Monotone Likelihood Ratio (MIR)

Definition We say that a family of distributions $F = \{f(x; \theta) : \theta \in \Theta\}$ has the MIR property, iP : $a)$ the support s is independent of θ $b)$ for $\Theta_2 \neq \Theta_2$ the corresponding $\lambda(x, \Theta_1), \lambda(x, \Theta_2)$ are not identical c) there exists a statistic $T(x)$ such that ∂a all $\partial_1 < \partial_2$ the ratio $\frac{2(c_1, a_1)}{2(c_1, a_2)}$ of the joint PDFs is an increasing $\frac{1}{4}$ uyction of $T(\underline{x})$

 $Expage$ For $F = lPDFs$ of Poisson (O)) $A\alpha$ all $\theta_1 \leq \theta_2$ we have $\frac{2(\mathbf{x}, \mathbf{\Theta_1})}{2(\mathbf{x}, \mathbf{\Theta_2})} = \frac{1}{16}e^{-\mathbf{\Theta_2}} \cdot \mathbf{\Theta_2}^{-1} / x_i! = e^{-\mathbf{\Theta_1} x_i}$ $\frac{d^{2}z}{dx^{2}}e^{-\theta z}$ $\frac{\Theta_{2}^{x}y_{x}!}{\Theta_{2}^{x}y_{x}!}$ = $e^{-v(\theta_{2}-\theta_{3})}(\frac{\Theta_{2}}{\Theta_{3}})^{\frac{2}{\Theta_{3}}x_{x}!}$, which is an increasing function of $T(\underline{x}) = \sum_{i=1}^{n} x_i$, so \uparrow lass the MLR property. Theorem If the family of distributions $\tilde{f} = \{f(x, \theta) : \theta \in \Theta\}$ has the MLR property with statistic $T(S)$, then the test $i) T(x) > w$ for $(x_1,...,x_v) \in G$ $i) T(s)$ < w for $(x_1, ..., x_r) \in G$ iii) $P((x_1,...,x_v) \in G \mid \mathcal{H}_0) = a$ is u.m.p.t for $H_0: \theta = \theta_0$ us $H_1: \theta > \theta_0$, with error a

For the test $H_0: \theta = \theta_0$ vs $H_a: \theta = \theta_3$, where $\theta_4 > \theta_0$, from the N-P lemma we have: k_{1}^{2} < K R_{α} $(x_{1},...,x_{n})\in G$. Given the MLP property, the ratio $\frac{20}{11}$ is a decreasing function of $T(\Sigma)$, so $\frac{10}{11}$ < K is equivalent to $T(z) > w$ and $P(T(z) > w | f_0) = a$ The above relations are independent of θ , hence the test is u.m.pt for H_0 : $\Theta = \Theta_o$ us H_1 : $\Theta > \Theta_o$

Theorem Let $P(x, \theta)$ belong to the single-garameter EFD with PDF $\mathcal{Z}(x, \theta) = \mathcal{B}(\theta)$ exp $\{y(\theta) \cdot T(x)\}$ $h(x)$ i) 54 y (O) is increasing then 7 (.) less the MLR property with $12 = 27(x)$
C D (a) ii) 54 $y(0)$ is decreasing then 7 () has the MLR property with $T(\Sigma) = -\sum_{i=1}^{n} T(x_i)$

We have $\hat{A}(\geq,\Theta) = \prod_{i=1}^{n} \hat{A}(x_i;\theta) = (\theta(\Theta))^v \cdot \exp\{y(\Theta)\}\cdot \sum_{i=1}^{n} T(x_i)\} \cdot \prod_{i=1}^{n} h(x_i)$ $G(\theta)$ exp $\left\{ g(\theta) \right\}$ $\left\{ (x, \theta) \right\}$ $\left\{ (x, \theta) \right\}$ s_{0} $\frac{1}{7}(x; \theta) = \frac{1}{8}(0, 0)$ 2×7 $2(\sqrt{16}) - (\sqrt{16}) \times 7$

 \rightarrow if $y(\theta)$ is increasing and θ e> θ_4 then $y(\theta_2)$ - $y(\theta_1)$ >O and the ratio is an increasing function of $T(x) = \sum_{i=1}^{n} T(x_i)$ \rightarrow if $y(\theta)$ is decreasing and θ 27 θ 1 then $y(\theta_2)$ - $y(\theta_4)$ < and the ratio is an increasing function of $T(X) = \sum T(X)$ Hence, for the test H_0 Θ = Θ o vs H_1 Θ = Θ_1 we have:

 (\mathcal{B}_i) $\mathcal{T}(\underline{\mathbf{x}})$ \geq \mathcal{A}_i , \geq $(\mathcal{X}_i, \dots, \mathcal{X}_n)$ \in \mathcal{C}_i (A) i) $T(x)$ \sim $P(x_1, ..., x_n)$ \in G (π) $T(x)$ < w, π $(\pi, ..., \pi)$ \in 4 $i) T(x) \le w, i$ $\{x_1, ..., x_k\} \in G'$ $iD P((x_1,...,x_v) \in G | H_{o}) = a$ $i\in\mathcal{P}((x_1,...,x_v)\in G\mid\mathcal{H}_0)=a$ $i \mathcal{F}$ y(O) decreasing $i \mathcal{F}$ $y(\theta)$ increasing $tramp{a}$ Let $x_1, x_2 \in \mathbb{R}$ $\{x_1 \in \mathcal{A} \mid x_2 \in \mathcal{A}\}$ $\{x_2 \in \mathcal{A} \mid x_3 \in \mathcal{A}\}$ $\{x_3 \in \mathcal{A} \mid x_4 \in \mathcal{A} \}$ Solution $Exp(0)$ belong to the EFD with $y(0)=-\Theta$, which is decreasing, so for $T(x) = \sum_{i=1}^{x} T(x_i) = \sum_{i=1}^{x} x_i$ the libelihood ratio will be decreasing as T increases. Hence, C: T(x)=2xi>w But $X_i \sim f_{xq}(\theta) = \sum_{i=1}^{n} x_i \sim 6$ *amountal* $x_i \theta$ *and its PDF is* $\overline{Y}(x;\theta) = \frac{\theta^{x}}{\theta^{x}} \times^{v-4} e^{-\theta x}$ $\frac{\lambda\ell_{\text{SO}}}{207}=20\sum_{i=1}^{3}x_{i}\sim\frac{1}{2}$ (samma $\left(\frac{24}{2},\frac{1}{2}\right)$ and its PDF is $\frac{2}{f(x)} = \frac{(3/2)^{6}}{f(x)}$ $x^{y-4} = \frac{4}{2}x$ We want $P(\frac{3}{5}x; > w | H_0) = a \implies P(2\theta_0, \frac{3}{5}x; > 2\theta_0, w) > a$ $\Rightarrow 2\theta_{0}$ w = $\gamma_{22,4}^{2}$ \Rightarrow w = $\frac{\gamma_{22,4}}{2\theta_{0}}$ So $G = \{(x_1,...,x_N) : T(x) = \sum_{i=1}^{N} x_i > \frac{720}{200} \}$
aus the govern Prinction is:
 $T(\Theta) = P_{\Theta}(C) = P_{\Theta}(\sum_{i=1}^{N} x_i > w) =$
 $= P_{\Theta}(207 > \frac{\Theta \times x_{2N}}{\Theta_{\Theta}}) = 1 - P(201 < \frac{\Theta \times x_{2N}}{\Theta_{\Theta}}) = 1 - F_{\Lambda/2}(\frac{\Theta}{\Theta_{\Theta}} \frac{1}{N_{2N}})$