
Time-dependent covariates

In many situations it is useful to consider covariates that change

over time. These are called “time-dependent” covariates. Such are

of two kinds:

1. Internal variables

These are related to each patient and are measurable while the

patient is under observation

2. External variables

These are variables that do not depend on the physical

observation of the patient such as

(a) Variables such as age that are known once the birth date or

age at enrollment to the study is known

(b) Variables that are independent of any individual like levels

of pollution or temperature
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These time-updated or dependent variables can be entered into the

Cox model in direct extension of the simpler non-time-updated case

λi(t;Zi) = λ0(t) exp
n∑

j=1

βjZij(t)

where λ0(t) is the baseline hazard associated with all covariates

being equal to zero during all time points t. So the Cox model is

generalized as

n∑
i=1

δi


p∑

j=1

βjZij(ti)− log
∑

l∈R(ti)

exp

 p∑
j=1

βjZjl(ti)


this means that we will need to have all the variable (especially

internal ones) available at each event time. It is important to

understand that this is no longer a proportional hazards model.
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When the value of a time-updated covariate is not known during a

failure time t we can use various methods to fill in a value for a

particular time (see figure below). We can either extend the most

recent value or, if two values are available on either side of the time

point we can use interpolation.
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The Stanford heart transplant data

We present here the famous Stanford heart transplant data set

(Crowley & Hu, 1977). In this data set, 103 individuals waiting for

a heart transplant were followed for survival. The problem that the

study presented to the original investigators (and us) is that the

effect of heart transplantation on survival is impossible to assess

given the methods that we have been exposed to.

The reason is that the hazard of an individual is different before

and after a transplantation and, for an individual to receive a

transplant, they have to have survived up to the point that an

organ is available. As Collett describes the situation (Section 7.3),

the two groups are also not comparable at the time origin (entry

into the study and time from transplantation).
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Before considering the correct analysis, let’s perform a naive
analysis involving a conventional PH model

. stcox transplant

failure _d: fail

analysis time _t: survtime

Iteration 0: log likelihood = -298.32561

Iteration 1: log likelihood = -287.83084

Iteration 2: log likelihood = -285.46286

Iteration 3: log likelihood = -285.46262

Refining estimates:

Iteration 0: log likelihood = -285.46262

Cox regression -- Breslow method for ties

No. of subjects = 103 Number of obs = 103

No. of failures = 75

Time at risk = 31948

LR chi2(1) = 25.73

Log likelihood = -285.46262 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

transplant | .2675782 .0652942 -5.40 0.000 .1658599 .4316781

------------------------------------------------------------------------------
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This analysis indicates that transplantation is associated with one

quarter of the hazard compared to no transplantation.

Given the misgivings about the appropriateness of the comparison,

the solution is to introduce a time-updated covariate Z(t) so that

Z(t) =

 1, if t > To

0, if t ≤ To

where To is the time of transplantation.

Crowley and Hu suggest that the hazard associated with this

situation is

λi(ti;Zi) = λ0(t) exp {ηi + β1Z1i(t)}

where ηi is the summation of the products of all other covariates

and their associated coefficients (excluding Z1i(t)) measured on

each individual i at each time t.
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The hazard ratio (according to Crowley and Hu, 1977) is

λ(ti;Z1(t))

λ(ti;Z0(t))
=

 exp {ηi} , before tranplantation

exp {ηi + β1} , after tranplantation

If β1 < 0 then the hazard ratio of two individuals (one without a

transplant and one with one) looks as follows (where T0 is the time

of transplantation:
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In the original analysis, the effect of transplantation on the hazard

is assessed by testing the significance of the coefficient β1.

The null hypothesis H0 : β1 = 0 suggests that there is no effect on

survival resulting from transplantation. On the other hand, the

alternative hypothesis HA : β1 < 0 suggests a beneficial effect of the

transplantation, while the alternative HA : β1 > 0 suggests a

detrimental effect (increase in hazard of death) conferred by

tranplantation.
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Cox & Oakes’ reanalysis of the heart transplant data

The previous model does not account for the fact that a heart

tranplantation is a delicate and very dangerous operation. Thus,

even if the hazard is ultimately reduced from the pre-transplant

levels, a period of very high hazard is likely to follow the operation.

Cox and Oakes (1984) improve on the analysis of Crowley and Hu

by introducing factors β2 and β3 as follows:

λi(ti;Zi) = λ0(t) exp {ηi + β1 + β2 exp[−β3(t− T0)]}

The hazard ratio is

λ(ti;Z1(t))

λ(ti;Z0(t))
=


exp {ηi} , before tranplantation

exp {ηi + β1 + β2} , right at tranplantation
exp {ηi + β1} , asymptotically (i.e., at t → ∞)
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The Cox & Oakes reanalysis results in a hazard ratio that looks

graphically as follows:
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Notes

• In the reanalysis of Cox & Oakes, the effect of transplantation on

the hazard is assessed by a more complex procedure.

• A large positive β3 suggests a steep decrease of the hazard from an

original level, just after transplantation, of exp(ηi + β1 + β2) to a

level exp(ηi + β1). A large positive value of β2 suggests a large

temporary increase of the hazard ratio post-transplantation.

Conversely a smaller value of β2 suggests small or negligible such

increases.

• The latter asymptote (exp(ηi + β1)) depends on the magnitude and

sign of β1. The previous comments apply. That is, a large negative

β1 suggests a significant survival decrease (eventually) post

tranplantation.

• Note that the Cox & Oakes model is equivalent to the Crowley &

Hu model if β2 = 0. The disadvantage of this model is that it

requires specialized software to fit it.
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To perform any analysis involving the time-updated transplant

status, we need to create two lines (one pre-transplantation and one

post-transplantation) for the patients that received a transplant.

Thus, the line for patient 95 for example in the original data set is

patid year age fail survtime priorsurg transplant waitime missallele missantigen misscore

95 73 40 1 16 0 1 2 0 0 0.00

where waitime is the waiting time to transplantation. The data for
this patient will be recoded as follows:

patid year age fail survtime priorsurg transplant waitime missallele missantigen misscore

95 73 40 0 2 0 0 2 0 0 0.00

95 73 40 1 16 0 1 2 0 0 0.00

in other words, we introduce a first (pre-transplantation) line with

time going from [0, 2) (i.e., just prior to transplantation.

12



During that time δi = 0 since no failure has occurred, and Z1(t) = 0

since a transplantation has not taken place. The second line

(post-transplantation) is associated with the time interval [2, 16) i.e,

the 14 months of post-transplantation survival. During that time δi

is set to whatever the failure status of the patient is (in this case

the patient died under observation, so δi = 1. Also Zi(t) = 1 here.

A situation arises with patient 38, who died on the same day of the

transplantation (so waitime=survtime).

patid year age fail survtime priorsurg transplant waitime missallele missantigen misscore

38 70 41 1 5 0 1 5 3 0 0.87

Since this would cause most statistical software to exclude this case
from consideration, we add a small fraction to the survival time
(i.e., we assume that the patient lived a short time after receiving
transplantation). This patient’s data will look as follows:

patid year age fail survtime priorsurg transplant waitime missallele missantigen misscore

38 70 41 0 5 0 0 5 3 0 0.87

38 70 41 1 5.1 0 1 5 3 0 0.87
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The STATA analysis of the Crowley & Hu model with only
transplantation as the covariate is as follows:

. stcox tx, nohr

failure _d: censor

analysis time _t: time

id: patid

Iteration 0: log likelihood = -298.14428

Iteration 1: log likelihood = -298.07974

Iteration 2: log likelihood = -298.07974

Refining estimates:

Iteration 0: log likelihood = -298.07974

Cox regression -- Breslow method for ties

No. of subjects = 99 Number of obs = 172

No. of failures = 75

Time at risk = 31930.1

LR chi2(1) = 0.13

Log likelihood = -298.07974 Prob > chi2 = 0.7194

------------------------------------------------------------------------------

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

tx | .1068495 .2984287 0.36 0.720 -.47806 .6917591

------------------------------------------------------------------------------
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The estimate of β1 is β̂1 = 0.1068 associated with a hazard ratio of

of e(β1) = 1.113.

The interpretation is that transplantation increases slightly the

hazard for death (by about 11%), an increase that is not

statistically significant (p=0.720).

The log hazard ratio represented by β1 concerns the comparison

between a person that has undergone transplantation and one that

has not .
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