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and 

I. A. Koutrouvelis 
University of Patras, Department of Engineering Science, Rion-Patras, Greece 

SUMMARY 

Savage score statistics are employed to develop a test for comparing survival distributions with right- 
hand singly censored data. The procedure is motivated by the interest in developing a powerful 
method for determining differences when true survival distributions cross. Examination of small- 
sample characteristics under the null hypothesis indicate that asymptotic critical values yield a slightly 
conservative test. Power of the test compares favorably with other criteria, including the modified 
Smirnov procedure, particularly if there is a single crossing of the survival curves. 

1. Introduction 

The comparison of time-to-response distributions, particularly with censored data, has been 
receiving considerable attention in the statistical literature. The log rank test, first proposed 
by Mantel (1966), has optimal power among all unbiased rank-invariant tests for detecting 
small constant differences in the relative hazard function. Generalizations of the Wilcoxon 
test (Gehan, 1965; Peto and Peto, 1972) offer frequent competitors to the log rank 
procedure. More recently, Harrington and Fleming (1982) have discussed a class of linear 
rank statistics of which both the log rank and Peto generalization of the Wilcoxon test are 
members. 

There is frequently expressed concern by practitioners that alternative distributions may 
not be from a set of location shift alternatives, and thus, the efficiency properties for the 
above procedures are not always applicable. Specifically, under many crossing hazard 
function alternatives, the power of the tests may be small. Fleming et al. (1980) noted this 
and developed a Kolmogorov-Smirnov-type procedure which performs considerably better 
in some crossing hazard situations with only a modest loss of power under a proportional 
hazards alternative. It is well known that the omnibus nature of Kolmogorov-Smirnov- 
type tests, although affording wide applicability, often offers reduced power versus common 
desirable alternatives. 

It is the intention of this paper to develop in the succeeding section a two-sample testing 
procedure applicable to singly censored data, sensitive to simple crossing hazards alterna- 
tives. Section 3 will examine the size of the procedure in finite samples, and Section 4 will 
examine, in several situations, the power of this procedure versus that of the log rank and 
generalized Smirnov tests. Section 5 will give an illustration of the use of the procedure. 

Key word: Log rank test. 
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2. Development of the Test 

Following the notation of Koziol and Petkau (1978), consider Xli.. , X,?,, and Xm+i,..., 
XN to be independent random samples of sizes m and n = N - m from continuous 
populations -r, and 1r2, respectively. To test that the respective population distribution 
functions F1 and F2 are equal, one can employ the Savage statistic 

N 

SN = E di[bN(i) - 1], 
i= 1 

where bN(i) = ZJ=j (N- j + 1)-' and di,.. ., dN is a set of indicator variables, such that di 
equals 1 when the ith element of the ordered survival times {X(l),..., X(N)} is from iri. 
Under the null hypothesis Ho: F, = F2, 

var(SNI Ho) = N I - bN( N)) 

If the data are singly censored at observation r and assuming r/N -> p as N > oo 
(0 < p < 1), an optimal modification of the Savage statistic is 

r N N 

Sr =,di[bN(i) - I + Edi [bN(l) -I1 ]I(N - r), 
i=1 i=r+I I=r+I 

where the di for i > r are arbitrary ones and zeroes with the number of di = 1 equalling the 
number of censored individuals from -ii (Gastwirth, 1965; Johnson and Mehrotra, 1972). 
The latter term, which represents the average remaining score to be assigned, can be 
simplified (Kalbfleisch and Prentice, 1980, p. 146), yielding 

r N 

S= di[bN(i) - 1] + E dibN(r). 
i=l i=r+l 

Koziol and Petkau (1978) have derived and used the asymptotic distributions of the 
statistics 

5(1) = max {Sk*/[var(SNI Ho)]l/2 , S2)P = max {I SI* I/[var(SN I Ho)]"/21 
0Nr kr 06kr r 

to develop one-tailed and two-tailed sequential tests for Ho. 
It is our purpose to develop, for singly censored data, a test at a single point in time 

which is sensitive to differences in distribution attributable to crossing hazard functions. 
Consider that if the hazard function for 1r2 exceeds the hazard function for grI at early time 
points, and the reverse occurs at later time points, then S'*/[var(SN I Ho)]"/2 will initially 
trend to larger and subsequently to smaller values. Asymptotically, one can test Ho versus 
a one-sided alternative with the statistic AN r = maxokrAN, where 

A~Pr [S* (Sr - Sk )]/[var(SN I Ho)]1/ - (2Sk - S*)/[var(SN I Ho)]'12. (1) 

Motivation for the statistic is as follows. It is well known that for a constant relative 
hazard function, the summed contrasts of observed minus expected deaths, as defined by 
the log rank test, provide for a locally optimal test. Likewise, if a constant valued relative 
hazard favors one treatment prior to t* and the other treatment after this point, one may 
reverse signs in the contrasts after t* (Schoenfeld, 1981). For any i, SP is related to the 
summed contrast for t < t1 so that the statistic ANr can be considered as the same conceptual 
contrast, with reversed signs for early and late events, extended to deal with the situation 
of t* unknown. At times, one can, a prior, envision the potential for crossing hazard 
functions. For example, surgical decompression of biliary obstructed patients likely has 
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initially high hazard rates associated with the operation. Alternative management tech- 
niques avoid this early risk, but as they may not be as efficacious, the latter risks of hepatic 
failure would be greater. Likewise, one could speculate that organ transplant studies could 
have similar crossing hazard patterns. 

Let 4 be the standard normal distribution function. The following lemma provides the 
asymptotic distribution of ANr. 

Lemma. If min(m, n) -> oo and r/N -> p (O < p < 1), then under Ho and for every x > 0, 
lim Pr(AN,r : x) = 2{1 - 4(x/Vj) + x(2irp)- 2exp[-X2/(2p) ]. (2) 
N-aoo 

The proof is given in the Appendix. It should be noted that the expression in the right- 
hand side of (2) equals Pr(x2) > x2/p). An asymptotic critical value for a one-sided size a 
test based on ANr is therefore (PX ,2)"12, where x,32a is the 100(1 - a) percentile of the chi- 
square distribution with 3 degrees of freedom. 

When crossing survival distributions are present, one is unlikely to want to perform a 
one-tailed test, as one must correctly specify beforehand where the statistically weighted 
advantage is likely to occur. Thus, to test Ho: F1 = F2 versus HA: F1 $ F2, one would use 
the statistic BNr = maxo0k-r I AN,r(k) I, where ANr(k) is given by (1). The asymptotic 
distribution of BN,r is given by the following theorem. 

Theorem. If min(m, n) > oo and r/N > p (O < p < 1), then under Ho and for every 
x > 0, 

lim Pr(BN, !)=2 ~P - _ x - 

CP,(x) (3) 
N r-N- r >ox)o= 2- 2 -2 f + (27rp)'12 exp( 2p) 

where 
2x [___________2X 

Cp(x) = 1/2 (-1)j+'exp -(2] + 1)2x] (4) 
2p j=1 2p 

The proof is given in the Appendix. For a two-tailed test of size a, an approximate 
asymptotic critical value, x, can be found from (3). For large x, ?(3x/4 1) 1 and the 
quantity Cp(x) given by (4) is negligible. Thus, x (x > 0) is the solution of the equation 

1.5[1 - 4(x/4V)] + 4x(27rp)-'12exp[-X2/(2p)] = a (5) 

and an approximate test of size a would reject Ho if BNr > x. 
The above procedure can be applied to test the equality of any distributions. As it applies 

to singly censored data, it is particularly applicable to certain survival studies. Frequently 
in animal experiments all subjects begin the study at the same time and an identical follow- 
up period applies to all, thus yielding singly censored data at the termination of the study. 
Human experiments are less likely to be singly censored since study entry is usually 
staggered. However, when duration of follow-up is long relative to the entry period, 
especially when "cures" occur, failure times from clinical studies may be singly censored. 
Likewise, a fixed-length follow-up period might apply to all study subjects because the 
acute repair process is of maximal interest. For example, in a study of a surgical technique, 
all patients might be followed for 6 months, since later "failures" at the wound site seldom 
occur. Thus, singly censored data arise in several ways in biologic experiments. 

3. Finite-Sample Null Distribution Results 

Application of the statistic BNvr requires only the evaluation of var(S. I Ho) and the partial 
sum statistics Sk for 0 S kim r. From small-sample null distribution results of the progressive 
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application of the Savage test (Joe, Koziol, and Petkau, 1981), one might anticipate that 
the proposed test is conservative in finite samples. Simulations were performed using the 
unit exponential to examine the small-sample characteristics of the two-tailed test statistic 
under the null hypothesis. For 2000 random samples of given m = n, the test statistic was 
calculated and censoring was applied corresponding to p = 1, .9, .75, and .5. Figure 1 
displays the results of the simulated a = .10, .05, and .01 levels of the statistic BNrr/ 1[. 

In sample sizes frequently encountered in practice, the statistic is consistently conserva- 
tive. As can be seen, the conservativeness is present even up to sample sizes of 1000. Thus, 
the full asymptotic nature of the test is approached quite slowly. For a sample size of 80 
patients, the nominal .05 asymptotic level test has an observed size in the simulations 
ranging between 2.60% and 3.95%. Thus the bias, though definite, tends to be small. 

As in Joe et al. (1981), equations of the form XaN = AI - A2exp(-A3N'12) were fit for 
each a to the simulated critical values in order to smooth the results and to simplify 
interpolations for other sample sizes. In these equations AI represents the asymptotic critical 
value x determined by solving equation (5). Censored critical values were scaled by 1/ Vp, 
and a single curve fit for all p. The resulting curves are plotted in Figure 1 while the 
parameter values are listed in Table 1. 
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Figure 1. Small-sample critical values. 
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Table 1 
Parameter estimates for critical value smoothing equations 

XaN = A - A2exp(-A3N'12) 

a Al A2 A3 
.10 2.7681 .18064 .03549 
.05 3.0366 .21890 .04597 
.01 3.5699 .37411 .08217 

4. Simulated Power Results 

Power for the statistic Byr, the modified Smirnov procedure, the Koziol-Petkau statistic 
S), and the log rank test have been examined in several situations with both crossing 
hazard and crossing survival distributions. The Wilcoxon test has not been included as 
either the Smirnov or log rank procedure had greater power in the situations examined by 
Fleming et al. (1980). Although it was not specifically designed for this purpose, the Koziol- 
Petkau procedure has been included both because it is a simpler procedure than BN,r and 
because it may not be vulnerable to the decreases in power that affect the log rank test 
when crossing hazards are present. Figure 2 displays the survival curves for each of the 
studies. Note that the situations considered include each of the sets of paired survival curves 
considered by Fleming et al. (1980). Power results from 1000 replications for sample sizes 
of 25 and 50 uncensored observations per treatment are detailed in Table 2. The observed 
power for the .05 and .01 level tests are provided. 

In the first situation examined, that of proportional hazards, the proposed statistic 
performs poorly and, as is expected, the log rank statistic performs best. In each of the 
remaining situations both the log rank and the Koziol-Petkau tests have less power than 
both of the other procedures. Thus, for all other cases, only the proposed and modified 
Smirnov tests need to be considered. In situations B and C, which are both comparisons of 

1.0 A 1.0 B 1.0 C 1.0 D 

0.5 0. W(,0.5) 0.5 4 0.5 X = 0.2 
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Table 2 
Power simulations in uncensored data 

Modified 
BN,r Smirnov Koziol-Petkau Log rank 

m n a =.05 a= .01 a = .05 a= .01 a = .05 a= .01 a= .05 a = .01 

A XA = 2, X2 = 1 25 .319 .082 .555 .341 .588 .302 .658 .405 
50 .762 .539 .831 .637 .908 .724 .928 .805 

B W(2, 1),a W(1, .5) 25 .737 .438 .572 .378 .339 .121 .469 .229 
50 .987 .930 .899 .725 .683 .412 .811 .587 

C W(1, 1), W(1, .5) 25 .561 .302 .279 .098 .086 .012 .087 .015 
50 .908 .763 .554 .248 .209 .034 .148 .050 

D Xl=1, X2=1 :tE(0,.8) 25 .571 .244 .802 .652 .429 .156 .596 .305 
,1=2, X2=.2 :tE(.8, oo) 50 .954 .802 .985 .937 .782 .506 .883 .699 

E XA = 3, X2 =.75: t E (0, .2) 25 .340 .175 .377 .171 .155 .029 .082 .025 
XA =.75, X2 = 3 :t E (.2, .4) 50 .705 .485 .749 .474 .374 .092 .098 .033 
XI = 1, X2-1 : tE(.4, oo) 

F XA=2, X2=2 :t E (0, .1) 25 .385 .172 .409 .239 .242 .068 .115 .044 
XA=3, X2=.75:tE E(.1, .4) 50 .753 .541 .744 .604 .510 .218 .167 .070 
Al =.75, I2= 3 : t E (.4, .7) 
X1=1, X2=1 :tE(.7,oo) 

G XA=2, X2=2 : t E (0, .1) 25 .730 .487 .530 .305 .266 .068 .065 .013 
XA=3, X2=.75:tE E(.1, .4) 50 .986 .940 .868 .685 .508 .230 .053 .012 
Xi=.75,X2=3 :tE(.4,oo) 

a W(X, a) is a Weibull distribution with survival function 1 - F(t) = exp[-(Xt)a]. 

a constant hazard versus a Weibull distribution such that there is a late survival advantage 
for the Weibull curve, the proposed test has much better power than the modified Smirnov 
test. Alternatively, power comparisons for the late difference described in situation D, 
where no crossing of the hazard functions occurs, favor the Smirnov procedure. In situations 
E and F, where there is no crossing of the survival distributions, there is little difference 
between the Smirnov and the proposed statistics. If situation F is modified to permit the 
curves to cross in the last quartile one obtains situation G. Here the proposed test statistic 
achieves considerably increased power relative to the other tests. 

Note that smoothed simulated critical values are being used for BNr and the 
Koziol-Petkau S2). Increases in power for the new procedure range from only 
1% to 7% as a result of using the smoothed rather than asymptotic critical values for the 
case m = n = 50, a = .05. 

In summary, for each of the above simulations with crossing survival functions (situations 
B, C, and G), the new test has considerably more power than the Smirnov test. For cases 
with crossing hazards without crossing survival functions (situations E and F), the two 
approaches have for practical purposes similar power characteristics. 

Effects of right-hand single censoring on the procedures are presented for three tests and 
the single situation E. The modified Smirnov procedure is included although it may be 
used for singly censored data only providing that the survival times are statistically 
independent of the single censoring mechanism. One thousand replications were performed 
for five censoring levels with sample sizes of m = n = 25. The resulting power of the .05 
and .01 level tests are detailed in Table 3. Examination of the results for the log rank test 
indicates the penalty that is paid for long-term follow-up when one has crossing hazards of 
this type. After observing 30% of the failure times, BNer has less power than the Smirnov 
test, which has power slightly less than the log rank. Observation of 50%-90% of the 
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Table 3 
Simulated power for various censoring levels 

m = n = 25 
For survival distributions situation E 

Modified 
BN,r Smirnov Log rank 

p .05 .01 .05 .01 .05 .01 
.3 .465 .230 .542 .249 .570 .331 
.5 .680 .451 .481 .234 .169 .070 
.7 .567 .338 .361 .151 .085 .023 
.9 .404 .195 .367 .152 .075 .018 

1.0 .340 .175 .377 .171 .082 .025 

failures reverses these relationships. The modified Smirnov is relatively insensitive to follow- 
up past the point where the curves return together, for it is dependent only on the maximum 
difference between the curves. The power of the new test is diminished with follow-up past 
this point due to the increase in the critical value with no potential, on average, for an 
increase in the size of the test statistic. The relative value of these three testing procedures 
in singly censored data will depend on the relative hazard function and the amount of 
censoring permitted. 

5. Illustration 

The Gastrointestinal Tumor Study Group (1982) reported on the results of a trial comparing 
chemotherapy versus combined chemotherapy and radiation therapy in the treatment of 
locally unresectable gastric cancer. Survival times in days, for the 45 patients on each 
treatment are as follows: 

Chemotherapy: 

1, 63, 105, 129, 182, 216, 250, 262, 301, 
301, 342, 354, 356, 358, 380, 383, 383, 388, 
394, 408, 460, 489, 499, 523, 524, 535, 562, 
569, 675, 676, 748, 778, 786, 797, 955, 968, 

1000, 1245, 1271, 1420, 1551, 1694, 2363, 2754+, 2950+ 

Chemotherapy plus Radiotherapy: 

17, 42, 44, 48 60, 72, 74, 95, 103, 
108, 122, 144, 167, 170, 183, 185, 193, 195, 
197, 208, 234, 235, 254, 307, 315, 401, 445, 
464, 484, 528, 542, 567, 577, 580, 795, 855, 
1366, 1577, 2060, 2412+, 2486+, 2796+, 2802+, 2934+, 2988+ 

Figure 3 is a plot of the estimated survival distributions. A test for treatment equality 
with the log rank statistic provides for x2 = .23, P = .64. The largest value of the function 
I A90,82(k) 1, with ANVr(k) given by (1), is observed for k = 35 (day 315) and equals I2(-9.80) 
- (-2.10)1/4.633 = 3.78. Thus, the observed value of the statistic, B90,82 = 3.78, is 
significant at the .01 level where the approximate critical value is 3.57(82/90)1/2 - 3.41. 
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6. Discussion 
The developed procedure is intended to supplement rather than supplant current two- 
sample testing procedures. In a sense, we consider this procedure to add a framework for 
testing for equality of survival distributions. One can regard the log rank procedure as 
testing for main effects, i.e., a constant relative hazard function, since that is the situation 
for which it is optimal. The statistic discussed in this paper often provides for substantially 
increased power if there is an interaction of time and treatment. Investigation of simulta- 
neous application of both testing procedures is warranted. It is possible to extend this 
procedure to develop tests sensitive to multiple crossings of the survival functions. Note, 
though, that as the number of crossing's increases, the practical import attached to the 
distributional differences frequently decreases. Finally, application of this procedure to 
clinical situations would be increased by extension to situations of random censorship. 
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APPENDIX 

Proof of Lemma in Equation (2) and Theorem in Equation (3) 

Define W(t) to be a standard Wiener process on [0, 1] and let 

Hap= sup W(t), 
o01<p 

W2p= inf W(t), 
o~i<p 

Q1,P= 2 W1,-W(p), 

Q2,p= 2W2,p-W(p), 

Qp= sup 12W(t)- W(p)I. 

Under the assumptions of the lemma or theorem and from the results of Chatterjee and Sen (1973), 
it follows that 

lim Pr(ANr > x) = Pr(Ql,p ? x) 

and 
lim Pr(BNr : x) = Pr(Qp : x). 
N ---mo 

Now for x > 0, 

Pr(Ql,p a x) = f PrW[,p 2 |W(p) = w fw(p)(w) dw, 
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where 

fw(p)(w) = (27rp)-1"2exp[-w2/(2p)]. 

If I w I > x, the conditional probability factor under the integral sign is equal to 1 since Q,,p > I W(p) I 
holds with probability 1. Therefore, 

Pr(Qj,p a x) = 2[1 - + I P{Wip a +w W(p) = w]fW(P)(w) dw. 

The latter term can be shown to equal 
2x (x2 

(2p)1/2 exp 2p 
since 

_ _ _ x+ w Wi 
Pr Wi p a- 2 |W(p) w = Pr[WI, I a 2 W(l) =- 2 jLp FP 

= exp[-(x2 - w2)/(2p)], I w I < x, 

where the second equality follows from the well-known property (cf. Karlin and Taylor, 1975, p. 388) 
Pr[WI, a I W(1) = b] =exp[-2a(a - b)], a >0, b <a. (A.1) 

Thus the lemma follows. 
We can write 

Pr(Qp > x) = Pr[max(Q,,p, -Q2,p) > x] 

= 2 Pr(Q,,p > x) - Pr(Q,,p > x, Q2,p - -x). 
Now, Pr(Q,,p > x) is given by the right-hand side of (2) and 

Pr(Q,,p >, x, Q2.p <1 -x) 

2[1 - + f Pr[Wip a X+ W 2, + W 2 | W(p) = wJfw(p(w) dw. (A.2) 

To complete the proof of the theorem it is sufficient to show 

2(x) = I( + C(x), (A.3) 

where I,,(x) denotes the integral in (A.2) and Cp(x) is given by (4). Application of the reflection 
principle gives 

2 2,p 2 W(p) w 
Pr~~wip~ X+W X+W +p) WJx 

= E (-1)j+ IPr W1 >,. (1 + l)(-; ) + (x 2 ) W(p) = w] 

+ E (-Oj+I PrWP a (j + 1)( 2w) + 2) W(p) =w 

where I w I < x. Substituting in Ip(x) and using property (A. 1), we obtain after straightforward algebra 
and integration 

M(x) = 1- _ (-__j+_I___] - j -1) x ] + Cp(x). (A.4) 

Equation (A.3) then follows by noting that the sum in (A.4) equals 4(3x/Vj) - b(x/jF). 
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