Parametric Survival Analysis

So far, we have focused primarily on nonparametric and
semi-parametric approaches to survival analysis, with heavy
emphasis on the Cox proportional hazards model:

At,Z) = Ao(t) exp(BZ)

We used the following estimating approach:

e We estimated \g(t) nonparametrically, using the Kaplan-Meier
estimator, or using the Kalbfleisch /Prentice estimator under
the PH assumption

e We estimated by assuming a linear model between the log
HR and covariates, under the PH model

Both estimates were based on maximum likelihood theory.

Reading: for parametric models see Collett.




There are several reasons why we should consider some alternative
approaches based on parametric models:

e The assumption of proportional hazards might not be

appropriate (based on major departures)

e If a parametric model actually holds, then we would probably
gain efficiency

e We may want to handle non-standard situations like
— interval censoring
— incorporating population mortality

e We may want to make some connections with other familiar

approaches (e.g. use of the Poisson likelihood)

e We may want to obtain some estimates for use in designing a

future survival study.




A simple start: Exponential Regression

e Observed data: (Xj;,9;,Z;) for individual 4,
Z;, = (Zi1,Z;2, ..., Zip) represents a set of p covariates.

e Right censoring: Assume that X; = min(7;, U;)

e Survival distribution: Assume 7; follows an exponential
distribution with a parameter A that depends on Z;, say
Ai = Y (Z;). Then we can write:

T; ~ exponential(V(Z;))




First, let’s review some facts about the exponential distribution

(from our first survival lecture):

fit) = A M for t >0

S(t) = P(T>t) :/too f(u)du = e M

Ft) = PT<t)=1—eM
A(t) = % =\ constant hazard!

Al = /Ot)\(u)du:/ot)\du:At




Now, we say that A is a constant over time t, but we want to let it
depend on the covariate values, so we are setting

N = Y(Z;)

The hazard rate would therefore be the same for any two
individuals with the same covariate values.

Although there are many possible choices for ¥, one simple and
natural choice is:

W(Z;) = exp|Bo + ZiP1 + ZizP2 + ... + Zipy)

WHY?
e ensures a positive hazard
e for an individual with Z = 0, the hazard is e.

The model is called exponential regression because of the

natural generalization from regular linear regression




Exponential regression for the 2-sample case:

e Assume we have only a single covariate Z = Z,
ie., (p=1).

Hazard Rate:

W(Z;) = exp(Bo + Zi 1)

Z; =0 if individual 7 is in group 0
e Define:
Z; =1 if individual ¢ is in group 1
e What is the hazard for group 07
e¢ What is the hazard for group 17
e What is the hazard ratio of group 1 to group 07

e What is the interpretation of 5,7




Likelihood for Exponential Model

Under the assumption of right censored data, each person has one
of two possible contributions to the likelihood:

(a) they have an event at X; (6; = 1) = contribution is

Li = S(Xz) . )\(Xz) = €_>\Xi A

\ . 7 \ . 7
" ~”

survive to X fail at X;

(b) they are censored at X; (J; = 0) = contribution is

Lz’ — S(XZ) — €_>\Xi

\ . 7

survive to X;




The likelihood is the product over all of the individuals:
c = |] L
— H ()\e"\Xi)éi (G_AXi)(l_éi)

4 \ 7
i ~ " ~~

events Censorings

_ H )\57; (e—AXi)
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Maximum Likelihood for Exponential

How do we use the likelihood?
e first take the log
e then take the partial derivative with respect to 3
e then set to zero and solve for B

e this gives us the maximum likelihood estimators




The log-likelihood is:

log L

log [H Ao (e M) ]

= ) [6;log(A) — AX]

7

= ) [6;log(A) Z)\X

)

For the case of exponential regression, we now substitute the
hazard A = ¥(Z;) in the above log-likelihood:

loglL = 2[5 log(W Z\I!

)
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General Form of Log-likelihood for Right Censored Data

In general, whenever we have right censored data, the likelihood
and corresponding log likelihood will have the following forms:

L = H[MX@-)]‘” Si(X:)
logL = 2[5 log (A ZA

where
e )\;(X;) is the hazard for the individual ¢ who fails at X;

e A;(X;) is the cumulative hazard for an individual at their
failure or censoring time

For example, see the derivation of the likelihood for a Cox model
on p.11-18 of Lecture 4 notes. We started with the likelihood
above, then substituted the specific forms for A\(X;) under the PH
assumption.
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Consider our model for the hazard rate:

A=V (Z;) =exp|Bo+ Zi1f1+ Zi2f2 + ... + ZipSyp]

We can write this using vector notation, as follows:

Let Z; = (172’L17“-Zip)T
and B8 = (Bo,B1,-..-0p)

(Since By is the intercept (i.e., the log hazard rate for the baseline

group), we put a “1” as the first term in the vector Z;.)

Then, we can write the hazard as:
W(Z:) = exp|BZi]
Now we can substitute W(Z;) = exp|5Z;] in the log-likelihood shown in

(1):
log L = Z5¢(5Zi)—ZXieXP(5Zi)
i—1 i—1
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Score Equations

Taking the derivative with respect to 3y, the score equation is:

Olog L -
56 Z[5z — X exp(BZ;)]

1=1

For B, kK = 1,...p, the equations are:

Olog L -
— E [6: 2k — XiZ 7.
aﬁk; [52 1k 140k eXp(B z)]

1=1

— Z sz[éz — X eXp(ﬁzi)]
=1

To find the MLE’s, we set the above equations to 0 and solve
(simultaneously). The equations above imply that the MLE’s are
obtained by setting the weighted number of failures (> . Z;x6;)
equal to the weighted cumulative hazard (>, Z;xA(X;)).
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To find the variance of the MLE’s, we need to take the second

derivatives:

O?log L
o0, 2 Ll exp(5)

Some algebra (see Cox and Oakes section 6.2) reveals that

Var(B) = I(8)"! = [Z(I - )Z"]

where

e Z=(21,...,Z,) is a (p+ 1) x n matrix
(p covariates plus the “1” for the intercept ()

o II = diag(my,...,m,) (this means that II is a diagonal matrix,
with the terms mq,...,m, on the diagonal)
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e T; is the probability that the i-th person is censored, so
(1 — 7;) is the probability that they failed.

e Note: The information I(3) (inverse of the variance) is
proportional to the number of failures, not the sample size.

This will be important when we talk about study design.
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The Single Sample Problem (Z; = 1 for everyone):
First, what is the MLE of 3,7

We set 8(}905%)5 = > [0; — Xiexp(BoZi)] equal to 0 and solve:

mn n

=N 257; = Z[XieXP(ﬁo)]

1 =1 1 =1
d = exp(ﬁo) ZXZ
1=1

d
Z?:1 X
d

t
where d is the total number of deaths (or events), and t = ) X; is

the total person-time contributed by all individuals.
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If d/t is the MLE for )\, what does this imply about the
MLE of 3,7
1

Y

Using the previous formula Var(8) = Z(I-IzZ"|

what is the variance of BO?:

With some matrix algebra, you can show that it is:
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What about \ = ¢%?
By the delta method,

A

Var(A) = )2 Var(go)
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The Two-Sample Problem:

Z; Subjects Events Follow-up

GI‘OUp 0: Zz =0 10 do to = 2?201 Xz

GI‘OHp 1: ZZ =1 nq dl tl = Z?:ll Xz
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The log-likelihood:

loglL =

0log L
SO =

90

Olog L
91

Z 0i(Bo + P14;) — Z X exp(Bo + B1Z;)
i—1 i—1

n

Z[di — X, exp(Bo + 617;)]

1=1

(do + d1) _ (toeﬁo 4+ tleﬁoJrBl)

> Zi[6; — Xiexp(Bo + 1Z:)]
1=1

dy — t1650+51
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This implies:
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Important Result:

The maximum likelihood estimates (MLE’s) of the
hazard rates under the exponential model are the
number of events divided by the person-years of

follow-up!

(this result will be relied on heavily when we discuss study design)
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Exponential Regression: Means and Medians

Mean Survival Time

For the exponential distribution, E(T") = 1/A\.

e Control Group:
TQ = 1/5\0 = 1/€Xp<ﬁA0)
e Treatment Group:

T, = 1/5\ = 1/exp(By+ f1)
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Median Survival Time

This is the value M at which S(t) = e~ * = 0.5, so
— log(0.5)
)

M = median =

e Control Group:

8 —log(0.5) —log(0.5)
MO — ~ — ~
)\0 exp(ﬁo)
e Treatment Group:
~ —1 : —1 :
M — O%(O 5) _ ogf;(() 5)A
A1 exp(Bo + b1)
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Exponential Regression:
Variance Estimates and Test Statistics

We can also calculate the variances of the MLE’s as simple

functions of the number of failures:

A 1
var(fo) = o

A 1 1
var(f1) = do + d;
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So our test statistics are formed as:

For testing H, : 5y = 0:

Xw =

For testing H, : 51 = 0O:

How would we form confidence intervals for the hazard

ratio?
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The Likelihood Ratio Test Statistic:
(An alternative to the Wald test)

A likelihood ratio test is based on 2 times the log of the ratio of the
likelihoods under the null and alternative. We reject Hy if 2

log(LR) > X7 .05, Where

L LUL) L(Xo,jl)

L(Ho) L)
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For a sample of n independent exponential random variables with
parameter A, the Likelihood is:

L = H[)\‘siexp(—)\xi)]

i=1
= Mexp(—\ Z x;)
= M exp(—AnZ)
where d is the number of deaths or failures. The log-likelihood is
¢ = dlog(\) — \nx

and the MLE is
X =d/(nZ)
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Data:

Group 0:

Group 1:

2-Sample Case: LR test calculations

do failures among the ng females

mean failure time is o = (>..° X;)/no

dy failures among the n; males

mean failure time is 1 = (3" X;)/m1

Under the alternative hypothesis:

C
log(£)

— )\Clll exp(—A1n1%1) X )\go exp(—AonoZo)

= d1 log()\l) — )\1711.7_31 + d() lOg()\()) — )\Ono.f'o
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The MLE’s are:

dy/(n171) for males

—_
|

Ao = do/(noTo) for females

Under the null hypothesis:

L = >\d1+d0 exp[—)\(nla_zl + nofo)]
log(£) = (di1+do)log(A) — Aln1Z1 + noZo]
The corresponding MLE is

A = (di + do)/[n171 + noo)
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A likelihood ratio test can be constructed by taking twice the
difference of the log-likelihoods under the alternative and the null

hypotheses:

— dq log|dy /t1| — dg log|dg /t
)~ dalogla ] - dalogld 1o
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Nursing home example:

For the females:

o ng = 1173
o dy = 902

o 1o = 310754
o Ty =265

For the males:

e 1 =418
o dy = 367
o {1 = 7H457
e 7, = 181

Plugging these values in, we get a LR test statistic of 64.20.
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Hand Calculations using events and follow-up:

By adding up “L0S” for males to get ¢t; and for females to get g, I

obtained:

e dyp =902 (females)
d; = 367 (males)

e ty = 310754 (female follow-up)
t1 = 75457 (male follow-up)

e This yields an estimated log HR:

. dl/t1 367/75457
pr = log [ / ] log [ / ] = log(1.6756) = 0.5162

d0 /0 002/310754
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e The estimated standard error is:

\/ var(61) L \/1 L1 0.06192
var = — 4+ — = = 0.
! d, ' do 902 ' 367

e So the Wald test becomes:

32 0.51619)2
Xy = C )" _ 6951
var(fy) 0.061915

e We can also calculate 8y = log(dy/to) = —5.842,
along with its standard error se(8y) = /(1/d0) = 0.0333
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Exponential Regression in STATA

. use nurshome
stset los fail
streg gender, dist(exp) nohr
failure _d: fail
analysis time _t: los

Iteration O: log likelihood = -3352.5765
Iteration 1: log likelihood = -3321.966
Iteration 2: log likelihood = -3320.4792
Iteration 3: log likelihood = -3320.4766
Iteration 4: log likelihood = -3320.4766
Exponential regression -- log relative-hazard form
No. of subjects = 1591 Number of obs = 1591
No. of failures = 1269
Time at risk = 386211
LR chi2(1) = 64.20
Log likelihood =  -3320.4766 Prob > chi2 = 0.0000
_t | Coef. Std. Err. z P>|z| [957% Conf. Intervall]
_________ | mm o e
gender | .516186 .0619148 8.337 0.000 .3948352 .6375368
_cons |-5.842142 .0332964 -175.459 0.000 -5.907402 -5.776883

Since Z = 8.337, the chi-square test is Z? = 69.51.
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The Weibull Regression Model

At the beginning of the course, we saw that the survivorship function for

a Weibull random variable is:
S(t) = exp[=A(t")]
and the hazard function is:
At) = ratY

The Weibull regression model assumes that for someone with covariates

Z;, the survivorship function is
S(t;Zi) = exp[—W(Z;)(t")]
where W(Z;) is defined as in exponential regression to be:
U(Z;) = exp|Bo + Zirf1 + Zi2f2 + ... ZipPp]

For the 2-sample problem, we have:

V(Z;) = exp|Bo + Zi1 1]
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Weibull MLEs for the 2-sample problem:
Log-likelihood:

log L = Zéi log [HD exp(Bo + BlZz-)Xf_l} - ZXf exp(Bo + B1Z;)
i=1

1=1

= exp(Bo) =do/tor  exp(Bo+ p1) = di/tar

where
nj
L = E X, among n; subjects
i=1

A

Mo(t) = & exp(fBo) t°71 Ai(t) = & exp(Bo + Br) t°7

—_—

HR = M\(t)/Xo(t) = exp(b1)
. d1/tlli
- o (dO/tof‘ff)
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Weibull Regression: Means and Medians

Mean Survival Time

For the Weibull distribution, E(T) = AX"Y®T[(1/k) + 1].

e Control Group:

To = Xy /% T[(1/k)+1]

e Treatment Group:

T, = MN"Y9T1[1/k)+ 1]
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Median Survival Time

i|1/KJ

For the Weibull distribution, M = median = [_1%(0'5)

e Control Group:

B 1/&
Mo — { 10%(0.5)}
Ao
e Treatment Group:
B 1/&
- { lo%(0.5)}
A1

where \o = exp(Bo) and \; = exp([S’o + 31)
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Note: the symbol I' is the “gamma’” function. If x is an integer, then

T(z) = (z—1)!

In cases where z is not an integer, this function has to be evaluated

numerically. In homework and labs, I will supply this value to you.

The Weibull regression model is very easy to fit:

e In STATA: Just specify dist(weibull) instead
of dist(exp) within the streg command

e In SAS: use model option dist=weibull within the proc lifereg

procedure

Note: to get more information on these modeling procedures, use the

online help facilities. For example, in STATA, you can type:

.help streg
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Weibull in Stata:

streg gender, dist(weibull) nohr

failure _

analysis time _

fail
los

Fitting constant-only model:

Iteration
Iteration
Iteration
Iteration
Iteration

Fitting full model:

Iteration
Iteration
Iteration
Iteration

Iteration

0:
1:

2:
3:
4

D W N - O

log
log
log
log
log

log
log
log
log
log

likelihood
likelihood
likelihood
likelihood
likelihood

likelihood
likelihood
likelihood
likelihood
likelihood

-3352.5765
-3074.978
-3066.1526
-3066.143
-3066.143

-3066.143
-3045.8152
-3045.2772
-3045.2768
-3045.2768
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Weibull regression -- log relative-hazard form

Number of obs

LR chi2(1)
Prob > chi?2

1591

41.73
0.0000

z P>|z]| [95% Conf.

6.663 0.000 .2920903
-39.661 0.000 -3.711773

Intervall

.5355261
-3.362191

_________ +-————————_——_——_-—-_-e-—_,—_-v;—-:-—-:—-:—-:-—-—-C- —-C-—;-—;—-;—;m——-F—C-—;-m———-—;—-—;-—;—rrrr— = — =

-20.985 0.00 -.5325343

-.4415569

No. of subjects = 1591
No. of failures = 1269
Time at risk = 386211
Log likelihood =  -3045.2768
_t | Coef. Std. Err.
gender | .4138082 .0621021
_cons | -3.536982 .0891809
/ln_p | -.4870456 .0232089
p | .614439 .0142605
1/p | 1.627501 .0377726

.5871152
1.5565127

.6430345
1.703243
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Comparison of Exponential with Kaplan-Meier

We can see how well the Exponential model fits by comparing the
survival estimates for males and females under the exponential
model, i.e., P(T >t) = e(=*:!) to the Kaplan-Meier survival

estimates:
Predicted Survival for Exponential model vs Kaplan —Meier

— s — — = —— — o
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Comparison of Weibull with Kaplan-Meier

We can see how well the Weibull model fits by comparing the
survival estimates, P(T > t) = e(=*:*") to the Kaplan-Meier

survival estimates.
Predicted Survival for Weibull model vs Kaplan—Meier

—as — — = —— =— o

Which do you think fits best?
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Other useful plots for evaluating fit to exponential and
Weibull models

o —log(S(t)) vst

o log[—1log(S(t))] vs log(t)

Why are these useful?
If T is exponential, then S(t) = exp(—A\t))

so  log(S(t)) = =X\t
and Alt) = Mt

a straight line in ¢ with slope A and intercept=0
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If T is Weibull, then S(t) = exp(—(\t)")

so log(S(t)) = —At"
then At) = Mt°
and log(—log(S(t))) = log(A) + & xlog(t)

a straight line in log(t) with slope x and intercept log(\).
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So we can calculate our estimated A(t) and plot it versus ¢, and if
it seems to form a straight line, then the exponential distribution is
probably appropriate for our dataset.

Plots for nursing home data: A(t) vs ¢

Estimated cumulative hazard vs time

Negative Log SOF

0100 200 300 400 500 600 700 800 900 000 1100 1200
05
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Or we can plot log A(t) versus log(t), and if it seems to form a
straight line, then the Weibull distribution is probably appropriate

for our dataset.

A

Plots for nursing home data: log|—log(S(t))] vs log(t)

Estimated log cumulative hazard vs log time

—

Log Negative Log SOF

T = GO PO — O M D OO B~ OO O
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Comparison of Methods
for the Two-sample problem:

Data:
Z; Subjects Events Follow-up
GI‘OHp 0: Zz =0 (1) do to — Z?:Ol Xz
Group 1: Z; =1 nq dy th=>"1 Xi

In General:
A(t) = At,Z=2) for z =0 or 1.

The hazard rate depends on the value of the covariate Z. In this

case, we are assuming that we only have a single covariate, and it is
binary (Z =1 or Z = 0)
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Reading from Collett:

Section(s) Description

4.1.1, 4.1.2  Exponential properties

4.1.3 Weibull properties

4.3.1, 4.4.2  Exponential ML estimation

4.3.2 Weibull ML estimation

4.5 General Weibull regression

4.6 Model selection - Weibull regression
4.7 Weibull/AFT model connection
Ch.6 AFT - Other parametric models
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MODELS

Exponential Regression:

Az (1)

= )\0
A1

HR

= exp(Bo + B12)

= exp(fo)
= exp(Bo + 51)

= exp(f)

51




Weibull Regression:

Az (1)

= Ao
A1

HR

= exp(Bo + B Z) t"

= Kk exp(By) t"!

= & exp(fo + B1) t*7

= exp(f1)

Proportional Hazards Model:

A:(t) =

= \g =
Al =

HR

Ao(t) exp(51)

Ao(t)
Ao(t) exp(B1)
exp(f1)

KM?
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Remarks

e Exponential model is a special case of the Weibull model with

x = 1 (note: Collett uses v instead of k)

e Exponential and Weibull models are both special cases of the
Cox PH model.

How can you show this?

e If either the exponential model or the Weibull model is valid,
then these models will tend to be more efficient than PH
(smaller s.e.’s of estimates). This is because they assume a
particular form for \g(¢), rather than estimating it at every
death time.
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For the Exponential model, the hazards are constant over time,
given the value of the covariate Z;:

Zz' = 0= 5\0 — exp(ﬁAo)

Zi=1= X\ = exp(80—|—81)

For the Weibull model, we have to estimate the hazard as a

function of time, given the estimates of 3y, 81 and k:
Zi=0= Ao(t) = & exp(fo) t*!
Zz' =1= 5\1(15) = kK eXp(BO -+ Bl) t’%_l

However, the ratio of the hazards is still just exp(Bl), since the

other terms cancel out.
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Here’s what the estimated hazards look like for the

nursing home data:
Estimated Hazards for Weibull & Exponential by Gender

D T T O o T 9 N 9D Ty
[ —
[ —
—_—
<>
s

Seo
-~
-~
=
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Proportional Hazards Model:

To get the MLE’s for this model, we have to maximize the Cox

partial likelihood iteratively. There are not closed form expressions

like above.
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Comparison with Proportional Hazards Model

stcox gender, nohr
failure _d: fail

analysis time _t: 1los

Iteration O: log likelihood = -8556.5713
Iteration 1: log likelihood = -8537.8013
Iteration 2: log likelihood = -8537.5605
Iteration 3: log likelihood = -8537.5604
Refining estimates:
Iteration O: log likelihood = -8537.5604
Cox regression -- Breslow method for ties
No. of subjects = 1591 Number of obs = 1591
No. of failures = 1269
Time at risk = 386211
LR chi2(1) = 38.02
Log likelihood =  -8537.5604 Prob > chi2 = 0.0000
_t |
_d | Coef.  Std. Err. z P>|z| [95% Conf. Intervall]
_________ o
gender | .3943588 .0621004 6.350 0.000 .2726441 .5160734

For the PH model, 51 = 0.394 and HR = %39 = 1.483.
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Comparison with the Logrank and Wilcoxon Tests

sts test gender
failure _d: fail

analysis time _t: 1los

Log-rank test for equality of survivor functions

| Events
gender | observed expected
_______ o
0 | 902 995.40
1 | 367 273.60
_______ o
Total | 1269 1269.00
chi2(1) = 41.08
Pr>chi2 = 0.0000
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sts test gender, wilcoxon

failure _d: fail

analysis time _t: 1los

Wilcoxon (Breslow) test for equality of survivor functions

| Events Sum of
gender | observed expected ranks
_______ e
0 | 902 995.40 -99257
1 | 367 273.60 99257
_______ e
Total | 1269 1269.00 0
chi2(1) = 41.47
Pr>chi2 = 0.0000
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Comparison of Hazard Ratios and Test Statistics

for effect of Gender

Wald
Model/Method A0 A1 HR log(HR) se(log HR)  Statistic
Exponential 0.0029 0.0049 1.676 0.5162 0.0619 69.507
Weibull
t =50 0.0040  0.0060  1.513 0.4138 0.0636 42.381
t =100 0.0030  0.0046  1.513
t = 500 0.0016  0.0025 1.513
Logrank 41.085
Wilcoxon 41.468
Cox PH
Ties=Breslow 1.483 0.3944 0.0621 40.327
Ties=Discrete 1.487 0.3969 0.0623 40.565
Ties=Efron 1.486 0.3958 0.0621 40.616
Ties=Exact 1.486 0.3958 0.0621 40.617
Score (Discrete) 41.085
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Comparison of Mean and Median Survival Times by

Gender
Mean Survival Median Survival
Model /Method Female Male Female  Male
Exponential 344.5 205.6 238.8 142.5
Weibull 461.6 2354 174.2 88.8
Kaplan-Meier 318.6 200.7 144 70
Cox PH 131 72

(Kalbfleisch /Prentice)
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The Accelerated Failure Time Model

The general form of an accelerated failure time (AFT) model is:
log(T;) = BarTZ; + o€
where

e log(T;) is the log of a survival time

e Gapr is the vector of AFT model parameters corresponding to
the covariate vector Z;

® ¢ is a random “error” term
e o is a scale factor

In other words, we can model the log-survival times as a
linear function of the covariates!

The streg command in STATA (without the exponential or weibull
option) uses this “log-linear” model for fitting parametric models.

62




By choosing different distributions for ¢, we can obtain different
parametric distributions:

e Exponential
e Weibull

e Gamma

e Log-logistic
e Normal

e Lognormal

We can compare the predicted survival under any of these
parametric distributions to the KM estimated survival to see which
one seems to fit best.

Once we decide on a certain class of model (say, Gamma), we can
evaluate the contributions of covariates by finding the MLE’s, and
constructing Wald, Score, or LR tests of the covariate effects.
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We can motivate the AFT model by first demonstrating the
following two relationships:

1. For the Exponential Model:

If the failure times T; = T'(Z;) follow an exponential distribution,
ie., S;(t) = et with \; = exp(BZ;), then

log(Ti) = —fBZ;+ ¢

where € follows an extreme value distribution (which just means

that e follows a unit exponential distribution).
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2. For the Weibull Model:
If the failure times T; = T'(Z;) follow a Weibull distribution, i.e.,
Si(t) = eMt" with \; = exp(BZ;), then

log(T;) = —o0BZ;+ oe

where € again follows an extreme value distribution, and o = 1/k.

In other words, both the Exponential and Weibull model can be
written in the form of a log-linear model for the survival times, if

we choose the right distribution for e.
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The log-linear form for the exponential can be derived by:
(1) Creating a new variable Ty = Tz X exp(S8Z;)

(2) Taking the log of T, yielding log(Tz) = log (%)

Step (1): For an exponential model, recall that:

Si(t) = Pr(Ty >t) =e M, with A\ = exp(B8Z;)
It follows that Ty ~ exp(1):
Solt) = Pr(Ty > 1) = Pr(Ty-exp(BZ) > 1
= Pr(Tz > texp(—pZ))

= exp[-At exp(—SZ)]
= exp[—exp(BZ) t exp(—pZ)]
= exp(—1)
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Step (2): Now take the log of the survival time:

log(T7) = log <expfgzi)>

= log(7p) — log (exp(BZ;))

= —pBZ;+ log(Tp)

— —BZ,L + €

where € = log(T}) follows the extreme value distribution.
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Relationship between Exponential and Weibull
If T, has a Weibull distribution, i.e., S(t) = e "

with A = exp(B8Z;), then you can show that the new variable
T = T8

follows an exponential distribution with parameter exp(5Z;).

Based on the previous page, we can therefore write:

log(T*) = —BZ + ¢

(where € has an extreme value distribution.)
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But since log(T™*) = log(T") = k x log(T'), we can write:

log(T) = log(T™)/~k
= (1w (B2 + )
= —0fB%Z;+ o€

where 0 = 1/k.
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This motivates the following general definition of the
Accelerated Failure Time Model by:

log(1;) = BarrZ; + o€

where € is a random “error” term, o is a scale factor, Y is the log of

a survival random variable, and

BarT = —0f

where §. came from the hazard A = exp(6Z).
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The defining feature of an AFT model is:

S(t;Z) = Si(t) = So(¢ 1)

That is, the effect of covariates is to accelerate (stretch) or
decelerate (shrink) the time-scale.

Effect of AFT on hazard:

Ai(t) = ¢ Ao(91)
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One way to interpret the AFT model is via its effect on median
survival times. If S;(t) = 0.5, then Sy(¢t) = 0.5. This means:

M; = oMy

Interpretation:

e For ¢ < 1, there is an acceleration of the endpoint
(if My = 2yrs in control and ¢ = 0.5, then M; = 1yr.

e For ¢ > 1, there is a stretching or delay in endpoint

e In general, the lifetime of individual 7 is ¢ times what they

would have experienced in the reference group

Since ¢ must be positive and a function of the covariates, we model

¢ = exp(SZ;).
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When does Proportional hazards = AFT?

According to the proportional hazards model:
S(t) = So(t)=PF%:)
and according to the accelerated failure time model:

S(t) = So(texp(5Zi))

Say T; ~ Weibull(\, k). Then A(t) = Art("=1)
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Under the AFT model:
Ai(?)

¢ Ao(ot)

= 7% \g(eP%it)

= % Aok (e7%it) (r=1)
— (eBZ’i)KJ )\Oﬁ;t(ﬁ;_l)
But this looks just like the PH model:
Ai(t) = exp(B7Z;) Ao(?)

It turns out that the Weibull distribution (and exponential, since
this is just a special case of a Weibull with x = 1) is the only one
for which the accelerated failure time and proportional hazards
models coincide.
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Special cases of AFT models

e Exponential regression: o = 1, € following the extreme value

distribution.

e Weibull regression: o arbitrary, € following the extreme value

distribution.

e Lognormal regression: o arbitrary, € following the normal

distribution.
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Examples in stata: Using the STREG command, one has the
following options of distributions for the log-survival times:

streg trt, dist(lognormal)
e exponential

e weibull

e gompertz

e lognormal

e loglogistic

e gamma
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streg gender, dist(exponential) nohr

Coef. Std. Err. A P>|z]| [95% Conf. Intervall

.516186 .0619148 8.337 0.000 .3948352 .6375368

_t | Coef. Std. Err. z P>|z| [95% Conf. Intervall
_________ e e e
gender | .4138082 .0621021 6.663 0.000 .2920903 .5355261
1/p | 1.627501 .0377726 1.555127 1.703243

_t | Coef. Std. Err. z P>|z]| [95% Conf. Intervall
_________ o e
gender | -.6743434 .1127352 -5.982 0.000 -.8953002 -.4533866
_cons | 4.957636 .0588939 84.179  0.000 4.842206 5.073066
sigma | 1.94718 .040584 1.86924 2.028371
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. streg gender, dist(gamma)

_t | Coef. Std. Err. z P>|z]| [95% Conf. Intervall
_________ o e
gender | -.6508469 .1147116 -5.674 0.000 -.8756774 -.4260163
_cons | 4.788114 .1020906 46.901 0.000 4.58802 4.988208
sigma | 1.97998 .0429379 1.897586 2.065951

This gives a good idea of the sensitivity of the test of gender to the
choice of model. It is also easy to get predicted survival curves
under any of the parametric models using the following:

streg gender, dist(gamma)

stcurv, survival

The options HAZARD and CUMHAZ can also be substituted for
SURVIVAL above to obtain plots.
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