Theorem (Fischer-Neyman Factorization) Let $X = (X_1, ..., X_v)$ r.s of distribution with PDF $\mathcal{A}(\underline{\kappa}, \underline{\theta})$ $Q = (Q_1, Q_5)$. Then the statistic $I(x) = (T_4(x), T_5(x), T_6(x))$ is sufficient $\frac{2}{4}a$ $\frac{9}{4}$ iff $\frac{19}{4}$ such that $f(x ; \theta) = g(T(x) ; \theta)' W(x)$ $(g$ depends on x andy via $T(x)$ and h is independent of g) $Proot$ We will prove it for ^a discrete distribution and $v = 1$, $s = 1$, $N = 1$ for simplicity. We suppose that $\ddot{A}(\dot{\tau};\theta) = q$ $\frac{T(x)}{T(x)}$ $\frac{1}{T(x)}$ (x) and will q rave that $T(A)$ is sufficient for $P(\times = \times | T = t) = \frac{1}{2} \sqrt{P(T = t)}, \frac{1}{2} \sqrt{T} = T(x)$ 0 otherwise and we have $P(T=t) = \sum_{T(x)=t} P(x=x) = \sum_{T(x)=t} \frac{\gamma(x)}{T(x)}$ $T(x)$; Θ) $h(x) = g(t; \Theta)$ $s \circ \frac{1}{x}$ $\frac{1}{x} = \frac{1}{x}$ $\frac{1}{x} = \frac{1}{x}$ $\frac{1}{3(7(5), 6)}$ $\frac{1}{10}(4)$ = $\frac{1}{10}(4)$, which is independent of θ

 $so (x)$ is sufficient for θ .

 (\Rightarrow) We suppose that $T(\times)$ is sufficient for Θ Then: $f(x \mid \theta) = f(x=y) = f(x=y) - f(-x) = f(x=y|T=t) - f(T=t)$ Since $T(x)$ is sufficient $P(x=x, 7=t)$ is independent of θ . Hence $F(x; \theta) = g(T(x); \theta) \cdot h(x)$, where $h(f) = P(x = x, 7=t)$ and $q(T(f))$; θ) = P(T=t) $\overline{\mathbf{u}}$

Examples

1) Let X1, Xe, Xu r.s of Poisson (x). Find a sufficient statistic 8ord. The joint PDF of X_4 , X_6 is Y_7
 $Z(x, y) = \prod_{i=4}^{n} Z(x_i, y) = \prod_{i=4}^{n} e^{-x} \cdot \frac{x^{x_i}}{x_i!} = e^{-x} \cdot \frac{x^{x_i}}{||x_i||} =$ \overline{a} $T(z)$ \rightarrow N V where $g(T(x), \lambda) = e^{-\lambda x} \lambda^{\frac{2}{n-4}n}$, $h(x) = (\prod_{i=1}^{n} x)^{n}$ $so T(x) = 2Xi$ is a sufficient statistic for λ I Let x_1, x_2, x_3 is with PDf $\frac{f(x, \theta) = \theta \cdot x^{\theta-1}}{g(x, \theta)}$ $\cos x < 1$, $\theta > 0$ tive a sufficient statistic for G $\frac{1}{2}f(x_i, \theta) = \frac{1}{2} \theta x_i^{\theta-1} = \theta'(1|x_i) = \frac{1}{2} (1/\epsilon) \theta \cdot h(\epsilon)$ where $U(\leq)=1$ and $g(T(\leq),\theta)=\theta^{\top}(\frac{1}{1-\theta})$ so $U(\geq)=\frac{1}{1-\theta}$
is culliving θ is sufficient for

3) Let X_1 , X_1 r.s of $N(\mu, \sigma^2=4)$. Find a sufficient statistic for p.

 $Solution_{P(x, y)} = \prod_{i=1}^{N} P(x_i, y_i) = \prod_{i=1}^{N} \frac{1}{2n} \cdot exp \left\{-\frac{(x_i - \mu)^2}{2}\right\} =$ = $(2n)^{\frac{1}{2}}$ exp $\{-\frac{1}{2}\}\left[\frac{1}{2}x_i^2 + v\frac{1}{2} - 2\mu\frac{1}{2}x_i\right]$ =
= $\frac{(2n)^{-1/2}}{1\left(\frac{1}{2}\right)}$ exp $\{-\frac{1}{2}\sum_{i=1}^{4}x_i^2\}$ exp $\{-\frac{1}{2}\mu^2 + \mu\frac{1}{2}x_i\}$ =

Hence $T(\Sigma) = \sum_{i=1}^{\infty} x_i$ is a sufficient statistic for μ

Alternatively: $\overline{f}(z, y) = (z_0)^{-\frac{y_2}{2}} e^{-\frac{1}{2} \sum_{i=1}^{N} (x_i - \overline{X}_i + \overline{X}_i - \mu)^2}$ = $(2a)^{-\nu/2}$ $\exp\left\{-\frac{4}{2}\right\}\sum_{i=1}^{\infty} (x_i - \overline{x})^2 + \sum_{i=1}^{\infty} (\overline{x} - \mu)^2 + 2(\overline{x} - \mu) \sum_{i=1}^{\infty} (x_i - \overline{x})\right\}$ We have $\sum_{i=1}^{n}(x_i-\overline{x})=\sum_{i=1}^{n}x_i-\sqrt{x}=\sqrt{x}-\sqrt{x}=0$ 50 $\frac{2}{3}$ \times $\frac{1}{3}$ μ) = (2m) $\frac{1}{2}$ $\frac{3}{2}$ $\frac{4}{2}$ $\frac{3}{2}$ $\frac{2}{3}$ \cdot \cdot $\frac{3}{2}$ $\frac{3}{2}$ $\frac{4}{2}$ $\frac{5}{2}$ \cdot μ) $\frac{3}{2}$ = $u(x) = u'(x)$
 $u(x) = x$ is sufficient for μ $g(T(x) = x \cdot \mu)$

4) Let $X_1, X_2, ..., X_v$, r.s. of $N(\mu, \sigma^2)$. Find a sufficient statistic for $Q=(\theta_4=\mu, \theta_2=\sigma^2)$ $3(x - \bar{x} - \mu)^3$
= (2ro²) = (2ro²) = (2ro²)
= (2ro²)⁻¹/2 exp {-22 $\frac{1}{2}$ (x;- \bar{x} - $\frac{1}{2}$ (\bar{x} - μ)² } = (\bar{x} - μ) $\frac{1}{2}$ (\bar{x} - μ) $\frac{1}{2}$ (\bar{x} - μ) $\frac{1}{2}$ (\bar{x} - \bar{x})} Solution = $4(x)$ g ($7(x)=\overline{x}$, $7x(x)=\sum_{i=1}^{2} (x_i-\overline{x})^2$, $n_i\sigma^2$)
so $T(x) = (\overline{x}, \sum_{i=1}^{4} (x_i-\overline{x})^2)$ is sufficient for 2

 $57 X, -170$ with $9=(94, -195)$ $5=1, ..., v$ then $\exists x_i(x_i, \theta) = B(\theta)$ exp $\{\sum y_i(\theta)T_i(x_j)\}\$ h(x) The joint distribution of $x=(x_1,...,x_n)$ belongs to the v-dimesional EFD with s parameters. Hence: $2 x = (x ; \theta) = [12(x ; \theta)] = [8(\theta)]^{3} exp{\frac{2}{324}} = \frac{1}{4}$
= $8*(\theta) exp{\frac{25}{124}ln(\theta) + (\theta)}$
= $8*(\theta) exp{\frac{25}{124}ln(\theta) + (\theta)}$ where $B^*(\theta) = (B(\theta))^{\nu}$, $h^*(x) = (1/4(x))$, $T_i^*(x) = 5T_i(x)$ so Neyman's theorem applies and $I(x) = (T_1^*(x),...,T_5^*(x))$ is sufficient for 2. Corollary Let $\psi: \mathbb{R}^N \rightarrow \mathbb{R}^k$ and $\omega: \mathbb{R}^s \rightarrow \mathbb{R}^s$, where $\psi \sim \mathbb{1} \cdot 1$ (so that $\varphi^{-1}, \omega^{-1}$ exist). It the statistic $I=I(\pm)$ is susficient for & then: π) Is $=\varphi(I)$ is sufficient for \ominus ii) I is sufficient F_{4} $\Theta_{1} = \omega(\Theta)$ $Proch$ $\pi i \mathcal{F}(\leq \frac{1}{2} \Theta) = q(\mathbb{I}(\geq), \Theta) \cdot l_1(\geq) = q(\mathbb{I}(\geq), \omega^{-4}(\Theta_1)) \cdot l_1(\geq) = q_2(\mathbb{I}(\geq), \Theta_1)l_2(\geq)$ so I is sufficient for 01 $i) f(x ; g) = g(T(x) , g) \cdot h(x) - g(\varphi^{-1}(I_1(x)), g) \cdot h(x) - g(\varphi^{-1}(I_1(x)))$ so Is sufficient for 2

 f xample

 $4)$ J 2^x T = 2^x is sufficient 2^x Θ then $x \rightarrow \frac{1}{v} = \frac{5x}{v} = \overline{x}$ sufficient for G we T is sufficient for θ^3 , 20, XO, log θ , e° 2) Let X1, You vis 07 U(0,0). Find a sufficient statistic f_{or} θ . Solution $U(0,\theta)$ is not in EFD so we can't work with that. Generally, i^2 X $\sim U(a, b)$ then $\mathcal{X}(x \mid a, b) = \frac{1}{a-a}$, $a \times 16$ or alternatively $\overline{f}(x) = \frac{1}{2} \cdot I(a \times x \le 0)$ where $S(ax \times 0) = \begin{cases} 1 & a \le x \le 0 \\ 0 & a \le x \le 1 \end{cases}$ For $X \sim U(\theta, \theta)$ it is $P(x, \theta) = \frac{1}{\theta} S(0.4x4\theta)$ So according to Nexman Agotarization we have: $P(x, \theta) = \prod_{i=1}^{n} P(x_i, \theta) = \prod_{i=1}^{n} \frac{1}{\theta} I(\theta \times x_i \times \theta) = \theta \prod_{i=1}^{n} I(\theta \times x_i \times \theta)$ We want $\frac{1}{2}\left(0<\frac{1}{2}(\theta)<\frac{1}{2}(\theta)\right)=1$ or else $\frac{1}{2}(\pm,\theta)=0$ so we want $\mathsf{I}(\mathsf{O}\leq\pi_{i}\leq\Theta)=1$ $\forall i=1,...,v$ $\Leftrightarrow x_i \in (0, \theta)$ $\forall i \implies 0 \leq x_{(4)} \leq x_{(2)} \leq ... \leq x_{(n)} \leq \theta$ where Xca), Xca),..., Xcus are the sorted statistical data and $x_{(4)} = min\{x_1, i=1,...,3, x_{(4)} = max\{x_i, i=1,...,m\}$ Heyce we want $I(0-X_{c1})+00$. $I(0-X_{c0})<0)=1$ $50 = \frac{7(x)}{9} = 0^0 I(0.2x_{(1)} < 10) I(0.2x_{(1)} < 0) =$ $=q(T(x), \theta)$ $h(x)$, where $q(T(\pm))$; θ) = θ ⁻ I(0< $x_{(y)}$ < 0) $du \rightarrow \mathbb{L}(\mathbb{X}) = \mathbb{I}(\mathcal{O} \leq \chi_{(1)} < +\infty)$

Finally, $T = T(x) = X_{cy}$ is a sublicient statistic for θ

Alternatively, we can demand $I(o\ll x_1) \leq \Theta \cdot 1(o\ll x_0 \leq \Theta) = 1$ and we would get $\frac{2}{x}$ = $\frac{2}{x}$ = $\frac{2}{x}$ = $\frac{2}{x}$ = $\frac{1}{x}$ (o< $\frac{x}{x+2}$ = $\frac{3}{x}$ + $\frac{1}{x}$ (o < $\frac{x}{x+2}$ + $\frac{3}{x+2}$) $so \ln(x)=1$ and $I_4(x)=(x_{c1},x_{c1})$ which is a sufficient statistic but yot the minimal.