

2/10/2018

1ο ημερη

ΠΙΘΑΝΟΤΗΤΕΣ Ι

[Βασικές Αρχές]

Γεωργιανές Πιθανότητες

S. Ross] \rightarrow Βιβλίο

• Αρχείο Αληθινών

στην e-class !!

[Ενα διαβάσω σερες

κατιώντας μαραζ]

1) Toxaria Γενινέα

→ Αυθεντική πιθανότητα (μηροσαρκός)

Τοξιδότητα από αγνοια

[ελλειψη στοχειών ή αδύναμη ανάταξης τους.]

ΟΡΙΣΜΟΣ

Πιθανότητα: Είναι ο αριθμός που προστικούνται την αγνοια πας για ένα γεγονός

Βασικές ερμηνείες

(a) Υποκειμενική πιθανότητα

(β) Συχνοτική (αντικειμενική) πιθανότητα

Η συχνοτική

πιθανότητα ανα-

τει ωριγενείς γονδα-

ραρίς τη "πηγαδα".

πχ: η δημων ον το νομισμα φέρει κ με πιθανότητα

40% σημαίνει ότι κανουμε N δοκιμες (N μεραρχη)

και ερθη κ 67% Nκ, τοτε $\frac{Nκ}{N} \approx 0,4$ Ερώτηση: Πώς αποδίδουμε αυτό τον αριθμό,
οίτα γεγονός,→ Μόνη καλή περίπτωση, είναι όταν έχουμε
συμμετρία, πχ: ριψη γεριού
Μια αλήτη περίπτωση, είναι όταν το πειραμα μπορεί
να επιστραφεί.

Πολύτιμος των πιθανοτήτων

πχ.: Έχω πολλά χειρούσια A₁, A₂, ..., A_K και
αποικια ζερω την πιθανότητα Πώς βρίσκουμε την
πιθανότητα δεξούσιων που περιγράφουμε, με τηβοήθεια των A₁, A₂, ..., A_K πχ: A₁ και A₂ είναι
δεξούσια, του δη είναι δύνατον να γίνουν ταυτόχρονα

και γέρουν οι έξουν πιθανότητα 0,2 και 0,6 αντίστοιχα. Τοτε, η πιθανότητα να συνειπωτεί A_1 ή A_2 είναι $0,2+0,6$.

ΜΕΡΙΕΧΟΜΕΝΟ ΤΟΥ ΜΑΘΗΜΑΤΟΣ

(i) ΛΟΓΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΩΝ

(ii) ΝΑ ΑΠΟΔΩΣΟΥΜΕ ΠΙΘΑΝΟΤΗΤΑ (σαρίθμος στο $[0,1]$)

ΣΕ ΚΑΝΤΑ ΕΝΔΕΧΟΜΕΝΑ

→ Ηα γίνει μόνο σε περιπτώσεις, που έχουνε συμμετρία, συλλαβή "ισονίσαντα" γεγονότα. (Νε την έννοια ισονίσαντα, έννοητήρει ου κανένα δεν έχει προτεραιότητα εναντίον των άλλων)

→ Ηα έχουμε πειραματική η "ισονίσαντα" συνάντηση αποτελεσμάτων a_1, a_2, \dots, a_n τοτε δίνουμε πιθανότητα $\frac{1}{n}$ σε καθένα από τα a_1, a_2, \dots, a_n .

Εστω $\Omega = \{a_1, a_2, \dots, a_n\}$. Η $A \subseteq \Omega$, η πιθανότητα να συμβεί, το A είναι $A = \{a_1, a_2, a_3\}$ πιθανότητα του $A = \frac{3}{4}$.

$$|A| \cdot \frac{1}{n} = \frac{|A|}{|\Omega|}$$

Επομένων στόχος = κατακτητρική στοιχείων συρροών

§ 1.2 (Ross)

Α: δυνότω, $|A| = \# A = \text{τιλδος στοιχημάτων του } A$

ΠΡΟΣΘΕΤΙΚΗ ΑΡΧΗ: A, B δυνότω με $A \cap B = \emptyset$. Τότε $|A \cup B| = |A| + |B|$

ΠΟΛΛΑΠΛΑΣΙΑΤΙΚΗ ΑΡΧΗ: Εστω ότι a_1, a_2, \dots, a_n διατίθενται n -άδα (α₁, α₂, α_n)

Για το α₁ έχουμε N_1 εναλογία

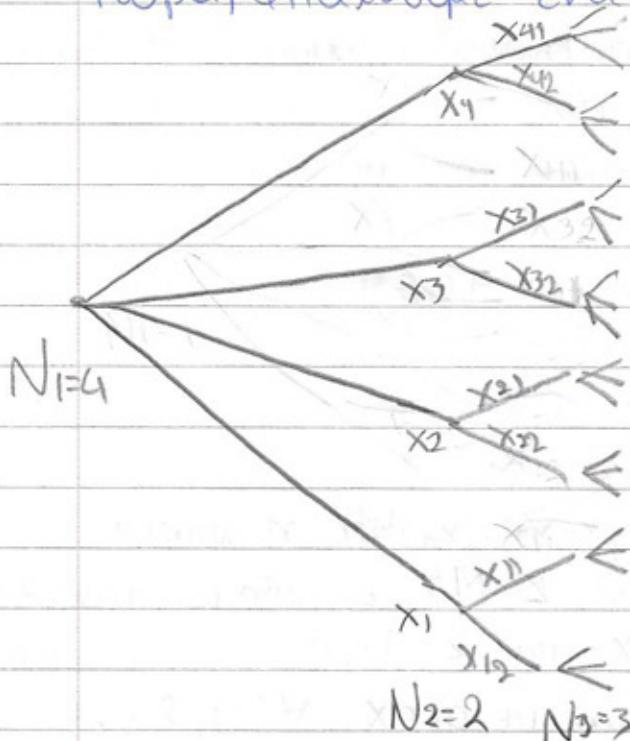
Για καθε μέρος του α₁, για το α₂ N_2 "

Για " " α₁, α₂, για το α₃ N_3 "

Για " " α₁, α₂, α_{n-1} για το α_n N_n "

ΤΟΤΕ, μπορούμε να καταλέγουμε N_1, N_2, \dots, N_n n -άδες.

Τώρα, οπισθώμε ενα δείπο.



Καθε εναλογία

διαδρομής απ' την πρώτη

στο τελευταίο δίνει την

εναλογία (α₁, α₂, α₃)

Κατώτατης στοιχημάτων δείπο = 4 · 2 · 3

- Η πολλαπλασιάτικη

αρχή, είναι γενικότερα

του $|A_1 \times A_2 \times \dots \times A_n| = |A_1| \cdot |A_2| \cdot \dots \cdot |A_n|$

ΠΑΡΑΔΕΙΓΜΑ : Στοιχνούμε πινακίδα, με 4 στριμματα από τα $\{A, B, \dots, \Omega\}$. Ήδης τέτοιες πινακίδες υπάρχουν ως:

a) Επιτρέποντας επισαλπυσμένα γραμμάτων
b) δεν επιτρέποντας "

-ΛΥΣΗ-

Στοιχνούμε διατελεσμένη 4-άδα (a_1, a_4)
(a) = $24 \cdot 24 \cdot 24 \cdot 24 = 24^4$ (Το πλήθος αυτό είναι καρτεριανό μήνυμα)

(b) = $24 \cdot 23 \cdot 22 \cdot 21$ (Το πλήθος αυτό δεν είναι καρτεριανό μήνυμα, χαρι την επιλογή του ελογεών, έπρεπε το προηγούμενο.

Πλαρίδευμα : Πλήθος πινακίδων με 4 στριμματα από $\{A, B, \dots, \Omega\}$ που είναι όλα σύμφωνα με έτοιμη γραμμένα.

-ΛΥΣΗ-

Εστω $A = \text{πινακίδα μόνο με συντεταρτούς}$

$B = \text{πινακίδα μόνο με σύμφωνα}$

$$|AB| = |A| + |B| = 7 \cdot 6 \cdot 4 + 17 \cdot 16 \cdot 15 \cdot 14$$

↓
προβοτική
αρχή

Διατάξεις και Συνδυασμοί

Εστω σύνολο $X = \{x_1, x_2, \dots, x_n\}$ μή τη στοιχεία.

Ορίσμος: Εστω $K \in \mathbb{N}^+$. Διατάξη με επισαλπυσμένη των n στοιχείων του X ανα κ, λέγεται γιατί γιατάξην K -άδα (a_1, a_2, \dots, a_K) με $a_i \in X$, $\forall i = 1, 2, \dots, K$

Οριόρκος: Εστω $K \in \mathbb{N}^+$. Διατάξη χωρίς επισαλπυσμένη των

" " " " " " " " με $a_1, \dots, a_K \in X$ Σταχτορεγκτικά μετατίθεται.

Ορισμός: Μεταβεγν των στοιχείων του X ,
δίνει καθε διατάξη (χωρίς επαναληψη) με
 $K=n$

Παρατρόπον: Στις διατάξεις χωρίς μαυάρην,
θα πρέπει $K \leq n$

Πρόταση: (i) Το πλήθος των διατάξεων με επαναληψη
των n (στοιχείων του X) ανά K , είναι n^K

(ii). Το πλήθος των διατάξεων των n (στοιχείων
του X) ανά K , είναι $n(n-1) \dots (n-K+1)$ σε
μνημόνιο K -όρων.

(iii) Το πλήθος των μεταθέσεων των στοιχείων του
 X , είναι $n!$

-Απόδημη-

(i) Αναλύουμε μια διατάξη με K -άξη (a_1, a_2, \dots, a_K)
μπορούμε να το $a_1 = n$

"

" για το $a_K = n$

Απ'την πολλαπλασιαστική αρχή, # διατάξεων με
μαυάρην = n^K

(ii) # μπορούμε να το $a_1 = n$

μπορούμε να το $a_2 = n-1$

μπορούμε να το $a_K = n-(K-1)$

πολλαπλασιαστική

αρχή: $n(n-1) \dots (n-K+1)$

(iii) Οριζουμε $K=n$ στο (ii)

Επανάληψη

Συμβολισμός: $\forall x \in \mathbb{R}$ και $k \in \mathbb{N}^+$, έχουμε $(x)_k = x(x-1) \cdots (x-k+1)$

Αρα, πάνωσ διατάξεων των n ανά $k = (n)_k$.

Ορισμός: Εστια $\{x_1, x_2, \dots, x_n\}$ σύνολο

(i) Συνδυασμός του n (στοιχίων του X) ανά k , δημιουργείται από το X , με k στοιχία.

(ii) Συνδυασμός με επαναλήψη των n (στοιχίων) του X ανά k , δημιουργείται από το X , που περιέχειται στοιχίων

Παραδείγματα

i). Ενας προπονητής διαλέχει 5 παικτες από τους 12 διαθέσιμους να ένα παιχνίδι.
 \rightarrow Αυτό είναι συνδυασμός των 12 ανά 5.

ii) 10 άτομα παραγγέλνουν μηρέρια για 6 ένα μηρό.

Διαθέσιμα: Bios, Fix, Mythos, Erdinger

4¹⁰ ή διάταξη. Η τοι 4 θα μην παραχθεί.
 Για τον σερβιτόρο σε αυτούς αριθμούς με ματρινή.

Συμβολισμός: Για κάθε $x \in \mathbb{R}$ και $k \in \mathbb{N}^+$, έχουμε

$$\binom{x}{k} = \frac{(x)_k}{k!} = \frac{x(x-1) \cdots (x-k+1)}{k!}$$

Αν $x = n \in \mathbb{N}^+$ με $n, k \in \mathbb{N}$. Τότε:

$$(n)_k = n(n-1) \cdots (n-k+1) = \frac{n(n-1) \cdots (n-k+1)(n-k) \cdots 2 \cdot 1}{(n-k)!} = \frac{n!}{(n-k)!}$$

(7)

Πρώτον (I) : το πλάνος των συνδυασμών του n , ανα κ , είναι $\binom{n}{\kappa}$

(II) το πλάνος των συνδυασμών με επιλεγμένη των n ανα κ είναι $\binom{n-\kappa+1}{\kappa}$

- Αναλήν-

(I) Εστω A_k^n , S_k^n τα σύνολα των διατάξεων και συνδυασμών των n στοιχείων του $X = \{x_1, \dots, x_k\}$ ανα κ .

Ορίζουμε μία ανεύκλωση $f: A_k^n \rightarrow S_k^n$ με $f(a_1, a_2, \dots, a_k) = \{a_1, a_2, \dots, a_k\}$, (όπως) η οποία $\{-1, 0, 1\}$ $X = \{1, 2, 3, 4, 5, 6, 7\}$ $\kappa = 3$

$$(4, 6, 1) \rightarrow \{1, 4, 6\}$$

$$\begin{matrix} (1, 4, 6) \\ (1, 6, 4) \\ (4, 1, 6) \\ (6, 1, 4) \\ (6, 4, 1) \end{matrix}$$

οπει
διανούνται
στοιχείων
παρόποδο την δια
σιαν 1-1

Δεν είναι 1-1, μαζίστα,
είναι $K!$ πρός 1

Given mi fpa $|S_k^n| K! = |A_k^n|$

$$\Rightarrow |S_k^n| = \frac{|A_k^n|}{K!} = \frac{(n)_k}{K!}$$

Βασική Αρχή Κέρποντς : Είναι η πρώτη και σημαντικότερη συγγραμματική Αρχή που χρησιμεύει στην στοιχειώδη θεωρία των πιθανοτήτων. Αν η πιθανά 1 : μια διατάξη αποτελείται και αν δια καθε σποτελότητα του πιθανοτάτων 1, υπάρχουν η διατάξη αποτελείται καν το πιθανά 2, τοτε υπάρχουν μ.ν διατάξη αποτελείται και δια τη σια πιθανάτα (6.14/Ross)

4/10/2018

2^ο μαθημα.

①

Πιθανότητες Ι-Χειριών

	Διατάξις	Συνδυασμοί	
Με επαναλήψη	n^k	$\binom{n+k-1}{k}$	§ 1.6 Ross
Χωρίς επαναλήψη	$(n)_k$	$\binom{n}{k}$	

$$(0! = 1) \quad \binom{n}{0} = \frac{n!}{k!(n-k)!} = \frac{(n)_k}{k!}$$

↳ πλήθος υποσυνολών του $\{1, 2, \dots, k\}$ με κ στοιχία.

$$\sum_{k=0}^n \binom{n}{k} = 2^n$$

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

$a_1, a_2, a_3, k_1, k_2, k_3$
 $a_1, a_2, a_3, k_1, k_2, k_3$
 a_3, a_2, a_1

Άσκηση 1.7 (Ross)

(a) Με ποδούς τρόπους μπορούν να κατσουν σε μια σειρά 3 αχέρια και 3 κορίτσια

(β) Το ίδιο σχήμα με το (a) αρκεί να έχει καιρός αχέρι, δίνα του ένα κορίτσι

(γ) Το ίδιο " με το (a) αν τα αχέρια πρέπει να καθίσουν μαζί"

(δ) Το ίδιο με το (a) αν από τα ίδια σειρές δινούν μηδενικούς μπορούς να καθίσουν δίπλα.

-ΛΥΣΗ-

(a) 6 ατόμα να τα βάζουν σε σειρά. Οι τρόποι είναι $6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$

(β) -

(γ) Σκεφτόμαστε τα αχέρια ως μια μονάδα ΑΑ. Η μονάδα φτάνεται με 3! τρόπους. Τα αντίκαρνα τα βάζουν σε σειρά με 4! τρόπους. Άρα, τα 6 ατόμα μπαίνουν σε σειρά με $3!4!$ τρόπος.

δ). Εξουρε δύο σενάρια.

ΑΚΑΚΑΚ

ΚΑΚΑΚΑ

Συνολικά : τα κορίτσια καθαύται με 3! πρόποση.

Τα ακόρια ταίθουνται και αυτά με 3! τρόπους

Συνολικά, απ' την ποικιλότητη της αρχής, το πλήθος των τρόπων είναι $2 \cdot 3! \cdot 3!$

Άσκηση 1.12

5' Βραβία δίνονται για 30 μαθητές μιας τάξης. Πόσαι

οι συνδυασμοί των βραβευστών, αν:

a). Είναι μαθητής μπορεί να πάρει περισσότερα από

ένα βραβείο

b). Είναι μαθητής μπορεί να πάρει το πολύ ένα

βραβείο.

- Αντ^η -

(a) 30^5 βραβία.

30 ηδανύχα $\stackrel{f}{=} \text{βραβείο}$

30 ηδανύχα $\stackrel{g}{=} \text{βρ}$

30 ηδανύχα $\stackrel{h}{=} \text{βρ}$

(β). 30 29 28 27 26

βραβία
 B_1

βραβία
 B_2

(30)s

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}, \quad 1 \leq r \leq n$$

Θεωρούμε μια ομάδα n ανικείμενων και επικεντρώνουμε την προσοτή γιας σ' εδώ αντικαριένει ανικείμενο, ήχ. το 1. Τοπικά, υπάρχουν $\binom{n-1}{r-1}$ ομάδες με $r-1$ και να περιέχουν το ανικείμενο 1. Ενίσης, υπάρχουν $\binom{n-1}{r}$ ομάδες με r , που δεν περιέχουν το ανικείμενο 1.

Axiom Ήποτε το πλήθος λύσεων της $x_1 + \dots + x_n = k$,

(a) με $x_i \in \mathbb{N} \setminus \{0, 1, 2, \dots\}$ και (b) με $x_i \in \{0, 1\}$

-Λύση -

(b) $\binom{n}{k}$, διατί

αντιστοιχούν $x_1, \dots, x_n \in A = \{i : x_i = 1\} \subset \{1, \dots, n\}$

↪ k στοιχη

εκουμενικό

(a) Συνδυασμοί με επιπλέον των n και k .

Ανταλλή $x_i = 1$ θα είναι συμμετοχή στο $\binom{n}{k}$,

$$\# : \binom{n+k-1}{k} = \binom{n}{k}$$

Axiom 1.7(b)

Το ~~πάντα~~ καρο σενάριο είναι ότι έχει μόνιμη σύμβαση του κοριτσιού και το αλλο και είναι 3 αγόρια μάζι

§1.5 Διαιρέσης σύνολου

X : πεπερασμένο σύνολο και \mathbb{N}^+

ορίσματος.

Διαιρέση του X σε \mathbb{N} -υποσύνολα θετε καθε διατεταγμένη \mathbb{N} -άξη (A_1, A_2, \dots, A_r) με (A_1, A_2, \dots, A_r) με (A_i) , σις έχει αριθμό υποσύνολων του X και $\bigcup_{i=1}^r A_i = X$

ΠΡΟΤΑΣΗ.

X : σύνολο με $|X| = n \in \mathbb{N}^+$, $n_1, n_2, \dots, n_r \in \mathbb{N}$, με $n_1 + n_2 + \dots + n_r = n$. Το πλήθος των διαιρέσεων του X σε r : υποσύνολα (A_1, \dots, A_r) με $|A_i| = n_i$ ή,

$$\text{συντομούσα με } \frac{n!}{n_1! n_2! \dots n_r!} = \binom{n}{n_1, n_2, \dots, n_r}$$

↪ ζωής είναι οι μεταδεσμοί $\binom{n}{n_1, n_2, \dots, n_r}$ αντικαθεύονται μεταξύ των n_1, n_2, \dots, n_r είναι οποια, τα n_1, n_2, \dots, n_r είναι οποια,

④

-Απόδ-

Τροπής καταράσης του A_1 $\binom{n}{n_1}$ # " " του A_2 $\binom{n-n_1}{n_2}$ # " " του A_r $\binom{n-n_1-\dots-n_{r-1}}{n_r}$

Με βάση την πολλαπλασιάση αρχίστε πάνθες των δυαριών καταράσης του:

$$\binom{n}{n_1} \binom{n-n_1}{n_2} \binom{n-n_1-n_2}{n_3} \dots \binom{n-n_1-\dots-n_{r-1}}{n_r} =$$

$$= \frac{n!}{n_1!(n-n_1)!} \frac{(n-n_1)!}{n_2!(n-n_1-n_2)!} \frac{(n-n_1-n_2)!}{n_3!(n-n_1-n_2-n_3)!} \dots \frac{(n-n_1-\dots-n_{r-1})!}{n_r!(n-n_1-\dots-n_{r-1})!}$$

$$= \frac{n!}{n_1!n_2!\dots n_r!}$$

Aσκηση 1.18

Εξουπήρνησης 5 πετρουπιθαρίων, 6 δικοκρατηρίων, 4 ανεμάτων.
 Βούλσιτη. Με τίσσους τροπής μπορεί να φτιάχτε μια
 μιτσοπάτη, ωστιν να πάρει 2 οπουριθικών, 2 διπορεα-
 τικών και 3 ανιχαρτών.

- Αντίθ-

$$\binom{5}{2} \binom{6}{2} \binom{4}{3}$$

(5)

Αρντον Ενα λεωφορείο ζεκινάει με 13 φοιτητές.

Περνάει από 4 σταδία. Με ποσούς τρόπους μπορεί να αποβιβασταν 3 φοιτητές στην 1η στάση

$$\begin{array}{cccccc} " & 4 & " & " & 2^n & " \\ " & 4 & " & " & 3^n & " \\ " & 2 & " & " & 4^n & " \end{array}$$

-ΛΥΣΗ-

$$\binom{13}{3} \binom{10}{4} \binom{6}{4} \binom{2}{2} = \frac{13!}{3!4!4!2!}$$

Διαιρετικό του $X = \{1, 2, \dots, 13\}$ σε υποσύνολα (A_1, A_2, A_3, A_4)
και $|A_1|=3$, $|A_2|=4$, $|A_3|=4$, $|A_4|=2$

ΑΡΧΗ ΕΡΓΑΣΙΜΟΥ-ΑΠΟΚΛΕΙΣΜΟΥ (για την ευάριστη πιθανότητα)

A_1, \dots, A_n σύνολα πεπερασμένα.

$$\text{Τότε, } |A_1 \cup A_2 \cup \dots \cup A_n| = S_{n,1} - S_{n,2} - S_{n,3} - \dots + (-1)^{n+1} S_{n,n} = \\ = \sum_{k=1}^n (-1)^{k-1} S_{n,k},$$

$$\text{οπου } S_{n,k} = \sum |A_{1:n} \cap A_{k+1:n}|$$

To $S_{n,k}$ σχετίζεται όπους, γιατί αν έχουμε μια επιλογή κ στοιχίων απότα $\{1, 2, \dots, n\}$

Τα διατίθενται και τα συνταγόνουνται $i_1 < i_2 < \dots < i_k$
πχ: για r=3

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - \\ - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$$

ASRISH

ΑΣΤΡΗΣΗ Ταυτισμοί των προβλημάτων στην Αστρονομία

1) How many hours can be to 5 and can be to 7

2) " NEVADA 8, S, 7.
- AVS+1 -

- AVS+I -

$$A_i = \{k \in A : i \mid k\} \{i=2, 5, 7\}$$

$$a) |A_5 \cup A_7| = ;$$

$$|A_{S1}| = \left[\frac{70n}{5} \right] = 14n, \quad |A_{S2}| = 10n.$$

$$|A \cup A^c| = |A| + |A^c| - |A \cap A^c| = 24n - \left[\frac{70n}{35} \right] =$$

$$= 24n - 2n$$

$$= 22n$$

$$\text{B). } |A_2 \cup A_5 \cup A_7| = |A_2| + |A_5| + |A_7| - |A_2 \cap A_5| - |A_2 \cap A_7| - |A_5 \cap A_7| + |A_2 \cap A_5 \cap A_7| = \\ = 3S_n + 14n + 10n - 7n - 5n - 2n + n = 46n$$

As $u+2+1$

ΑΣΚΗΣΗ 11 Κατανοής σφαιριδίων σε κείμενο

Η κείμενος στα οποία κατανέμουντε τις στρατιώδεις

(a) Θέματα στα οποία διαπραγματεύεται η συμφωνία

На βρεθή το Ηλίος διαφορετικών ιστοριών να

ta ein's Gnopia

(i) Μαζί με τα άλλα αποτελεσματικά μέσα προστασίας της υγείας των παιδιών

(ii) ο ο χωραὶ πορεῖα σερπίσιο

(iii) Σε κάθε redi άριθμη ρα βαίδουνται τα χαρακτηριστικά συαριδού.

-ARYH-

(1) Kade ratavogni jivera kua siatain pse na wadhus
mv n ana k, Apa $\# = n^k$.

(ii) $(n \in \mathbb{N}, k \leq n)$

$n(n-1) \dots (n-k+1) = (n)_k$ exerce via factorial

(iii) $\text{Εστω } A_1 = \# \text{ κανονικών παρ το } i \text{ κείμενο } \sigma \text{ και } \sigma \in \emptyset, N = \# \text{ σων παρ κανονικών} = n^k, |A_1 \cap A_2 \cap \dots \cap A_k| = N - |(A_1 \cap A_2 \cap \dots \cap A_k)| \leq$

9/10/2018

3^ο μαθημα

Πιθανότητες Ι-τυρά κεδιών

Συνέχηση σύγκρισης (κατανομές σφαιρίδων σε κεδιά)
η κελιά
κ σφαιρίδια

(a) Διαφορετικά σφαιρίδια

(iii) Σε κάθε κελί, τωλαίχιστον ένα σφαιρίδιο

Αι: πλήθος κατανομών που το i κελί, είναι μια κενό.

S: όλες οι κατανομές = n^k

$$|A_1 \cap A_2 \cap \dots \cap A_n| = |S| - |(A_1 \cap \dots \cap A_n)^c| = n^k - |A_1^c \cup A_2^c \cup \dots \cup A_n^c|$$

$$|A_1 \cup A_2 \cup A_3| = |A_1^c \cup A_2^c \cup A_n^c| = \sum_{j=1}^n (-1)^{j-1} \cdot \sum_{1 \leq i_1 < i_2 < \dots < i_j \leq n} |A_{i_1}^c \cap A_{i_2}^c \cap \dots \cap A_{i_j}^c|$$

$$= |A_1| + |A_2| + |A_3| -$$

$$- |A_1 \cap A_2| - |A_1 \cap A_3| -$$

$$- |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$$

$$|A_{i_1}^c \cap A_{i_2}^c \cap \dots \cap A_{i_j}^c| = (n-j)^k$$

$$\text{Άρα: } X = \sum_{j=1}^n (-1)^{j-1} \binom{n}{j} (n-j)^k$$

$$|A_1 \cap A_2 \cap \dots \cap A_n| = n^k + \sum_{j=1}^n (-1)^j \binom{n}{j} (n-j)^k = \sum_{j=0}^n (-1)^j \binom{n}{j} (n-j)^k$$

(β) Όμοια σφαιρίδια

ποιο το πλήθος κατανομών αν

(i) κάθε κελί ήταν απεριόριστος χωρητικότητας

(ii) κάθε κελί χωραίνει σφαιρίδιο

(iii) Σε κάθε κελί πρέπει να βρίσκουμε τουλαίχιστον ένα σφαιρίδιο.

- Αντιτι-

Τύρα, το σύνορο των κατανομών είναι το:

$$\{(a_1, a_2, \dots, a_n) : a_i \in \mathbb{N}, \sum_{i=1}^n a_i = k\}$$

a_i : πόσα σφαιρίδια βρίσκεται στο i κελί

(i) κάθε κατανομή δινεί ένα διαδιαδομή με εναρριζόμενη των n ανά k (και αντιστροφα)

$$\text{Το πλήθος τους είναι } \left[\begin{smallmatrix} n \\ k \end{smallmatrix} \right] = \binom{n+k-1}{k} = \binom{k-1}{k-n}$$

$$(ii) \left[\begin{smallmatrix} n \\ k \end{smallmatrix} \right]$$

(iii) Βοιjourne σε κάθε κελί τη σφαιρίδιο

Μετά, κοιράjourne τα υπόλοιπα $k-n$ σφαιρίδια, με

$$\left[\begin{smallmatrix} n \\ k-n \end{smallmatrix} \right] = \binom{n+k-n-1}{k-n} = \binom{k-1}{k-n}$$

• — •

§ 2.2 Χεροί πιθανότητας

Έχουμε ένα τυχαίο φαινόμενο. Το σύνολο των δυνατών αποτελεσμάτων, το λέμε δημιατικό χώρο του φαινομένου και δυνήθως το συμβολίζουμε με Ω .

Παραδείγματα

α) ριψη γαριώ : $\Omega = \{1, 2, \dots, 6\}$

β) κληρωση λοττο : $\Omega = \{A \subset \{1, 2, \dots, 49\}, |A|=6\}$

γ) χρόνος γέννησης ατόμων που μοιάζουν με... : $\Omega = \{0, 1, 2, \dots\}$

Ενδεχόμενο λέμε κάθε υποσύνολο του Ω .

→ Κάθε παρατήρηση του φαινομένου δίνει ένα αποτέλεσμα ως ω . Λέμε ότι το ενδεχόμενο $A \subseteq \Omega$ πραγματοποιείται αν $\omega \in A$

πχ: στο γαρι $A = \{2, 4, 6\}$ Το A πραγματοποιείται αν έρθει γύρος

→ Θέλουμε σε κάθε $A \subseteq \Omega$ να ανιστοχίσουμε έναν αριθμό $P(A)$, την πιθανότητα πραγματοποίησης των

Ορισμός

Συναριτητης πιθανότητας στον Ω , λέγεται καθε απεριόδιη

$P: \mathcal{P}(\Omega) \rightarrow \mathbb{R}$ με τις ιδιότητες:

i). $P(A) \in [0, 1] \quad \forall A \subseteq \Omega$

ii). $P(\emptyset) = 0$

iii). $P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$. Η ακολουθία ενδεχομένων $(A_n)_{n \in \mathbb{N}}$ που είναι ξενάγαντα δυο.

→ Ο ορισμός δεν είναι απολύτα σωστός. Συντριψτικά, η P δεν ορίζεται δύοχο το $\mathcal{P}(\Omega)$, αλλα σε ένα $A \in \mathcal{P}(\Omega)$, που είναι σ-άλγεβρα.

ΠΡΟΤΑΣΗ. (Συνεπείες 1)

Εστω P συναριτητης πιθανότητας στον Ω . Τότε

(a) $P(\emptyset) = 0$

(b) $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i) \quad \forall A_1, \dots, A_n \subseteq \Omega$ (ένα δυο)

(c) $P(B \setminus A) = P(B) - P(B \cap A) \quad \forall A, B \subseteq \Omega$

ΕΙΔΙΚΕΣ ΜΕΡΙΝΤΟΣΕΙΣ

$P(B \setminus A) = P(B) - P(A)$, αν $A \subseteq B \subseteq \Omega$

$P(\Omega \setminus A) = 1 - P(A)$, αν $A \subseteq \Omega$

(d) $A \subseteq B \Leftrightarrow P(A) \leq P(B)$

(e) $P(A \cup B) = P(A) + P(B) - P(A \cap B) \leq P(A) + P(B)$

- Αποδ-

(a) Η (iii) του ορισμού για $A_i = \emptyset \quad \forall i$ $\Rightarrow P(\emptyset) = \sum_{i=1}^{\infty} P(\emptyset) \Rightarrow P(\emptyset) = 0$

(b) Επειδή $A_j = \emptyset \quad \forall j \geq n+1$ και τότε n (iii),

δινεται $P(\bigcup_{j=1}^{\infty} A_j) = P(\bigcup_{j=1}^n A_j) = \sum_{j=1}^n P(A_j) = (\text{ένα δυο})$

$$= \sum_{j=1}^n P(A_j)$$

$$(8) B = (B \cap A) \cup (B \cap A^c)$$

$$P(B) = P(B \cap A) + P(B \cap A^c) \stackrel{(8)}{=} \dots$$

$$P(B \cap A^c) = P(B) - P(B \cap A)$$

$$\Delta \vee \underbrace{A \cap B}_{\text{Apa}} , \text{tote } B \cap A = A$$

$$\text{Apa } P(B \cap A^c) = P(B) - P(A)$$

$$\Delta \vee \underbrace{B = \emptyset}_{\text{Apa}} , \text{tote } P(B) = 1$$

$$(8) P(B) \stackrel{(A \cap B)}{=} P(A \cup (B \cap A^c)) = P(A) + P(B \cap A^c) \geq P(A)$$

$$(8) A \cup B = (A \setminus B) \cup \underbrace{(B \setminus A) \cup (A \cap B)}_{\text{tote arai sou}} \stackrel{(B)}{=}$$

$$\begin{aligned} &\stackrel{(B)}{=} P(A \cup B) = P(A \setminus B) + P(B \setminus A) + P(A \cap B) \stackrel{(8)}{=} \\ &\stackrel{(8)}{=} P(A) - P(A \cap B) + P(B) - P(B \cap A) + P(A \cap B) \\ &\stackrel{(8)}{=} P(A) + P(B) - P(A \cap B) \end{aligned}$$

ΠΡΟΤΑΣΗ (Συνέπειας 2).

Ω, P άπως πρώτη. Τοτε:

$$(a) P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i) \quad \forall (A_i) \text{ tote unogouolo tou } \Omega$$

$$(b) A \cup \cap_{i=1}^{\infty} (A_i) \text{ eival alegousta akologougia unogouolo tou } \Omega, \text{ tote: } P(\bigcup_{i=1}^{\infty} A_i) = \lim_{i \rightarrow \infty} P(A_i)$$

$$(c) A \cup \cap_{i=1}^{\infty} (A_i) \text{ eival alegousta}$$

$$(A_i \supseteq A_{i+1} \quad \forall i \in \mathbb{N}), \text{ tote } P(\bigcap_{i=1}^{\infty} A_i) = \lim_{i \rightarrow \infty} P(A_i)$$

-Απόδειξη-

(a) Εστιώ $B_1 = A_1$, $B_2 = A_2 \setminus A_1$, ..., $B_n = A_n \setminus (A_1 \cup \dots \cup A_{n-1})$
 Το $(B_i)_{i \geq 1}$ είναι γενα ανά δως
 [Για $i < j$, $B_i \subset A_i$, ενώ $B_j \cap A_i = \emptyset$]
 και $\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A_i$

• Το C είναι προφανές, Αν τώρα ~~καταλαβατείται~~
 $x \in \bigcup_{i=1}^{\infty} A_i$, Είναι έδαχιστο $i > j$, ώστε
 $x \in A_i$, τότε $x \in B_i = A_i \setminus (A_1 \cup \dots \cup A_{i-1})$
 Εποι, $P\left(\bigcup_{i=1}^{\infty} A_i\right) = P\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} P(B_i) \leq \sum_{i=1}^{\infty} P(A_i)$
 \downarrow
 $B_i \subset A_i$

ΠΡΟΤΑΣΗ (Αρχή Εγκέδεισηού-αποκλεισμού)

Ω , P όπως πριν

Τότε, δια τα καθε $A_1, A_2, \dots, A_n \subset \Omega$, ισχύει.

$$P\left(\bigcup_{i=1}^n A_i\right) = \sum_{k=1}^{n-1} (-1)^{k-1} \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} P(A_{i_1} \cup \dots \cup A_{i_k})$$

§ 2.5 (Ross) Κλασικός ορισμός της πιθανότητας

Κυριολογικός ορισμός δια την P υπάρχει, σαν ο Ω περιέχει «ισονίθια» αποτελέσματα

Το «ισονίθια» προκύπτει από κάποια συμμετρία ή από σήμαντα

Κύριο παραδείγμα

Όταν το Ω είναι πεπερασμένο με «ισονίθια» στοιχεία

$$w_1, w_2, \dots, w_N, \text{ τότε } P(A) = \frac{|A|}{|Ω|} \text{ δια } A \subset \Omega.$$

$$(Αυτό, διατη $P(\{w_i\}) = c$, $\forall i = 1, \dots, N$)$$

$$\text{Επειδή } i = P(\Omega) = P\left(\bigcup_{i=1}^N \{w_i\}\right) = Nc \Rightarrow c = \frac{1}{N}$$

$$\text{Άρα, } P(A) = P\left(\bigcup_{w \in A} \{w\}\right) = \sum_{w \in A} (P\{w\}) = \frac{1}{N} \cdot |A| = \frac{|A|}{|Ω|}$$

Άλλο παράδειγμα

$$\frac{\text{ΕΗΡ}(A)}{\text{ΕΗΡ}(\Omega)}$$

$\Omega \subset \mathbb{R}^2$ και «ισομίθια», είναι συνολα με 100 εμβαδον (με $\Omega = [0, 2]^2$).

ΑΣΚΗΣΗ

Σε μια πόλη $k+1$ ατόμων, ένα από το ΕΠΙΛΕΞΕΙ στην οποία κάποιο άλλο και του λέει μα ζημιολογία. Το δεύτερο από τον κάνει το ίδιο και η διαδικασία συνεχίζεται οροια.

Να βρεθούν οι ηθανόμετρα:

- Η ζημιολογία να επωθεί για φορές, χωρίς να επιστρέψει σ' αυτόν που την έχεινε
- χωρίς να ακουστήσει κάποιον που την έχει νήν

-ΛΥΣΗ- και αυτός που έχεινε τη διάδοση.

i). Εστω $1, 2, \dots, n+1$. Χωρίς ηθανόμετρα $\Omega = \{(x_1, \dots, x_{n+1})\}$

με $x_i \in \{1, \dots, n+1\}$, $x_i \neq a \quad \forall i = 1, 2, \dots, n+1$

x_i : ο αποδέκτης της $i-1$ διάδοσης.

$$|\Omega| = n \cdot n \quad n = n^r$$

$$A = \{x = (x_1, \dots, x_r) \in \Omega, x_i \neq a \quad \forall i = 1, \dots, r+1\}$$

$$|A| = n \cdot (n-1) \quad (n-1) = n(n-1)^{r-1}$$

$$\text{Άρα, } P(A) = \frac{|A|}{|\Omega|} = \frac{n(n-1)^{r-1}}{n^r} = \left(\frac{n-1}{n}\right)^{r-1}$$

$$B = \{x = (x_1, \dots, x_{r+1}) \in \Omega$$

$$|\Omega| = n(n-1)(n-2) \cdots (n-(r-1)) = (n)_r$$

$$\text{Άρα } P(B) = \frac{(n)_r}{n^r}$$

ΑΣΥΧΣΗ

Ταξηδιοί μαθητών a_1, \dots, a_k . Ποια η πιθανότητα
 a_1, \dots, a_k να έχει ίδια μέρα γένεθλια με κατόπιν
 οποιού τους απόδοιπους γεννητικές.

-ΛΥΣΗ-

$$\Omega = \{(x_1, \dots, x_k) : x_1, \dots, x_k \in \{1, 2, \dots, 365\}\}$$

A: Το ένδεχόμενο στο ερώτημα

$$P(A) = 1 - P(A^c) = 1 - \frac{|A^c|}{|\Omega|} = 1 - \frac{365 (364)^{k-1}}{(365)^k} =$$

$$= 1 - \left(\frac{364}{365}\right)^{k-1}$$

11.10.2018

4^ο μάθημα

Πιθανότητες I

Άσκηση 1.13 (φυλλάδιο)

Καίλη περιέχει 1000 σφαιρίδια, 25: μαύρα, 30: ασπρά, 945: κόκκινα. Επιλέγουμε 15 σφαιρίδια στην τυχ.

Ποια θνατούνται να έχουμε επιλέξει:

(α) ακριβώς 3 κόκκινα σφαιρίδια;
 (β) " 2 μαύρα και 3 ασπρά
 (γ) " 4 κόκκινα και τουλάχιστον 2 μαύρα.

-ΛΥΣΗ-

Δειγματικός χώρος $\Omega = \{A \in \{\{1, \dots, 1000\}\} : |A|=15\}$
 $|\Omega| = \binom{1000}{15}$

(α) $= \binom{945}{3} \cdot \binom{55}{12}$
 $\binom{1000}{15}$

(β) $\binom{25}{2} \binom{30}{3} \binom{945}{10}$
 $\binom{1000}{15}$

(γ) # τρόπων επιλογής κόκκινων = $\binom{945}{4}$

τρόπων επιλογής των υπολογισμών, ώστε να έχουμε τουλάχιστα δύο μαύρα =

$\binom{55}{11}$ - # τρόπων με 0 μαύρα - # τρόπων με 1 μαύρο

④ $= \binom{55}{11} - \binom{30}{11} - \binom{25}{1} \binom{30}{10}$

Το πρόβλημα των γενεθλίων (Ross σελ.52)

Σ' ενα σύνολο $n \leq 365$ ατόμων ποια είναι
η πιθανότητα του αδικιστού δύο ατόμα να έχουν
την ίδια πνευμονική δένησης

- 145 H -

Εστω A : το ενδεχόμενο στην εκφωνηση

(Δειχναύρος χώρος: $\Omega = \{(x_1, x_n), x_i \in \{1, 2, \dots, 365\}\}$)

Idea: Βρισκω
την πιθανότητα
του αυτοίντορων-
ίατος του Α

$$P(A) = 1 - P(A^c) = 1 - \frac{365 \cdot 364 \cdots (365 - (n-1))}{(365)^n}$$

Οι τιμές του $P(A)$ είναι οι εξής.

n	10	20	23	30	50	60
P(A)	0,117	0,411	0,507	0,568	0,97	0,99

Ασκηση 1.21 (quadraticio)

Πικνούμε ενα ζαπι σε λαζανές (n>2). Να βερδούν
οι πιθανότητες

(a) Να εργασιοτεί του λαϊκού 2 σαρτ το 6.

Kapia Gopa to 3.

- AVTH -

(a) Εστω X : ο αριθμός εμφανίσεων του 6

$$P(X \geq 2) = 1 - P(X \leq 1) = 1 - P(X=0) - P(X=1) = \frac{(\{X=0\} \cup \{X=1\})}{6^n}$$

(b) $A = \{x \in \Omega \mid \text{one of } x_1, x_2 \text{ is } 1\}$ $P(A \cap \{x_1=1\}) = P(A \cap \{x_2=1\}) = \frac{1}{2}$

$$= P(A) - P(A \setminus \{X \geq 2\}) = P(A) - P(A \cap \{X \geq 1\}) =$$

$$P(A) = P(A \cap \{X=0\}) + P(A \cap \{X=1\})$$

— 4 —

(3)

$$= P(A) - (P(A \cap X=0) + P(A \cap X=1)) =$$

$$= \frac{5^n}{6^n} - \frac{4^n}{6^n} - \frac{n \cdot 4^{n-1}}{6^n}$$

③ Στην αυτην ms 1.13(y), ο αριθμοτης, ειναι το
γινομενο: $\binom{945}{4} \left\{ \binom{55}{11} - \binom{30}{11} - \binom{25}{1} \binom{30}{10} \right\}$

Άσκηση 1.30 / quadratio

η διαφορετικες επιστολες ποιράζονται σε η διαφορετικους φακελους. Σε καθε επιστολη αντιστοιχει ουδεκεριμένος φακελος. Ποια η πιθανότητα, ότι οι επιστολη να πάνε σε ίδιος φακελο;

-ΛΥΣΗ -

$$A_i = \{ \text{η } i \text{ επιστολη πάει στο σωστό φακελο} \}$$

$$P(A_1^c \cap A_2^c \cap \dots \cap A_n^c) = 1 - P(A_1 \cup A_2 \cup \dots \cup A_n) =$$

$$= 1 - P(A_1 \cup A_2 \cup \dots \cup A_n)$$

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \leq i_1 < \dots < i_k \leq n} P(A_{i_1} \cup \dots \cup A_{i_k}) =$$

$$= \sum_{k=1}^n (-1)^{k-1} \sum_{1 \leq i_1 < \dots < i_k \leq n} \frac{(n-k)!}{n!} = \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} \frac{(n-k)!}{n!} =$$

$$= \sum_{k=1}^n (-1)^{k-1} \frac{1}{k!}$$

Η αρχικη πιθανότητα ειναι $1 - \sum_{k=1}^n (-1)^{k-1} \frac{1}{k!}$

$$= \sum_{k=0}^n (-1)^k \frac{1}{k!} \star \quad [\text{Παραμηρον: για } n \rightarrow \infty, n \star \rightarrow e^{-1}]$$

Άσκηση 1.23 (quadratic)

[Ευαριστήρια
αρχής
ΕΓΚΛΕΙΣΜΟΥ -
ΑΝΟΚΛΕΙΣΜΟΥ]

η θαύμα: 1, 2, ..., n δε μα κινητωτίδα.

Βγαίνουμε έναν θαύμα, γραίζουμε το νούμερό του
και τον επιστρέφουμε. Το κάνουμε 1 ή 3 φορές.

Ποια η πθανότητα:

(a) Να επιλεγεί το 1 τουθαίκιστον (μία φορά)

(b) Να επιλεγούν οι 1, 2, 3 τουθαίκιστον μαζί

ο καθένας

- Αντίτη -

(a) Το ευδεκόμενο στην ερώτηση $P(A) = 1 - P(A^c) =$

$$= 1 - \frac{(n-1)^k}{n^k}$$

(b) A_i = Επιλέγεται ο i τουθαίκιστον μαζί φοράι

$$P(A_1 \cap A_2 \cap A_3) = 1 - (P(A_1 \cap A_2 \cap A_3)^c) =$$

$$= 1 - P(A_1^c \cup A_2^c \cup A_3^c)$$

$$= 1 - (P(A_1^c) + P(A_2^c) + P(A_3^c) - P(A_1^c \cap A_2^c) - P(A_1^c \cap A_3^c) - P(A_2^c \cap A_3^c) + P(A_1^c \cap A_2^c \cap A_3^c)) =$$

$$= 1 - \left(\frac{(n-1)^k}{n^k} \cdot 3 - \frac{(n-2)^k}{n^k} \cdot 3 + \frac{(n-3)^k}{n^k} \right)$$

$$\boxed{P(A_1^c) = P(A_2^c) = P(A_3^c) = \frac{(n-1)^k}{n^k}}$$

§ 2.5 Ross

§ 3.2 (Ross)

ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ

Εστω ο διεγνωμένος χώρος, P : συναρτήσει πιθανότητας
στον ο

Οριόμος:

Για $A, B \subseteq \Omega$, με $P(B) > 0$, ορίζουμε:

$$P(A \setminus B) = \frac{P(A \cap B)}{P(B)} \quad \text{και το λέμε:}$$

δεσμευμένη πιθανότητα του A, δεδομένου του B.

Παραδειγμα: Έχουμε κάλπο με 5 ασπρες, 15 μαύρες, 10 κόκκινες σφαίρες. Εξαγούμε μια στον τύχη. Εστω $A = \{\text{n σφαίρα είναι ασπρη}\}$ και $B = \{\text{n σφαίρα δεν είναι κόκκινη}\}$

$$P(A) = \frac{5}{30}, \quad P(A \cap B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{5}{30}}{\frac{20}{30}} = \frac{5}{20}$$

→ Ερώτηση

Πώς θα υπολογίζαμε την $P(\text{n σφαίρα ασπρη και ζερούμε ότι δεν είναι κόκκινη})$, εστω $P(C)$

$$P(C) = \frac{5}{20}$$

Σημασία του $P(A \cap B)$

① Υποκειμενική Ερμηνεία: Βαθμός πενοιθήσης ότι συνέβη το A , αν ζερούμε ότι συνέβη και το B

② Συχνοτική ερμηνεία (αντικειμενική): Κανούμε ένα περικα N φορές. Εστω $N_A(n)$ το πλήθος των φορών που συμβαίνει το γεγονός A .

$$P(A \cap B) = \lim_{n \rightarrow \infty} \frac{N_{A \cap B}(n)}{N_B(n)}$$

$$P(A) = \lim_{n \rightarrow \infty} \frac{N_A(n)}{n}$$

Η συχνότητα που συμβαίνει το A , αναμέσα στις πραγματοποιήσεις του πειράματος που συμβαίνει το B .

$$\text{Βλέπουμε ότι } \lim_{n \rightarrow \infty} \frac{N_{A \cap B}(n)}{N_B(n)} = \lim_{n \rightarrow \infty} \frac{\frac{N_{A \cap B}(n)}{n}}{\frac{N_B(n)}{n}} = \frac{P(A \cap B)}{P(B)}$$

Παρατηρηση

Η απεικόνιση $P_B: \mathcal{P}(\Omega) \rightarrow [0, \infty)$ με $P_B(A) = P(A \cap B)$

Είναι συναρτηση πιθανοτήτας, γιατί:

- 1) $0 \leq P(A \cap B) \leq 1 \Leftrightarrow 0 \leq P(A \cap B) \leq P(B)$, το οποίο και
- 2) $P_B(\Omega) = P(\Omega \cap B) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$ και
- 3) $(A \cap \bar{B}) \perp \Omega$: Είναι αναδυόμενο $P(B)$

$$\begin{aligned}
 P_B \left(\bigcup_{n=1}^{\infty} A_n \right) &= \frac{P\left(\bigcup_{n=1}^{\infty} A_n\right) \cap B_n}{P(B)} = \frac{P\left(\bigcup_{n=1}^{\infty} (A_n \cap B)\right)}{P(B)} \\
 &= \frac{\sum_{n=1}^{\infty} P(A_n \cap B)}{P(B)} = \sum_{n=1}^{\infty} P(A_n | B) = \sum_{n=1}^{\infty} P_B(A_n)
 \end{aligned}$$

Συνέπιστις, ισχυούν οι γνωστές σχέσεις, πχ:

2. Δ \rightarrow Δ \rightarrow Δ

→ Αρχη εγκένειορού-αποκτήσιμου κεπ.

Υνολογισμός ms P (ΑΙΒ)

Απότομος: Με τον οριζόντιο $P(A \cap B)$
 $P(B)$

2^ο τρόπος: Αλλάζουμε χώρο πιθανότητας. Αν ο Ω ήταν ο αρχικός χώρος, ο \mathbb{R}^d χώρος προέκυπτε αν κρατήσουμε απ' τα στοιχεία του Ω , μόνο αυτά που έναι συμβατά με το B .

Άσκηση 2.1 / Κυρίαρχο

Ποια οντότητα, μα πιον δύο γαριών να είναι
6,6 αν ξερουμε ότι περιέχει τουδάχιστου ένα 6.

- AVSH -

Ai: to jaipi i qipu 6

$$P(A_1 \cap A_2 \mid A_1 \cup A_2) = \frac{P((A_1 \cap A_2) \cap (A_1 \cup A_2))}{P(A_1 \cup A_2)} =$$

$$P(A_1 \cup A_2) = \frac{1}{2} \cdot \frac{1}{2}$$

$$P(A_1) + P(A_2) - P(A_1 \cap A_2) = \frac{1}{6} + \frac{1}{6} - \frac{1}{6}$$

(7)

Χρήσιμος τύπος: $P(A \cap B) = P(B) P(A|B)$, αν $P(B) > 0$
 και $P(A \cap B) = P(A) P(B|A)$, αν $P(A) > 0$

Παραδειγμα

Καλπο περιέχει 6 μαρα, 4 ασπρα σφαρίδια.
 Εξαγουμε δύο διαδοχικά χωρίς επανατοποθέτηση.
 Ποια η πιθανότητα και τα δύο να είναι ασπρά;
 -ΛΥΣΗ-

A_1 : το 1 σφαρίδιο είναι ασπρό

$$P(A_1 \cap A_2) = P(A_1) P(A_2 | A_1) = \frac{4}{10} \cdot \frac{3}{9} \rightarrow \text{αλλάζει χωρίς πιθανότητας!}$$

Πολλαπλασιαστικός τύπος

$A_1, \dots, A_n \subseteq \Omega$, με $P(A_1 \cap \dots \cap A_{n-1}) > 0$. Τότε:

$$P(A_1 \cap \dots \cap A_n) = P(A_1) P(A_2 | A_1) P(A_3 | A_1 \cap A_2) \dots P(A_n | A_1 \cap \dots \cap A_{n-1})$$

-Αποδ-

Το δεύτερο μέρος ισούται με:

$$= P(A_1) \cdot \frac{P(A_1 \cap A_2)}{P(A_1)} \cdot \frac{P(A_3 \cap A_2 \cap A_1)}{P(A_1 \cap A_2)} \dots \cdot \frac{P(A_n \cap A_1 \cap \dots \cap A_{n-1})}{P(A_1 \cap \dots \cap A_{n-1})}$$

Άσκηση 2.6 (κυριαρχία)

Βασιλόντα με τη κομματιά. Κάποιος τα δίνει ότι
 έχει μερικό άλλο σε μια ουρά της ατόμων. Νόμορα
 υπορχει διένα κομματι οικρίων. Για $k \in \{1, 2, \dots, n\}$ να
 βρεθεί η πιθανότητα (a) το νόμορα να βρεθεί στην γραμμή
 (β). Το νόμορα να μην βρεθεί ως την γραμμή

-ΛΥΣΗ-

A_i : το νόμορα βρίσκεται στην i -γραμμή

$$(a) P(A_r) = P(A_1^c \cap A_2^c \cap \dots \cap A_{r-1}^c \cap A_r^c) =$$

$$= P(A_1^c) P(A_2^c | A_1^c) P(A_3^c | A_1^c \cap A_2^c) \dots P(A_r^c | A_1^c \cap \dots \cap A_{r-1}^c) =$$

(3)

$$= \frac{n-1}{n} \cdot \frac{n-2}{n-1} \cdot \dots \cdot \frac{n-(r-2)-1}{n-(r-2)} \cdot \frac{1}{n-(r+1)} = \frac{1}{n}$$

$$(B) P(A_1^c \cap A_2^c \cap \dots \cap A_r^c) = \dots = \frac{n-1}{n} \cdot \frac{n-2}{n-1} \cdot \dots \cdot \frac{n-r+1}{n-(r-2)} \cdot \frac{n-r}{n-r+1}$$

$$= \frac{n-r}{n}$$

ΠΙΘΑΝΟΤΗΤΕΣ Ι - ΤΜΗΜΑ ΧΣΛΙΩΤΗ

§ 3.3 Θεώρημα ολκής πιθανότητας και τόμος Bayes

[Διαμέριση:

$$\bigcup_{i=1}^n A_i = \Omega, A_i \cap A_j = \emptyset \quad \text{μα } i \neq j$$

A_1, A_2, \dots, A_n διαμέριση του Ω με $P(A_i) > 0$ $\forall i$

Θεώρημα ολκής πιθανότητας

$$\text{στα καθε } B \subset \Omega, \text{ τόχη } P(B) = \sum_{i=1}^n P(B \cap A_i) = \sum_{i=1}^n P(A_i) P(B|A_i)$$

Η πρώτη ιδότητα της παραπάνω σχέσης, αποδημοτεία
απ' την ιδότητα (iii) της $P = P(U_i) = \sum P(r_i)$, r_i : ζενα ανάδι

Ασκηση 2.11 - Κυρτόδιο

Επιλέγουμε ένα ζακό στην τόχη απ' τους 1, 2, ..., n.

Αν η ενδεική του είναι i, πλένουμε ένα γάπι i χρόνια.

Ποια η πιθανότητα εμφάνισης 3 και 5 τουλάχιστον
μαζί ωραί το καθένα.

-ΛΥΣΗ-

Εστι B_j , το j έρχεται τουλάχιστον μαζί ωραί, $j=1, \dots, 6$

Θελουμε την $P(B_3 \cap B_5)$. Εστι \cap και $A_i = \{$ επιλ. ζακό i $\}$,

$i=1, \dots, n$. Το A_i είναι διαμέριση του Ω

$$P(B_3 \cap B_5) = \sum_{i=1}^n P(A_i) P(B_3 \cap B_5 | A_i) = \frac{1}{n} \sum_{i=1}^n P(B_3 \cap B_5 | A_i)$$

Θα χρησιμοποιήσουμε
αρχή εγκλ.-απλοδεσμού

$$P(B_3 \cap B_5 | A_i) = 1 - P(B_3^c \cup B_5^c | A_i)$$

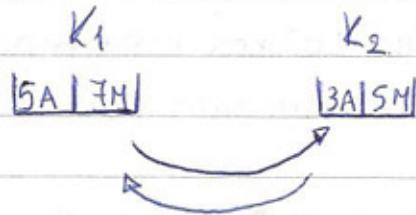
$$= 1 - [P(B_3^c | A_i) + P(B_5^c | A_i) - P(B_3^c \cap B_5^c | A_i)]$$

$$= 1 - \left(\frac{5^i}{6^i} + \frac{5^i}{6^i} - \frac{4^i}{6^i} \right) = 1 - 2 \cdot \frac{5^i}{6^i} + \frac{4^i}{6^i}$$

(2)

Άσκηση 2.9 - Εγκαύδιο

Έχουμε δύο καίριες K_1, K_2 και σφαρίδια όπως στην ίστορα



Μεταφέρουμε ένα σφαρίδιο από την K_1 στην K_2 και μετά ένα από την K_2 στην K_1 . Ποια η πιθανότητα το 2^ο σφαρίδιο να είναι ασπρό;

- Αντ- -

$A_1 = \{ \text{το πρώτο σφαρίδιο είναι ασπρό} \}$

$A_2 = A_1^c$

$B = \{ \text{το δεύτερο σφαρίδιο είναι ασπρό} \}$

$$\begin{aligned} P(B) &= P(A_1)P(B|A_1) + P(A_2)P(B|A_2) \\ &= \frac{5}{12} \cdot \frac{4}{9} + \frac{7}{12} \cdot \frac{3}{9} \end{aligned}$$

Σχόλιο: Εναρμόζουμε το Θεώρημα ολικής πιθανότητας, όταν έχουμε πείραμα σε δύο στάδια, το πρώτο στάδιο έπειρε το δεύτερο, και μας ενδιαφέρει η πιθανότητα ενδεχομένου που αφορά το δεύτερο στάδιο.

Για διαμέριση A_1, A_2, \dots, A_n ιστηρίζουμε τα πιθανά αποτελεσματα του πρώτου σταδίου.

Τύμος του Bayes

Αν A_1, \dots, A_n οι διαμέριση ή $P(A_i) > 0 \forall i=1, \dots, n$ και $B \subset \Omega$ ή $P(B) > 0$. Τότε:

$$P(A_k | B) = \frac{P(A_k) P(B | A_k)}{\sum_{i=1}^n P(A_i) P(B | A_i)} \quad \forall k=1, \dots, n$$

- Απόδημος

$$P(A_k | B) = \frac{P(A_k \cap B)}{P(B)} = \frac{P(A_k) P(B | A_k)}{\sum_{i=1}^n P(B \cap A_i)} = \frac{P(A_k) P(B | A_k)}{\sum_{i=1}^n P(A_i) P(B | A_i)}$$

- Το $P(A_k | B)$ εκφράζει το βαθμό κατά το οποίο το ενδεχόμενο A_k ευδοκεται για την πραγματοποίηση του B .

Άσκηση 2.16 - Κυλλάδιο

Έχουμε δύο κύλιπες με σύνθεση

$X = 3$ μαύρα, 5 ασπρά σφαιρίδια

$Y = 1$ μαύρο, 9 ασπρά "

Επιδειγούμε μία κύλιπη στην τύχη και απομακρύνουμε διαδοχικά με επαναθέση 4 σφαιρίδια. Αν τα τα 4 αναστρέψουμε ποια η πιθανότητα να έχουμε έπιλεξει στην αρχή την X .

- Λύση -

Εστια A_1 : {έπιλεξεται η X }

A_2 : {έπιλεξεται η Y }

$B =$ τα 4 σφαιρίδια εναντίον ασπρά

$$P(A_1 | B) = \frac{P(B \cap A_1)}{P(B)} = \frac{P(A_1) P(B | A_1)}{P(A_1) P(B | A_1) + P(A_2) P(B | A_2)} = \frac{\frac{1}{2} \cdot \frac{5^4}{10^4}}{\frac{1}{2} \cdot \frac{5^4}{10^4} + \frac{1}{2} \cdot \frac{9^4}{10^4}} = \frac{\frac{5^4}{10^4}}{\frac{5^4 + 9^4}{10^4}} \approx 0,08$$

(4)

Παραδ. 3χ. σελ. 82 - Ross

Τεστ πολλαπλής επιλογής, καθε ερώτηση έχει M επιλογές.

Ο εφεραγόμενος ζερεί την απάντηση και πιθανότητα p .

Όταν δεν την ζερει, επιλέγει στην τύχη μία απ' τις M .

Ποια η πιθανότητα ο εφεραγόμενος να γνωρίζει την απάντηση σε μια ερώτηση δεξιότερης ότι την απάντηση;

-ΛΥΣΗ-

$A_1 = \{ \text{εφεραγόμενος ζερεί την ερώτηση} \}$

$A_2 = A_1^c \quad B = \{ \text{απάντηση σωστή} \}$

$$P(A_1 \mid B) = \frac{P(A_1)P(B \mid A_1)}{P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2)}$$

$$= \frac{p \cdot 1}{p \cdot 1 + (1-p) \cdot \frac{1}{M}}, \quad 1 > p \Rightarrow p + (1-p) \cdot \frac{1}{M} < 1$$

$$p \left(1 - \frac{1}{M}\right) < 1 - \frac{1}{M}$$

Ασκηση 2.17 - Κυρραδίο

Σ'έναν πληθυσμό το 0,1% πασχει από μια ασθένεια X .

* και κανείς ασθενής στο 1% των υγιών. Επιδείχνεται ότι το ποσοστό των ασθενών στην ασθένεια X είναι 5%.

Ενα τεστ κανείς λάθος στο 1% των υγιών. Επιδείχνεται ότι το ποσοστό των ασθενών στην ασθένεια X είναι 5%.

Ποια η πιθανότητα το αίτημα να είναι ασθενής.

-ΛΥΣΗ-

$A_1 = \{ \text{το αίτημα είναι ασθενής} \}$

$A_2 = A_1^c$

$P(A_1) = 0,001$

$B = \{ \text{το τεστ δηλώνει ότι το αίτημα είναι ασθενής} \}$

$P(B^c \mid A_1) = 0,05 \quad P(B \mid A_1^c) = 0,01$

$P(B \mid A_1) = 0,95 \quad P(B^c \mid A_1^c) = 0,99$

$$P(A_1 \mid B) = \frac{P(A_1)P(B \mid A_1)}{P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2)} = \frac{\frac{1}{10^3} \cdot \frac{95}{100}}{\frac{1}{10^3} \cdot \frac{95}{100} + \frac{999}{10^3} \cdot \frac{1}{100}} = \frac{95}{95 + 999} \approx 0,086$$

(5)

Σε πληθυσμό 100000

Ασθενείς ≈ 100 $\xrightarrow{\text{ΤΗΣΤ}}$ 95 ασθενείςΥδησις $\approx 99900 \rightarrow 999$ ασθενείςΣτους 10^5 έχουμε $999 + 95$ με θετικό λεβι**Ασκηση** (Το παραδογό Monty Hall)3 πόρτες Π_1, Π_2, Π_3 σε μια από αυτές, υπάρχει
ενα αριθμός, οι άλλες αίσιες.Επιτρέψτε την Π_1 , ο παρουσιαστής ανοίγει μια
πόρτα και είναι αίσια. Ποια τη πιθανότητα να είναιτο αριθμό στην Π_1 ; Οι τρεις αισιές είναι συναρπαγείς:
(a) ο παρουσιαστής επιτρέπει στην τύχη ποια πόρτα

ανοίγει

(b) " " " " " με τον περιορισμό
να ανοίξει μια αίσια
- Αντικ-Εσώ $A_1 = \{n \Pi_1 \text{ έχει το αριθμό}\}$ $B = \{\text{ο παρουσιαστής ανοίγει την } \Pi_2 \text{ και αυτή είναι αίσια}\}$ Μας ενδιαφέρει $X = P(A_1 | B) = \frac{P(A_1)P(B|A_1)}{P(A_1)P(B|A_1) + P(B|A_1^c)P(A_1^c)}$

$$P(A_1) = \frac{1}{3}$$

Σενάριο (a) : $P(B|A_1) = \frac{1}{2}$, $P(B|A_1^c) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

$$\text{Άρα } X = \frac{\frac{1}{3} \cdot \frac{1}{2}}{\frac{1}{3} \cdot \frac{1}{2} + \frac{2}{3} \cdot \frac{1}{4}} = \frac{\frac{1}{6}}{\frac{1}{6} + \frac{1}{6}} = \frac{1}{2}$$

Σενάριο (b) : $P(B|A_1) = \frac{1}{2}$, $P(B|A_1^c) = \frac{1}{2} \cdot 1$

$$\text{Όποτε } X = \frac{\frac{1}{3} \cdot \frac{1}{2}}{\frac{1}{3} \cdot \frac{1}{2} + \frac{2}{3} \cdot \frac{1}{2}} = \frac{\frac{1}{6}}{\frac{1}{3}} = \frac{1}{3}$$

ΑΝΕΞΑΡΤΗΣΙΑ $A, B \subset \Omega$

Σημαντικό να τα πούμε ανεξαρτητικά οταν

$P(A|B) = P(A) \text{ και } P(B|A) = P(B)$

$P(B) \neq 0 \quad P(A) \neq 0$

Άνταξη, $P(A \cap B) = P(B)P(A) \text{ και } P(B \cap A) = P(A)P(B)$

ΟρισμόςΤα $A, B \subset \Omega$ λεγονται ανεξαρτητικά όταν

$P(A \cap B) = P(A)P(B)$

nx: 1). Ρίχνουμε 2 ροτέρια. Εστω $A = \text{πρώτη ειδεύη 3}$
 $B = \text{η δεύτερη ειδεύη είναι 5}$ Τα A, B : ανεξαρτητικά

$P(A) = \frac{1 \cdot 6}{6 \cdot 6} = \frac{1}{6} \quad P(B) = \frac{6 \cdot 1}{6 \cdot 6} = \frac{1}{6}$

$P(A \cap B) = \frac{1 \cdot 1}{6 \cdot 6} = P(A)P(B)$

nx: 2). Ροτέρια 96/48:

$A = \{ \text{το αδροίονα των ροτέρων είναι 6} \}$

$B = \{ \text{το πρώτο ροτέρι είναι 4} \}$

$\tilde{A} = \{ \text{το αδροίονα είναι 7} \}$

Τα A, B : σεν είναι ανεξαρτητικά, ενώ τα \tilde{A}, B είναι.

$\rightarrow P(A \cap B) = P(\text{το πρώτο } 4, \text{ το δεύτερο } 2) = \frac{1 \cdot 1}{6 \cdot 6} = \frac{1}{36}$

$P(A) = P(\{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)\}) = \frac{5}{36}$

$P(B) = \frac{1}{6} \quad P(A)P(B) = \frac{5}{6} \cdot \frac{1}{36} \neq P(A \cap B)$

Άρα, όχι ανεξαρτητικά

$P(B|A) = \frac{\frac{1}{36}}{\frac{5}{36}} = \frac{1}{5}$

(7)

$$P(\tilde{A} \cap B) = P(\text{Το πρώτο 4, το δεύτερο 3}) = \frac{1}{36}$$

$$P(\tilde{A}) = P(\{(1,6), \dots, (6,1)\}) = \frac{6}{36} = \frac{1}{6}$$

$$P(\tilde{A} \cap B) = P(\tilde{A})P(B) \text{ ανεξάρτητη}$$

$$P(B|\tilde{A}) = \dots$$

Ασκηση 2.26 - Κυλλούδια

Αν A, B ανεξάρτητα, τότε:

- A, B^c : ανεξάρτητα
- A^c, B "
- A^c, B^c "

- Αντίτυπο -

$$\text{i), } P(A \cap B^c) = P(A) - P(A \cap B)$$

$$= P(A) - P(A)P(B)$$

$$= P(A) \cdot (1 - P(B)) = P(A)P(B^c)$$

ii). Επειδή από (i)

iii) ...

Ορισμός

Εστι $(A_i)_{i \in I}$ υποσυνολού του Ω . Λέμε ότι είναι ανεξάρτητη αν $\forall k \in I$, $\forall i_1, i_2, \dots, i_k \in I$ διαχορευτικούς σειρές, τούχου $P(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}) = P(A_{i_1})P(A_{i_2}) \dots P(A_{i_k})$ *

→ Αν n * τούχου για έτη διαχορευτικού k και στα $i_1, \dots, i_k \in I$ διαχορευτικά, τότε οι τα $(A_i)_{i \in I}$ είναι ανεξάρτητα ανά k .

(8)

ΑΣΚΗΣΗ Av A, A ονειρόποτα, να βρεθει η \overline{PCA}
 $P(A \cap A) = PCA \cap PCA \Leftrightarrow PCA = P^2(A)$

23.10.2018

6^ο καθηκόν

Πιθανότητες Ι - Τυπούμα χελιώτη

Παραδειγμα Σαν δύο αλλά όχι πάντας ανεξάρτητα ενδεχόμενα)

Πικνούμε ένα ψάρι δύο φορές. Εστια τα ενδεχόμενα

$$A = \{\text{η πρώτη ενδεικη σίνη είναι αρπαγή}\}$$

$$B = \{\text{η δεύτερη ενδεικη σίνη είναι αρπαγή}\}$$

$$\Gamma = \{\text{το αθροίσμα των ενδεικεών είναι αρπαγή}\}$$

Τα A, B, Γ είναι ανά δύο ανεξάρτητα

$$P(A) = P(B) = \frac{3}{6} = \frac{1}{2}$$

$$P(\Gamma) = P(\text{αρπαγή, αρπαγή}) + P(\text{περιττός, περιττός}) =$$

$$= \frac{3}{6} \cdot \frac{3}{6} + \frac{3}{6} \cdot \frac{3}{6} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$\text{Επειδή: } A \cap B - A \cap \Gamma = B \cap \Gamma$$

$$P(A \cap B) = \frac{3}{6} \cdot \frac{3}{6} = \frac{1}{4} = P(A) \cdot P(B) = P(A) \cdot P(\Gamma) = P(B) \cdot P(\Gamma)$$

Τα A, B, Γ ΔΕΝ είναι πάντας ανεξάρτητα.

$$P(A \cap B \cap \Gamma) = P(A \cap B) = \frac{1}{4} \neq \frac{1}{8} = P(A) \cdot P(B) \cdot P(\Gamma)$$

Όμως, πώς παραδούμε ανεξάρτητα ενδεχόμενα;

→ Συνήθως, έχουμε ένα πειράμα με μεριν x_1, x_2, x_3 τα οποία είναι "ανεξάρτητα" με την κοινή έννοια του όρου (δηλαδή, δεν επηρεάζει το ένα το άλλο). Αν καθένα απ'τα ενδεχόμενα A_1, A_2 εξαρτώνται από διασφορευτικά μεριν των πειράματος, συμπεραινουμε ότι είναι ΑΝΕΞΑΡΤΗΤΑ μετν μαθηματική έννοια του όρου.

Παραδειγμα: Θεωρούμε ακολουθία ρίψεων ενός Τσιρού.

Θετούμε: $A_i = \{ \text{τα αποτελέσματα των } 2^{i+1}, 2^{i+2}, \text{ αθροίσουν σε μονό αριθμό} \} \quad \forall i \in \mathbb{N}$ τα A_0, A_1, A_2 είναι ανεξάρτητα.

Αν ορίσουμε $B_i = \{ \text{υπάρχει αποτέλεσμα } 2 \text{ στις ρίψεις } i \text{ ως } 2^i \}$

Τα B_1, B_2, B_3 δεν μπορούμε να πούμε ότι είναι ανεξάρτητα

• . .

Άσκηση 2.31 (συλλαβίο)

Ενα πειραματικό έχει πιθανότα επιτυχίας $p \in (0,1)$. Εκτελούμε ακολουθία ανεξάρτητων δοκιμών του.

(a) ΝΔΟ η πιθανότητα να έχουμε k επιτυχίες στις πρώτες n δοκιμές ($k \in \{0, 1, 2, \dots, n\}$) είναι $\binom{n}{k} p^k (1-p)^{n-k}$

Εστω $X_i = \begin{cases} E, & \text{αν } \text{η } i\text{-δοκιμή } \text{είναι } \text{επιτυχία} \\ A, & \text{αν } \text{η } i\text{-δοκιμή } \text{είναι } \text{αποτυχία} \end{cases} \quad i \in \mathbb{N}^+$

Εστω Γ οις B : το ενδεχόμενο σύμβολο εκφύνοντα και

$$\begin{aligned} \Gamma = \{ (a_1, a_2, \dots, a_n) \in \{E, A\}^n : k \text{ από τα } a_i \text{ είναι } i \text{ οι } E \} \\ \text{Σημαίνε } m \text{η πιθανότητα } P(B) = P((X_1, X_2, \dots, X_n) \in \Gamma) = \\ = \sum_{(a_1, \dots, a_n) \in \Gamma} P(X_1 = a_1, X_2 = a_2, \dots, X_n = a_n) \end{aligned}$$

Τια καθε $a = (a_1, \dots, a_n) \in \Gamma$, η $P(X_1 = a_1, X_2 = a_2, \dots, X_n = a_n) = P(X_1 = a_1) \dots P(X_n = a_n)$, διατί τα $\{X_i = a_i\}_{i=1, \dots, n}$ είναι ανεξάρτητα

$$P(X_i = E) = p$$

$$P(X_i = A) = 1-p$$

Το τελευταίο γίνονται $p^k (1-p)^{n-k}$

$$\text{Επηρημένη } (\Gamma) = \binom{n}{k}$$

$$P(B) = \binom{n}{k} p^k (1-p)^{n-k}$$

(b) ΝΔΟ η πιθανότητα να έχουμε επιτυχία σε όλες τις δοκιμές (είναι πλήθος) είναι 0.

$$P(X_1 = E \text{ } \forall i \geq 1) \leq P(X_i = E, i = 1, 2, \dots, n) \quad \forall n \geq 1$$

$$= P(X_1 = E, X_2 = E, \dots, X_n = E) = P(X_1 = E) \cdot P(X_2 = E) \dots P(X_n = E) =$$

$$= p^n \xrightarrow{n \rightarrow \infty} 0, \text{ διατί } p < 1$$

(γ) ποια η πιθανότητα η πρώτη επιτυχία να εμφανιστεί στις δοκιμές $k \geq 1$?

$$\begin{aligned} \text{Ζητάμε τη πιθανότητα } P(X_1, X_2, \dots, X_k) = (A, A, \dots, A, E) = \\ = P(X_1 = A, \dots, X_{k-1} = A, X_k = E) = P(X_1 = A) \dots P(X_{k-1} = A) P(X_k = E) = \\ = (1-p)^{k-1} p \end{aligned}$$

(δ) Ποια η πιθανότητα να χρειαστουν τουλαχιστού k δοκιμές ώστε την πρώτη επιτυχία.

$$P(\text{στις δοκιμές } 1, 2, \dots, k-1 \text{ είναι αποτελεσματάς } E) = (1-p)^{k-1}$$

ΑΣΚΗΣΗ 2.23 (χρυσός δίσκος)

Ω: δειγματικός χώρος, P: συνάρτηση πιθανότητας στον Ω ($P: \Omega \rightarrow \{0,1\}$)

Για $\Gamma \subseteq \Omega$, με $P(\Gamma) > 0$, η συνάρτηση $P(\Gamma): \mathcal{P}(\Omega) \rightarrow [0,1]$, με $P_\Gamma(A) = P(A \cap \Gamma)$ είναι συνάρτηση πιθανότητας. και αν $P_\Gamma(B) > 0$, τότε ορίζεται η $P_\Gamma(A \cap B)$ για $A \subseteq \Omega$ $P_\Gamma(A \cap B) = P(A \cap B \cap \Gamma)$

$$\begin{aligned} P_\Gamma(A \cap B) = \frac{P(A \cap B)}{P(\Gamma)} = \frac{P(A \cap B \cap \Gamma)}{P(\Gamma)} = \frac{\frac{P(A \cap B \cap \Gamma)}{P(\Gamma)}}{\frac{P(B \cap \Gamma)}{P(\Gamma)}} = \\ = \frac{P(A \cap B \cap \Gamma)}{P(B \cap \Gamma)} \end{aligned}$$

Παραδειγμα (o kavovas diadoxnis Laplace)

$k+1$ νομισματα $N_1, N_2, N_3, \dots, N_{k+1}$. Το N_i έχει έχει πιθανότητα $p_i = \frac{1}{k}$ να απει "K" με $i = 0, 1, \dots, k$

Έπιπλα έχει Γ σημασία την γύρη και εκτελούμε αριθμητικά πίνακες του. Αν στις πρώτες n πινακίδες πρέπει μόνο "K", ποια η πιθανότητα να έρθει "K" στην $n+1$ πινάκη.

→ D.

(4)

Έστω $\{c_i = \{ \text{επιλεγόμενε το } N_i \}, i=0,1,2,\dots,K\}$

$E_j = \{n \mid j \text{ πών εγερε } "K"\}$

$F_n = E_1 \cap \dots \cap E_n$

$$\text{Ζητάμε τών } P(E_{n+1} | F_n) = \frac{P(F_{n+1})}{P(F_n)}$$

(Άρχ 2.24)

$$P(A|\Gamma) = \Pr(A) = \sum_{i=0}^n P(c_i) \Pr(A|c_i) = \sum_{i=0}^n P(c_i|\Gamma) P(A|F_n \cap c_i)$$

$$P(E_{n+1} | F_n) = \sum_{i=0}^K P(c_i | F_n) P(E_{n+1} | c_i \cap F_n)$$

$$\begin{aligned} \text{Υπολογιζόμεθ } P(c_i | F_n) &= \frac{P(c_i \cap F_n)}{P(F_n)} = \frac{P(c_i) P(F_n | c_i)}{\sum_{j=0}^n P(c_j) P(F_n | c_j)} = \\ &= \frac{\frac{1}{K+1} \cdot \left(\frac{i}{K}\right)^n}{\sum_{j=0}^K \frac{1}{K+1} \left(\frac{j}{K}\right)^n} \end{aligned}$$

$$\begin{aligned} P(E_{n+1} | c_i \cap F_n) &= \frac{P(c_i \cap F_n \cap E_{n+1})}{P(c_i \cap F_n)} = \frac{P(F_{n+1} | c_i) P(c_i)}{P(c_i) P(F_n | c_i)} = \\ &= \frac{\left(\frac{i}{K}\right)^{n+1}}{\left(\frac{i}{K}\right)^n} \end{aligned}$$

$$\text{Άρα, } P(E_{n+1} | F_n) = \frac{\sum_{i=0}^n \frac{1}{K+1} \left(\frac{i}{K}\right)^n \cdot \left(\frac{1}{K}\right)^{n+1}}{\sum_{j=0}^K \frac{1}{K+1} \cdot \left(\frac{j}{K}\right)^n \cdot \left(\frac{1}{K}\right)^n} =$$

$$= \frac{\frac{1}{K} \cdot \sum_{i=0}^K \left(\frac{1}{K}\right)^{n+1}}{\frac{1}{K} \cdot \sum_{i=0}^K \left(\frac{1}{K}\right)^n} = \frac{\frac{1}{K} \cdot \frac{1}{K^{n+1}} \cdot (K+1)}{\frac{1}{K} \cdot \frac{1}{K^n}} = \frac{a_K(n+1)}{a_K(n)} \xrightarrow{K \rightarrow \infty}$$

$$\frac{\frac{1}{n+2}}{\frac{1}{n+1}} = \frac{n+1}{n+2}$$

Να δω 389
Ross

Κεφαλαιο 4: τυχαιες μεταβαντες

Ω : δειγματος χώρος

ΤΥΧΑΙΑ ΜΕΤΑΒΛΗΤΗ: λέμε ότι θε συνάρτηση $X: \Omega \rightarrow \mathbb{R}$

πχ: σε 10 πινες εντός Ταριού $\Omega = \{1, 2, \dots, 6\}^{10}$

$X: \Omega \rightarrow \mathbb{R}$ με $X_1(\{w_1, w_2, \dots, w_{10}\}) = w_2 + w_4 + w_6 + w_8 + w_{10}$

$X_2(w) = w_3$

$X_4(w) = |w_1 - w_2|$

Συμβολισμός: Για $A \subset \mathbb{R}$ και $X: \Omega \rightarrow \mathbb{R}$ τυχαια μεταβαντη

Το ενδεχόμενο $\{w \in \Omega : X(w) \in A\}$, δηλα το $X^{-1}(A)$, το

συμβολιζουμε: $\{x \in A\}$

Με το ίδιο σημείο, το $\{w \in \Omega : X^2(w) + 1 \text{ πρώτος}\}$

Το γραφαμε ως: $\{X^2 + 1 \text{ πρώτος}\}$

[ΠΡΟΒΛΗΜΑ]

Για πια τυχαια μεταβαντη $X: \Omega \rightarrow \mathbb{R}$, θέλουμε να ζερουμε

όλες τις πιθανότητες

$P(X \in A)$: δηλαδή $P(\{w \in \Omega : X(w) \in A\}) \quad \forall A \subset \mathbb{R}$

ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

$X: \Omega \rightarrow \mathbb{R}$, λέμε την $F_X: \mathbb{R} \rightarrow [0, 1]$ με $F_X(t) = P(X \leq t)$

$\forall t \in \mathbb{R} = P(w \in \Omega : X(w) \leq t)$

Σύμβαση: Συμβολιζουμε τις τυχαιες μεταβαντες με

κεφαλαια γράμματα, συντομως τα τελετονα της

αλφαριτου X, Y, Z, W, R, S, T

ΠΑΡΑΔΕΙΓΜΑ : Χαρακτηρίστε την απότελεσμα πίνακα ενός Ταριχού F_x :

$$\Omega = \{1, 2, \dots, 6\}$$

$$P(X) = \frac{|\Omega|}{6} \quad P(X=i) = \frac{1}{6}$$

$$\text{Για } t \in \mathbb{R} : F_x(t) = P(X \leq t) = P\{ \omega \in \Omega : X(\omega) \leq t \}$$

• Αν $t \leq 1$, τότε $\{X \leq t\} = \emptyset$ $F_x(t) = 0$

• Αν $t \in [1, 2]$, τότε $\{X \leq t\} = \{1\}$, $F_x(t) = P(\{1\}) = \frac{1}{6}$

• Αν $t \in [2, 3]$, τότε $\{X \leq t\} = \{1, 2\}$, $F_x(t) = P(\{1, 2\}) = 2 \cdot \frac{1}{6} = \frac{1}{3}$

⋮

⋮

• Αν $t \in [6, \infty)$, τότε $\{X \leq t\} = \Omega$ $F_x(t) = P(\Omega) = 1$

$$F_x(t) = \begin{cases} 0, & t < 1 \\ \frac{t}{6}, & t \in [1, 6) \\ 1, & t \geq 6 \end{cases}$$

ΑΘΡΟΙΣΜΑΤΑ ΜΕ ΓΕΝΙΚΟ ΣΥΝΟΛΟ ΔΙΚΤΩΝ

Θα ορίσουμε το $\sum_{i \in I} x_i$, όπου I : οποιοδήποτε συνολο δικτών και $x_i \in \mathbb{R}$, $\forall i \in I$

ΠΕΡΙΠΤΩΣΗ I : $x_i \geq 0 \quad \forall i \in I$ Θετούμε

$$\sum_{i \in I} x_i = \sup \left\{ \sum_{i \in J} x_i : J \subseteq I, J \text{ πεπερασμένο} \right\}$$

ΠΕΡΙΠΤΩΣΗ II : (Ενδέχεται να έχει αντρο)

$$x_i \in \mathbb{R} : \text{Θετούμε } \sum_{i \in I} x_i = \sum_{\substack{i \in I \\ x_i > 0}} x_i + \sum_{\substack{i \in I \\ x_i < 0}} -x_i$$

αν η διαστολή δω στην $\infty - \infty$

Ενδέχεται το αθροίσμα να βγει $\infty - \infty$, ή να μην ορίζεται

ΑΣΚΗΣΗ : Εάν $x_i \geq 0 \quad \forall i \in I$ και ότι $\sum_{i \in I} x_i = M < \infty$

Να δοθεί $A = \{i \in I, x_i \neq 0\}$ είναι αριθμούριο.

Εάν $\omega I_n = \{i \in I, x_i > \frac{1}{n}\}$, τότε $A = \bigcup_{i=1}^{\infty} I_n$ (1)

Αν $k \in \mathbb{N}$, $k \leq |I_n|$, εότου $y_1, \dots, y_n \in I_n$

Τότε, $M \geq y_1 + \dots + y_k \geq \frac{k}{n} \Rightarrow k \leq Mn \Rightarrow |I_n| \leq Mn$

Άρα, A (1) : αριθμούριο με κανονικές αριθμούρισμα.

25.10.2018

7^ο μαθημα

ΜΘ.Ι-μαθημα

ΔΙΑΚΡΙΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ (§4.2)

ΟΡΙΣΜΟΣ: Μια τυχαιά μεταβλητή $X: \Omega \rightarrow \mathbb{R}$ λέγεται διακριτή, αν το $X(\omega)$ είναι αριθμός (πεπερασμένο ή ιδιαίτερο με το \mathbb{N})

"Πώς κωδικοποιούμε μια διακριτή τυχαιά μεταβλητή;"

ΟΡΙΣΜΟΣ: $X: \Omega \rightarrow \mathbb{R}$ διακριτή τυχαιά μεταβλητή. Συνάρτηση πιθανότας με X , λέμε τη συνάρτηση $f: \mathbb{R} \rightarrow [0, \infty)$ με $f(a) := P(X=a) = P(\{w \in \Omega : X(w)=a\})$

ΠΑΡΑΔΕΙΓΜΑ: X = αποτέλεσμα ρίψης ενός ακεράντην γαριού.

$\Omega = \{1, 2, \dots, 6\}$, $X(\omega) = \omega$, $P(\{i\}) = \frac{1}{6}$, $i = 1, \dots, 6$

Για $a \in \mathbb{R}$

$$f(a) = P(X=a) = \begin{cases} 1/6, & \text{av } a \in \{1, 2, \dots, 6\} \\ 0, & \text{av } a \in \mathbb{R} \setminus \{1, 2, \dots, 6\} \end{cases}$$

$$\text{π.χ.: } f(2) = P(\{w \in \Omega : X(w)=2\}) = P(\{2\}) = \frac{1}{6}$$

ΠΡΟΤΑΣΗ: Εστιν X : διακριτή τυχαιά μεταβλητή, τότε

η f_X ικανοποιεί τα ενισ:

$$(a) f_X(x) \geq 0 \quad \forall x \in \mathbb{R}$$

$$(b) \sum_{x \in \mathbb{R}} f_X(x) = 1$$

- ΑΠΟΣ -

$$(a) \text{ ισχύει, αφού } f_X(x) = P(X=x) \geq 0$$

$$(b). \text{ Το } X(\Omega) \text{ είναι αριθμοί και } f_X(x) = 0,$$

για $x \in \mathbb{R} \setminus X(\Omega)$

$$\sum_{x \in \mathbb{R}} f_X(x) = \sum_{x \in X(\Omega)} f_X(x) = \sum_{x \in X(\Omega)} P(X=x) = P\left(\bigcup_{x \in X(\Omega)} \{X=x\}\right) = P(\Omega) = 1$$

αριθμούσιμη προσθετικότητα.

Αποδεικνύεται και το αντίστροφο. Ανταλού, αν μια $f: \mathbb{R} \rightarrow \mathbb{R}$ ικανοποιεί τα (a), (b), τότε Είναι μεταβλήτη X , ώστε $f = f_X$.

→ Η f_x έχει την εγκαίδιοτητα: $P(X \in A) = \sum_{a \in A} f_x(a) \quad \forall A \subset \mathbb{R}$
και με αυτη την έννοια τωδικοποιεί την X

Αυτό το δείχνουμε ως εγκαίδιο:

$$P(X \in A) = P(X \in A \cap X(\Omega)) = P\left(\bigcup_{a \in A \cap X(\Omega)} (X=a)\right) = \sum_{a \in A \cap X(\Omega)} f_x(a) = \sum_{a \in A} f_x(a)$$

ΜΕΙΗ ΤΙΜΗ ΔΙΑΚΡΙΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ (§ 4.3)

Παιζουμε παιχνίδι στο οποίο κερδίζουμε 12€ με π.θ $\frac{1}{3}$ και 3€ με π.θ $\frac{2}{3}$.

Απλοδή, έχουμε τυχαια μεταβάση $X: \Omega \rightarrow \mathbb{R}$ με $X(\Omega) = \{3, 12\}$
και $P(X=3) = \frac{2}{3}$, $P(X=12) = \frac{1}{3}$

Παίζαμε το παιχνίδι n φορές (n: μεριάδα). Πώς θαν
το μέσο κερδούμε;

Εστια A_n το μέσος κερδούμες που κερδίζαμε 3€ και
εστια B_n , "

$$\text{Το μέσο κερδούμε} \quad \text{Είναι: } \frac{3A_n + 12B_n}{n} = 3 \cdot \frac{A_n}{4} + 12 \cdot \frac{B_n}{4} = 2 + 4 = 6$$

$$\xrightarrow{n \rightarrow \infty} 3 \cdot \frac{2}{3} + 12 \cdot \frac{1}{3} = 3 P(X=3) + 12 P(X=12), \quad X: \Omega \rightarrow \mathbb{R}$$

ΟΡΙΣΜΟΣ: Εστια X : διακριτη τυχαια μεταβάση. Ορίζουμε
ως μέσον υπο της X , το αθροισμα:

$$E(X) = \sum_{a \in \Omega} a f_x(a), \quad \text{οποτε αυτό έχει νόημα.}$$

Το αθροισμα Είναι τιανω στο αριθμητικο συνδι

$X(\Omega) : a \text{ για } f_x(a) = 0 \quad \text{για } a \in \Omega \setminus X(\Omega)$ και ωδικα

με $\sum_{a > 0} a f_x(a) - \sum_{a < 0} |a| f_x(a)$, οποτε δην έχουμε μερια $\infty - \infty$

ΠΑΡΑΔΕΙΓΜΑ: $X = \text{ανορεχόμενα πίνακια κων σαπέρια}$

$$f_x(a) = \frac{1}{6}, \quad 1a \in \{1, 2, \dots, 6\}$$

$$E(X) = \sum_{a \in \Omega} a f_x(a) = \sum_{k=1}^6 k \cdot \frac{1}{6} = \frac{1}{6} \cdot \frac{6 \cdot 7}{2} = 3,5$$

Πρακτική ομρασία της Ex

Θεωρούμε ένα παιχνίδι, που σε μια πραγματοποίηση του, δίνει (γυαλιά) κερδούς X . Παιχνίδι τη παιχνίδι n σεριών κι εστώ X_1, X_2, \dots, X_n : τα κέρδη απ' αυτές. Τότε,

$$Ex \approx \frac{X_1 + \dots + X_n}{n} = \text{μέσο κερδούς (χια τη μέση)}.$$

Παραδειγματικά υπολογισμοί της Ex

$$1). X: \text{τυχαιά μεταβλητή με } f(x) = \begin{cases} \frac{1}{2^k} & : k \in \mathbb{N}^+ \\ 0 & : k \in \mathbb{R} \setminus \mathbb{N}^+ \end{cases}$$

$$Ex = \sum_{x \in \mathbb{R}} x f(x) = \sum_{k=1}^{\infty} k \cdot \frac{1}{2^k}$$

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \Rightarrow \sum_{k=0}^{\infty} k \cdot x^{k-1} = \frac{1}{(1-x)^2} \Rightarrow \sum_{k=1}^{\infty} k \cdot x^k = \frac{x}{(1-x)^2}$$

$$2). X: \text{τυχαιά μεταβλητή με } f_x(k) = \begin{cases} \frac{c}{k^2}, & k \in \mathbb{N}^+ \\ 0, & k \in \mathbb{R} \setminus \mathbb{N}^+ \end{cases}$$

$$c = ; \quad Ex = ;$$

$$1 = \sum_{k=1}^{\infty} f_x(k) = c \cdot \sum_{k=1}^{\infty} \frac{1}{k^2} = c \cdot \frac{\pi^2}{6} \Rightarrow c = \frac{6}{\pi^2}$$

$$Ex = \sum_{a \in \mathbb{R}} a f_x(a) = \sum_{k=1}^{\infty} k \cdot \frac{c}{k^2} = c \cdot \sum_{k=1}^{\infty} \frac{1}{k} = \infty$$

$$3). X: \text{τυχαιά μεταβλητή με } f_x(x) = \begin{cases} \frac{3}{\pi^2 k^2}, & k \in \mathbb{Z} - \{0\} \\ 0, & k \in (\mathbb{Z} \setminus \{0\}) \cup \{0\} \end{cases}$$

$$\text{Υπολογίζαμε ότι } \sum_{x>0} x f_x(x) = \sum_{k=1}^{\infty} k \cdot \frac{3}{\pi^2 k^2} = \infty$$

$$\sum_{x<0} |x| f_x(x) = \sum_{k=1}^{\infty} |k| \cdot \frac{3}{\pi^2 k^2} = \frac{3}{\pi^2} \cdot \sum_{r=1}^{\infty} \frac{1}{r} = \infty$$

Άρα, στον ορισμό της Ex , έχουμε $\infty - \infty$ που δεν ορίζεται

(4)

$$4) f_x(k) = \begin{cases} \frac{3}{n^2} \cdot \frac{1}{k^2}, & k \in \mathbb{N}^+ \\ \frac{1}{2} \cdot \frac{1}{2^{|k|}}, & -k \in \mathbb{N}^+ \\ 0, & k \in (\mathbb{R} \setminus \mathbb{Z}) \cup \{0\} \end{cases}$$

$$EX = \sum_{a>0} a f_x(a) - \sum_{a<0} |a| f_x(a).$$

$$\sum_{a>0} a f_x(a) = \frac{3}{n^2} \sum_{k=1}^{\infty} k \cdot \frac{1}{k^2} = \infty$$

$$\sum_{a<0} |a| f_x(a) = \sum_{k=1}^{\infty} |k| \cdot \frac{1}{2} \cdot \frac{1}{2^{|k|}} \stackrel{j=-k}{=} \frac{1}{2} \sum_{j=1}^{\infty} j \cdot \frac{1}{2^j} = \frac{1}{2} \cdot 2 = 1$$

$$\text{Apa } EX = \infty - \infty = \infty$$

5) Ρίχνουμε δύο ψαριά και εστώ $2_1, 2_2$ οι ενδείξεις που αφένται. Βάσουμε $X = 12_1 - 2_2$. $EX = ?$

πίνακας ms $(x_1, x_2) \rightarrow |x_1 - x_2|$

2_1	1	2	3	4	5	6
1	0	1	2	3	4	5
2	1	0	1	2	3	4
3	2	1	0	1	2	3
4	3	2	1	0	1	2
5	4	3	2	1	0	1
6	5	4	3	2	1	0

$$P(X=i) = \begin{cases} \frac{6}{36}, & i=0 \\ \frac{10}{36}, & i=1 \\ \frac{9}{36}, & i=2 \\ \frac{6}{36}, & i=3 \\ \frac{4}{36}, & i=4 \\ \frac{2}{36}, & i=5 \end{cases}$$

$$EX = 0 \cdot \frac{6}{36} + \sum_{i=1}^5 i \cdot \frac{12-2i}{36} = \frac{70}{36} = \frac{35}{18}$$

ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ

ΠΡΟΤΑΣΗ Ι (ΓΡΑΜΜΙΚΟΤΗΤΑ)

Εστω X, Y ΔΙΑΚΡΙΤΕΣ στον ίδιο χώρο πιθανότητας και $c \in \mathbb{R}$. Τότε:

$$(i) E(X+Y) = EX + EY$$

Με την προϋπόθεση ότι οι EX, EY ορίζονται καθώς και το αθροίσμα τους. (Δηλαδή δεν έχουμε $\infty + (-\infty)$)

$$(ii) E(cx) = cEX, \text{ αν } n \text{ } EX \text{ ορίζεται}$$

ΠΡΟΤΑΣΗ ΙΙ

Εστω X : διαριτή τυχαία μεταβλητή

$$(i) \text{ Av } P(X=c) = 1, \text{ τότε } EX = c$$

$$(ii) \text{ Av } X \geq 0, \text{ δηλ } X(\omega) \geq 0 \forall \omega \in \Omega, \text{ τότε } EX \geq 0$$

και $EX = 0$, μόνο αν $P(X=0) = 1$.

$$(iii) \text{ Av } X \geq Y, \text{ τότε } EX \geq EY, \text{ οπότε } EX, EY \text{ ορίζονται}$$

$$(iv) \text{ Av } EX \text{ ορίζεται, τότε } |EX| \leq E|x|$$

- Απόδ-

$$(i) f_X(x) = P(X=x) = \begin{cases} 1, & \text{jia } x=c \\ 0, & \text{jia } x \in \mathbb{R} \setminus \{c\} \end{cases}$$

$$EX = \sum_{a \in \mathbb{R}} a f_X(a) = c \cdot 1 = c$$

$$(ii) \text{ Έχουμε } f_X(a) = P(X=a) \quad \forall a < 0$$

$$\text{Από } a, EX = \sum_{a \in \mathbb{R}} a f_X(a) = \sum_{a > 0} a f_X(a) \geq 0$$

$$\text{Av } EX = 0, \text{ τότε } a f_X(a) = 0 \quad \forall a < 0 \Rightarrow f_X(a) = 0 \quad \forall a < 0$$

$$\text{Από } mv \quad 1 = \sum_{a \in \mathbb{R}} f_X(a), \text{ έπειτα } f_X(0) = 1.$$

$$(iii) \text{ Av } EX = EY = \infty \text{ ή } EX = EY = -\infty, \text{ (οχι όμως)}$$

$$\text{Άλλως } n \quad 2 = X - Y \geq 0 \stackrel{(ii)}{\Rightarrow} E2 \geq 0 \Rightarrow EX - EY \geq 0 \Rightarrow EX \geq EY$$

$$(iv) -1 \leq X \leq 1 \stackrel{(iii)}{\Rightarrow} -E|x| \leq EX \leq E|x| \Rightarrow |EX| \leq E|x|$$

Ενα από
τα
EX, EY, μνη
μεταβλητών

(6)

Παραδειγμα (3β σελ. 144)

Ας Ω, IA: Ω → ℝ η διάκτυρα του Α. Δηλαδή

$$IA(\omega) = \begin{cases} 1, & \omega \in A \\ 0, & \text{αν } \omega \in \Omega \setminus A \end{cases}$$

$$\text{Τότε } E(IA) = P(A)$$

-Αποδ-

Η συνάρτηση πιθανοτήτας ms IA είναι

$$f(x) = P(IA = x)$$

$$\text{Ομως } \{IA = x\} = \{\omega \in \Omega : IA(\omega) = x\} = \begin{cases} A, & \text{αν } x = 1 \\ \Omega \setminus A, & \text{αν } x = 0 \\ \emptyset, & \text{αν } x \in \mathbb{R} \setminus \{0, 1\} \end{cases}$$

$$\text{Άρα, } f(x) = \begin{cases} P(A), & \text{αν } x = 1 \\ P(\Omega \setminus A), & \text{αν } x = 0 \\ 0, & \text{αν } x \in \mathbb{R} \setminus \{0, 1\} \end{cases}$$

$$\text{Άρα } E(IA) = 1 \cdot P(A) + 0 \cdot P(\Omega \setminus A) = P(A)$$

ΔΙΚΑΙΗ ΤΙΜΗ ΠΑΙΧΝΙΔΙΟΥ

Εστω ότι ένα παιχνίδι μας δίνει τυχαίο κέρδος $X \in \mathbb{R}$ καθε χρονική περίοδο που παίζεται. Τι πρέπει να πληρώγουμε για να παίζουμε μια χρονική παραγάγεια;

-Απάντηση-

Εξ, γιατί πληρώνουμε σε καθε παιχνίδι ποσό $c = EY$, το κέρδος μας θα είναι $X - c$.

$$\text{Το μέσο κέρδος } E(X - c) = EX - Ec = Ex - c = 0$$

↳ Εξαγωγής
δραμμάτων

ΠΑΡΑΔΕΙΓΜΑ : Ρίχνουμε απεριόριτο παρί. Κέρδιζουμε

ι ευρώ, αν έρθει i. Ποια είναι η συνήθηση της παραγάγειας;

-ΑΝΩΗ-

Εστω $X = \text{το αποτέλεσμα μιας ρίψης}$

$$EX = \sum_{i=1}^{\infty} P(X=i) = \dots \not \in \mathbb{R} \rightarrow \text{η συνήθηση της}$$

30/10/2018

8^ο μαθημα

Πιθανότητες Ι - Τμ. Χειρισμ.

ΑΣΚΗΣΗ 3.6 (φυλλάδιο)

Αμερόληπτο νόμισμα ρίχνεται διαδοχικά και αν η ενδεική κορώνα εμφανίζεται για πρώτη φορά στην k -ρίψη, τότε κερδίζουμε 2^k ευρώ. Ποιο είναι το μέσο κέρδος του παιχνιδιού;

- ΛΥΣΗ -

Εστω x : τυχαιό κέρδος. Η x παίρνει τιμές

$$\text{οτο } A = \{2^k : k \in \mathbb{N}^+\}$$

Εχει συνάρτηση πιθανότητας $f_x(x) = P(X=x) = \begin{cases} \frac{1}{2^k}, & \text{αν } x=2^k \\ 0, & \text{αν } x \in \mathbb{R} \setminus A \end{cases}$

$$\text{Αρα } E(X) = \sum_{a \in A} a f_x(a) = \sum_{k=1}^{\infty} 2^k \cdot \frac{1}{2^k} = \sum_{k=1}^{\infty} 1 = \infty$$

$$P(A) = E(1_A)$$

ΑΣΚΗΣΗ

Εστω ο δειγματικός χώρος και P : πιθανότητα σε αυτόν.

(i) Αν $A_1, \dots, A_r \subseteq \Omega$, τότε $1_{A_1}, 1_{A_2}, \dots, 1_{A_r} = 1_{A_1 \cup \dots \cup A_r}$

(ii) Αν $A \subseteq \Omega$, τότε $1_A = 1 - 1_{\Omega \setminus A}$

(iii) Αν $A_1, \dots, A_n \subseteq \Omega$, τότε $\sum_{i=1}^n 1_{A_i} = 1 - (1 - 1_{\Omega \setminus A_1}) \dots (1 - 1_{\Omega \setminus A_n})$

(iv) Από το (iii) συμπεραίνετε ότι:

$$P(A_1 \cup \dots \cup A_n) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} P(A_{i_1} \cup \dots \cup A_{i_k})$$

- ΛΥΣΗ -

(ii) Τα δύο μελην παιρνουν μόνο τις τιμές 0 και 1

Το αριθμερό είναι $1 \Leftrightarrow x \in \Omega \setminus A$

Το δεύτερο είναι $1 \in 1_A(A) = 0 \Leftrightarrow x \in \Omega \setminus A$

(i) H $\int_{A_1} \int_{A_2} \dots \int_{A_r}(x) = 1 \Leftrightarrow \int_{A_1}(x) = \dots = \int_{A_r}(x) = 1 \Leftrightarrow$
 $\forall x \in A_1 \cap \dots \cap A_r \Leftrightarrow \int_{A_1 \cap \dots \cap A_r}(x) = 1$

(iii) Το δεξιό μέλος είναι 1 σε κάποιο $x \in$

$$(1 - \int_{A_1}(x)) \dots (1 - \int_{A_n}(x)) = 0 \Leftrightarrow$$

$\exists i \in \{1, \dots, n\}$ τέτοιο ώστε $1 = \int_{A_i}(x) \Leftrightarrow$

$$x \in \bigcup_{i=1}^n A_i$$

▷ δια $k=0$, αυτό
ισχύει με \int

(iv) H (iii) γράφεται $\int \bigcup_{i=1}^n A_i = 1 - \sum_{k=0}^n \sum_{1 \leq i_1 \leq \dots \leq i_k \leq n} (-1)^k \int_{A_{i_1} \dots A_{i_k}}$

$$\text{Λόγω } E(\text{PCA}) = E(A) \text{ και της δραματικότητας } E, \text{ παίρνουμε} \\ P\left(\bigcup_{i=1}^n A_i\right) = E\left(\int \bigcup_{i=1}^n A_i\right) = 1 - E(\Sigma) = 1 - \sum_{k=1}^n \sum_{1 \leq i_1 \leq \dots \leq i_k \leq n} (-1)^k P(A_{i_1} \dots A_{i_k}) =$$

$$= \sum_{k=1}^n \sum_{1 \leq i_1 \leq \dots \leq i_k \leq n} (-1)^{k-1} P(A_{i_1} \cap \dots \cap A_{i_k})$$

§ 4.4 Μετα την συναρτήση διαρκής τυχαίας μεταβάσεων

Έχουμε $X: \Omega \rightarrow \mathbb{R}$ διαρκής τυχαία μεταβάση με συναρτήση πιθανότητας f_X και $g: \mathbb{R} \rightarrow \mathbb{R}$.

H $Y = g(X)$ είναι τ.μ. διαρκής, γιατί $Y(\omega) = g(X(\omega))$

$$\mathbb{N} \xrightarrow{h} X(\omega) \xrightarrow{g} Y(\omega)$$

H $g(h(x))$ είναι επί

(διότι το $X(\omega)$ είναι αριθμητικό)

ΘΕΩΡΗΜΑ

$$EY = \sum_{a \in \mathbb{R}} a f_Y(a)$$

$$Eg(X) = \sum_{a \in \mathbb{R}} g(a) f_X(a), \text{ όποτε το δεξιό μέλος ορίζεται}$$

ΠΑΡΑΔΕΙΓΜΑ ① Av $g(x)$ έχουμε το γνωστό $EX = \sum_{a \in \mathbb{R}} a f_X(a)$

$$② \text{ Για } g(x) = |x|, E|x| = \sum_{x \in \mathbb{R}} |x| f_X(x)$$

ΠΑΡΑΤΗΡΗΣΗ

$$\text{Επειδή } E[X] = \sum_{x \geq 0} x \cdot f_x(x) + \sum_{x < 0} |x| \cdot f_x(x)$$

$$\text{Επομένως } E[X] \in \mathbb{R} \Leftrightarrow \sum_{x \geq 0} x \cdot f_x(x) < \infty$$

$$\sum_{x < 0} |x| \cdot f_x(x) < \infty \Leftrightarrow \sum_{x \in \mathbb{R}} |x| \cdot f_x(x) < \infty \Leftrightarrow E[|X|] < \infty$$

Παραδ. ③: Εστια X διαρροπή τυχαία μεταβλητή με ουραγμένη πιθανότητα $f(x) = \begin{cases} \frac{1}{x(x+1)} & x \in \mathbb{N}^+ \\ 0 & x \in \mathbb{R} \setminus \mathbb{N}^+ \end{cases}$

Για ηδα $a \in \mathbb{R}$, ισχύει $E(|X|^a) < \infty$;

-ΛΥΣΗ-

$$[\text{Η } f \text{ είναι δυν. πιθ. γιατί } f \geq 0 \text{ και } \sum_{x \in \mathbb{R}} f_x(x) = \sum_{k=1}^{\infty} \frac{1}{k(k+1)} =$$

$$= \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1} \right) = 1]$$

$$\cdot E(|X|^a) = \sum_{k=1}^{\infty} k^a f_x(k) = \sum_{k=1}^{\infty} k^a \cdot \frac{1}{k(k+1)}$$

Αυτή είναι την ίδια συμπεριφορά σύγκρισης με την:

$$\sum_{k=1}^{\infty} \frac{k^a}{k^2} = \sum_{k=1}^{\infty} \frac{1}{k^{2-a}}$$

Αυτή συγκρίνεται και μόνο αν $2-a > 1 \Leftrightarrow (2-a) > 1$ (κριτ. οροκίνηση)

$$a < 1$$

§ 4.5 Διακύμανση (Διασπορά)

X : διακριτή τυχαία μεταβλητή, με $E|X| < \infty$, δηλαδή $EX \in \mathbb{R}$

Θέλουμε να ποσοτικοποιήσουμε την απόκλιση της X , από την μέση της $\mu = EX$

Ένα ποσοτικό μέτρο, είναι $E|x - \mu|$

Για υπολογιστικούς λόγους, προτιμαρε την ποσοτητα: $E((x - \mu)^2)$

ΟΡΙΣΜΟΣ: Διακύμανση (διασπορά) της X , λέμε τον αριθμό $Var(X) := E((x - \mu)^2) \in [0, \infty)$

ΟΡΙΣΜΟΣ: Τυπική απόκλιση της X , λέμε τον αριθμό $S_x = \sqrt{Var(X)}$

[προτέρημα της S_x : ίδιες μονάδες με την X]

[προτέρημα της $Var(X)$: καλύτερες αλγεβρικές ιδιότητες]

παράδειγμα: X = το αποτέλεσμα πίνας ενός ζαριού

$Var(X) = ?$

-ΛΥΣΗ-

Έρουμε ότι $\mu = EX = 3,5$

$$Var(X) = E((x - \mu)^2) = \sum_{x=1}^6 (x - 3,5)^2 f_x(x) = \sum_{x=1}^6 (x - 3,5)^2 \cdot \frac{1}{6} = \frac{35}{12} \approx 3$$

ΘΕΩΡΗΜΑ

Έστω X όπως πιο πάνω (δηλ. $E|X| < \infty$, x : διακριτή), τότε $Var(X) = E(X^2) - (EX)^2$

-Απόδ.

$$Var(X) = E((x - \mu)^2) = E(X^2 - 2\mu X + \mu^2) =$$

$$= E(X^2) - 2\mu \cdot EX + E(\mu^2) =$$

$$= E(X^2) - 2(EX)^2 + (EX)^2 =$$

$$= E(X^2) - (EX)^2$$

ΑΣΚΗΣΗ

X = το αποτέλεσμα πιον τίμιου γαριού. $Var(X) = ?$

-ΛΥΣΗ-

$$Var(X) = EX^2 - (EX)^2$$

$$\text{Έρουμε ότι } EX = \frac{7}{2}$$

$$EX^2 = \sum_{k \in \mathbb{R}} k^2 f_X(k) =$$

$$= \sum_{k=1}^6 k^2 \cdot \frac{1}{6} = \frac{1}{6} \cdot \frac{6 \cdot 7 \cdot 13}{6} = \frac{91}{6}$$

ΠΡΟΤΑΣΗ

X : διακριτή τυχαία μεταβλητή με $|EX| < \infty$ και $a, \beta \in \mathbb{R}$

$$\text{Τότε } (i) \ Var(aX) = a^2 \cdot Var(X) \quad (ii) \ Var(aX + \beta) = a^2 \cdot Var(X)$$

$$(iii) \ Var(X+a) = Var(X)$$

$$(iv) \ Var(X) = 0 \Leftrightarrow \exists c \in \mathbb{R} \text{ με } P(X=c) = 1$$

-Αποδ-

$$(i) \ Var(aX) = E((aX - E(aX))^2) =$$

$$= E(a^2(X - EX)^2) = a^2 E((X - EX)^2) = a^2 \cdot Var(X)$$

$$(ii) \ Var(X+a) = E((X+a - E(X+a))^2) = E((X+a - EX - a)^2) =$$

$$= E((X - EX)^2) = Var(X)$$

$$(iii) \ " \Rightarrow " \text{ έχουμε } E((X-\mu)^2) = 0 \Rightarrow P((X-\mu)^2 = 0) = 1 \Rightarrow P(X=\mu) = 1.$$

ΙΔΙΟΤΗΤΑ ΜΕΣΗΣ Τ.

$X \geq 0 \Rightarrow EX \geq 0$ και $EX = 0$ ανν $P(X=0) = 1$

" \Leftarrow " Η X εχει συναρτηση πιθανοτασ

$$f_X(x) = \begin{cases} 1, & \text{αν } x=c \\ 0, & \text{αν } x \in \mathbb{R} \setminus \{c\} \end{cases}$$

$$\text{Αρα, } \mu = EX = \sum_{a \in \mathbb{R}} a f_X(a) = c$$

$$Var(X) = E((X-c)^2) = \sum_{a \in \mathbb{R}} (a-c)^2 f_X(a) = 0^2 \cdot 1 = 0$$

Tuxaia metavlasti Bernoulli

Έστω $p \in [0,1]$. Tuxaia metavlasti Bernoulli με παράμετρο p , λέμε καθε tuxaia metavlasti X με συναρτηση πιθανοτάσ $f_X(t) = \begin{cases} 1-p, & \text{av } t=0 \\ p, & \text{av } t=1 \\ 0, & \text{av } t \in \mathbb{R} \setminus \{0,1\} \end{cases}$

Λέμε επίσης, ότι η X aριθμούσε την κατανομή Bernoulli με παράμετρο p και γράφουμε $X \sim \text{Bernoulli}(p)$

"Πώς εμφανίζεται μια tuxaia metavlasti Bernoulli?"

→ Εχουμε πείραμα που ένα αποτέλεσμα το λέμε επιτυχία, ενώ οπιδόποτε άλλο, το λέμε αποτυχία.
Έστω p : η πιθανότητα επιτυχίας.

Ορίζουμε $X = \begin{cases} 1, & \text{av το πείραμα δίνε επιτυχία} \\ 0, & \text{αλλιώς} \end{cases}$

Tote $X \sim \text{Bernoulli}$

Παραδείγμα: Ρίχνουμε αμερόλαπτο Jupi και δείχνουμε

$$X = \begin{cases} 1, & \text{av έρθε } 1 \text{ ή } 2 \\ 0, & \text{αλλιώς} \end{cases}$$

Tote: $X \sim \text{Bernoulli}(p)$, $p = P(\text{έρχεται } 1 \text{ ή } 2) = \frac{2}{6} = \frac{1}{3}$

ΠΡΟΤΑΣΗ:

Έστω $p \in [0,1]$ και $X \sim \text{Bernoulli}$. Tote:

(i) $E(X) = p$

(ii) $\text{Var}(X) = p(1-p)$

- Απόδ-

(i) $E(X) = \sum_{a \in \mathbb{R}} a f_X(a) = 1 \cdot f_X(1) + 0 \cdot f_X(0) = 1 \cdot p + 0 \cdot (1-p) = p$

7

$$(ii) E(X^2) = \sum_{x \in \mathbb{R}} x^2 f_X(x) = 1^2 \cdot p + 0^2 \cdot (1-p) = p$$

$$\text{Var}(X) = E(X^2) - (EX)^2 = p - p^2 = p(1-p)$$

ΔΙΟΝΥΜΙΚΗ ΤΥΧΑΙΑ ΜΕΤΑΒΛΗΤΗ

Εστω $n \in \mathbb{N}^+$, $p \in [0, 1]$

Μια τυχαία μεταβλητή X τη λέμε διωνυμική με παραμέτρους n, p αν X έχει συνάρτηση πιθανότητας

$$f_X(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x}, & x \in \{0, 1, \dots, n\} \\ 0 & , x \in \mathbb{R} \setminus \{0, 1, 2, \dots, n\} \end{cases}$$

Γράφουμε τότε, $X \sim \text{Bin}(n, p)$,

Η f_X είναι συνάρτηση πιθανότητας γιατί $f_X \geq 0$ και $\sum_{t \in \mathbb{R}} f_X(t) = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} = (p + (1-p))^n = 1$.

Η X παίρνει τιμές στο $[0, 1, 2, \dots, n]$

"Πώς προκύπτει μια $X \sim \text{Bin}(n, p)$?"

→ Έχουμε πείραμα με πιθανότητα επιτυχίας p .
Εκτελούμε n ανεξάρτητες πραγματοποίσεις του.
Θετούμε X = πλήθος επιτυχιών στις n δοκιμές (πραγματοποίσεις)

Προφανώς $X \in \{0, 1, 2, \dots, n\}$

ΠΡΟΤΑΣΗ.

Η $X \sim \text{Bin}(n, p)$

- Απόδ -

Φυλλ. ασκ. 2.31. (πρώτο ερώτημα)

①

1.11.2018

9ο βαθμα

Μ.Θ.Ι. - Χειρισμος

 $\text{Bin}(n, p) \quad n \in \mathbb{N}^+, p \in [0, 1]$

ΣΥΝΑΡΤΗΣΗ ΠΙΘΑΝΟΤΗΤΑΣ

$$f_x(k) = \binom{n}{k} p^k (1-p)^{n-k} \quad k \in \{0, 1, \dots, n\}$$

ΠΑΡΑΤΗΡΗΣΗ (Αναπαρασταση μιας διανυμησης τυχ. μετ.)

Εκτελούμε η ανεξαρτητες δορις ενα περαμα που έχει πιθανότητα επιτυχιας p .

Θετουμε $X :=$ αριθμος επιτυχιων οτις η δοκιμες ($\sim \text{Bin}(n, p)$)
 και για $i=1, \dots, n$, $X_i := \begin{cases} 1, & \text{αν } \text{τη δοκιμη } i \text{ επιτυχη} \\ 0, & \text{αν } \text{τη δοκιμη } i \text{ δεν επιτυχη} \end{cases}$
 Τοτε, $X_i \sim \text{Bernoulli}(p) \quad \forall i=1, \dots, n$ και $X = X_1 + X_2 + \dots + X_n$

ΑΙΓΚΗΣΗ 44 (ευαλαδιο)

5% των επιβατων δν εργαζεται dia τη πτηση. Σημ απορινη πτηση, το αεροπλανο έχει 200 θεσσ και η επιρρα έχει πουλήσει 203 εισιτηρια. Ποια η πθανοτητα να μην μπορεσε να ταξιδεψε πελάτης με αστικριο -ΛΥΣΗ-

Εστω S το πληθος που εργαζονται

Τοτε $S \sim \text{Bin}(203, 0.95)$

$p = 0.95$

Ζηταιμε μν $P(S > 900) = P(S=201) + (S=202) + (S=203)$

$$\sum_{k=201}^{203} \binom{203}{k} p^k (1-p)^{203-k}$$

Εστω W το πλήθος που δν εργαζονται

$W \sim \text{Bin}(203, 0.05)$

$$P(W < 3)$$

(2)

ΑΣΚΗΣΗ

Σκοπεύτις πινα 10 βολές σ' έναν στόχο. Η πιθανότητα να το πετύχει 4 φορές είναι τριπλασία της πιθανότητας να το πετύχει 3 φορές. Ποια η ευπονητικότητα;

Επειγόντως να βρεθεί η πιθανότητα σε 5 βολές να πετύχει α τον στόχο: (a) Δύο τουλαχιστούν αριθμούς, (b) Η' ορες η καριά αριθμοί (g) Το ποσό 4 αν σημαίνει ότι πέτυχε τουλαχιστούν 2.

-ΛΥΣΗ-

Εσίω X : το πλήθος των επιτυχιών στις 10 βολές
 \exists έρουμε ότι $P(X=4) = 3P(X=3)$

Αν p είναι η ευπονητικότητα του, τότε $X \sim \text{Bin}(10, p)$

$$\binom{10}{4} p^4 (1-p)^6 = 3 \binom{10}{3} p^3 (1-p)^7 \Leftrightarrow$$

$$\frac{10!}{4! 6!} p = 3 \cdot \frac{10!}{3! 7!} (1-p) \Leftrightarrow$$

$$\frac{7}{12} = \frac{1-p}{p} \Leftrightarrow p = \frac{12}{19}$$

Εστιώ Y = αριθμός επιτυχιών σε 5 βολές $\sim \text{Bin}(5, p)$

$$(a) P(Y \geq 2) = 1 - P(Y < 2) =$$

$$= 1 - (P(Y=0) + P(Y=1)) =$$

$$= 1 - (p^0 \cdot (1-p)^5 + \binom{5}{1} p (1-p)^4)$$

$$(b) P(Y=5) + P(Y=0) = p^5 + (1-p)^5$$

$$(g) P(Y \leq 4 | Y \geq 2) = \frac{P(Y \leq 4, Y \geq 2)}{P(Y \geq 2)} =$$

$$= \frac{\sum_{k=2}^4 P(Y=k)}{P(Y \geq 2)}$$

ASUCHSH 4.8

$X \sim \text{Bin}(n, p)$ $p \in (0, 1)$, $q := 1 - p$

NAO

$x, f(x)$

$$(a) E(t^x) = (pt + q)^n, t \in \mathbb{R}$$

$$Eg(x) = \sum_{t \in \mathbb{R}} q(t) f_X(t)$$

$$(b) E\left(\frac{1}{x+1}\right) = \frac{1 - (1-p)^{n+1}}{(n+1) \cdot p}$$

- AUSCHH -

$$(a) E(t^x) = \sum_{k \in \mathbb{R}} t^k f_X(k) = \sum_{k=0}^n t^k \binom{n}{k} p^k (1-p)^{n-k} =$$

$$= \sum_{k=0}^n \binom{n}{k} (pt)^k \cdot (1-p)^{n-k} = (pt + 1-p)^n = (pt + q)^n$$

$$(b) E\left(\frac{1}{x+1}\right) = \sum_{k=0}^n \frac{1}{k+1} \binom{n}{k} p^k (1-p)^{n-k}$$

$$\text{Exoufe } \frac{1}{k+1} \binom{n}{k} = \frac{1}{k+1} \cdot \frac{n!}{k!(n-k)!} = \frac{1}{k+1} \cdot \frac{(n+1)!}{(k+1)!(n+1-(k+1))!} =$$

$$= \frac{1}{n+1} \cdot \binom{n+1}{k+1}$$

$$\text{Apa } E\left(\frac{1}{x+1}\right) = \frac{1}{n+1} \sum_{k=0}^n \binom{n+1}{k+1} p^k (1-p)^{n-k} \stackrel{j=k+1}{=}$$

$$= \frac{1}{n+1} \sum_{j=1}^{n+1} \binom{n+1}{j} p^{j-1} (1-p)^{n-(j-1)} =$$

$$= \frac{1}{n+1} \cdot \frac{1}{p} \sum_{j=1}^{n+1} \binom{n+1}{j} p^j (1-p)^{n+1-j} =$$

$$= \frac{1}{(n+1) \cdot p} \left(\sum_{j=0}^{n+1} " - \binom{n+1}{0} p^0 \cdot (1-p)^{n+1} \right) =$$

$$= \frac{1}{(n+1) \cdot p} \left((p + 1-p)^{n+1} - (1-p)^{n+1} \right) = \frac{1 - (1-p)^{n+1}}{(n+1) \cdot p}$$

ΠΡΟΤΑΣΗ

Αν $X \sim \text{Bin}(n, p)$, $n \in \mathbb{N}^+$, $p \in [0, 1]$. Τότε:

$$(a) E(X) = np$$

$$(b) \text{Var}(X) = np(1-p)$$

-Απόδ-

(a) 1οί πόνος : $X = X_1 + \dots + X_n$ με $X_i \sim \text{Bernoulli}(p)$

$$E(X) = E(X_1) + E(X_2) + \dots + E(X_n) = np$$

$$\underline{2οί πόνος} : E(X) = \sum_{a \in \mathbb{R}} a f_X(a) = \sum_{k=0}^n k \binom{n}{k} p^k (1-p)^{n-k} =$$

$$= \sum_{k=1}^n \frac{n!}{(k-1)!(n-k)!} p^k (1-p)^{n-k} = n \cdot \sum_{k=1}^n \binom{n-1}{k-1} p^k \cdot (1-p)^{n-k} =$$

$$= \sum_{j=0}^{n-1} n \cdot \sum_{j=0}^{n-1} \binom{n-1}{j} p^{j+1} \cdot (1-p)^{n-(j+1)} =$$

$$= np \sum_{j=0}^{n-1} \binom{n-1}{j} = np(p+1-p)^{n-1} = np$$

(b) Η $E(t^X) = (pt+q)^n$ δοαιρεται ως ειδης:

$$\sum_{k=0}^n f_X(k) \cdot t^k = g(t) \xrightarrow{\frac{d}{dt}}$$

$$\sum_{k=0}^n k f_X(k) t^{k-1} = g'(t) \xrightarrow{\frac{d}{dt}}$$

$$\sum_{k=0}^n k(k-1) f_X(k) t^{k-2} = g''(t)$$

Για $t=1$, παρατημε $E(X(X-1)) = g''(1)$

$$g'(t) = n(pt+q)^{n-1} p, g''(t) = n(n-1)(pt+q)^{n-2} p^2 =$$

$$g''(1) = n(n-1)p^2$$

$$E(X^2) = E(X(X-1) + X) = n(n-1)p^2 + np$$

$$\text{Άρα, } \text{Var}(X) = E(X^2) - (E(X))^2 = n^2 p^2 - np^2 + np - np^2 = np(1-p)$$

(5)

§ 4.7 Η τυχαια μεταβλητη Poisson

Εστιω $\lambda > 0$

ΟΡΙΣΜΟΣ: Λεμε ότι η τυχαια μεταβλητη X είναι Poisson με παράμετρο λ αν έχει συνάρτηση πιθανοτήτων:

$$f_X(x) = \frac{e^{-\lambda} \lambda^x}{x!} \quad \forall x \in \mathbb{N}$$

Γραφούμε $X \sim \text{Poisson}(\lambda)$

Η f_X γίνεται πρόσημη συνάρτηση πιθανοτήτων, γιατι

$$f_X \geq 0 \text{ και } \sum_{x \in \mathbb{N}} f_X(x) = \sum_{x=0}^{\infty} e^{-\lambda} \frac{\lambda^x}{x!} =$$

$$= e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{-\lambda} \cdot e^{\lambda} = 1.$$

ΠΡΟΤΑΣΗ

Αν $X \sim \text{Poisson}(\lambda)$, τότε:

(a) $EX = \lambda$

(b) $\text{Var}(X) = \lambda$

-Αναδ-

$$(a) EX = \sum_{k=0}^{\infty} k f_X(k) = \sum_{k=0}^{\infty} k \cdot e^{-\lambda} \cdot \frac{\lambda^k}{k!} =$$

$$= e^{-\lambda} \cdot \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!} \underbrace{\frac{j=k-1}{e^{-\lambda} \cdot \sum_{j=0}^{\infty} \frac{\lambda^{j+1}}{j!}}} =$$

$$= \lambda \cdot e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} = \lambda \cdot e^{-\lambda} \cdot e^{\lambda} = \lambda$$

$$(b) \text{Var}(X) = E(X^2) - (EX)^2 = E(X(X-1)) + EX - (EX)^2$$

$$E(X(X-1)) = \sum_{t \in \mathbb{N}} t \cdot (t-1) \cdot f_X(t) =$$

$$= \sum_{k=0}^{\infty} k \cdot (k-1) \cdot e^{-\lambda} \cdot \frac{\lambda^k}{k!} = e^{-\lambda} \cdot \sum_{k=2}^{\infty} \frac{\lambda^k}{(k-2)!} \underbrace{\frac{j=k-2}{}}_{}$$

$$= e^{-\lambda} \cdot \sum_{j=0}^{\infty} \frac{\lambda^{j+2}}{j!} = \lambda^2 \quad \text{Απλ} \quad \text{Var}(X) = \lambda^2 + \lambda - \lambda^2 = \lambda$$

ΦΑΙΝΟΜΕΝΑ ΠΟΥ ΑΓΟΛΟΥΘΟΥΝ ΤΗΝ ΚΑΤΑΝΟΗ ΠΟΙΣΣΟΝ

Χ με τιμές $\{1, 2, 3\}$

με πιθανότητες: $\frac{1}{8}, \frac{3}{8}, \frac{1}{2}$

I. Αριθμός ατόμων σε μια πόλη με πληθ. ≥ 100 χρόνια

II. Αριθμός ατόμων που πηγαίνουν στηριζού στο ΑΟΤΥ
μια Πέμπτη

III. Αριθμός λαός πλευρανητών που δινούνται αυτό
12-1 μια μέρα

"Μοιά η αυτά με επεισόδια με Poisson;"

→ Έχουμε μερικό αριθμό ανεξάρτητων μονάδων που
η καθετιδία κάθε μια δυσκοπήσει πνεύμα. Ε με πολύ
μικρή πιθανότητα. Το πλήθος αυτό που κατεί με
α είναι σχεδόν Poisson(λ) τυχαιά μεταβλητή
καταστάση.

Για μν αριθμού, έχει $\text{Bin}(n, p)$

Άλλα $\text{Bin}(n, p) \approx \text{Poisson}(\lambda)$

ΠΡΟΤΑΣΗ

Έστω $\lambda > 0$ και $X_n \sim \text{Bin}(n, p_n)$ με $n p_n = \lambda$ $\forall n \geq 1$
και $Y \sim \text{Poisson}(\lambda)$. Τότε $\forall k \in \mathbb{N}$ (σκυριά):

$$\lim_{n \rightarrow \infty} P(X_n=k) = P(Y=k)$$

- Απόδ-

$$P(X_n=k) = \binom{n}{k} p_n^k (1-p_n)^{n-k} =$$

$$= \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k!} \cdot \frac{\lambda^k}{n^k} \left(1 - \frac{\lambda}{n}\right)^{n-k} =$$

$$= \frac{\lambda^n}{k!} \cdot \frac{n(n-1) \cdot \dots \cdot (n-k+1)}{n^k} \cdot \left(1 - \frac{\lambda}{n}\right)^n \cdot \left(1 - \frac{\lambda}{n}\right)^{-k} =$$

$$\xrightarrow{n \rightarrow \infty} \frac{\lambda^k}{k!} \cdot 1 \cdot e^{-\lambda} \cdot 1$$

(7)

ΑΣΚΗΣΗ 4.11 (Κυριαρχία)

Ασφαλιστής ασφαλίζει 100 οδηγούς για μια χρονιά καθε οδηγός προκαλεί ατύχημα τη δεύτερη χρονία, με πιθανότητα $p = \frac{1}{100}$. Εστι X = αριθμός οδηγών που προκαλούν ατύχημα. Να υπολογιστούν οι $P(X \leq 1)$, $P(X=3)$, $P(X=10)$ (α) αριθμώς και (β) με προσέγγιση από Poisson.

-ΛΥΣΗ-

$$(α) P(X \leq 1) = P(X=0) + P(X=1) = \\ = (1-p)^{100} + 100p(1-p)^{99} \approx 0,995362$$

$$P(X=3) = \binom{100}{3} p^3 \cdot (1-p)^{97} \approx 1467 \cdot 10^{-7}$$

$$P(X=10) = \binom{100}{10} p^{10} \cdot (1-p)^{90} \approx 1581 \cdot 10^{-20}$$

(β) Με προσέγγιση Poisson

Η X προσεγγίζεται από την $Y \sim \text{Poisson}(np)$

$$P(Y \leq 1) = e^{-\lambda} + e^{-\lambda} \cdot \lambda$$

$$P(Y=3) = e^{-\lambda} \cdot \frac{\lambda^3}{3!} \approx 1503 \cdot 10^{-7}$$

$$P(Y=10) = e^{-\lambda} \cdot \frac{\lambda^{10}}{10!} \approx 2493 \cdot 10^{-20}$$

①

6/11/2018

10^η μαθητικά.

Πιθανότητες I.

Άσκηση 4.10 (φυλλαρίδιο) (Θεμα εγγιασμών)

 $X = \#$ πεδατών που εισέρχεται μα κέρα σ' ένα καταστήμα.Ξέρουμε ότι $X \sim \text{Poisson}(120)$. Καθε πεδατός, ανεξάρτητα απ' τους υπόλοιπους, πάπινε με ταρτα, με πιθανότητα $p = \frac{1}{4}$ ή με μερική με πιθ. $1-p = \frac{3}{4}$ Εστιώ $Y = \#$ πεδατών που πάπινα με ταρτα.ΝΔΟ $Y \sim \text{Poisson}(\lambda p)$

$$P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

$$-\text{AVLH} - \quad 30.$$

$$\text{Για } k \in \mathbb{N}, P(Y=k) = \sum_{j=0}^{\infty} P(Y=k, X=j) = \sum_{j=k}^{\infty} P(Y=k | X=j) P(X=j) =$$

$$= \sum_{j=k}^{\infty} e^{-\lambda} \cdot \frac{\lambda^j}{j!} \binom{j}{k} p^k (1-p)^{j-k} =$$

$$= e^{-\lambda} \cdot p^k \sum_{r=0}^{\infty} \frac{\lambda^{r+k}}{(r+k)!} \cdot \frac{(r+k)!}{k! r!} (1-p)^r =$$

$$= e^{-\lambda} \cdot p^k \cdot \lambda^k \cdot \frac{1}{k!} \sum_{r=0}^{\infty} \frac{(\lambda(1-p))^r}{r!} = e^{-\lambda} \cdot \frac{(\lambda p)^k}{k!} e^{\lambda - \lambda p} =$$

$$= e^{-\lambda p} \cdot \frac{(\lambda p)^k}{k!}, \text{ Αρα } Y \sim \text{Poisson}(\lambda p)$$

Άσκηση 4.12 (φυλλαρίδιο)

(a) $X \sim \text{Poisson}(\lambda)$. Για κάθε $h: \mathbb{R} \rightarrow [0, \infty)$, λογούμε $E(Xh(x)) = \lambda E(h(x+1))$

$$-\text{AVLH} -$$

$$E(Xh(x)) = \sum_{x \in \mathbb{R}} xh(x) f_X(x) = \sum_{k=0}^{\infty} k \cdot h(k) \cdot e^{-\lambda} \frac{\lambda^k}{k!} =$$

$$= \sum_{k=0}^{\infty} e^{-\lambda} h(k) \frac{\lambda^k}{(k-1)!} \underbrace{\sum_{n=0}^{k-1} \frac{\lambda^n}{n!}}_{= \lambda^{k-1}} \sum_{n=0}^{\infty} e^{-\lambda} \cdot h(n+1) \frac{\lambda^{n+1}}{n!} =$$

$$= \lambda \sum_{n=0}^{\infty} h(n+1) \cdot e^{-\lambda} \frac{\lambda^n}{n!} = \lambda \cdot E h(x+1)$$

(2)

Η γεωμετρική τυχαία μεταβλητή

Εστια $p \in [0, 1]$. Θεωρούμε ένα πειραματικό επειγόντων πιθανότητας p .

Εκτελούμε ακολουθία ανεξάρτητων δοκιμών του πιραματού. Εστια X = αριθμός δοκιμών ως την ηρώητη τυχαία $\in \mathbb{N}^+ \cup \{\infty\}$.

Αν $p=0$, τότε $X(\omega)=\infty \ \forall \omega \in \Omega$.

Αν $p > 0$, τότε $P(X < \infty) = 1$ (Άσκηση 2.31 (β))

Στο επόμενο, θα θεωρούμε ότι $p > 0$. $[P(X=\omega) \leq 1-p]^n$

Η X , ονομάζεται γεωμετρική τυχαία μεταβλητή, με παράγοντα p . Λεγεται γεωμετρική, όταν η X ακολουθεί τη γεωμετρική κακωση, με παράγοντα p .
Γράψουμε, $X \sim \text{Γεωμετρική}(p)$.

ΠΡΟΤΑΣΗ

Η συναρτηση πιθανότητας της X , είναι:

$$f_X(k) = P(X=k) = \begin{cases} (1-p)^{k-1} \cdot p, & k \in \mathbb{N}^+ \\ 0, & k \in \mathbb{R} \setminus \mathbb{N}^+ \end{cases}$$

Συνθετώς, δείχνουμε $q = 1-p$

Παραγόντες

$$1). \text{ Οπως τα περιμένουμε } \sum_{k=1}^{\infty} f_X(k) = p \sum_{k=1}^{\infty} (1-p)^{k-1} =$$

$$= p \cdot \frac{1}{1-(1-p)} = \frac{p}{p} = 1.$$

$$2). P(X \geq k) = P(\text{οι πρώτες } (k-1) \text{ είναι απιστυχίες}) = (1-p)^{k-1}$$

$$P(X \geq k) = (1-p)^k, k \in \mathbb{N}$$

Άσκηση: Ρίχνουμε σε αμερόδηλπτο ζαρί, μέχρι να εμφανιστεί το 1. Ποιο είναι η πιθανότητα αυτού να συμβεί:

- (α) στη $10^{\text{η}}$ δοκιμή
- (β) πριν τη $10^{\text{η}}$ "
- (γ) μετά τη $10^{\text{η}}$ "

- ΛΥΣΗ -

Εστω X : ο αριθμός των δοκιμών που ερχεται 1 στη πρώτη φορά.

$X \sim \text{Γεωμετρική}(p)$, $p = \frac{1}{6}$

$$(α) P(X=10) = (1-p)^9 \cdot p = \frac{5^9}{6^{10}}$$

$$(β) P(X < 10) = 1 - P(X \geq 10) = 1 - (1-p)^9$$

$$(γ) P(X > 10) = (1-p)^{10}$$

ΠΡΟΤΑΣΗ

Αν $X \sim \text{Γεωμετρική}(p)$, $p \in [0,1]$, τότε

$$(α) EX = \frac{1}{p} \quad (β) \text{Var}(X) = \frac{q}{p^2}$$

- Απόδ-

$$(α) EX = \sum_{x \in \mathbb{R}} x f_X(x) = \sum_{k=1}^{\infty} k (1-p)^{k-1} p = p \cdot \frac{1}{1-(1-p)^2} = \frac{1}{p}$$

$$\left[\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \Rightarrow \sum_{k=0}^{\infty} k \cdot x^{k-1} = \frac{1}{(1-x)^2} \right]$$

(4)

ΧΡΗΣΙΜΟΣ ΤΥΠΟΣ ΓΙΑ ΔΙΑΣΠΟΡΑ + με τικες στο N
 $\text{Var}(x) = E(x(x-1)) + EX - (EX)^2$

$$E(x(x-1)) = \sum_{k=1}^{\infty} k \cdot (k-1) \cdot (1-p)^{k-1} p = p(1-p) \sum_{k=2}^{\infty} k(k-1)(1-p)^{k-2}$$

ομως για $|x| < 1$, το $\sum_{k=0}^{\infty} k(k-1)x^{k-2} =$
 $= (-2)(x-1)^{-3} = \frac{2}{(1-x)^3}$

Άρα, το πιο τανω αιδροισμα (γουια με:
 $= p(1-p) \frac{2}{p^3} = \frac{2(1-p)}{p^2}$

$$\text{Άρα, } \text{Var}(x) = \frac{2(1-p)}{p^2} + \frac{1}{p} - \frac{1}{p^2} = \frac{2-2p+p-1}{p^2} = \frac{1-p}{p^2} = \frac{q}{p^2}$$

[Παραδειγμα]

Στην προηγουμενη σεληνη $X = \# \text{σοκησων ως με}$
 εμφανισην του 1,

$$EX = \frac{1}{p^2} = 6$$

ΑΣΚΗΣΗ 4.14 (κυριαρχο)

Έκτελοντες ακονθιδια σικεων ακεροβλπτου γαριου

Εστω X :ο αριθμος δοκησων που απαιτούνται μέχρι

να βουνε και τα δυο αποτελεσματα 3, 4

ηx: δινη πραγματοποιηση 5, 1, 3, 2, 6, 1, 3, 4, $X=8$.

$$EX = ?$$

-ΛΥΣΗ -

(5)

$X_1 = \# \text{ δοκιμών ως την εργασίαν ένας απ' τα } 3,4$

$X_2 = \# \text{ επιπλέον δοκιμών ως ένη εργασίαν του άλλου απ' τα } 3,4.$

Προσανώσ $X = X_1 + X_2$, εντούτοις

$$X_1 \sim \text{Γεωμετρική } (p_1), p_1 = P(\text{εργάζεται } 3 \text{ ή } 4) = \frac{2}{6} = \frac{1}{3}$$

$$X_2 \sim \text{Γεωμετρική } (p_2), p_2 = P(\text{εργάζεται } 7 \text{ ή } 8) = \frac{1}{6}$$

$$E X = E(X_1 + X_2) = E X_1 + E X_2 = 3 + 6 = 9$$

Άσκηση 4.16 (Φυλλάδιο) Έτοιμη πρόβλημα των συλλ. κατηγοριών

Υπάρχουν n είδη κατηγοριών. Καθε γορά που καποτες αχοράγει ένα κατέβοι αυτό εναι ισοπίθανα ένα από τα $1, 2, \dots, n$. Έστω X : ο αριθμός κατηγοριών που πρέπει να αχοράγει κάποιος ώστε να βρει και τα η διαφορετικά υπό. Να βερθει n $\mu_n = EX$. Μοιά εναι η αριθμητική της συμπληρυμού.

-ΛΥΣΗ-

$$X_1 = 1$$

$X_i = \# \text{ δοκιμών μετα με εργασίαν του } (i-1) \text{ στους διαχρονικους κατηγοριους ως } 1 \text{ ή } " \text{ } " \text{ } (i-1) \text{ ή } "$
κατηγοριών

$$X = X_1 + X_2 + \dots + X_n$$

$$X_i \sim \text{Γεωμετρική } (p_i), p_i = \frac{n - (i-1)}{n} \quad i = 1, 2, \dots, n$$

$$EX = \sum_{i=1}^n EX_i = \sum_{i=1}^n \frac{n}{n - (i-1)} = n \cdot \sum_{i=1}^n \frac{1}{n - i + 1} \quad \underline{\underline{j = n - i + 1}}$$

$$n \cdot \sum_{j=1}^n \frac{1}{j} = \mu_n$$

(6)

Επομένη $\frac{a_n}{n \cdot \log n} \xrightarrow{n \rightarrow \infty} 1$

$$\text{διατί } a_n = \sum_{j=1}^n \frac{1}{j} \sim \log n$$

$$a_n > \int_1^{n+1} \frac{1}{x} dx = \log(n+1)$$

$$a_n = \sum_{j=2}^n \frac{1}{j} \leq \int_1^n \frac{1}{x} dx = \log n$$

$$\log(n!) \leq a_n \leq 1 + \log n$$

$$a_n = \log n \rightarrow c$$

Σταθερά

Άσκηση 4.4 (σ. 199) Ross

$X: \text{τιμή } \mu \in \text{τιμές στο } \mathbb{N}$. ΝΔΟ: $E X = \sum_{k=1}^{\infty} P(X \geq k)$

- Ανέστη -

$$\sum_{k=1}^{\infty} P(X \geq k) = \sum_{k=1}^{\infty} \sum_{j=k}^{\infty} f_X(j) \quad (1)$$

$$f_X: P(X \in A) = \sum_{k \in A} f_X(k) \quad , \quad A = [k, \infty) \cap \mathbb{N}$$

$$(1) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} 1_{j \geq k} f_X(j) = \sum_{j=1}^{\infty} f_X(j) \sum_{k=1}^j 1 = \sum_{j=1}^{\infty} j f_X(j) = E X$$

Ασκηση 4.35 (σελ 202-Ross)

Κατι περιέχει μα μηδέ και μα κοικινη μπάλα.

Επιλεγουμε μια από τις τύχη του μν Επιπλατοποθετούμε μαζι με μα του ιδιου κριώρατος. Το κανουμε αυτό γιννεχνο. Εστια X = αριθμος δοκιμών ωσην να δούμε μηδε μπάλα

(a) Να βραδι η $P(X > i)$, $i \geq 1$.

(b) $P(X < \infty) = 1$.

(c) $EX = j$

-ΛΥΣΗ-

$P(X > i) = P(\text{οι } i \text{ πρώτες εξετάσεις εδωσαν κοικινη μπάλα})$

(Εστια $A_i = \eta$ i εξετάση βράδι μοκκινα

$= P(A_1 \cap A_2 \cap \dots \cap A_i) = P(A_1)P(A_2 | A_1)P(A_3 | A_1 \cap A_2) \dots$

$$P(A_i | A_1 \cap A_2 \cap \dots \cap A_{i-1}) = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \dots \cdot \frac{i}{i+1} = \frac{1}{i+1}$$

$$(b) P(X = \infty) \leq P(X > i) = \frac{1}{i+1} \rightarrow 0 \quad P(X = \infty) = 1$$

$$(c) \text{Βοιοκουμε } f_X(i) = \frac{1}{i(i+1)}, \quad i \geq 1$$

$$\text{Αρα } EX = \sum_{i=1}^{\infty} i \cdot \frac{1}{i(i+1)} = \infty$$

$$\text{Άλλως } EX = \sum_{K=1}^{\infty} P(X \geq K) = \sum_{K=1}^{\infty} P(X > K-1) = \\ = 1 + \sum_{n=2}^{\infty} P(X > K-1) = 1 + \sum_{K=2}^{\infty} \frac{1}{K} = \infty$$

8/11/2018

[11^ο μαθημα]

Πιθανότητες Ι - Χειώντων

§ 4.10 Ιδιότητες της συνάρτησης κατανομής (Ross)

Επονεύει $X: \Omega \rightarrow \mathbb{R}$ τυχαία μεταβλητή $F: \mathbb{R} \rightarrow [0, 1]$ με $F(x) = P(X \leq x)$ Είναι η συνάρτηση κατανομής της X Ισχύει $P(a < X \leq b) = F(b) - F(a)$, γιατί $P(a < X \leq b) = P(\{X \leq b\} \setminus \{X \leq a\})$ ΠΡΟΤΑΣΗ

F: συνάρτηση κατανομής τυχαίας μεταβλητής X. Ισχύουν τα εξής:

(a) F αύξουσα.(b) $\lim_{t \rightarrow -\infty} F(t) = 0$, $\lim_{t \rightarrow \infty} F(t) = 1$.

(c) Η F είναι σεριαλ συνάρτηση

- Απόδ-

(a) Αν $a < b$, $F(b) - F(a) = P(\{a < X \leq b\} \geq 0)$
 $\{X \leq a\} \subset \{X \leq b\} \xrightarrow{P(\cdot) \text{ μονοτόνη}} P(X \leq a) \leq P(X \leq b)$ (b) $\lim_{t \rightarrow -\infty} F(t) = \lim_{n \rightarrow \infty} F(-n) =$, το οποίο υπαρχει σταν F

$$= \lim_{n \rightarrow \infty} P(\{X \leq -n\}) = P(\bigcap_{n=1}^{\infty} A_n) = \bigcap_{n=1}^{\infty} A_n =$$

$$= \bigcap_{n=1}^{\infty} \{w \in \Omega : X(w) \leq -n\} = \emptyset$$

$$\lim_{t \rightarrow \infty} F(t) = \lim_{n \rightarrow \infty} F(n) = \lim_{n \rightarrow \infty} P(\{X \leq n\}) =$$

$$= P\left(\bigcup_{n=1}^{\infty} B_n\right) = \bigcup_{n=1}^{\infty} \{w \in \Omega, X(w) \leq n\} = \Omega$$

(*) Επούτα με $\ell = \inf \{F(t) : t \in (-\infty, \infty)\}$

(2)

$$(g). \text{ Για } t_0 \in \mathbb{R} : \lim_{t \rightarrow t_0^+} F(t) = \lim_{n \rightarrow \infty} F(t_0 + \frac{1}{n}) = \\ = \lim_{n \rightarrow \infty} P\left(\underbrace{\{X \leq t_0 + \frac{1}{n}\}}_m\right) = P\left(\bigcap_{n=1}^{\infty} F_n\right) = P(X \leq t_0) = F(t_0)$$

Ισχύει και το αντίστροφο. Αναδρίστε μά $F: \mathbb{R} \rightarrow \mathbb{R}$
κανονικοί τα (a), (b), (g). Της πρότασης, τότε
Ξ X τυχαία μεταβλητή, ώστε ηF να είναι n
συνάρτησης κανονικής F .

Συμβολισμός: $F(a-) = \lim_{x \rightarrow a^-} F(x)$

ΜΡΟΤΑΣΗ

X : τυχαία μεταβλητή με συνάρτησης κανονικής F ,
τότε ∀ $a \in \mathbb{R}$: (Ισχει) $P(X=a) = F(a) - F(a-)$

$$P(X=a) = P\left(\bigcap_{n=1}^{\infty} \{a - \frac{1}{n} < X \leq a\}\right) = \lim_{n \rightarrow \infty} P\left(a - \frac{1}{n} < X \leq a\right) = \\ = \lim_{n \rightarrow \infty} (F(a) - F(a - \frac{1}{n}))$$

[ΠΑΡΑΔΗΣΜΑ]: Εστω X = ενδεικνυτική τυχαία, που
ρίχνεται τυχαία. $F_X =$

$$F_X(t) = P(X \leq t) = \begin{cases} 0 & , t \in (-\infty, 1) \\ \frac{1}{6} & , t \in [1, 2) \\ \frac{2}{6} & , t \in [2, 3) \\ \frac{3}{6} & , t \in [3, 5) \\ 1 & , t \geq 5 \end{cases}$$

(3)

→ Η αρντική διωνυμική τυχαία μεταβλητή
Εχουμε πείραμα με πιθανότητα επιτυχίας
ρε $(0,1]$. Εκτελούμε ακολουθία πραγματοποιίσεων του.
Εσώ $r \in \mathbb{N}^+$.

Θέτουμε $X = \text{πλήθος δοκιμών της } r \text{ επιτυχίας.}$

Αυτή την τυχαία μεταβλητή τη λέμε αρντική διωνυμική
με παραμέτρους (r, p)

ΠΡΟΤΑΣΗ : If X έχει συναρτήση πιθανοτήτας

$$f_X(k) = P(X=k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}, \quad k \in \{r, r+1, \dots\}$$

ορθλίως $f_X(k) = 0$, αν $k \notin \{r, r+1, \dots\}$

ΤΟ ΜΕΤΡΟ LEBESGUE

Υπάρχει $A \in \mathcal{P}(\mathbb{R})$, που περιέχει όλα τα σύνολα
που θα κρατούμε και μια συναρτήση $\lambda: A \rightarrow [0, \infty)$
που κοντικά, είναι η $\lambda(A) = \text{μήκος}(A)$.

Η λ , ικανοποιεί τις:

$$(i) \lambda(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \lambda(A_i) \quad \text{V(Ai), } i \geq 1 \text{ στοιχία της A ξεναγάδω.}$$

$$(ii) \lambda(\emptyset) = \text{μήκος}(\emptyset) \quad \forall \emptyset \in \mathbb{R} \text{ θείαμα.}$$

ΣΥΝΕΧΕΙΣ ΤΥΧΑΙΕΙΣ ΜΕΤΑΒΛΗΤΕΣ

ΟΡΙΣΜΟΣ: Η τυχαία μεταβλητή $X: \Omega \rightarrow \mathbb{R}$ λέγεται
συνεχής, αν υπάρχει $f: \mathbb{R} \rightarrow [0, \infty)$ ώστε
 $P(X \in A) = \int_A f(t) dt \quad \forall A \subset \mathbb{R}$

Μια τετρά ή λέγεται πυκνότητα της X . Τα συμβολι-
ζουμε συναρ με f_X . Η f κωδικονοί μν X .

[Παράδειγμα]: Εστι ω X : αριθμός που επιλέγουμε ομοιόμορφα στο $(0,1)$

Τότε, $\forall A \subset (0,1)$: $P(X \in A) = \text{μήκος}(A)$

Μια πυκνότητα για την X είναι n :

$$f(x) = \begin{cases} 1, & \text{αν } x \in (0,1) \\ 0, & \text{αλλα } x \in \mathbb{R} \setminus (0,1) \end{cases}$$

$$\begin{aligned} \text{Πράγματι } \forall A \subset \mathbb{R}, P(X \in A) &= P(X \in A \cap (0,1)) = \\ &= \text{μήκος}(A \cap (0,1)) = \int_A f(t) dt \end{aligned}$$

ΠΑΡΑΤΗΡΗΣΗ : Ηα δεδομένη συνεκτική τυχαία μεταβάση X , η f δεν είναι πυκνότητα.

- Αν εκουμενή μια πυκνότητα f και ανατονιάς μν σε αριθμούσιμο πλήθος ανημάτων, παρέρχουμε μια \tilde{f} , τότε και η \tilde{f} είναι πυκνότητα για την X .
- Αν f, \tilde{f} είναι δύο πυκνότητες για την X ,
Τότε $\lambda \left(\{x \in \mathbb{R} : f(x) \neq \tilde{f}(x)\} \right) = 0$

Στις διαρκίτες τυχαίες μεταβάσεις $f_X(x) = P(X=x)$

Τύποι:

ΜΠΟΤΑΙΗ : X : συνεκτική τυχαία μεταβάση με πυκνότητα f και συναρμόνωσης F . Τότε:

$$(a) \int_{-\infty}^{\infty} f(t) dt = 1$$

$$(b). F(x) = \int_{-\infty}^x f(t) dt$$

$$(g) f(x) = F'(x) \quad \forall x \text{ που } n \text{ } f \text{ είναι σίχης}$$

$$(s) H \text{ } F \text{ είναι σίχης}$$

$$\text{ε) } P(X=t) = 0 \quad \forall t \in \mathbb{R}$$

$$\text{γ) } P(a \leq X \leq b) = P(a < X \leq b) = F(b) - F(a)$$

- Αποδ-

$$\text{α) } \int_{-\infty}^{\infty} f(t) dt = \int_{\mathbb{R}} f(t) dt = P(X \in \mathbb{R}) = 1$$

$$\text{β) } F(x) = P(X \leq x) = P(X \in (-\infty, x]) = \int_{(-\infty, x]} f(t) dt = \int_{-\infty}^x f(t) dt$$

(γ) Θεώρημα από Ανεποστίκο

$$\text{γ) } \text{Για } x \in \mathbb{R} : F(x+) - F(x) = \lim_{\substack{\rightarrow \\ \varepsilon \rightarrow 0^+}} (F(x+\varepsilon) - F(x)) =$$

$$= \lim_{\substack{\rightarrow \\ \varepsilon \rightarrow 0^+}} \int_x^{x+\varepsilon} f(t) dt = 0$$

όποια $F(x-) = F(x)$

$$\text{ε) } P(X=t) = P(X \in \{t\}) = \int_{\{t\}} f(x) dx = 0$$

$$\text{γ) } P(a \leq X \leq b) = P(X=a) + P(a < X \leq b) = 0 + F(b) - F(a)$$

$$P(a < X \leq b) = P(a < X \leq b) \setminus \{X=a\} =$$

$$= P(a < X \leq b) - P(X=b) = F(b) - F(a) - 0 = F(b) - F(a)$$

ΠΑΡΑΤΗΡΗΣΗ

Εστω $f: \mathbb{R} \rightarrow \mathbb{R}$ είναι η πολυότητα μιας συνεχούς τυχαίας μεταβάσης X , αν και μόνο αν:

$$\text{(i) } f(x) \geq 0 \quad \forall x \in \mathbb{R}$$

$$\text{(ii) } \int_{-\infty}^{\infty} f(t) dt = 1$$

13.11.2018

12^ο μάθημα

ΠΙΘ.Ι - Χελιώτης

$$f = f_x : \mathbb{R} \rightarrow [0, \infty)$$

$$P(X \in A) = \int_A f_x(x) dx \quad \forall A \subset \mathbb{R}$$

Παρατήρηση

Οι ιμές της $f(x)$ ΔΕΝ είναι πιθανότητες.

π.χ.: είναι διατόν $f(x) > 1$ για πολλά x (π.χ. προηγούμενο παράδειγμα)

Πιθανότητες είναι τα ολοκλήρωμα $\int_A f dx$ της f .

→ Υποθέτουμε ότι η f είναι διανεκτή στο x . Τότε:

$$\forall \varepsilon > 0 \text{ μικρό} \quad P(x - \varepsilon < X < x + \varepsilon) = \int_{x-\varepsilon}^{x+\varepsilon} f(t) dt \approx 2\varepsilon f(x)$$

ΓΕΝΙΚΑ αν $I \subset \mathbb{R}$ είναι μικρό διάστημα γύρω από x , τότε $P(x \in I) \approx f(x)$ μήκος (I)

Ασκηση 5.4 (Ross) σ. 243

Ο χρόνος Y_{i+1} (σε ώρες) μιας συσκευής είναι

$$\text{τ.μ. με πυκνότητα } f(x) = \begin{cases} \frac{10}{x^2}, & x > 10 \\ 0, & x \leq 10 \end{cases}$$

(a) Να βρεθεί η $P(X > 20)$

(b) Να βρεθεί η F_x (συνάριθμον κατανομής της X)

(c) Αν έχουμε 6 συσκευές, ποια η πιθανότητα να δειτούργουν τουλάχιστον 3 από αυτές, για τουλάχιστον 15 ώρες;

-ΛΥΣΗ-

$$(a) P(X > 20) = \int_{20}^{\infty} f(x) dx = \int_{20}^{\infty} 10 \cdot x^{-2} dx = -10 \cdot x^{-1} \Big|_{20}^{\infty} =$$

$$= \frac{10}{20} = \frac{1}{2}.$$

(2)

$$\begin{aligned}
 (\beta) \text{ Για } x \in \mathbb{R} : F_x(x) &= \int_{-\infty}^x f(t) dt = \begin{cases} 0, & x \leq 10 \\ \int_0^x f(t) dt, & x > 10 \end{cases} = \\
 &= 1_{x > 10} \int_0^x 10 \cdot t^{-2} dt = 1_{x > 10} \left[-10 \cdot t^{-1} \right]_0^x = 1_{x > 10} \left(1 - \frac{10}{x} \right) = \\
 &= \begin{cases} 0, & x \leq 10 \\ 1 - \frac{10}{x}, & x > 10 \end{cases}
 \end{aligned}$$

$$\begin{aligned}
 (\gamma) p &= P(\text{Ειδικοί συρρευτικοί δουλεύει τουλαδίκιοτον 15 ωρες}) = \\
 &= P(X > 15) = 1 - F_x(15) = 1 - \left(1 - \frac{10}{15} \right) = \frac{10}{15} = \frac{2}{3}
 \end{aligned}$$

Εστω $N = \pi$ η αριθμός συστρεων από την $P(X > 15)$ στην ημέρα την η οποία τουλαδίκιοτον 15 ωρες
 $N \sim \text{Bin}(6, p)$

$$P(N \geq 3) = 1 - P(N \leq 2) = 1 - (P(N=0) + P(N=1) + P(N=2))$$

$$P(N=k) = \binom{6}{k} p^k \cdot (1-p)^{6-k}$$

Κοιτάξτε την 5.1 από το υπόλοιπο.

ΜΕΣΗ ΤΙΜΗ ΚΑΙ ΔΙΑΚΥΜΑΝΣΗ ΣΥΝΕΧΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ
 X : συνεχής τυχαία μεταβλητή με πυκνότητα f . Χωντριά,
 η μέση τιμή της X ορίζεται ως $EX = \int_{\mathbb{R}} x \cdot f(x) dx$
 Πιο προσεκτικά:

ΟΡΙΣΜΟΣ Η μέση τιμής της X ορίζεται ως,
 $EX = \int_0^{\infty} x f(x) dx - \int_{-\infty}^0 |x| f(x) dx$

**av η διοικορά
 ορίζεται**

**(επι. δια έκουπε μορού
 ω-ω)**

(3)

Άλλως, η EX αριθμείται.

Η EX οπαριθμείται είναι στοιχείο του $\mathbb{R} \cup \{\infty, -\infty\}$,
εξει τις ίδιες ιδιότητες, όπως και οι ίδιες διακρίσεις τυχαιών
μεταβαντών.

$$\text{π.χ.: } E(X+Y) = EX + EY$$

$$X \geq 0 \Rightarrow EX \geq 0$$

Αν $x \neq 0$, τότε η EX αριθμείται (ιως όμως ως $\pm \infty$)

[ΑΣΙΧΗΣΗ ①]

Εστω ότι η X έχει πυκνότητα $f(x) = \begin{cases} 2x, & x \in (0, 1) \\ 0, & \text{αλλιώς} \end{cases}$

$$EX =$$

-ΛΥΣΗ-

$$EX = \int_{\mathbb{R}} x \cdot f(x) dx = \int_0^1 x \cdot 2x dx = 2 \cdot \frac{x^3}{3} \Big|_0^1 = \frac{2}{3}$$

[ΑΣΙΧΗΣΗ ②]

X : δυνεκτής τυχαιά μεταβαντή με πυκνότητα

$$f(x) = \frac{c}{1+x^2} \quad \forall x \in \mathbb{R}$$

$$(a) c = ?$$

$$(b) EX = ?$$

-ΛΥΣΗ-

(a) πρέπει $f > 0$ και $\int_{\mathbb{R}} f(x) dx = 1$.

$$\text{Επομένει } 1 = \int_{\mathbb{R}} f(x) dx = \int_{\mathbb{R}} \frac{1}{1+x^2} dx = c \cdot \lim_{M, N \rightarrow \infty} \int_{-M}^N \frac{1}{1+x^2} dx = \\ = \lim_{M, N \rightarrow \infty} \tan^{-1}(x) \Big|_{-M}^N = c \cdot \left(\frac{\pi}{2} - \left(-\frac{\pi}{2} \right) \right) = c \cdot \pi$$

$$\text{Άρα, } c = \frac{1}{\pi}$$

(4)

$$(3) \text{ Θα εξουψε } E[X] = \int_0^\infty x \cdot f(x) dx - \int_{-\infty}^0 |x| \cdot f(x) dx$$

$$\text{ανα διαφορα ορίζεται } : \int_0^\infty x \cdot f(x) dx = \frac{1}{\pi} \int_0^\infty \frac{x}{1+x^2} dx =$$

$$= \frac{1}{2\pi} \log(x^2 + 1) \Big|_0^\infty = \infty$$

$$\int_{-\infty}^0 |x| \cdot f(x) dx = \frac{1}{\pi} \cdot \int_{-\infty}^0 \frac{|x|}{1+x^2} dx \stackrel{y=x}{=} \frac{1}{\pi} \cdot \int_0^\infty \frac{y}{1+y^2} dy = \infty$$

Επειδή και τα δύο = ∞ , η $E[X]$ δεν ορίζεται

ΜΕΣΗ ΤΙΜΗ ΣΥΝΑΡΤΗΣΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

$X: \Omega \rightarrow \mathbb{R}$ συνεχης τυχαια μεταβλητη με πικνοίτα f_x .

$g: \mathbb{R} \rightarrow \mathbb{R}$ δειχνει $Y = g(x)$ τυχαια μεταβλητη

$$\Omega \xrightarrow{g} \mathbb{R} \xrightarrow{g} \mathbb{R}$$

$\underbrace{}_Y$

ΠΡΟΤΑΣΗ

Η $Y = g(x)$ έχει μεση τιμη $E(g(x))$

$$E(g(x)) = \int_{\mathbb{R}} g(x) f_x(x) dx \quad \text{αν το ολοκληρωμα}$$

στο δεξι μεσος ορίζεται.

- Για $g(x) = X$ παίρνουμε τον ορισμό της $E[X]$
- Για $g(x) = |x|$ παίρνουμε ση $E[|x|] = \int_{-\infty}^{\infty} |t| f_x(t) dt = \int_0^{\infty} t \cdot f_x(t) dt + \int_{-\infty}^0 |t| \cdot f_x(t) dt$

Αρα $E[X] < \infty \Leftrightarrow \int_0^{\infty} t \cdot f_x(t) dt, \int_{-\infty}^0 |t| \cdot f_x(t) dt < \infty$

(5)

ΑΣΚΗΣΗ

X: συνεχής τυχαία μεταβλητή με πυκνότητα

$$f(x) = \frac{1}{x^2} \quad x > 1$$

$$E(\log x) =$$

-ΛΥΣΗ-

$$E(\log x) = \int_{\mathbb{R}} \log x f(x) dx = \int_1^{\infty} \log x \cdot \frac{1}{x^2} dx =$$

$$= \int_1^{\infty} \log \left(-\frac{1}{x} \right)' dx = -\frac{\log x}{x} \Big|_1^{\infty} + \int_1^{\infty} \frac{1}{x^2} dx =$$

$$= \left[-\frac{1}{x} \right]_1^{\infty} = 1.$$

ΔΙΑΚΥΜΑΝΣΗ ΣΥΝΕΧΟΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

ορισμός: X: συνεχής τυχαία μεταβλητή με

 $\mu = E(X) \in \mathbb{R}$. Διακύμανση (διασπορά) της X, λέπεται τον αριθμό $Var(x) = E((x-\mu)^2) \in [0, \infty)$.

Όπως και για τις διακριτές τυχαιές μεταβλητές, ισχύου:

$$\cdot Var(x) = E(x^2) - (Ex)^2$$

$$\cdot Var(ax + b) = a^2 \cdot Var(x)$$

Παράδειγμα - X τυχαία μεταβλητή με πυκνότητα:

$$f(x) = \begin{cases} 2x & , x \in (0, 1) \\ 0 & , x \in \mathbb{R} \setminus \{0, 1\} \end{cases}$$

$$Var(x) =$$

-ΛΥΣΗ-

Βρίσκουμε πρώτα, ότι: $Ex = \frac{2}{3}$

$$E(x^2) = \int_{\mathbb{R}} x^2 \cdot f(x) dx = \int_0^1 x^2 \cdot 2x dx = 2 \int_0^1 x^3 dx = \frac{2}{4} = \frac{1}{2}$$

$$Αρνα
$$Var(x) = E(x^2) - (Ex)^2 =$$$$

$$= \frac{1}{2} - \frac{4}{9} = \frac{1}{18} \quad (> 0)$$

(6)

Η ομοιομορφή τύχαια μεταβλητή (§5.3 Ross)

Εστω $a, b \in \mathbb{R}$, $a < b$ και X : συνεχής τύχαια μεταβλητή με πυκνότητα.

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in (a, b) \\ 0, & x \in \mathbb{R} \setminus (a, b) \end{cases}$$

Λέμε ότι X είναι ομοιομορφή τύχαια μεταβλητή στο (a, b) . Επίσης, η X ακολουθεί την ομοιόμορφη κατανομή στο (a, b) .

Γράφουμε $X \sim U(a, b)$

Το ότι η f είναι σταθερή, σημαίνει ότι καθείς σημείο του (a, b) είναι ισοπίθανο υπό το υπότοιχο.

Η f είναι πρόγραμμα πυκνότητας, γιατί $f \geq 0$ και

$$\int_{\mathbb{R}} f(x) dx = 1, \quad a=0, b=1$$

ΠΡΟΤΑΣΗ : Εστω ότι $X \sim U(a, b)$. Τότε

$$(i) E[X] = \frac{a+b}{2}$$

$$(ii) \text{Var}(X) = \frac{(b-a)^2}{12}$$

- Αναδεικνύεται -

$$(i) E[X] = \int_{-\infty}^{\infty} x f_x(x) dx = \int_a^b x \cdot \frac{1}{b-a} dx = \\ = \frac{1}{b-a} \left(\frac{b^2}{2} - \frac{a^2}{2} \right) = \frac{a+b}{2}$$

$$(ii) E[X^2] = \int_{\mathbb{R}} x^2 f_x(x) dx = \int_a^b x^2 \cdot \frac{1}{b-a} dx = \\ = \frac{1}{b-a} \frac{(b^3 - a^3)}{3} = \frac{1}{3} (a^2 + ab + b^2)$$

(7)

$$\text{Var}(x) = E(x^2) - (E(x))^2 = \frac{1}{3}(a^2 + ab + b^2) - \frac{(a+b)^2}{4} =$$

$$= \frac{4a^2 + 4ab + 4b^2 - 3a^2 - 6ab - 3b^2}{12} = \frac{(b-a)^2}{12}$$

ΑΣΚΗΣΗ 5.13 (Ross σ.244)

Φτάνουμε στις 10 σε μια στάση λεωφορείου. Το λεωφορείο φτάνει κάποια συγκριτικά ώρα κατανεμημένη μεταξύ 10 και 10:30.

(a) Ποια η πιθανότητα να περιμένουμε πάνω από 10 λεπτά;

(b) Αν το λεωφορείο δεν έχει έρθει στις 10:15 ποια η πιθανότητα να περιμένουμε πουλαχιώτον 10 λεπτά ακριβή;

-ΛΥΣΗ-

(a) Εστω $X = \text{χρόνος που θα περιμένουμε ώστε να έρθει το λεωφορείο}$ (Ενθρασυμένο σε λεπτά)

$X \sim U(0, 30)$, δηλαδή έχει πιθανότητα

$$f(x) = \begin{cases} 1 & x \in (0, 30) \\ 0 & \text{otherwise} \end{cases}$$

$$(a) P(X > 10) = \int_{10}^{\infty} f(x) dx = \int_{10}^{30} \frac{1}{30} dx = \frac{2}{3}$$

$$(b) P(X > 25 | X > 15) = \frac{P(X > 25, X > 15)}{P(X > 15)} =$$

$$= \frac{P(X > 25)}{P(X > 15)} = \frac{\frac{5}{30}}{\frac{15}{30}} = \frac{5}{15} = \frac{1}{3}$$

Παρατηρηση

Αν $X \sim U(a, b)$ και $I \subset (a, b)$, τότε:

$$P(X \in I) = \int_I \frac{1}{b-a} dx = \frac{\text{Μήκος}(I)}{\text{Μήκος}(a, b)}$$

ΑΣΚΗΣΗ: Ενας αριθμός επιλεγεται αραιόμορφα στο $(-7, 8)$. Ποια είναι η πιθανότητα να είσινται τα επιλεγμένα $3t^2 + 6t + 3 = 0$ να είναι τουλαχιστον μία πραγματική πίση;

-ΛΥΣΗ-

$$\Delta = b^2 - 36 = (b-6)(b+6)$$

Θελουμε: $\Delta \geq 0$, δηλ $|b| \geq 6$

$$\begin{aligned} P(\Delta \geq 0) &= P(|b| \geq 6) = P(b \in (-\infty, -6] \cup [6, \infty)) = \\ &= \frac{1}{15} + \frac{2}{15} = \frac{1}{5}. \end{aligned}$$

ΑΣΚΗΣΗ 5.2 (χυταριδιο)

Η X έχει πυκνότητα $f(x) = c \cdot x^{-r}$ $\begin{cases} 1 & x \geq 1 \\ 0 & x < 1 \end{cases}$, όπου $c, r > 0$.

(α) ποιες είναι οι επιπτήσεις πορείας του r ;

(β) $c = ?$ ως γενικότητα του r

(γ) για ποια r ισχύει $EX < \infty$

(δ) για δοσμένο r , για ποια $c \in \mathbb{R}$, ισχύει:

$$E(X^a) < \infty$$

-ΛΥΣΗ-

$$(α) \text{ πρέπει } 1 = \int_{\mathbb{R}} f(x) dx = c \int_1^{\infty} x^{-r} dx = \begin{cases} \infty, & \text{αν } r \leq 1 \\ \frac{c}{r-1}, & \text{αν } r > 1 \end{cases}$$

$$\textcircled{R} \quad \frac{x^{1-r}}{1-r} \Big|_1^{\infty} = 0 - \frac{1}{1-r} = \frac{1}{r-1}$$

(9)

$$(8) - \int_{\mathbb{R}} f(x) dx = 1 \Rightarrow C = r-1$$

$$(8) \mathbb{E}X = \int_{\mathbb{R}} x f(x) dx = C \cdot \int_1^{\infty} \frac{x}{x^r} dx = C \cdot \int_1^{\infty} x^{1-r} dx < \infty,$$

av kai μόνο av $r-1 > 1 \Rightarrow r > 2$

$$(8) \mathbb{E}(x^a) = \int_{\mathbb{R}} x^a f(x) dx = C \cdot \int_1^{\infty} x^{a-r} dx < \infty \text{ av kai} \\ \text{μόνο av } r-a > 1 \Rightarrow a < r-1$$

Υπενθύμιση

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi} \quad (\text{Απεροσι. Λογ. III})$$

§ 5.4 Κανονικές τυχαίες μεταβάσεις

ΟΡΙΣΜΟΣ

Εστω $\mu \in \mathbb{R}$ και $\sigma \in (0, \infty)$. Μια τυχαία μεταβάση X με πυκνότητα $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $\forall x \in \mathbb{R}$,

την ονομάζουμε κανονική με παραμετρούς μ, σ^2 . Γραφουμε $X \sim N(\mu, \sigma^2)$

Ως δύο με πιο κάτω σημεία $\mu = \mathbb{E}X, \sigma^2 = \text{Var}(X)$

ΠΑΡΑΤΗΡΗΣΗ

1) Η f είναι πράγματι πυκνότητα, γιατί $f > 0$ και $\int_{\mathbb{R}} f(x) dx = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \frac{(x-\mu)^2}{\sigma^2} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-y^2} dy = 1$

20/11/2018

Π.Ι.Θ.Ι.

13^ο μαθημα

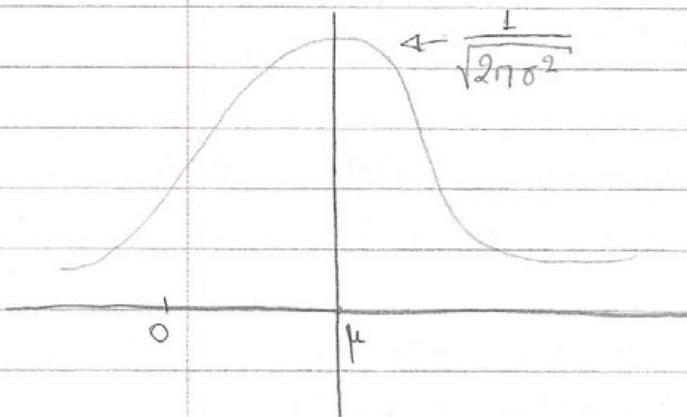
①

Η ΚΑΝΟΝΙΚΗ ΤΥΧΑΙΑ ΜΕΤΑΒΛΗΤΗ

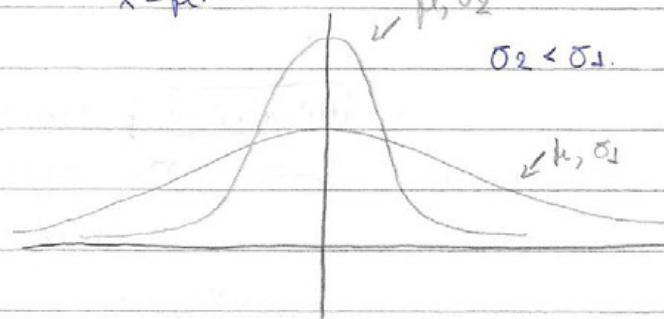
$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}} \quad \forall x \in \mathbb{R}$$

ΠΑΡΑΤΗΡΗΣΗ

- 1). Η f είναι πυκνότητα.
- 2). Το γράμμα της f έχει τα εξής χαρακτηριστικά:
 - Μεσοτό οτο $x=\mu$, με υψη $\frac{1}{\sqrt{2\pi\sigma^2}}$
 - Συμμετρικό γύρω από μ



- Όσο πιο μικρό το σ , τόσο πιο κοντή η καρυων στο $x=\mu$.



- 3). Όταν $\mu=0$, $\sigma^2=1$ θέμε την X τυπική καρονή τυχαία μεταβλητή ή οι ακολουθεί την τυπική καρονή καρονή $N(0,1)$

$$\text{Αυτή έχει πυκνότητα } \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2} x^2}$$

(2)

ΜΕΓΕΘΗ ΠΟΥ ΑΚΟΛΟΥΘΟΥΝ ΠΡΟΣΕΓΓΙΣΤΙΚΑ ΤΗΝ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ

→ Ύψος ενός τυχαιού κατοικου της Αθήνας

→ Χρόνος αποδομήσεων από το γραδικαριό

→ Βαθμολογία ενός ατόμου στις πλανότητες Ι.

ΠΑΡΑΤΗΡΗΣΗ

① X : τυχαια μεταβλητή με δυνατην κατανομή F , ώστε $n F$ είναι παραγωγή με δυνεχή παραγόντο $f := F'$. Τοτε, $n f$ είναι μια πυκνότητα στα την Y .

- Απόδ-

$$\text{Για } a < b \text{ ισχυει } P(a \leq Y \leq b) = F(b) - F(a) = \\ = \int_a^b f(x)dx = \int_a^b f(x)dx \text{ Επειδή } n f \text{ είναι δυνεχής}$$

Αυτό δίνει ότι $P(Y \leq a) = \int_{-\infty}^a f(x)dx \quad \forall a \in \mathbb{R}$ και αρα $n f$ είναι πυκνότητα της Y .

ΠΡΟΤΑΣΗ Εστω ότι $X \sim N(\mu, \sigma^2)$, $a \neq 0$, $\beta \in \mathbb{R}$, $\mu \in \mathbb{R}$, $\sigma \in (0, \infty)$. Τοτε, $n Y = ax + \beta \sim N(a\mu + \beta, a^2\sigma^2)$

- Απόδ-

Βρισκουμε την F_Y

Υποθέτουμε ότι $a > 0$

$$\text{Για κάθε } x \in \mathbb{R}, \text{ έχουμε: } F_Y(x) = P(Y \leq x) = P(ax + \beta \leq x) \stackrel{a > 0}{=} \\ P\left(x \leq \frac{x - \beta}{a}\right) = F_X\left(\frac{x - \beta}{a}\right)$$

Η $F_X(t) = \int_{-\infty}^t f_X(s)ds$ είναι δυνεχής παραγωγή,

$$\text{και } F'_X(t) = f_X(t)$$

Αρα, και $n F_Y$ είναι c' . Με βάση την προηγουμένη παρατήρηση, $n Y$ έχει πυκνότητα:

(3)

$$\begin{aligned}
 f_Y(x) &= F'_Y(x) = F'_X\left(\frac{x-\mu}{\sigma}\right) \cdot \frac{1}{\sigma} = f_X\left(\frac{x-\mu}{\sigma}\right) \cdot \frac{1}{\sigma} = \\
 &= \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{1}{2} \cdot \frac{1}{\sigma^2} \cdot \left(\frac{x-\mu}{\sigma} - \mu\right)^2} \\
 &= \frac{1}{\sqrt{2\pi} \cdot (\sigma)^2} \cdot e^{-\frac{1}{2} \frac{(x-\mu-\mu)^2}{\sigma^2}}
 \end{aligned}$$

Αυτή είναι η πιστοπότητα
της $N(\mu+\mu, \sigma^2)$

ΜΟΡΙΣΜΑ 1

(i) Αν $X \sim N(\mu, \sigma^2)$, τότε η $Z = \frac{X-\mu}{\sigma} \sim N(0, 1)$

(ii) Αν $Z \sim N(0, 1)$, τότε η $X = \mu + \sigma Z \sim N(\mu, \sigma^2)$

- Απόδ -

(i) Στην προηγούμενη πρόταση παίρνουμε $\alpha = \frac{1}{\sigma}$, $\beta = -\frac{\mu}{\sigma}$

$$\begin{aligned}
 \text{Τότε, πρέπει } Z &\sim N(\alpha\mu + \beta, \alpha^2\sigma^2) = \\
 &= N\left(\frac{\mu}{\sigma} - \frac{\mu}{\sigma}, \frac{1}{\sigma^2} \cdot \sigma^2\right) = N(0, 1)
 \end{aligned}$$

(ii) Τώρα έχουμε $\mu = 0$, $\sigma = 1$

Παίρνουμε $\alpha = \sigma$, $\beta = \mu$ στην προηγούμενη πρόταση

Θεώρημα Αν $X \sim N(0, 1)$, τότε $EX=0$, $Var(X)=1$

- Απόδ -

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

$$EX = \int_{\mathbb{R}} x \cdot f_X(x) dx = \int_{-\infty}^{\infty} x \cdot \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx = 0$$

$$f_X: \text{ορτ.} a: \int_{-\infty}^0 x f_X(x) dx + \int_0^{\infty} x f_X(x) dx = \int_0^{\infty} y f_X(y) dy +$$

$$+ \int_0^{\infty} x \cdot f_X(x) dx$$

υπορροών
και είναι
πεπερασμένα.

(4)

$$\begin{aligned}
 \text{(ii)} \quad \text{Var}(x) &= E(x^2) - (Ex)^2 = E(x^2) = \int_{-\infty}^{\infty} x^2 \cdot \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}} dx = \\
 &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x \cdot (-e^{-\frac{x^2}{2}})' dx = \frac{1}{\sqrt{2\pi}} \left[-x \cdot e^{-\frac{x^2}{2}} \right]_{-\infty}^{\infty} + \\
 &+ \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx = \int_{-\infty}^{\infty} f(x) dx = 1
 \end{aligned}$$

ΠΟΡΙΣΜΑ ②

Αν $X \sim N(\mu, \sigma^2)$ $\mu \in \mathbb{R}$, $\sigma \in (0, \infty)$, τότε

(i) $E(X) = \mu$ και

(ii) $\text{Var}(X) = \sigma^2$

- Απόδ-

Από το πόρισμα ①, η $Z = \frac{X-\mu}{\sigma}$, έχει κατανομή

$N(0, 1)$.

(i) $E(X) = \mu + \sigma \cdot E(Z) = \mu$ Από το προηγούμενο θέμα.

(ii) $\text{Var}(X) = \text{Var}(\sigma \cdot Z + \mu) = \text{Var}(\sigma Z) = \sigma^2 \cdot \text{Var}(Z) = \sigma^2$

Από το πόρισμα ①, οδες οι τυχαιες μεταβλητες με κατανομή $N(\mu, \sigma^2)$ μπορουν να παραχθούν αυτό με, με κατανομή $N(0, 1)$.

Της συριγμένης κατανομής μες $Z \sim N(0, 1)$, την

συμβολίζουμε Φ .

Δηλαδή, $\Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{t^2}{2}} dt \quad \forall x \in \mathbb{R}$.

Η Φ , αρκει για υπολογισμούς πιθανοτήτων, που αφορούν σποιαδινοτες $X \sim N(\mu, \sigma^2)$.

(5)

ΠΑΡΑΔΕΙΓΜΑ : Αν $X \sim N(-2, 5)$ και βρεθεί με χρήση της Φ , η πιθανότητα $P(X \in (-10, 1))$

-ΛΥΣΗ -

$$H: z = \frac{X - (-2)}{\sqrt{5}} \sim N(0, 1).$$

$$\text{Τότε } P(-10 < X < 1) = P(-\infty < X + 2 < 3) = P\left(-\frac{8}{\sqrt{5}} < \frac{X + 2}{\sqrt{5}} < \frac{3}{\sqrt{5}}\right) \\ = P\left(-\frac{8}{\sqrt{5}} < z < \frac{3}{\sqrt{5}}\right) = \Phi\left(\frac{3}{\sqrt{5}}\right) - \Phi\left(-\frac{8}{\sqrt{5}}\right)$$

ΟΡΟΛΟΓΙΑ : Αν n η X είναι $E(X) = \mu$ και $Var(X) = \sigma^2$, $\sigma \in (0, \infty)$.

Τότε η $z = \frac{x - \mu}{\sigma}$ δείχνει την κανονικοποίηση της X .

$$H: z \text{ είναι } E(z) = \frac{1}{\sigma}, E(X - \mu) = \frac{1}{\sigma}(\mu - \mu) = 0$$

$$Var(z) = \frac{1}{\sigma^2} Var(X - \mu) = \frac{1}{\sigma^2} \cdot \sigma^2 = 1$$

Απότοινος της πιθανότητας $\Phi(x)$ για $x > 0$ στα τορεμένα δόση

ΠΡΟΤΑΣΗ : Για κάθε $x > 0$ ισχύει $\Phi(x) + \Phi(-x) = 1$.

-ΑΠΟΔΗΜΗΣΗ -

Εστιν $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}}$, η πικρότητα μιας τυχαίας

μεταβλητής $X \sim N(0, 1)$

1^ο ΤΡΟΠΟΣ : Εστιν $H(x) = \Phi(x) + \Phi(-x)$, $\forall x \in \mathbb{R}$

Η H είναι παραγωγική, με $H'(x) = \Phi'(x) - \Phi'(-x) = f(x) - f(-x) = 0$

Απότοινος, $\exists c \in \mathbb{R}$, ώστε $\Phi(x) + \Phi(-x) = c$, $\forall x \in \mathbb{R}$

Για $x \rightarrow \infty$, δινεται $c = \Phi(\infty) + \Phi(-\infty) = 1 + 0 = 1$.

(6)

$$\text{Def. Τόπος: } \Phi(-x) = \int_{-\infty}^{-x} f(t) dt \stackrel{s=-t}{=} \int_{\infty}^x f(-s) ds = \int_x^{\infty} f(s) dx$$

$$\text{Άρα: } \Phi(x) + \Phi(-x) = \int_{-\infty}^x f(t) dt + \int_x^{\infty} f(t) dt = \int_{-\infty}^{\infty} f(t) dt = 1$$

Ειδικά, όταν $x=0$ παίρνουμε $\Phi(0) = \frac{1}{2}$

[ΑΣΚΗΣΗ] Ross - πρόβλ. 5.15 σελ. 244

Εστω οτι $X \sim N(10, 36)$. Να υπολογιστούν όλες τις βοηθείες

της $\Phi(x)$, $x \geq 0$ οι οποίες

$$(a) P(X > 5) \quad (b) P(X < 20)$$

$$(c) P(4 < X < 16) \quad (d) P(X > 16)$$

$$(e) P(X \leq 8)$$

- Η ΡΙΗ-

$$H \quad Z = \frac{X-10}{6} \sim N(0,1)$$

$$\boxed{\Phi(x) + \Phi(-x) = 1}$$

$$\boxed{X = 10 + 6Z}$$

$$(a) P(X > 5) = P(10 + 6Z > 5) = P(Z > -\frac{5}{6}) =$$

$$= 1 - P(Z \leq -\frac{5}{6}) = 1 - \Phi(-\frac{5}{6}) = \Phi(\frac{5}{6})$$

$$(b) P(4 < X < 16) = P(4 < 10 + 6Z < 16) = P(-1 < Z < 1) =$$

$$= \Phi(1) - \Phi(-1) = \Phi(1) - (1 - \Phi(1)) = 2\Phi(1) - 1.$$

$$(c) P(X < 8) = P(10 + 6Z < 8) = P(Z < -\frac{1}{3}) =$$

$$= \Phi(-\frac{1}{3}) = 1 - \Phi(\frac{1}{3})$$

$$(d) P(X < 20) = P(10 + 6Z < 20) = P(Z < \frac{5}{3}) =$$

$$= \Phi(\frac{5}{3})$$

$$(g) P(X > 1G) = P(10 + 6Z > 1G) = P(2 > 1) = \\ = 1 - P(Z \leq 1) = 1 - \Phi(1)$$

ΑΣΚΗΣΗ 5.7 (γυαλαδιό)

X : αλχρισ τυχαια μεταβολη, Ο αετιος δεγκα διαιρεσης
της X , αν $P(X > a) = P(X \leq a)$

Καλέστε χαρές και συνεχίστε την παραβάση εξ αποτέλεσμα
μια διάπερα. Μην ορθάνετε την παραβάση από ενών;

(β). Βρείτε έναν σλαγχό για μια $X \sim N(\mu, \sigma^2)$. Γιατί ποιαδήποτε;

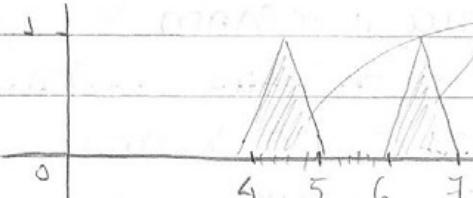
$$\text{a: diajungos} \Leftrightarrow P(X \leq a) = P(X > a) = 1 - P(X < a) = 1 - P(X \leq a) \Leftrightarrow P(X \leq a) = \frac{1}{2} \text{ (a) } F(a) = \frac{1}{2}$$

a) H Fx eivai συνεχής, $F(-a) = 0$, $F(a_0) = 1$,

$$F(k) < \frac{1}{10} \quad F(N) > \frac{e}{3}$$

$$\exists a \in \mathbb{R} \text{ such that } F(a) = \frac{1}{9}$$

Μη μοναδικότητα: Αν πάρουμε πυκνώτητα, στην οποία



KaDe ae [5, 6] sivai
Sämpuoso5.

$$(B), \text{Av } X \sim N(\mu, \sigma^2), \text{ Tore } F_X(x) = P(X \leq x) = \\ = P\left(\frac{X-\mu}{\sigma} \leq \frac{x-\mu}{\sigma}\right) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

$$a: \text{Si } a \in F_x(a) = \frac{1}{2} \Leftrightarrow \Phi\left(\frac{a-\mu}{\sigma}\right) = \frac{1}{2} \Leftrightarrow$$

$$\frac{a-\mu}{\delta} = 0 \quad \Leftrightarrow \quad a = \mu$$

(8)

ΑΣΚΗΣΗ 5.9 - ΚΥΛΛΟΙΔΙΑ

$Z \sim N(0,1)$, $g: \mathbb{R} \rightarrow \mathbb{R}$ με συνεχή παραγωγή και
 $I = \{x \in \mathbb{R}, g(x) \neq 0\}$ γραμμένο.

$$\text{ΝΑΟ } E(g'(x)) = E(Xg(x))$$

-ΛΥΣΗ-

Εστω $a < b$, ώστε $I \subset (a, b)$, τότε

$$\begin{aligned} E(g'(x)) &= \int_{\mathbb{R}} g'(x) f_x(x) dx = \int_a^b g'(x) \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \\ &= g(x) \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \Big|_a^b - \int_a^b g(x) \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} (-x) dx = \\ &= 0 - 0 \int_a^b x g(x) \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \end{aligned}$$

Η ΕΦΕΤΙΚΗ ΤΥΧΑΙΑ ΜΕΤΑΒΛΗΤΗ

Εστω $\lambda > 0$ και

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{αν } x > 0 \\ 0, & \text{αν } x \leq 0. \end{cases}$$

Καθε τυχαια μεταβλητη X , που έχει πυκνότητα αυτην με f , με ληξη εκθετικη με παραμετρο λ .

Λέμε επισης ότι η X αποτελει με εκθετη

κατανοη με παραμετρο λ .

Γειουρη $X \sim \text{Exp}(\lambda)$

ΠΑΡΑΤΗΡΗΣΗ: 1) Η f είναι πρόσημη πυκνότητα, γιατι $f(x) \geq 0$ και $\int_{\mathbb{R}} f(x) dx = \int_0^{\infty} \lambda \cdot e^{-\lambda x} dx =$

$$= -e^{-\lambda x} \Big|_0^{\infty} = 1.$$

2) Μια $X \sim \text{exp}(\lambda)$ παιρνε ποτο δημια τιμη, αγι
 $f_X(x) = 0 \quad \forall x \leq 0$

(9)

$$3). \text{ Για } x > 0, \text{ εχουμε } P(X > x) = \int_x^{\infty} f(t) dt =$$

$$= \int_x^{\infty} \lambda \cdot e^{-\lambda t} dt = e^{-\lambda t} \Big|_x^{\infty} = e^{-\lambda x}$$

$$\text{Αρα } f_x(x) = P(X \leq x) = 1 - P(X > x) = \begin{cases} 0, & \text{αν } x \leq 0 \\ 1 - e^{-\lambda x}, & \text{αν } x > 0 \end{cases}$$

ΜΕΓΕΘΗ ΠΟΥ ΑΚΟΛΟΥΘΟΥΝ ΠΡΟΣΕΓΓΙΣΤΙΚΑ ΤΗΝ ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ

- χρόνος μεταξύ δύο διαδοχικών αριθμών σεντινέλεντού
- χρόνος που διασπάται η μέση
- χρόνος δια τη διασποσην ενός ατόμου ραδιενέργου υλικού (αλλαγή ατομικού αριθμού)

ΠΡΟΤΑΣΗ

Αν $X \sim \text{exp}(\lambda)$, τότε:

$$\text{i). } E[X] = \frac{1}{\lambda}$$

$$\text{ii). } \text{Var}(X) = \frac{1}{\lambda^2}$$

- Απόδ-

$$\text{i). } E[X] = \int_{\mathbb{R}} x \cdot f(x) dx = \int_0^{\infty} x \cdot \lambda e^{-\lambda x} dx = \int_0^{\infty} x \cdot (-e^{-\lambda x})' dx =$$

$$= -x \cdot e^{-\lambda x} \Big|_0^{\infty} + \int_0^{\infty} 1 \cdot e^{-\lambda x} dx = \int_0^{\infty} e^{-\lambda x} dx = -\frac{1}{\lambda} \cdot e^{-\lambda x} \Big|_0^{\infty} = \frac{1}{\lambda}$$

(10)

$$\begin{aligned}
 \text{ii). } E(X^2) &= \int_{\mathbb{R}} x^2 \cdot f(x) dx = \int_0^{\infty} x^2 \cdot \lambda e^{-\lambda x} dx = \\
 &= \int_0^{\infty} x^2 \cdot (-e^{-\lambda x})' dx = -x^2 \cdot e^{-\lambda x} \Big|_0^{\infty} + 2 \int_0^{\infty} x \cdot e^{-\lambda x} dx = \\
 &= \frac{2}{\lambda} \cdot \int_0^{\infty} x \cdot \lambda e^{-\lambda x} dx \stackrel{(1)}{=} \frac{2}{\lambda^2}
 \end{aligned}$$

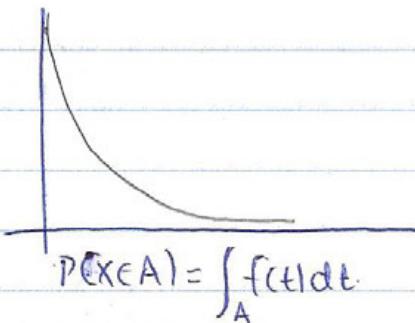
$$\text{Apa, } \text{Var}(X) = E(X^2) - (EX)^2 = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}$$

22/11/2018

Πιθανότητες Ι.

 $X \sim \exp(\lambda)$

$$f(x) = \begin{cases} \lambda \cdot e^{-\lambda x} & , x > 0 \\ 0 & , x = 0 \end{cases}$$

ΑΣΚΗΣΗ

Εστω ότι $X \sim \exp(\lambda)$. Να βρεθει το λ σε καθημία απ'τις παραπάνω περιπτώσεις.

(α) $EX = 5$

(β) $P(X \leq 1) = P(X > 1)$

(γ) $P(X \leq 2) = 2P(X > 2)$

(δ) $\text{Var}(X) = EX$

- ΑΣΚΗΣΗ -

(α) $EX = \frac{1}{\lambda}$, από $\frac{1}{\lambda} = 5$

(β) $1 - e^{-\lambda} = e^{-\lambda} \Leftrightarrow e^{-\lambda} = \frac{1}{2} \Leftrightarrow \lambda = \log 2$

(γ) $1 - e^{-2\lambda} = 2 \cdot e^{-2\lambda} \Leftrightarrow e^{-2\lambda} = \frac{1}{3} \Leftrightarrow \lambda = \frac{1}{2} \cdot \log 3$

(δ) $\text{Var}(X) = EX \Leftrightarrow \frac{1}{\lambda^2} = \frac{1}{\lambda} \Leftrightarrow \lambda = 1$

ΑΣΚΗΣΗ

Αν $X \sim \exp(\lambda)$, νόι $EX^k = \frac{\lambda^k}{\lambda^k}$

- ΑΣΚΗΣΗ -

Για $k \in \mathbb{N}^+$: $EX^k = \int_{\mathbb{R}} x^k \cdot f_X(x) dx = \int_0^{\infty} x^k \cdot \lambda \cdot e^{-\lambda x} dx = \int_0^{\infty} x^k \cdot (-e^{-\lambda x}) dx =$

$$= -x^k \cdot e^{-\lambda x} \Big|_0^{\infty} + k \cdot \int_0^{\infty} x^{k-1} \cdot e^{-\lambda x} dx = \frac{k}{\lambda} \cdot \int_0^{\infty} x^{k-1} \cdot \lambda e^{-\lambda x} dx$$

EX^{k-1}

(2)

$$\text{Apa, } E(X^k) = \frac{k}{\lambda} \cdot E(X^{k-1}) \quad \forall k \in \mathbb{N}^+$$

$$\text{Efimis, } E(X^0) = 1$$

H jmoiouron enerasi με επιπλωση

$$E(X^k) = \frac{k}{\lambda} \cdot \frac{k-1}{\lambda} \cdot \frac{k-2}{\lambda} \cdots \frac{1}{\lambda} \cdot E(X^0) = \frac{k}{\lambda^k}$$

ΟΡΟΛΟΓΙΑ

Av X : iuxaia metabolit, ton apidhro $E(X^k)$, $k \in \mathbb{N}$
(av opijetai) ton λēne ponri k -tais rns X

ΕΛΛΕΙΨΗ ΜΝΗΜΗΣ ΤΗΣ ΕΚΔΕΤΙΚΗΣ

Av X exp(λ) kai $s, t \geq 0$, tote:

$$P(X > s+t \mid X > s) = P(X > t)$$

- Anos-

To apoteroi μēlos einai:

$$\frac{P(X > s+t, X > s)}{P(X > s)} = \frac{P(X > s+t)}{P(X > s)} = \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = \\ = P(X > t)$$

H SYNAPTHSI GAMMA

Autn εivai $\Gamma: (0, \infty) \rightarrow \mathbb{R}$ με

$$\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx$$

ΠΡΟΤΑΣΗ

- 1) $\Gamma(a) < \infty \quad \forall a > 0$
- 2) $\Gamma(1) = 1$
- 3) $\Gamma(\frac{1}{2}) = \sqrt{\pi}$
- 4) $\Gamma(a+1) = a \cdot \Gamma(a) \quad \forall a > 0$
- 5) $\Gamma(n) = (n-1)! \quad \forall n \in \mathbb{N}^+$

- Απόδειξη -

$$1) \int_0^\infty x^{a-1} \cdot e^{-x} dx = \int_0^1 x^{a-1} \cdot e^{-x} dx + \int_1^\infty x^{a-1} \cdot e^{-x} dx$$

Το πρώτο ολοκλήρωμα συγχίνει, διατί

$$x^{a-1} \cdot e^{-x} < x^{a-1} \quad \text{καθώς} \quad \int_0^1 x^{a-1} dx = x^a \Big|_0^1 = \frac{1}{a} < \infty$$

Υπάρχει $M > 0$ ώστε: $x^{a-1} \cdot e^{-x} < e^{-\frac{x}{2}}$, διατί

$$\lim_{x \rightarrow \infty} \frac{x^{a-1} \cdot e^{-x}}{e^{-\frac{x}{2}}} = 0$$

$$\text{Αρα} \quad \int_1^\infty x^{a-1} \cdot e^{-x} dx \leq \int_1^M dx + \int_M^\infty e^{-\frac{x}{2}} dx$$

$$2 \cdot e^{-\frac{M}{2}} < \infty$$

$$\left[\begin{array}{l} \Gamma(0) = \int_0^\infty \frac{1}{x} \cdot e^{-x} dx \\ e^{-1} \cdot \int_0^1 \frac{1}{x} dx = \log x \Big|_0^1 = 0 - (-\infty) = \infty \end{array} \right]$$

$$2) \Gamma(1) = \int_0^\infty e^{-x} dx = -e^{-x} \Big|_0^\infty = -e^{-\infty} + (-e^0) = 1$$

$$3) \Gamma(\frac{1}{2}) = \int_0^\infty x^{-\frac{1}{2}} \cdot e^{-x} dx \stackrel{x=y^2}{=} \int_0^\infty y^{-\frac{1}{2}} \cdot e^{-y^2} 2y dy =$$

$$2 \cdot \int_0^\infty e^{-y^2} dy = \int_0^\infty e^{-y^2} dy = \sqrt{\pi}$$

$$4) \Gamma(a+1) = \int_0^\infty x^a \cdot e^{-x} dx = \int_0^\infty x^a \cdot (-e^{-x}) dx =$$

$$= -x^a \cdot e^{-x} \Big|_0^\infty + a \cdot \int_0^\infty x^{a-1} \cdot e^{-x} dx = a \cdot \Gamma(a)$$

5). Επαγγελτικά

• $n=1$ ισχύει αφού $\Gamma(1)=1$

Αν ισχύει για n , τότε $\Gamma(n+1) \stackrel{4)}{=} n \cdot \Gamma(n) = n \cdot ((n-1)!) = n!$

Η τυχαία μεταβλητή ΓΑΜΜΑ

Εστω $a, \lambda > 0$ την δυνητική τυχαία μεταβλητή

με πυκνότητα:
$$f(x) = \begin{cases} \frac{\lambda^a}{\Gamma(a)} \cdot x^{a-1} \cdot e^{-\lambda x} & , x > 0 \\ 0 & , x \leq 0 \end{cases}$$

Τη λέμε γενικώς με παραμέτρους a, λ .

Γράφουμε $X \sim \Gamma(a, \lambda)$

ΠΑΡΑΤΗΡΗΣΗ

1). Η f είναι πράγματι πυκνότητα, διατί

$$f \geq 0 \text{ και } \int_{\mathbb{R}} f(x) dx = \int_0^\infty f(x) dx = \frac{\lambda^a}{\Gamma(a)} \int_0^\infty x^{a-1} \cdot e^{-\lambda x} dx \stackrel{y=\lambda x}{=} \int_0^\infty y^{a-1} \cdot e^{-y} \frac{1}{\lambda} dy$$

$$= \frac{\lambda^a}{\Gamma(a)} \int_0^\infty \frac{y^{a-1}}{\lambda^{a-1}} \cdot e^{-y} \frac{1}{\lambda} dy = \frac{1}{\Gamma(a)} \int_0^\infty y^{a-1} \cdot e^{-y} dy = 1$$

2). Οταν $a=1$, τότε η $\Gamma(1, \lambda)$ έχει πυκνότητα $\lambda \cdot e^{-\lambda x} 1_{x>0}$, που είναι η πυκνότητα της εκθετικής $(\exp(\lambda))$ με παράμετρο λ . Άρα, $\Gamma(1, \lambda)$ είναι η $\exp(\lambda)$

ΑΣΚΗΣΗ

Εστω $X \sim \Gamma(a, \lambda)$. Ναο $E(X^r) = \frac{\Gamma(a+r)}{\lambda^r \cdot \Gamma(a)}$ $\forall r \geq 0$

$$\Gamma(a) = \int_0^\infty x^{a-1} e^{-\lambda x} dx$$

- ΑΥΣΗ -

$$\begin{aligned} E(X^r) &= \int_{\mathbb{R}} x^r f(x) dx = \int_0^\infty x^r \cdot \frac{\lambda^a}{\Gamma(a)} \cdot x^{a-1} \cdot e^{-\lambda x} dx = \\ &= \frac{\lambda^a}{\Gamma(a)} \cdot \int_0^\infty x^{a+r-1} \cdot e^{-\lambda x} dx = \frac{\lambda^a}{\Gamma(a)} \int_0^\infty \frac{\lambda^{a+r}}{\Gamma(a+r)} x^{a+r-1} \cdot e^{-\lambda x} dx \underbrace{\frac{\Gamma(a+r)}{\lambda^{a+r}}}_{\text{ΠΙΚΝΩΤΙΚΑ ΤΗΣ}} = \\ &= \frac{\lambda^a}{\Gamma(a)} \left| \frac{\Gamma(a+r)}{\lambda^{a+r}} \right| = \frac{\Gamma(a+r)}{\lambda^r \cdot \Gamma(a)} \end{aligned}$$

ΠΡΟΤΑΣΗ

Αν $X \sim \Gamma(a, \lambda)$, τότε (i) $EX = \frac{a}{\lambda}$

(ii) $Var(X) = \frac{a}{\lambda^2}$

- ΑΠΟΣ -

$$(i) EX = \frac{\Gamma(a+1)}{\lambda \cdot \Gamma(a)} = \frac{a \cdot \Gamma(a)}{\lambda \cdot \Gamma(a)} = \frac{a}{\lambda}$$

$$(ii) E(X^2) = \frac{\Gamma(a+2)}{\lambda^2 \cdot \Gamma(a)} = \frac{(a+1) \cdot \Gamma(a+1)}{\lambda^2 \cdot \Gamma(a)} = \frac{(a+1) \cdot a \cdot \Gamma(a)}{\lambda^2 \cdot \Gamma(a)} = \frac{(a+1) \cdot a}{\lambda^2}$$

$$\text{Αρα, } Var(X) = E(X^2) - (EX)^2 = \frac{(a+1) \cdot a}{\lambda^2} - \frac{a^2}{\lambda^2} = \frac{a}{\lambda^2}$$

§ 5.7 (Ross) ΚΑΤΑΝΟΜΗ ΣΥΝΑΡΤΗΣΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Εστω X : διανομής τυχαία μεταβλητή με πυκνότητα f_X και $g: \mathbb{R} \rightarrow \mathbb{R}$

Ερώτηση: ποια η κατανομή της τυχαίας μεταβλητής $Y = g(X)$;

Απλούστερα, ποια είναι η f_Y πυκνότητα αν Y είναι σίχις

$$\begin{array}{ccc} \mathbb{R} & \xrightarrow{X} & \mathbb{R} \\ & \underbrace{\qquad\qquad\qquad}_{Y} & \end{array} \quad f_Y(t) = P(Y=t) = \int g(x) f_X(x) dx$$

Νεριάτων 1: Y : διαρκής

Τότε υπολογίζουμε απευθείας την $f_Y(t) = P(Y=t) = P(g(X)=t)$

ΑΣΚΗΣΗ

Εστω $\lambda > 0$ και $X \sim \exp(\lambda)$.

Ποια η κατανομή της $Y = \lfloor X \rfloor$;

-ΛΥΣΗ-

Η Y παίρνει τιμές στο \mathbb{Z} , αρά είναι διαρεμένη.
Για $k \in \mathbb{Z}$, $f_Y(k) = P(Y=k) = P(\lfloor X \rfloor = k)$

Αν $k \in \mathbb{N}$, τη δεκταία πιθανότητα $= 0$.

$$\text{Αν } k \in \mathbb{N} \quad " \quad " \quad " = P(k \leq X \leq k+1) =$$

$$= \int_k^{k+1} f_X(t) dt = \int_k^{k+1} \lambda e^{-\lambda t} dt = -e^{-\lambda t} \Big|_k^{k+1} = e^{-\lambda k} - e^{-\lambda(k+1)} =$$

$$= e^{-\lambda k} \cdot (1 - e^{-\lambda}) = (1-p)^k p \quad \text{με } p = 1 - e^{-\lambda} \quad \text{τροποποιήσαν
δημιουργικά}$$

ΑΣΚΗΣΗ (Ross 55 / σελ 249)

Εστω $n \in \mathbb{N}^+$. Διακριτη ομοιόμορφη τυχαια μεταβλητη

στο $\{1, 2, \dots, n\}$ η οποιηδε W , με $P(W=k) = \frac{1}{n}$ για $k=1, 2, \dots, n$

Αν $X \sim U(0,1)$ και n :

$Y = \lceil nX \rceil + 1$, ειναι διακριτη ομοιόμορφη στο $\{1, 2, \dots, n\}$

ΛΥΣΗ -

Επειδη nX ηταρνει τημε στο $(0,1)$

$n nX$ " " στο $(0, n)$

$n \lceil nX \rceil$ " " στο $0, 1, \dots, n-1$

$n Y$ " " στο $1, 2, \dots, n$

Αρα, αν $a \in \mathbb{R} \setminus \{1, 2, \dots, n\}$, τότε $f_Y(a) = P(Y=a) = 0$

αν $a \in \{1, 2, \dots, n\}$, τότε $f_Y(a) = P(Y=a) = P(\lceil nX \rceil = a-1) =$
 $= P(a-1 \leq nX < a) = P\left(\frac{a-1}{n} \leq X \leq \frac{a}{n}\right) =$

$$= \int_{\frac{a-1}{n}}^{\frac{a}{n}} f_X(t) dt = \frac{a}{n} - \left(\frac{a-1}{n}\right) = \frac{1}{n}$$

Περιπτωση 2η

Η Y ειναι στοχη. Θα χρησιμοποιούμε την εγγιση πρόταση

ΠΡΟΤΑΣΗ

Εστω συναριθμητης καταστροφης F , η οποια:

(α) ειναι στοχη και

(β). υπαρχει $J \subset \mathbb{R}$ πεπερασμένο και συναριθμητης

$F: \mathbb{R} \rightarrow [0, \infty)$, ώστε:

• $F'(t) = f(t) \quad \forall t \in J$

• η f : στοχη στο $\mathbb{R} \setminus J$,

τότε η f ειναι μια πινακωτη για την F

[Πρακτικα: Η F' να υπαρχει στο $\mathbb{R} \setminus J$ και να ειναι στοχη εχει]

Όταν λοιπόν $Y = g(X)$ και η Y ειναι στοχη τυχαια μεταβλητη, και την ευπονη με f_Y κανουμε το στοχη:

(8)

i) Βριούμε την $F_Y(t) = P(Y \leq t)$ συγκριτική με F_X

ii) Βριούμε την $F_Y'(t)$ συγκριτική με f_X και χρησιμοποιούμε την τηρούμενη πρότοια για να δικαιολογηθούμε το ότι η πυκνότητα με Y είναι $f_Y(t) = F'_Y(t)$

ΑΣΚΗΣΗ Αν $X \sim \exp(\lambda)$ ποια η κανονική με $Y = \log X$;

-ΛΥΣΗ-

Για $t \in \mathbb{R}$, $F_Y(t) = P(Y \leq t) = P(\log X \leq t) = P(X \leq e^t) = f_X(e^t)$

F_X : παραγωγή με $\text{G}(R \setminus \{0\})$, έκανε $e^t \neq 0$, και F_Y είναι παραγωγή με \mathbb{R} με παραγωγή

$$F'_Y(t) = F'_X(e^t) e^t = f_X(e^t) e^t = 2e^{-2e^t} e^t$$

Συγκρότειται η προίστη $\mu \in \mathbb{R}$ και δίνεται η πυκνότητα $F'_Y(t) = 2e^{-2e^t} e^t \quad \forall t \in \mathbb{R}$

ΑΣΚΗΣΗ 5.14 (χυλαριό)

Η X έχει πυκνότητα $f(x) = \frac{1}{2x^2} \quad 1 < x < 1$

Ποια η πυκνότητα με $Y = X^2$;

-ΛΥΣΗ-

Για $t \in \mathbb{R}$, $F_Y(t) = P(X^2 \leq t) \quad \text{Αν } t < 1 \text{ αυτό} = 0$

Αν $t > 0 \quad P(X^2 \leq t) = 0$

$$\text{Αν } t \in [0, 1] \quad P(X^2 \leq t) = P(-\sqrt{t} \leq X \leq \sqrt{t}) = \int_{-\sqrt{t}}^{\sqrt{t}} f_X(s) ds = 0$$

$$\text{Αν } t > 1 \quad F_Y(t) = P(-\sqrt{t} \leq X \leq \sqrt{t}) = F_X(\sqrt{t}) - F_X(-\sqrt{t})$$

(9)

H $F_Y: \sigma/xns \rightarrow \sigma/a + 1$: προγραμματικός

$$\rightarrow \sigma/a + 1 : F_Y(1-) = 0$$

$$F_Y(1+) = F_X(1) = F_X(-1) =$$

$$= \int_{-1}^1 f_X(t) dt = 0$$

H $F_Y: \sigma/a \text{ με } 0 < a < 1$ πεπαράγωγος

$$f_Y(t) = \begin{cases} 0, & t < 1 \\ \end{cases}$$

$$F_Y(t) = \frac{1}{2\sqrt{t}} + \frac{1}{2\sqrt{t}} F_X(-\sqrt{t}) = (a\sqrt{t} + 1)$$

$$= \frac{1}{\sqrt{t}} F_X(\sqrt{t}) = \frac{1}{\sqrt{t}} \cdot \frac{1}{2t} = \frac{1}{2t^{3/2}} \quad t > 1 \text{ η οποιασδια}$$

σίχνη στο $\mathbb{R} \setminus \{1\}$

$$\text{Με βάση την προηγ. η } f(t) = \frac{1}{2t^{3/2}} \quad t > 1 \quad \forall t \in \mathbb{R},$$

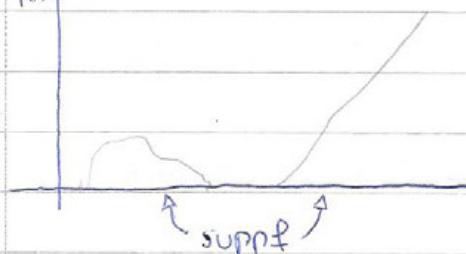
είναι μια πυκνωματική μεγέθυνση y .

27/11/2018

15^ο μαθημα

Πιθανότητες I - Χειρισμός

ΟΡΟΛΟΓΙΑ: Αν $f: \mathbb{R} \rightarrow \mathbb{R}$ δυνατόν, στηρίζεται (σερέα) την f , θερετικό το σύνολο $\{x \in \mathbb{R} : f(x) \neq 0\}$. Το αυτό διάστημα ονομάζεται $\text{supp } f$ (support).



$$\text{π.χ.: av } f(x) = (x^2 - 1) \mathbb{1}_{\{x \neq 1\}}$$

$$\{x \in \mathbb{R} : f(x) \neq 0\} = (-\infty, -1] \cup [1, \infty)$$

$$\text{supp } f = (-\infty, -1] \cup [1, \infty)$$

⇒ Χαρίστε στο $(-\infty, -1) \cup (1, \infty)$, $Y = x^2$.

ΠΑΡΑΤΗΡΗΣΕΙΣ

1). Είναι χρήσιμο να προσδιορίζουμε απ' την αρχή, το supply. Αυτό είναι το σύνολο που παίρνει τιμές η Y . Μπορούμε να το βρούμε χωρίς να ζερούμε την f_Y .

π.χ.: στην προηγούμενη δύνην η Y παίρνει πάντα στο $(1, \infty)$ περιμένοντας δηλαδή ότι $\text{Supply} = (1, \infty)$ και αυτό μας επιδεινώνει στο τι περιπτώσεις θα διαρκεύει στον υπολογισμό της f_Y .

2). Αν η f_Y δεν είναι παραγωγιστική σε πινερασμένα το πλήθος απειλία, ορίζομε σε αυτά της f_Y αυθαίρετα πχ.: $f_Y(x) = 0$.

ΑΣΚΗΣΗ ③

Εστω ότι $X \sim \exp(1)$ (Αναδρι, $f_X(x) = e^{-x} \mathbb{1}_{x \geq 0}$)
 $\text{supp } f_X = \{x \in \mathbb{R} : f_X(x) \neq 0\} = (0, \infty)$)

Να βρεθεί η πικνοτητά της

$$Y = \begin{cases} X, & \text{av } X \leq 1 \\ \frac{1}{X}, & \text{av } X > 1. \end{cases}$$

-ΛΥΣΗ-

Η X παίρνει τιμές στο $(0, \infty)$ \Rightarrow Η Y παίρνει τιμές στο $(0, 1]$. Περιμένουμε ότι $\text{supp } f_Y = [0, 1]$.

(2)

Υπολογίζωμε την $F_Y(t) \quad \forall t \in \mathbb{R}$, $F_Y(t) = P(Y \leq t)$

• Av $t \leq 0$, αυτή η πιθανότητα είναι μηδέν, αφού $Y \in [0, 1]$

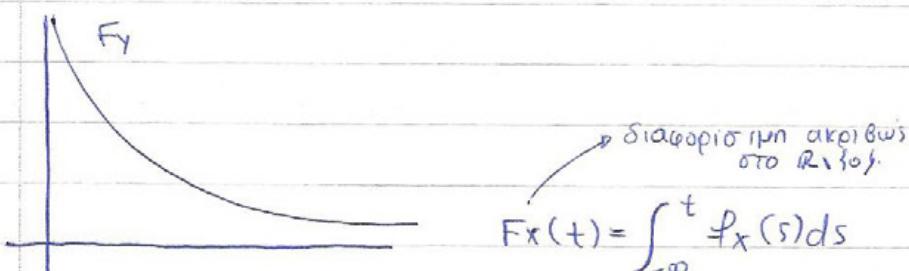
• Av $t \geq 1$, $P(Y \leq t) = 1$, γιατί η Y από τον ορισμό της, παίρνει τιμές στο $[0, 1]$.

$$\begin{aligned} \bullet \text{ Av } t \in (0, 1) : P(Y \leq t) &= P(Y \leq t, X \leq 1) + P(Y \leq t, X > 1) = \\ &= P(X \leq t, X \leq 1) + P\left(\frac{1}{X} \leq t, X > 1\right) = \\ &= P(X \leq t) + P\left(X \geq \frac{1}{t}, X > 1\right) \stackrel{t > 1}{=} P(X \leq t) + P\left(X \geq \frac{1}{t}\right) = \\ &= F_X(t) + 1 - F_X\left(\frac{1}{t}\right) \end{aligned}$$

$$\text{Άρα, } F_Y(t) = \begin{cases} 0 & , t \leq 0 \\ F_X(t) + 1 - F_X\left(\frac{1}{t}\right) & , t \in (0, 1) \\ 1 & , t \geq 1 \end{cases}$$

H F_Y είναι συνεχής

$$\left[\begin{array}{l} \text{προχωρώσ στο } \mathbb{R} \setminus \{0, 1\}, \text{ αφού } F_X \text{ συνεχής} \\ F_Y(0+) = F_X(0) + 1 - F_X(\infty) = 0 + 1 - 1 = 0 = F_Y(0-) \\ F_Y(1-) = F_X(1) + 1 - F_X(1) = 1 = F_Y(1+) \end{array} \right]$$



H F_Y είναι διαδιπλή στο $\mathbb{R} \setminus \{0, 1\}$ με παραγωγό

$F'_Y(t) = 0$, av $t \in (-\infty, 0) \cup (1, \infty)$ και για $t \in (0, 1)$,

$$F'_Y(t) = F'_X(t) + \frac{1}{t^2} F'_X\left(\frac{1}{t}\right) =$$

$$= f_X(t) + \frac{1}{t^2} f_X\left(\frac{1}{t}\right) = e^{-t} + \frac{1}{t^2} e^{-\frac{1}{t}}$$

H F'_Y είναι συνεχής στο $\mathbb{R} \setminus \{0, 1\}$

Από διωρι πρότασην για έχει πυκνότητα:

$$= Fx(t) + 1 - Fx\left(\frac{1}{t}\right)$$

$$\text{Άρα, } Fy(t) = \begin{cases} 0 & , t \leq 0 \\ Fx(t) + 1 - Fx\left(\frac{1}{t}\right), & t \in (0, 1) \\ 1 & , t \geq 1 \end{cases}$$

$$\text{και } f_y(t) = \begin{cases} 0 & , \text{av } t \in (-\infty, 0] \cup [1, \infty) \\ e^{-t} + \frac{1}{t^2} e^{-\frac{1}{t}}, & t \in (0, 1) \end{cases}$$

ΑΣΚΗΣΗ 4

Εστω οτι $X \sim N(0, 1)$

$$\text{Δεπουμε } Y = \begin{cases} -1 & , X < -3 \\ 0 & , |X| \leq 3 \\ 1 & , X > 3 \end{cases} = g(x)$$

i). Ποιαν κατανοή της Y

ii). $E(Y^2) =$

- ΑνΣΗ -

i). Η Y είναι διαρκής και παρέχει τιμές στο $\{-1, 0, 1\}$

Βρίσκεται υπό συνθήσεις προσόντας την

$$f_y(t) = P(Y=t)$$

Αυτό ισούται υπό μεριδέν, αν $t \in \mathbb{R} - \{-1, 0, 1\}$.

$$f_y(-1) = P(Y=-1) = P(X < -3) = \Phi(-3)$$

$$f_y(0) = P(Y=0) = P(-3 \leq X \leq 3) = \Phi(3) - \Phi(-3) = \\ = \Phi(3) - (1 - \Phi(3)) = 2\Phi(3) - 1$$

$$f_y(1) = P(Y=1) = P(X > 3) = 1 - \Phi(3)$$

$$\text{ii). } \underline{1^{\text{ο}} \text{ πότος}}: EY = \sum_{t \in \mathbb{R}} t^2 f_y(t) = (-1)^2 \cdot f_y(-1) + 0^2 \cdot f_y(0) + 1^2 \cdot f_y(1) = 2 f_y(1)$$

$$\underline{2^{\text{ο}} \text{ πότος}}: EY^2 = \int_{\mathbb{R}} (g(x))^2 f(x) dx = \int_{-\infty}^{-3} + \int_{-3}^3 + \int_3^{\infty}$$

(4)

Υπερδύμαση : $X \sim \Gamma(a, \lambda)$ έχει πυκνότητα:

$$F_X(x) = \frac{\lambda^a}{\Gamma(a)} \cdot x^{a-1} \cdot e^{-\lambda x} \quad |x \geq 0$$

ΑΣΚΗΣΗ 5.20 (μουταρδιό)

$$\text{Αν } X \sim N(0,1) \text{ και } X^2 \sim \Gamma\left(\frac{1}{2}, \frac{1}{2}\right).$$

-ΛΥΣΗ -

Η $Y = X^2$ παρίπει τιμές στο $[0, \infty)$

$$\text{Για } t \in \mathbb{R} \quad F_Y(t) = P(Y \leq t) = P(X^2 \leq t)$$

Αυτό ισούται με $0, \sqrt{t}$ αν $t \leq 0$.

$$\text{Για } t > 0 \text{ ισούται με } P(-\sqrt{t} \leq X \leq \sqrt{t}) = \Phi(\sqrt{t}) - \Phi(-\sqrt{t}).$$

$$\text{Άρα, } F_Y(t) = \begin{cases} 0 & t < 0 \\ \Phi(\sqrt{t}) - \Phi(-\sqrt{t}) & t \geq 0 \end{cases}$$

Η F_Y είναι συνεχής (στο \mathbb{R})

(Για το $\mathbb{R} \setminus \{0\}$ προχωρεί, για το $t=0$, $F_Y(0+) = \Phi(0) - \Phi(0) = 0$, $= F_Y(0-)$)

Η F_Y είναι παραγωγήσιμη στο $\mathbb{R} \setminus \{0\}$ με παραγό

$$F'_Y(t) = 0, \text{ αν } t < 0,$$

$$\text{και } \text{αν } t > 0, \quad F'_Y(t) = \Phi'(\sqrt{t}) \cdot \frac{1}{2\sqrt{t}} + \Phi'(-\sqrt{t}) \cdot \frac{1}{2\sqrt{t}} =$$

$$= \frac{1}{2\sqrt{t}} \cdot f_X(\sqrt{t}) + \frac{1}{2\sqrt{t}} \cdot f_X(-\sqrt{t}) = \frac{1}{2\sqrt{t}} \cdot f_X(\sqrt{t}) = \frac{1}{\sqrt{t}} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{t}{2}} =$$

f_X : αρνητική

$$\text{Δηλαδί, } F'_Y(t) = \frac{1}{\sqrt{2\pi t}} \cdot e^{-\frac{t}{2}}, \quad t \in \mathbb{R} \setminus \{0\}, \text{ και οποια σιγα συνεχής στο } \mathbb{R} \setminus \{0\}$$

Κατα τα γνωστά, η Y έχει πυκνότητα με

$$f_Y(t) = \frac{1}{\sqrt{2\pi t}} \cdot e^{-\frac{t}{2}} \quad |t > 0 = \frac{\left(\frac{1}{2}\right)^{\frac{1}{2}}}{\Gamma\left(\frac{1}{2}\right)} \cdot t^{\frac{1}{2}-1} e^{-t} \quad |t > 0,$$

που ισχύει η πυκνότητα με $\Gamma(\frac{1}{2}, \frac{1}{2})$.

(5)

ΑΣΚΗΣΗ 5.22 (ωμαδιδιο)Av $a, \lambda, r > 0$ kai $X \sim \Gamma(a, \lambda)$, tote n $Y = rX \sim \Gamma(a, \frac{1}{r})$

- Αντικαθισταντα

Για $t \in \mathbb{R}$, $F_Y(t) = P(Y \leq t) = P(rX \leq t) = P(X \leq \frac{t}{r}) = F_X(\frac{t}{r}) \Rightarrow$
 $\Rightarrow F_X$ ευεξις.Επίσης παραμένει στο $\mathbb{R} \setminus \{0\}$ νε παραίσχυο: $F'_Y(t) = F'_X(\frac{t}{r}) \frac{1}{r} = f_X(\frac{t}{r}) \frac{1}{r}$, n οποια είναι δικτυο στο $\mathbb{R} \setminus \{0\}$ Αρα, μια πικνότητα για τον Y είναι n $f_Y(t) = f_X(\frac{t}{r}) \frac{1}{r}$, $\forall t \in \mathbb{R}$

$$\text{Υπολογίζουμε } f_Y(t) = \frac{1}{\Gamma(a)} \left(\frac{t}{r}\right)^{a-1} e^{-\frac{t}{r}} \frac{1}{r} \Gamma(a) =$$

$$= \frac{\left(\frac{t}{r}\right)^a}{\Gamma(a)} t^{a-1} e^{-\frac{t}{r}} \Gamma(a) \rightarrow \text{η πικνότητα } \Gamma(a, \frac{t}{r})$$

ΑΣΚΗΣΗ: Εσίω X ευεξις tη με πικνότητα f . Θέτουμε

$A = \{x \in \mathbb{R} : f(x) = 0\}$. Ναο $P(X \in A) = 0$.

- Αντικαθισταντα

$P(X \in A) = \int_A f(t) dt = 0$

ΑΣΚΗΣΗ 5.20 (Ross Oct. 25.0)Για $x \in \mathbb{R}$, $X^t = \begin{cases} x, & \text{av } x \geq 0 \\ 0, & \text{av } x < 0. \end{cases}$ (a) Av $Z \sim N(0, 1)$ kai $c \in \mathbb{R}$, vδο

$E((Z-c)^t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{c^2}{2}} - c(1 - \Phi(c)) =$

$= \int_{-\infty}^c (t-c)^t f_2(t) dt + \int_c^{\infty} (t-c)^t f_2(t) dt = \int_c^{\infty} (t-c)^t f_2(t) dt =$

$= \int_c^{\infty} t^t \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt - c \int_c^{\infty} t^{t-1} f_2(t) dt = \left[\frac{1}{\sqrt{2\pi}} (t e^{-\frac{t^2}{2}}) \right]_c^{\infty} =$

$= c P(Z \leq c) = \frac{1}{\sqrt{2\pi}} e^{-\frac{c^2}{2}} - c(1 - \Phi(c))$

 $\Phi(c)$

(6)

Η Υ δεν είναι συνεχης παρι $P(Y=0) = P(Z < c) = \varphi(c) > 0$.

ΔΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ

Α) Ολοκλήρωμα σε ορθογώνιο

Έσω $f: [a, b] \times [\gamma, \delta] \rightarrow \mathbb{R}$ αρχηγός

Οποιεσδήποτε δύο διαμερίσματα:

$$P_1 = \{a = x_0 < x_1 < \dots < x_m = b\}$$

$$P_2 = \{\gamma = y_0 < y_1 < \dots < y_n = \delta\}$$

των $[a, b], [\gamma, \delta]$ παραγουν και διαστέριον P

του $[a, b] \times [\gamma, \delta]$, την $\{R_{i,j} : 1 \leq i \leq m, 1 \leq j \leq n\}$ με

$$R_{i,j} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$$

$$M_{i,j} = \sup_{(x,y) \in R_{i,j}} f(x,y)$$

$$m_{i,j} = \inf_{(x,y) \in R_{i,j}} f(x,y)$$

$$L(f, P) = \sum_{i=1}^m \sum_{j=1}^n m_{i,j} \text{ Εμβαδον } R_{i,j}$$

$$U(f, P) = \dots M_{i,j} \dots$$

Τα κάτω και αυτά αντίστοιχα αθροίσματα Riemann ms f ws προς P

ΟΡΙΣΜΟΣ.

Λεγε οτι n f είναι Riemann-ολοκληρωμένη στο $R = [a, b] \times [\gamma, \delta]$

αν $\int f(x,y) dx dy := \sup \{L(f, P) : P_1, P_2 \text{ διαμερίσματων } [a, b], [\gamma, \delta] \text{ αντίστοιχα.}$

$$:= \inf \{U(f, P) : \dots$$

$$:= \int f(x,y) dx dy$$

Την κοινή αυτή τιμή τη λέμε ολοκληρωμένη ms f και

$$\iint_R f(x,y) dx dy$$

(7)

Θεώρημα ①

Αν $f: [a, b] \times [c, d] \rightarrow \mathbb{R}$ είναι συνεχής, τότε είναι Riemann οδοκόπητη

Θεώρημα ② (Fubini)

Εστω $f: [a, b] \times [c, d] \rightarrow \mathbb{R}$ συνεχής. Τότε $\iint_{\mathbb{R}} f(x, y) dx dy =$

$$= \int_a^b \left(\int_c^d f(x, y) dy \right) dx =$$

↗ Αναπτήση του x

$$= \int_c^d \left(\int_a^b f(x, y) dx \right) dy$$

↗ Αναπτήση του y

Παραδείγμα

$$\iint_{[0,1] \times [0,2]} x \cdot \sin(xy) dx dy = \int_0^1 \int_0^2 x \sin(xy) dy dx = \int_0^1 x \int_0^2 \frac{\partial}{\partial y} (-\frac{1}{x} \cos(xy)) dx dy$$

$$= \int_0^1 x \left[-\frac{1}{x} \cos(xy) \right]_{y=0}^{y=2} dx = - \int_0^1 (1 - \cos(2x)) dx =$$

$$= 1 - \left[\frac{\sin(2x)}{2} \right]_0^1 = 1 - \frac{1}{2} (\sin 2 - 0) = 1 - \frac{1}{2} \sin 2.$$

Παραδείγμα

$$\iint_{[-1,2] \times [0,1]} \frac{x}{1+y} dx dy = \int_{-1}^2 \int_0^1 \frac{x}{1+y} dy dx =$$

$$= \int_{-1}^2 x \int_0^1 \frac{1}{1+y} dy dx = \int_{-1}^2 x \left[\log(1+y) \right]_0^1 dx = \log 2 \int_{-1}^2 x dx =$$

$$= \log 2 \left(\frac{1}{2} (4-1) \right) \boxed{}$$

(8)

Ολοκλήρωμα σε διάνοια χωρίς $\mathbb{C}\mathbb{R}^2$

Εστω $A \subset \mathbb{R}^2$ οριζόντιο και $f: A \rightarrow \mathbb{R}$ οριζόντιο.

Βρίσκουμε ορθογώνιο $R \supset A$ και οριζόντιο

$$\tilde{f}(x) = \begin{cases} f(x) & , x \in A \\ 0 & , x \in \mathbb{R}^2 - \{A\} \end{cases}$$

$$\text{Οποιουντε } \iint_A f(x, y) dx dy = \iint_R \tilde{f}(x, y) dx dy,$$

αν το δεύτερο ολοκλήρωμα συγχρίνεται με αριθμητικά

29/11/2018

16^ο καθηγη.

1

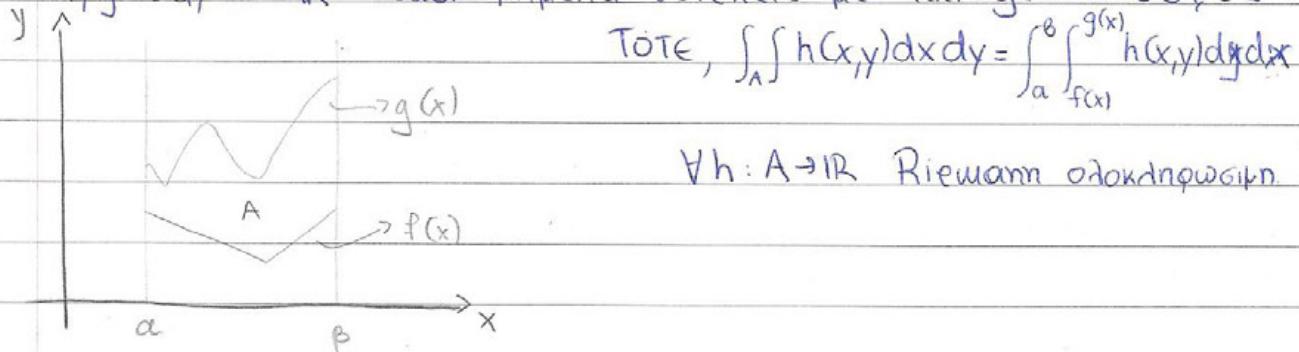
Π1θ. Ι-ΧΕΙΡΙΩΤΙΣ

ΣΥΝΗΘΙΣΜΕΝΑ ΧΩΡΙΑ.

i). Το $A \subset \mathbb{R}^2$ θέτεται x -απλό χωρίο αν δραστείται ως

$A = \{(x, y) \in \mathbb{R}^2, x \in [a, b], f(x) \leq y \leq g(x)\}$, για καποιες

$f, g: [a, b] \rightarrow \mathbb{R}$ κατα την οποία συνεχεις $f(x) \leq g(x) \quad \forall x \in [a, b]$



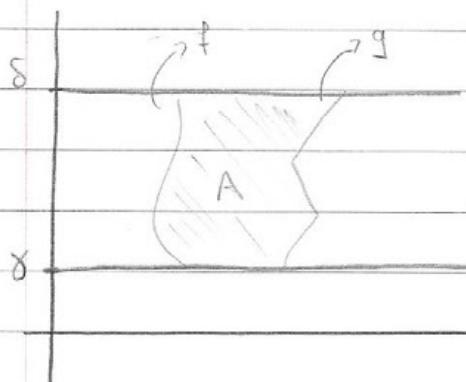
$$\text{Τότε, } \int_A \int h(x, y) dx dy = \int_a^b \int_{f(x)}^{g(x)} h(x, y) dy dx$$

ii). Το $A \subset \mathbb{R}^2$ θέτεται y -απλό χωρίο, αν δραστείται ως:

$A = \{(x, y) \in \mathbb{R}^2, y \in [\gamma, \delta], f(y) \leq x \leq g(y)\}$ για καποιες συναρτήσεις

$f, g: [\gamma, \delta] \rightarrow \mathbb{R}$ κατα την οποία συνεχεις $f(y) \leq g(y) \quad \forall y \in [\gamma, \delta]$

$$\text{Τότε } \int_A \int h(x, y) dx dy = \int_\gamma^\delta \int_{f(y)}^{g(y)} h(x, y) dx dy$$



ΠΑΡΑΔΕΙΓΜΑ: Να υπολογιστεί το $\iint_A xy^2 dx$, όπου A : το χωρίο μεταξύ της x^2 και της x^3 για $x \in [0, 1]$.

$$x^2 \quad x^3 \quad -ΛΥΣΗ -$$

$$A = \{(x, y) : x \in [0, 1], x^3 \leq y \leq x^2\} \text{ αρα } x\text{-απλό}$$

(είναι και y -απλό αρου $A = \{(x, y) : y \in [0, 1], y^{1/2} \leq x \leq y^{1/3}\}$)

$$\begin{aligned} \iint_A xy^2 dx dy &= \int_0^1 \int_{x^3}^{x^2} xy^2 dy dx = \int_0^1 x \int_{x^3}^{x^2} y^2 dy dx = \int_0^1 x \left[\frac{y^3}{3} \right]_{x^3}^{x^2} dx = \frac{1}{3} \int_0^1 (x^7 - x^{10}) dx = \\ &= \frac{1}{3} \cdot \left(\frac{1}{8} - \frac{1}{11} \right) = \frac{1}{88} \end{aligned}$$

(2)

§6.1 Διδιάστατες τυχαίες μεταβάντες

Εστω ο δειγματικός χώρος.

Ορισμός: Διδιάστατη τύχαια μεταβάντη στον Ω, λέγεται τάθη συνάρτηση $Z: \Omega \rightarrow \mathbb{R}^2$

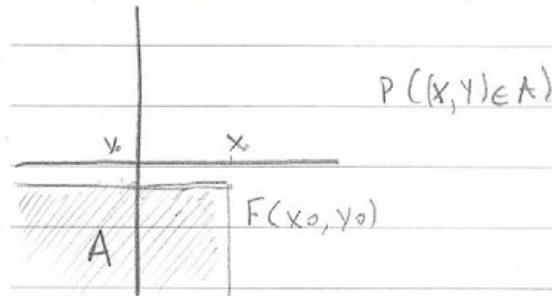
Οι δυνητικές X, Y της Z (Δηλ. $Z(\omega) = (X(\omega), Y(\omega))$), είναι τυχαίες μεταβάντες $X, Y: \Omega \rightarrow \mathbb{R}$.

Παραδείγμα: Ρίχνουμε 4 γείρα. $\Omega = \{(a_1, a_2, a_3, a_4) : a \in \{1, 2, \dots, 6\}\}$

Εστω $Z = (n$ μικρότερη από τις 4 ενδείξεις, n μεγαλύτερη από τις 4 ενδείξεις) = (X, Y) .

Ορισμός: Αν οι $X, Y: \Omega \rightarrow \mathbb{R}$ τη (σε κοινό χώρο πιθανότητας του Ω) από κοινού συνάρτησης κατανούνται X, Y , λέγεται την $F: \mathbb{R}^2 \rightarrow [0, 1]$ με $F(x, y) = P(X \leq x, Y \leq y) = P(\{\omega \in \Omega, X(\omega) \leq x, Y(\omega) \leq y\})$

Αυτή λεγεται και συνάρτησης της διδιάστατης $Z = (X, Y)$.



Περιπτώση I : X, Y διακρίτες

Ορίζουμε τότε τη συνάρτηση πιθανότητας των γεγονότων X, Y ως είναι:

$$f_{X,Y}(x, y) = P((X, Y) = (x, y)) = P(X=x, Y=y) \quad \forall x, y \in \mathbb{R}$$

ΑΣΚΗΣΗ: Ρίχνουμε ένα νόμισμα 3 φορές. Εστω

X = αριθμός κεφαλών στις πρώτες 2 δοκιμές

Y = αριθμός κεφαλών στις τελευταίες 2 δοκιμές

Πώς η $f_{X,Y}$;

Αντικ.
→

(3)

-ΛΥΣΗ -

$$f_{X,Y}(x,y) = P(X=x, Y=y)$$

Αυτό ισούται με μήδεν αν $x, y \in \mathbb{R}^2 \setminus \{0, 1, 2\}^2$

• Για $(x,y) \in \{0, 1, 2\}^2$, οι τιμές $F_{X,Y}(x,y)$ φαίνονται στον πίνακα.

$y \times$	0	1	2	ΣΣΚ
0	$\frac{1}{8}$	$\frac{1}{8}$	0	$\frac{1}{2} \frac{1}{2}$
1	$\frac{1}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	
2	0	$\frac{1}{8}$	$\frac{1}{8}$	

Προφανώς η $f_{X,Y}$ έχει τις εξής ιδιότητες:

i). $f_{X,Y}(x,y) \geq 0 \quad \forall (x,y) \in \mathbb{R}^2$

ii). $\sum_{(x,y) \in \mathbb{R}^2} f_{X,Y}(x,y) = 1$.

Αντιστροφά ριθε συνάρτηση $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ που ικανοποιεί τα i), ii). Εναυ συνάρτηση πιθανότητας μιας διδιάστατης τυχαίας μεταβλητής (X, Y)

Από την $f_{X,Y}$ μπορούμε να υπολογίσουμε τις $F_{X,Y}, f_X, f_Y$

Η $f_{X,Y}$ ικανοποιεί την $P((X,Y) \in A) = \sum_{(x,y) \in A} f_{X,Y}(x,y) \quad \forall A \subset \mathbb{R}^2$.

• $F_{X,Y}(x,y) = P(X \leq x, Y \leq y) = \sum_{\substack{s \leq x \\ t \leq y}} f_{X,Y}(s,t)$

• $f_X(x) = P(X=x) = P(X=x, Y \in \mathbb{R}) = \sum_{y \in \mathbb{R}} f_{X,Y}(x,y)$

• $f_Y(y) = P(Y=y) = \sum_{x \in \mathbb{R}} f_{X,Y}(x,y)$

Οι f_X, f_Y δεσμοίται περιθώρια συναρτήσεις πιθανότητας του ζευγαριού (X, Y) .

(4)

ΠΕΡΙΠΤΩΣΗ ΙΙ : X, Y από κοινού δινέκτησις

ΟΡΙΣΜΟΣ : Λέμε ότι οι $X, Y: \Omega \rightarrow \mathbb{R}$ είναι από κοινού δινέκτησις, αν υπάρχει $f: \mathbb{R}^2 \rightarrow [0, \infty)$ ώστε

$$P((X, Y) \in A) = \int_A \int f(x, y) dx dy \quad \forall A \subset \mathbb{R}^2$$

Η f ονομάζεται από τον πιονότητα της X, Y . Τη συρβολίζουμε και ρε $f_{X, Y}$

ΠΑΡΑΔΕΙΓΜΑ : Επιλέγουμε στην τύχη ένα ομβριό στο $S = (0, 1) \times (0, 1)$. Πώς γίνεται αυτό;

Επιλέγουμε ότι ανεξάριθτο τρόπο δύο τυχαις μεταβλητές $X, Y: \Omega \rightarrow \mathbb{R}$ $X \sim U(0, 1), Y \sim U(0, 1)$

Το (X, Y) είναι το ομβριό που γίνεται

Μία από κοινού πιονότητα των X, Y είναι n :

$$f_{X, Y}(x, y) = \begin{cases} 1 & , \text{ αν } (x, y) \in S \\ 0 & , \text{ αν } (x, y) \in \mathbb{R}^2 \setminus S \end{cases}$$

$$\text{Αυτό, γιατί αν } A = (a, b) \times (g, \delta) \text{ τότε } P((X, Y) \in A) = P(X \in (a, b), Y \in (g, \delta)) = P(X \in (a, b)) P(Y \in (g, \delta)) = \int_{(a, b)} f_X(x) dx \int_{(g, \delta)} f_Y(y) dy = \int_a^b \int_g^\delta f_X(x) f_Y(y) dy dx = \int_a^b f_X(x) \left(\int_g^\delta f_Y(y) dy \right) dx = \int_a^b f_X(x) f_Y(y) dy dx$$

Παρατηρηση

1) Η από κοινού πιονότητα $f_{X, Y}$ των X, Y ικανοποιεί τις

$$(a) f_{X, Y} \geq 0$$

$$(b) \int_{\mathbb{R}^2} \int f_{X, Y}(x, y) dx dy = 1.$$

$$\left[\begin{array}{l} P((X, Y) \in A) = \int_A \int f_{X, Y}(x, y) dx dy \\ P((X, Y) \in \mathbb{R}^2) = P(\Omega) = 1 \end{array} \right]$$

Άλλα ρε αυτοστροφά αν μα $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ ικανοποιεί τις

(a), (b), τότε υπάρχουν τυχαια μεταβλητη $X, Y: \Omega \rightarrow \mathbb{R}$. Ήou να έχουν από κοινού πιονότητα ms f

2). Όπως και στη μονοδιάστατη περιπτώση n $f_{X, Y}$ μπορεί να πάρει τιμές > 1 και δεν εκφράζει πθωτότητα.

(5)

Αυτό που λοξεύει είναι ότι αν η $f_{x,y}$ είναι συνεχής στο $(x,y) \in \mathbb{R}^2$
 και $A \subset \mathbb{R}^2$ σύνοδο $p \in \mathbb{N}$ που διαμετρός της είναι μείον από (x_0, y_0)
 (Δηλαδή $A \subset B((x_0, y_0), p)$ με $\delta < p$)

Τότε, λοξεύει:

$$P((x,y) \in A) \approx \iint_{A \subset B} f_{x,y}(x,y) \, dx \, dy \text{ ευθαδον. (A).}$$

Από την $f_{x,y}$ μπορούμε να υπολογίσουμε τις $F_{x,y}$, f_x , f_y

$$F_{x,y}(x,y) = P((x,y) \in (-\infty, x] \times (-\infty, y]).$$

$$= \iint_{(-\infty, x] \times (-\infty, y]} f_{x,y}(s,t) \, ds \, dt = \int_{-\infty}^x \int_{-\infty}^y f_{x,y}(s,t) \, dt \, ds$$

Καθεμία από τις X, Y είναι συνεχής τυχαιά μεταβάση

Το δείχνουμε διά την X

$$\text{Εστιώ } A \subset \mathbb{R}, P(X \in A) = P((X, Y) \in A \times \mathbb{R}) = \int_{A \times \mathbb{R}} f_{x,y}(x,y) \, dx \, dy = \iint_{A \times \mathbb{R}} f_{x,y}(x,y) \, dx \, dy$$

$$\text{Συνεχής τη μορφή } \mathbb{R} : P(X \in A) = \int_A f_x(x) \, dx$$

$$P((X, Y) \in A) = \int_A \int f_{x,y}(x,y) \, dx \, dy$$

$$\text{Από } P(X \in A) = \int_A h(x) \, dx$$

Επέται ότι η X είναι συνεχής τη με πυκνότητα $f_x(x) = h(x) = \int_{\mathbb{R}} f_{x,y}(x,y) \, dy$
 Η f_x μαζεύει στην τη "μάζα" που δίνει η $f_{x,y}$ στην κυρία $\{x\} \times \mathbb{R}$.

Οποια, η Y είναι συνεχής τη με πυκνότητα:

$$f_y(y) = \int_{\mathbb{R}} f_{x,y}(x,y) \, dx$$

Οι f_x, f_y λέγονται περιθώριες πυκνότητες του ίχυρων (x,y) .

ΠΑΡΑΔΕΙΓΜΑ (48 σ. 255 Ross).

Η ανόροτη ροή (X, Y) είναι η $f_{X,Y}(x,y) = 2e^{-x}e^{-2y} \mathbf{1}_{x>0, y>0}$.

Να βρεθούν (a) $P(X>1, Y<1)$

(b) $P(X < Y)$

(c) $P(X < 1, Y > 0)$

- Αντιτίθετη -

$$P((X,Y) \in (1, \infty) \times (-\infty, 1)) = \int_1^\infty \int_{-\infty}^1 f_{X,Y}(x,y) dy dx = \int_1^\infty \int_0^1 2e^{-x}e^{-2y} dy dx =$$

$$= \int_1^\infty e^{-x} \int_0^1 2e^{-2y} dy dx = \int_1^\infty e^{-x} [-e^{-2y}]_0^1 dx =$$

$$= \int_1^\infty e^{-x} (-e^{-2} + 1) dx = (1 - e^{-2}) \cdot [-e^{-x}]_1^\infty = (1 - e^{-2})e^{-1}$$

(b) Εστιώ $A = \{(x,y) \in \mathbb{R}^2 : x < y\}$

$$P(X < Y) = P((X,Y) \in A) = \int_A \int f_{X,Y}(x,y) dx dy = \int_{-\infty}^\infty \int_x^\infty f_{X,Y}(x,y) dy dx =$$

$$= \int_0^\infty \int_x^\infty 2e^{-x}e^{-2y} dy dx = \int_0^\infty e^{-x} \int_x^\infty [-e^{-2y}]' dy dx = \int_0^\infty e^{-x} (0 - (-e^{-2x})) dx =$$

$$= \int_0^\infty e^{-3x} dx = -\frac{1}{3}e^{-3x} \Big|_0^\infty = -(-\frac{1}{3}) = \frac{1}{3}$$

4/12/2018

17 Εμπόδημα

Πιθανότητες I - Χειρισμοί

(X, Y) διδιάστατη συνεχής τ.μ. $P((X, Y) \in \Delta) = \iint_{\Delta} F_{X,Y}(x, y) dx dy$

$$F_X(x) = \int_{-\infty}^x F_{X,Y}(x, y) dy, \quad F_Y(y) = \int_{-\infty}^y F_{X,Y}(x, y) dx$$

[Παραδείγμα] (1.5 Ross σελ. 256)

Εστω (X, Y) σημείο που επιλέγουμε τυχαία στο δίσκο.

$D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$, Η (X, Y) πρέπει να είναι πυκνότητα

$$F_{X,Y}(x, y) = \begin{cases} C & \text{av } (x, y) \in D \\ 0 & \text{av } (x, y) \in \mathbb{R}^2 \setminus D \end{cases}$$

Να υπολογιστούν : (a) το C ?

(β) οι περιθώριες πυκνότητες F_X, F_Y την x, y

(γ) $P(\text{απόσταση του } (X, Y) \text{ απ' } (0,0) \leq r) \quad \forall r > 0$

(δ) $E(\Delta)$

-ΛΥΣΗ-

$$\text{a) } 1 = \iint_{\mathbb{R}^2} F_{X,Y}(x, y) dx dy = \iint_D C dx dy = C \iint_D dx dy = C \cdot \pi \Rightarrow C = \frac{1}{\pi}$$

$$\text{b) } F_X(x) = \int_{-\infty}^x F_{X,Y}(x, y) dy$$

• Av $|x| > 1$ αυτό ταυται με μηδεν, διατι $F_{X,Y}(x, y) = 0 \quad \forall x$

με $|x| > 1$ και $y \in \mathbb{R}$

$$\text{• Av } |x| \leq 1, \text{ τοτε } F_{X,Y}(x, y) = \begin{cases} \frac{1}{\pi}, & \text{av } |y| \leq \sqrt{1-x^2} \\ 0, & \text{av } |y| > \sqrt{1-x^2} \end{cases}$$

$$\text{Άρα: } F_X(x) = \begin{cases} \frac{\sqrt{1-x^2}}{\pi} & \frac{1}{\pi} dy = \frac{2}{\pi} \sqrt{1-x^2} \\ 0 & < \sqrt{1-x^2} \end{cases}$$

$$\text{Apa } F(x) = \frac{2}{\pi} \cdot \sqrt{1-x^2} \quad |x| \leq 1.$$

$$\text{Opoia } F(y) = \frac{2}{\pi} \cdot \sqrt{1-y^2} \quad |y| \leq 1$$

$$(\delta) \Delta = \sqrt{x^2 + y^2}$$

$$P(\Delta \leq r) = P(\sqrt{x^2 + y^2} \leq r) \Rightarrow P(\Delta \in B(0, r)) = \int_{B(0, r)} f_{x,y}(x, y) dx dy$$

• Av $r < 1$ to televraio odoktrinwra (doitai ve):

$$\iint_{B(0, r)} \frac{1}{\pi} dx dy = \frac{1}{\pi} \text{ Gubader } (B(0, r)) = \frac{\pi \cdot r^2}{\pi} = r^2.$$

• Av $r \geq 1$ $P(\Delta \leq r) = 1$, mati $x^2 + y^2 \leq 1$ naivote

$$\text{Apa } P(\Delta \leq r) = \begin{cases} r^2, & r \in [0, 1] \\ 1, & r \geq 1. \end{cases}$$

$$(\delta) \text{ Brideroupe mv tuxwomia ins } \Delta. \text{ H } F(t) = P(\Delta \leq t) = \begin{cases} 0, & t < 0 \\ t^2, & t \in [0, 1] \\ 1, & t > 1. \end{cases}$$

Eivai avexnis sto \mathbb{R} kai naiparagwghsin sto

$\mathbb{R} \setminus \{1\}$, n otoia eivai avexnis sto $\mathbb{R} \setminus \{1\}$.

Kata ta synwta, n Δ exei tuxwomia $F_{\Delta}(t) = 2t \mathbf{1}_{(0,1)}(t)$.

$$\text{Apa, } E\Delta = \int_{\mathbb{R}} x f_{\Delta}(x) dx = \int_0^1 x \cdot 2x dt = \frac{2}{3}.$$

EYRESH THΣ $F_{x,y}$ AΠO THN $F_{x,y}$

Av n $F_{x,y}$ eivai avexnis oto (x_0, y_0) kai n $\int_{-\infty}^{x_0} f(x_0, t) dt$ avexnis sto x_0 (n n $\int_{-\infty}^x F(s, y_0) ds$ avexnis sto x_0 ,

$$\text{tote } F_{x,y}(x_0, y_0) = \frac{d^2 F}{dxdy}(x_0, y_0)$$

AΠOAN=14

- Απόδειξη -

Σίνη $F_{X,Y}(x,y) = \int_{-\infty}^x \int_{-\infty}^y F(s,t) dt ds$ παραδειγματεί πρώτα ως τύπος X , στο $x = x_0$ και μετά ως τύπος y στο $y = y_0$.

Άνταξη, $\frac{dF_{X,Y}(x_0,y)}{dx} = \int_{-\infty}^y F_{X,Y}(x_0,t) dt \Rightarrow \frac{dF_{X,Y}(x_0,y_0)}{dydx} = F(x_0, y_0)$

Μια ταυτότητα για την $F_{X,Y}$.

Για $a < b, \gamma < \delta$:

$$P((x,y) \in [a,b] \times [\gamma, \delta]) = F_{X,Y}(b, \delta) - F_{X,Y}(b, \gamma) + F_{X,Y}(a, \gamma)$$

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

Αν $n \in \mathbb{N}, n \geq 2$ n -διαστατη τ.μ. λέμε ραδε γυριστην $Z = (X_1, \dots, X_n) : \Omega \rightarrow \mathbb{R}^n$ όπου Ω δειγματικός χώρος.

X_1, \dots, X_n είναι μονοδιαστατες τ.μ. Αν το Z είναι αριθμούσιο λέμε την Z , διαριτή.

Αν υπάρχει $F : \mathbb{R}^n \rightarrow [0, \infty)$ ώστε $P((X_1, X_2, \dots, X_n) \in A) = \iint_A F(x_1, x_2, \dots, x_n) dx_1, \dots, dx_n \quad \forall A \subset \mathbb{R}^n$, λέμε την

Z : συρεκυτή n -διαστατη τυχαιά μεταβλητή

§ 6.2 ΑΝΕΞΑΡΤΗΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΟΡΙΣΜΟΣ: Εστιν $X, Y : \Omega \rightarrow \mathbb{R}$ τυχαιες μεταβλητες (σε κοινό χώρο προσανοτήτων). Οι X, Y λέγονται ανεξαρτητες, αν $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$ $\forall A, B \subset \mathbb{R}$. Άνταξη, τα ενδεχόμενα $\{X \in A\}, \{Y \in B\}$ είναι ανεξαρτητα

$$\textcircled{*} \quad \{X \in A\} \cap \{Y \in B\}$$

ΠΡΟΤΑΣΗ

Εστω X, Y διακρίτες τη (στον ίδιο χώρο πιθανοτήτων), με από κοινού συνάρτησην πιθανοτήτας $F_{X,Y}$. Οι x, y είναι αυτόματες $\Leftrightarrow F_{X,Y}(x,y) = F_X(x)F_Y(y) \quad \forall x, y \in \mathbb{R}$.

- ΑΠΟΣ-

$$[\Rightarrow] F_{X,Y}(x,y) = P(X=x, Y=y) = P(X=x) \cdot P(Y=y) = F_X(x) \cdot F_Y(y)$$

$$x \in \{x\} \quad y \in \{y\}$$

$$[\Leftarrow] \text{Για } A, B \subset \mathbb{R} \quad P(X \in A, Y \in B) = P((X, Y) \in A \times B) = \sum_{(x,y) \in A \times B} F_{X,Y}(x,y) =$$

$$= \sum_{x \in A} \sum_{y \in B} F_X(x)F_Y(y) = \sum_{x \in A} (F_X(x) \sum_{y \in B} F_Y(y)) = P(Y \in B) \sum_{x \in A} F_X(x) =$$

$$= P(Y \in B)P(X \in A)$$

ΠΡΟΤΑΣΗ

Εστω X, Y (στον ίδιο χώρο πιθανοτήτων) από κοινού συνάρτησης με από κοινού πικνούτη $F_{X,Y}$. Οι x, y είναι αυτόματες \Leftrightarrow

$$\textcircled{*} \quad F_{X,Y}(x,y) = F_X(x)F_Y(y) \quad \forall x, y \in \mathbb{R}$$

- ΑΠΟΣ.-

[\Leftarrow] όπως πο πάνω

$$\text{Ανδαλύ, } P(X \in A, Y \in B) = \iint_{A \times B} F_{X,Y}(x,y) dx dy =$$

$$= \int_A \int_B F_X(x)F_Y(y) dx dy = \int_A F_X(x) \left(\int_B F_Y(y) dy \right) dx = P(Y \in B)P(X \in A)$$

Η σωστή γενιγκή είναι ότι $\textcircled{*}$ ισχύει

$\forall x, y \in \mathbb{R}^2 \setminus \Gamma$, όπου $\Gamma \subset \mathbb{R}^2$ με ευραίο περιεχόμενο με 0 .

Παρατηρήσεις

1) Η συνθήκη είναι ότι Ισχει $\forall x, y \in \mathbb{R}^2 \setminus \Gamma$, όπου $\Gamma \subset \mathbb{R}^2$ με εμβαδόν που μοιάζει με μίσθιο.

2) Η συνθήκη $F_{x,y}(x,y) = F_x(x)F_y(y) \quad \forall x, y \in \mathbb{R}$ σημαίνει ότι συμπίπτουν προτίτλεις ιδιοδυναμικής με την:

" $\exists g, h: \mathbb{R} \rightarrow \mathbb{R}$ ώστε $F_{x,y}(x,y) = g(x) \cdot h(y) \quad \forall x, y \in \mathbb{R}^n$ ".

Ηραφματικά, το δείχνουμε όταν οι x, y από κοινού συνέχουν:

$$\begin{aligned} \text{Αν υπάρχουν τέτοιες } g, h \text{ τότε } F_x(x) &= \int_{\mathbb{R}} F_{x,y}(x,y) dy = \\ &= \int_{\mathbb{R}} g(x)h(y) dy = g(x) \underbrace{\int_{\mathbb{R}} h(y) dy}_{\textcircled{1}} = c_1 \cdot g(x) \end{aligned}$$

$$\text{Οκοια, } F_y(y) = \int_{\mathbb{R}} F_{x,y}(x,y) dx = h(y) \underbrace{\int_{\mathbb{R}} g(x) dx}_{\textcircled{2}} = (c_2 \cdot h(y))$$

$$\text{Άρα, } F_{x,y}(x,y) = g(x) \cdot h(y) = \frac{F_x(x)}{c_1} \cdot \frac{F_y(y)}{c_2} = \frac{1}{c_1 \cdot c_2} \cdot F_x(x) \cdot F_y(y)$$

$$\begin{aligned} \text{Οπως, } 1 &= \iint_{\mathbb{R}^2} F_{x,y}(x,y) dy dx = \iint_{\mathbb{R}^2} g(x) \cdot h(y) dx dy = \\ &= \iint_{\mathbb{R}^2} g(x) \cdot h(y) dx dy = \int_{\mathbb{R}} h(y) \int_{\mathbb{R}} g(x) dx dy = c_1 \cdot \int_{\mathbb{R}} h(y) dy = c_1 \cdot c_2 \end{aligned}$$

$$\text{Άρα, } F_{x,y}(x,y) = F_x(x) \cdot F_y(y).$$

Παραδείγμα (2οτ Ross σελ. 265)

a) Αν x, y από κοινού συνέχεις με πυκνότητα $F_{x,y}(x,y) = 6e^{-2x}e^{-3y}$

$|x \geq 0, y \geq 0$, Είναι οι x, y ανεξαρτήτες;

$$\text{b) } F_{x,y}(x,y) = \begin{cases} 24xy, & 0 < x < 1, 0 < y < 1, x+y < 1 \\ 0, & \text{αλλιώς} \end{cases}$$

→ Αντίτυπο

-ΑΝΩΗ-

(a) Είναι ανεξαριθμητικές, γιατί $F_{x,y}(x,y) = g(x) \cdot h(y) \quad \forall x, y \in \mathbb{R}$
 $\mu e \quad g(x) = 6 \cdot e^{-2x} \quad \forall x > 0, \quad h(y) = e^{-3y} \quad \forall y > 0$

(b) Δεν είναι ανεξαριθμητικές

1^{ος} Τρόπος: Βρισκόμενες $F_x(x), F_y(y)$ και δεικνύουμε ότι $F_{x,y}(x,y) \neq F_x(x) F_y(y)$ για πολλά x, y .

$$F_x(x) = \int_{\mathbb{R}} F_{x,y}(x,y) dy$$

2^{ος} Τρόπος: Αν ήταν ανεξαριθμητικές, τότε $F_{x,y}(x,y) = F_x(x) F_y(y) \quad (\forall x, y)$
 δ ετοίτας $A = \{x \in \mathbb{R} : F_x(x) \neq 0\}, B = \{y \in \mathbb{R} : F_y(y) \neq 0\}$, θα είχαμε: $\{(x,y) \in \mathbb{R}^2 : F_{x,y}(x,y) \neq 0\} = A \times B$, απότο.

3^{ος} Τρόπος: Σια $A = (0, 9, 1), B = (0, 9, 1)$ τότε $P(x \in A, y \in B) = 0 =$
 $= \int_{A \times B} \int F_{x,y}(x,y) dx dy$
 δ ηλούμε $P(x \in A) > 0, P(y \in B) = \int \int_{\mathbb{R}^2} F_{x,y}(x,y) dx dy$ και $P(y \in B) > 0$.

ΟΡΙΣΜΟΣ

Εστω I : σύνολο και $\{x_i : i \in I\}$ τυχαία μεταβλητή στον οποίο
 χ ώρο πιθανότητας. Λέμε ότι οι $\{x_i : i \in I\}$ είναι ανεξαριθμητικές, αν
 $\forall k \in \mathbb{N}, k \geq 2, P(x_i \in A_i)$

Οποια στις παραπάνω, οι x_1, \dots, x_k είναι ανεξαριθμητικές $\Leftrightarrow F_{x_1, \dots, x_k}(x_1, \dots, x_k) =$
 $= F_{x_1}(x_1) F_{x_2}(x_2) \dots F_{x_k}(x_k) \quad \forall x_1, x_2, \dots, x_k \in \mathbb{R}$.

①

Πιθανότητες I

6/12/2018

18^ο μαθημα

Στο παραδείγμα 2οτ ου Ross σελ. 265, δηλώτε ότι
 $f_X(x) = 12x(1-x)^2$ $x \in (0,1)$ και $f_Y = f_X$, οποτε $f_{X,Y}(x,y) \neq f_X(x)f_Y(y)$

§ 6.3 Αθροίσματα ανεξαρτήτων τυχαιών μεταβλητών

X, Y : ανεξαρτήτες τυχαιες μεταβλητές με πικνότητες f_X, f_Y .
 Η $X+Y$ έχει πικνότητα f_{X+Y} . Ποια είναι αυτή;

ΠΡΟΤΑΣΗ

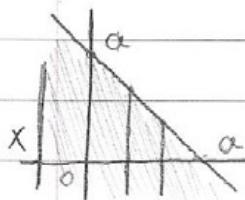
Η $X+Y$ είναι συνεχής τυχαια μεταβλητή, με πικνότητα

$$f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(x)f_Y(a-x)dx = \int_{-\infty}^{\infty} f_X(a-y)f_Y(y)dy \quad \forall a \in \mathbb{R}$$

- Αποδ -

$$\text{Για } a \in \mathbb{R} : F_{X+Y}(a) = P(X+Y \leq a) = P((X,Y) \in (a)) = \int_{(a)} f_X(x)f_Y(y)dxdy \quad (1)$$

Αν $x \in \mathbb{R}$: $F_X(x) = \int_{-\infty}^x f_X(t)dt$, τοτε η x έχει πικνότητα f_X
 $P(X \in A) = \int_A f_X(t)dt$.



$$(1) = \int_{-\infty}^{\infty} \int_{-\infty}^{a-x} f_X(x)f_Y(y)dydx.$$

Παρατηγούμε ως προς a : $F'_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(x)f_Y(a-x)dx \stackrel{y=a-x}{=} \int_{-\infty}^{\infty} f_X(a-y)f_Y(y)dy$

$$= - \int_{-\infty}^{\infty} f_X(a-y)f_Y(y)dy = \int_{-\infty}^{\infty} f_X(a-y)f_Y(y)dy.$$

Παραδείγμα 3α (σελ. 272 Ross)

X, Y : ανεξαρτήτες με $X, Y \sim U(0,1)$. Η πικνότητα της $X+Y$, είναι η:

$$f_{X+Y}(x) = \begin{cases} x & , x \in (0,1) \\ 2-x & , x \in [1,2] \\ 0 & , x \in \mathbb{R} \setminus (0,2) \end{cases}$$

(2)

- Αποδ-

$$\text{Για } a \in \mathbb{R}, \text{ εχουμε: } f_{x+y}(a) = \int_{\mathbb{R}} f_x(x) f_y(a-x) dx =$$

$$= \int_0^1 f_y(a-x) dx = \int_0^1 \mathbb{1}_{0 < a-x < 1} dx = \int_0^1 \mathbb{1}_{a-1 < x < a} dx$$

• αν $a \leq 0$, τότε ολοκλήρωμα ισούται με μηδέν, διατί με $x \in (0, 1)$, και $x < a$ ΔΕΝ ισχύει

• αν $a > 1$, πάλι το ολοκλήρωμα ισούται με μηδέν, διατί δια $x \in (0, 1)$, και $a-1 < x < a$ ΔΕΝ ισχύει, λόγω του $x > a-1 \geq 1$

$$\begin{aligned} \cdot a \in (0, 1) \text{ τότε ολοκλήρωμα} &= \int_0^1 \mathbb{1}_{x < a} dx = a \\ \cdot a \in [1, 2] \quad " &= \int_0^1 \mathbb{1}_{a-1 < x} dx = 1 - (a-1) = 2-a. \end{aligned}$$

Παρατηρούμε: Αν X, Y διακρίτες τυχαιες μεταβλήτες με τιμές στο \mathbb{Z} και συναρτήσεις πθανοτήτας f_x, f_y . Τότε, και $X+Y$ είναι συναρτήση πθανοτήτας $f_{x+y}(a) = \sum_{k \in \mathbb{Z}} f_x(k) f_y(a-k) \quad \forall a \in \mathbb{R}$

- Αποδ-

Αν $a \in \mathbb{R} \setminus \mathbb{Z}$ και τα δύο μέτρα ισούνται μη μηδέν, διατί οι X, Y παίρνουν τιμές στο \mathbb{Z} .

$$\begin{aligned} \text{Αν } a \in \mathbb{Z}, \quad f_{x+y}(a) &= P(X+Y=a) = \sum_{k \in \mathbb{Z}} P(X+Y=a, X=k) = \\ &= \sum_{k \in \mathbb{Z}} P(X=k, Y=a-k) \stackrel{X, Y: \text{ aνεγ.}}{=} \sum_{k \in \mathbb{Z}} P(X=k) P(Y=a-k) = \sum_{k \in \mathbb{Z}} f_x(k) f_y(a-k) \end{aligned}$$

(3)

[ΑΣΚΗΣΗ]

Αν $X \sim \text{Poisson}(\lambda)$, $Y \sim \text{Poisson}(\mu)$, $\lambda, \mu \geq 0$ και
 X, Y ανεξάριστες, τότε $X+Y \sim \text{Poisson}(\lambda+\mu)$

-ΛΥΣΗ-

$$\begin{aligned}
 \text{Για } k \in \mathbb{N} : P(X+Y=k) &= \sum_{j \in \mathbb{Z}} f_X(j) f_Y(k-j) = \sum_{j=0}^k e^{-\lambda} \frac{\lambda^j}{j!} e^{-\mu} \frac{\mu^{k-j}}{(k-j)!} = \\
 &= \frac{e^{-(\lambda+\mu)}}{k!} \cdot \sum_{j=0}^k \frac{k!}{j!(k-j)!} \lambda^j \mu^{k-j} = \frac{e^{-(\lambda+\mu)}}{k!} \sum_{j=0}^k \binom{k}{j} \lambda^j \mu^{k-j} = \\
 &= \frac{e^{-(\lambda+\mu)}}{k!} (\lambda+\mu)^k
 \end{aligned}$$

ΔΕΙΣΜΕΥΜΕΝΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

Περίπτωση ①: X, Y διακρίτες τυχαιες μεταβλητες, με από κοινού συναρτησην πιθανότας

ΟΡΙΣΜΟΣ: Για καθε $y \in \mathbb{R}$, ωστε $f_Y(y) > 0$, η συναρτηση

$$f_{X,Y}(x,y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} \quad \forall x \in \mathbb{R} \text{ ειναι συναρτηση πιθανότας,}$$

$$\text{γιατι ειναι } \geq 0 \text{ και } \sum_{x \in \mathbb{R}} f_{X,Y}(x,y) = \sum_{x \in \mathbb{R}} \frac{f_{X,Y}(x,y)}{f_Y(y)} =$$

$$= \frac{1}{f_Y(y)} \sum_{x \in \mathbb{R}} f_{X,Y}(x,y) = \textcircled{1} \quad \hookrightarrow \{Y=y\} = \bigcup_{x \in \mathcal{X}(e)} \{Y=x, X=x\}$$

Ονομαζεται συναρτηση πιθανότας της X , δεδομένου ότι $Y=y$,
 αντιστοιχει στην τυχαια μεταβλητη $X|Y=y$

Παρατηρηση: ο λόγος που ορίζουμε την $f_{X|Y}$ είσαι, είναι ο εξης:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(X=x|Y=y) = \frac{P(X=x, Y=y)}{P(Y=y)} = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

(4)

Παράδειγμα: Ρίχνουμε δύο ραφιά. Εστω X : τη μικρότερη ένδειξη, Y : τη μεγαλύτερη ένδειξη. Τιοια η συνάρτηση πιθανοτήτας της $Y|X=3$:

-ΛΥΣΗ-

$f_X(3) = P(X=3) > 0$, αφανής η $Y|X=3$, οπιζεται.

Σε πίνακα, βρίσκουμε τις τιμές των $f_{X,Y}$, f_X :

$$f_{Y|X}(y|3) = \frac{f_{X,Y}(3,y)}{f_X(3)}, y \in \mathbb{R}$$

$y \setminus X$	1	2	3	4	5	6	f_Y
1	a	0	0	0	0	0	a
2	2a	a	0	0	0	0	3a
3	2a	2a	a	0	0	0	5a
4	2a	2a	2a	a	0	0	7a
5	2a	2a	2a	2a	a	0	9a
6	2a	2a	2a	2a	2a	a	11a
f_X	11a	9a	7a	5a	3a	a	

$$f_X(3) = 7a$$

$$f_{Y|X}(y|3) = \frac{f_{X,Y}(3,y)}{f_X(3)} =$$

$$= \begin{cases} 0, & y=1,2 \\ \frac{a}{7a} = \frac{1}{7}, & y=3 \\ \frac{2a}{7a} = \frac{2}{7}, & y=4,5,6 \\ 0, & y \in \mathbb{R} \setminus \{1,2,3,4,5,6\} \end{cases}$$

Περιπτώση ②

X, Y : από κοινού συνεχείς τυχαιες μεταβάσεις, με από κοινού πυκνότητα $f_{X,Y}$

ΟΡΙΣΜΟΣ: Για καθε $y \in \mathbb{R}$, με $f_Y(y) > 0$, η συνάρτηση:

$$f_{Y|X}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} \quad \forall x \in \mathbb{R} \quad \text{Είναι πυκνότητα.}$$

$$(\text{Σιατί } f_{Y|X}(x|y) \geq 0 \quad \forall x: \int_{\mathbb{R}} \frac{f_{X,Y}(x,y)}{f_Y(y)} dx = \frac{1}{f_Y(y)} \int_{\mathbb{R}} f_{X,Y}(x,y) dx = 1),$$

τη δέκει πυκνότητα της X , δεδομένου ότι $Y=y$. Ανατοιχή στην «τυχαια μεταβάση $X|Y=y$ ».

$$P(X=x|Y=y) = \frac{P(X=x|Y=y)}{P(Y=y)}$$

Παρατηρούμε: Για καθε $A \in \mathbb{R}$, $P(X \in A | Y = y) = \int_A f_{X|Y}(x|y) dx$,
αφού η $f_{X|Y}(x|y)$ είναι η πικνότητα της $X|Y = y$.

Παραδειγμα (5B Ross σελ 286)

X, Y τυχαιες μεταβλητες με απο κοινου πικνότητα

$$f(x, y) = \begin{cases} \frac{e^{-x/y} \cdot e^{-y}}{y}, & 0 < x < \infty, 0 < y < \infty \\ 0, & (x, y) \in \mathbb{R}^2 \setminus (0, \infty)^2 \end{cases}$$

(a) Ποια η κοινοτητης $X|Y = y$, για $y > 0$

(β) Να βρεθει η $P(X > 1 | Y = y)$, $y > 0$

-ΛΥΣΗ-

$$(a) f_Y(y) = \int_{\mathbb{R}} f_{X|Y}(x|y) dx \quad (1)$$

• Ων $y \leq 0$, η (1) = 0, γαπ $f_{X|Y}(x|y) = 0 \forall x$

$$\cdot Ων $y > 0$, η (1) = \int_0^{\infty} \frac{1}{y} \cdot e^{-y} \cdot e^{-\frac{x}{y}} dx =$$

$$= e^{-y} \int_0^{\infty} \frac{1}{y} \left(-e^{-\frac{x}{y}} \right) dx = e^{-y} \cdot \left[-e^{-\frac{x}{y}} \right]_{x=0}^{x=\infty} = e^{-y}$$

$$\text{Άρα, } f_Y(y) = e^{-y} \mathbf{1}_{y > 0}$$

Ανταρσι: $y \sim \exp(1)$

$$\text{Για } x \in \mathbb{R}: f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{\frac{1}{y} e^{-y} e^{-\frac{x}{y}} \mathbf{1}_{x > 0} \mathbf{1}_{y > 0}}{e^{-y}} = \frac{1}{y} e^{-\frac{x}{y}} \mathbf{1}_{x > 0}$$

$$= \frac{1}{y} e^{-\frac{x}{y}} \mathbf{1}_{x > 0}$$

$$(b) P(X > 1 | Y = y) = P(X \in (1, \infty) | Y = y) = \int_1^{\infty} f_{X|Y}(x|y) dx =$$

$$= \int_1^{\infty} \frac{1}{y} e^{-\frac{x}{y}} dx = -e^{-\frac{x}{y}} \Big|_{x=1}^{x=\infty} = e^{-\frac{1}{y}}$$

(6)

β). Οριζεται αριθμος dia ta $x \in \mathbb{R}$, με $f(x) > 0$.

Αντασθη, dia $x > 0$

$$\text{dia } x > 0 : f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{c \cdot (x^2 - y^2) e^{-x}}{\frac{4}{3} x^3 \cdot e^{-x} \cdot c} \mathbb{1}_{x > 0} \mathbb{1}_{|y| \leq x} =$$

$$= \frac{3}{4} \frac{(x^2 - y^2)}{x^3} \mathbb{1}_{|y| \leq x} \text{ ουναρμον tou } y = \begin{cases} \frac{3}{4} \frac{(x^2 - y^2)}{x^2}, & y \in [-x, x] \\ 0, & y \in \mathbb{R} \setminus [-x, x] \end{cases}$$

11/12/2018

19^ο μαθημα

①

ΠΙΘΑΝΟΤΗΤΕΣ Ι (ΧΕΔΙΩΤΑΣ)

ΑΣΚΗΣΗ 6.7 (Κυριαρχία)

Χ, Υ από κοινού ουνέχεις τυχαιες μεταβλητες με πυκνότητα $f(x, y)$. ΝΔΟ $P(X=Y) = 0$

Γιαδική περιπτώση Χ, Υ ανεξαρτήτες ουνέχεις τυχαιες μεταβλητες τότε $f(x, y) = f_X(x)f_Y(y)$

-ΛΥΣΗ-

Θετούμε $A = \{(x, y) : x \in \mathbb{R}\} \subset \mathbb{R}^2$

$P(X=Y) = P((X, Y) \in A) = \iint_A f(x, y) dx dy = 0$, γιατι συβαδόν $(A) = 0$

ΑΣΚΗΣΗ 6.6

Τρία μήκη στο κόβουμε τυχαια σε τρία κομματα.

Ποια η πιθανότητα τα τρία κομματα να φτιάχνουν τρίγωνο αν το μέγιστο δίκτυο με τα είνσεν σενάρια:

(α) Επιλεγούμε ανεξαρτήτα δύο σημεία αρχικόμορφα στο τρίγωνο (β). Επιλεγούμε αρχικόμορφα τα σημεία Γ. Το πρώτο κομματι είναι το ΑΓ. Μετά επιλεγούμε αρχικόμορφα (και ανεξαρτήτα), ενα σημείο Α στο ΓΒ. Αυτό καθορίζει τα άλλα δύο τμήματα.

-ΛΥΣΗ-

Τρεις αριθμοί α, β, γ είναι μήκη πλευρών τρίγωνου αν και μονο αν
κανονολαίνται τα αι τρεις γρεγματικές ανισότητες
($\alpha < \beta + \gamma$, $\beta < \alpha + \gamma$, $\gamma < \alpha + \beta$).

Ας υποθεσουμε ότι $\alpha \geq \beta, \gamma$

Με κέντρο το Μ, καρουτε κύκλο, ακύρας β.

Με κέντρο το Μ, καρουτε κύκλο, ακύρας γ

(α). Εστιώ ότι τα μήκα που εμπλέκουνται είναι $x, y \in (0, 1)$ και $x < y$

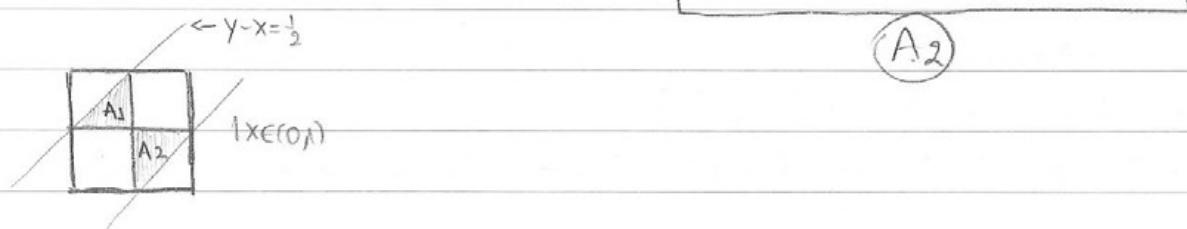
Τότε, $\alpha = x$, $\beta = y - x$, $\gamma = 1 - y$

→

(2)

$$\text{Θεώρουμε, } \begin{array}{l} x < y - x + 1 - y \\ y - x < x + 1 - y \\ 1 - y < x + y - x \end{array} \left\{ \begin{array}{l} x < \frac{1}{2} \\ y - x < \frac{1}{2} \\ y > \frac{1}{2} \end{array} \right\} \text{ (A1)}$$

Ενώ, αν $x > y$ θεώρουμε: $y < \frac{1}{2}$, $x - y < \frac{1}{2}$, $x > \frac{1}{2}$



Ζηταίρεις τη πθεώντα $(u_1, u_2) \in A_1 \cup A_2$

Η από τον κατανομή των u_1, u_2 είναι:

$$F_{u_1, u_2}(x, y) = F_{u_1}(x) F_{u_2}(y) = 1(x, y) \in (0, 1)^2$$

$$\text{Άρα, } P((u_1, u_2) \in A_1 \cup A_2) = \iint_{A_1 \cup A_2} f_{u_1, u_2}(x, y) dx dy = \iint_{A_1 \cup A_2} 1(x, y) dx dy =$$

$$= \iint_{A_1 \cup A_2} 1 dx dy = \text{εμβαδόν } (A_1 \cup A_2) = \frac{1}{4}.$$

(6.5) να δω

ΚΕΦΑΛΑΙΟ 7

Εστω X, Y τυχαιες μεταβλητες σε μια αντισ εγνσ κατηγοριες:

Ι) X, Y : διακριτες υπεριπτες από τον ανεξιανον πιθανοτητας $f_{X, Y}$

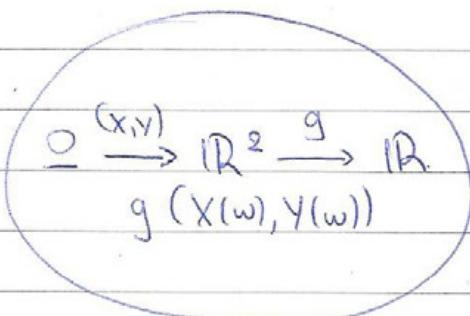
ΙΙ) X, Y : από τον ανεξιανον πιθανοτητας $f_{X, Y}$

$$\left[\text{εά } A \subset \mathbb{R}^2, \text{ έχουμε } P((X, Y) \in A) = \left\{ \sum_{(x_i, y_i) \in A} f_{X, Y}(x_i, y_i) \text{ στην περιπτωση I} \right. \right. \\ \left. \left. - \iint_A f_{X, Y}(x, y) dx dy \text{ στην περιπτωση II} \right\} \right]$$

ΕΡΩΤΗΜΑ: Αν $g: \mathbb{R}^2 \rightarrow \mathbb{R}$, τότε $Eg(X, Y) =$

ΠΡΟΤΑΣΗ: Εστι ωστι, $g: \mathbb{R}^2 \rightarrow \mathbb{R}$. Τότε

$$E g(x,y) = \begin{cases} \sum_{(x,y) \in \mathbb{R}^2} g(x,y) f_{x,y}(x,y) \text{ στην περιπτ. I} \\ \int_{\mathbb{R}^2} \int g(x,y) f_{x,y}(x,y) dx dy \text{ στην περιπ. II} \end{cases}$$



Με την προϋπόθεση ότι, το
σειριακό μέσος ορίζεται.

Αν $Y = X$ ουνέχεις, τότε οι X, Y είναι ουνέχεις. Όμως σήμερα
είναι από κοινού ουνέχεις, ήταν $(X, Y) \in A$, όπου $A = \{(X, Y) \in \mathbb{R}^2 : X = Y\}$
η επιβαθμή (A), όποτε αν ήταν από κοινού ουνέχεις, θα έπεινε:
 $P((X, Y) \in A) = \int_A f_{X,Y}(x, y) dx dy = 0$

Παραδειγμα 2α (σελ. 317)

$L > 0$. Εστι ωστι $X, Y \sim U(0, L)$ ανεξαρτήτες

$$(a) P(|X - Y| < \frac{L}{2})$$

$$(b) E|X - Y|$$

- Αντίτυπη -

$$X, Y: \text{ανεξαρτήτες με πυκνότητες } f_X(x) = f_Y(y) = \frac{1}{L} \mathbf{1}_{(0,L)}(x)$$

Άρα, οι X, Y είναι από κοινού ουνέχεις με αυτό κοινού πυκνότητα
 $f_{X,Y}(x, y) = f_X(x) f_Y(y) = \frac{1}{L^2} \mathbf{1}_{(0,L)^2}(x, y)$

→

(4)

$$(a) \text{ Εστιώ } A = \{ (x, y) \in (0, L)^2 : |x-y| < \frac{L}{2} \}$$

$$P(|x-y| < \frac{L}{2}) = P((x, y) \in A) = \iint_A f_{x,y}(x, y) dx dy = \frac{1}{L^2} \iint_A 1 dx dy =$$

$$= \frac{1}{L^2} \text{εργασία}(A) = \frac{1}{L^2} (L^2 - \frac{L^2}{4}) = \frac{3}{4}$$

$$(b) E|x-y| = \iint_{\mathbb{R}^2} |x-y| f_{x,y}(x, y) dx dy = \iint_{[0, L]^2} |x-y| \frac{1}{L^2} dx dy = \frac{1}{L^2} \int_0^L \int_0^L |x-y| dy dx$$

$$\text{Υπολογισμός: } \int_0^L |x-y| dy = \int_0^x (x-y) dy + \int_0^L (y-x) dy = x^2 - \frac{x^2}{2} + \frac{L^2 - x^2}{2} - x(L-x) =$$

$$= \frac{L^2}{2} - Lx + \cancel{x^2}$$

$$\text{Άρα, } E|x-y| = \frac{1}{L^2} \int_0^L (x^2 - Lx + \frac{L^2}{2}) = \frac{1}{L^2} \left(\frac{L^3}{3} - L \cdot \frac{L^2}{2} + \frac{L^3}{2} \right) = \frac{L}{3}.$$

§ 7.4 Συνδιακύναση, διασπορά αθροισμάτων

ΠΡΟΤΑΣΗ

Αν X, Y ανεξάρτητες τυχαίες μεταβλήτες, τότε:

$E(XY) = EX \cdot EY$, οπότε οι EX, EY ορίζονται και $X, Y \geq 0$ και

$EX, EY \in \mathbb{R}$

- Απόδ -

Ειδική περίπτωση οι X, Y από τον ίδιο συνεχός έστιν $f_{x,y}$ η οποία κανούν τιμές των X, Y .

$$E(XY) = \iint_{\mathbb{R}^2} xy f_{x,y}(x, y) dx dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_X(x) f_Y(y) dy dx =$$

$$= \int_{-\infty}^{\infty} x f_X(x) \left(\int_{-\infty}^{\infty} y f_Y(y) dy \right) dx = EY \int_{-\infty}^{\infty} x f_X(x) dx = EY EX$$

(5)

ΠΡΟΤΑΣΗ

Εστώ $X_1, X_2, \dots, X_k, Y_1, \dots, Y_l$ ανεξάρτητες τυχαιες μεταβατες και $g: \mathbb{R}^k \rightarrow \mathbb{R}$, $h: \mathbb{R}^l \rightarrow \mathbb{R}$. Επομένη $Z = g(X_1, \dots, X_k)$, $W = h(Y_1, \dots, Y_l)$ τότε, οι Z, W είναι ανεξάρτητες.

Ανισότητα (Cauchy-Schwarz)

X, Y τυχαιες μεταβατες σε κοινό χωρο πιθανοτασ

$$\text{τοξού αν } E|XY| \leq (E(X^2))^{1/2} (E(Y^2))^{1/2}$$

• — •

Εστώ X, Y τυχαιες μεταβατες με $E(X), E(Y) \in \mathbb{R}$. Επομένη $\mu_X = E(X)$, $\mu_Y = E(Y)$.

ΟΡΙΣΜΟΣ: Συνδιαρύθμων των X, Y ονομάζονται τα αριθμοί $\text{Cov}(X, Y) = E((X - \mu_X)(Y - \mu_Y))$, αν η μεσημεριανή ορίζεται.

ΠΡΟΤΑΣΗ:

Αν $E(X), E(Y), E(XY)$ ορίζονται, τότε $\text{Cov}(X, Y) = E(XY) - EXEY$
- Αποδ-

$$\begin{aligned} \text{Cov}(X, Y) &= E(XY - X\mu_Y - \mu_X Y + \mu_X \mu_Y) = E(XY) - \mu_Y EX - \mu_X EY + \mu_X \mu_Y = \\ &= E(XY) - EXEY \end{aligned}$$

Από την $(X - \mu_X)(Y - \mu_Y) = XY - \mu_X Y - \mu_Y X + \mu_X \mu_Y$, είτε αν η $\text{Cov}(X, Y)$, ορίζεται αν και ποτέ αν $E(X), E(Y) \in \mathbb{R}$ και $E(XY)$ ορίζεται.

Ικανή γενότητα δια όταν η $E(XY)$ αναλογικά με $E(X^2), E(Y^2) < \infty$, γιατί τότε από την ανισότητα (Cauchy-Schwarz) $|E(XY)| \leq \sqrt{E(X^2)E(Y^2)}$, απότομα η $E(XY)$ ορίζεται και είναι πραγματικός αριθμός.

(6)

Παράδειγμα 1: Ρίχνουμε ένα νόμισμα 3 φορές. Εστια:

X = αριθμός κεντριών στις πρώτες 2 φορές

Y = αριθμός κεντριών στις τελευταίες 2 φορές

$\text{Cov}(X, Y) = ;$

-Λύση -

Οι συναριθμοίς πιθανότητας $f_{X,Y}, f_X, f_Y$ γιανονται στο πινακάκι

$y \setminus x$	0	1	2	f_Y
0	$\frac{1}{8}$	$\frac{1}{8}$	0	$\frac{2}{8}$
1	$\frac{1}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	$\frac{4}{8}$
2	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{2}{8}$
f_X	$\frac{3}{8}$	$\frac{4}{8}$	$\frac{2}{8}$	

πινακάς τιμών της $f_{X,Y}(x,y)$

$$\begin{aligned} E(XY) &= \sum_{(x,y) \in \mathbb{R}^2} xy f_{X,Y}(x,y) = \sum_{x=0}^2 \sum_{y=0}^2 -xy f_{X,Y}(x,y) = \\ &= 1 \cdot 1 \cdot \frac{1}{8} + 1 \cdot 2 \cdot \frac{1}{8} + 2 \cdot 1 \cdot \frac{1}{8} + 2 \cdot 2 \cdot \frac{1}{8} = \frac{5}{4} \end{aligned}$$

$$EX = \sum_{x=0}^2 x f_X(x) = 1 \cdot \frac{1}{8} + 2 \cdot \frac{2}{8} = 1 = EY$$

$$\text{Αρα } \text{Cov}(X, Y) = E(XY) - EX \cdot EY = \frac{5}{4} - 1 = \frac{1}{4}$$

Παράδειγμα 2: X, Y αποτελούν συνεχείς ρε πινακώματα.

$$f_{X,Y} = \begin{cases} 6x & , \text{ αν } x, y > 0, x+y < 1 \\ 0 & , \text{ αλλιώς} \end{cases}$$

$\text{Cov}(X, Y) = ;$

-Λύση -

$$E(XY) = \iint_{\mathbb{R}^2} xy f_{X,Y}(x,y) dx dy = \iint_A xy 6x dx dy = \int_0^1 \int_0^{1-x} 6x^2 y dy dx = \dots = \frac{1}{10}$$

$$EX = \iint_{\mathbb{R}^2} x f_{X,Y}(x,y) dx dy = \iint_A x \cdot 6x dy dx = \int_0^1 6x^2 (1-x) dx = \dots = \frac{1}{2}$$

$$EY = \iint_{\mathbb{R}^2} y f_{X,Y}(x,y) dx dy = \iint_A y \cdot 6x dy dx = \dots = \frac{1}{4}$$

$$\text{Αρα } \text{Cov}(X, Y) = E(XY) - EY \cdot EX = \frac{1}{10} - \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{40}$$

ΣΗΜΑΣΙΑ ΤΗΣ ΣΥΝΔΙΑΓΕΜΑΝΣΗΣ

$$\text{Cov}(X, Y) = E((X - \mu_X)(Y - \mu_Y))$$

To $\text{Cov}(X, Y) \geq 0$ είναι συμβόλιο / προώθηση συνθήσεων αντίνοιας συγκεκριμένων. Αν δια ένα $w \in \Omega$ ισχύει:

$$X(w) - \mu_X \geq 0 \text{ τότε και } Y(w) - \mu_Y \geq 0$$

$$\text{Ένω αν } X(w) - \mu_X < 0 \text{ τότε και } Y(w) - \mu_Y < 0.$$

Δηλαδή, σε κάθε πραγματοποίηση του ιθεαράτου, αν η μία τυχαία μέροβλητη παιδιά μεχανή τύπο, τότε και η άλλη παιδιά μεχανή τύπο.

Για το $\text{Cov}(X, Y) < 0$ αντινοίκει σταν η μία τυχαία μέροβλητη παιδιά μικροί τύπο, στην άλλη παιδιά μεγάλοι.

Στο παραδειγματα 1 πιο παιδιών, πιαν αναμενόμενο και έχουμε $\text{Cov}(X, Y) > 0$, γιατί μεγαλείς τύποι του X, ευρεύνουν μεγαλείς τύποι του Y.

Στο παραδειγματα 2, το $\text{Cov}(X, Y) < 0$ πιαν αναμενόμενο

Πιθανότητες Ι - Χειμώνας

13/12/2018

$$\text{Cov}(X, Y) = E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y)$$

ΠΡΟΤΑΣΗ

Ιδιότητες της συνδιακύμανσης

Με την προηγούμενη οτιδιαία συνδιακύμανσης μη καινούργια, ισχύουν τα εξής:

- i). $\text{Cov}(X, Y) = \text{Var}(X)$
- ii). $\text{Cov}(X, Y) = \text{Cov}(Y, X)$
- iii). $\text{Cov}(aX, Y) = a \text{Cov}(X, Y), a \in \mathbb{R}$
- iv). $\text{Cov}(X+Y, Z) = \text{Cov}(X, Z) + \text{Cov}(Y, Z)$
- v). $\text{Cov}\left(\sum_{i=1}^m X_i, \sum_{j=1}^n Y_j\right) = \sum_{i=1}^m \sum_{j=1}^n \text{Cov}(X_i, Y_j)$
- vi). $\text{Cov}(a, X) = a, a \in \mathbb{R}$
- Απόδιθη:
- i). $\text{Cov}(X, X) = E((X - E(X))^2) = \text{Var}(X)$
- ii). προφαίνω
- iii). $\text{Cov}(aX, Y) = E(aXY) - E(aX)EY =$
 $= aE(XY) - aE(X)EY = a(\text{Cov}(X, Y))$
- iv). $\text{Cov}(X+Y, Z) = E((X+Y)Z) - E(X+Y)EZ =$
 $= E(XZ) + E(YZ) - EXEZ - EYEZ =$
 $= \text{Cov}(X, Z) + \text{Cov}(Y, Z)$
- v). Ενεργαλ αντανακλά τις ii, iv
 $\text{Cov}(X+Y, Z+W) \stackrel{iv}{=} \text{Cov}(X, Z+W) + \text{Cov}(Y, Z+W) \stackrel{iii}{=}$
 $= \text{Cov}(Z+W, X) + \text{Cov}(Z+W, Y) \stackrel{iv}{=}$
 $= \text{Cov}(Z, X) + \text{Cov}(W, X) + \text{Cov}(Z, Y) + \text{Cov}(W, Y)$
- vi). $\text{Cov}(a, X) = E((a - E(a))(X - E(X))) = 0$
α.

(2)

ΠΡΟΤΑΣΗ: Av $E(X_i^2) < \infty \quad \forall i \in \{1, 2, \dots, n\}$

$$\text{Var}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \text{Var}(X_i) + 2 \sum_{1 \leq i < j \leq n} \text{Cov}(X_i, X_j)$$

- Απόδ-

$$\text{Var}\left(\sum_{i=1}^n X_i\right) \stackrel{(1)}{=} \text{cov}\left(\sum_{j=1}^n X_j, \sum_{i=1}^n X_i\right) = \sum_{i=1}^n \sum_{j=1}^n \text{cov}(X_i, X_j) -$$

$$= \sum_{i=1}^n \text{cov}(X_i, X_i) + \sum_{1 \leq i < j \leq n} \text{cov}(X_i, X_j) = \sum_{i=1}^n \text{Var}(X_i) + 2 \sum_{1 \leq i < j \leq n} \text{cov}(X_i, X_j)$$

Ειδική περιτίχωμα: $\text{Var}(X+Y) = \text{Var}(X) + \text{Var}(Y) + 2 \text{cov}(X, Y)$

ΠΡΟΤΑΣΗ

$$X, Y: \text{ανεξαρτήτες} \Rightarrow \text{cov}(X, Y) = 0$$

- Απόδ-

$$\Rightarrow \text{cov}(X, Y) = E(XY) - E(X)E(Y) = EXEY - EXEY = 0$$

~~Αντιπαραδειγμα~~: av $X \sim U(-1, 1)$, θετούμε $Y = X^2$. Τότε,

$$\text{cov}(X, Y) = E(X^3) - EX \cdot E(X^2) = 0, \text{ διατι}$$

$$\cdot E(X) = \int_{\mathbb{R}} f_X(x) dx = 0$$

$$\cdot E(X^3) = \int_{\mathbb{R}} x^3 f_X(x) dx = 0$$

Av ήταν ανεξαρτήτες, θα έμενε: $P(X \in A, Y \in B) = P(X \in A)P(Y \in B) \quad \forall A, B \in \mathcal{R}$

$$\cdot \text{Για } A = \left(-\frac{1}{2}, 1\right), B = \left(0, \frac{1}{4}\right)$$

$$P(X \in A) = \frac{1}{4}, \quad P(Y \in B) = P(X^2 \in \frac{1}{16}) = P(|X| \leq \frac{1}{4}) = \frac{1}{4}$$

Δηλ. $P(X \in A), P(Y \in B) > 0$

$$\text{Άλλα: } P(X \in A, Y \in B) = P(X \in \left(-\frac{1}{2}, 1\right), Y \in \left(0, \frac{1}{4}\right)) = 0$$

ΟΠΙΣΜΟΣ: οι X, Y οργανώνται αναλογικά αντίτοιχα αν $\text{Cov}(X, Y) = 0$

Ειδαρε ότι οι X, Y : ανεξάρτητες $\Rightarrow X, Y$ ασυγχέτιστες

ΠΟΡΙΣΜΑ

Αν οι x_1, x_2, \dots, x_n είναι ανά δύο αρνητικοί, τότε

$$\text{Var}(X_1 + \dots + X_n) = \sum_{i=1}^n \text{Var}(X_i)$$

- Αποδ -

$$\text{Var}(X_1 + \dots + X_n) = \sum_{i=1}^n \text{Var}(X_i) + 2 \sum_{1 \leq i < j \leq n} \text{Cov}(X_i, X_j)$$

ΑΣΚΗΣΗ 7.15 (φυλλοδίο)

η οποία επιβιβάζονται σε αρροάδα σε θέσεων στην τύχη, αγνοώντας την ανάδειξη της καριατίδας επιβιβάσεων. Εστι τώρα, ο αριθμός αυτών που ρίθονται στη σωστή θέση. Επειδή:

$$X_i = \begin{cases} 1, & \text{αν } \Omega_i \text{ είναι σωστή} \\ 0, & \text{αλλιώς} \end{cases}$$

(a) $\text{Cov}(X_i, X_j) \neq 0$ ($i \neq j$). Ήως σχολιάζετε το πρόσημο της.

(b) $E(w), \text{Var}(w) =$

- AV54 -

$$(a) \text{Cov}(X_i, X_j) = E(X_i X_j) - E(X_i)E(X_j)$$

Η x_i, x_j παρνει της τιμής 0,1

$$P(X_i | X_j = 1) = P(\text{O}_i \text{ i } \text{O}_j \text{ radovat ovog}: \frac{(n-2)!}{n} = \frac{1}{n(n-1)}$$

$$\text{Apa, } E(X_i X_j) = 1 \cdot P(X_i X_j = 1) + 0 \cdot P(X_i X_j = 0) = \frac{1}{2}$$

$$E(X_i) = 1 \cdot P(X_i=1) + 0 \cdot P(X_i=0) = P(X_i=1) = \frac{1}{n(n-1)}$$

$$\text{Apa, } \text{cov}(X_i, X_j) = \frac{1}{n(n-1)} \cdot \frac{1}{n} \cdot \frac{1}{n} = \frac{1}{n} \cdot \left(\frac{1}{n-1} - \frac{1}{n} \right) = \frac{1}{n^2(n-1)} > 0$$

(4)

$$(p). W = \sum_{i=1}^n X_i$$

$$EW = E\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n E(X_i) = \sum_{i=1}^n \frac{1}{n} = n \cdot \frac{1}{n} = 1,$$

$$\text{Var}(W) = \text{Var}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \text{Var}(X_i) + 2 \sum_{1 \leq i < j \leq n} \text{Cov}(X_i, X_j) = \sum_{i=1}^n \frac{1}{n} \left(1 - \frac{1}{n}\right) + 0$$

$$+ 2 \sum_{1 \leq i < j \leq n} \frac{1}{n^2(n-1)} = \left(1 - \frac{1}{n}\right) + 2 \binom{n}{2} \frac{1}{n^2(n-1)} = \left(1 - \frac{1}{n}\right) + 2 \frac{n(n-1)}{2} \cdot \frac{1}{n^2(n-1)} = 1$$

ΑΣΚΗΣΗ

Αν X, Y ανεξαρτήτες, $\sqrt{8}$ ό $\text{Cov}(X, XY) = EY \cdot \text{Var}(X)$, $EY \in \mathbb{R}$, $E(X^2) < \infty$
 -ΛνΣΗ-

$$\begin{aligned} \text{Cov}(X, XY) &= E(X \cdot XY) - EX \cdot E(XY) = E(X^2Y) - EX \cdot EX \cdot EY = \\ &= E(X^2)EY - (EX)^2EY = EY(E(X^2) - (EX)^2) = EY \cdot \text{Var}(X) \end{aligned}$$

Παραδειγμα 4a Ross σελ343.

X_1, X_2, \dots, X_n ανεξαρτήτες και υοδόντες τυχαιές μελαβάντες υπό $E(X_i) = \mu$, $\text{Var}(X_i) = \sigma^2$. Δεπούμε $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$
 Να βρεθούν τα: (a) $\text{Var}(\bar{X})$
 (b) $E(S^2)$

-ΛνΣΗ-

$$\begin{aligned} (a). \text{Var}(\bar{X}) &= \text{Var}\left(\frac{1}{n} \sum_{i=1}^n X_i\right) = \frac{1}{n^2} \text{Var}\left(\sum_{i=1}^n X_i\right) = \frac{1}{n^2} \sum_{i=1}^n \text{Var}(X_i) = \\ &= \frac{1}{n^2} n \text{Var}(X_i) = \frac{1}{n} \sigma^2 \quad [E\bar{X} = \frac{1}{n} \sum_{i=1}^n E X_i = \frac{1}{n} n \mu = \mu] \end{aligned}$$

$$(b). (n-1)S^2 = \sum_{i=1}^n (X_i - \bar{X})^2 = \sum_{i=1}^n (X_i - \mu + \mu - \bar{X})^2 =$$

$$\begin{aligned} &= \sum_{i=1}^n (X_i - \mu)^2 + (\mu - \bar{X})^2 + 2(\mu - \bar{X}) \cdot \left(\sum_{i=1}^n (X_i - \mu)\right) = \\ &= n(\mu - \bar{X})^2 + \sum_{i=1}^n (X_i - \mu)^2 + \underbrace{2(\mu - \bar{X})(n\bar{X} - n\mu)}_{2n(\mu - \bar{X})^2} \end{aligned}$$

$$= \sum_{i=1}^n (X_i - \mu)^2 - n(\mu - \bar{X})^2 \Rightarrow (n-1) \in (S^2) =$$

$$= \sum_{i=1}^n E((X_i - \mu)^2) - n E((\bar{X} - \mu)^2) =$$

$$= n\sigma^2 - n \text{Var}(\bar{X}) = n\sigma^2 - n \cdot \frac{1}{n} \cdot \sigma^2 = (n-1)\sigma^2 \Rightarrow E(S^2) = \sigma^2$$

Παράδειγμα 4ε

X_i : οπως ήριν ότι $\text{cov}(X_i - \bar{X}, \bar{X}) = 0$

-ΑΥΤΗ-

$$\text{cov}(X_i - \bar{X}, \bar{X}) = \text{cov}(X_i, \bar{X}) - \text{cov}(\bar{X}, \bar{X}) =$$

$$= \text{cov}(X_i, X_1 + \dots + X_n) - \text{Var}(\bar{X}) =$$

$$= \frac{1}{n} \sum_{j=1}^n \text{cov}(X_i, X_j) - \text{Var}(\bar{X}) = \frac{1}{n} \text{cov}(X_i, X_i) - \frac{\sigma^2}{n} =$$

$$= \frac{1}{n} \text{Var}(X_i) - \frac{\sigma^2}{n} = \frac{\sigma^2}{n} - \frac{\sigma^2}{n} = 0$$

ΟΡΙΣΜΟΣ : Εστι X, Y τυχαια μεταβλητη με $\text{Var}(X), \text{Var}(Y) \in (0, \infty)$

Συντεταγμ ουσηνσ των X, Y ονει τον αριθμο

$$P(X, Y) = \frac{\text{cov}(X, Y)}{\sqrt{\text{Var}(X)} \sqrt{\text{Var}(Y)}}$$

ΠΡΟΤΑΣΗ : X, Y οπως πιο πανω $a, b, \gamma, \delta \in \mathbb{R}$, $a\gamma \neq 0$. Τοτε,

$$P(ax + b, \gamma Y + \delta) = \text{sgn}(a\gamma) P(X, Y) = \begin{cases} P(X, Y), & \text{ωρ } a\gamma > 0 \\ -P(X, Y), & \text{ωρ } a\gamma < 0 \end{cases}$$

-ΑΠΟΣ-

$$\begin{aligned} \text{cov}(ax + b, \gamma Y + \delta) &= \text{cov}(ax, \gamma Y) + \text{cov}(aX, \delta) + \text{cov}(b, \gamma Y) + \text{cov}(b, \delta) = \\ &= a\gamma \text{cov}(X, Y) + 0 + 0 + 0 = a\gamma \text{cov}(X, Y) \end{aligned}$$

(6)

$$\text{Var}(ax + b) = \text{Var}(ax) = a^2 \text{Var}(x)$$

$$\text{Var}(\gamma y + \delta) = \gamma^2 \text{Var}(y)$$

$$\text{Apa } \rho(ax+b, \gamma y+\delta) = \frac{a\gamma \text{cov}(x, y)}{|a|\sqrt{\text{Var}(x)} + |\gamma|\sqrt{\text{Var}(y)}} = \frac{a\gamma \rho(x, y)}{|a\gamma|} = \text{sgn}(a\gamma) \rho(x, y)$$

Παρατίρημα: $\rho(x, x) = \frac{\text{cov}(x, x)}{\sqrt{\text{Var}(x)} \sqrt{\text{Var}(x)}} = \frac{\text{Var}(x)}{\text{Var}(x)} = 1$

ΠΡΟΤΑΣΗ: X, Y : τυχαιες μεταβλητες
ισχυει $E|XY| \leq E(X^2)^{1/2} E(Y^2)^{1/2}$
-Αποδ-

$$\text{Av } E(X^2) = 0, \text{ tote } P(X=0) = 1$$

Apa, $P(|XY|=0) = 1$, apa $E|XY| = 0$ και η ανισότητα ισχυει
- οποια av $E(Y^2) = 0$

Υποθετουμε λοιπον ότι $E(X^2), E(Y^2) > 0$

- av $E(X^2) = \infty$, tote επειδη $E(Y^2) > 0$ το δει μετο = ∞
και η ανισότητα ισχυει

- av $E(Y^2) = \infty$ οποια

Υποθετουμε λοιπον ότι $0 < E(X^2), E(Y^2) < \infty$

Για καθε $\lambda \in \mathbb{R}$, ισχυει $E((\lambda|X| + |Y|)^2) \geq 0$

$$\text{Διλαδη}, \lambda^2 E(X^2) + 2\lambda E(|XY|) + E(Y^2) \geq 0$$

$$\text{πρέπει } \Delta \leq 0 : \Delta = 4E(|XY|)^2 - 4E(X^2)E(Y^2) \leq 0 \Rightarrow$$

$$E(|XY|) \leq E(X^2)^{1/2} E(Y^2)^{1/2}$$

(7)

Παρατηνση

Αν $E(X^2), E(Y^2) < \infty$, η ισομητική σχέση Cauchy-Schwarz
ισχύει αν και μόνο αν $\exists a, b \in \mathbb{R} \quad \mu \in |\alpha| + |\beta| > 0$, ώστε
 $\alpha X + \beta Y = 0 \quad \forall \omega \in \Omega$.

- Απόδιξη -

" \Rightarrow " Αν $E(X^2) = 0$, τότε $P(X=0) = 1$ και η $\alpha X + \beta Y = 0$
ισχύει μόνο αν $\alpha = 0, \beta = 0$.

Αν $E(X^2) > 0$, τότε το γριώνυμο δεν είναι αποδειγμένος
(C-S εξηγείται). $\exists \lambda \in \mathbb{R}$ πράγμα το οποίο μείνει λ αν
 $E((\lambda X + Y)^2) = 0$.

$$\text{Από } \lambda X + Y = 0 \quad \forall \omega \in \Omega \quad \left| \begin{array}{l} \alpha = \lambda \\ \beta = 1 \end{array} \right.$$

" \Leftarrow " Αν $\pi_X: B \neq \emptyset$, τότε $Y = -\frac{\alpha X}{\beta}$.

Και επομένως το αποδειγμένο μέρος της C-S:

$$|E(XY)| = \left| \frac{\alpha}{\beta} \right| |E(X^2)|$$

$$\begin{aligned} \text{Το δεξιό μέρος: } & E(X^2)^{1/2} \cdot E(Y^2)^{1/2} = E(X^2)^{1/2} \cdot E\left(\frac{\alpha^2}{\beta^2} X^2\right)^{1/2} = \\ & = \left| \frac{\alpha}{\beta} \right| |E(X^2)| \end{aligned}$$

Πιθανότητες Ι-Χειώνων

$$P(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)} \sqrt{\text{Var}(Y)}} \quad \text{συντελεστής ευσχέλεων}$$

ΠΡΟΤΑΣΗ: Εστιν X, Y τυχαια μεταβλητικές $\text{Var}(X), \text{Var}(Y) \in (0, \infty)$. Τότε:

$$(i) |P(X, Y)| \leq 1$$

$$(ii). P(X, Y) = 1 \Leftrightarrow \exists a, b \in \mathbb{R}, a > 0 \text{ ώστε } Y = aX + b$$

$$(iii). P(X, Y) = -1 \Leftrightarrow \exists a, b \in \mathbb{R}, a < 0 \text{ ώστε } Y = aX + b$$

$$|E(XY)| \leq \sqrt{E(X^2)} \sqrt{E(Y^2)}$$

$$\text{Το } "=\Leftrightarrow \exists a, b: |a| + |b| > 0 \text{ } aX + bY = 0.$$

- Απόδ-

$$(i) |\text{Cov}(X, Y)| = |E((X - E(X))(Y - E(Y)))| \stackrel{(1)}{\leq} \sqrt{E((X - E(X))^2)} \cdot \sqrt{E((Y - E(Y))^2)} =$$

$$= \sqrt{\text{Var}(X)} \cdot \sqrt{\text{Var}(Y)}$$

$$(ii) " \Rightarrow " \text{ εχουμε } " = " \text{ στην } (i) : \exists \gamma, \delta \text{ όπου } \gamma \neq 0 \text{ και } \delta \neq 0 \text{ μηδεν, ώστε: } \gamma \cdot (X - E(X)) + \delta \cdot (Y - E(Y)) = 0$$

$\delta \neq 0$, γιατί αν $\delta = 0$, τότε θα είχαμε $\gamma \neq 0$ και $X = E(X)$. Από, $\text{Var}(X) = 0$: απόποιο.

$$\text{Από } Y = \frac{\gamma}{\delta} (X - E(X)) + E(Y) = \underbrace{\frac{\gamma}{\delta} X}_{a} - \underbrace{\frac{\gamma}{\delta} E(X) + E(Y)}_{b} = aX + b$$

όμοια $\gamma \neq 0$.

$$\text{Από } P(X, Y) = P(X, aX + b) = \frac{a}{|a|} P(X, X) = \frac{a}{|a|} \cdot 1 = 1. \text{ Από } a \geq 0.$$

$$\text{" \Leftarrow " } P(X, Y) = P(X, aX + b) = \frac{a}{|a|} P(X, X) \stackrel{a > 0}{\Leftrightarrow} \frac{a}{a} \cdot 1 = 1$$

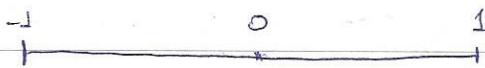
(2)

$$-\bar{a} = \alpha$$

$$(iii) p(X, Y) = -1 \Rightarrow p(X, -Y) = +1 \xrightarrow{\text{G1}} \exists \bar{a} > 0 \text{ ώστε } -Y = \bar{a}X + b \Rightarrow Y = -\bar{a}X - b$$

Παρατομή

① Με τον $p(X, Y)$ αποκονιζουμε στο $[-1, 1]$ όταν το γράφει εξαρτίσμων μεταξύ X και Y .



• $p(X, Y) = 1 \Rightarrow Y = \alpha X + b$ με $\alpha > 0$ που είναι η ισχυρότερη μορφή δετικής εξαρτίσμων

• $p(X, Y) = -1$ είναι $Y = \alpha X + b$ με $\alpha < 0$ που είναι η ισχυρότερη μορφή αρνητικής εξαρτίσμων

• $p(X, Y) = 0 \Leftrightarrow X, Y$ ασυσχετίστες.

② Το $p(X, Y)$ έχει το ίδιο πρόσημο με το $\text{Cov}(X, Y)$, έτσι κρατά την πληροφορία με δετική/αρνητική εξαρτίσμων.

• Η τιμή του Cov σημαίνει (ενώ του Cov όχι)

$$\text{π.χ. } \text{cov}(X, 10Y) = 10 \text{cov}(X, Y), \text{ ενώ } p(X, 10Y) = p(X, Y)$$

• Η cov έχει καλύτερες αρχεβρίσεις (διόπτρες).

§ 7.5 Δεοντερέντ μέσον τιμή

X, Y : τυχαιες μεταβάσεις σε ένα απότα εγγίσ σεμαία:

① Διακρίτες με από κοινού συνάρτηση μηδανότητας $f_{X,Y}$ και περιθωρίου f_X, f_Y

② Από κοινού συνέχεις με από κοινού πικνότητα $f_{X,Y}$ και περιθωρίου πικνότητας f_X, f_Y

Για $y \in \mathbb{R}$ με $f_y(y) > 0$, ξερεψε αριστερή την:

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_y(y)}, \quad x \in \mathbb{R}$$

Δεσμευεται συρρικημένη πιθανότητα στο I (η πιθανότητα στο II)
Σ' αυτήν με $f_{X|Y}(x|y)$ αντιτοιχεί μια ρεαλ την

ΟΡΙΣΜΟΣ: Αν $f_y(y) > 0$, δεσμευεται μέση την του X , δεσμεύοντας την $y=y$ ηρεται ο αριθμός:

$$E(X|Y=y) = \begin{cases} \sum_{x \in \mathbb{R}} x f_{X|Y}(x|y) & \text{στο σαρίπιο I.} \\ \int_{\mathbb{R}} x f_{X|Y}(x|y) dx & \text{στο σαρίπιο II} \end{cases}$$

Επιπλέον το χωρί $E(g(x)|Y=y) = \begin{cases} \sum_{x \in \mathbb{R}} g(x) f_{X|Y}(x|y) & \text{I} \\ \int g(x) f_{X|Y}(x|y) dx & \text{II} \end{cases}$

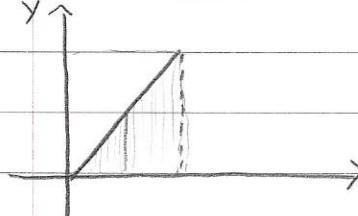
A σημ 9.1 (κυριαρχία)

X, Y από κοινού συνεχής με από κοινού πικνομία

$$f(x,y) = \begin{cases} \frac{1}{x} & , \text{αν } 0 < y < x < 1 \\ 0 & , \text{αλλιώς} \end{cases}$$

(a) ΝΔΟ f : πικνότητα
(b) $f_{X|Y}(x|y), f_{Y|X}(y|x) =$
(c) $\max(x,y) \in (0,1)$, να βερούνν:
 $E(Y), E(X^2|Y=y), E(e^y|X=x)$

-ΛΥΣΗ-



$$\text{a) } f \geq 0 \quad \int_{\mathbb{R}^2} \int f(x,y) dx dy = \int_0^1 \int_0^x f(x,y) dy dx =$$

$$= \int_0^1 \int_0^x \frac{1}{x} dy dx = \int_0^1 \frac{1}{x} \cdot x dx = 1.$$

$$\text{b) } f_{X|Y}(x|y) \text{ εξει νόμησα } f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_y(y)}$$

(4)

Βοιοκουπέ τις f_x, f_y

$$f_y(y) = \int_{\mathbb{R}} f_{x,y}(x,y) dx \quad \text{Αυτό = 0 αν } y \in \mathbb{R} \setminus (0,1)$$

$$\text{Για } y \in (0,1), \text{ τότε } f_y(y) = \int_y^1 \frac{1}{x} dx = [\log x]_y^1 = \log 1 - \log y = -\log y > 0 \quad \forall y \in (0,1)$$

Ουσα, $f_x(x) = 0$, για $\forall x \in \mathbb{R} \setminus (0,1)$, ενώ $\forall x \in (0,1)$.

$$f_x(x) = \int_{\mathbb{R}} f_{x,y}(x,y) dy = 1 \quad \text{(σταθερή πυκνότητα} \Rightarrow \text{ανοικοδομη} \\ \text{κατανομή στο } (0,1).$$

$$\text{Αρα, } f_{x|y}(x|y) \text{ έχει ρόντα ακριβώς για } y \in (0,1) \text{ και} \\ f_{x|y}(x|y) = \frac{f_{x,y}(x,y)}{f_y(y)} = \frac{\frac{1}{x} \cdot 1_{0 < y < x < 1}}{-\log y} = -\frac{1}{x \cdot \log y} \cdot 1_{(y,1)}(x) \quad \text{πραγματικά} \\ \text{παραμετρος}$$

Ουσα, $f_{y|x}(y|x)$ έχει ρόντα ακριβώς για $x \in (0,1)$ και

$$f_{y|x}(y|x) = \frac{f_{x,y}(x,y)}{f_x(x)} = \frac{\frac{1}{x} \cdot 1_{0 < y < x < 1}}{-\log y} = \frac{1}{x} \cdot 1_{(0,x)}(y)$$

$$y) E_y = \int_{\mathbb{R}} y f_y(y) dy = - \int_0^1 y \log y dy = - \int_0^1 \left(\frac{y^2}{2}\right)' \log y dy =$$

$$= \left[-\frac{y^2}{2} \log y \right]_0^1 + \int_0^1 \frac{y^2}{2} \cdot \frac{1}{y} dy = \frac{1}{2} \int_0^1 y dy = \frac{1}{4}$$

$$E(x^2|y) = \int x^2 f_{x|y}(x|y) dx = \int_y^1 x^2 \left(-\frac{1}{x \cdot \log y} \right) dx = -\frac{1}{\log y} \cdot \int_y^1 x dx =$$

$$= -\frac{1}{\log y} \cdot \frac{(1-y^2)}{2}$$

$$E(e^y|x=x) = \dots$$

> Η δεδομένη μέση της Ex αναλογεί σιωτήτες, όπως η γενικότερη μέση της

πχ: $E(aX_1 + X_2 | Y=y) = aE(X_1 | Y=y) + E(X_2 | Y=y)$
(γραμμικότητα)

[Επίσης, αν X, Y : ανεξάρτητες, τότε $E(X | Y=y) = Ex$, γιατί $X | Y=y \xrightarrow{d} X$ (είναι ταυτότητα)

→ Απόδ: αν X, Y από κοινού γενεντεξτις \Rightarrow

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{f_X(x) \cdot f_{Y|X}(y|x)}{f_Y(y)} = f_X(x)$$

Για y με $f_Y(y) > 0$, ορίζουμε $u(y) = E(X | Y=y)$
(X, Y δίνεται από τα συναρτήσια I, II)

Ορισμός: Επειδή $E(X|Y) = u(y)$

ΣΗΜΑΝΤΙΚΟ

Θεώρημα

Εστω X, Y με $Ex \in \mathbb{R}$.

Τότε $E(E(X|Y)) = Ex$

(Νόμος Επαναλαμβάνομενης Μέσης Τιμής)

Απόδ

Στο συναριθμό I: $E(E(X|Y)) = E(u(y)) =$

$$= \sum_{Y \in \mathbb{R}} u(y) f_Y(y) = \sum_{Y \in \mathbb{R}} f_Y(y) \cdot \sum_{X \in \mathbb{R}} X f_{X|Y}(x|y) =$$

$$= \sum_{Y \in \mathbb{R}} f_Y(y) \cdot \sum_{X \in \mathbb{R}} X \frac{f_{X|Y}(x|y)}{f_Y(y)} = \sum_{Y \in \mathbb{R}} \sum_{X \in \mathbb{R}} X f_{X|Y}(x|y) = Ex,$$

για $g(X, Y) = X$.

Παραπομπές

① Το θεώρημα ισχύει ακόμα και όταν οι X, Y δεν είναι στα συναριθμό I, II

πχ: η X : διακριτή και Y : γενεντεξτις. Αρνεί να είναι σαχετικά νόμιμα της $X|Y=y$

② Όταν η Y : διακριτή και παίρνει τιμές y_1, \dots, y_n τότε το θεώρημα γράφεται $Ex = Eu(y) = \sum_{Y \in \mathbb{R}} f_Y(y) u(y) = \sum_{k=1}^n f_{Y|X}(y_k | x) \cdot E(X | Y=y_k) =$

20/12/2018

22° μαθημα

ΠΙΘΙ-ΧΕΔΙΩΤΗΣ

$$E(E(X|Y)) = EX, \mu(y) = E(X|Y=y)$$

9.8-9.14: Κυρλασίο, 9.10 θέμα εξετάζεται

7.5.3 ΥΠΟΛΟΓΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΩΝ ΜΕ ΔΕΙΜΕΡΗ

X, Y : τη μοτε να εχει υπόμενη n $E(X|Y)$.

Τότε, $EX = E(E(X|Y))$

Αν $A \subseteq \Omega$ και θέσουμε $x = 1_A$, τότε

$$E(1_A) = 0 \cdot P(1_A=0) + 1 \cdot P(1_A=1) = P(1_A) = P(A)$$

Παίρνουμε $P(A) = E(E(1_A|Y)) = E(P(A|Y)) = E(\mu(Y))$, όπου

$$\mu(Y) = P(A|Y=y)$$

$$\text{Αρα, } P(A) = E(\mu(Y)) = \begin{cases} \sum_{x \in \Omega} f_Y(y) \cdot P(A|Y=y), & \text{αν } Y: \text{διακρίτη} \\ \int_A f_Y(y) \cdot P(A|Y=y) dy, & \text{αν } Y: \text{γενεξής} \end{cases}$$

ΠΑΡΑΔΕΙΓΜΑ 5iB | ΣΕΛ 364 Ross

Εστι $n \geq 1$ ζεστος, U, X : τη μετατόπιση της οποίες θέρουμε ότι $U \sim U(0,1)$ και $X|U = p \sim \text{Bin}(n, p)$.

Ποια η κατανομή της X ;

- Αντίθ-

Η X παίρνει τιμές στο $A = \{0, 1, 2, \dots, n\}$.

$$\text{Για } x \in A, P(X=x) = \int_{\Omega} f_U(p) \cdot P(X|U=p) dp = \int_0^1 1 \cdot \binom{n}{x} p^x (1-p)^{n-x} dp = \dots = \binom{n}{x} \frac{x!(n-x)!}{(n+1)!} = \frac{n!}{x!(n-x)!} \cdot \frac{1}{(n+1)!} = \frac{1}{n+1}.$$

$$\text{Αρα, } f_X(x) = \begin{cases} \frac{1}{n+1}, & \text{αν } x \in A \\ 0, & \text{αλλαχώ } \end{cases}$$

(ΔΕΣ ΠΑΡΑΔΕΙΓΜΑ 5ia | ΣΕΛ 362 (Προβλήμα στραμματίων))

7.5.4 ΔΕΣΜΕΥΜΕΝΗ ΔΙΑΚΥΝΑΣΗ

Σημείωση: Εάν $X|Y=y$ με συνάρτηση πιθανότητας $f_{X|Y}(x|y)$ έχει συμβολή $f_Y(y)$ τότε

η μέση της είναι $E(X|Y=y)$

Την διασπορά της με συμβολή $\text{Var}(X|Y=y)$ έχει
τοποθετηθεί $E((X - E(X|Y=y))^2|Y=y) = \dots = E(X^2|Y=y) - (E(X|Y=y))^2$

Εστια $\delta(y) = \text{Var}(X|Y=y)$

ΟΡΙΣΜΟΣ

$\text{Var}(X|Y) = \delta(y) = E(X^2|Y) - (E(X|Y))^2$ ~~⊗⊗~~

Η $\text{Var}(X|Y)$ είναι της

$(\delta(y) \neq \text{Var}(X|Y=y))$

Πρώτα τη συκβολίζουμε και μετά βάζουμε το Y .

Για την ~~⊗⊗~~: $\delta(y) = E(X^2|Y=y) - (E(X|Y))^2 = \mu_2(y) - \mu_1^2(y)$,
οπου $\mu_i(y) = E(X^i|Y=y)$

Άρα, $\delta(y) = \mu_2(y) - (\mu_1(y))^2 = E(X^2|Y) - (E(X|Y))^2$

ΠΡΟΤΑΞΗ

$X: \text{τη με } E \in \mathbb{R}$. Τότε $\text{Var}(X) = E(\text{Var}(X|Y)) + \text{Var}(E(X|Y))$

- Απόδιση -

$\text{Var}(X|Y) = E(X^2|Y) - (E(X|Y))^2$

• $E(\text{Var}(X|Y)) = E(X^2) - E((E(X|Y))^2)$

• $\text{Var}(E(X|Y)) = E(E(X|Y)^2) - (E(E(X|Y)))^2$

Το αιδρούμε τους είναι $E(X^2) - (E(X))^2 = \text{Var}(X)$

ΤΥΧΑΙΟ ΑΣΠΟΙΣΜΑ ΤΥΧΑΙΩΝ ΝΕΤΑΒΑΝΤΩΝ (ΠΑΡ 5 ΙΩΤ/6.366 ROSS)

$(X_i)_{i \geq 1}$ ανεξαρτήτες ισονομες με $E(X_i) \in \mathbb{R}$

N. Τη με την οποία ο N^+ ανεξαρτήτης $(x_i)_{i \geq 1}$

$$S_n = X_1 + \dots + X_n, \quad S_N = X_1 + \dots + X_N$$

$$\text{Τότε: } \text{Var}(S_N) = E[\text{Var}(X_1)] + (E[X])^2 \text{Var}(N)$$

-ΛΥΣΗ-

$$\text{Var}(S_n) = \text{Var}(X_1) + \dots + \text{Var}(X_n) = n \text{Var}(X_1)$$

$$\text{Var}(S_N) = E[\underbrace{\text{Var}(S_N|N)}_{\sigma^2(N)}] + \text{Var}[\underbrace{E[S_N|N]}_{\mu(N)}]$$

$$\begin{aligned} \mu \delta(n) &= \text{Var}(S_N|N=n) = \text{Var}(S_n|N=n) = \\ &= E(S_n^2|N=n) + (E(S_n|N=n))^2 \quad \text{Sn: αυτό που έχει} \\ &= E(S_n^2) - (E(S_n))^2 = \text{Var}(S_n) = n \cdot \text{Var}(X_1). \end{aligned}$$

$$\text{Άρα, } \delta(N) = N \text{Var}(X_1)$$

$$\mu(n) = E(S_n|N=n) = E(S_n|N=n) \stackrel{S_n \sim N}{=} E(S_n) = n(E(X_1))$$

$$\text{Άρα, } \text{Var}(S_n) = E[\text{Var}(X_1)] + \text{Var}[N(E(X_1))]$$

7.26 Ross / 6.399

$$E(g(X)Y|X) = g(X)E(Y|X)$$

-ΛΥΣΗ-

$$E(X|Y=y) = \mu(y)$$

$$E(X|Y) = \mu(Y)$$

To αριθτέρο μέδος έχει ισο με $\mu(x)$, όπου

$$\begin{aligned} \mu(x) &= E(g(X)Y|X=x) = E(g(x)Y|X=x) = g(x)E(Y|X=x) = \\ &= g(x)\mu_Y(x) \end{aligned}$$

$$\text{Άρα: } \mu(x) = g(x) \cdot \mu(x) = g(x) \cdot E(Y|X)$$

7.28 / 6.399 Ross

(ΠΑΝΙΟ
ΔΗΜΑ)

$$X, Y: \text{τη } E(X^2), E(Y^2) < \infty \text{ ΝΔΟ } \text{cov}(X, E(Y|X)) = \text{cov}(X, Y)$$

-ΛΥΣΗ-

To αριθτέρο μέδος έχει ισο με

$$E(X \cdot E(Y|X)) - E[X]E(E(Y|X)) =$$

$$= E(E(X|Y)) - E[X]E[Y] = E(XY) - E[X]E[Y] = \text{cov}(X, Y)$$

(4)

ΦΥΛΛΑΔΙΟ 7.5

X = αριθμός πελατών που μπαίνε σ' ένα κατάστημα σε μια μέρα. $X \sim \text{Poisson}(120)$

Κάθε πελάτης πιθανώς με καρτα πετώ : $p = \frac{1}{4}$

Κάθε πελάτης πιθανώς με κέρπονται με πετώ : $p = \frac{3}{4}$

Y = # πελατών που πιθανώς με καρτα

a) $EY = ?$

b) $\text{Var}(Y) = ?$

c) $P(X, Y) = ?$

- Αντικ-

a) $EY = E(E(Y|X)) = E(\mu(X))$ οπου $\mu(x) = E(Y|X=x)$ $\xrightarrow{\text{Bin}(x, p)} = x \cdot p$

Αρα $EY = E(\mu(x)) = E(x \cdot p) = p \cdot \lambda = 30$

b) $\text{Var}(Y) = E(\underbrace{\text{Var}(Y|X)}_{\delta(x)}) + \text{Var}(\underbrace{E(Y|X)}_{\mu(x)})$

$\mu(x) = E(Y|X=x) = xp$

$\delta(x) = \text{Var}(Y|X=x) = xp(1-p)$

Αρα, $\text{Var}(Y) = E(xp(1-p)) + \text{Var}(xp) =$

$= p \cdot (1-p) \cdot \lambda + p^2 \lambda - p \lambda = 30$

c) $\text{Cov}(X, Y) = \text{Cov}(X, E(Y|X)) = \text{Cov}(X, xp) = p \cdot \text{Cov}(X, x) =$
 $= p \cdot \text{Var}(x) = \lambda p$

Αρα $P(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)} \sqrt{\text{Var}(Y)}} = \frac{1 \cdot p}{\sqrt{\lambda} \cdot \sqrt{\lambda p}} = \sqrt{p}$

Ιευκα
εξαρτήσεις
συσχετισμάτων

(5)

ΑΣΚΗΣΗ $X \sim \text{Bin}(n, p)$ $\text{ΝΔΟ } \text{Var}(X) = np(1-p)$

- ΑΥΓΗ-

Αν $X \sim \text{Bin}(n, p)$ δημιουργείται ως $X = J_1 + J_2 + \dots + J_n$, οπου

J_i : ανεξάρτητες ιδονούμει και $J_i \sim \text{Bernoulli}$, οπου

$$J_i = \begin{cases} 1, & i: \text{εντ.} \\ 0, & i: \text{αντ.} \end{cases} \quad i=1, 2, \dots, n$$

$$\begin{aligned} \text{Από } \text{Var}(X) &= \text{Var}(J_1) + \text{Var}(J_2) + \dots + \text{Var}(J_n) = n \text{Var}(J_1) = \\ &= n \cdot (E(X_{i,1}^2) - (E(X_{i,1}))^2) = n(E(J_1)^2 - (E(J_1))^2) = n(p - p^2) = np(1-p) \end{aligned}$$

9.4/Λυτλαδίο

X, Y, Z ανεξάρτητες με $X \sim \text{exp}(\lambda)$, $Y \sim \text{exp}(\mu)$, $Z \sim \text{exp}(\nu)$.

Να βρεθούν οι πιθανότητες:

a) $P(Y < Z)$ b) $P(X < Y < Z)$

- ΑΥΓΗ-

Η από κοντά πυκνότητα των X, Y, Z είναι:

$$f(x, y, z) = f(x) f(y) f(z) = \lambda \mu \nu e^{-\lambda x - \mu y - \nu z}, \quad x, y, z > 0$$

$$(a) A = \{Y < Z\} \in \mathbb{R}^2 \quad y < z$$

$$P(Y < Z | A) = \iint_A f_{Y, Z}(y, z) dy dz = \int_0^\infty \int_y^\infty \lambda \mu \nu e^{-\lambda x - \mu y - \nu z} dy dz$$

$$P(Y < Z) = \int_{\mathbb{R}^2} P(Y < Z | Y = y) f_Y(y) dy = \int_{\mathbb{R}} P(Y < Z | Y = y) f_Y(y) dy$$

$$= \int_{\mathbb{R}} P(Z > y) f_Y(y) dy = \int_0^\infty e^{-\nu y} \mu e^{-\mu y} dy =$$

$$= M \int_0^\infty e^{-(\nu + \mu)y} dy = \frac{\mu}{\mu + \nu} \int_0^\infty e^{-(\mu + \nu)y} dy = \frac{\mu}{\mu + \nu}$$

(6)

$$\begin{aligned}
 \beta) P(X < Y < 2) &= \int_0^\infty P(X < Y < 2 | X = x) f_X(x) dx = \\
 &= \int_0^\infty P(X < Y < 2) f_X(x) dx = \int_0^\infty \int_0^\infty P(X < Y < 2) f_Y(y) dy f_X(x) dx = \\
 &= \int_0^\infty \int_x^\infty P(X < Y < 2) f_Y(y) dy f_X(x) dx = \\
 &= \int_0^\infty \int_x^\infty P(2 > Y) f_Y(y) f_X(x) dx = \\
 &= \int_0^\infty \int_x^\infty e^{-\nu y} \mu e^{-\mu y} dy \lambda e^{-\lambda x} dx = \\
 &= \frac{\mu}{\mu + \nu} \int_0^\infty \int_x^\infty \frac{e^{-(\mu+\nu)y}}{\mu + \nu} dy \lambda e^{-\lambda x} dx = \\
 &= \frac{\mu}{\mu + \nu} \int_0^\infty \frac{e^{-(\mu+\nu)x}}{\mu + \nu} \lambda e^{-\lambda x} dx = \\
 &= \frac{\mu \cdot \lambda}{(\mu + \nu)^2} \int_0^\infty (\mu + \nu + \lambda) e^{-(\mu + \nu + \lambda)x} dx \frac{1}{\mu + \nu + \lambda} = \\
 &= \frac{\mu \cdot \lambda}{(\mu + \nu)^2 (\mu + \nu + \lambda)}
 \end{aligned}$$

7.7 ΡΟΠΟΓΕΝΝΗΤΡΙΕΣ

X : τη με την οποία στο \mathbb{R} . Ροπογεννητρία με X ορίζεται η συνάρτηση $\mu_X : \mathbb{R} \rightarrow (0, \infty)$ με $\mu_X(t) = E(e^{tx}) \quad \forall t \in \mathbb{R}$. Η $E(e^{tx})$ ορίζεται πάντοτε γιατί $e^{tx} > 0$. Ενδέχεται όμως να παίρνει την τιμή ∞ .

Προσανατολισμένης $M_X(t) = \begin{cases} \sum_{x \in \mathbb{R}} e^{tx} f_X(x), & X: διακριτικό \\ \int_{\mathbb{R}} e^{tx} f_X(x) dx, & X: συνεχόντος \end{cases}$

$M_X(0) = 1 \quad \forall t \in \mathbb{R}$, αναν. $E(e^t) = 1$.

(7)

ΠΑΡΑΔΕΙΓΜΑΤΑ

a) Αν $X \sim \text{Bernoulli}$ $M_X(t) = E(e^{tx}) = e^0 P(X=0) + e^t P(X=1) =$
 $= 1-p + e^t \cdot p \quad \forall t \in \mathbb{R}$

b) Αν $X \sim U(0, c)$, $c > 0$:

$$M_X(t) = E(e^{tx}) = \int_0^2 \frac{1}{c} \cdot e^{tx} dx \stackrel{t \neq 0}{=} \frac{1}{c} \int_0^c \left(\frac{e^{tx}}{t}\right)' dx =$$

$$= \frac{e^{tc} - 1}{tc}$$

Για $t=0$: $E(e^{tx}) = E(e^0) = 1$

c) Αν $X \sim \text{Bin}(n, p)$

$$E(e^{tx}) = \sum_{k=0}^n e^{tk} \binom{n}{k} p^k (1-p)^{n-k} = \sum_{k=0}^n \binom{n}{k} (pe^t)^k (1-p)^{n-k} =$$

$$= (pe^t + 1-p)^n \quad \forall t \in \mathbb{R}$$

d) $X \sim \text{Poisson}(\lambda)$

$$E(e^{tx}) = \sum_{k=0}^{\infty} e^{tk} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(e^t \lambda)^k}{k!} = e^{-\lambda} e^{t\lambda} = e^{\lambda(e^t - 1)}$$

e) $X \sim N(0, 1)$

$$E(e^{tx}) = \int_{\mathbb{R}} e^{tx} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x^2 - 2tx)} dx =$$

$$= \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x^2 - 2tx + t^2) - \frac{t^2}{2}} dx =$$

$\int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}$

$$= e^{-t^2/2} \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-t)^2} dx = e^{t^2/2} \cdot 1 = e^{t^2/2}$$

ΠΛΗΡΩΤΙΚΑ
 $M_X(t) = 1$

Στη ποποδεωντρία,
πάντα για την επιλογήν
Οι αυτοί και οι
 $M_X(t) = 1$

ΤΥΧΑΙΟ ΑΘΡΟΙΣΜΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

- $(X_n)_{n \geq 1}$ ακολουθία ισόνομων (δίδα κατανομή) τυχαιών μεταβλητών υπερ ExeR.
- Ν: τυχαιά μεταβλητή υπερ τύπους GTO $\{1, 2, \dots\} = \mathbb{N}^+$, ανεργούμενης αντίστοιχης x_1, x_2, \dots

$$\text{Έτοιμη } S_n = x_1 + x_2 + \dots + x_n, \forall n \in \mathbb{N}^+$$

$$\text{Διεύρουμε στην } \tau \text{ τυχαιά μεταβλητή } S_N: \Omega \rightarrow \mathbb{R} \text{ υπερ } S_N(\omega) = S_{N(\omega)}(\omega) = x_1(\omega) + \dots + x_n(\omega)$$

ΑΣΚΗΣΗ

$$\text{ΝΔΟ } E(S_N) = E(N) \cdot E(X) \rightarrow \text{μεσημέρια } \text{καθε } \omega \text{ με } \text{μεσημέρια } \text{της } X$$

μεσημέρια
της X

- Αντίθετη -

$$E(S_N) = E(E(S_N | N)) = E(\omega | N), \text{ υπερ}$$

$$w(y) = E(S_N | N = n) = E(S_n | N = n) =$$

$$= E(S_n) = E(x_1 + x_2 + \dots + x_n) = E(x_1) + E(x_2) + \dots + E(x_n) = n \cdot E(x)$$

$$\text{Άρα } E(S_N) = E(N) \cdot E(x) = E(x) \cdot N$$

15/1/2019

24^ο μαθημα

ΠΙΘΑΝΟΓΕΝΝΗΤΡΙΕΣ

X : τη νέα τιμές στο $N = \{0, 1, 2, \dots\}$ και συναρτημένη πιθανότητα f_X , ($f_X(a) = P(X=a) \forall a \in \mathbb{R}$)

Ορος: Μιδανογεννητρία της X , αφεύ μη συναρτημένη

$$P_X(t) = E(t^X) = \sum_{k=0}^{\infty} P(X=k) t^k$$

Ορίζεται τουλαχιστον για $t \in [-1, 1]$, γιατί αν $|t| \leq 1$

$$\sum_{k=0}^{\infty} |P(X=k)t^k| \leq \sum_{k=0}^{\infty} P(X=k) = 1 < \infty$$

Παραδειγμα

Αν $X \sim \text{Poisson}(\lambda)$ τότε $P_X(t) = e^{\lambda(t-1)}$, $\forall t \in \mathbb{R}$

$$\text{Προϊόνται, } P_X(t) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} t^k = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda t)^k}{k!} =$$

$$= e^{-\lambda} e^{\lambda t} = e^{\lambda(t-1)}$$

Στις πιθανογεννητρίες για να βρούμε την f_X , αναλύουμε τη συναρτηση και οι γυντελεστές είναι οι σημείοι μης f_X

ΠΡΟΤΑΣΗ

$$a) P(X=k) = \frac{1}{k!} P_X^{(k)}(0), \quad k \in \mathbb{N}$$

$$b) E(X)_k = P_X^{(k)}(1), \quad \forall k \in \mathbb{N}$$

Η $P_X(t)$ έχει ανάπτυξη σε συναριθμητικό κέντρο το 0 και ακύρα σύγκλισης τουλαχιστον 1. Αρα στο $(-1, 1)$ είναι απηρη ορθή παραγωγή και οι παραγγοι υπολογίζονται με παραγωγή άρο προς άρο.

-Απόδ-

$$(a) P_X(t) = \sum_{j=0}^{\infty} P(X=j) t^j \Rightarrow$$

$$P_X^k(x) = \sum_{j=0}^{\infty} P(X=j) \cdot j(j-1) \cdots (j-x+1) \cdot t^{j-k} =$$

$$= \sum_{j=k}^{\infty} P(X=j) \cdot (j) x \cdot t^{j-k} \quad \forall t \in \mathbb{C} \setminus \{0\}$$

$$\text{Για } t=0: P_X^k(0) = P(X=k) \cdot k!$$

$$B). P((X)_k) = P_X^k(1)$$

$$\text{Έχουμε } P_X^k(t) = \sum_{j=k}^{\infty} (j)_k P(X=j) t^{j-k} \Rightarrow$$

$$P_X^k(1) = \sum_{j=k}^{\infty} (j)_k P(X=j) = E((X)_k)$$

Τα (B) έχει δύναμη σε τιμές των ποδοπτών
 $X, X(X-1), X(X-1)(X-2)$

ΠΡΟΤΑΣΗ (Μοναδικότητα)

Εστω X, Y τιμές με τιμές στο \mathbb{N} .

Αν $P_X(t) = P_Y(t) \quad \forall t \in \mathbb{C} \setminus \{0\}$, τότε οι X, Y έχουν την ίδια κατανομή (δηλ. $P(X=k) = P(Y=k) \quad \forall k \in \mathbb{N}$)

-Απόδ-

$$P(X=k) = \frac{P_X^k(1)}{k!} = \frac{1}{k!} P_X^k(1) = P(Y=k)$$

ΠΑΡΑΤΗΡΗΣΗ

$$E((X)_k) = P_X^k(1)$$

Προταμ

X_1, X_2, \dots, X_n ανεξάριστες τιμές στο \mathbb{N} . Τότε

$$P_{X_1+ \dots + X_n}(t) = P_{X_1}(t) \cdots P_{X_n}(t) \quad \forall t \in \mathbb{C} \setminus \{0\}$$

Αποδ

Αν X είναι με τιμές στο \mathbb{N} , τότε

$$P_X(t) = E(e^{x \log t}) = M_X(\log t) \xrightarrow{t>0}$$

$$M_X(t) = E((e^t)^x) = P_X(e^t), t \in \mathbb{R}$$

$$M_X(-t) = E(e^{-tx}), t \in \mathbb{R}$$

$$P_X(-t) = E(e^{-t^x}), t \geq -1$$

ΑΣΚΗΣΗ

$X \sim \text{Poisson}(\lambda)$

Με χρήση της $P_X(t) = e^{\lambda(t-1)}$, $t \in \mathbb{R}$ να βρεθούν
οι $E(X), \text{Var}(X)$

-ΑνΣΗ-

$$P'_X(t) = \lambda \cdot e^{\lambda(t-1)} \Rightarrow E(X) = P'_X(1) = \lambda$$

$$P''_X(t) = \lambda^2 e^{\lambda(t-1)} \Rightarrow E(X(X-1)) = P''_X(1) = \lambda^2 \Rightarrow$$

$$E(X^2) - E(X) = \lambda^2 \Rightarrow E(X^2) = \lambda^2 + \lambda$$

ΑΣΚΗΣΗΣ ΑΝΑ. 10.7, 10.8ΑΣΚ. 10.8 (κυριαρχία)

a) $\exists a \in \mathbb{R}$ ώστε κατοικία αντίσ $g(t) = \frac{at-1}{3-t^3}$, $f(t) = \frac{5t^2+a}{7-t^3}$

να είναι πιθανοδευτήρια κατοικία της X ?

β). Ποια η κατανομή αυτής της της;

γ). $E(X), \text{Var}(X) = ?$

-ΑνΣΗ-

$$\begin{bmatrix} P_X(t) = f_X(0) + t \cdot f_X(1) + t^2 \cdot f_X(2) = E(t^x) \\ P_X(1) = E(1^x) = 1 \end{bmatrix}$$

Επειδή $P_X(1) = 1$ πρέπει $g(1) = 1$, $f(1) = 1$

\rightarrow Για μν g

$$g(1) = 1 \Rightarrow a-1=2 \Rightarrow a=3$$

$$g(t) = \frac{3t-1}{3-t^3} = (3t-1) \cdot \frac{1}{3} \cdot \frac{1}{1-\frac{t^3}{3}}$$

(4)

$$\begin{aligned}
 &= \frac{1}{3} (3t-1) \cdot \sum_{k=0}^{\infty} \left(\frac{t^3}{3}\right)^k = \frac{1}{3} (3t-1) \cdot \left(1 + \frac{t^3}{3} + \frac{t^6}{3^2} + \dots\right) \\
 &= \frac{1}{3} \cdot \left(\sum_{k=0}^{\infty} \frac{3}{3^k} t^{3k+1} - \sum_{k=0}^{\infty} \frac{t^{3k}}{3^k} \right) \\
 &= \sum_{k=0}^{\infty} \frac{3}{3^{k+1}} \cdot t^{3k+1} - \sum_{k=0}^{\infty} \frac{t^{3k}}{3^{k+1}}
 \end{aligned}$$

Οι ουντεδοτές των δυναμεών $3^k, k \in \mathbb{N}$ είναι αρνητικοί, οπότε $n g(t)$ ΔΕΝ αραι πιθανογνωστικά

Για μν f

$$f(1) = 1 \Rightarrow S+a = f-1 \Rightarrow a = 1$$

$$\begin{aligned}
 f(t) &= \frac{St^2+1}{t-t^5} = (St^2+1) \cdot \frac{1}{t} \cdot \sum_{k=0}^{\infty} \left(\frac{t^5}{t}\right)^k \\
 &= (St^2+1) \cdot \sum_{k=0}^{\infty} \frac{t^{5k}}{t^{k+1}}
 \end{aligned}$$

§8.2 ΑΝΙΣΟΤΗΤΕΣ Marcov, Chebychev και ο ΑΙΩΝΙΟΣ ΝΟΜΟΣ ΤΩΝ ΜΕΓΑΛΩΝ ΑΡΙΘΜΩΝ

ΠΡΟΤΑΣΗ (Ανισοτητα Marcov)

X : τημ με τιμές στο $(0, +\infty)$. Τότε

$$P(X > a) < \frac{Ex}{a} \quad \forall a > 0$$

-ΑΠΟΔ-

$X(\omega) > a$ αλλα $\omega \in A$, οπου $A = \{\omega \in \Omega : X(\omega) > a\}$ $\forall \omega \in \Omega$

$$L_D = \begin{cases} 1, & X(\omega) > a \\ 0, & X(\omega) \leq a. \end{cases}$$

Αν $X(\omega) < a \Rightarrow X(\omega) \geq 0$, ισχυει αγορ $X(\omega) \in (0, +\infty)$

Αν $X(\omega) > a \Rightarrow X(\omega) > a$, ισχυει

(5)

$$\forall a \quad \exists x \geq E(x) \text{ s.t. } P(x \geq a) = a \cdot E(x) = a \cdot P(x \geq a) \Rightarrow P(x \geq a) \leq \frac{E(x)}{a}$$

▷ Όποια, αν $x \geq a$: $P(x \geq a) \leq \frac{E(x^k)}{a^k}$, $a > 0, k > 0$,
τότε :

$$P(x \geq a) = P(x^2 \geq a^2) \leq \frac{E(x^2)}{a^2}$$

ΓΙΡΩΤΑΣΗ (ανισότητα Chebyshev)

X : τη με $\mu = E(x) \in \mathbb{R}$.

Τότε $\forall a > 0$ ισχύει $P(|x - \mu| \geq a) \leq \frac{1}{a^2} \cdot \text{Var}(x)$
- ΑΠΟΣΤΟΛΗ -

$$P(|x - \mu| \geq a) = P(|x - \mu|^2 \geq a^2) \leq \frac{E(|x - \mu|^2)}{\text{Var}(x)} = \frac{a^2}{\text{Var}(x)} = \frac{a^2}{a^2} = 1$$

ΑΣΚ. 11.2 / αναλασία

$X \geq 0$: τη με $E(X) = 4$, $E(X^2) = 18$. Τι αναγράφεται
στα μνημόνια $P(X \geq 5)$ διαφορών οι ανισότητες Markov και
Chebyshev

- ΑΝΤΙΧΗ -

$$P(X \geq 5) \leq \frac{E(X)}{5} = \frac{4}{5} \quad (1^{\circ} \text{ αργυρά})$$

↳ Markov, αφού $X \geq 0$

$$P(X \geq 5) = P(X^2 \geq 25) \leq \frac{E(X^2)}{25} = \frac{18}{25} \quad (2^{\circ} \text{ αργυρά})$$

$$P(X \geq 5) = P(|X - 4| \geq 1) \leq \frac{E(|X - 4|)}{1} = \text{Var}(X) =$$

$$= E(X^2) - (E(X))^2 = 18 - 16 = 2 \quad (3^{\circ} \text{ αργυρά})$$

ΑΣΚ. 11.1 / αναλασία

X : τη με $E(X) = 3$, $E(X^2) = 13$. Να δοθεί $P(-2 \leq X \leq 8) \geq \frac{21}{25}$

- ΑΝΤΙΧΗ -

$$P(-2 \leq X \leq 8) = P(-5 \leq X - E(X) \leq 5) = P(|X - E(X)| \leq 5) \leq$$

$$= 1 - P(|X - E(X)| > 5) \geq 1 - \frac{4}{25} = \frac{21}{25}$$

ΑΣΚ. 11.5 (40%)

Χ: σίγαντες τη με τιμές στο $[0, +\infty)$ και πικνόμετα
 $\nexists \mu \in \mathbb{R}$. Να δοθεί $f(x) \leq \frac{2}{x^2} \text{Ex}, \forall x > 0$

-ΛΥΣΗ-

(Για $\text{Ex} = \infty$, 6xw)

$$\text{Εστιώ } x > 0: \text{Ex} = \int_0^\infty t f_x(t) dt \geq \int_0^x t f_x(t) dt \geq$$

$$\int_0^x t f_x(t) dt = f_x(x) \int_0^x t dt = \frac{x^2}{2} f_x(x)$$

ΑΣΚ. 11.7 (40%)

Εστιώ $x > 0$ τη με $0 < \text{Ex} < \infty$ και $a \in (0, 1)$. Τότε

$$a) P(X \leq a\text{Ex}) \leq \frac{\text{Var}(X)}{(1-a)^2 (\text{Ex})^2}$$

$$b) P(X > a\text{Ex}) \geq (1-a)^2 \frac{(\text{Ex})^2}{\text{Ex}^2}$$

-ΛΥΣΗ-

$$a) P(X \leq a\text{Ex}) = P(X - \text{Ex} \leq \text{Ex}(a-1)) = P(X - \text{Ex} \leq -\text{Ex}(1-a)) \leq$$

$$\leq P(|X - \text{Ex}| \geq (1-a)\text{Ex}) \leq \frac{\text{Var}(X)}{(1-a)^2 \text{Ex}^2}$$

$$b) \text{Εστιώ } A = \{w \in \Omega : X(w) > a\text{Ex}\}$$

$$\text{Ex} = E(X|A) + E(X|A^c) \leq (E(X^2))^{1/2} \cdot (E(1_{A^c}))^{1/2} + E(a\text{Ex}|A^c) = (E(X^2))^{1/2} \cdot (P(A^c))^{1/2} + a\text{Ex} P(A^c) \leq (E(X^2))^{1/2} \cdot (P(A))^{1/2} + a\text{Ex}$$

$$\Rightarrow (1-a)\text{Ex} \leq (E(X^2))^{1/2} (P(A))^{1/2} \Rightarrow$$

$$\Rightarrow (1-a)^2 \text{Ex}^2 \leq E(X^2) P(A) \Rightarrow$$

$$P(A) \geq \frac{(1-a)^2 \text{Ex}^2}{E(X^2)}$$

17/1/2019
Π.8 Ι. Χειμώνας

25° μαθημα

①

Σειρηνα (ο αριθμός ρόπος των μεγάλων αριθμών)

$(X_i)_{i \geq 1}$ ανεξαρτήτες ισόνομες τυχαιες μεγαλύτερες με $\mu := E X_i \in \mathbb{R}$

Στοιχειο $S_n = X_1 + \dots + X_n$

Τότε, $\forall \varepsilon > 0$, ισχύει $P\left(\left|\frac{S_n}{n} - \mu\right| \geq \varepsilon\right) \xrightarrow{n \rightarrow +\infty} 0$

- Αποδ-

Υποθέτουμε ότι $\sigma^2 = \text{Var}(X_i) < \infty \quad (\Leftrightarrow E(X_i^2) < \infty)$

$E(S_n) = E(X_1 + X_2 + \dots + X_n) = EX_1 + \dots + EX_n = n\mu$

$\text{Var}(S_n) = \text{Var}(X_1) + \text{Var}(X_2) + \dots + \text{Var}(X_n) = n\sigma^2$

↳ X_i : ανεξαρτήτες

$$P\left(\left|\frac{S_n}{n} - \mu\right| \geq \varepsilon\right) = P(S_n - n\mu \geq n\varepsilon) \leq \frac{\text{Var}(S_n)}{\varepsilon^2 \cdot n^2}$$

$$= \frac{n\sigma^2}{\varepsilon^2 \cdot n^2} = \frac{\sigma^2}{\varepsilon^2 \cdot n} \xrightarrow{n \rightarrow \infty} 0$$

§ 8.3 ΤΟ ΚΕΝΤΡΙΚΟ ΟΡΙΑΚΟ ΘΕΩΡΗΜΑ

Υπενθύμιση: X : τη με $E X = \mu \in \mathbb{R}$, $\text{Var}(X) = \sigma^2 \in (0, +\infty)$
Κανονικοποίηση της X , λεγε την τη $Y = \frac{X - \mu}{\sigma} = \frac{1}{\sigma} \text{Var}(X)$

ΙΔΙΟΤΗΤΕΣ ΚΑΝΟΝΙΚΟΠΟΙΗΣΗΣ

$$\cdot EY = \frac{1}{\sigma^2} (EX - E\mu) = \frac{1}{\sigma^2} (E\mu - \mu) = 0$$

$$\cdot \text{Var}(Y) = \frac{1}{\sigma^2} \text{Var}(X - \mu) = \frac{1}{\sigma^2} \text{Var}(X) = 1$$

> Εστω $(X_i)_{i \geq 1}$ ανεξαρτήτες ισόνομες τη με $\mu \in \mathbb{R}$ και $\sigma^2 = \text{Var}(X) \in (0, +\infty)$

(2)

Θετουμε $S_n = x_1 + \dots + x_n \forall n \in \mathbb{N}^+$

Επηδή $E S_n = n \cdot \mu$, $Var(S_n) = n \cdot \sigma^2$,

η κανονικότητα της S_n είναι η

$$W_n = \frac{S_n - n\mu}{\sqrt{n \cdot \sigma^2}}$$

Θεώρημα (Το κεντρικό οριακό θεώρημα) (ΚΟΣ)

Εστι $(x_i)_{i \geq 1}$ ανεξάρτητης ισόνομης της μ

$$\mu = E x \in \mathbb{R} \text{ και } \sigma^2 = Var(x) \in (0, +\infty)$$

ΤΟΤΕ $\forall I \subseteq \mathbb{R}$ διαστημα, ισχύει:

$$\lim_{n \rightarrow +\infty} P\left(\frac{S_n - n\mu}{\sqrt{n \cdot \sigma^2}} \in I\right) = P(Z \in I), \text{ οπου } Z \sim N(0, 1)$$

Αντ. για μεγαλο n , $n \cdot W_n$ σχεδόν ακολουθει την κατανομή $N(0, 1)$

ΠΑΡΑΣΗΜΗΣΗΣ

1) Συνεπη η (a, b)

$$a) P\left(\frac{S_n - n\mu}{\sqrt{n \cdot \sigma^2}} \leq x\right) \xrightarrow{n \rightarrow +\infty} P(Z \leq x) = \Phi(x)$$

$$\begin{aligned} b) P(a \leq \frac{S_n - n\mu}{\sqrt{n \cdot \sigma^2}} \leq b) &\xrightarrow{n \rightarrow +\infty} P(a \leq Z \leq b) = \\ &= \Phi(b) - \Phi(a) \end{aligned}$$

2) Η W_n δεν ακολουθει ακοιδωτικης $N(0, 1)$

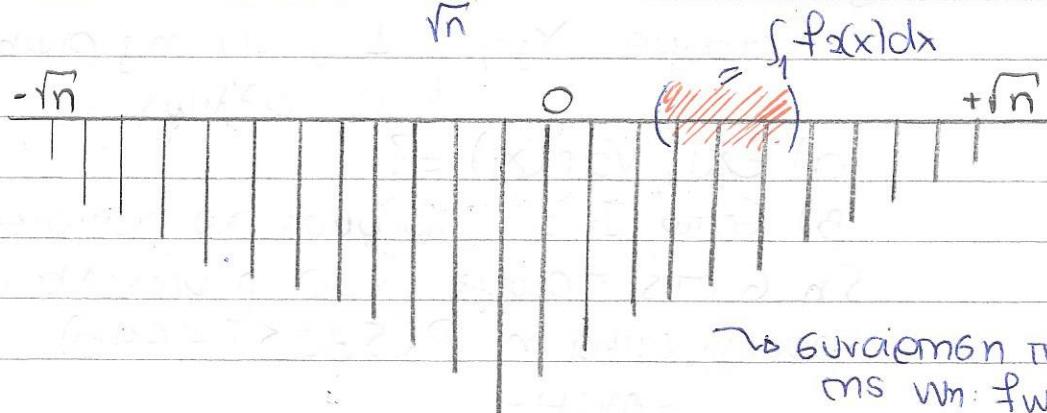
(την ακολουθια μονο οταν $X_i \sim N(\mu, \sigma^2)$)

Π.Χ: αν $X_1 \sim \text{Bernoulli}\left(\frac{1}{2}\right)$, $E(X_1) = \frac{1}{2}$, $Var(X_1) = \frac{1}{4}$,

$$\text{ΤΟΤΕ } W_n = \frac{S_n - \frac{n}{2}}{\sqrt{\frac{n}{4}}} \text{ παιρνει την τη } \left\{ \frac{k - \frac{n}{2}}{\sqrt{\frac{n}{4}}}, k=0, \dots, n \right\}$$

Auto το συνολο αποτελείται από σημεία που εκτείνονται από $-\sqrt{n}$ έως \sqrt{n} και 2 διαδοχικά σημεία,

Εχουν απόσταση $\frac{2}{\sqrt{n}}$



→ συνιστημένη πιθανότητα
με $W_n = f_{W_n}$

$$P(W_n \in I) = \sum_{x \in I} f_{W_n}(x)$$

Av πάρω το μέρος (red shaded) Έτσι βρωμένα την

3) Η X_1 μπαρει να έχει οποιαδήποτε κατανομή.
Διακριτή, συνεχή, μικρή

4) Av $\bar{X} = \frac{S_n}{n}$ (μέσος όποι), τότε

$$E(\bar{X}_n) = \frac{n\mu}{n} = \mu,$$

$$\text{Var}(\bar{X}) = \frac{\text{Var}(S_n)}{n^2} = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

To K.O.D. θέλει στην:

$$P\left(\frac{\bar{X}_n - \mu}{\sqrt{\frac{\sigma^2}{n}}} \in I\right) \xrightarrow{n \rightarrow +\infty} P(Z \in I)$$

→ kanonikotoinen ms \bar{X}_n

Ασκ. 11.10 / 4 ωρα

Σεωρούμε ακολούθα πίκεςν αεροδιπτίου
Japou

Στοιχεία $X_j = \begin{cases} 1, & \text{αν } n_j \text{ πίκεςν εγερε } 5 \text{ ή } 6 \\ 0, & \text{αλλιώς} \end{cases}$

a) $E(X_1), \text{Var}(X_1) = ?$

b) Εστιώ $I = 0$ αριθμούς των ανοτελεσμάτων

στη 6 στις πρώτες 1800 πίκες. Να υπολογιστεί
προσεχιστικά η $P(580 < T < 640)$

-Λύση-

Παρατηρώ ότι $X_1 \sim \text{Bernoulli}(p)$ [$p = \frac{2}{3} = \frac{1}{3}$]

$$E(X_1) = p \cdot 1 + (1-p) \cdot 0 = p = \frac{1}{3}$$

$$\sigma^2 = \text{Var}(X_1) = \frac{pq}{\text{τύπος}} = \frac{1}{3} \cdot \frac{2}{3} = \frac{2}{9}$$

b) Εστιώ $S_n = X_1 + \dots + X_n, T = S_{1800}$

Το κοθάρι τελεί ότι $W_n = \frac{S_n - \frac{n}{3}}{\sqrt{n \cdot \frac{2}{9}}}$,

ακολουθεί προσεχιστικά την κατανομή $N(0,1)$, ως
το n είναι μεγάλο

$$W_{1800} = \frac{T - 600}{\sqrt{1800 \cdot \frac{2}{9}}} = \frac{T - 600}{20}$$

$$\begin{aligned} P(580 < T < 640) &= P(-20 < T - 600 < 40) = \\ &= P(-1 < \frac{T - 600}{20} < 2) \simeq P(-1 < Z < 2) = \Phi(2) - \Phi(-1) = \\ &= \Phi(2) - (1 - \Phi(1)) = \Phi(2) + \Phi(1) - 1. \end{aligned}$$

(5)

ΑΣΚΗΣΗ 8.14 (σελ 430)

Είναι εξαρτημένοι από τη διάκριση του συστήματος
εξαγόμενο χρόνο T_{wfs} με μέση τιμή
 $\mu = 100$ και $\sigma = 30$. Μόλις καιρίσται, αν πραγματιστεί
παρατηρητική πρέπει να έχουμε δε απόδρα
ωστε η πραγματική να θεωρηθεί ότι
συστήμα T_{wfs} σία 2000 ώρες, να είναι $\geq 0,95$?

-ΛΥΣΗ-

Εστω n : αριθμός ανιαλακυκών που
διαδέχονται (μεταξύ της 1°)

X_i : = ο χρόνος T_{wfs} του i -ανιαλακυκού

$$S_n = X_1 + \dots + X_n$$

Οι X_i είναι ανεξαρτήτες (το υπόθετο) και
ισόρροπες (πυχαίο χρόνο T_{wfs})

Ζητάεται το εδαχιστό n , ώστε $P(S_n \geq 2000) \geq 0,95$

Το κορ. λέει ότι η πρόσθιτη

$$W_n = \frac{S_n - n\mu}{\sqrt{n\sigma^2}} = \frac{S_n - n \cdot 100}{\sqrt{n \cdot 30^2}} \text{ ακολουθεί}$$

προσχρονική κατανομή $N(0,1)$

$$P(S_n \geq 2000) = P\left(\frac{S_n - n \cdot 100}{\sqrt{n \cdot 30^2}} \geq \frac{2000 - 100n}{30\sqrt{n}}\right) \approx$$

$$P\left(Z \geq \frac{2000 - 100n}{30\sqrt{n}}\right) \approx 1 - \Phi\left(\frac{2000 - 100n}{30\sqrt{n}}\right)$$

$$\text{Αυτό ισχύει } \geq 0,95 \Leftrightarrow \Phi\left(\frac{2000 - 100n}{30\sqrt{n}}\right) \leq 0,05 = \Phi(-1,65)$$

Ισχυει ότι $\Phi(1,65) = 0,95$ Άρα

$$0,95 = \Phi(1,65) = 1 - \Phi(-1,65) \Rightarrow$$

$$0,05 = \Phi(-1,65)$$

$$\text{Aρα } \frac{2000 - 100n}{30\sqrt{n}} \leq -1,65 \Rightarrow$$

$$100n - 2000 \geq 1,65 \cdot 30\sqrt{n}$$

Το επάχιστο n που ικανοποιεί αυτή την ανισότητα, είναι $n=23$

ΑΣΚ. 11.16 (40α)

$$\text{ΝΔΟ } \lim_{n \rightarrow \infty} \int_0^{n/2} \frac{2^n}{(n-1)!} \cdot t^{n-1} \cdot e^{-2t} dt = \frac{1}{2}$$

- Αντίθ-

Ζητάμε το $\lim_{n \rightarrow \infty} \int_0^{n/2} f_n(t) dt$, όπου

f_n : πυκνότητα της $\Gamma(n, 2)$

$$\int_0^{n/2} f_n(t) dt = P\left(A_n < \frac{n}{2}\right) \text{ με } A_n \sim \Gamma(n, 2)$$

Εστω $(X_i)_{i \geq 1}$ ακολούθια ανεξάρτητων και

(σύρχων πειθαρχίας) με $X_1 \sim \Gamma(1, 2)$, τότε

$$A_n \stackrel{d}{=} X_1 + \dots + X_n =: S_n$$

$$E[X_1] = \frac{1}{2}, \text{Var}(X_1) = \frac{1}{4}$$

$$P(A_n < \frac{n}{2}) = P(S_n < n/2) = P\left(\frac{S_n - n/2}{\sqrt{n/4}} < 0\right) \xrightarrow{n \rightarrow \infty}$$

$$P(Z < 0) = \frac{1}{2}$$

§ 8.4 Ο ΙΣΧΥΡΟΣ ΝΟΜΟΣ ΤΩΝ ΜΕΓΑΛΩΝ ΑΠΟΔΟΤΩΝ (CLT)

Ωστροπή

$(X_i)_{i \geq 1}$ ανεξάρτητες X_i ισορρόπες τη με $E[X_i] = \mu$ και ορίζονται στο διάστημα $\mathbb{R} \cup \{-\infty, +\infty\}$. Τότε, με πθεωντη η ισχύει $\frac{S_n}{n} \rightarrow \mu$

ΑΣΚΗΣΗ

$(X_i)_{i \geq 1}$, S_n : οπως παρατανω

Αν $EX_1 > 0$ τοτε $\lim_{n \rightarrow \infty} S_n = \infty$ $\mu \in \text{πιθανότα}$

- Αντίτυπο

$$S_n = \frac{S_n}{n} \cdot n \xrightarrow{n \rightarrow \infty} \mu \cdot (+\infty) = +\infty$$

ΑΣΚΗΣΗ

$(X_i)_{i \geq 1}$ ανεξαριθμητικοί με τη μέση $\mu = EX_1 \in \mathbb{R}$.
Τοτε με πιθανότα 1, το $\lim_{n \rightarrow \infty} \left[\frac{1}{2} \cdot \sum_{i=1}^n (X_i - \mu)^2 \right] = \text{Var}(X_1)$

- Αντίτυπο.

$$\text{Θεωρείτε } Y_i := (X_i - \mu)^2 \quad \forall i \geq 1$$

Οι $(Y_i)_{i \geq 1}$ είναι ανεξαριθμητικοί, παρα το ότι οι X_i είναι ανεξαριθμητικοί με τη μέση.

$$EY_1 = E((X_1 - \mu)^2) = \text{Var}(X_1)$$

Ο INMA ευαριθμητικός μετρητής δίνει στην $\frac{1}{n} (Y_1 + \dots + Y_n) \xrightarrow{n \rightarrow \infty}$

$$EY_1 = \text{Var}(X_1) \quad \text{με πιθανότα 1.}$$

ΑΣΚΗΣΗ

Εστω $(U_i)_{i \geq 1}$ ανεξαριθμητικοί με τη μέση $V_i \sim U(0, 1)$

$$\text{α) ΝΑΟ } \lim_{n \rightarrow \infty} (U_1 \cdot U_2 \cdot \dots \cdot U_n)^{1/n} = e^{-1}$$

- Αντίτυπο -

$$(U_1 \cdot U_2 \cdot \dots \cdot U_n)^{1/n} = e^{-1}$$

- Αντίτυπο

$$(U_1 \cdot U_2 \cdot \dots \cdot U_n)^{1/n} = e^{1/n (\log U_1 + \dots + \log U_n)}$$

Daupoupe nis tñ $X_i = \log u_i$, $i \geq 1$ aveçapnis k' llovoçes.

$$E X_1 = E(\log u_1) = \int_{\mathbb{R}} \log x \cdot f_{U_1}(x) dx = \int_0^1 \log x dx = \int_0^1 (x' / \log x) dx =$$

$$= [x \log x]_0^1 - \int_0^1 \frac{x}{x} dx = \cancel{\log 1} - \lim_{x \rightarrow 0^+} (x \log x) - 1 = 0 - 1 = -1$$

Apa, $\frac{\log u_1 + \dots + \log u_n}{n} \rightarrow -1$ pë nisautma 4