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COMBINING HISTORY AND PSYCHOGENESIS 

Why did the development of algebra lag behind geometry for so many centuries? 
Why do today’s pupils have difficulties with even the simplest word problems? 
What prevented generations of mathematicians from accepting the idea of the 
irrational and the negative numbers? What are the roots of the difficulties experi- 
enced by students confronted with the concept of complex number for the first 
time? 

It is neither by chance, nor by mere carelessness, that my list of questions is a 
mixture of psychological and historical puzzles. As different as they seem at first 
glance, these two sets of problems may in fact have much in common. Indeed, 
there are good reasons to expect that, when scrutinized, the phylogeny and 
ontogeny of mathematics will reveal more than marginal similarities. At least, 
this is what follows from the constructivist view according to which learning 
consists in the reconstruction of knowledge. 

Piaget-one of the first and most outspoken protagonists of constructivism, 
and thus of the thesis that “the historical-critical and psychogenetic studies 
[should] converge” (Garcia & Piaget, 1989, p. 108)-grounds his position in the 
claim that 

the advances made in the course of history of scientific thought from one period to 
the next, do not, except in rare instances, follow each other in random fashion, but 
can be seriated, as in psychogenesis, in the form of sequential ‘stages.’ (p. 28) 

It is probably because of the inherent properties of knowledge itself, because of 
the nature of the relationship between its different levels, that similar recurrent 
phenomena can be traced throughout its historical development and its individual 
reconstruction. For the same reason, difficulties experienced by an individual 
learner at different stages of knowledge formation may be quite close to those 
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that once challenged generations of mathematicians. The parallel terms, epis- 
temic subject and collective epistemic subject used by some researchers to distin- 
guish between the individual learner and the collective of the creators of 
knowledge, bespeak the widespread belief in these similarities. 

In this article I make a very quick journey through the history of algebra, 
trying to detect certain recurrent phenomena in the development of abstract 
ideas. The point of departure for this pattern finding will be a theoretical model 
according to which the formation of mathematical knowledge is more or less a 
cyclic process, a process in which the transitions from one level to another follow 
some constant course. The particular scheme that will be used here pictures 
mathematics as a hierarchy in which what is conceived operationally (i.e., as a 
computational process) on one level is reified into an abstract object and con- 
ceived structurally on a higher level. The idea of an operational-structural du- 
ality of mathematical concepts with its numerous implications was presented in 
detail in Sfard (199 1, 1992). For the convenience of the reader, a summary of the 
relevant elements of this framework is given in the Appendix. While traveling 
through the centuries, I confront, whenever possible, historical developments 
with examples taken from empirical studies on the ways in which today’s stu- 
dents learn the subject. 

During the hasty flight over history, our telescope will be directed at what may 
be considered turning points in the development of algebraic thinking. Here I try 
to fathom not only the mechanisms that put such developments in motion, but 
also the nature and the source of the cognitive difficulties which invariably pop 
up whenever a crucial step forward is to be made. This topic deserves special 
attention because the difficulties seem so ubiquitous both in history and in the 
classroom that they ought to be regarded as a regular part of the process of 
knowledge construction rather than as a madness with no method in it. Indeed, 
when history is considered, what seems to be the most striking common charac- 
teristic of the many ways in which new ideas entered the scene and then evolved, 
is the great deal of distrust and reluctance with which the candidates for citizen- 
ship in the kingdom of mathematics were invariably greeted. (The turbulent 
evolution of such concepts as function or number may serve as good examples; 
see, e.g., Hefendehl-Hebeker, 1991; Kleiner, 1988, 1989.) 

According to a widespread belief often expressed by historians (e.g., Boyer, 
1985), it was the lack of logical foundations that obstructed the acceptance of the 
new types of numbers. However, the scheme of concept development, as well as 
mathematicians’ own utterances, suggest an additional explanation: In some 
cases the resistance to a new abstract object might have been of ontological rather 
than of purely logical origins. It could stem from the inability to reify a process. 
Reification is an act of turning computational operations into permanent object- 
like entities. For example, a complex number is born only when a person is able 
to view the process of extracting the square root of a negative number as a real 
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entity, as a permanent thing in its own right. To some people, all this may seem to 
be conjuring up a new thing out of nothing. 

Reification is a major change in the way of looking at things and as such is 
inherently difficult to achieve. There are several types of serious obstacles that lie 
in wait for those who dare to speak about new abstract objects (see the Appen- 
dix). A revolutionary change in basic beliefs on the nature of mathematics must 
sometimes occur before the new idea is fully accepted. A natural resistance to 
upheavals in tacit epistemological and ontological assumptions, which so often 
obstructed the historical growth of mathematics, can hardly be prevented from 
appearing in the classroom. 

In the next section I concentrate on algebra. Its evolution will be presented as 
a constant (but not necessarily conscious) attempt at turning computational pro- 
cedures into mathematical objects, accompanied by a strenuous struggle for 
reification. I hope that from this bird’s_eye view of history a lesson of some 
practical importance will be learned regarding the nature and sources of the traps 
lying in wait for today’s students throughout the curriculum. To those who shrug 
at my bold (some would say presumptuous) attempt to deal in one short presenta- 
tion with the whole of the development of algebra, and from a dual perspective at 
that, let me say that history will be used here only to the extent which is 
necessary to substantiate the claims about historical and psychological parallels. 
No more than a very general view of algebra will be presented. 

STAGE 1: FROM ANTIQUITY TO RENAISSANCE-TOWARD 
THE SCIENCE OF GENERALIZED NUMERICAL 

COMPUTATIONS 

What Is Algebra? 
When and where did algebra begin ? The literature provides more than one 
opinion on this matter. “There are many historians of mathematics who trace the 
origins of algebra to various nations of antiquity: the Assyrians, Babylonians, 
Egyptians. Others, with more critical judgment, locate these origins at the school 
of Alexandria” say Garcia and Piaget (1989, p. 143), immediately expressing 
their disagreement and saying that for them algebra is a much more recent 
invention. Were algebra really known to the Greeks, they argue, pre-Euclidean 
and Euclidean geometry, fairly well developed anyway, would have opened up to 
become even more impressive achievements: “It is clear that the difficulties the 
Greeks encountered in resolving their numerous geometrical problems can be 
explained only by the absence of a science of algebra” (p. 143). These words 
indicate that the authors’ disagreement with the others stems not so much from 
different historical information as from the fact that they obviously have their 
own interpretation of the term algebra. An answer to the question “What is 
algebra?’ must therefore precede any historical account. 
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The majority of authors seem to be quite unanimous as to the early origins of 
algebra because they spot algebraic thinking wherever an attempt is made to treat 
computational processes in a somehow general way. Generality is one of these 
salient characteristics that make algebra different from arithmetic. Boyer (1985) 
explains his decision to call some problems solved in ancient Egypt algebraic by 
saying that they “do not concern specific concrete objects, such as bread and 
beer, nor do they call for operations on known numbers” (p. 16). Novy (1973), in 
the context of somewhat later developments, repeatedly states that “the search for 
a general [italics added] solution of . . . equations” was one of the two main 
themes of algebra. “The concept and the definition of realms of numbers” was 
the other (p. 25). Like Boyer, Kline (1972) agrees that algebraic methods were 
used as early as in ancient Mesopotamia and Egypt, and like Novy he grounds 
this claim in the fact that what was done there may be interpreted in the modem 
language as solving equations in a general way: “Though only concrete examples 
were given, many were intended to illustrate a general procedure for quadratics” 

(P. 9). 
On one point, therefore, there seems to be perfect agreement among all the 

authors, including Garcia and Piaget: Algebra is a science of generalized compu- 
tations. Thus, the differences may only have their roots in the opinions about the 
means necessary to implement algebraic methods. For Garcia and Piaget, the 
symbolic notation, never heard of in Babylonia or Egypt, is clearly part and 
parcel of the branch of mathematics called algebra. Similarly, Unguru (1975, 
p. 77) names “operational symbolism” one of the “main features of algebraic 
way of thinking.” According to other authors, the modem algebraic symbols are 
not the only possible vehicle of generality. 

In this article, I join the latter school of thought. I use the term algebra with 
respect to any kind of mathematical endeavor concerned with generalized com- 
putational processes, whatever the tools used to convey this generality. This 
definition brings into full relief the operational origins of algebraic thinking. In 
the following sections the history of algebra will be presented as a sequence of 
steps toward ever greater generality and, at the same time, toward structurality. 
The three stages that will be listed-rhetorical and syncopated algebra, Vietan 
symbolic algebra, and abstract algebra-correspond roughly to what is taught 
today at, respectively, the primary, secondary, and tertiary levels. 

Rhetorical and Syncopated Algebras 
For many people, even if well versed in mathematics, it often comes as a surprise 
to learn that algebraic notation, which in our minds seems inseparable from 
algebra itself, is quite a recent invention. Until the 16th century, computational 
processes, whether generalized or not, were presented either verbally or in a 
mixture of words and symbols. Two examples of these early ways of expressing 
algebraic thought appear in Figure 1. The first, taken from Diophantus (c. 250 
AD), includes some symbols and thus represents the so called syncopated algebra. 
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I, Syncopated algebra: from Diophantus, “Arithmetica,” c. 250 AD 

To find two numbers such that their sum and product are given numbers: 

“Given sum 20, given product 96. 2x the difference of the required. Therefore 

the numbers are 10 + x, 10 - x. Hence 100 - x2 is 96. Therefore, x is 2 and the 

required numbers are 12, 8.” 

Remark: In fact, Diophantus used Greek letters as symbols. We translated them 

(after Fauvel and Grey, 1987, p. 218) into the modem signs for the sake of 

clarity. 

2. Rhetorical algebra: from ‘Aryabhatia” by Aryabhata, AD 499 

To find the number of elements in the arithmetic progression the sum of which 

is given: “Multiply the sum of the progression by eight times the common 

difference, add the square of the difference between twice the first term, and the 

common difference, take the square root of this, subtract twice the first term, 

divide by the common difference, add one, divide by two.” 

3. Geometric Algebra 

a. Greek proof of identity 

equivalent to 

(a - b)(a + b) = a2 - b2 

b. Greek solution to the problem 

equivalent to the equation 

x2 = ab 

Figure 1. Rhetorical and syncopated algebra. 

The second, coming from the Hindu Aryabhatia (AD 499), is purely verbal and a! 
such belongs to the kind of algebra known as rhetorical. 

The presymbolic algebra that began, as was already mentioned, almost 4,00( 
years ago in ancient Egypt and Mesopotamia developed-even if only mod, 
erately-in the Greece of Pythagoras and Euclid, made a considerable steI 
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forward thanks to the work of Diophantus, and for several centuries flourished in 
the medieval Hindu, Arab, and Italian writings. The salient trait of this algebra 
was its predominantly operational character. Garcia and Piaget would add the 
prefix intra to the operational to emphasize the fact that the computational 
processes were observed “from inside” rather than from a higher level perspec- 
tive. Its sole concern was finding general prescriptions for computing unknown 
values out of concrete numerical data. Thus, algorithms were sought that could 
be used for entire families of problems. 

For all their pursuit of generality, however, the ancient and even the medieval 
mathematicians usually explained their computational methods through concrete 
numerical examples rather than by universal prescriptions. Diophantus’ solution 
in Figure 1 is a representative example of this. Although the problem was stated 
in general terms, concrete numbers were chosen to explain the solution; other 
questions of the same kind could from then on be worked out by analogy-by 
substitution of new numbers instead of those chosen in the example. Sometimes, 
a special name was given to the unknown quantity: Length and width evidently 
served this purpose in ancient Mesopotamia, a letter played this role in Diophan- 
tus’ Arithmetica, root appeared in Al-Khowarizmi’s (9th century) Al-jabr, and 
tunto in the writings of such Italian algebraists as Bombelli (c. 1526-1573). Only 
rarely, however, and relatively late, could an author be found who, like Ar- 
yabhata in Example 2, addressed both the given and the sought-for numbers by 
general names, thus paving the way for the later idea of a variable. In these rare 
cases, the language used by the writer might be quite imaginative as exemplified 
by the following instruction for finding the fourth item in a proportion: “Multiply 
the fruit by the desire and divide by the measure. The result will be the fruit of 
the desire” (Aryubhutiu, from Boyer, 1985, p. 233). 

Thus, until the 16th century the development of algebra was marked not 
by changes in either the general character of the endeavor or in the methods 
employed-these remained basically the same for more than 2 millennia-but 
by the gradual increase in the complexity of the investigated computational 
processes. What began with an “equivalent of solution of linear equations of the 
form x + ax = b or x + ax + bu = c” (Boyer, 1985, p. 16) in the Ahmes Papyrus 
(c. 1650 BC), continued with quadratics everywhere from Mesopotamia to 
Greece to the medieval East and Europe, and ended with truly complicated 
prescriptions for solving equations of the third and fourth degree in Cardan’s Ars 
Magna (1545; see Cardan, 1968). 

It is quite obvious that in comparison to the modem notation, where formulas 
such as 12.3 + 2V% or u2 + 23b concisely represent both a computational 
process and its product and thus facilitate a transition to structural thinking, the 
rhetorical and syncopated expressions, with their prolixity and tediously sequen- 
tial character, impose an operational outlook. The operational mode of thinking, 
however, puts a substantial burden on the working memory and thus is more 
strenuous and less effective than the structural approach induced by the modern 



THE DEVELOPMENT OF ALGEBRA 21 

notation. This may be clearly seen when the Aryabhata’s prescription is con- 
fronted with its symbolic counterpart. It would be quite reasonable, therefore, to 
expect that the moment today’s student gains access to the algebraic symbolism 
he or she becomes willing to use it in every possible context. We can only guess 
that this is exactly what Cardan would have done had algebraic symbols been 
available to him at the time he toiled to explain the solutions of the cubic and 
quartic equations. 

More than one empirical study has shown, however, that in reality things look 
quite different. What was noticed for the first time in a series of experiments 
performed by Clement and his colleagues (Clement, Lochhead, & Soloway, 
1979; Soloway, Lochhead, & Clement, 1982) found its further confirmation in 
the systematic studies by myself (Sfard, 1987) and by Harper (1987). All the data 
unanimously showed that even pupils with several years of (symbolic) algebra 
behind them may do better with verbal than with symbolic methods. In 1979, 
Clement and his colleagues discovered that a large proportion of college students 
could not translate such simple sentences as “There are six times as many 
students as professors” into equations and in 1982 they found that students were 
much more successful when required to write appropriate computer programs. 
These observations led me to the conjecture that it may be the operational 
character of the computer encoding that makes this seemingly awkward represen- 
tation somehow easier for pupils than the structural algebraic symbolism. To test 
this supposition, an experiment was carried out in which two groups of high- 
school students, 14 to 17 years of age, were presented with questions like the one 
presented in Figure 2. The participants were asked to choose, from among three 
possibilities, a formula that matched the situation described in a problem. In 
another questionnaire, they were required to find a verbal prescription for solving 
a similar problem. Both groups succeeded in the latter kind of task significantly 
better than in the former. In light of these findings, it no longer comes as a 
surprise that, as was shown by Harper, students often choose the rhetorical 
method if not obliged to use algebraic symbols. In his experiment, Harper asked 
a group of pupils of different ages to solve one of Diophantus’ problems (similar 

PROBLEM OPERATIONAL SOLUTION STRUCTURAL SOLUTION 

In a class the boys To find the number of x = number of girls 

outnumber the girls girls we have to: y = number of boys 

by four a. add 4 to the number of boys 

b. subtract 4 from the number of ax+$=y 

boys b.x=y+rl 

c. none of the above c.y=-x+4 

Figure 2. A Problem used in the experiment by Sfard (1987) 
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to the one presented in Figure 1). He noted that not only in the youngest students, 
but also among the older there was a distinct preference for verbal prescriptions. 

In all these experiments the authors emphasize that the discovered phenome- 
non cannot be regarded as a mere outcome of classroom experience because the 
students were never trained in constructing verbal solutions to word problems. 
Thus, the rhetorical method was used spontaneously, independently of instruc- 
tion. It seems, therefore, that the precedence of operational over structural think- 
ing must be, at least in this case, one of those developmental invariants we are 
looking for in this article-it was observed in the historical development of 

mathematics as well as in the process of individual learning. All these findings 
speak with force for the thesis of the inherent difficulty of the transition from an 
operational to a structural approach. In the next chapter, I look more deeply at the 
impediments to progress at the junction between rhetorical/syncopated and sym- 

bolic algebra. 

Geometric Algebra 
Our account of presymbolic algebra would be seriously incomplete without a 
mention of the so called geometric aZgebru, a very special breed of mathematics 
which developed in ancient Greece. Its story enlightens another aspect of the 
difficulty with reification. 

As its name suggests, geometric algebra was a result of a merger between the 
two central components of ancient mathematics. Basically, it consisted in inter- 
preting quantities expressed with letters as lengths of line segments and the 
operations on these quantities as finding lengths, areas, or volumes of the figures 
built from these segments. Thus, solving equations could be translated into 
finding the geometrical construction that would produce a segment of the length 
equal to the sought-for quantity (see Example 3b in Figure 1). Algebraic identi- 
ties could also be proved in this way (see Example 3a). To be sure, some authors 
oppose the view that geometrical algebra was “algebra dressed up” and claim that 
the problems dealt with were essentially geometric and were tackled only for this 
reason (Unguru, 1975, p. 69). This discussion, however, is irrelevant to the 
present subject because it was agreed that all those events that contributed to the 
science of generalized computations, even if only indirectly, qualify to be in- 
cluded in the historical account. 

The desire to marry the science of computations with geometry is not much 
younger than the two disciplines themselves, and geometric algebra is one of its 
first results. The main reason usually brought by historians (see, e.g., Boyer, 
1985; Kline, 1972, 1980) to explain this ancient urge for unification is the fact 
that, unlike algebra, geometry was considered in Greece to be a paragon of 
consistency and mathematical rigor. Those who tackled concrete quantities and 
unknowns through lengths and areas evidently hoped that in this way the advan- 
tages of geometry would be transmitted to the science of computations. Another 
explanation brings the problematic idea of irrational number as the trigger for 
separating the concept of number from that of continuous magnitude. Because 
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this distinction first arose in the context of incommensurability, it was only 
natural to view the continuous quantities as tightly connected to the realm of 

geometry. 
Our model of concept development suggests an additional explanation of the 

phenomenon of geometric algebra. Greek geometry, with its “thinking embodied 
in, fused with graphic, diagrammatic representation” (Unguru, 1975, p. 76) was 
clearly at its structural stage, whereas algebra, preoccupied with verbally repre- 
sented computational processes, could be conceived in no other way than opera- 
tionally. The structurality of the geometry facilitated thinking and enabled 
effective investigations. The operational rhetoric of algebra made it cumbersome 
and unyielding. No deeply penetrating, generalizing insight was possible. What 
algebra needed for further development was reification of its basic concepts. At 
this time, no better means were available to help in reification of the growingly 
complex computations than the palpable geometric objects. Geometric figures 
rendered some kind of tangible existence not only to the idea of irrational quan- 
tity, but also to the elusive concept of variable magnitude. However, although 
initially helpful, these tools soon proved restrictive. They created a system of 
prohibitions that greatly limited the range of problems qualifying for algebraic 

treatment. For instance, because the unknown was usually referred to as length, 

its square as area, and its cube as volume, adding different powers remained for 
some time entirely out of the question. Also, no power greater than 3 was 
admitted in calculations. 

Once again an important lesson can be learned from history by teachers and 
psychologists. The current studies on visualization (e.g., Dreyfus, 1991) leave 
little doubt as to the effectiveness of graphical representations even in learning 
such abstract subjects as algebra. No wonder, then, that the Greeks found it 
useful to give numerical computations a geometrical interpretation. For the same 
reason, graphical means are offered today to those who teach algebra. However, 
while employing geometry to support the science of computation we should 
remember that, if used without precautions and treated too literally, the models 
may become restrictive rather than helpful. The following declaration by Bell 
(1951) is pertinent here: “Real mischief is done when the credulous pupils 
acquire an ineradicable belief that their purely metaphorical language describes 
an ‘existent space’ or an ‘objective reality”’ (p. 140). This statement may sound 
too emphatic but, stripped of its exaggerated rhetoric, what it really says is 
probably this: Algebra is an inherently abstract discipline and one cannot escape 
teaching it as such. 

STAGE 2: FROM VIETE TO PEACOCK-ALGEBRA AS 
A SCIENCE OF UNIVERSAL COMPUTATIONS 

Vi&e’s Invention: Variable as a Given 
To find the right tools for the reification of generalized computational procedures 
took many centuries, which shows once more how genuinely difficult the process 
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was. How the structural stage in algebra was eventually attained is told in this 
section. It is the story of modem algebraic symbolism. 

Today historians seem united in the opinion that although letters were often 
used by mathematicians before the 16th century, it was the way FranGois Vi&e 
(1540- 1603) employed them which made the real. difference. The French mathe- 
matician was the first to replace numerical givens with symbols. To put it in 
modem language, Vi&e was the inventor of parametric equations, equations with 
literal coefficients. Until this point, letters were used in algebra to symbolize the 
sought-for unknown quantities. Viete decided to denote them by vowels. Given 
numbers, namely those which were assumed to be known and provided as data, 
had to be represented by consonants. Thanks to this convention, entire families 
of problems (equations) could now be dealt with by means of concisely stated 
algorithms. Thus, the introduction of parameter was a great step toward the 
generality so intensely pursued in mathematics in general and in algebra in 
particular. To use Boyer’s (1985) imaginative expression, Vibte’s “givens” 
helped convert algebra from Diophantus ’ “bag of tricks” into a genuine science 
of general computations (p. 334). V&e himself was aware of the fact that he had 
added a floor to the hierarchical edifice of mathematical generalization and 
abstraction. According to his own description, whereas arithmetic is the science 
of concrete numbers (logica numerosa), his type of algebra is a science of species 
(logica speciosa) or of types of things rather than of the things themselves. Thus, 
this is probably where the concept of variable was born. 

To fully appreciate Vibte’s achievement one has to consider its impact on 
mathematics in general. Employing letters as givens, together with the subse- 
quent symbolism for operations and relations, condensed and reified the whole of 
existing algebraic knowledge in a way that made it possible to handle it almost 
effortlessly, and thus to use it as a convenient basis for entirely new layers of 
mathematics. In algebra itself, symbolically represented equations soon turned 
into objects of investigation in their own right and the purely operational method 
of solving problems (by reverse calculations) was replaced by formal manipula- 
tions on propositional formulas. These manipulations are addressed in the sequel 
as secondary operations, as opposed to the underlying arithmetic processes re- 
ferred to as primary. 

The advent of symbolic algebra was soon followed by the emergence of an 
entirely new kind of natural science. For the first time in history, mathematics 
had the means for dealing with changing magnitudes and not just constant quan- 
tities. It was only natural that scientists would seize the new invention to repre- 
sent all kinds of natural processes. Along with the intense investigation of the 
mathematical structure of physical movement, the concept of function, innately 
and indissolubly linked with the idea of variable, began to arise. It is this 
development that made it possible for physics to be translated into the precise 

language of mathematics. 
The impact of symbolic algebra was also felt in geometry. As emphasized in 
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the previous section, this ancient branch of mathematics, with its easily visualiz- 
able basic objects, was up to this point predominantly structural. According to 
our model of abstract knowledge formation, the next step in the development of 
geometry should be a transition to an operational mode of thinking at a higher 
level. To attain more generality, it had to detach itself from concrete triangles and 
pyramids and concentrate on the constructions and transformations by which 
these primary objects are governed. The means for this could only come from an 
independently developing algebra: “Only algebra . . . would have enabled [the 
Greeks] to formulate [certain unsolved geometrical] problems in terms of opera- 
tions” (Garcia & Piaget, 1989, p. 143). And indeed, the transition from opera- 
tional to structural thinking in algebra was soon echoed in a substantial step 
toward higher level operational thinking in geometry. Descartes (1596-1650) 
and Fermat (1601-1665) were those who employed symbolic algebra in geome- 
try for the first time. Geometrical figures and their transformations were repre- 
sented through the appropriate computational processes. This invention was later 
named analytic geometry because the method of investigation based on manipu- 
lating algebraic symbols (which later included differential and integral calculus) 
became known as analysis. One may say that in this way algebra, which once 
turned to geometry for help in reification and verification, and which thus came 
to be viewed as a “minor appendage to geometry” (Kline, 1980, p. 123), could 
eventually pay its debt. It reciprocated with the means for capturing generality 
and conveying operational thought. According to Kline, if Greek algebra ex- 
pressed through geometry was called geometric, then Descartes’ invention 
should be known as algebraic geometry. (Unfortunately, this name was given to 
another branch of mathematics which developed much later.) Such terminology 
would aptly reflect the symmetry of mutual services rendered by algebra and 
geometry to each other. 

To our modem eyes, the idea of a variable as any number seems so obvious 
and simple, we can hardly understand why it did not appear many centuries 
earlier. After all, letters were used in mathematics already in antiquity (e.g., in 
Euclid’s Elements, c. 300 BC.). This fact, however, becomes much less surpris- 
ing when one realizes that a variable as a given imposes functional thinking-it 
requires an ability to think simultaneously about entire families of numbers rather 
than about any specific quantity. Thus, the introduction of a parameter demands a 
very sharp change of perspective for which structural understanding of computa- 
tional processes is indispensable. 

In this context, it is worth mentioning that Vi&e’s invention was not always 
fully appreciated by historians of mathematics. (Garcia & Piaget credit Jacob 
Klein and his book Die griechische Logistic und die Entstehung der Algebra, 
1934, with the first attempt at reassessment.) The same mechanism that con- 
cealed the import of Viete’s achievement from the eyes of historians often hides 
from today’s teachers the height of the step to be climbed by students when 
parametric equations are presented to them for the first time. Such ignorance 
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sometimes has grave consequences. I can clearly remember a traumatic experi- 
ence of my own. It happened many years ago when I was teaching simultaneous 
linear equations to two groups of 10th graders. At that time I was quite insensi- 
tive to the huge conceptual difference between equations with numerical coeffi- 
cients and equations with parameters. With my rich and versatile experience of 
variables and functions, I had come to treat these two kinds of problems as 
almost indistinguishable. And, obviously, so did the authors of the textbook I 
was using. They scattered problems with parameters all over the chapter, con- 
cealing them among other questions. They did it without warning. Not knowing 
what I was doing, I gave my pupils some of the parametric equations for home- 
work. The price of this ill-calculated deed was high: For a fortnight, I was stuck 
doing things I had never planned. My students would not let me talk about 
anything other than problems with parameters. They could not cope with this 
kind of task themselves and one or two examples with adequate general explana- 
tions were obviously not enough. After five or six meetings and two tests devoted 
solely to this topic, my pupils still seemed somewhat shaky in their understand- 
ing. The fact that the difficulties I witnessed were not something particular to my 
students (or, for that matter, to me as a teacher) was quite obvious for several 
reasons. First, exactly the same happened quite independently in both my 
groups. Second, my colleagues reported similar experiences. After 2 weeks of 
grappling with the difficulties, I could clearly see their deep roots. Eventually, I 
became aware of the vast conceptual change that occurs during the transition 
from the concrete to parametrically given problems. I learned it the hard way. 

This story is an anecdote rather than a piece of scientifically designed re- 
search. More systematic evidence for the existence of the problem may be found 
in studies by Lee and Wheeler (1989), Booth (1988), and the Assessment of 
Performance Unit (1980). The aforementioned investigation by Harper (1987) 
shows, along with the pupils’ tendency to use rhetorical algebra, their inability to 
use the Vietan kind of variable. Nearly half of the oldest participants in Harper’s 
experiment, when asked to show that two numbers may always be found if their 
sum and difference are given, preferred the Diophantan type of argument to the 
Vietan: They chose arbitrary concrete numbers rather than letters for their giv- 
ens. This research is one of the few studies that makes explicit use of history to 
predict students’ behavior. 

There is another aspect of the passage to symbolic algebra that has attracted 
the attention of researchers. More often than not, solving equations in a rhetori- 
cal way was based on reversing computational processes, or undoing what was 
done to the unknown quantity (see Example 1 in Figure 1). Much evidence has 
been collected for the particular difficulty of the transition from such a working 
backward technique to the method involving the so-called permissible operations 
on both sides of an equation. A survey of the relevant research was given by 
Kieran (1992): “A major turnaround must occur [in algebra] when students are 
asked to think in terms of the forward operations that represent the structure of 
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the problem rather than in terms of the solving operations [which reverse the 
process of computation]” (p. 403). This turnaround corresponds to the point in 
history where rhetorical algebra gave way to the symbolic. The transition is 
problematic because it requires this difficult change of perspective that has al- 
ready been mentioned several times in this article: Operational thinking must be 

replaced by structural. 

Peacock and the British School: Dearithmetization of Algebra 
Although soon after Viete symbolic algebra began to flourish, some of the most 
prominent thinkers voiced their qualms about using it. Newton, for example, 
claimed that “algebra is the analysis of bunglers in mathematics” (Kline, 1980, 
p. 124). Once again, historians tend to ascribe these doubts to the fact that the 
new discipline lacked a logical basis. As in all the previously discussed cases, 
however, this impediment did not seem serious enough to prevent widespread 
use of the effective analytic method. Indeed, Kline admits that “by 1750 the 
reluctance to use algebra had been overcome,” although “by that time algebra 
was a full-grown tree with many branches but no roots” (p. 125). 

Like the other cases we dealt with, a scrutinizing look into history will reveal 
that, along with the concern about internal consistency, doubts of an ontological 
nature popped up here and there in various writings. It was the unreifiable notion 
of variable that was the core of the problem. This notion, the exact meaning of 
which cannot be easily explained through a rigorous definition, may well be one 
of the most problematic in the whole of mathematics-so problematic, in fact, 
that doubts permeate the professional literature even today. According to Bell 
(1951): 

to state fully what a variable is would take a book. And the outcome might be a 
feeling of discouragement, for our attempts to understand variables would lead us 
into a morass of doubt concerning the meanings of the fundamental concepts of 
mathematics. (p. 101) 

And then he immediately added his own imprecise description: “Variable is 
something which changes.” This operational component of change, which re- 
sisted all attempts at reification, is what made the concept of variable unaccept- 
able even in the eyes of some 2Oth-century mathematicians. This is certainly 
what bothered Frege (1970, p. 107) who required “elimination of time” because 
of its being “alien to Analysis.” The impossibility of doing it is what eventually 
forced him to reject the whole idea by saying “The word ‘variable’ . . . has no 
justification in pure Analysis.” This is a quite radical opinion with which not 
many mathematicians would agree. Usually doubts about ontological origins 
gradually dissolve with persistent use of a notion. And, indeed, by the end of the 
18th century mathematicians were obviously familiar enough with algebra and its 
techniques to use them without further ado. 
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But not all of them would be able to calm their conscience by pushing the 
ontological questions aside. In the 1830s and 1840s a debate on the meaning of 
algebra and its symbolism was led by prominent British mathematicians such as 
Augustus de Morgan (1806-l 87 1) and Sir William Rowan Hamilton (1805% 
1865). De Morgan’s associate George Peacock (1791-1858) is generally re- 
garded as the leading figure in the innovative school of thought which developed 
as a result of this dispute. (Individual contributions of the different mathemati- 
cians are presented in detail by Novy, 1973.) 

Until then, algebra had been regarded as “universal arithmetic”-a discipline 
which specialized in expressing in a general way the rules governing numerical 
operations. This interpretation of symbols and symbolic manipulations neces- 
sarily restricted the scope and force of algebraic laws. The British mathemati- 
cians felt an urge to provide algebra with a sound logical basis that would set it 
free from such limitations. 

The tendency to broaden the scope of concepts by gradually loosening differ- 
ent restraints on their meaning is one of the typical processes that can be traced 
throughout the history of mathematics. The concept of negative number resulted 
from the removal of the embargo on subtracting a number from a smaller one 
(this, of course, was done not without reluctance and hesitation, but that is 
another story). Similarly, complex number was born when extracting square 
roots from negative quantities ceased to be seen as a taboo. It is probably the 19th 
century’s gradual reconciliation with the seemingly unacceptable idea of com- 
plex number that gave British mathematicians the courage to claim the emancipa- 
tion of algebra from the yoke of its original meaning. They had an almost 
mystical feeling that the laws of algebra must be treated as completely universal 
and that this principle of universality has to be accepted as superior to any 
consideration other than the consistency of the theory. Thus, the fact that certain 
numerical operations did not comply with some rules was not regarded as a 
sufficient reason for restricting the rules. This stance found its most emphatic 
expression in Peacock’s “principle of permanence”: “Whatever form is alge- 
braically equivalent to another form expressed in general symbols, must continue 
to be equivalent, whatever the symbols denote” (cited in Novy, 1973, p. 191). 
The term form probably means here algebraic expression and algebraically 

equivalent means equivalent through symbolic manipulations. 
Peacock’s immediate conclusion from this principle may be formulated as 

follows: If a number does not obey a law, the number rather than the law would 
be the one to go. A variable should no longer be seen as a generalized number but 
must be treated as a thing in itself, devoid of any external sense. Variables are 
thus mere symbols that denote nothing. They, of course, may be interpreted in 
different ways in different contexts but they have no meaning of their own. From 
here Peacock promptly arrived at a complete dearithmetization of algebra. The 
meaning of symbols should no longer be expected to come from their nonexistent 
designata, but rather, must be sought in the way the formulas are transformed and 
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combined with each other. These transformations are subordinate to rules given 
by axioms. The axioms themselves are arbitrary. Thus, Peacock and his col- 
leagues may be regarded as precursors of the formalist school of thought that 
developed fully only several decades later when David Hilbert (1862-1943) 
generalized the idea of semantically void symbols beyond algebra and applied it 
to the whole of mathematics. 

The dearithmetization of algebra is a typical example of severing a mathemati- 
cal idea from its operational origins in order to attain full reification. Things like 
that happened in mathematics many times before. The concept of number, for 
example, originated in the operations of counting and measuring but these inter- 
pretations had to be given up if the idea of complex number was to be accepted. 
Several decades later, the mathematicians who converted the function into a 
simple set of ordered pairs sacrificed the algorithmic underpinnings of the con- 
cept. One may say, using Garcia and Piaget’s terminology, that with the dear- 
ithmetization of algebra, the interoperational stage was finally attained where the 
primary operations were reified, and the relationships between them, rather than 
their internal structure, became the central object of attention. 

The 19th-century discussion between British mathematicians was one of the 
incentives for a recent study carried out by one of my colleagues and myself 
(Linchevski & Sfard, 1991). Fascinated by the fact that mathematicians them- 
selves could hardly make up their minds as to the best possible interpretation of 
algebra, we decided to turn to today’s students in an attempt to find out their 
implicit beliefs about the meaning of symbolic formulas and manipulations. In 
our study many questions, sometimes quite nonroutine and surprising, were 
asked regarding such concepts as equivalence of equations and inequalities, per- 
missible operations, and solution of an equation or inequality (see examples in 
Figure 3). Before the experiment, we conjectured that the students would inter- 
pret propositional formulas in one of two ways: either as generalized arithmetic 

1. Are the following equations (inequalities) equivalent or not? Explain your 

answers. 

a. 4x* > 9 b.4x- 11 =2x-7 c.x*+ 1 =o 

2x>3 (x - 2)2 = 0 x*+5=0 

2. Complete the following sentences: 

a. To solve an equation means .,............ 

b. When we solve an equation we are allowed to execute the following 

operations: . . . . . . . . . . . . . . . . . . . . . . 

c. These operations are permitted because . . . . . . . . . . . . . . . . . 

d. When we finish solving the equation, what we get in the end is . . . . . . . . . . . . . . . . . . . 

figure 3. Sample questions from the research by Linchevski and Sfard (1991) 
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expressions, which can only be understood through the underlying mathematical 
operations (primary processes) and through the sets of numbers to be substituted 
instead of the letters, or as mere strings of symbols that draw their meaning from 
the manipulations (secondary processes) people use to perform on them. The 
result of our investigation was quite unequivocal: Whatever question or problem 
was presented to the students, the answers invariably showed a clear bias toward 
the latter type of interpretation. The majority of pupils viewed algebraic expres- 
sions as meaningless symbols governed by arbitrary established transformations. 

This second approach to algebraic symbolism deceptively reminds us of Pea- 
cock’s ideas. Thus, on the face of it, our students revealed surprising maturity by 

treating algebraic symbols in the way recommended by mathematicians them- 
selves. In fact, however, our pupils’ conceptions were nothing like the ideas 
promoted by Peacock. What the British mathematician proposed may seem quite 
simple but a closer look discloses its truly sophisticated nature. Peacock’s ideas 
were generated by a well-appreciated necessity to free algebra from the burden of 
the initially helpful but now restraining semantic load. They resulted from a 
familiarity with the alternative interpretations of algebra and with their disadvan- 
tages. To put it another way, Peacock’s semantically emptied concepts originated 
in the conscious decision of a person who knew exactly what he or she was going 
to give up and who was perfectly able to go back to the renounced meanings 
whenever appropriate. No such return is possible for the student whose eyes have 
never been opened to the alternative options. Indeed, our students’ ostensibly 
structural thinking did not seem battered by any operational underpinnings and 
there was no reason to believe that what could be seen was but an upper layer of a 
sophisticated conceptual structure. Their conceptions appeared one-dimensional 
and shallow. Such comprehension is not very likely to lead to the flexibility in 
interpreting variable that is the basis of successful problem solving. This is 
probably why a tone of exasperation is usually assumed when results of studies 
are reported showing that students’ “ algebraic language is empty, having only 
syntax” (Burton, 1988, p. 2). 

As was argued by Linchevski and Sfard (1991), it is probably the modem 
structural way of teaching that may be partly responsible for this situation. In the 
discussion of how to teach algebra, I would, therefore, vote for courses which 
take the historical facts into consideration and compromise the modem defini- 
tions for the sake of a less advanced but to the learner more accessible operation- 
al approach. (One such course was recently developed in England; see the 
National Mathematics Project, 1987, and a brief description of this course in 
Kieran, 1992.) 

Paraphrasing Picasso, who reportedly claimed that one must be able to draw 
realistically before becoming an abstract painter, we may say that in mathematics 
a pupil should be a Platonic realist before turning into a formalist and being able 
to deal with pure abstraction brought into being by stipulation. 
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STAGE 3: FROM GALOIS TO BOURBAKI-ALGEBRA 
AS A SCIENCE OF ABSTRACT STRUCTURES 

first Step: The Emergence of Group Theory 
Peacock took the liberty of introducing the component of arbitrariness into alge- 
bra. By doing this and by suggesting that the axiomatic method exempts mathe- 
maticians from ontological confinements, he laid a cornerstone for a new kind of 
mathematics, the spirit of which is mocked in the rhyme of dubious didactic 
value: “Minus times minus equals plus, the reasons for this we need not discuss.” 
From now on mathematicians could invent new mathematical objects fearing 
nothing and nobody but the laws of logic. The internal consistency of a new idea 
should be their sole concern and no philosophical questions about the nature of 
the formally defined object or about its relationship with the real world ought to 
seem relevant any more. After this ontological breakthrough, introducing new 
mathematical objects through axiomatic systems gradually became common 
practice. (For a deeper insight into the process of change which, in fact, was 
more complex than may be understood from this concise description, see, e.g., 
Kleiner, 1986.) Algebra’s bonds with numbers and numerical computations were 
loosened even further and it gradually turned into a science of abstract structures. 

Hamilton’s invention of quatemions in the 1850s may be regarded as the first 
act of such free creation. His earlier work on complex numbers, which he 
presented simply as pairs of real numbers ruled by formally defined operations, 
brought him close to the position held by today’s mathematicians: He began to 
realize that nothing more than a consistent axiomatic system is needed to legiti- 
mize the existence of an abstract object. (Hamilton was quite ahead of his times 
as may be seen in the following statement by his friend John Graves: “I have not 
yet any clear view as to the extent to which we are at liberty to create imagin- 
aries, and to endow them with supernatural properties,” Kleiner, 1987, p. 233.) 
He immediately decided to take advantage of this new approach by pushing the 
idea of number-like n-tuples a little further. The quatemions are 4-tuples of real 
numbers, subordinated to a regular type of addition and to a noncommutative 
operation of multiplication. Although Hamilton introduced them to mathematics 
on the sole basis of formal definition, he still felt an urge to justify his creation by 
pointing out its possible physical applications. Those who came after him soon 
freed themselves even from this kind of consideration. Nevertheless, his step 
toward the new kind of mathematics was so decisive that in the eyes of some 
historians “all of modem algebra owes its origins to Hamilton’s creation of 
quatemions” (Kline, 1980, p. 295). 

Another milestone in the history of abstract algebra was the emergence of the 
concept of group. Its origins go back to pre-Hamiltonian times, to the works of 
Joseph Louis Lagrange (1736-18 13) and Paolo Ruffini (176% 1822). Both these 
mathematicians were preoccupied with one of the central problems of 18th- and 



32 SFARD 

19th-century algebra-the question of the possibility of solving equations of 
degree 5 or more by radicals. Both of them noticed that important information 
about the equation may be collected through a study of certain functions of its 
roots and through counting the number of different values such functions obtain 
when the roots are permuted in all possible ways. The notion of permutation 
gradually overshadowed the other auxiliary concepts until it became the center of 
attention. In no time, what was basically a process, an operation of rearranging a 
sequence of entities, came to be treated as an abstract object. The first step 
toward reification of the concept was made by Augustin Louis Cauchy (1789- 
1857) who explicitly talked about manipulating and combining the permutations 
in certain well-defined ways, thus viewing them as inputs to higher level proce- 
dures. The operations on permutations, in their turn, were soon to become the 
central object of inquiry. Evariste Galois (1811-1832) was the one who eventu- 
ally defined the notion of group, namely, he explicitly declared his interest in the 
structure imposed on a set of permutations by the operations which can be 
performed on them (the so-called substitutions). The name group, although not 
consistently used, was introduced by him to denote this new mathematical object 
of unprecedented abstractness and richness. The English mathematician Arthur 
Cayley (182 l-1895) took the construction of the concept a step further by 
freeing it from any commitments to the nature of the basic elements of a group. 
They could be anything: permutations, quatemions, matrices, and so forth. 
Thus, Cayley ultimately shifted the emphasis from the manipulated entities to the 
manipulations themselves. 

It is noteworthy that although Lagrange, Ruffini, and Cauchy were only one 
small step distant from the idea of group they never actually arrived at it. What 
prevented them from going further was probably the fact that, as far as their 
approach to mathematics was concerned, they still belonged to the preformalist 
school of thought. Indeed, the next move involved the kind of change in the basic 
philosophical assumptions that was achieved only slightly later by such writers as 
Hamilton and Peacock. (Although the work of Galois may be regarded as prior to 
the emergence of formalism, it was not recognized until much later.) The deci- 
sive step could not be taken by people who felt that certain external factors, 
which go beyond mathematics itself, restrict their freedom to create new abstract 

beings. 

Further Development: The Proliferation of Abstract Beings 
After the invention of the concept of group, nothing could stop algebra from 
turning into a science of abstract structures. What happened in mathematics after 
the first successful attempts at free creation may be described as a true baby 
boom. No longer fettered by ontological considerations mathematicians felt free 
to conjure up new algebraic beings without ever asking about their relation- 
ship to the physical world or even about their prospective applications in the 
natural sciences. The richness of the new structures and their links with other 
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regions of mathematics seemed more important. Mathematics stopped being the 
servant of natural science and from then on was developed for its own sake. 

Three salient traits of this pure mathematics in general, and of the new algebra 
in particular, were its great abstractness, its concern for logical foundations, and 
its tendency to split into loosely tied subdisciplines. On the one hand, the abstract 
structures provided the “loftier points of view from which many fields of mathe- 
matics, both ancient and modern, [could] be seen as wholes and not as rococo 
patchworks of dislocated special problems” (Bell, 1951, p. 15). In the language 
of Garcia and Piaget (I 989) the trans-operational stage in algebra was attained 
where the computational processes investigated at the previous stage could now 
be viewed from a much higher vantage point. On the other hand, the “passion of 
abstraction, sometimes quite furious” (Bell, 1951, p. 158) led to the emergence 
of ever new structures and ever new branches of algebra. The concept of group 
was accompanied by the notion of invariant and by the theory of matrices, and 
followed by the ideas of field, ring, and linear space. Eventually algebra “mush- 
roomed into a welter of smaller developments that have little relation to each 
other or to the original concrete fields” (Kline, 1972, p. 1157). 

No wonder, therefore, that at a certain stage the necessity of reunification of 
algebra and maybe even of the whole of mathematics could be felt among 
mathematicians. Algebra itself provided the means for this endeavor. In his 
Erlanger Program (1872), Felix Klein united the different geometries, both 
Euclidean and non-Euclidean, into one theory by characterizing each of them 
with the help of a certain group of transformations and by saying that from now 
on geometry should be treated as the study of their invariants. Much later, in the 
middle of the 20th century, the Bourbaki group set itself an even more ambitious 
goal: The whole of mathematics was to be reduced to three mother structures. 
Algebraic structure, with its laws of composition, was proposed as one of them; 
the other two were the order structure and the topological structure. Eventually 
the theory of categories was developed that purported to unify all the branches of 
mathematics. 

Here our journey through the history of mathematics ends. As in the previous 
sections, I would like to compare the past developments to the experiences of 
those who learn the subject. Not much systematic research has been done that 
can provide the relevant data. I can point to only one study that seems closely 
related to the present subject. In this investigation, carried out in Israel by Hare1 
(1985), a teaching unit on linear spaces was developed and taught to secondary- 
school students. Classroom observations led the researcher to the conclusion that 
“the objects populating vector spaces are not tangible, thus they are not consid- 
ered by the students as objects at all; it is only natural, therefore, that the space 
itself is not conceived as a mathematical object” (p. 64). These findings are 
hardly surprising. For the last 100 years mathematicians themselves have not 
seemed to have much difficulty with accepting even the strangest mathematical 
object on the sole basis of the inner coherence of the resulting system of con- 
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cepts. It was the dismissal of external criteria for legitimization of mathematical 
ideas that brought logical considerations to the fore. The intellectual maturity, 
however, which gave mathematicians the strength to resist the ontological ques- 
tions, cannot be expected from beginners. An axiomatic system is certainly not 
enough to convince the mathematica!ly unsophisticated learner about the exis- 
tence of an object that he or she has no way to see, touch, or just imagine. The 
doubts as to the nature of such objects, as well as to the legitimacy of the very act 
of free creation, may impede students’ understanding in exactly the same way in 
which similar considerations obstructed the historical development of abstract 
structures until the 19th century. Indeed, there is no reason to assume that our 
student is more mathematically mature than Lagrange or Cauchy. 

When no underlying computational process may be offered to make the intro- 
duction of a new mathematical object more smooth and natural, the computer 
may provide some help. The machine has almost unlimited power of reification. 
The figments of a mathematician’s imagination materialize on the screen so that 
it becomes quite natural to treat them as if they were independent beings, exter- 
nal to the human mind. The conjecture about the possible influence of the 
computer on learning abstract algebra is now being tested in a study carried out in 
Israel and in the United States by Leron and Dubinsky (1995). Its results will 
certainly provide much new information on students’ ability to learn advanced 
mathematics. If the computer proves itself a tool for reification, it may even lead 
the researchers to the conclusion that the history of algebra would have taken a 
different course had a powerful number cruncher been available several centuries 
earlier. 

CONCLUDING REMARKS 

The history of algebra was presented here as a long sequence of acts of creation 
in which generations of mathematical objects of increasing abstractness were 
brought into existence. Students who learn algebra have to recreate these objects 
for themselves. Some empirical data have been brought forward to enlighten 
several aspects of this process. It is not surprising that what was far from easy for 
mathematicians invariably proved to be quite difficult for the learner. 

Many examples have been provided here to reinforce the thesis that didactic 
problems are likely to appear at all those junctions at which mathematicians 
themselves faltered and asked questions. For those who teach, therefore, famil- 
iarity with the history of mathematics is not just optional; rather, it seems indis- 
pensable to make them alert to the deeply hidden difficulties concerned with new 
concepts. The ontological obstacles are ubiquitous and at the same time they are 
elusive and difficult to detect. Pupils’ fundamental problems with such ideas as 
complex number or variable may be overlooked by the teacher because the 
latter’s own implicit beliefs make him or her oblivious to the very possibility of 
somebody having a different ontological stance. What helps in concealing on- 
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tological stumbling blocks is the fact that a student may become quite skillful in 
manipulating such mathematical objects as number, function, or algebraic ex- 
pressions even without reifying them. 

One important lesson to be learned from history may be somewhat at variance 
with the pedagogical beliefs of the modem teacher. The stories just told seem to 
imply that the reification that is needed for a deep understanding of a concept (say 
complex number) cannot be expected before some familiarity with secondary 
processes (e.g., operations on complex numbers) has been attained, On the other 
hand, without the reification these processes cannot be truly meaningful. The 
surprising pedagogical conclusion follows from here: Sometimes the teacher and 
the students must put up with the necessity of practicing techniques even before 
they are fully understood. In light of this, it appears that in learning and teaching a 
crucial role is played by patience and persistence. Indeed, history has already 
shown that these may be the basic weapons against ontological difficulties. Cardan 
insisted on using complex numbers regardless of “the mental tortures involved” 
(Kleine, 1980, p. 116). History proved he was right-mathematicians eventually 
reconciled themselves to the concept. Similarly, today’s student should be disci- 
plined enough to work with algebraic techniques and manipulate abstract objects 
even if he or she has doubts as to their meaning. The teacher should tame his or 
her impatience when facing deficiencies in learners’ understanding. If persis- 
tently used, the concepts will eventually become easier to reify-and to accept. 
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APPENDIX 

The Genesis of Mathematical Objects 
While glancing every now and then at the long and turbulent history of number 
systems, I briefly summarize here one of the possible general scenarios of con- 
cept development. This theoretical model bears on the ideas initiated by Piaget 
and seems to be compatible with the theoretical frameworks proposed recently by 
some of his followers (e.g., Dubinsky, 1991; Hare1 & Kaput, 1991). It was first 
presented in much greater detail in Sfard (1991, 1992). 

In all branches of mathematics and, in particular, in computational sciences, 
one can clearly distinguish two kinds of components: abstract objects and com- 
putational processes. Numbers are good examples of the former. The way people 
think about them and mentally operate upon them resembles the manner in which 
they perceive and manipulate physical objects. The abstract objects, in turn, 
serve as inputs and outputs to certain computational procedures-this second 
ingredient of the mathematical universe. 

A closer look at these two separate and ostensibly dissimilar components will 
reveal an interesting relationship between them. As was explained in detail in 
Sfard (1991), abstract objects and computational processes, as different as they 
may seem, are but opposite sides of the same coin-two facets of the same thing. 
In a sense, the abstract objects are just an alternative way of referring to compu- 
tational processes: Natural and rational numbers are metaphors for counting and 
measuring, respectively, and the concepts of negative and complex numbers 
refer, in fact, to nothing other than the operation of subtracting a number from a 
smaller one and to the process of extracting a square root of a negative number. 
Using the terminology introduced in Sfard (1991) I would thus say that any 

number (like any other mathematical concept, in fact) may be conceived in two 
ways: operationally, as a process, and structurally, as an object. (I emphasize the 
word conceived to make it clear that I am talking about the way a person 
perceives, thinks, and talks about abstract ideas and not about the nature of the 
mathematical entities themselves, whatever the words “the nature of an entity” 
may mean when considered independently of the epistemic subject.) 

Thus, one may say that rational, irrational, negative, and complex numbers 
are just the more mature incarnations of certain computational processes. When 
their historical development is scrutinized, it invariably turns out that no sooner 
did the new numbers enter the scene than a certain nontraditional computational 
process began to gain recognition. The idea of irrational number stemmed from 
measuring procedures that could not be encoded as pairs (ratios) of integers. The 
notions of negative and complex numbers may be traced back to the work of 
Cardan (Am Magnu, 1545) in which the algorithms for solving cubic equations 
were shown to lead occasionally to such nonroutine procedures as subtractions of 
a number from a smaller one and extraction of the square root from the products 
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of such subtractions. The interesting thing is that although the two concepts did 
not really catch on until nearly three centuries later, the persistent reluctance to 
accept them as legitimate objects did not prevent mathematicians from using 
them. 

The development of the number concept has just been presented as a chain of 
transitions from operational to structural conceptions. As seen more than once, 
however, even before the processes which engendered the new kinds of numbers 
were reified, namely turned into full-blown objects, mathematicians were able 
to perform them and even to combine them with other operations to obtain more 
complex computations. I shall say, therefore, that the processes were interiorized 
and even condensed: They could be easily performed (so were interiorized) 
and they could be referred to as procedures executed inside a “black box”- 
something that no longer had to be described in full detail when considered as a 
part of a composite process (so they were condensed). This three-component 
pattern, interiorization/condensation/reification, seems to repeat itself at almost 
every turning point in the history of mathematical ideas-and in the process of 
learning. 

From these theoretical reflections mathematics emerges as a hierarchy of 
abstract realms built in a sequence of almost identical steps: Time and again, 
processes performed on certain abstract objects turn into new objects in order to 
serve as inputs to higher level processes. With respect to a given concept, say, 
that of negative number, one can distinguish between primary and secondary 
processes, those which underlie the concept and those which are applied to it, 
respectively. In the case of negative numbers the subtraction a - b, from which 
the restriction a 2 b has been removed, is a primary process, whereas the 
arithmetic operations extended to all its results are the secondary processes. 

It should be mentioned here that the aforementioned scheme of concept con- 
struction is similar in some respects to the model proposed by Garcia and Piaget 
in their book History of Science and Psychogenesis. Their ideas, like those 
presented here, are based on the assumption of the cyclic nature of the process of 
knowledge formation common to historical developments and to individual 
learning. Like the idea of hierarchical construction where the same notions are 
being conceived and used differently at different levels, Garcia and Piaget’s cycle 
of intraoperational, interoperational, and trans-operational stages reflects the 
change of perspective which takes place in the course of concept evolution. The 
intra- and interoperational stages roughly correspond to the phases of primary 
and secondary processes. The transoperational stage is attained only when the 
vantage point is pushed even higher and instead of concentrating on individual 
numbers one shifts attention to the overall structure imposed upon the given set 
of objects by the secondary operations. Soon the nature of the elements in the set 
loses its importance and the structure-imposing operations remain the only object 
of interest. Using our language and ideas we may say that such structures as 
groups or fields, the emergence of which indicates that the transoperational stage 
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with respect to the concept of number has been attained, are, in a sense, nothing 

more than a combination of the most general computational process treated as 
autonomous wholes, thus already condensed, maybe even reified. 

One final remark concerning the difficulty of reification: As an ontological 
shift it is an inherently complicated process. At least two serious reasons for its 
being very difficult to attain may be mentioned. One of them was called the 
vicious circle of reification. The use of this name refers to the fact that the 
reification of primary processes (those which underlie the given concept) seems 
to be the precondition for the ability to deal with secondary processes (those 
which are applied to the given concept), whereas the latter seem, in turn, to be a 
precondition for the former. For example, 3 - 5 must be treated as a legitimate 
mathematical object before it can be manipulated and combined-through sec- 
ondary processes-with other numbers. On the other hand, to speak about such 
operations as 3 - 5 and 1 - 3.5 as numbers, one must be able in advance to use 
them as inputs to the secondary processes. After all, it is the only way in which 
one may realize that 3 - 5 and 1 - 3.5 obey the same rules as 2, 5, 12 and the 
like, thus behaving like genuine numbers; such a realization is indispensable to 
justify and to motivate reification. 

The second type of obstacle arises when some semantic concessions must be 
made before the new abstract object is fully accepted. For example, to talk about 
a square root of a negative quantity as a number, people must free themselves 
from their deeply rooted conviction that number is something which expresses 
quantity-a result of a measuring procedure. It is thus the very process that 
engendered the concept of number that must now be given up. In this article, I 
observed this phenomenon of alienation from the primary operational roots time 
and again while surveying the development of algebra. 


