Multiple failure-time data

Multiple failure-time data or multivariate survival data are
frequently encountered in biomedical and other investigations.
These data arise from time-to-event studies when either of two or
more events (failures) occur for the same subject, or from identical
events occurring to related subjects. In these studies, failure times
are correlated within subject, violating the independence of failure

times assumption required in traditional survival analysis.

We follow Therneau’s (1997) suggestion that for analysis purposes,

failure events should be classified according to

e Whether they have a natural order

e Whether they are recurrences of the same types of events.




The counting process approach to survival analysis

A general approach to survival analysis was introduced by
Andersen & Gill (1982) where each subject is considered as a

counting process (counting events)

o Nz.(k) () is the total number of events of type k for each subject

1 up to time ¢

. Yi(k)(t) is an indicator function with Yj;(t) = 1 if subject ¢ is at

risk at time ¢ for event of type k

In this formulation the hazard is considered as an “intensity”

process such that

M (1) = v (A () exp{8' Z:)




By judicious choice of the various components of the process as
defined above, the counting process approach can handle all kinds

of survival data including

e Time updated covariates Z;(t)
e Discontinuous risk sets
e Multiple failures of the different type (competing risks)

e Multiple failures of the same type (both ordered and
unordered)




Unordered failures

Failures of the same type include, for example, repeated lung
infections with pseudomonas in children with cystic fibrosis, or the

development of breast cancer in genetically predisposed families.

Failures of different types include adverse reactions to therapy in
cancer patients on a particular treatment protocol, or the
development of connective tissue disease symptoms in a group of

third graders exposed to hazardous waste.




Ordered failures

Ordered events may result from a study that records the time to
first myocardial infarction (MI), second MI, and so on. These are
ordered events in the sense that the second event cannot occur
before the first event. Unordered events, on the other hand, can
occur in any sequence. For example, in a study of liver disease
patients, a panel of seven liver function laboratory tests can
become abnormal in a specific order for one patient and in a
different order for another patient. The order in which the tests
become abnormal (fail) is random.




Two main approaches to modeling these data have gained
popularity over the last few years:

e The frailty model method.
In these models the association between failure times is explicitly

modeled as a random-effect term, called the frailty shared by all

members of the cluster and assumed to follow a known statistical
distribution (often the gamma distribution), with mean equal to one

and unknown variance.

e Variance-corrected models.
In this approach the dependencies between failure times are not
included in the models. Instead, the covariance matrix of the
estimators is adjusted to account for the additional correlation.

These models are easily estimated in Stata.

In this lecture we illustrate the main ideas for estimating these

models using the Cox proportional hazard model.




Brief mathematical detail and definitions

Let Tz-(k) and Ui(k) be the failure and censoring time of the kth
failure type (k =1,---, K) in the ith subject (¢ = 1,--- ,m), and
let Z,gk) be a p-vector of possibly time-dependent covariates, for the
ith subject with respect to the kth failure type.

“Failure type” is used here to mean both failures of different types
and failures of the same type.




Assume that Ti(k) and U,L.(k) are independent, conditional on the

covariate vector (ng) ).

Define XZ-U{) = min(Ti(k), Uz-(k)) and 0;; = I(T,L-(j) < Uim) where I(.)

is the indicator function, and let 5 be a p-vector of unknown

regression coeflicients. Under the proportional hazard assumption,

the hazard function of the ith subject for the kth failure type is
AB) (1 Z0) = Ao ()%

1

if the baseline hazard function is assumed to be equal for every

failure type, or
A (65 20) = Mg (t)e P

if the baseline hazard function is allowed to differ by failure type
(Lin 1994).




Maximum likelihood estimates of for the above models are obtained
from the Cox’s partial likelihood function, L(3), assuming
independence of failure times. The estimator ﬁA has been shown to
be a consistent estimator for # and is asymptotically normal as
long as the marginal models are correctly specified (Lin 1994).

The resulting estimated covariance matrix obtained as the inverse
of the information matrix, however, =1 = —9?log L(3)/08303'
does not take into account the additional correlation in the data,
and therefore, it is not appropriate for testing or constructing

confidence intervals for multiple failure time data.




Sandwich estimators

Lin and Wei (1989) proposed a modification to this naive estimate,
appropriate when the Cox model is misspecified. The resulting

robust variance-covariance matrix is estimated as
V=I"'U'UI"'=D'D

where U is a n X p matrix of efficient score residuals and D is the
n X p vector of leverage residuals resulting from differences in the
estimation of 3 if each observation ¢ is removed from the data set
(this is called dfbeta by many software packages). The above
formula assumes that the n observations are independent (i.e.,
there is a single observation per subject — no clustering).
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Sandwich estimators with clustered survival data

When observations are not independent, but can be divided into m

independent groups (G1,Ga, - - , Gy ), then the robust covariance
matrix takes the form

V=I1'G'GI !

where GG is a m X p matrix of the group efficient score residuals.
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Implementation and examples

Implementation of all variance-adjusted models involves three
steps: Setting up the data (mainly correctly specifying the time
intervals), correct definition of the risk sets (by setting up Y (*)(¢))
and care in the estimation method. All of the following models can
be handled:

1. Unordered failure events
(a) Unordered failure events of the same type

(b) Unordered failure events of different types (competing risk)

2. Ordered failure events

(a) The Andersen-Gill model

(b) The marginal risk set model

(¢c) The conditional risk set model (time from entry)
)

(d

The conditional risk set model (time from the previous event)
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We will focus on the latter kind of models (i.e., ordered failure-time

models):

1. The Andersen & Gill approach
The simplest method to implement follows the counting
process approach of Andersen and Gill (1982).

The basic assumption is that all failure types are
indistinguishable. This is a “conditional model” because the
time interval for failure k£ starts at the conclusion of the

interval when failure & — 1 occurred.

A major limitation of this approach is that it does not allow
more than one event to occur at a given time. In addition, the
A-G model assumes that all failures within the same subject are
independent and models any clustering as explicit interactions

included in the model. This assumption is usually untenable.
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2. The WLW model
A second model, proposed by Wei, Lin, and Weissfeld (1989), is
based on the idea of marginal risk sets. For this analysis, the
data are treated like a set of unordered failures, so each event

has its own stratum and each patient appears in all strata.

The marginal risk set at time ¢ for event k is made up of all
subjects under observation at time ¢ regardless of whether they

had experienced or not events 1,--- , k — 1.
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3. The PWP model
A third method proposed by Prentice, Williams, and Peterson
(1981) is known as the conditional risk set model. The data are

set up as for Andersen and Gill’s counting processes method,
except that the analysis is stratified by failure order. The
assumption made is that a subject is not at risk of a second
event until the first event has occurred and so on.

Thus, the conditional risk set at time ¢ for event k is made up

of all subjects under observation at time ¢ that have had event
k—1.
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There are two variations to this approach: Time from entry and

time from previous event (the so-called “gap-time model”).

In the first variation, time to each event is measured from entry
time, and in the second variation, time to each event is measured

from the previous event.

The above three approaches will be illustrated using the bladder
cancer data presented by Wei, Lin, and Weissfeld (1989). These
data were collected from a study of 85 subjects randomly assigned
to either a treatment group receiving the drug thiotepa or to a
group receiving a placebo control. For each patient, time for up to

four tumor recurrences was recorded in months (ri-r4).

16




The bladder cancer data

The four models for ordered failures are illustrated by use of the
bladder cancer data published in Wei, Lin & Weisfeld (1989).

. list in 1/9, noobs

- +
| id group futime number size rl1 r2 r3 r4 |
l---- |
| 1 placebo 1 1 3 0 0 0 0 |
| 2 placebo 4 2 1 0 0 0 0 |
| 3 placebo 7 1 1 0 0 0 0 |
| 4 placebo 10 5 1 0 0 0 0 |
| 5 placebo 10 4 1 6 0 0 0 |
l---- |
| 6 placebo 14 1 1 0 0 0 0 |
| 7 placebo 18 1 1 0 0 |
| 8 placebo 18 1 3 5 0 0 0 |
| 9 placebo 18 1 1 12 16 0 0 |
e T +
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This dataset includes data on 86 subjects with bladder cancer with
follow-up between 0 and 64 months. The data for the first subject
that had zero follow-up have been excluded leaving data on 85
subjects. The following are the first nine observations in the data.

The id variable identifies the patients, group is the treatment
group, futime is the total follow-up time for the patient, number is
the number of initial tumors, size is the initial tumor size, number
is the number of initial tumors and r1 to r4 are the times to first,

second, third, and fourth recurrence of tumors.

A recurrence time of zero indicates no tumor.
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1. The Andersen-Gill model
To illustrate the bladder cancer data and how each of the four
models creates a different data set we consider the data for
subject #25 under the four models.

Under the A-G model, the data from this subject are as follows:

| id group number size rec status tstart tstop |

| 25 1 2 1 1 1 0 3 |
| 25 1 2 1 2 1 3 6 |
| 25 1 2 1 3 1 6 8 |
| 25 1 2 1 4 1 8 12 |
| 25 1 2 1 5 0 12 30 |
+-—— e ——— +

This subject has experienced four recurrences at times 3, 6, 8
and 12 and was followed until time 30.
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2. The Wei, Lin & Weisfeld model
Under the WLW model, each patient is simultaneously at risk
for all failures (thus the clock starts at time zero).

Once the fourth failure has been experienced the subject is no
longer at risk for another failure (unlike the A-G model above)

so the data for subject # 25 above become, under the WLW
model:

| 25 1 2 1 1 1 0 3 |
| 25 1 2 1 2 1 0 6 |
| 25 1 2 1 3 1 0 8 |
| 25 1 2 1 4 1 0 12 |
+m———————— e +
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3. The Prentice, Williams and Peterson model
In the time since entry PWP model, data are set up similarly
with the A-G model but the ordering of the failure is
considered by the model. In addition, time starts from entry

for each interval.

(a) The total time model
Under the PWP total time model the above data will be given
as

| 25 1 2 1 1 1 0 3 |
| 25 1 2 1 2 1 0 6 |
| 25 1 2 1 3 1 0 8 |
| 25 1 2 1 4 1 0 12 |
+-——————————————————————— e +
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(b) The gap-time model
Under the gap-time model the clock starts at the end of the
previous failure, so the data for the same subject are given by

e et +
| id group number size rec status gap |
| = |
| 25 1 2 1 1 1 3 |
| 25 1 2 1 2 1 3 |
| 25 1 2 1 3 1 2 |
| 25 1 2 1 4 1 4 |
e et e e Lt +
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Implementing the Andersen-(Gill model

To implement the Andersen and Gill model using the results from
the bladder cancer study, the data are set up as follows: for each

patient there must be one observation per event or time interval.

In general, if a subject has one event, then there will be two
observations. The first observation will cover the time from entry
until the time of the event, and the second observation the time

from the event to the end of follow-up.
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The data for the nine subjects listed above are
. list if id<=10, noobs

e
| id group tstart  tstop status  number size
|
| 1  placebo 0 1 0 1 3
| 2 placebo 0 4 0 2 0
| 3 placebo 0 7 0 1 0
| 4 placebo 0 10 0 5 0
| 5 placebo 0 6 1 4 0
|
| 5 placebo 6 10 0 4 0
| 6 placebo 0 14 0 1 0
| 7 placebo 0 18 0 1 0
| 8 placebo 0 5 1 1 3
| 8 placebo 5 18 0 1 3
|
| 9 placebo 0 12 1 1

| 9 placebo 12 16

| 9 placebo 16 18

o




In the original data, subjects 1 through 4 had no tumors recur,
thus, each of these 4 patients has only one censored (status==0)

observation spanning from tstart=0 to end of follow-up.

Patient 5 ( id==5) had one tumor recur at 6 months and was
followed until month 14. This patient has two observations in the
final dataset; one from tstart to tumor recurrence (tstop==6),
ending in an event (status==1), and another from tstart==6 to

end of follow-up (tstop==10), ending as censored (status==0).
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The data are set-up as follows:

. stset tstop , fail(status) exit(time .) id(id) enter(tstart)

id: id
failure event: status != 0 & status < .
obs. time interval: (tstop[_n-1], tstopl
enter on or after: time tstart

exit on or before: time

190 total obs.
O exclusions
190 obs. remaining, representing
85 subjects
112 failures in multiple failure-per-subject data

2711 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 64

A critical component of the data set-up is to specify the start of

each interval by the tstart variable.
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The Andersen-Gill Cox model is fit as follows:

. stcox group size number, nohr nolog

failure _d:

analysis time _t:
enter on or after:

status
tstop
time tstart

_____________ +-————-—-—————,—,—_-——,——,e_—,e—e—_e—_e—_e——_e—_e—_e—_e—re—re—re—r—rrrrrrrrrr— e =

exit on or before: time .
id: id
Cox regression -- Breslow method for ties
No. of subjects = 85
No. of failures = 112
Time at risk = 2711
Log likelihood =  -460.07958
_t | Coef. Std. Err. Z

group | -.4070966 .2000726 -2.03

size | -.0400877 .0702575 -0.57

number | .1606478 .0480081 3.35

Number of obs = 190
LR chi2(3) = 14.05
Prob > chi2 = 0.0028
P>|z]| [95%, Conf. Interval]
0.042 -.7992317 -.0149615
0.568 -.1777899 .0976146
0.001 .0665536 .2547419




The marginal risk set model (Wei, Lin, and Weissfeld)

The marginal risk model ignores the ordering of events and treats
each failure as differen type of failure ¢ = 1,--- ,4. The resulting
data for the first five subjects are given as follows:

. list if id<=2, noobs

. list if id <2

| 1 1 1 1 3 1 0 |
| 1 1 1 1 3 2 0 |
| 1 1 1 1 3 3 0 |
| 1 1 1 1 3 4 0 |
| 2 1 4 2 1 1 0 |
| === I
| 2 1 4 2 1 2 |
| 2 4 2 3 I
| 2 4 2 4 0 |
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The data are set up as follows:

stset futime, failure(status)

failure event: status != 0 & status !=
obs. time interval: (0, time]
exit on or before: failure
340 total obs.
O exclusions
340 obs. remaining, representing
112 failures in single record/single failure data

8522 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 59

Conspicuous is the fact that there is no accounting for clustering of
these data by subject. Each observation is considered independent

of the others.
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The Cox model is fitted with the sandwich estimator, clustering on
each subject and stratifying on each failure type.

. stcox group size number, nohr strata(rec) cluster(id) nolog

failure _d: status

analysis time _t: futime

Stratified Cox regr. —-- Breslow method for ties
No. of subjects = 340 Number of obs = 340
No. of failures = 105
Time at risk = 8522

Wald chi2(3) = 15.19
Log pseudolikelihood =  -402.74353 Prob > chi2 = 0.0017

(Std. Err. adjusted for 85 clusters in id)

| Robust
_t | Coef. Std. Err. z P>|z| [95% Conf. Intervall
_____________ o e
group | -.5575149 .3096526 -1.80 0.072 -1.164423 .0493931
size | -.0663418 .0973908 -0.68 0.496 -.2572242 .1245407
number | .2082931 .0660605 3.15 0.002 .0788169 .3377692

Stratified by rec
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The conditional risk set model (time from entry)

As previously mentioned, there are two variations of the
conditional risk set model. The first variation in which time to each
event is measured from entry is illustrated in this section.

The data are set up as for Andersen and Gill’s method, however, a
variable indicating the failure order is included. The analysis is
then stratified by this variable. The resulting observations for the
first five subjects are

. list if id<=5, noobs

e +
| id group tstart tstop status number size rec |
l--- |
| 1 1 0 1 0 1 3 1 |
| 2 1 0 4 0 2 1 1 |
| 3 1 0 7 0 1 1 1 |
| 4 1 0 10 0 5 1 1 |
| 5 1 0 6 1 4 1 1 |
l--- |
| 5 1 0 10 0 4 1 2 |
e e +
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The resulting dataset is identical to that used to fit Andersen and
Gill’s model except that the rec variable identifies the failure risk

group for each time span.

For the first 4 individuals, who have not had a recurrence, the rec
value is one so that they are at risk for a first recurrence the whole
follow-up time. The last individual, id==5, was at risk for a first
recurrence for 6 months (rec==1) and at risk of a second recurrence

(rec==2) from 6 months to the end of follow-up at 10 months.
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The data are set up as follows:

stset tstop, fail(status) exit(time .) enter(tstart)

failure event: status != 0 & status <
obs. time interval: (0, tstop]
enter on or after: +time tstart
exit on or before: time

183 total obs.
O exclusions

183 obs. remaining, representing

112 failures in single record/single failure data

3907 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 59

Note that there is no clustering by subject as the time for all

intervals starts at zero.
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The total-time PWP model is

. stcox group size number, nohr nolog strata(rec)

failure _d: status
analysis time _t: tstop
enter on or after: time tstart

exit on or before: time .

Stratified Cox regr. -- Breslow method for ties
No. of subjects = 183 Number of obs = 183
No. of failures = 112
Time at risk = 3907
LR chi2(3) = 8.75
Log likelihood =  -367.17326 Prob > chi2 = 0.0328
_t | Coef.  Std. Err. z P>|z| [95% Conf. Interval]
_____________ o
group | -.4897246 .2092469 -2.34 0.019 -.8998411  -.0796082
size | -.0377304 .0675414 -0.56  0.576 -.1701092 .0946484
number | .1102692 .0510491 2.16 0.031 .0102149 .2103235

Stratified by rec
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A robust (sandwich) estimate of the variance can be added:

. stcox group size number, nohr nolog robust strata(rec)

failure _d:
analysis time _t:
enter on or after:

exit on or before:

Stratified Cox regr.

status
tstop
time tstart
time .

—— Breslow method for ties

Number of obs = 183
Wald chi2(3) = 9.32
Prob > chi2 = 0.0254
[95%, Conf. Interval]
-.8776464 -.1018029
-.1657138 .090253
.0120105 .2085278

No. of subjects = 183
No. of failures = 112
Time at risk = 3907
Log pseudolikelihood =  -367.17326
| Robust
_t | Coef Std. Err. z
_____________ o

group | -.4897246 .1979229 -2.47

size | -.0377304 .0652989 -0.58

number | .1102692 .0501329 2.20

Stratified by rec
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Gap time model

The gap time PWP model measures time to each event from the time of the

previous event. Time is measured from zero to the gap between each failure.

. list if id<=5, noobs

e +
| id group status number size rec gap |
|l---- |
| 1 1 0 1 3 1 1 |
| 2 1 0 2 1 1 4 |
| 3 1 0 1 1 1 7 |
| 4 1 0 5 1 1 10 |
| 5 1 0 4 1 2 6 |
s |
| 5 1 1 4 1 1 4 |
e +

The gap reflects the time between failures. The first four subjects had no
recurrences so the gap is the total time of follow-up. Subject 5 experienced a
recurrence at 6 months and then was followed up to 10 months, so the gap

between the first failure and the end of follow-up is 4 months.
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The data are set up as follows:

stset gap status

failure event: status != 0 & status <
obs. time interval: (0, gap]

exit on or before: failure

183 total obs.
5 obs. end on or before enter()
178 obs. remaining, representing

112 failures in single record/single failure data

2480 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 59

The analysis proceeds as in the case of data with single

observations per subject, i.e., we do not include the id() option.
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The corresponding gap-time model is

. stcox group size number, nohr nolog strata(rec)

failure _d: status

analysis time _t: gap

Stratified Cox regr. —-- Breslow method for ties

No. of subjects = 178 Number of obs = 178
No. of failures = 112
Time at risk = 2480

LR chi2(3) = 8.76

Log likelihood =  -363.16022 Prob > chi2 = 0.0327

_t | Coef. Std. Err. z P>|z| [95% Conf. Intervall

_____________ e

group | -.2695213 .2076622 -1.30 0.194 -.6765318 .1374892

size | .0068402 .0700105 0.10 0.922 -.1303777 .1440582

number | .1535334 .0521059 2.95 0.003 .0514077 .255659

Stratified by rec
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Clustering by id and robust variance estimation is done as follows:
. stcox group size number, nohr nolog robust strata(rec) cluster(id)

failure _d: status
analysis time _t: gap

Number of obs = 178

Wald chi2(3)
Prob > chi?2

11.99
0.0074

adjusted for 85 clusters in id)

[95% Conf. Interval]

Stratified Cox regr. —-- Breslow method for ties
No. of subjects = 178
No. of failures = 112
Time at risk = 2480
Log pseudolikelihood =  -363.16022
(Std. Err.
| Robust
_t | Coef. Std. Err. z
_____________ +________________________________________________________________
group | -.2695213 .2093108 -1.29
size | .0068402 .0625862 0.11
number | .1535334 .0491803 3.12

-.6797628 .1407203
-.1158265 .129507
.0571418 .2499249

Stratified by rec
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