
Comparison of Survival Curves

We spent the last class looking at some nonparametric approaches
for estimating the survival function, Ŝ(t), over time for a single
sample of individuals.

Now we want to compare the survival estimates between two
groups.
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Example: Time to remission of leukemia patients
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How can we form a basis for comparison?

At a specific point in time, we could see whether the confidence
intervals for the survival curves overlap.

However, the confidence intervals we have been calculating are
“pointwise” ⇒ they correspond to a confidence interval for Ŝ(t∗)
at a single point in time, t∗.

In other words, we can’t say that the true survival function S(t) is
contained between the pointwise confidence intervals with 95%
probability.

(Aside: if you’re interested, the issue of confidence bands for the
estimated survival function are discussed in Section 4.4 of Klein
and Moeschberger)
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Looking at whether the confidence intervals for Ŝ(t∗) overlap
between the 6MP and placebo groups would only focus on
comparing the two treatment groups at a single point in time, t∗.

Should we base our overall comparison of Ŝ(t) on:

• the furthest distance between the two curves?

• the median survival for each group?

• the average hazard? (for exponential distributions, this would be

like comparing the mean event times)

• adding differences between the two survival estimates over time?X
j

h
Ŝ(tjA)− Ŝ(tjB)

i
• a weighted sum of differences, where the weights reflect the number

at risk at each time?

• a rank-based test? i.e., we could rank all of the event times, and then

see whether the sum of ranks for one group was less than the other.
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Nonparametric comparisons of groups

All of these are pretty reasonable options, and we’ll see that there
have been several proposals for how to compare the survival of two
groups. For the moment, we are sticking to nonparametric
comparisons.

Why nonparametric?

• fairly robust

• efficient relative to parametric tests

• often simple and intuitive

Before continuing the description of the two-sample comparison,
I’m going to try to put this in a general framework to give a
perspective of where we’re heading in this class.
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General Framework for Survival Analysis

We observe (Xi, δi,Zi) for individual i, where

• Xi is a censored failure time random variable

• δi is the failure/censoring indicator

• Zi represents a set of covariates

Note that Zi might be a scalar (a single covariate, say treatment or
gender) or may be a (p× 1) vector (representing several different
covariates).
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These covariates might be:

• continuous

• discrete

• time-varying (more later)

If Zi is a scalar and is binary, then we are comparing the survival
of two groups, like in the leukemia example.

More generally though, it is useful to build a model that
characterizes the relationship between survival and all of the
covariates of interest.
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We’ll proceed as follows:

• Two group comparisons

• Multigroup and stratified comparisons - stratified logrank

• Failure time regression models

– Cox proportional hazards model

– Accelerated failure time model
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Two sample tests

• Mantel-Haenszel logrank test

• Peto & Peto’s version of the logrank test

• Gehan’s Generalized Wilcoxon

• Peto & Peto’s and Prentice’s generalized Wilcoxon

• Tarone-Ware and Fleming-Harrington classes

• Cox’s F-test (non-parametric version)
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References:

Collett Section 2.5

Klein & Moeschberger Section 7.3

Kleinbaum Chapter 2

Lee Chapter 5
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Mantel-Haenszel Logrank test

The logrank test is the most well known and widely used.

It also has an intuitive appeal, building on standard methods for
binary data. (Later we will see that it can also be obtained as the
score test from a partial likelihood from the Cox Proportional
Hazards model.)

First consider the following (2× 2) table classifying those with and
without the event of interest in a two group setting:
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Event

Group Yes No Total

0 d0 n0 − d0 n0

1 d1 n1 − d1 n1

Total d n− d n
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If the margins of this table are considered fixed, then d0 follows a
hypergeometric distribution. Under the null hypothesis of no
association between the event and group, it follows that

E(d0) =
n0d

n

V ar(d0) =
n0 n1 d(n− d)

n2(n− 1)

Therefore, under H0:

χ2
MH =

[d0 − n0 d/n]2

n0 n1 d(n−d)
n2(n−1)

∼ χ2
1
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This is the Mantel-Haenszel statistic and is approximately
equivalent to the Pearson χ2 test for equality of the two groups
given by:

χ2
p =

∑ (o− e)2

e

Note: recall that the Pearson χ2 test was derived for the case
where only the row margins were fixed, and thus the variance above
was replaced by:

V ar(d0) =
n0 n1 d(n− d)

n3
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Example: Toxicity in a clinical trial with two treatments

Toxicity

Group Yes No Total

0 8 42 50

1 2 48 50

Total 10 90 100

χ2
p = 4.00 (p = 0.046)

χ2
MH = 3.96 (p = 0.047)
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Now suppose we have K (2×2) tables, all independent, and we want
to test for a common group effect. The Cochran-Mantel-Haenszel
test for a common odds ratio not equal to 1 can be written as:

χ2
CMH =

[
∑K

j=1(d0j − n0j ∗ dj/nj)]2∑K
j=1 n1jn0jdj(nj − dj)/[n2

j (nj − 1)]

where the subscript j refers to the j-th table:
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Event

Group Yes No Total

0 d0j n0j − d0j n0j

1 d1j n1j − d1j n1j

Total dj nj − dj nj

This statistic is distributed approximately as χ2
1.
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How does this apply in survival analysis?

Suppose we observe

Group 1: (X11, δ11) . . . (X1n1 , δ1n1)

Group 0: (X01, δ01) . . . (X0n0 , δ0n0)

We could just count the numbers of failures: eg., d1 =
∑K

j=1 δ1j
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Example: Leukemia data, just counting up the number of
remissions in each treatment group.

Fail

Group Yes No Total

0 21 0 21

1 9 12 21

Total 30 12 42

χ2
p = 16.8 (p = 0.001)

χ2
MH = 16.4 (p = 0.001)

But, this doesn’t account for the time at risk. Conceptually, we
would like to compare the KM survival curves. Let’s put the
components side-by-side and compare.
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Cox & Oakes Table 1.1 Leukemia example
Ordered Group 0 Group 1

Death Times dj cj rj dj cj rj

1 2 0 21 0 0 21

2 2 0 19 0 0 21

3 1 0 17 0 0 21

4 2 0 16 0 0 21

5 2 0 14 0 0 21

6 0 0 12 3 1 21

7 0 0 12 1 0 17

8 4 0 12 0 0 16

9 0 0 8 0 1 16

10 0 0 8 1 1 15

11 2 0 8 0 1 13

12 2 0 6 0 0 12

13 0 0 4 1 0 12

15 1 0 4 0 0 11

16 0 0 3 1 0 11

17 1 0 3 0 1 10

19 0 0 2 0 1 9

20 0 0 2 0 1 8

22 1 0 2 1 0 7

23 1 0 1 1 0 6

25 0 0 0 0 1 5

We wrote down the number at risk for Group 1 for times 1-5 even

though there were no events or censorings at those times.
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Logrank Test: Formal Definition

The logrank test is obtained by constructing a (2× 2) table at each
distinct death time, and comparing the death rates between the
two groups, conditional on the number at risk in the groups. The
tables are then combined using the Cochran-Mantel-Haenszel test.

Note: The logrank is sometimes called the Cox-Mantel test.

Let t1, ..., tK represent the K ordered, distinct death times.
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At the j-th death time, we have the following table:

Die/Fail

Group Yes No Total

0 d0j r0j − d0j r0j

1 d1j r1j − d1j r1j

Total dj rj − dj rj

where d0j and d1j are the number of deaths in group 0 and 1,
respectively at the j-th death time, and r0j and r1j are the number
at risk at that time, in groups 0 and 1.
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The logrank test is:

χ2
logrank =

[
∑K

j=1(d0j − r0j ∗ dj/rj)]2∑K
j=1

r1jr0jdj(rj−dj)

[r2
j (rj−1)]

Assuming the tables are all independent, then this statistic will
have an approximate χ2 distribution with 1 df.

Based on the motivation for the logrank test, which of the
survival-related quantities are we comparing at each time
point?

• ∑K
j=1 wj

[
Ŝ1(tj)− Ŝ2(tj)

]
?

• ∑K
j=1 wj

[
λ̂1(tj)− λ̂2(tj)

]
?

• ∑K
j=1 wj

[
Λ̂1(tj)− Λ̂2(tj)

]
?
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First several tables of leukemia data
CMH analysis of leukemia data

TABLE 1 OF TRTMT BY REMISS TABLE 3 OF TRTMT BY REMISS

CONTROLLING FOR FAILTIME=1 CONTROLLING FOR FAILTIME=3

TRTMT REMISS TRTMT REMISS

Frequency| Frequency|

Expected | 0| 1| Total Expected | 0| 1| Total

---------+--------+--------+ ---------+--------+--------+

0 | 19 | 2 | 21 0 | 16 | 1 | 17

| 20 | 1 | | 16.553 | 0.4474 |

---------+--------+--------+ ---------+--------+--------+

1 | 21 | 0 | 21 1 | 21 | 0 | 21

| 20 | 1 | | 20.447 | 0.5526 |

---------+--------+--------+ ---------+--------+--------+

Total 40 2 42 Total 37 1 38
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TABLE 2 OF TRTMT BY REMISS TABLE 4 OF TRTMT BY REMISS

CONTROLLING FOR FAILTIME=2 CONTROLLING FOR FAILTIME=4

TRTMT REMISS TRTMT REMISS

Frequency| Frequency|

Expected | 0| 1| Total Expected | 0| 1| Total

---------+--------+--------+ ---------+--------+--------+

0 | 17 | 2 | 19 0 | 14 | 2 | 16

| 18.05 | 0.95 | | 15.135 | 0.8649 |

---------+--------+--------+ ---------+--------+--------+

1 | 21 | 0 | 21 1 | 21 | 0 | 21

| 19.95 | 1.05 | | 19.865 | 1.1351 |

---------+--------+--------+ ---------+--------+--------+

Total 38 2 40 Total 35 2 37
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CMH statistic = logrank statistic

SUMMARY STATISTICS FOR TRTMT BY REMISS

CONTROLLING FOR FAILTIME

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

-----------------------------------------------------------------

1 Nonzero Correlation 1 16.793 0.001

2 Row Mean Scores Differ 1 16.793 0.001

3 General Association 1 16.793 0.001 <===LOGRANK

TEST

Note: Although CMH works to get the correct logrank test, it
would require inputting the dj and rj at each time of death for
each treatment group. There’s an easier way to get the test
statistic, which I’ll show you shortly.
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Calculating logrank statistic by hand: Leukemia Example:

Ordered Group 0 Combined

Death Times d0j r0j dj rj ej oj − ej vj

1 2 21 2 42 1.00 1.00 0.488

2 2 19 2 40 0.95 1.05

3 1 17 1 38 0.45 0.55

4 2 16 2 37 0.86 1.14

5 2 14 2 35

6 0 12 3 33

7 0 12 1 29

8 4 12 4 28

10 0 8 1 23

11 2 8 2 21

12 2 6 2 18

13 0 4 1 16

15 1 4 1 15

16 0 3 1 14

17 1 3 1 13

22 1 2 2 9

23 1 1 2 7

Sum 10.251 6.257
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In the previous table

oj = d0j

ej = djr0j/rj

vj = r1jr0jdj(rj − dj)/[r2
j (rj − 1)]

χ2
logrank =

(10.251)2

6.257
= 16.793
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Notes about logrank test:

• The logrank statistic depends on ranks of event times only

• If there are no tied deaths, then the logrank has the form:

[
∑K

j=1(d0j − r0j

rj
)]2

∑K
j=1 r1jr0j/r2

j

• Numerator can be interpreted as
∑

(o− e) where “o” is the
observed number of deaths in group 0, and “e” is the expected
number, given the risk set. The expected number equals
#deaths × proportion in group 0 at risk.

• The (o− e) terms in the numerator can be written as

r0jr1j

rj
(λ̂1j − λ̂0j)
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• It does not matter which group you choose to sum over. To see
this, note that if we summed up (o-e) over the death times for
the 6MP group we would get -10.251, and the sum of the
variances is the same. So when we square the numerator, the
test statistic is the same.

Analogous to the CMH test for a series of tables at different levels
of a confounder, the logrank test is most powerful when “odds
ratios” are constant over time intervals.

That is, it is most powerful for proportional hazards.
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Checking the assumption of proportional hazards:

• check to see if the estimated survival curves cross - if they do,
then this is evidence that the hazards are not proportional

• more formal test: any ideas?

What should be done if the hazards are not
proportional?

• If the difference between hazards has a consistent sign, the
logrank test usually does well.

• Other tests are available that are more powerful against
different alternatives.
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Getting the logrank statistic using Stata:

After declaring data as survival type data using the
“stset” command, issue the “sts test” command

. stset remiss status

data set name: leukem

id: -- (meaning each record a unique subject)

entry time: -- (meaning all entered at time 0)

exit time: remiss

failure/censor: status

. sts list, by(trt)

Beg. Net Survivor Std.

Time Total Fail Lost Function Error [95% Conf. Int.]

----------------------------------------------------------------------

trt=0

1 21 2 0 0.9048 0.0641 0.6700 0.9753

2 19 2 0 0.8095 0.0857 0.5689 0.9239

3 17 1 0 0.7619 0.0929 0.5194 0.8933

4 16 2 0 0.6667 0.1029 0.4254 0.8250
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. sts test trt

Log-rank test for equality of survivor functions

------------------------------------------------

| Events

trt | observed expected

------+-------------------------

0 | 21 10.75

1 | 9 19.25

------+-------------------------

Total | 30 30.00

chi2(1) = 16.79

Pr>chi2 = 0.0000
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Generalization of logrank test: Linear rank tests

The logrank and other tests can be derived by assigning scores to
the ranks of the death times, and are members of a general class of
linear rank tests (for more detail, see Lee, ch 5)

First, define

Λ̂(t) =
∑

j:tj<t

dj

rj

where dj and rj are the number of deaths and the number at risk,
respectively at the j-th ordered death time.
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Then assign these scores (suggested by Peto and Peto):

Event Score

Death at tj wj = 1− Λ̂(tj)

Censoring at tj wj = −Λ̂(tj)

To calculate the logrank test, simply sum up the scores for group 0.
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Example Group 0: 15, 18, 19, 19, 20

Group 1: 16+, 18+, 20+, 23, 24+

Calculation of logrank as a linear rank statistic

Ordered Data Group dj rj Λ̂(tj) score wj

15 0 1 10 0.100 0.900

16+ 1 0 9 0.100 -0.100

18 0 1 8 0.225 0.775

18+ 1 0 7 0.225 -0.225

19 0 2 6 0.558 0.442

20 0 1 4 0.808 0.192

20+ 1 0 3 0.808 -0.808

23 1 1 2 1.308 -0.308

24+ 1 0 1 1.308 -1.308
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The logrank statistic S is sum of scores for group 0:

S = 0.900 + 0.775 + 0.442 + 0.442 + 0.192 = 2.75

The variance is:

V ar(S) =
n0n1

∑n
j=1 w2

j

n(n− 1)

In this case, V ar(S) = 1.210, so

Z =
2.75√
1.210

= 2.50 =⇒ χ2
logrank = (2.50)2 = 6.25
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Why is this form of the logrank equivalent?

The logrank statistic S is equivalent to
∑

(o− e) over the distinct
death times, where “o” is the observed number of deaths in group
0, and “e” is the expected number, given the risk sets.

At deaths: weights are 1− Λ̂

At censorings: weights are −Λ̂

So we are summing up “1’s” for deaths (to get d0j), and
subtracting −Λ̂ at both deaths and censorings. This amounts to
subtracting dj/rj at each death or censoring time in group 0, at or
after the j-th death. Since there are a total of r0j of these, we get
e = r0j ∗ dj/rj .
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Why is it called the logrank test?

Since S(t) = exp(−Λ(t)), an alternative estimator of S(t) is:

Ŝ(t) = exp(−Λ̂(t)) = exp(−
∑

j:tj<t

dj

rj
)

So, we can think of Λ̂(t) = − log(Ŝ(t)) as yielding the “log-survival”
scores used to calculate the statistic.
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Comparing the CMH-type Logrank and
“Linear Rank” logrank

A. CMH-type Logrank:

We motivated the logrank test through the CMH statistic for
testing Ho : OR = 1 over K tables, where K is the number of
distinct death times. This turned out to be what we get when we
use the logrank (default) option in Stata. (or the “strata”
statement in SAS)

B. Linear Rank logrank:

The linear rank version of the logrank test is based on adding up
“scores” for one of the two treatment groups. The particular scores
that gave us the same logrank statistic were based on the
Nelson-Aalen estimator, i.e., Λ̂ =

∑
λ̂(tj). This is what you get

when you use the “test” statement in SAS.
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If there are no tied event times, then the two versions of the test
will yield identical results. The more ties we have, the more it
matters which version we use.

The numerators of the two types of logrank tests will always be
equivalent, but the denominators depend on the way ties are
handled:

CMH-type variance:

var =
∑ r1jr0jdj(rj − dj)

r2
j (rj − 1)

=
∑ r1jr0j

rj(rj − 1)
dj(rj − dj)

rj

Linear rank type variance:

var =
n0n1

∑n
j=1 w2

j

n(n− 1)
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Gehan’s Generalized Wilcoxon Test

First, let’s review the Wilcoxon test for uncensored data:

Denote observations from two samples by:

(X1, X2, . . . , Xn) and (Y1, Y2, . . . , Ym)

Order the combined sample and define:

Z(1) < Z(2) < · · · < Z(m+n)

Ri1 = rank of Xi

R1 =
m+n∑

i=1

Ri1
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Reject H0 if R1 is too big or too small, according to

R1 − E(R1)√
V ar(R1)

∼ N(0, 1)

where

E(R1) =
m(m + n + 1)

2

V ar(R1) =
mn(m + n + 1)

12
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The Mann-Whitney form of the Wilcoxon is defined as:

U(Xi, Yj) = Uij =





+1 if Xi > Yj

0 if Xi = Yj

−1 if Xi < Yj

and

U =
n∑

i=1

m∑

j=1

Uij .

44



There is a simple correspondence between U and R1:

R1 = m(m + n + 1)/2 + U/2

so U = 2R1 −m(m + n + 1)

Therefore,

E(U) = 0

V ar(U) = mn(m + n + 1)/3
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Extending Wilcoxon to censored data

The Mann-Whitney form leads to a generalization for censored
data. Define

U(Xi, Yj) = Uij =





+1 if xi > yj or x+
i ≥ yj

0 if xi = yi or lower value censored

−1 if xi < yj or xi ≤ y+
j

Then define

W =
n∑

i=1

m∑

j=1

Uij

Thus, there is a contribution to W for every comparison where
both observations are failures (except for ties), or where a censored
observation is greater than or equal to a failure.

Looking at all possible pairs of individuals between the two
treatment groups makes this a nightmare to compute by hand!
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Gehan found an easier way to compute the above. First, pool the
sample of (n + m) observations into a single group, then compare
each individual with the remaining n + m− 1: For comparing the
i-th individual with the j-th, define

Uij =





+1 if ti > tj or t+i ≥ tj

−1 if ti < tj or ti ≤ t+j

0 otherwise

Then

Ui =
m+n∑

j=1

Uij

Thus, for the i-th individual, Ui is the number of observations
which are definitely less than ti minus the number of observations
that are definitely greater than ti. We assume censorings occur
after deaths, so that if ti = 18+ and tj = 18, then we add 1 to Ui.
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The Gehan statistic is defined as

U =
m+n∑

i=1

Ui 1{i in group 0}

= W

U has mean 0 and variance

var(U) =
mn

(m + n)(m + n− 1)

m+n∑

i=1

U2
i
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Example from Lee:

Group 0: 15, 18, 19, 19, 20 Group 1: 16+, 18+, 20+, 23, 24+

Time Group Ui U2
i

15 0 -9 81

16+ 1 1 1

18 0 -6 36

18+ 1 2 4

19 0 -2 4

19 0 -2 4

20 0 1 1

20+ 1 5 25

23 1 4 16

24+ 1 6 36

SUM -18 208

U = −18 V ar(U) =
(5)(5)(208)

(10)(9)
= 57.78

and χ2 = (−18)2/57.78 = 5.61
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Obtaining the Wilcoxon test using Stata

Use the sts test statement, with the appropriate option

sts test varlist [if exp] [in range]

[, [logrank|wilcoxon|cox] strata(varlist) detail

mat(matname1 matname2) notitle noshow ]

logrank, wilcoxon, and cox specify which test of equality is desired.

logrank is the default, and cox yields a likelihood ratio test

under a cox model.
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Example: (leukemia data)

. stset remiss status

. sts test trt, wilcoxon

Wilcoxon (Breslow) test for equality of survivor functions

----------------------------------------------------------

| Events Sum of

trt | observed expected ranks

------+--------------------------------------

0 | 21 10.75 271

1 | 9 19.25 -271

------+--------------------------------------

Total | 30 30.00 0

chi2(1) = 13.46

Pr>chi2 = 0.0002
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Generalized Wilcoxon (Peto & Peto, Prentice)

Assign the following scores:
For a death at t: Ŝ(t+) + Ŝ(t−)− 1

For a censoring at t: Ŝ(t+)− 1

The test statistic is
∑

(scores) for group 0.

Time Group dj rj Ŝ(t+) score wj

15 0 1 10 0.900 0.900

16+ 1 0 9 0.900 -0.100

18 0 1 8 0.788 0.688

18+ 1 0 7 0.788 -0.212

19 0 2 6 0.525 0.313

20 0 1 4 0.394 -0.081

20+ 1 0 3 0.394 -0.606

23 1 1 2 0.197 -0.409

24+ 1 0 1 0.197 -0.803
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∑
wj 1{j in group 0} = 0.900 + 0.688 + 2 ∗ (0.313) + (−0.081)

= 2.13

V ar(S) =
n0n1

∑n
j=1 w2

j

n(n− 1)
= 0.765

so Z = 2.13/0.765 = 2.433
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The Tarone-Ware class of tests:

This general class of tests is like the logrank test, but adds weights
wj . The logrank test, Wilcoxon test, and Peto-Prentice Wilcoxon
are included as special cases.

χ2
tw =

[
∑K

j=1 wj(d1j − r1j ∗ dj/rj)]2

∑K
l=1

w2
j r1jr0jdj(rj−dj)

r2
j (rj−1)
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Test Weight wj

Logrank wj = 1

Gehan’s Wilcoxon wj = rj

Peto/Prentice wj = nŜ(tj)

Fleming-Harrington wj = [Ŝ(tj)]α

Tarone-Ware wj = √
rj

Note: these weights wj are not the same as the scores wj we’ve
been talking about earlier, and they apply to the CMH-type form
of the test statistic rather than

∑
(scores) over a single treatment

group.
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Which test should we used?

CMH-type or Linear Rank?
If there are not a high proportion of ties, then it doesn’t really
matter since:

• The two Wilcoxons are similar to each other

• The two logrank tests are similar to each other

Note: personally, I tend to use the CMH-type test, which you get
with the strata statement in SAS and the test statement in
STATA.

56



Logrank or Wilcoxon?

• Both tests have the right Type I power for testing the null
hypothesis of equal survival, Ho : S1(t) = S2(t)

• The choice of which test may therefore depend on the
alternative hypothesis, which will drive the power of the test.

• The Wilcoxon is sensitive to early differences between survival,
while the logrank is sensitive to later ones. This can be seen by
the relative weights they assign to the test statistic:

LOGRANK numerator =
∑

j

(oj − ej)

WILCOXON numerator =
∑

j

rj(oj − ej)
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• The logrank is most powerful under the assumption of
proportional hazards, which implies an alternative in terms of
the survival functions of Ha : S1(t) = [S2(t)]α

• The Wilcoxon has high power when the failure times are
lognormally distributed, with equal variance in both groups but
a different mean. It will turn out that this is the assumption of
an accelerated failure time model.

• Both tests will lack power if the survival curves (or hazards)
“cross”. However, that does not necessarily make them invalid!
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P -sample and stratified logrank tests

We have been discussing two sample problems. In practice, more
complex settings often arise:

• There are more than two treatments or groups, and the
question of interest is whether the groups differ from each
other.

• We are interested in a comparison between two groups, but we
wish to adjust for another factor that may confound the
analysis

• We want to adjust for lots of covariates.

We will first talk about comparing the survival distributions
between more than 2 groups, and then about adjusting for other
covariates.
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P -sample logrank

Suppose we observe data from P different groups, and the data
from group p (p = 1, ..., P ) are:

(Xp1, δp1) . . . (Xpnp , δpnp)

We now contruct a (P × 2) table at each of the K distinct death
times, and compare the death rates between the P groups,
conditional on the number at risk.

Let t1, ....tK represent the K ordered, distinct death times.
At the j-th death time, we have the following table:
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Die/Fail

Group Yes No Total

1 d1j r1l − d1j r1j

. . . .

P dPj rPj − dPj rPj

Total dj rj − dj rj

where dpj is the number of deaths in group p at the j-th death
time, and rpj is the number at risk at that time.

The tables are then combined using the CMH approach.

If we were just focusing on this one table, then a χ2
(P−1) test

statistic could be constructed through a comparison of “o”s and
“e”s, like before.
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Example: Toxicity in a clinical trial with 3 treatments
TABLE OF GROUP BY TOXICITY

GROUP TOXICITY

Frequency|

Row Pct |no |yes | Total

---------+--------+--------+

1 | 42 | 8 | 50

| 84.00 | 16.00 |

---------+--------+--------+

2 | 48 | 2 | 50

| 96.00 | 4.00 |

---------+--------+--------+

3 | 38 | 12 | 50

| 76.00 | 24.00 |

---------+--------+--------+

Total 128 22 150
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STATISTICS FOR TABLE OF GROUP BY TOXICITY

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 2 8.097 0.017

Likelihood Ratio Chi-Square 2 9.196 0.010

Mantel-Haenszel Chi-Square 1 1.270 0.260

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

----------------------------------------------------------

1 Nonzero Correlation 1 1.270 0.260

2 Row Mean Scores Differ 2 8.043 0.018

3 General Association 2 8.043 0.018
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Formal Calculations:

Let Oj = (d1j , ...d(P−1)j)T be a vector of the observed number of
failures in groups 1 to (P − 1), respectively, at the j-th death time.
Given the risk sets r1j , ... rPj , and the fact that there are dj

deaths, then Oj has a distribution like a multivariate version of the
hypergeometric. Oj has mean:

Ej = (
dj r1j

rj
, ... ,

dj r(P−1)j

rj
)T
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and variance covariance matrix:

Vj =




v11j v12j ... v1(P−1)j

v22j ... v2(P−1)j

... ... ...

v(P−1)(P−1)j




where the `-th diagonal element is:

v``j = r`j(rj − r`j)dj(rj − dj)/[r2
j (rj − 1)]

and the `m-th off-diagonal element is:

v`mj = r`jrmjdj(rj − dj)/[r2
j (rj − 1)]

The resulting χ2 test for a single (P × 1) table would have (P-1)
degrees and is constructed as follows:

(Oj −Ej)T V−1
j (Oj −Ej)
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Generalizing to K tables

Analogous to what we did for the two sample logrank, we replace
the Oj , Ej and Vj with the sums over the K distinct death times.
That is, let O =

∑k
j=1 Oj , E =

∑k
j=1 Ej , and V =

∑k
j=1 Vj .

Then, the test statistic is:

(O−E)T V−1 (O−E)
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Example:

Time taken to finish a test with 3 different noise distractions. All
tests were stopped after 12 minutes.

Noise Level

Group Group Group

1 2 3

9.0 10.0 12.0

9.5 12.0 12+

9.0 12+ 12+

8.5 11.0 12+

10.0 12.0 12+

10.5 10.5 12+
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Lets start the calculations ...

Observed data table

Ordered Group 1 Group 2 Group 3 Combined

Times d1j r1j d2j r2j d3j r3j dj rj

8.5 1 6 0 6 0 6

9.0 2 5 0 6 0 6

9.5 1 3 0 6 0 6

10.0 1 2 1 6 0 6

10.5 1 1 1 5 0 6

11.0 0 0 1 4 0 6

12.0 0 0 2 3 1 6
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Expected table
Ordered Group 1 Group 2 Group 3 Combined

Times o1j e1j o2j e2j o3j e3j oj ej

8.5

9.0

9.5

10.0

10.5

11.0

12.0

Doing the P -sample test by hand is cumbersome ...

Luckily, Stata and most other packages will do it for you!

(or at least some version)
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P -sample logrank in Stata

.sts graph, by(group)

.sts test group, logrank

Log-rank test for equality of survivor functions

------------------------------------------------

| Events

group | observed expected

------+-------------------------

1 | 6 1.57

2 | 5 4.53

3 | 1 5.90

------+-------------------------

Total | 12 12.00

chi2(2) = 20.38

Pr>chi2 = 0.0000
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. sts test group, wilcoxon

Wilcoxon (Breslow) test for equality of survivor functions

----------------------------------------------------------

| Events Sum of

group | observed expected ranks

------+--------------------------------------

1 | 6 1.57 68

2 | 5 4.53 -5

3 | 1 5.90 -63

------+--------------------------------------

Total | 12 12.00 0

chi2(2) = 18.33

Pr>chi2 = 0.0001
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The Stratified Logrank

Sometimes, even though we are interested in comparing two groups
(or maybe P ) groups, we know there are other factors that also
affect the outcome. It would be useful to adjust for these other
factors in some way.

Example: For the nursing home data, a logrank test comparing
length of stay for those under and over 85 years of age suggests a
significant difference (p=0.03).

However, we know that gender has a strong association with length
of stay, and also age. Hence, it would be a good idea to STRATIFY
the analysis by gender when trying to assess the age effect.
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A stratified logrank allows one to compare groups, but allows the
shapes of the hazards of the different groups to differ across strata.
It makes the assumption that the group 1 vs group 2 hazard ratio
is constant across strata.

In other words: λ1s(t)
λ2s(t) = θ where θ is constant over the strata

(s = 1, ..., S).

This method of adjusting for other variables is not as flexible as
that based on a modelling approach.

73



General setup for the stratified logrank:

Suppose we want to assess the association between survival and a
factor (call this X) that has two different levels. Suppose however,
that we want to stratify by a second factor, that has S different
levels.

First, divide the data into S separate groups. Within group s

(s = 1, ..., S), proceed as though you were constructing the logrank
to assess the association between survival and the variable X. That
is, let t1s, ..., tKss represent the Ks ordered, distinct death times
in the s-th group.
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At the j-th death time in group s, we have the following table:

Die/Fail

X Yes No Total

1 ds1j rs1j − ds1j rs1j

2 ds2j rs2j − ds2j rs2j

Total dsj rsj − dsj rsj
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Let Os be the sum of the “o”s obtained by applying the logrank
calculations in the usual way to the data from group s. Similarly,
let Es be the sum of the “e”s, and Vs be the sum of the “v”s.

The stratified logrank is

Z =
∑S

s=1(Os − Es)√∑S
s=1(Vs)
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Stratified logrank using Stata:

. use nurshome

. gen age1=0

. replace age1=1 if age>85

. sts test age1, strata(gender)

failure _d: cens

analysis time _t: los

Stratified log-rank test for equality of survivor functions

-----------------------------------------------------------

| Events

age1 | observed expected(*)

------+-------------------------

0 | 795 764.36

1 | 474 504.64

------+-------------------------

Total | 1269 1269.00

(*) sum over calculations within gender

chi2(1) = 3.22

Pr>chi2 = 0.0728
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