
Διάλεξη 7. 

MATCHED CASE-CONTROL STUDIES



1. Introduction:

• In case-control studies, controls may be randomly 

selected from the population of individuals free from the 

condition that defines the cases.  

• Controls can be “matched” to cases with respect to 

factors that are related to the risk of disease.  

• Variables that are usually used for matching are age, sex, 

place of recruitment and time of recruitment.

• Due to the special design, matched case control studies 

require special analyses.



2. Why match?

• Matching is a technique of selecting control subjects for the control
of confounding at the design stage

• Idea: Place constraints on selection of controls to make two groups
similar at least with respect to confounding variables.
– In matched case-control studies, for each case or a fixed size group of cases, a

fixed (or even variable) number of controls are identified who match the cases
on a set of characteristics.

• The distribution of these characteristics will be the same (or at least
similar) between cases and controls, so no associations are possible
by design.

• During the analysis of the results: Post-stratification analysis



Why Match?

• Deal with bias due to confounding

– Matching on Confounder (C) forces no association
between C and Disease (D), so C cannot confound.

• This gain in precision occurs when the matching variable (C) is 
associated with both exposure status (E) and the disease 
occurrence (D) in the source population, so that we would 
need to control for C as the confounder even if matching were 
not done. 

• Occasionally to test a particular pathway



Major Statistical Advantage of Matching

• In both case-control and cohort studies we aim to
reduce the variance of adjusted estimators, at a given
sample size.
– This goal is especially important when there is a limited

number of diseased individuals (cases).

• Balance cases/controls within strata to improve
efficiency, i.e achieve a given performance using fewer
observations

• Thus, the major statistical reason for matching is not to
control for confounders, which can be done in the
analysis, but to produce a more efficient study (one
that yields an estimator with a smaller variance for a
given sample size) than if we had not matched.



More on matching

• Controls can be individually matched or frequency
matched.

• Individual matching: Search for one (or more) controls
who have the required matching criteria. Paired or triplet
matching is when there is one or two controls individually
matched to each case.

• Frequency matching: select a population of controls such
that the overall characteristics of the group match the
overall characteristics of the cases. e.g. if 15% of cases are
under age 20, 15% of the controls are also.

• Gain power by matching more than one control per case.

– Number of controls should be < 4, because there is
no further gain of power above four controls per
case.



2.1. Example
Consider the following example: The BCG vaccination and leprosy:

New cases of leprosy examined for presence or absence of the BCG scar.  Say we identified 
260 cases of leprosy.  Assume we use 1000 controls for the 260 cases.  After stratification by 
age:

BCG scar

Cases Controls

Age Absent Present Absent Present

0-4 1 1 101 137

5-9 11 14 91 115

10-14 28 22 82 101

15-19 16 28 28 87

20-24 20 19 25 69

25-29 36 11 63 21

30-34 47 6 56 24

Not very efficient! There are 238 controls for the 2 cases in the 0 - 4 age group!



2.2 Group matching

The optimal strategy is to maintain the same ratio of controls to cases in different age strata

For example in the previous study we could maintain the 1:4 case/control ratio as shown below

BCG scar

Cases Controls

Age Absent Present Absent Present

0-4 1 1 3 5

5-9 11 14 48 52

10-14 28 22 67 133

15-19 16 28 46 130

20-24 20 19 50 106

25-29 36 11 126 62

30-34 47 6 174 38

This is a group-matched case-control study.



Caution!

• Controls are no longer   representative of 
source  population

Matching introduces bias if not taken into 
account in the analysis!



Odds ratio is biased towards 1, i.e., towards the null.  This turns out to be a general result! 

A case-control study introduces a new confounding structure in place of the original structure 
and this is why the estimate from an analysis that ignores matching is biased towards the null.  
Remember:

Matched design =======> «Matched» analysis

Indeed it was thought that matching is an alternative way of controlling for confounding -
this is not true; see the example below:

Cases Controls Odds 
ratio

Stratum exposed unexposed exposed unexposed

1 89 11 80 20 2

2 67 33 50 50 2

3 33 67 20 80 2

Total 189 111 150 150 1.7

2.3 Can we ignore matching in the analysis?



3. Advantages of a matched design

Exposed Unexposed Total

Cases 30 10 40 = 3.0

Controls 80 80 160 (1.30,7.07)

100 90 200

Study 2 case: control ratio = 1:1

Exposed Unexposed Total

Cases 75 25 100 = 3.0

Controls 50 50 100 (1.58,5.72)

125 75 200

The power of a case-control study of 
total sample N to detect a difference 
in exposure rates between cases and 
controls is greatest if number of 
cases equals number of controls. 

Precision / efficiency in a matched case-control
When the analysis of a study involves stratification on the basis of some confounding 
variable, the precision of the study will usually be maximal if the ratio of cases to controls is 
approximately the same across strata. We can succeed on this by a matched design.

Study 1 case: control ratio = 1:4



Matching
variable

Exposure

Disease Matching variable is a confounder – matching will gain us
precision in the exposure/disease relationship

Matching
variable

Disease

Exposure

Overmatching – precision is lost

Matching
variable

Disease

Exposure

UNNECASSARY MATCHING: Matching can be ignored in
the analysis since its effect is neutral

If analysis with stratification reduction of power

Matching
variable

Disease

Exposure

UNNECASSARY MATCHING: Matching can be ignored in
the analysis since its effect is neutral

If analysis with stratification reduction of power



Overmatching 

• Controls are supposed to provide an estimate 
of the distribution of the exposure in the 
source population.

• Matching by a factor associated with exposure 
makes the controls more similar to the cases 
with respect to exposure

– This biases the crude estimate towards the null 
no matter what the direction of the association 
between matching factor and exposure!



Overmatching

• Matching on a variable which is associated with exposure 
but not with disease should be avoided because this in 
practice will reduce power – the more the association with 
exposure the more the reduction will be. 

• In general it is only worthwhile matching on variables which 
are strong confounders. 

• And do not forget that: 
– Matching must be taken into account in the analysis.
– Attempting to match for more than a few variables usually 

inefficient.



4. Disadvantages of matched studies

• The association of the matching variable with the outcome cannot 
be studied: By definition the distribution of a matching variable is 
the same (or similar) in the case and control groups 

• Logistically more difficult

• Data may be more difficult to present and analyze.

• May be difficult to find suitable matches. May reduce available 
sample size – many potential cases may be excluded because no 
match can be found

• Possibility of «overmatching».
– on variable associated with exposure but not disease: power loss.
– on variable in causal pathway: bias.



5. Analysis of grouped matched case-control studies

• A 1:1 matched design does not always requires a 

matched analysis. 

• Control for the matching factors can be obtained, with 

no loss of validity and a possible increase in precision, 

using a “standard” (unconditional) analysis, and a 

“matched” (conditional) analysis may not be required or 

appropriate

• Assumption: There are no problems of sparse data



Example

Pearce N. Analysis of matched case-control studies. BMJ 2016;352



5. Analysis of grouped matched case-control studies

In case we use standard analysis, (i.,e. unconditional logistic regression):   
Matching variables should be in the logistic regression model in order to get 
unbiased estimates of the effects of interest.

Example: Consider the previous example on leprosis and say we matched for age with 
age being a categorical variable with k levels.

The model 

log (oddsi) = α+ Σ β1k ageiκ+ β2 BCGi

Parameter Estimate SD

Cons -1.07 0.8

Age(1) -0.04 0.83

Age(2) 0.012 0.81

Age(3) 0.07 0.8

Age(4) 0.024 0.82

Age(5) -0.16 0.81

Age(6) -0.24 0.81

BCG -0.53 0.16

Note that because of matching the age effects are small and 

not interpretable.  But can we remove age from the model? 



Removing age :

BCG scar Leprosy cases Controls
Present 101 526
Absent 159 514

The odds ratio is (101 x 514) / (159 x 526) = 0.621, so that the log of odds is -0.477 i.e, biased 
towards the null.

Note that the age parameters are really nuisance parameters but they are still estimated. 

In case of many of nuisance parameters -- this approach does not work 

e.g. when we match individually, which is effectively the perfect matching!

Example (continued): 



6. Matched pairs (1 : 1)
Suppose we have n matched pairs. Each pair can be thought of as a stratum. For each 
stratum (pair) there are four possible outcomes as follows:

Exposure
Total 

+ - + - + - + -

Case 1 0 1 0 0 1 0 1

Control 1 0 0 1 1 0 0 1

2 0 1 1 1 1 0 2

Total no. 

of pairs of 

each kind

n11 n10 n01 n00 n

Where nij corresponds to the number of pairs with exposure status i (0=unexposed, 
1=exposed) for the case and j (0=unexposed, 1=exposed) for the control.  



The results of an 1:1 matched, case-control study can therefore be presented in a table 
of the form:

Control

Exposed Unexposed

Case
Exposed n11 n10

Unexposed n01 n00

Exposure Total

+ -

Case n11 + n10 n00 + n01 n

Control n11 + n01 n00 + n10 n

From this table we can easily obtain the following table that contains individuals.



Let’s see this in detail:

+          -

1 0

0 1

1          1

+          -

0 1
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+          -
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Case

Control
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such 

tables

Total

1

1

2         

Exposure

10n 01n 00n11n

For the first case, where both case and control are exposed and where we have n11 pairs, 
the contribution of each of them to the MH estimate is: n11*D11H01/N1 for the numerator 
and n11*D01H11/N1 for the denominator

6.1 Estimating the odds ratio from a 1:1 matched case control
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We will consider a stratified analysis, where each matched pair is a  stratum. So the 
Mantel Haenszel estimate will be:



6.1 Estimating the odds ratio from a 1:1 matched case control

Thus, the Mantel-Haenszel estimate considering each stratum=matched pair is:
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Pairs with case and control being both exposed or both unexposed do not contribute to 
the odds ratio estimate.

D1j: Number of exposed cases in pair j

D0j: Number of unexposed cases in pair j

H1j: Number of exposed controls in pair j

H0j: Number of unexposed controls in pair j

N0j: Number of individuals in pair j



Control

Feeding mode Breast fed Not breast fed

Case
Breast fed 24 6

Not breast fed 29 27

MH odds ratio from the matched table:6/29 = 0.21

Example

•Suppose a matched case control study has been conducted to investigate 
risk factors for infant death from diarrhoea (Clayton and Hills). 
•Cases were defined as infants dying from diarrhoea at less than 1 year of 
age.  
•These cases were matched with 1 neighborhood control who had to be the 
same age group (0-2, 3-5, 6 months) as the case also (two matching 
variables). 
•The study included 86 cases and 86 controls.  
•Among other variables, information on social and environmental factors, birth weight 
and feeding mode were also collected. 

•See in the following table this case control study with exposure being the 
breastfeeding mode.  



Control

Feeding mode Breast Fed No Breast Fed

Case
Breast fed 30 56

Not breast fed 53 33

Example: 

Odds ratio ignoring matching  (30*33)/(56*53) = 0.33 bias towards the null

Ignoring matching



6.2. Confidence interval for the MHOR for the 1:1 matched case control study
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concordant pairs contribute nothing to the confidence interval.  

This approximation brakes down when the number of discordant pairs is small 
(e.g. less than 20) «exact» 95% confidence intervals

An approximate 95% confidence interval for the odds ratio may be calculated using the 
method given in previous lectures.  Recall that the error factor was:



Under the null hypothesis p=0.5, var(n10) = np(1-p) = (n10+n01)/4
Using the Normal approximation on the Binomial distribution gives:
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McNemar's test for matched pairs = MH χ2 test, using pairs as strata.

No of discordant pairs  20 (say)  exact test based upon the Binomial distribution 
Table of cumulative probabilities of the Binomial distribution with a value of p = 0.5 
(null hypothesis value).

• Test of the null hypothesis that the true odds ratio is 1, based only on the discordant

pairs.

• When the true odds ratio is 1 the probability of a discordant pair to be of either

type, should be 0.5 E(n10) = (n10+n01)/2.

 Instead of OR=1, test whether n10 differs from its expected value under the null

hypothesis.

• For large numbers of discordant pairs (> 20)  Normal approximation to the Binomial

distribution

6.3. Test of the null hypothesis that the true MHOR = 1



6 .4. Testing for heterogeneity of the odds ratio
Matching variable -- confounding variable. 
Test whether matching factor is an effect modifier of the association of exposure with the 
outcome of interest. 
Straight forward for group-matching variables.  
1:1 matched study: levels of the matching factor (e.g. age groups) and estimate the odds 
ratio by the pairs in each subgroup. 
Wide groups for the matching factor  enough number of discordant pairs in each

For example, the pairs may be closely matched for age (e.g. + one year), but the 
subgroups may be defined by 10-year age groups. 

Matching factor

1 2 3 i k Total

No of Pairs with Case exposed and Control 

unexposed

No of Pairs with Case unexposed and Control 

exposed

χ2 test for a 2 x k table  tests whether the odds ratio estimates vary according to the level of 
the matching factor. 

If matching factor is on an ordinal scale then a test for trend can also be used.



Example (cont)
Say we want to assess the effect of birth weight (low vs. normal) on risk of death from 
diarrhoea.  Look below the crude estimate of the odds ratio.  

Control

Birth weight Low Normal

Case
Low 12 25

Normal 18 31

OR  = 25/18  =  1.39 (0.76, 2.55)

We have matched for age because age is a confounding variable but we want to check 
whether low birth weight has a greater effect on the risk of death from diarrhea among 
younger infants than among older infants. Since the data are matched for age, we may stratify 
the pairs into three age groups as follows:

Age

0-2 months 3-5 months  6 months

Control Control Control

Birth weight Low Normal Low Normal Low Normal

Case
Low 4 7 4 12 4 6

Normal 6 8 7 15 5 8

OR1 = 7/6 = 1.17     
OR2 = 12/7 = 1.71    
OR3 = 6/5 = 1.20

χ2 = 0.35 on 2 df, p>0.5  no 
evidence for a modifying 
effect of age on the odds 
ratios. Odds ratio of 1.39 is 
the association of low birth 
weight on the risk of death 
from diarrhoea adjusted for 
both neighborhood and age.



7. The analysis of 1:k matched case control studies

>1 controls per case recruited the number of possible outcomes increases. 
E.g. 2 controls per case there are six possible outcomes for each triplet 
Previous methods can be extended to the general case of 1:k matched case control studies. 

Total no. of un exposed controls who hove an exposed case
OR

Total no. of exposed controls who have an un exp osed case


Formulas for these situations and approximate confidence intervals have also been 
established.  

8. Adjustment for other factors
NOT POSSIBLE through stratification (i.e. MH)  since the data are already stratified into 
pairs of cases and controls so that no further stratification is possible. 

Use statistical modeling techniques.  



8.  Analysis of matched case-control studies using statistical models

Use logistic regression with a separate parameter for each case-control set:
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xik are the exposure and possible confounders, and
zij are dummies with 1 if subject i is in matched set j, 
and 0 otherwise.  

βk are still interpreted as estimates of the population odds ratios associated with certain levels 
of the xik variables.

For large number of sets usual properties of MLEs do not apply; parameter estimates will not 
be consistent:

1) Assume that the matched set parameters γj are themselves a sample from some 
distribution - i.e, set up a mixed (random effects) model, or,
2) Perform conditional logistic regression



The model for conditional logistic regression
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Eliminate nuisance parameters using the conditional likelihood: the pair of the control/case 
matched set is used as the unit for the analysis.

Only  βk are estimated and reported
α is not estimated and not reported

Nuisance parameters

Parameters of interest



1:1 matched studies - Parameters

odds(disease)=ωPθi

ωP : baseline odds of pair P, specific of each pair because of
matching.

θi : covariate effects for subject i (a function of covariate values
for subject i).

For each pair p we have the same baseline odds, different
exposure level:

Disease odds for subject 1: ωPθ1 = ω1

Disease odds for subject 2: ωPθ2 = ω2

ln[odds(disease)]=ln[ωP] + ln[θi]= CP + ln(OR)

One parameter per pair, i.e. number of parameters =~ N/2.

Profile likelihood breaks down.



Conditional likelihood

Solution:

Probability of data, conditional on design, i.e. on
1 case and 1 control per set.

Distribution of covariates for case and control
contains the information.



1:1 matched studies – Conditional likelihood

Conditional on the design one case and one control in 
each set, a set would contribute: 

L = P(subj. 1 case | 1 case, 1 control)

To the likelihood

Taking into account 

1. P(1 case, 1 control |subj. 1 case )=P(subj 2 control)

2. P(disease)=ωPθi / (1+ωPθi), P(no disease)=1 / (1+ωPθi)

3. P(A|B)=P(B|A)*P(A)/(P(B|A)*P(A)+P(B|A-)*P(A-))



1:1 matched studies – Conditional likelihood

L = P(subj. 1 case | 1 case, 1 control)=

P(1 case, 1 control|subj. 1 case )*P(subj. 1 case)/(P(1 case, 1 
control|subj. 1 case )*P(subj. 1 case)+P(1 case, 1 control|subj. 1 
control )*P(subj. 1 control))

=P(subs 2 control )*P(subj. 1 case)/(P(subj. 2 control )*P(subj. 1 
case)+P(subj 2 case)*P(subj. 1 control))=

= Kω1/(Κω1+Κω2) = ΚωΡθ1 / (ΚωΡθ1+ΚωΡθ2)

= θ1 / (θ1+θ2)

where

K = [1/(1+ω1)]*[1/(1+ω2)] = 1/[(1+ω1)(1+ω2)]

Log-likelihood contribution from one matched pair is:

ln[θcase/(θcase+ θcontrol)]

Independent of the corner parameters!



1:M matching

Odds for disease on one matched set:

subject 1: ωPθ1 = ω1

subject 2: ωPθ2 = ω2

subject m+1: ωPθm+1 = ωm+1

Probability that subject 1 is the case and the others are the 
controls: [ω1/(1+ω1)]*[1/(1+ω2)]*…*[1 /(1+ωm+1)]

Probability to have 1 case and m controls:

Σi{ωi/[(1+ω1)*(1+ω2)*…*(1+ωm+1)]}

=  Σiωi /[(1+ω1)*(1+ω2)*…*(1+ωm+1)]

Conditional probability that subject 1 is the case and subjects 
2, 3, …, m+1 are the controls, given one case and m controls:

ω1/(ω1+ ω2+…+ ωm+1) = θ1/(θ1+ θ2+…+ θm+1) 



1:M matching

Log-likelihood contribution from one matched set:
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Log-likelihood for the total study:
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The conditional log-likelihood for a 1:M matched CC study 
looks like a Cox-log-likelihood: 
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The matched CC likelihood is of this form if at each death time, 
the case dies and only controls of the same set are at risk.



Analysis of conditional likelihood by ordinary 
logistic regression

Likelihood contribution from one matched pair is:

θcase/(θcase+ θcontrol)=(θcase/θcontrol)/(1+ θcase/θcontrol)=ω/(1+ω)

This is the likelihood contribution from one binary observation with 
odds of success ω = θcase/θcontrol

Linear model for ln(θ)

ln(θcase) = Corner+Set+Acase

leads to (for one matched pair)

ln(ω) = ln(θcase) - ln(θcontrol)

= (Corner+Set+Acase) - (Corner+Set+Acontrol) 

= Acase – Acontrol

Corresponds to logistic regression without intercept.

One observation per matched set.

Covariates are: covariate-value for case – covariate-value for control

Logistic regression without intercept. “Through the origin”.
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1:1 matched studies by ordinary logistic 
regression

• The information is in the covariates:

• Continuous covariate: Agecase – Agecontrol.

• Differences between dummies, value for case minus value 
for control.

• Categorical covariate, dummies replaced by variables with 
values -1, 0 or 1:

• if case and control belong to the same category all are = 0

• if case and control belong to different categories:

• 1 for the category where the case is.

• -1 for the category where the control is.

• 0 for the other categories.

• ONLY possible for 1:1 matched studies.




