
More on the Cox PH model

I. Confidence intervals and hypothesis tests

– Two methods for confidence intervals

– Wald tests and likelihood ratio tests

– Interpretation of parameter estimates

– An example with real data from an AIDS clinical trial

II. Predicted survival under proportional hazards

III. Predicted medians and P-year survival
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I. Constructing Confidence intervals and tests for the Hazard Ratio
(see Collett 3.4):

Many software packages provide estimates of β, but the hazard
ratio (i.e., exp(β)) is usually the parameter of interest.

We can use the delta method to get standard errors for exp(β̂):

V ar(exp(β̂)) = exp(2β̂)V ar(β̂)
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Constructing confidence intervals for exp(β)
Two options: (assuming that β is a scalar)

I. Using se(exp β̂) obtained above via the delta method as

se(exp β̂) =
√

[V ar(exp(β̂))], calculate the endpoints as:

[L,U ] = [eβ̂ − 1.96 se(eβ̂), eβ̂ + 1.96 se(eβ̂)]

II. Form a confidence interval for β̂, and then exponentiate the
endpoints.

[L, U ] = [eβ̂−1.96se(β̂), eβ̂+1.96se(β̂)]

Method II is preferable since β̂ converges to a normal distribution
more quickly than exp(β̂).
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Hypothesis Tests:

For each covariate of interest, the null hypothesis is

Ho : βj = 0

A Wald testa of the above hypothesis is constructed as:

Z =
β̂j

se(β̂j)
or χ2 =

"
β̂j

se(β̂j)

#2

The test for βj = 0 assumes that all other terms in the model are fixed.

If we have a factor A with a levels, then we would need to construct a χ2

test with (a− 1) df, using a test statistic based on a quadratic form:

χ2
(a−1) = bβ′AV ar(bβA)−1bβA

where βA = (β2, ..., βa)′ are the (a− 1) coefficients corresponding to

Z2, ..., Za (or Z1, ..., Za−1, depending on the reference group).
aThe first follows a normal distribution, and the second follows a χ2 with 1 df.

STATA gives the Z statistic, while SAS gives the χ2
1 test statistic (the p-values are

also given, and don’t depend on which form, Z or χ2, is provided)
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Comparing nested models ⇒ Likelihood Ratio Tests:

Suppose there are (p + q) explanatory variables measured:

Z1, . . . , Zp, Zp+1, . . . , Zp+q

and proportional hazards are assumed.

Consider the following models:

• Model 1: (contains only the first p covariates)

λi(t,Z)
λ0(t)

= exp(β1Z1 + · · ·+ βpZp)

• Model 2: (contains all (p + q) covariates)

λi(t,Z)
λ0(t)

= exp(β1Z1 + · · ·+ βp+qZp+q)
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These are nested models. For such nested models, we can construct
a likelihood ratio test of

H0 : βp+1 = · · · = βp+q = 0

as:

χ2
LR = −2

[
log(L̂(1))− log(L̂(2))

]

Under Ho, this test statistic is approximately distributed as χ2

with q df.

6



Some examples using the Stata stcox command:
Model 1:
. use mac

. stset mactime macstat

. stcox karnof rif clari, nohr

failure _d: macstat

analysis time _t: mactime

Cox regression -- Breslow method for ties

No. of subjects = 1151 Number of obs = 1151

No. of failures = 121

Time at risk = 489509

LR chi2(3) = 32.01

Log likelihood = -754.52813 Prob > chi2 = 0.0000

-----------------------------------------------------------------------

_t |

_d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+-------------------------------------------------------------

karnof | -.0448295 .0106355 -4.215 0.000 -.0656747 -.0239843

rif | .8723819 .2369497 3.682 0.000 .4079691 1.336795

clari | .2760775 .2580215 1.070 0.285 -.2296354 .7817903

-----------------------------------------------------------------------
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Model 2:
. stcox karnof rif clari cd4, nohr

failure _d: macstat

analysis time _t: mactime

Cox regression -- Breslow method for ties

No. of subjects = 1151 Number of obs = 1151

No. of failures = 121

Time at risk = 489509

LR chi2(4) = 63.74

Log likelihood = -738.66225 Prob > chi2 = 0.0000

-------------------------------------------------------------------------

_t |

_d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+---------------------------------------------------------------

karnof | -.0368538 .0106652 -3.456 0.001 -.0577572 -.0159503

rif | .880338 .2371111 3.713 0.000 .4156089 1.345067

clari | .2530205 .2583478 0.979 0.327 -.253332 .7593729

cd4 | -.0183553 .0036839 -4.983 0.000 -.0255757 -.0111349

-------------------------------------------------------------------------
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Notes:

• If we omit the nohr option, we will get the estimated hazard ratio

along with 95% confidence intervals using Method II (i.e., forming a

CI for the log HR (beta), and then exponentiating the bounds)

------------------------------------------------------------------------

_t |

_d | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------

karnof | .9638171 .0102793 -3.456 0.001 .9438791 .9841762

rif | 2.411715 .5718442 3.713 0.000 1.515293 3.838444

clari | 1.28791 .3327287 0.979 0.327 .7762102 2.136936

cd4 | .9818121 .0036169 -4.983 0.000 .9747486 .9889269

------------------------------------------------------------------------

• We can also compute the hazard ratio ourselves, by exponentiating

the coefficients:

HRcd4 = exp(−0.01835) = 0.98

Why is this HR so close to 1, and yet still significant?

What is the interpretation of this HR?
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• In the mac study, there were three treatment arms (rif, clari, and

the rif+clari combination). Because we have only included the rif

and clari effects in the model, the combination therapy is the

“reference” group.

• We can conduct an overall test of treatment using the test

command in Stata:

. test rif clari

( 1) rif = 0.0

( 2) clari = 0.0

chi2( 2) = 17.01

Prob > chi2 = 0.0002

for a 2 df Wald chi-square test of whether both treatment

coefficients are equal to 0. This test command can be used to

conduct an overall test for any number of effects.
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• The test command can also be used to test whether there is a

difference between the rif and clari treatment arms:

. test rif=clari

( 1) rif - clari = 0.0

chi2( 1) = 8.76

Prob > chi2 = 0.0031

• The likelihood ratio test for the effect of CD4 is twice the difference

in minus log-likelihoods between the two models:

χ2
LR = 2 ∗ (754.53− (738.66)) = 31.74

How does this test statistic compare to the Wald χ2 test?
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II. Predicted Survival using PH

The Cox PH model says that λi(t,Z) = λ0(t) exp(βZ). What does
this imply about the survival function, Sz(t), for the i-th individual
with covariates Zi?

For the baseline (reference) group, we have:

S0(t) = e−
R t
0 λ0(u)du = e−Λ0(t)

This is by definition of a survival function (see intro notes).
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For the i-th patient with covariates Zi, we have:

Si(t) = e−
R t
0 λi(u)du = e−Λi(t)

= e−
R t
0 λ0(u) exp(βZi)du

= e− exp(βZi)
R t
0 λ0(u)du

=
[
e−
R t
0 λ0(u)du

]exp(βZi)

= [S0(t)]
exp(βZi)

(This uses the mathematical relationship [eb]a = eab)
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Say we are interested in the survival pattern for single males in the

nursing home study. Based on the previous formula, if we had an

estimate for the survival function in the reference group, i.e., Ŝ0(t), we

could get estimates of the survival function for any set of covariates Zi.

How can we estimate the survival function, S0(t)?

We could use the KM estimator, but there are a few disadvantages of

that approach:

• It would only use the survival times for observations contained in

the reference group, and not all the rest of the survival times.

• It would tend to be somewhat choppy, since it would reflect the

smaller sample size of the reference group.

• It’s possible that there are no subjects in the dataset who are in the

“reference” group (ex. say covariates are age and sex; there is no

one of age=0 in our dataset).
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Instead, we will use a baseline hazard estimator which takes
advantage of the proportional hazards assumption to get a
smoother estimate.

Ŝi(t) = [Ŝ0(t)]exp(
bβZi)

Using the above formula, we substitute β̂ based on fitting the Cox
PH model, and calculate Ŝ0(t) by one of the following approaches:

• Breslow estimator (Stata)

• Kalbfleisch/Prentice estimator (SAS)
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(1) Breslow Estimator:

Ŝ0(t) = exp−Λ̂0(t)

where Λ̂0(t) is the estimated cumulative baseline hazard:

Λ̂(t) =
∑

j:τj<t

(
dj∑

k∈R(τj)
exp(β1Z1k + . . . βpZpk)

)

(2) Kalbfleisch/Prentice Estimator

Ŝ0(t) =
∏

j:τj<t

α̂j

where α̂j , j = 1, ...d are the MLE’s obtained by assuming that
S(t;Z) satisfies

S(t;Z) = [S0(t)]e
βZ

=


 ∏

j:τj<t

αj




eβZ

=
∏

j:τj<t

αeβZ

j
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Breslow Estimator: further motivation

The Breslow estimator is based on extending the concept of the
Nelson-Aalen estimator to the proportional hazards model.

Recall that for a single sample with no covariates, the
Nelson-Aalen Estimator of the cumulative hazard is:

Λ̂(t) =
∑

j:τj<t

dj

rj

where dj and rj are the number of deaths and the number at risk,
respectively, at the j-th death time.
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When there are covariates and assuming the PH model above, one
can generalize this to estimate the cumulative baseline hazard by
adjusting the denominator:

Λ̂(t) =
∑

j:τj<t

(
dj∑

k∈R(τj)
exp(β1Z1k + . . . βpZpk)

)

Heuristic: The expected number of failures in (t, t + δt) is

dj ≈ δt×
∑

k∈R(t)

λ0(t)exp(zkβ̂)

Hence,

δt× λ0(tj) ≈ dj∑
k∈R(t) exp(zkβ̂)
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Kalbfleisch/Prentice Estimator: further motivation

This method is analogous to the Kaplan-Meier Estimator. Consider
a discrete time model with hazard (1− αj) at the j-th observed
death time.

( Note: we use αj = (1− λj) to simplify the algebra!)

Thus, for someone with z=0, the survivorship function is

S0(t) =
∏

j:τj<t

αj

and for someone with Z 6= 0, it is:

S(t; Z) = S0(t)eβZ

=


 ∏

j:τj<t

αj




eβZ

=
∏

j:τj<t

αeβZ

j
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The likelihood contributions under this model are:

• for someone censored at t: S(t;Z)

• for someone who fails at tj :

S(t(j−1); Z)− S(tj ; Z) =


∏

k<j

αj




eβz

[1− αeβZ

j ]

The solution for αj satisfies:

∑

k∈Dj

exp(Zkβ)

1− α
exp(Zkβ)
j

=
∑

k∈Rj

exp(Zkβ)

(Note what happens when Z = 0)
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Obtaining Ŝ0(t) from software packages

• Stata provides the Breslow estimator of S0(t; Z), but not
predicted survivals at specified covariate values..... you have to
construct these yourself

• SAS uses the Kalbfleisch/Prentice estimator of the baseline
hazard, and can provide estimates of survival at arbitrary
values of the covariates with a little bit of programming.

In practice, they are incredibly close! (see Fleming and
Harrington 1984, Communications in Statistics)
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Using Stata to Predict Survival

The Stata command basesurv calculates the predicted survival
values for the reference group, i.e., those subjects with all
covariates=0.

(1) Baseline Survival:
To obtain the estimated baseline survival Ŝ0(t), follow the
example below (for the nursing home data):
. use nurshome

. stset los fail

. stcox married health, basesurv(prsurv)

. sort los

. list los prsurv
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Estimating the Baseline Survival with Stata

los prsurv

1. 1 .99252899

2. 1 .99252899

3. 1 .99252899

4. 1 .99252899

5. 1 .99252899

.

.

.

37. 2 .98671824

38. 2 .98671824

39. 2 .98671824

40. 3 .98362595

41. 3 .98362595

.

.

.

Stata creates a predicted baseline survival estimate for every
observed event time in the dataset, even if there are duplicates.
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(2) Predicted Survival for Subgroups
To obtain the estimated survival Ŝi(t) for any other subgroup
(i.e., not the reference or baseline group), follow the Stata
commands below:
. predict betaz, xb

. gen newterm=exp(betaz)

. gen predsurv=prsurv^newterm

. sort married health los

. list married health los predsurv
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Predicting Survival for Subgroups with Stata
married health los predsurv

1. 0 2 1 .9896138

8. 0 2 2 .981557

11. 0 2 3 .9772769

................................................................

300. 0 3 1 .9877566

302. 0 3 2 .9782748

304. 0 3 3 .9732435

................................................................

768. 0 4 1 .9855696

777. 0 4 2 .9744162

779. 0 4 3 .9685058

.

.

1468. 1 4 1 .9806339

1469. 1 4 2 .9657326

1472. 1 4 3 .9578599

................................................................

1559. 1 5 1 .9771894

1560. 1 5 2 .9596928

1562. 1 5 3 .9504684
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III. Predicted medians and P-year survival

Predicted Medians
Suppose we want to find the predicted median survival for an
individual with a specified combination of covariates (e.g., a single
male with health status 0).

Three possible approaches:

(1) Calculate the median from the subset of individuals with the
specified covariate combination (using KM approach)

(2) Generate predicted survival curves for each combination of
covariates, and obtain the medians directly
OBS MARRIED HEALTH LOS PREDSURV

171 0 2 184 0.50104

172 0 2 185 0.49984

474 0 5 78 0.50268

475 0 5 80 0.49991
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897 1 2 108 0.50114

898 1 2 109 0.49986

1233 1 5 47 0.50519

1234 1 5 48 0.49875

Recall that previously we defined the median as the smallest
value of t for which Ŝ(t) ≤ 0.5, so the medians from above
would be 185, 80, 109, and 48 days for single healthy, single
unhealthy, married healthy, and married unhealthy,
respectively.
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(3) Generate the predicted survival curve from the estimated
baseline hazard, as follows:

We want the estimated median (M) for an individual with
covariates Zi. We know

S(M ;Z) = [S0(M)]e
βZi = 0.5

Hence, M satisfies (multiplying both sides by e−βZi):

S0(M) = [0.5]e
−βZi
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Example: Suppose we want to estimate the median survival
for a single unhealthy subject from the nursing home data. The
reciprocal of the hazard ratio for unhealthy (health=5) is:
e−0.165∗5 = 0.4373, (where β̂ = 0.165 for health status)

So, we want M such that S0(M) = (0.5)0.4373 = 0.7385
From the estimated baseline survival curve (this is tricky!... we
might be tempted to look at the survival estimates for single
unhealthy, but we actually need to look at those for single,
health=0):
OBS MARRIED HEALTH LOS PREDSURV

79 0 0 78 0.74028

80 0 0 80 0.73849

81 0 0 81 0.73670

So the estimated median would still be 80 days.

Note: similar logic can be followed to estimate other quantiles
besides the median.
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Estimating P-year survival

Suppose we want to find the P-year survival rate for an individual
with a specified combination of covariates, Ŝ(P ;Zi)

For an individual with Zi = 0, the P-year survival can be obtained
from the baseline survivorship function, Ŝ0(P )

For individuals with Zi 6= 0, it can be obtained as:

Ŝ(P ;Zi) = [Ŝ0(P )]e
cβZi
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Notes:

• Although I say “P-year” survival, the units of time in a
particular dataset may be days, weeks, or months. The answer
here will be in the same units of time as the original data.

• If β̂Zi is positive, then the P-year survival rate for the i-th
individual will be lower than for a baseline individual.

Why is this true?
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