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Abstract

Existing literature comparing statistical properties of nested case-control and case-cohort methods
have become insufficient for present day epidemiologists. The literature has not reconciled
conflicting conclusions about the standard methods. Moreover, a comparison including newly
developed methods, such as inverse probability weighting methods, is needed. Two analytical
methods for nested case-control studies and six methods for case-cohort studies using proportional
hazards regression model were summarized and their statistical properties were compared. The
answer to which design and method is more powerful was more nuanced than what was previously
reported. For both nested case-control and case-cohort designs, inverse probability weighting
methods were more powerful than the standard methods. However, the difference became
negligible when the proportion of failure events was very low (<1%) in the full cohort. The
comparison between two designs depended on the censoring types and incidence proportion; with
random censoring, nested case-control designs coupled with the inverse probability weighting
method yielded the highest statistical power among all methods for both designs. With fixed
censoring times, there was little difference in efficiency between two designs when inverse
probability weighting methods were used; however, the standard case-cohort methods were more
powerful than the conditional logistic method for nested case-control designs. As the proportion of
failure events in the full cohort became smaller (<10%), nested case-control methods
outperformed all case-cohort methods and the choice of analytic methods within each design
became less important. When the predictor of interest was binary, the standard case-cohort
methods were often more powerful than the conditional logistic method for nested case-control
designs.
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Introduction

Case-cohort and nested case-control designs are the most common approaches for reducing
the costs of exposure assessment in prospective epidemiologic studies. Exposure data in
these designs are obtained on a subset of the full cohort. Nested case-control designs (or
equivalently, incidence density sampling designs) include all cases and a pre-specified
number of controls randomly chosen from the risk set at each failure time [1]. Case-cohort
designs include all cases and one randomly selected sub-cohort from the risk set at baseline

[2].

A few studies, all published before the year 2000, compared the statistical properties of the
two designs. Prentice [2] and Self & Prentice [3] reported that case-cohort designs coupled
with their respective analysis methods yielded higher statistical efficiency than nested case-
control designs coupled with conditional logistic approach proposed by Thomas [1].
Langholz & Thomas [4] later pointed out that these conclusions had not accounted for
repeated sampling of same persons in nested case-control designs. In their own simulation
studies, nested case-control designs coupled with conditional logistic method was more
efficient than the case-cohort designs coupled with Self & Prentice method [3] when there
was moderate random censoring or staggered entries. Barlow et al. [5] reported that Prentice
[2]’s method was more efficient than Barlow [6] which in turn was more efficient than Self
& Prentice [3]. They reported that all these methods were more efficient than nested case-
control designs coupled with conditional logistic approach when estimating the relative risk
with respect to a binary predictor. They, however, did not find meaningful difference for a
continuous predictor.

These reports have become insufficient for present day practitioners. First, more efficient
analytical methods including inverse probability weighting methods have been developed,
and a comparison of the new methods is needed. Second, the literature has not reconciled the
seemingly conflicting conclusions even about the traditional methods. Self & Prentice [3]
concluded case-cohort designs coupled with their method is more efficient than the nested
case-control designs coupled with conditional logistic method. On the contrary, Langholz &
Thomas [4] concluded that conditional logistic method out-performed Self & Prentice [3]
when there was moderate random censoring. By Barlow et al [5], the order is reversed yet
again and, in fact, both were outperformed by Prentice [2]. All these studies implied there
should be a single answer to what is the best design and analysis method, considered one
non-zero value of log relative risk, one cohort size, and a binary predictor. The real answer
may be more nuanced. A more comprehensive investigation with varying magnitude of
relative risks, cohort sizes, and incidence proportion may sort out what affects the relative
performance. In addition, the relative performance is unknown for continuous predictors for
which conditional logistic approach suffers less from sparse samples. Third, the literature
compared efficiency of the methods but not power. However, a seemingly large difference
in efficiency may not yield practically meaningful difference in power. For example, when
the true relative risk is large, a large difference in efficiency may lead to only a moderate
difference in power because the power will reach near the upper limit of one. In the author’s
opinion, what has happed in practice is that researchers would choose one of the designs
without a clear understanding about the ramification of the choice on statistical power.
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This article first summarizes various analytical methods for nested case-control and case-
cohort designs using Cox proportional hazards model. We perform simulation studies to
compare bias, efficiencies, type 1 errors, and powers of the methods by varying the
following design factors: the type of predictors (continuous or binary), the magnitude of
hazard ratio, cohort size, the number of controls, censoring type, and the proportion of
failure events. Two analytical methods for nested case-control studies are considered:
conditional logistic approach of Thomas [1] and the inverse inclusion probability method of
Samuelsen [7] coupled with an approximate jackknife standard error [8, 9]. Six methods for
case-cohort studies are considered: Prentice [2], Self & Prentice [3], Lin & Ying [10],
Barlow [6], and both Prentice [2] and Binder [11] coupled with approximate jackknife
standard errors.

Notations and Methods

Consider a cohort study with N subjects. Subject i enters the study at a fixed time a;. The
subject has the failure time T; and the censoring time W;. The investigator observes only
Yi=min(T;, W;). The failure time and censoring time are assumed to be independent. X;(t) is
a time dependent covariate vector of the subject. Assume that the hazard function A;(t) of the
failure time follows the model A;(t) = Aq(t) exp(X;i(t)B) where Aq(t) is an unspecified baseline
hazard function and gis the parameter vector of interest. Then, inferences are typically made
by maximizing Cox partial likelihood:
0
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g is one if subject i failed during the study, otherwise it is zero; Rj={j: Yj 2 Y > &} is a risk
set, an index set of subjects at risk at the failure time of subject i.

In nested case-control studies, for each case, m controls are sampled without replacement at
each Yj where &=1 from Rin{i}¢, i.e. from the subjects still at risk at the time of the failure
of the case [1]. Notice that the controls may include both failures and non-failures. Case-
cohort studies include all cases and a randomly selected sub-cohort from the risk set at
baseline [2], i.e., controls are randomly selected once from R, the risk set at baseline. Let C;
denote the set of controls selected from R; and C denote the union of all controls. For case-
cohort design, C = Cq is the subcohort. For nested case-control designs, C =Uj.5=1Cj. Then
S={i: §=1}UC is the index set of subjects that were ever included in the sample. RjNS is a
risk set in the sample, an index set of subjects included in the sample who are also at risk at
failure time of subject i. By changing the weighting strategies, the following pseudo/partial-
likelihood was maximized by Thomas [1] and Samuelsen [7] for nested case-control
designs, by Prentice [2], Self & Prentice [3], and Barlow [6] for case-cohort designs, by
Binder [11] for complex survey data, and by Lin & Ying [10] for incomplete data:
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The top section of Table 1 shows how the methods use different weights in the pseudo/
partial-likelihood (2). Barlow [5] explained the weights in the first three methods (from the
top). Unlike these methods, the inverse probability weighting methods, Binder [11] and
Samuelsen [7], include the non-subcohort case in earlier risk sets and use knowledge about
the future case status of that individual. Barlow [5] speculated that such use might bias the
estimates in case-cohort designs but Binder [11] and Lin [12] proved the consistency of the
estimator for complex sampling designs. Samuelsen [7] proved the consistency for nested
case-control designs. The same argument of the proofs can be applied to case-cohort
designs. In short, this is because the pseudo-likelihood (2) is a design-consistent estimator of
Cox’s partial likelihood (1) conditional on the full cohort and considering only the
randomness of the indicators of which subjects are to be included in the particular case-
cohort study. This property ensures that inverse probability weighted estimator to be a
design-consistent estimator of the Cox’s estimator, which in turn is a model-consistent
estimator of funder the proportional hazards assumption. We note that (2) for the case of
Thomas [1] is a partial likelihood, and not a pseudo-likelihood, since its contributions are
score unbiased and the variance of the score is the expected information.

In case-cohort studies, the proportion of sub-cohort is fixed at, say, ©. For nested case-
control studies, Samuelsen [7] calculated inclusion probabilities and Kim [8] extended them
to account for ties and additional matching. The inclusion probability of subject i is the
following:

1 if =1
pi= 1- 11 1—min(1, %)) in nested case—control study if ;=0 @)
J:a; <Y;<Y;
s in case cohort study if &;=0

Let H; be the index set of the subjects with the same values of matching variables as subject
i. kjj is the size of Rj N Hj or the number of subjects at risk at tj with the same values of
matching variables as subject i; bji is the number of subjects in Hj that failed exactly at tj; m
is the number of controls per each failure.

The weights in the top section of Table 1 give insight into Barlow [5]’s finding of the higher
efficiency of Prentice [2] over Self & Prentice [3]’s method which uses less data to estimate
the covariate contribution, and Barlow [6]’s method which always uses equal or greater
weights. It is reasonable to hypothesize that inverse probability weighting methods would
have higher efficiencies than others in both designs because they use the hon-subcohort
cases in earlier risk sets. It has been shown that such was the case for the nested case-control
designs [7, 9] but not yet for the case-cohort designs.
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The stated assumption that failure and censoring being independent was in fact more than
necessary. The appropriate conditions are that the form of the intensity (or the rate ratio)
does not change due to censoring or sampling. See conditions for full cohort in Anderson
and Gill [13], for case-cohort in Self and Prentice [3], and for nested case-control in Borgan
etal [14].

Standard Error Estimation

We studied if various standard error estimators meaningfully affect the performance of the
aforementioned methods. Prentice [2] and Self & Prentice [3] each proposed asymptotic
variance estimators for their respective methods. Lin and Ying [10]’s estimating equation for
incomplete data reduces to the pseudo-likelihood score function of the Self & Prentice [3]
for case-cohort designs. Therefore, Lin and Ying [10]’s proposed approximate jackknife
variance estimator is an alternative variance estimator for Self & Prentice’s method [3].
Barlow [6] also proposed an approximate jackknife variance estimator for his method.
Binder [11] originally provided a variance estimator that accounts only for the sampling
variation from a finite cohort but Lin [12] later provided the variance estimator for Binder’s
method accounting for the sampling of the cohort from an infinite super-population.

For nested case-control designs, Goldstein & Langholz [4] proved that the typical standard
errors from standard conditional logistic software are valid for the conditional logistic
approach of Thomas [1]. Samuelsen [7]’s proposed an asymptotic variance estimator for the
inverse probability weighting method that is similar to the variance estimator of Lin [12].

The second section of Table 1 summarizes the various standard errors. Therneau [15]
pointed out that Self & Prentice [3] variance converges to the usual Cox model variance as
the sample size increases to the size of the full cohort. This is also true for Lin [12], Thomas
[1], and Samuelsen [7]. On the other hand, the Lin & Ying [10] estimate converges to the
approximate jackknife estimate of Lin & Wei [16]. These approximate jackknife type
standard errors have an advantage that they are available in standard software such as SAS
and R without any extra programming. We did not calculate Lin [12] and Samuelsen [7]’s
variance estimators for inverse probability weighting methods. They both require
computational memory in the order of O(n?) to compute all pair-wise co-inclusion
probabilities. Instead, we used approximate jackknife estimators. Kim [8, 9] showed that
they accurately estimated the empirical variance and the estimates were remarkably close to
that of Samuelsen [7]. We also did not calculate the variance proposed by Prentice [2] and
used the form of variance estimator proposed by the Self & Prentice [3] as well as an
approximate jackknife estimator.

Programming

All analyses were programmed in R environment [17]. We followed Therneau and Li [15]’s
guidance in programming Self & Prentice [3] and Lin & Ying [10]. And we followed
Barlow [5]’s guidance in programming Prentice [2] and Barlow [6]. Inverse probability
weighting methods and approximate jackknife type variance estimators are straightforward
to program in R using weights and cluster options in coxph function. See reference [18] for
the R code.
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Exponential failure times T with rate exp(f1X1+/X,) were generated for full cohorts with
size N =500, 1,000, or 1,500. In addition, X1 was assumed to be distributed as a standard
normal variable, and X, was specified as independent Bernoulli variables with success
probability of (1+exp(-X1))~L. The distribution of covariates was set up so that a mild
multicollinearity existed. The true log hazard ratio £, assumed the values of 0, 0.1, 0.2...
0.8. The hazard ratios, therefore, ranged between 1 and 24.5 by an increase of the variable
equivalent to four standard deviations. The log hazard ratio for X, was set as /=0.5.
Censoring times were uniformly distributed between 0 and c, the upper limit of censoring,
which was chosen so that the proportion of failure events was, on average, 15% in the full
cohort. For each subject, either the failure or censoring time was observed, whichever
occurred earlier. The log hazard ratios and their standard errors in the full cohort were
estimated under the Cox proportional hazards model.

Nested case-control samples were than selected with varying numbers of controls, m =1, 2,
or 5, at each failure time. When each nested case-control sample was selected, a case-cohort
sample was also selected. To make the average sample size of the two designs the same, the
sampling proportion for the subcohort of the case-cohort sample was set as the number of
non-failures in the nested case-control sample divided by the number of non-failures in the
full cohort. For simplicity, additional matching factors were not used.

For each simulated nested case-control and case-cohort data set, log hazard ratios were
estimated according to the pseudo-likelihood (2) using weights defined in Table 1 along
with the standard errors methods in the table. This overall process including the generation
of the full cohort, nested case-control sample, and case-cohort sample was repeated 5,000
times. For the estimation of empirical type 1 error (i.e. when $5;=0), the overall process was
repeated 20,000 times.

Figure 1 shows the empirical biases in estimating 5, from the full cohort analysis, two
nested case-control methods, and four case-cohort methods. When sample sizes were small
to moderate (N=500, m=1, or N=500, m=2, or N=1,000, m=1), Self & Prentice [3] and
Barlow [6]’s methods over-estimated non-zero £ about 5-20%. The biases of other methods
were less than 5% of S except for the smallest sample sizes considered (m=1, N=500) when
the average sample size (n*) was 131.9. The biases became negligible as the sample size
increased.

Figure 2 shows the empirical standard errors by the methods. Consistent with the report by
Barlow et al [5], we observed higher efficiency of Prentice [2] over the methods of Self &
Prentice [3] and Barlow [6]. Notably, inverse probability weighting methods yielded higher
efficiency compared to other methods in both case-cohort and nested case-control designs.
This is because they use more data, namely the non-subcohort cases in earlier risk sets, to
estimate the covariate contribution in (2). As we expected, nested case-control designs
showed higher efficiency over case-cohort when inverse probability weighting methods are
used in both designs. Interestingly, contrary to Barlow et al [5]’s report, the conditional
logistic approach of Thomas [1] outperformed Prentice [2], Self & Prentice [3], and Barlow
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[6]. The discrepancy between the findings comes from X4 being a continuous predictor for
which conditional logistic approach suffers less from the sparse samples with small numbers
of discordant pairs. Barlow et al. [5] had reported that these methods were more efficient
than the conditional logistic approach when estimating a relative risk with respect to a
binary predictor. The figure also affirmed the theoretical finding by Zhang and Goldstein
[19] that for Self-Prentice [3] to obtain greater than 80% optimal efficiency at /=0, the
sampling fraction needs to be at least as three to five times the proportion of failure events.

Controlling the nominal type 1 error rate at 0.05 in testing Hq: /=0, the empirical power
and type 1 error rates were measured. All methods yielded empirical type 1 error rates close
to the nominal rate (Table 2) with the exception of the inverse probability weighting
methods and Prentice [2] that were mildly inflated when the sample sizes were small (<0.06;
N=500, m=1 or N=1,000, m=1). Figure 3 shows the empirical power of the methods. The
conclusions are similar to that from the empirical standard errors. Nested case-control
designs coupled with the inverse probability weighting method by Samuelsen [7] was most
powerful. Also among the case-cohort methods, inverse probability method by Binder [11]
was most powerful, and then it was Prentice [2] over the methods of Barlow [6] and Self &
Prentice [3]. The first column of the Table 3 demonstrates the power of the methods when
N=500, m=2, and $,=0.5. For example, the empirical powers by Samuelsen [7], Binder [11],
Thomas [1], Prentice [2], Barlow [6], Self-Prentice [3] were 0.90, 0.85, 0.85, 0.83, 0.83, and
0.80. Notice that the empirical variances of Binder, Thomas, Prentice, Barlow, and Self-
Prentice were 22%, 23%, 47%, 80%, and 91% greater than that of Samuelsen in the same
setting. The relative difference of power was moderate even when the difference of variance
seemed dramatic.

Next, to study the relative performance for binary predictors, we repeated the simulation
study but this time for /5, the log hazard ratio with respect to the binary predictor X,. The £,
assumed the values of 0, 0.2, 0.4... 2.0. The log hazard ratio for X; was set as £ =0.5. Again,
empirical biases (Web Figure 1) were less than 5% of £, for all methods except for the
smallest sample sizes considered (m=1, N=500). Inverse probability weighting methods
yielded the highest efficiency in both case-cohort and nested case-control designs (Web
Figure 2). We observed higher efficiency of Prentice [2] over the methods of Self & Prentice
[3] and Barlow [6]. And nested case-control designs yielded higher efficiency over case-
cohort when inverse probability weighting methods were used in both designs. In short,
some conclusions from the analysis of £ were confirmed in the analysis /.

However, the conditional logistic approach of Thomas [1] was less stable for the binary
predictor when the sample sizes were small (N=500, m=1 or N=1,000, m=1; Web Figure 2).
There were a number of sparse samples in which hazard ratios were inestimable by the
conditional logistic approach and, with less frequency, Self & Prentice [3]. Such sparse
samples were more frequent with large /£, which makes in unlikely for a subject with X,=1
to fail. For example, when N=500, m=1, =2, 4% of the samples did not have any risk set
that had both at least one case with X,=0 and at least one control with X,= 1. The relative
risk estimates by the conditional logistic approach in these samples were infinity. For fair
comparison, these sparse samples were excluded from the analysis by all considered
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methods. Notice that the differences in power between Thomas [1], Prentice [2], Barlow [6],
and Self-Prentice [3] were still moderate (Web Figure 3).

To study how incidence proportion affects the relative performance, we then repeated the
simulation study this time with varying proportion of failure events in the full cohort. Here
the upper limit of random censoring was varied so that the proportion of failure events in the
full cohorts was, on average, 0.1%, 1%, 5%, or 10%. The sizes of the full cohort were
adjusted to contain the same average number of cases as the above simulation studies. For
example, when the proportion of failure events was set at 1%, the cohort size was N = 7,500,
15,000, or 22,500. The £ assumed the values of 0, 0.1, 0.2... 0.8. The log hazard ratio for
Xo was set as £=0.5. In testing Hg: £;=0, both nested case-control methods were more
powerful than any case-cohort method when the proportion of failure events was less than or
equal to 10% and the difference in power grew greater as the proportion became smaller.
Interestingly, in both designs, the difference in power between inverse probability weighting
method and the standard methods (Prentice [2] for case-cohort studies and the conditional
logistic method for the nested case-control studies) became ignorable as the proportion of
failure events became very low (< 1%; Table 3 shows when m=2, =0.5). This is because
the inverse probability weights for the controls become too large compared to the weights
for the cases when the proportion of failure events is low. There seems to be a balancing
effect on efficiency: inverse probability weighting methods gain efficiency by using more
controls in the risk sets but lose it when variation among the weights is large.

We also suspected that the random censoring might favor nested case-control design as case-
cohort design was intended for the situation where most of the censoring was administrative
at the end so that controls would serve in many risk sets. Intuitively, nested case-control
methods gain power by over-sampling from controls with longer follow-ups but such gain
would be lost when censoring and entry times are the same across controls. In order to
explore the effect of censoring type, we repeated the simulation study this time with fixed
censoring times, which were chosen so that the proportion of failure events was 15% in the
full cohort. The f; assumed the values of 0, 0.1, 0.2... 0.8. The log hazard ratio for X, was
set as =0.5. While the standard case-cohort methods, Prentice [2], Self-Prentice [3], and
Barlow [6], were all more powerful than the conditional logistic method for nested case-
control designs across different values of f;, the inverse probability weighting methods were
still more efficient than other methods within each design (Table 3; Only when N=500, m=2,
£1=0.5 is shown). Interestingly, there was little difference in efficiency between two designs
when inverse probability weighting methods were used.

Discussion

For both designs, inverse probability weighting methods were more powerful than the
standard methods. This is because they use more data, namely the non-subcohort cases in
earlier risk sets, to estimate the covariate contribution in the pseudo-likelihood. However,
the difference became negligible when the proportion of failure events was very low (<1%).

The comparison between two designs depended on the censoring types and incidence
proportion. With random censoring, nested case-control designs coupled with the inverse
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probability weighting method proposed by Samuelsen [7] showed the highest statistical
power among all methods for both designs. With fixed censoring times, there was little
difference in efficiency between two designs when inverse probability weighting methods
were used, however, the standard case-cohort methods, Prentice [2], Self-Prentice [3], and
Barlow [6], were often more powerful than the conditional logistic method for nested case-
control designs. As the proportion of failure events became smaller (<10%), both nested
case-control methods outperformed all case-cohort methods and the choice of analytic
methods within each type of design became less important. When the predictor was binary,
again, the standard case-cohort were often more powerful than the conditional logistic
method for nested case-control designs.

This explains the discrepancy between the reports by Langholz & Thomas [4] and Barlow et
al [5]: the former report was based on random censoring and the latter report was based on
type 2 censoring. It shows that the answer to which design and method is more efficient is
more nuanced than what was previously reported. In addition to what we investigated, the
relative performance may also depend on the type of left truncation, and the degree of
stratification.

Furthermore, statistical power is not the sole determinant of choosing study designs or
analytical methods. For example, the inverse probability methods require the retrospective
access to the outcome and the matching variables of the full cohort in order to compute
inclusion probabilities. Moreover, there are model spaces under which certain designs and
analyses are invalid. In particular, the inverse probability weighting methods are invalid
when the cohort is “finely stratified” (i.e., the number of strata increases with sample size)
since the methods require the consistency of the weights. Goldstein and Zhang [20] proved
that when highly stratified cohorts are followed over a short period, conditional logistic
approach achieves optimal efficiency under the stratified proportional hazards model. In
other cases, case-cohort designs has been preferred for the ease in designing and analyzing a
follow-up study with respect to new secondary outcomes [21].

As the new analytical methods are being developed, the conclusion about the relative
performance may still change. For example, Chen [22, 23] improved inverse probability
weighting methods for case-cohort and nested case-control designs by refining weights by
averaging the observed covariates from subjects with similar failure times to estimate
contribution from unselected controls. The relative performance would depend on the
correlation between failure times and covariates for local averaging. In addition, there have
been developments to non-parametrically model predictors of interest conditioned on other
available covariates. In some important situations, these maximum semiparametric
likelihood has shown to increase the efficiency [24, 25].

Left truncation, or delayed entries, must be accounted in the pseudo/partial likelihoods to
avoid bias in estimating hazard ratios under proportional hazards model. When truncation
and failure times are independent, the full cohort likelihoods can be adjusted by excluding
subjects from the risk sets corresponding to the times before their enrollment. In nested case-
control studies, controls are selected only from those at risk that are already enrolled in the
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studies. Small sample properties of the case-cohort and the nested case-control methods
under varying degrees of left-truncation have not been reported yet.

Staggered entries, like random right censorings, may favor nested case-control methods over
case-cohort methods because the former gain power by over-sampling from controls with
longer follow-ups especially when the incidence proportion is not very small.

For recurrent events, proportional intensity models have been proposed based on total time
of follow-up [13, 26] or gap time [26] while accounting for dependency among the repeated
measurements with a marginal ‘working independence’ variance. An alternate approach is to
model dependency by random effects. A modified nested case-control sampling strategy for
recurrent events were proposed by Lubin [27], along with the usual conditional logistic
likelihood, as an extension of recurrent events method by Prentice et al [26]. In case-cohort
studies, Zhang et al [28] extended Andersen and Gill’s model [13] using the inverse
probability weighting method and Chen & Chen [29] modeled the impact of earlier events
on the subsequent events using Prentice’s approach for case-cohort studies [2].

The proportional hazards assumption can have substantial importance [30]. For example, the
effects on breast cancer metastases of both higher tumor grades and negative hormone
receptor diminished over time [30, 31]. Recently, methods have been developed to assess
proportional hazards assumption in case-cohort and nested case-control studies. For
example, correlation tests between Schoenfeld residuals and event time were extended to
case-cohort studies [30] and a goodness-of-fit test based on inverse probability weighting
method was developed for nested case-control studies [32]. Sometimes, the violation of
proportional hazards assumption can be remedied through time-invariance predictors. While
it is out of scope of this paper, we suspect the reported relative performances may differ with
time-varying predictors.

Informative censoring can cause bias when, for example, those who do well drop out from
treatment group and those who do worse drop out from control group [33]. In full cohort
studies, informative censoring has been modeled explicitly, for example, via the relationship
of hazard functions [34] or survival functions [35] between censored and uncensored
subjects in proportional hazards regression models. Some used data collected after censoring
to address the issue [36]. These methods have not been extended to case-cohort or nested
case-control study designs.

Supplementary Material
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Fig. 1. The Empirical Biases of the Estimators of f;
The considered methods are the full cohort analysis, two nested case-control (NCC)

methods, which are the conditional logistic approach by Thomas (1977), and the inverse
probability weighting method by Samuelsen (1997), and four case-cohort (CCH) methods,
which are the inverse probability weighting method by Binder (1992), and the methods by
Prentice (1986), Self & Prentice (1988), and Barlow (1994). The average sample size n* and
the average subcohort proportion 7 are shown in the titles. Only the results for N=500,
1,000 are shown. See Web Figure 4 for the result when N=1,500.
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Fig. 2. The Empirical Standard Errorsof the Estimators of 1

The empirical standard errors of S, estimators are shown for the full cohort analysis, two
nested case-control (NCC) methods, which are the conditional logistic approach by Thomas
(1977) and the inverse probability weighting method by Samuelsen (1997), and four case-
cohort (CCH) methods, which are the inverse probability weighting method by Binder
(1992), and the methods by Prentice (1986), Self & Prentice (1988), and Barlow (1994). The
average sample size n* and the average subcohort proportion * are shown in the titles.
Only the results for N=500, 1,000 are shown. See Web Figure 4 for the result when

N=1,500.
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Fig. 3. Empirical Power Testing Hgf1=0 by Methods
The nominal type 1 error rate was 0.05. The empirical power of nine methods is measured:

full cohort analysis, the conditional logistic approach by Thomas (1997), inverse probability
weighting methods by Samuelsen (1997) coupled with approximate jackknife (AJK)
variance estimator (Kim 2013a), the inverse probability weighting methods by Binder
(1992) coupled with AJK variance estimator, Prentice (1986), Prentice (1986) coupled with
AJK variance estimator, Self & Prentice (1988), Self & Prentice coupled with AJK variance
estimator (i.e. Lin & Ying 1993), and Barlow (1993). The average sample size n* and the
average subcohort proportion r* are shown in the titles. Only the results for N=500, 1,000
are shown. CCH and NCC are abbreviations for case-cohort and nested case-control designs,
respectively. See Web Figure 4 for the result when N=1,500.
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