqrt{3}}{2(x-h)^2} = \frac{\sqrt{3}}{2} \sim \chi_2^2 \implies$ $4(6^{2}, 5^{2})$ $\frac{1}{\frac{\sqrt{6}^{2}}{6^{2}}}\left[\frac{\sqrt{6}^{2}}{6^{2}}\right] = \sqrt{6}^{2}\left[\frac{6^{2}}{6^{2}}\right] = 6^{2}$ $\Rightarrow \int \left[\frac{\sqrt{6}^{2}}{6^{2}} \right] = \sqrt{2} \int \left[\frac{\sqrt{6}^{2}}{6} \right] = 6^{2}$ $P(c_1 < \frac{\sqrt{6^2}}{6^2} < c_2) = 1-a \Rightarrow c_1 < c_1 < c_2 < c_2 < c_1$
\n
$$
P(\frac{1}{c_2} < \frac{6^2}{\sqrt{6^2}} < \frac{4}{c_1}) = 1-a \Rightarrow P(\frac{\sqrt{6}^2}{c_2} < \frac{2}{\sqrt{6}} < \frac{\sqrt{6}^2}{c_1}) = 1-a \Rightarrow
$$
 $\Rightarrow P(\frac{2(x-p)^{2}}{c_{2}}<\delta^{2} \leq \frac{2(x-p)^{2}}{c_{1}})=1-a$ $\Rightarrow P(\frac{2^{(k+1)}}{(2} < 5^{2} < \frac{2(k+1)}{c_{1}}) = 1-a$

So the 100. (1-a)% (1) for s^{2} is $\sqrt{\frac{2(k+1)^{2}}{N\ell n_{1}}}\sqrt{\frac{2(k+1)^{2}}{N_{1}-\frac{a_{1}}{2}}}$ b) 52μ is unknown: In this case we have $5^2 = \frac{4}{\sqrt{4}} \sum_{i=1}^{n} (x_i - \overline{x})^2$ as an u.e. of σ^2 . We know that $\frac{(v-1)S^2}{\sigma^2} \sim \gamma_{v-d}^{2}$, so
 $\gamma(S^2, \sigma^2) = \frac{(v-1)S^2}{\sigma^2}$ is our givot function. (I for variance ratio Let X_1, X_1 Y_1 S_0 S_1 $N(\mu_X, \sigma_X^2)$ and $Y_1, ..., Y_m$ of $N(\mu_Y, \sigma_Y^2)$
We are looking for $\frac{\sigma_X^2}{\sigma_Y^2}$

a) If μ_{x}, μ_{y} are N_{VOWM} : $\sigma_{x}^{2} = \frac{1}{V} \sum_{i=1}^{V} (x_i - \mu_x)^2$ and $\sigma_{y}^{2} = \frac{1}{M} \sum_{i=1}^{M} (Y_i - \mu_y)^2$

b) $53 y y y$ are unknown: $52 = \frac{4}{x-4} \sum_{i=1}^{x} (x_i - \bar{x})^2$ and
 $53 = \frac{4}{x-4} \sum_{i=4}^{x} (y_i - \bar{y})^2$

We know that $\frac{(v-1)55}{\sigma_x^2} \sim N_{x-4} \frac{2}{\sigma_y^2} \sim N_{y-4}$
 $043 \sin(\pi x) y$ are independent $52 \sum_{i=4}^{x} \sum_{i=4}^{x} \frac{(w-1)5$

 $\frac{5x^{2}/5y^{3}}{5x^{2}/5y^{2}} \sim f_{u-1,v-1}$ We set $Y(5x^{2}, 5y^{2}, 5x^{2}, 5y^{2})$ and we have:
 $P(c_{1} < \frac{5x^{2}/5y^{2}}{5x^{2}/5y^{2}} < c_{2}) = 1-a \Rightarrow P(\frac{5x^{2}}{5y^{2}} - f_{u-1,v-1,-q/g} < \frac{5x^{2}}{5y^{2}} < \frac{5x^{2}}{5y^{2}} - f_{u+1,v+q,q/g} < \frac{5x^{2}}{5y^{2}} < \frac{5x^{$ $116, 361$

LI for percentage

Let X1, X v.s. Bernoulli(9), where y is Known. M=vg The MLE is $\hat{\varphi} = \frac{5x}{4}$, We have $Y = \frac{5}{4}x$, $\sim B_{14}(x, \varphi)^{\frac{1}{8}z_{avg(1-\rho)}}$ If v 30, from CLT (Central Limit Theorem) we have: $\frac{Y-E(Y)}{V(Y)} = \frac{Y-Y}{V(Y|Y)} \sim N(\rho, 1)$ $S_{0} P(Z_{-q_{1}q} \le \frac{V - v_{P}}{J_{Vq(1-q)}} < Z_{a_{1}q}) = 1-a \Rightarrow P(-Z_{a_{1}q} \le \frac{V - P}{Jq(1-q)} < Z_{a_{1}q}) = 1-a$ $\Rightarrow P(\frac{y}{v}-2_{\alpha/2})\frac{\sqrt{p(4-p)}}{v}<\rho<\frac{y}{v}+2_{\alpha/2}\cdot\sqrt{\frac{p(4-p)}}{v}}=1-a$

Les une set q equal to p

 $5a +he 100(1-a)\%$ (I for q is $4=Z_{a/g}\sqrt{\frac{V_{V}(1-V_{V})}{V}}$ It vis small (230): $P(|\frac{V/v-p}{\sqrt{q(1-p)}}| \leq Z_{\alpha/2}) = 1-\alpha \longrightarrow (\frac{V}{v}-\rho)^2 - Z_{\alpha/2}^2 \frac{q(1-p)}{v} \leq 0 \implies$

 $\Rightarrow \frac{12}{9} + q^2 - 2q^2 = \frac{Z_{a/2}^2 P}{2} + \frac{Z_{a/2}^2}{2} - q^2 \le 0 \Rightarrow$ $\Rightarrow H(\rho) = (1 + \frac{z_{o/z}}{y})_{\rho}z - (z_{o}^{\lambda} + \frac{z_{o/z}^2}{y})_{\rho} + \frac{\lambda}{\rho}z$ The 2 voots of $H(\rho)$ are $x_1, x_2 = \frac{1}{\rho} \pm Z_{\alpha_1 \alpha_2} \frac{\sqrt{\frac{\hat{r}}{2}(1-\hat{r})}}{2}$ so for large v the $(I$ is (r_4, r_2)

(I for percentage difference) Let Yan Bin(Va, 91), Yen Bin(ve, 92), then $f\{Y_{1}\}=V_{12}P_{2}$ $V(Y_1) = V_1 Q_1 (1 - q_1)$, $V(Y_2) = V_2 Q_2 (1 - q_2)$ and for the r.v. $\frac{V_1}{U_1} - \frac{V_2}{V_2}$ we have $f(x_4 - x_3) = 94 - 98$, $V(x_4 - x_5) = \frac{94(1-91)}{11} + \frac{92(1-92)}{11}$ For large vare from the CLT we get: $(44 - 48) - (94 + 98)$ $(34 + 98)$ $(34 - 84) + 92(1 - 98)$ $(0, 1)$ $\int_{0}^{16} 4e^{400(1-a)^{9}(\sqrt{1-x^2})(1-x^2)} dx$ $(\frac{\sqrt{4}}{\sqrt{4}} - \frac{\sqrt{2}}{\sqrt{2}}) \pm Z_{\alpha/2} \sqrt{\frac{\sqrt{4}}{\sqrt{4}}(1-\frac{\sqrt{2}}{2})} + \frac{\sqrt{2}}{\sqrt{2}}(1-\frac{\sqrt{2}}{2})}$

Frangle (Previous exam exercise) Let x_1, x_2, x_3 v.s. with PDF $\lambda(x; \theta) = \theta \cdot x^{\theta-4}$, 02x21, 020 α) Find an estimator for the moments of θ and the M) ϵ of $\frac{4}{9}$ b) F_{ind} 100 (1-a)% C_1 λ_{ox} θ (Hint: Show that For the MLE 5, Y=2,05 follows P2, For Gammalv, (a) the PDF is $\lambda(y, \theta) = \frac{\theta^{\gamma}}{T\omega y}y^{\gamma-1}e^{-\theta y}$

Solution

a) $f[x] = \int_0^4 x \theta x^{\theta-1} dx = \theta \frac{x^{\theta+1}}{\theta+1} \Big|_0^1 = \frac{\theta}{\theta+1}$ We equate \angle [X]= \overline{X} \Rightarrow $\frac{\theta}{\theta+1} = \overline{X} \Rightarrow$ $\overline{\hat{\theta}} = \frac{\overline{X}}{1-\overline{X}}$ moments $M L f : L(\theta) = \prod_{i=1}^{n} \lambda(x_i, \theta) = \prod_{i=1}^{n} \theta x_i^{\theta-1} = \Theta^{\circ} (\prod_{i=1}^{n} x_i)^{\theta-1} \implies$ $= (0) = log_{100} + log_{100} + (0-1) log_{100} + (0-1)$ = $y \log\theta + (\theta - 1)$ $\sum_{i=3}^{3} \log x_i$
 $\frac{\partial f(\theta)}{\partial \theta} = 0 \implies \frac{y}{\theta} + \sum_{i=3}^{3} \log x_i = 0 \implies \theta = -\frac{y}{\frac{y}{\sqrt{3}}\log x_i}$ invariance $\frac{\partial^2 I(\theta)}{\partial \theta^2}\bigg|_{\theta=\overline{\theta}}=-\frac{V}{\delta^2}<0$ so S is MLE . b) We call $W=-\log X$ and it is $F_w(w) = P(W \le w) =$
= $P(-\log X \le w) = P(X \ge e^{-w}) = 1 - P(X \le e^{-w}) = 1 - F_X(e^{-w}) =$
= $\frac{1}{2}w(w) = \frac{3}{80}(1 - F_X(e^{-w})) = e^{-w} \frac{1}{2} \times (e^{-w}) = e^{-w} \frac{1}{2}e^{-w} \frac{1}{2}e^{-w}$ $f(xq(\theta))$ S_{\odot} - log $X_i \sim Exp(\theta) \rightarrow T = \sum_{i=1}^{n} log X_i \sim Gammalv, \theta)$ $a_{\mu}\$ $\sqrt{2}$, θ = 2, θ $\frac{1}{\nu}$ = 207 so we have: $F_{\varphi}(\psi) = P(Y \le \psi) = P(267 \le \psi) = P(T \le \frac{\psi}{20}) = F_{\varphi}(\frac{\chi}{20}) = \Rightarrow$
 $\Rightarrow P_{\varphi}(\psi) = \frac{1}{20} P_{\tau}(\frac{\chi}{20}) = \frac{1}{20} \frac{e^{\psi}}{f(\psi)} (\frac{\chi}{20})^{\nu-1} e^{-\Theta \frac{\chi}{20}} =$

 $=\frac{1}{2^{v}T(2^{v})}$ y^{v-1} $e^{-\frac{1}{2}y}$, which is the PDF of χ^{2}