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Abstract

Existing literature comparing statistical properties of nested case-control and case-cohort methods 

have become insufficient for present day epidemiologists. The literature has not reconciled 

conflicting conclusions about the standard methods. Moreover, a comparison including newly 

developed methods, such as inverse probability weighting methods, is needed. Two analytical 

methods for nested case-control studies and six methods for case-cohort studies using proportional 

hazards regression model were summarized and their statistical properties were compared. The 

answer to which design and method is more powerful was more nuanced than what was previously 

reported. For both nested case-control and case-cohort designs, inverse probability weighting 

methods were more powerful than the standard methods. However, the difference became 

negligible when the proportion of failure events was very low (<1%) in the full cohort. The 

comparison between two designs depended on the censoring types and incidence proportion: with 

random censoring, nested case-control designs coupled with the inverse probability weighting 

method yielded the highest statistical power among all methods for both designs. With fixed 

censoring times, there was little difference in efficiency between two designs when inverse 

probability weighting methods were used; however, the standard case-cohort methods were more 

powerful than the conditional logistic method for nested case-control designs. As the proportion of 

failure events in the full cohort became smaller (<10%), nested case-control methods 

outperformed all case-cohort methods and the choice of analytic methods within each design 

became less important. When the predictor of interest was binary, the standard case-cohort 

methods were often more powerful than the conditional logistic method for nested case-control 

designs.
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Introduction

Case-cohort and nested case-control designs are the most common approaches for reducing 

the costs of exposure assessment in prospective epidemiologic studies. Exposure data in 

these designs are obtained on a subset of the full cohort. Nested case-control designs (or 

equivalently, incidence density sampling designs) include all cases and a pre-specified 

number of controls randomly chosen from the risk set at each failure time [1]. Case-cohort 

designs include all cases and one randomly selected sub-cohort from the risk set at baseline 

[2].

A few studies, all published before the year 2000, compared the statistical properties of the 

two designs. Prentice [2] and Self & Prentice [3] reported that case-cohort designs coupled 

with their respective analysis methods yielded higher statistical efficiency than nested case-

control designs coupled with conditional logistic approach proposed by Thomas [1]. 

Langholz & Thomas [4] later pointed out that these conclusions had not accounted for 

repeated sampling of same persons in nested case-control designs. In their own simulation 

studies, nested case-control designs coupled with conditional logistic method was more 

efficient than the case-cohort designs coupled with Self & Prentice method [3] when there 

was moderate random censoring or staggered entries. Barlow et al. [5] reported that Prentice 

[2]’s method was more efficient than Barlow [6] which in turn was more efficient than Self 

& Prentice [3]. They reported that all these methods were more efficient than nested case-

control designs coupled with conditional logistic approach when estimating the relative risk 

with respect to a binary predictor. They, however, did not find meaningful difference for a 

continuous predictor.

These reports have become insufficient for present day practitioners. First, more efficient 

analytical methods including inverse probability weighting methods have been developed, 

and a comparison of the new methods is needed. Second, the literature has not reconciled the 

seemingly conflicting conclusions even about the traditional methods. Self & Prentice [3] 

concluded case-cohort designs coupled with their method is more efficient than the nested 

case-control designs coupled with conditional logistic method. On the contrary, Langholz & 

Thomas [4] concluded that conditional logistic method out-performed Self & Prentice [3] 

when there was moderate random censoring. By Barlow et al [5], the order is reversed yet 

again and, in fact, both were outperformed by Prentice [2]. All these studies implied there 

should be a single answer to what is the best design and analysis method, considered one 

non-zero value of log relative risk, one cohort size, and a binary predictor. The real answer 

may be more nuanced. A more comprehensive investigation with varying magnitude of 

relative risks, cohort sizes, and incidence proportion may sort out what affects the relative 

performance. In addition, the relative performance is unknown for continuous predictors for 

which conditional logistic approach suffers less from sparse samples. Third, the literature 

compared efficiency of the methods but not power. However, a seemingly large difference 

in efficiency may not yield practically meaningful difference in power. For example, when 

the true relative risk is large, a large difference in efficiency may lead to only a moderate 

difference in power because the power will reach near the upper limit of one. In the author’s 

opinion, what has happed in practice is that researchers would choose one of the designs 

without a clear understanding about the ramification of the choice on statistical power.
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This article first summarizes various analytical methods for nested case-control and case-

cohort designs using Cox proportional hazards model. We perform simulation studies to 

compare bias, efficiencies, type 1 errors, and powers of the methods by varying the 

following design factors: the type of predictors (continuous or binary), the magnitude of 

hazard ratio, cohort size, the number of controls, censoring type, and the proportion of 

failure events. Two analytical methods for nested case-control studies are considered: 

conditional logistic approach of Thomas [1] and the inverse inclusion probability method of 

Samuelsen [7] coupled with an approximate jackknife standard error [8, 9]. Six methods for 

case-cohort studies are considered: Prentice [2], Self & Prentice [3], Lin & Ying [10], 

Barlow [6], and both Prentice [2] and Binder [11] coupled with approximate jackknife 

standard errors.

Methods

Notations and Methods

Consider a cohort study with N subjects. Subject i enters the study at a fixed time ai. The 

subject has the failure time Ti and the censoring time Wi. The investigator observes only 

Yi=min(Ti, Wi). The failure time and censoring time are assumed to be independent. Xi(t) is 

a time dependent covariate vector of the subject. Assume that the hazard function λi(t) of the 

failure time follows the model λi(t) = λ0(t) exp(Xi(t)β) where λ0(t) is an unspecified baseline 

hazard function and β is the parameter vector of interest. Then, inferences are typically made 

by maximizing Cox partial likelihood:

(1)

δi is one if subject i failed during the study, otherwise it is zero; Ri={j: Yj ≥ Yi > aj} is a risk 

set, an index set of subjects at risk at the failure time of subject i.

In nested case-control studies, for each case, m controls are sampled without replacement at 

each Yi where δi=1 from Ri∩{i}c, i.e. from the subjects still at risk at the time of the failure 

of the case [1]. Notice that the controls may include both failures and non-failures. Case-

cohort studies include all cases and a randomly selected sub-cohort from the risk set at 

baseline [2], i.e., controls are randomly selected once from R0, the risk set at baseline. Let Ci 

denote the set of controls selected from Ri and C denote the union of all controls. For case-

cohort design, C = C0 is the subcohort. For nested case-control designs, C =∪i:δi=1Ci. Then 

S={i: δi=1}∪C is the index set of subjects that were ever included in the sample. Ri∩S is a 

risk set in the sample, an index set of subjects included in the sample who are also at risk at 

failure time of subject i. By changing the weighting strategies, the following pseudo/partial-

likelihood was maximized by Thomas [1] and Samuelsen [7] for nested case-control 

designs, by Prentice [2], Self & Prentice [3], and Barlow [6] for case-cohort designs, by 

Binder [11] for complex survey data, and by Lin & Ying [10] for incomplete data:
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(2)

The top section of Table 1 shows how the methods use different weights in the pseudo/

partial-likelihood (2). Barlow [5] explained the weights in the first three methods (from the 

top). Unlike these methods, the inverse probability weighting methods, Binder [11] and 

Samuelsen [7], include the non-subcohort case in earlier risk sets and use knowledge about 

the future case status of that individual. Barlow [5] speculated that such use might bias the 

estimates in case-cohort designs but Binder [11] and Lin [12] proved the consistency of the 

estimator for complex sampling designs. Samuelsen [7] proved the consistency for nested 

case-control designs. The same argument of the proofs can be applied to case-cohort 

designs. In short, this is because the pseudo-likelihood (2) is a design-consistent estimator of 

Cox’s partial likelihood (1) conditional on the full cohort and considering only the 

randomness of the indicators of which subjects are to be included in the particular case-

cohort study. This property ensures that inverse probability weighted estimator to be a 

design-consistent estimator of the Cox’s estimator, which in turn is a model-consistent 

estimator of β under the proportional hazards assumption. We note that (2) for the case of 

Thomas [1] is a partial likelihood, and not a pseudo-likelihood, since its contributions are 

score unbiased and the variance of the score is the expected information.

In case-cohort studies, the proportion of sub-cohort is fixed at, say, π. For nested case-

control studies, Samuelsen [7] calculated inclusion probabilities and Kim [8] extended them 

to account for ties and additional matching. The inclusion probability of subject i is the 

following:

(3)

Let Hi be the index set of the subjects with the same values of matching variables as subject 

i. kji is the size of Rj ∩ Hi or the number of subjects at risk at tj with the same values of 

matching variables as subject i; bji is the number of subjects in Hi that failed exactly at tj; m 

is the number of controls per each failure.

The weights in the top section of Table 1 give insight into Barlow [5]’s finding of the higher 

efficiency of Prentice [2] over Self & Prentice [3]’s method which uses less data to estimate 

the covariate contribution, and Barlow [6]’s method which always uses equal or greater 

weights. It is reasonable to hypothesize that inverse probability weighting methods would 

have higher efficiencies than others in both designs because they use the non-subcohort 

cases in earlier risk sets. It has been shown that such was the case for the nested case-control 

designs [7, 9] but not yet for the case-cohort designs.
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The stated assumption that failure and censoring being independent was in fact more than 

necessary. The appropriate conditions are that the form of the intensity (or the rate ratio) 

does not change due to censoring or sampling. See conditions for full cohort in Anderson 

and Gill [13], for case-cohort in Self and Prentice [3], and for nested case-control in Borgan 

et al [14].

Standard Error Estimation

We studied if various standard error estimators meaningfully affect the performance of the 

aforementioned methods. Prentice [2] and Self & Prentice [3] each proposed asymptotic 

variance estimators for their respective methods. Lin and Ying [10]’s estimating equation for 

incomplete data reduces to the pseudo-likelihood score function of the Self & Prentice [3] 

for case-cohort designs. Therefore, Lin and Ying [10]’s proposed approximate jackknife 

variance estimator is an alternative variance estimator for Self & Prentice’s method [3]. 

Barlow [6] also proposed an approximate jackknife variance estimator for his method. 

Binder [11] originally provided a variance estimator that accounts only for the sampling 

variation from a finite cohort but Lin [12] later provided the variance estimator for Binder’s 

method accounting for the sampling of the cohort from an infinite super-population.

For nested case-control designs, Goldstein & Langholz [4] proved that the typical standard 

errors from standard conditional logistic software are valid for the conditional logistic 

approach of Thomas [1]. Samuelsen [7]’s proposed an asymptotic variance estimator for the 

inverse probability weighting method that is similar to the variance estimator of Lin [12].

The second section of Table 1 summarizes the various standard errors. Therneau [15] 

pointed out that Self & Prentice [3] variance converges to the usual Cox model variance as 

the sample size increases to the size of the full cohort. This is also true for Lin [12], Thomas 

[1], and Samuelsen [7]. On the other hand, the Lin & Ying [10] estimate converges to the 

approximate jackknife estimate of Lin & Wei [16]. These approximate jackknife type 

standard errors have an advantage that they are available in standard software such as SAS 

and R without any extra programming. We did not calculate Lin [12] and Samuelsen [7]’s 

variance estimators for inverse probability weighting methods. They both require 

computational memory in the order of O(n2) to compute all pair-wise co-inclusion 

probabilities. Instead, we used approximate jackknife estimators. Kim [8, 9] showed that 

they accurately estimated the empirical variance and the estimates were remarkably close to 

that of Samuelsen [7]. We also did not calculate the variance proposed by Prentice [2] and 

used the form of variance estimator proposed by the Self & Prentice [3] as well as an 

approximate jackknife estimator.

Programming

All analyses were programmed in R environment [17]. We followed Therneau and Li [15]’s 

guidance in programming Self & Prentice [3] and Lin & Ying [10]. And we followed 

Barlow [5]’s guidance in programming Prentice [2] and Barlow [6]. Inverse probability 

weighting methods and approximate jackknife type variance estimators are straightforward 

to program in R using weights and cluster options in coxph function. See reference [18] for 

the R code.
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Results

Exponential failure times T with rate exp(β1X1+β2X2) were generated for full cohorts with 

size N = 500, 1,000, or 1,500. In addition, X1 was assumed to be distributed as a standard 

normal variable, and X2 was specified as independent Bernoulli variables with success 

probability of (1+exp(−X1))−1. The distribution of covariates was set up so that a mild 

multicollinearity existed. The true log hazard ratio β1 assumed the values of 0, 0.1, 0.2… 

0.8. The hazard ratios, therefore, ranged between 1 and 24.5 by an increase of the variable 

equivalent to four standard deviations. The log hazard ratio for X2 was set as β2=0.5. 

Censoring times were uniformly distributed between 0 and c, the upper limit of censoring, 

which was chosen so that the proportion of failure events was, on average, 15% in the full 

cohort. For each subject, either the failure or censoring time was observed, whichever 

occurred earlier. The log hazard ratios and their standard errors in the full cohort were 

estimated under the Cox proportional hazards model.

Nested case-control samples were than selected with varying numbers of controls, m = 1, 2, 

or 5, at each failure time. When each nested case-control sample was selected, a case-cohort 

sample was also selected. To make the average sample size of the two designs the same, the 

sampling proportion for the subcohort of the case-cohort sample was set as the number of 

non-failures in the nested case-control sample divided by the number of non-failures in the 

full cohort. For simplicity, additional matching factors were not used.

For each simulated nested case-control and case-cohort data set, log hazard ratios were 

estimated according to the pseudo-likelihood (2) using weights defined in Table 1 along 

with the standard errors methods in the table. This overall process including the generation 

of the full cohort, nested case-control sample, and case-cohort sample was repeated 5,000 

times. For the estimation of empirical type 1 error (i.e. when β1=0), the overall process was 

repeated 20,000 times.

Figure 1 shows the empirical biases in estimating β1 from the full cohort analysis, two 

nested case-control methods, and four case-cohort methods. When sample sizes were small 

to moderate (N=500, m=1, or N=500, m=2, or N=1,000, m=1), Self & Prentice [3] and 

Barlow [6]’s methods over-estimated non-zero β1 about 5–20%. The biases of other methods 

were less than 5% of β1 except for the smallest sample sizes considered (m=1, N=500) when 

the average sample size (n*) was 131.9. The biases became negligible as the sample size 

increased.

Figure 2 shows the empirical standard errors by the methods. Consistent with the report by 

Barlow et al [5], we observed higher efficiency of Prentice [2] over the methods of Self & 

Prentice [3] and Barlow [6]. Notably, inverse probability weighting methods yielded higher 

efficiency compared to other methods in both case-cohort and nested case-control designs. 

This is because they use more data, namely the non-subcohort cases in earlier risk sets, to 

estimate the covariate contribution in (2). As we expected, nested case-control designs 

showed higher efficiency over case-cohort when inverse probability weighting methods are 

used in both designs. Interestingly, contrary to Barlow et al [5]’s report, the conditional 

logistic approach of Thomas [1] outperformed Prentice [2], Self & Prentice [3], and Barlow 
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[6]. The discrepancy between the findings comes from X1 being a continuous predictor for 

which conditional logistic approach suffers less from the sparse samples with small numbers 

of discordant pairs. Barlow et al. [5] had reported that these methods were more efficient 

than the conditional logistic approach when estimating a relative risk with respect to a 

binary predictor. The figure also affirmed the theoretical finding by Zhang and Goldstein 

[19] that for Self-Prentice [3] to obtain greater than 80% optimal efficiency at β=0, the 

sampling fraction needs to be at least as three to five times the proportion of failure events.

Controlling the nominal type 1 error rate at 0.05 in testing H0: β1=0, the empirical power 

and type 1 error rates were measured. All methods yielded empirical type 1 error rates close 

to the nominal rate (Table 2) with the exception of the inverse probability weighting 

methods and Prentice [2] that were mildly inflated when the sample sizes were small (<0.06; 

N=500, m=1 or N=1,000, m=1). Figure 3 shows the empirical power of the methods. The 

conclusions are similar to that from the empirical standard errors. Nested case-control 

designs coupled with the inverse probability weighting method by Samuelsen [7] was most 

powerful. Also among the case-cohort methods, inverse probability method by Binder [11] 

was most powerful, and then it was Prentice [2] over the methods of Barlow [6] and Self & 

Prentice [3]. The first column of the Table 3 demonstrates the power of the methods when 

N=500, m=2, and β1=0.5. For example, the empirical powers by Samuelsen [7], Binder [11], 

Thomas [1], Prentice [2], Barlow [6], Self-Prentice [3] were 0.90, 0.85, 0.85, 0.83, 0.83, and 

0.80. Notice that the empirical variances of Binder, Thomas, Prentice, Barlow, and Self-

Prentice were 22%, 23%, 47%, 80%, and 91% greater than that of Samuelsen in the same 

setting. The relative difference of power was moderate even when the difference of variance 

seemed dramatic.

Next, to study the relative performance for binary predictors, we repeated the simulation 

study but this time for β2, the log hazard ratio with respect to the binary predictor X2. The β2 

assumed the values of 0, 0.2, 0.4… 2.0. The log hazard ratio for X1 was set as β1=0.5. Again, 

empirical biases (Web Figure 1) were less than 5% of β2 for all methods except for the 

smallest sample sizes considered (m=1, N=500). Inverse probability weighting methods 

yielded the highest efficiency in both case-cohort and nested case-control designs (Web 

Figure 2). We observed higher efficiency of Prentice [2] over the methods of Self & Prentice 

[3] and Barlow [6]. And nested case-control designs yielded higher efficiency over case-

cohort when inverse probability weighting methods were used in both designs. In short, 

some conclusions from the analysis of β1 were confirmed in the analysis β2.

However, the conditional logistic approach of Thomas [1] was less stable for the binary 

predictor when the sample sizes were small (N=500, m=1 or N=1,000, m=1; Web Figure 2). 

There were a number of sparse samples in which hazard ratios were inestimable by the 

conditional logistic approach and, with less frequency, Self & Prentice [3]. Such sparse 

samples were more frequent with large β2, which makes in unlikely for a subject with X2=1 

to fail. For example, when N=500, m=1, β2=2, 4% of the samples did not have any risk set 

that had both at least one case with X2=0 and at least one control with X2= 1. The relative 

risk estimates by the conditional logistic approach in these samples were infinity. For fair 

comparison, these sparse samples were excluded from the analysis by all considered 
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methods. Notice that the differences in power between Thomas [1], Prentice [2], Barlow [6], 

and Self-Prentice [3] were still moderate (Web Figure 3).

To study how incidence proportion affects the relative performance, we then repeated the 

simulation study this time with varying proportion of failure events in the full cohort. Here 

the upper limit of random censoring was varied so that the proportion of failure events in the 

full cohorts was, on average, 0.1%, 1%, 5%, or 10%. The sizes of the full cohort were 

adjusted to contain the same average number of cases as the above simulation studies. For 

example, when the proportion of failure events was set at 1%, the cohort size was N = 7,500, 

15,000, or 22,500. The β1 assumed the values of 0, 0.1, 0.2… 0.8. The log hazard ratio for 

X2 was set as β2=0.5. In testing H0: β1=0, both nested case-control methods were more 

powerful than any case-cohort method when the proportion of failure events was less than or 

equal to 10% and the difference in power grew greater as the proportion became smaller. 

Interestingly, in both designs, the difference in power between inverse probability weighting 

method and the standard methods (Prentice [2] for case-cohort studies and the conditional 

logistic method for the nested case-control studies) became ignorable as the proportion of 

failure events became very low (≤ 1%; Table 3 shows when m=2, β1=0.5). This is because 

the inverse probability weights for the controls become too large compared to the weights 

for the cases when the proportion of failure events is low. There seems to be a balancing 

effect on efficiency: inverse probability weighting methods gain efficiency by using more 

controls in the risk sets but lose it when variation among the weights is large.

We also suspected that the random censoring might favor nested case-control design as case-

cohort design was intended for the situation where most of the censoring was administrative 

at the end so that controls would serve in many risk sets. Intuitively, nested case-control 

methods gain power by over-sampling from controls with longer follow-ups but such gain 

would be lost when censoring and entry times are the same across controls. In order to 

explore the effect of censoring type, we repeated the simulation study this time with fixed 

censoring times, which were chosen so that the proportion of failure events was 15% in the 

full cohort. The β1 assumed the values of 0, 0.1, 0.2… 0.8. The log hazard ratio for X2 was 

set as β2=0.5. While the standard case-cohort methods, Prentice [2], Self-Prentice [3], and 

Barlow [6], were all more powerful than the conditional logistic method for nested case-

control designs across different values of β1, the inverse probability weighting methods were 

still more efficient than other methods within each design (Table 3; Only when N=500, m=2, 

β1=0.5 is shown). Interestingly, there was little difference in efficiency between two designs 

when inverse probability weighting methods were used.

Discussion

For both designs, inverse probability weighting methods were more powerful than the 

standard methods. This is because they use more data, namely the non-subcohort cases in 

earlier risk sets, to estimate the covariate contribution in the pseudo-likelihood. However, 

the difference became negligible when the proportion of failure events was very low (<1%).

The comparison between two designs depended on the censoring types and incidence 

proportion. With random censoring, nested case-control designs coupled with the inverse 
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probability weighting method proposed by Samuelsen [7] showed the highest statistical 

power among all methods for both designs. With fixed censoring times, there was little 

difference in efficiency between two designs when inverse probability weighting methods 

were used, however, the standard case-cohort methods, Prentice [2], Self-Prentice [3], and 

Barlow [6], were often more powerful than the conditional logistic method for nested case-

control designs. As the proportion of failure events became smaller (<10%), both nested 

case-control methods outperformed all case-cohort methods and the choice of analytic 

methods within each type of design became less important. When the predictor was binary, 

again, the standard case-cohort were often more powerful than the conditional logistic 

method for nested case-control designs.

This explains the discrepancy between the reports by Langholz & Thomas [4] and Barlow et 

al [5]: the former report was based on random censoring and the latter report was based on 

type 2 censoring. It shows that the answer to which design and method is more efficient is 

more nuanced than what was previously reported. In addition to what we investigated, the 

relative performance may also depend on the type of left truncation, and the degree of 

stratification.

Furthermore, statistical power is not the sole determinant of choosing study designs or 

analytical methods. For example, the inverse probability methods require the retrospective 

access to the outcome and the matching variables of the full cohort in order to compute 

inclusion probabilities. Moreover, there are model spaces under which certain designs and 

analyses are invalid. In particular, the inverse probability weighting methods are invalid 

when the cohort is “finely stratified” (i.e., the number of strata increases with sample size) 

since the methods require the consistency of the weights. Goldstein and Zhang [20] proved 

that when highly stratified cohorts are followed over a short period, conditional logistic 

approach achieves optimal efficiency under the stratified proportional hazards model. In 

other cases, case-cohort designs has been preferred for the ease in designing and analyzing a 

follow-up study with respect to new secondary outcomes [21].

As the new analytical methods are being developed, the conclusion about the relative 

performance may still change. For example, Chen [22, 23] improved inverse probability 

weighting methods for case-cohort and nested case-control designs by refining weights by 

averaging the observed covariates from subjects with similar failure times to estimate 

contribution from unselected controls. The relative performance would depend on the 

correlation between failure times and covariates for local averaging. In addition, there have 

been developments to non-parametrically model predictors of interest conditioned on other 

available covariates. In some important situations, these maximum semiparametric 

likelihood has shown to increase the efficiency [24, 25].

Left truncation, or delayed entries, must be accounted in the pseudo/partial likelihoods to 

avoid bias in estimating hazard ratios under proportional hazards model. When truncation 

and failure times are independent, the full cohort likelihoods can be adjusted by excluding 

subjects from the risk sets corresponding to the times before their enrollment. In nested case-

control studies, controls are selected only from those at risk that are already enrolled in the 
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studies. Small sample properties of the case-cohort and the nested case-control methods 

under varying degrees of left-truncation have not been reported yet.

Staggered entries, like random right censorings, may favor nested case-control methods over 

case-cohort methods because the former gain power by over-sampling from controls with 

longer follow-ups especially when the incidence proportion is not very small.

For recurrent events, proportional intensity models have been proposed based on total time 

of follow-up [13, 26] or gap time [26] while accounting for dependency among the repeated 

measurements with a marginal ‘working independence’ variance. An alternate approach is to 

model dependency by random effects. A modified nested case-control sampling strategy for 

recurrent events were proposed by Lubin [27], along with the usual conditional logistic 

likelihood, as an extension of recurrent events method by Prentice et al [26]. In case-cohort 

studies, Zhang et al [28] extended Andersen and Gill’s model [13] using the inverse 

probability weighting method and Chen & Chen [29] modeled the impact of earlier events 

on the subsequent events using Prentice’s approach for case-cohort studies [2].

The proportional hazards assumption can have substantial importance [30]. For example, the 

effects on breast cancer metastases of both higher tumor grades and negative hormone 

receptor diminished over time [30, 31]. Recently, methods have been developed to assess 

proportional hazards assumption in case-cohort and nested case-control studies. For 

example, correlation tests between Schoenfeld residuals and event time were extended to 

case-cohort studies [30] and a goodness-of-fit test based on inverse probability weighting 

method was developed for nested case-control studies [32]. Sometimes, the violation of 

proportional hazards assumption can be remedied through time-invariance predictors. While 

it is out of scope of this paper, we suspect the reported relative performances may differ with 

time-varying predictors.

Informative censoring can cause bias when, for example, those who do well drop out from 

treatment group and those who do worse drop out from control group [33]. In full cohort 

studies, informative censoring has been modeled explicitly, for example, via the relationship 

of hazard functions [34] or survival functions [35] between censored and uncensored 

subjects in proportional hazards regression models. Some used data collected after censoring 

to address the issue [36]. These methods have not been extended to case-cohort or nested 

case-control study designs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The Empirical Biases of the Estimators of β1
The considered methods are the full cohort analysis, two nested case-control (NCC) 

methods, which are the conditional logistic approach by Thomas (1977), and the inverse 

probability weighting method by Samuelsen (1997), and four case-cohort (CCH) methods, 

which are the inverse probability weighting method by Binder (1992), and the methods by 

Prentice (1986), Self & Prentice (1988), and Barlow (1994). The average sample size n* and 

the average subcohort proportion π* are shown in the titles. Only the results for N=500, 

1,000 are shown. See Web Figure 4 for the result when N=1,500.
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Fig. 2. The Empirical Standard Errors of the Estimators of β1
The empirical standard errors of β1 estimators are shown for the full cohort analysis, two 

nested case-control (NCC) methods, which are the conditional logistic approach by Thomas 

(1977) and the inverse probability weighting method by Samuelsen (1997), and four case-

cohort (CCH) methods, which are the inverse probability weighting method by Binder 

(1992), and the methods by Prentice (1986), Self & Prentice (1988), and Barlow (1994). The 

average sample size n* and the average subcohort proportion π* are shown in the titles. 

Only the results for N=500, 1,000 are shown. See Web Figure 4 for the result when 

N=1,500.
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Fig. 3. Empirical Power Testing H0β1=0 by Methods
The nominal type 1 error rate was 0.05. The empirical power of nine methods is measured: 

full cohort analysis, the conditional logistic approach by Thomas (1997), inverse probability 

weighting methods by Samuelsen (1997) coupled with approximate jackknife (AJK) 

variance estimator (Kim 2013a), the inverse probability weighting methods by Binder 

(1992) coupled with AJK variance estimator, Prentice (1986), Prentice (1986) coupled with 

AJK variance estimator, Self & Prentice (1988), Self & Prentice coupled with AJK variance 

estimator (i.e. Lin & Ying 1993), and Barlow (1993). The average sample size n* and the 

average subcohort proportion π* are shown in the titles. Only the results for N=500, 1,000 

are shown. CCH and NCC are abbreviations for case-cohort and nested case-control designs, 

respectively. See Web Figure 4 for the result when N=1,500.
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