
Likelihood functions

• Setting: Let Y1, ..., Yn be independent random variables, with
Yi having density (or probability) function f(yi|β), where β is
some unknown parameter.

• For example, in the Bernoulli distribution, all the Yi’s are i.i.d.
with distribution depending on the parameter β = p.

Yi ∼ Bernoulli(p)

i.e.,
f(yi|p) = pyi(1− p)(1−yi),

• In general, for n independent random variables, the probability
function of the data given β is the product of the individual
probability distributions:

f(y1, ..., yn|β) =
n∏

i=1

fyi
(yi|β)
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• The Likelihood function of β given the data are equivalent
to the probability function of the data given β:

L(β) = L(β|y1, ..., yn) =
n∏

i=1

fyi(yi|β).

• Once you take the random sample of size n, the Yi’s are known,
but β is not – in fact, the only unknown in the likelihood is the
parameter β.

• Example: The Likelihood function of p for a sample of n

Bernoulli r.v.’s is:

L(p) =
n∏

i=1

pyi(1− p)(1−yi) = p
Pn

i=1 yi(1− p)n−Pn
i=1 yi
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• Maximum Likelihood Estimator (MLE) of β -

the value, β̂, which maximizes the likelihood L(β) or the
log-likelihood log L(β) as a function of β, given the observed
Yi’s.

• The value β̂ that maximizes L(β) also maximizes log L(β),
since the latter is a monotone function of L(β).

• It is usually easier to maximize log L(β), (why?)
so we focus on the log-likelihood.

• Most of the estimates we will discuss in this class will be
MLE’s.
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• For most distributions, the maximum is found by solving

∂ log L(β)
∂β

= 0

• Technically, we need to verify that we are at a maximum
(rather than a minimum) by seeing if the second derivative is
negative at β̂, i.e.,

[
∂2 log L(β)

∂β2

]

β=β̂

< 0

• The opposite of the second derivative, − ∂2 log L(β)
dβ2 , is called the

“information”. This quantity plays an important part in
likelihood theory.
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Example: Bernoulli data

• The likelihood is

L(p) =
∏n

i=1 pyi(1− p)1−yi

= py(1− p)n−y,

where

Y =
n∑

i−1

Yi = number of successes
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• The log-likelihood is

log L(p) = y log p + (n− y) log(1− p),

• The first derivative is

∂ log L(p)
∂p

=
y

p
− n− y

1− p
=

y − np

p(1− p)

Setting this to 0 and solving for p̂, you get

p̂ =
y

n
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• The second derivative of the log-likelihood is

∂2 log L(p)
∂p2

=
−y

p2
− (n− y)

(1− p)2

• Evaluating at p = p̂:

(
∂2 log L(p)

∂p2

)

p=bp
= − y

(y/n)2
− (n− y)

(1− (y/n))2

= −n2

y
− n2

(n− y)
< 0

• When 0 < y < n, the 2nd derivative at p̂ is negative, so p̂ is the
maximum.

• When y = 0 or y = n, the estimate p̂ = 0 or p̂ = 1 is said to be
on the ‘boundary’.
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Properties of MLE’s

Any two likelihoods, L1(β) and L2(β), that are

proportional, i.e.,

L2(β) = α L1(β)

(where α is a constant that does not depend on β)

yield the same maximum likelihood estimator
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• Example: If we had started with the Binomial distribution of
Y =

∑n
i=1 Yi rather than n independent Bernoulli r.v.’s, then

the likelihood would be:

f(y) =


 n

y


 py(1− p)n−y,

• For this distribution, the log-likelihood is

log L(p) = log


 n

y


 + y log p + (n− y) log(1− p),
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• The first derivative of the binomial log-likelihood is
∂ log L(p)

∂p

= ∂
∂p


log


 n

y





 + ∂[y log p+(n−y) log(1−p)]

∂p

= 0 + ∂[y log p+(n−y) log(1−p)]
∂p

= ∂[y log p+(n−y) log(1−p)]
∂p

This is exactly the same as the first derivative of the
log-likelihood for n independent Bernoulli’s.

• Therefore, we get the same MLE for independent Bernoulli
data and Binomial data (both are based on Y =

∑n
i=1 Yi )

• The likelihood, L2(p) of the Binomial data is proportional to
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the likelihood, L1(p) based on the original Bernoulli data, since

L2(p) = αL1(p)

where α =


 n

y



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Asymptotic Properties of MLE’s

• The exact distribution of the MLE can be very complicated, so
we often have to rely on large sample methods instead.

• Using a Taylor series expansion and the Delta Method, the
following properties can be shown as n →∞ :

(1) β̂ is asymptotically unbiased∗:

E(β̂) → β

(2) β̂ is consistent:

pr{|β̂ − β| > ε} → 0,

(3) β̂ is asymptotically efficient

(it achieves the minimum variance among all asymptotically
unbiased estimators)
∗ - (Note that it may be biased in small samples)
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• In addition, using the Central Limit Theorem, it can be shown
that MLE’s are asymptotically normally distributed, i.e,

β̂
·∼ N [β, V ar(β̂)],

where V ar(β̂) is the inverse of the expected value of the
information:

V ar(β̂) = −
{

E

(
∂2 log L(β)

∂β2

)}−1

,

(Note, however, that V ar(β̂) is itself a function of β. We will
come back to examine this issue later)
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Example: Bernoulli data (continued)

• From the above MLE theory, we know that, for large n,

p̂
·∼ N [p, V ar(p̂)]

where

V ar(p̂) = −
{

E

(
d2 log L(p)

dp2

)}−1

,

• Recall, the second derivative of the log-likelihood is

∂2 log L(p)
∂p2

= − y

p2
− (n− y)

(1− p)2

so that the ’information’ equals

−∂2 log L(p)
∂p2

=
y

p2
+

(n− y)
(1− p)2
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• The expected value of the information is

E

(
−∂2 log L(p)

∂p2

)
=

E(Y )
p2

+
E(n− Y )
(1− p)2

=
np

p2
+

n(1− p)
(1− p)2

=
n

p
+

n

(1− p)

=
n

p(1− p)
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• To get the asymptotic variance, we now take the inverse:

V ar(p̂) =
(

n

p(1− p)

)−1

=
p(1− p)

n

• This confirms what we already derived using the CLT:

p̂
·∼ N

(
p,

p(1− p)
n

)
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MLE’s of functions

The MLE of a function is the function of the MLE, i.e.,

The MLE of g(β) is g(β̂)

Variance of g(β̂):

Two possible methods for calculating the variance are:

(1) Apply the Delta Method to g(β̂) According to the Delta
method the variance of the function g(β̂) is

V ar[g(β̂)] = [g′(β)]2V ar(β̂)

(2) Rewrite the likelihood in terms of θ = g(β), then take the
second derivative of the corresponding log-likelihood with
respect to θ.
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Example: Binomial data

• The MLE of p is p̂ = Y
n . What is the MLE of logit(p)?

• Using the above result, the MLE of logit(p) is logit(Y
n )

• Calculating V ar(logit(p̂)):

– Method (1): already shown

– Method (2):

Let θ = logit(p) = log (p/(1− p)) . After some algebra, you
can show that

p =
eθ

1 + eθ
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Substitute eθ/(1 + eθ) for p in the likelihood:

f(y) =


 n

y


 py(1− p)n−y

=


 n

y




(
eθ

1+eθ

)y (
1− eθ

1+eθ

)n−y

Then take 2nd derivatives of the log-likelihood with respect
to θ to find the information, and compute the inverse.
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Confidence Intervals and Hypothesis Testing

I. Confidence Intervals

• From MLE theory, we know that for large n,

p̂
·∼ N

(
p,

p(1− p)
n

)

• A 95% confidence interval for p can thus be constructed as:

p̂ ± 1.96

√
p(1− p)

n

However, we do not know p in the variance.
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• Since p̂ is a consistent estimate of p, we can replace

p(1− p)

in the variance by
p̂(1− p̂),

and still get 95% coverage (in large samples).

• Therefore, a large sample confidence interval for p is:

p̂± 1.96

√
p̂(1− p̂)

n
.
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Large Sample Confidence Interval for β

• In general, suppose we want a 95% confidence interval for β.

For large n, we know that

β̂
·∼ N [β, V ar(β̂)],

where V ar(β̂) is the inverse of the expected value of the
information, and is a function of β.

• If we knew β in V ar(β̂), we could form an asymptotic 95%
confidence interval for β with

β̂ ± 1.96
√

V ar(β̂).

(But.... if we knew β, we wouldn’t need a confidence interval in
the first place!)
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• Since we do not know β, we have to estimate V ar(β̂) by
replacing β with its consistent estimator β̂ :

V̂ ar(β̂) = [V ar(β̂)]β=β̂

• Then the confidence interval

β̂ ± 1.96
√

V̂ ar(β̂),

will have coverage of 95% in large samples.
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Confidence Interval for a Function of β

A large sample 95% confidence interval for g(β) is

g(β̂)± 1.96
√

V̂ ar[g(β̂)]

where

V̂ ar[g(β̂)] = {V ar[g(β̂)]}β=β̂
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Some motivation for this result:

• Using the Delta method, we know that for large samples,

g(β̂) ·∼ N{g(β), V ar[g(β̂)]}.
where

V ar[g(β̂)] = [g′(β)]2[V ar(β̂)]},
is a function of β.

• Since β̂ is a consistent estimate of β for large samples, we can
substitute β̂ for β in our estimate of the variance, i.e., V ar(β̂).
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Example: 95% confidence interval for g(p) = logit(p):

• From MLE theory and the Delta method, we know that

logit(p̂) ·∼ N

{
logit(p),

[
1

np(1− p)

]}

• We can obtain a 95% confidence interval for logit(p) by
replacing p in the variance with p̂,

logit(p̂)± 1.96

√
1

np̂(1− p̂)
,
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II. Hypothesis Testing

A. Wald Tests

• Suppose we want to test H0 : β = β∗.

• For example, for data that follows a Binomial distribution, we
may be interested in testing

H0 : p = 0.5

• Under the null hypothesis, the large sample distribution of p̂ is:

p̂
·∼ N [0.5, 0.5(1− 0.5)/n]

27



• To test the null, you can use

Z1 =
(p̂− 0.5)√
p̂ (1− p̂)/n

∼ N(0, 1),

in which p in V ar(p̂) is estimated by replacing p by p̂

• Alternatively, you can use

Z2 =
(p̂− 0.5)√

0.5 (1− 0.5)/n
∼ N(0, 1),

in which p in V ar(p) is determined by replacing p by p = 0.5
(its value under the null).
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Wald Tests, cont’d

In general, the following Wald Test statistics can be used to

test the null hypothesis H0 : β = β∗

Z1 = β̂−β∗√dV ar(β̂)

·∼ N(0, 1)

or Z2 = β̂−β∗√
[V ar(β̂)]β=β∗

·∼ N(0, 1)
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Motivation for these test statistics:

• Based on large sample properties of MLE’s:

β̂ ∼ N{β∗, [V ar(β̂)]}

• We already saw that for constructing confidence intervals, we
can replace β by its consistent estimator β̂ in V ar(β̂). This
motivates use of Z1.

• Under the null hypothesis, an alternative is to rely on the
assumption that β = β∗, and replace β by β∗ in V ar(β̂). This
motivates use of Z2.

• Since the square of a N(0, 1) r.v. follows a χ2
1 distribution, we

can also use the test statistics Z2
1 or Z2

2 .
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B. Likelihood Ratio Tests

In large samples, under the null hypothesis H0 : β = β∗, it can be
shown that:

2 log

{
L(β̂|HA)
L(β∗|H0)

}
= 2[log L(β̂|HA)− log L(β∗|H0)]

·∼ χ2
1

where
L(β̂|HA)

is the likelihood after replacing β by its estimate, β̂, under the
alternative (HA), and

L(β∗|H0)

is the likelihood after replacing β by its specified value, β∗, under
the null (H0).
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Example: Binomial Data

• Suppose we are interested in testing H0 : p = 0.5.
For Binomial data, recall that the log-likelihood equals

log L(p) = log


 n

y


 + y log p + (n− y) log(1− p),

• Under the alternative,

log L(p̂|HA) = log


 n

y


 + y log p̂ + (n− y) log(1− p̂)
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• Under the null,

log L(0.5|H0) = log


 n

y


 + y log(0.5) + (n− y) log(1− 0.5)

• Then the likelihood ratio statistic is

2


log


 n

y


 + y log p̂ + (n− y) log(1− p̂)




−2


log


 n

y


 + y log(0.5) + (n− y) log(1− 0.5)


 =

2
[
y log

(
bp

0.5

)
+ (n− y) log

(
1−bp

1−0.5

)]

which is approximately χ2
1.
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• Note, we would get the same likelihood ratio statistic if we had
also used the likelihood associated with n independent
Bernoulli r.v.’s. The log-likelihood would not contain the term

log


 n

y




but this term subtracts out in the likelihood ratio statistic,
since it is not a function of p, and thus is the same under the
null and alternative.

• In other words, any two likelihoods that are proportional will
yield the same likelihood ratio statistic.
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C. Score Tests

• The SCORE TEST statistic is based on the first derivative of
the log-likelihood evaluated under the null hypothesis.

• The first derivative of the log-likelihood is often referred to as
the “score”, and is denoted by

U(β) =
∂ log L(β)

∂β
=

n∑

i=1

∂ log Li(β)
∂β

where Li(β) is the likelihood from the i-th observation.

• Since the score can also be written as a sum of independent
observations, we can apply the Central Limit Theorem to show
that it is approximately normal. Using the CLT, we obtain:

U(β∗) ·∼ N(E[U(β∗)], V ar[U(β∗)])
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However, it turns out that E[U(β∗)] always equals 0. So the
asymptotic distribution can be simplified to:

U(β∗) ·∼ N(0, V ar[U(β∗)])

• In general, the score test statistic for testing H0 : β = β∗ is:

Z =
U(β∗)√

V ar[U(β∗)]
·∼ N(0, 1)
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Example: Test for Binomial Data:

• For Binomial data, we showed that the first derivative of the
log-likelihood with respect to p is

∂ log L(p)
∂p

=
y − np

p(1− p)

=
n∑

i=1

yi − p

p(1− p)

37



• The score test statistic for H0 : p = p∗ is:

Z =
U(p∗)− E[U(p∗)]√

V ar[U(p∗)]

=

[
y−np∗

p∗(1−p∗)

]
− E

[
y−np∗

p∗(1−p∗)

]
√

V ar
[

y−np∗
p∗(1−p∗)

]

and Z
·∼ N(0, 1).
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• Next, we need to find the MEAN and VARIANCE of U(p)
under the null hypothesis

Under the null p = p∗

E[U(p∗)] =
E(Y − np∗)
p∗(1− p∗)

= 0

and
V ar[U(p∗)] = V ar(Y−np∗)

[p∗(1−p∗)]2

= np∗(1−p∗)
[p∗(1−p∗)]2

= n
p∗(1−p∗) ,
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• Given this mean and variance, the score statistic is

Z =

[
y−np∗

p∗(1−p∗)

]
− E

[
y−np∗

p∗(1−p∗)

]
√

V ar
[

y−np∗
p∗(1−p∗)

]

=

[
y−np∗

p∗(1−p∗)

]
− 0

√[
n

p∗(1−p∗)

]

=
y − np∗√

n[p∗(1− p∗)]

and Z
·∼ N(0, 1).

40



• Suppose we are interested in testing H0 : p = 0.5 then,

Z = u(0.5)√
V ar[u(0.5)]

= y−0.5n√
n[0.5(1−0.5)]

= [y−0.5n]/n

[
√

n[0.5(1−0.5)]]/n

= bp−0.5√
0.5(1−0.5)/n

and Z
·∼ N(0, 1).
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Notes on Score Tests vs Wald and LR Tests:

• Note that the SCORE statistic and the Wald statistic Z2 (with
the variance calculated under the null) are identical for this
particular example. This is not usually the case.

• In more complicated problems, Score test statistics are often
the easiest to calculate since you only need β∗ under the null,
whereas the Likelihood Ratio and Wald statistics both use
estimates of β under the alternative. Thus, Score statistics are
often popular for their simplicity.

• In large samples, all three test statistics (Score, Wald,
Likelihood ratio) are numerically almost identical if the null
hypothesis is true. However, if the alternative is true, the
power of the three may be different.
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