Applied Survival Analysis Lab 6: Model Selection in Survival Analysis

Today, we are going to understand Collet's approach for model selection within the context of a proportional hazards model and to assess the overall fit of the model by checking the residuals.

1. Collet's Approach for Model Selection:

We are going to work with the MAC dataset (*mac.dta*), focusing on the outcome dthstat which equals 1 if a patient died and 0 otherwise. The time to death is dthtime and subjects who did not die are censored at their time of study discontinuation.

The covariates of interest for the purpose of this lab are:

agecat	sex	cd4	karnof
ivdrug	antiret	rif	clari

The significance of their effect will be tested using the Wald test. This time we are interested in the time to death. So we are going to *stset* the data in the following way:

```
stset dthtime, failure(dthstat)
```

Step 1: Fit univariate models to choose candidate predictors. Use criterion of $p \le 0.15$ to identify predictors.

stcox agecat, nohr

```
failure _d: dthstat
analysis time _t: dthtime
Iteration 0: log likelihood = -3393.2516
Iteration 1: log likelihood = -3385.2229
Iteration 2: log likelihood = -3385.2133
Refining estimates:
Iteration 0:
              log likelihood = -3385.2133
Cox regression -- Breslow method for ties
                        1175
No. of subjects =
                                                       Number of obs =
                                                                                 1175
No. of failures =
                            514
No. of fallures = 514
Time at risk = 619081
                                                       LR chi2(1) = 16.08

Prob > chi2 = 0.0001
Log likelihood = -3385.2133
      _t |
                                          z \qquad P > |z|
      _d |
                Coef. Std. Err.
                                                              [95% Conf. Interval]
                                                             .1843065
  agecat | .3663803 .0928965 3.944 0.000
                                                                             .5484541
```

stcox sex, nohr

```
failure _d: dthstat
   analysis time _t: dthtime
Iteration 0: log likelihood = -3393.2516
Iteration 1: log likelihood = -3392.0249
Iteration 2: log likelihood = -3392.0109
Iteration 3: log likelihood = -3392.0109
Refining estimates:
Iteration 0: log likelihood = -3392.0109
Cox regression -- Breslow method for ties
                                                      Number of obs =
No. of subjects =
                          1175
                                                                               1175
No. of failures = Time at risk =
                           514
                         619081
                                                       LR chi2(1)
                                                                               2.48
                                                       Prob > chi2 =
Log likelihood = -3392.0109
                                                                             0.1152
      _t |
      _d |
               Coef. Std. Err.
                                               P> | z |
                                                             [95% Conf. Interval]
  sex | .2360791 .1453047 1.625 0.104 -.048713 .5208711
```

(a) Fit all other univariate models of interest and fill in the below summary table of univariate predictors:

Predictor	Estimate	s.e.	p-value	HR
agecat				
sex				
cd4				
karnof				
ivdrug				
antiret				
rif				
clari				

Is the effect of therapy with rif and/or clari significant?

Step 2:

- (i) Fit a multivariate model with all significant predictors ($p \le 0.15$) from Step 1:
- (ii) Then use backwards selection to eliminate non-significant ones in a multivariate framework (use $p \le 0.10$ for determining which ones to eliminate).

(To use automatic variable selection in STATA, we use the sw stcox command).

Step 3:

Use forwards selection to add any variables not significant at Step 1 to the multivariate model obtained at the end of Step 2. To be conservative, use $p \le 0.10$ for deciding whether to add variables or not.

Note that we specify the option lockterm1 to force the variables in the first parenthesis into the model.

sw stcox (agecat sex cd4 karnof antiret) ivdrug (rif clari), pe(0.10) lockterm1

```
(2 obs. dropped due to estimability)
                 begin with term 1 model
                            for all terms in model
Cox regression -- Breslow method for ties
No. of subjects = 1175
No. of failures = 514
                                                                    Number of obs = 1175
Time at risk = 619081
                                                                    LR chi2(5)
Prob > chi2
                                                                                      =
                                                                                               149.78
Log likelihood =
                        -3318.3627
_____
            _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
______

    agecat
    1.420866
    .1334364
    3.74
    0.000
    1.181993
    1.708013

    sex
    1.369403
    .2001345
    2.15
    0.031
    1.028326
    1.823611

    cd4
    .9895408
    .001542
    -6.75
    0.000
    .9865232
    .9925676

    karnof
    .9626493
    .0049101
    -7.46
    0.000
    .9530736
    .9723211

    antiret
    .7926794
    .0786474
    -2.34
    0.019
    .652595
    .9628339
```

(b) Are there any other variables added to the model?

Step 4:

Create all possible 2-way interaction terms based on the main effects in the model at the end of Step 3. Add these to the multivariate model and use a backwards selection procedure to eliminate those not significant at p = 0.10. Remember to force the inclusion of all of the main effects from the end of Step 3 in the model.

First we are going to generate all possible 2-way interactions:

```
gen agsex=agecat*sex

gen agcd4=agecat*cd4

gen agkar=agecat*karnof

gen aganti=agecat*antiret

gen sexcd4=sex*cd4

gen sexkar=sex*karnof

gen sexanti=sex*antiret

gen cd4kar=cd4*karnof

gen cd4anti=cd4*antiret

gen karanti=karnof*antiret
```

(c) Now fit the appropriate model that was described above in Step 4.

Step 5:

Check if all variables are significant. If a main effect has become non-significant and there are no interactions involving this main effect in the model at the end of Step 4, then you may consider excluding it. Discretion is needed in determining whether to include covariates and/or interactions that are marginally significant. At this stage, for the purposes of this exercise, use a somewhat stricter significance level of $\alpha = 0.02$ to account for the multiple tests we have conducted.

Step 6:

You may also want to include some models with and without certain marginally significant covariates to evaluate the change in the AIC criterion or consider alternate codings of covariates (eg. cd4cat instead of cd4 or age instead of agecat). This time we could use the stepwise backwards procedure with probability of entry pe = 0.05 and probability of removal pr = 0.10.

(i) (cd4cat instead of cd4) sw stcox agecat sex cd4cat karnof antiret, pe(0.05) pr(0.10)

(2 obs. dropped due to estimability)

begin with full model

p < 0.1000 for all terms in model

Cox regression -- Breslow method for ties

No. of subjects = 1175 Number of obs = 1175

No. of failures = 514

No. of subjects = 1175 No. of failures = 514 Time at risk = 619081 LR chi2(5) = 132.52 Log likelihood = -3326.9922 Prob > chi2 = 0.0000

(ii) (age instead of agecat)

In this case we are including age instead of agecat. To use the stepwise forwards procedure we have to add the option **forward** (the default is backwards):

sw stcox age sex cd4 karnof antiret, pe(0.05) pr(0.10) forward

Cox regression -- Breslow method for ties

 dthtime
 Coef.
 Std. Err.
 z
 P>|z|
 [95% Conf. Interval]

 karnof | -.0376065
 .0051224
 -7.342
 0.000
 -.0476463
 -.0275666

 cd4 | -.0105009
 .0015625
 -6.720
 0.000
 -.0135635
 -.0074384

 age | .0211124
 .0049501
 4.265
 0.000
 .0114104
 .0308145

 sex | .3210042
 .1460386
 2.198
 0.028
 .0347737
 .6072346

 antiret | -.2099265
 .0996185
 -2.107
 0.035
 -.4051752
 -.0146778

(d) Summarize the final models at the ends of Steps 1-6 in a table, such as that shown below. Use $\alpha = 3$ in calculating the AIC value ($AIC = -2logL + (\alpha * q)$) for each of the models below. Which model appears best in terms of the AIC criterion?

Model	Covariates	-2logL	\overline{q}	AIC
Step 2 (i)	agecat, karnof, sex, cd4, antiret	6636.7	5	
Step 2 (ii)	(same as above)			
Step 3	(same as above)			
Step 4	Step3 +karnof*antiret,sex*antiret	6628.6	7	
Step 5	agecat, karnof, cd4	6645.6	3	
Step 6 (i)	agecat, karnof, sex, cd4cat, antiret	6654.0	5	
Step 6 (ii)	age, karnof, sex, cd4, antiret	6633.4	5	

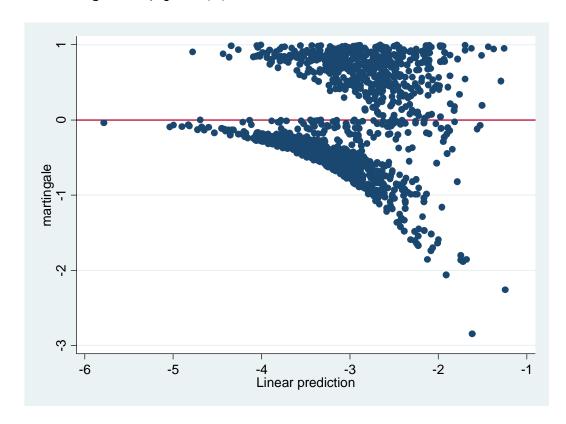
2. Assessing Overall Model Fit:

We will assess the overall fit of the model in Step 6 (ii).

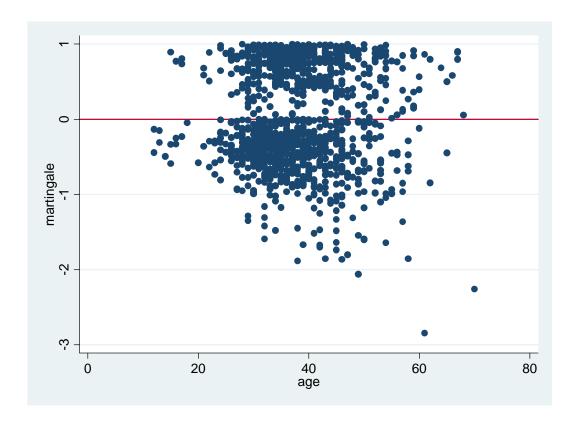
♦ Martingale Residuals:

First we will fit the model along with the option mgale (newvar) to get the *Martingale* residuals:

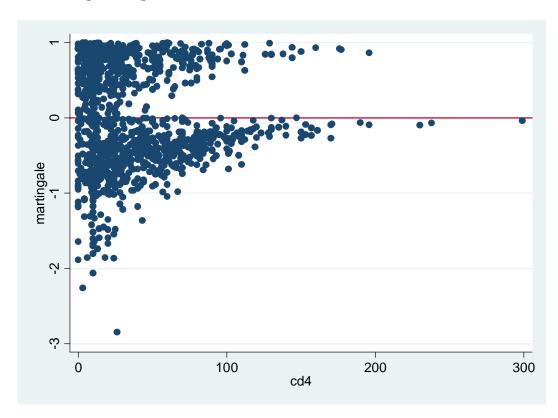
```
stcox age sex cd4 karnof antiret , mgale(mg)
```

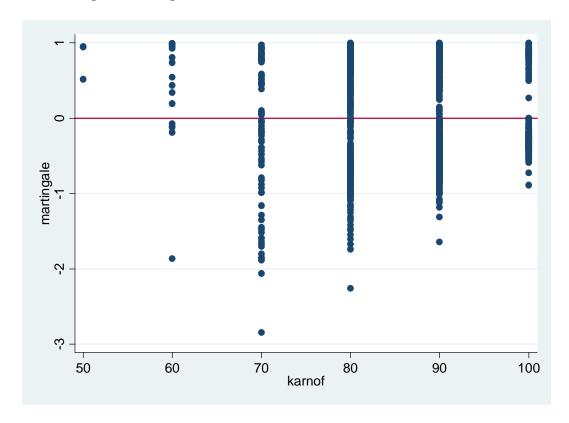

```
failure _d: dthstat
  analysis time _t: dthtime
Iteration 0: log likelihood = -3393.2516
Iteration 1:
           log\ likelihood = -3318.6397
Iteration 2: log likelihood = -3316.7201
Iteration 3: log likelihood = -3316.7163
Refining estimates:
Iteration 0: log likelihood = -3316.7163
Cox regression -- Breslow method for ties
                 1175
No. of subjects =
                                      Number of obs =
No. of failures =
                   514
Time at risk =
                 619081
                                      LR chi2(5) = Prob > chi2 =
                                                      153.07
Log likelihood = -3316.7163
                                                      0.0000
    _t |
    _d | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
______
   karnof
antiret |
```

Once the martingale residuals are created, you usually plot them versus the predicted log HR or any of the individual covariates to assess the model fit.


To get the predicted log HR we use the following command: predict betaz, xb (2 missing values generated)

And the graphs:


scatter mg betaz, yline(0)


scatter mg age, yline(0)

scatter mg cd4, yline(0)

scatter mg karnof, yline(0)

♦ Generalized (Cox-Snell) Residuals:

To get generalized residuals in STATA we use the previous stcox command with the mgale option and then use the predict command with csnell option:

```
stcox age sex cd4 karnof antiret , mgale(mg)
```

predict csres, csnell

(2 missing values generated)

Then produce the informative graph for the generalised residuals we have to define a survival dataset using the Cox-Snell residuals as the "pseudo" failure times.

stset csres, failure(dthstat)

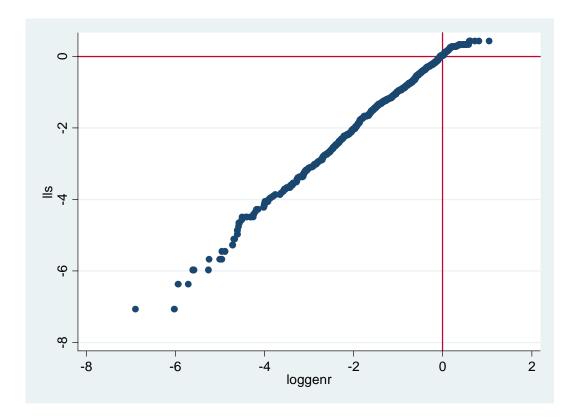
```
failure event: dthstat ~= 0 & dthstat ~= .

obs. time interval: (0, csres]
exit on or before: failure

1177 total obs.
2 event time missing (csres==.)
3 obs. end on or before enter()

1172 obs. remaining, representing
514 failures in single record/single failure data
514 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 2.886069
```

```
sts gen survcs=s
```


```
gen lls=log(-log(survcs))
(6 missing values generated)
```

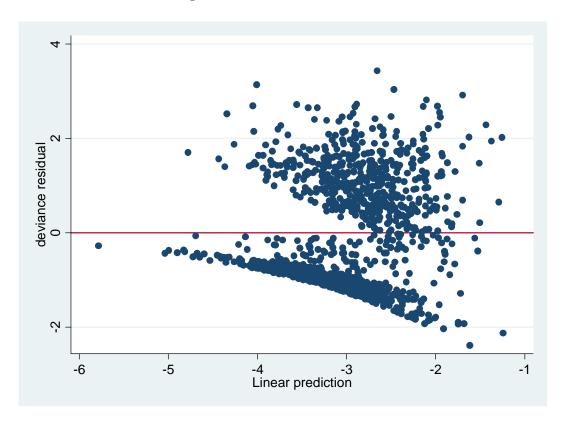
gen loggenr=log(csres)

(5 missing values generated)

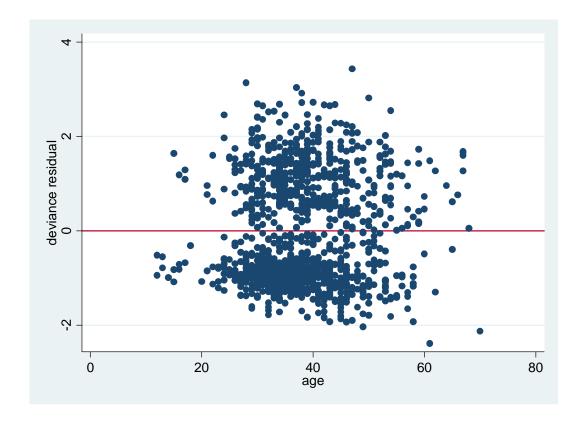
Then we want to plot:

scatter lls loggenr, yline(0) xline(0)

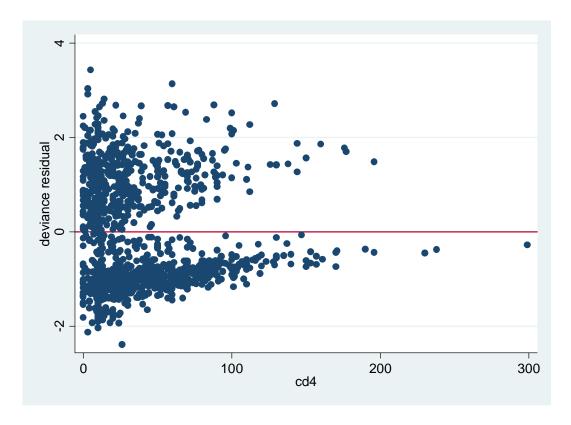
If the data fit the model well we would expect a straight line.

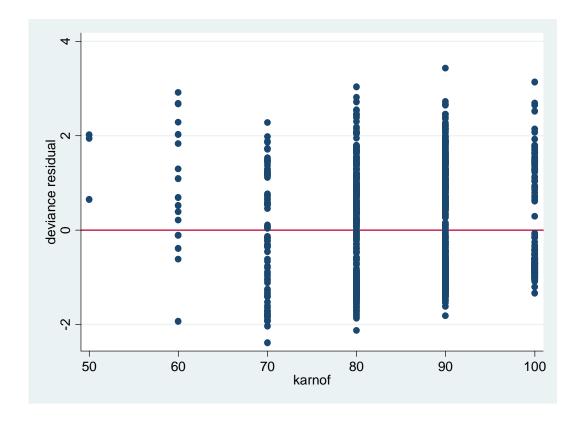

♦ Deviance Residuals:

Again to get the deviance residuals in STATA we first use the stcox command with the mgale option (make sure to drop mg before and stset the dataset using the real failure times) and then the predict command with the deviance option this time.


```
drop mg
stset dthtime dthstat
stcox age sex cd4 karnof antiret , mgale(mg)
predict devres, deviance
(5 missing values generated)
```

And they can be plotted against the predicted log(HR) and other covariates, as shown for the Martingale residuals.

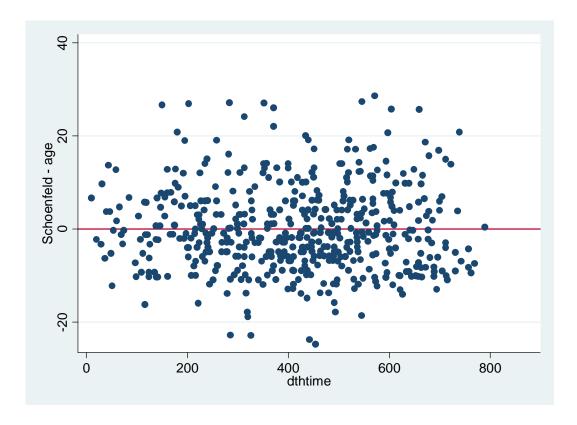

scatter devres betaz, yline(0)


scatter devres age, yline(0)

scatter devres cd4, yline(0)

scatter devres karnof, yline(0)

♦ Schoenfeld Residuals:


In STATA the *Schoenfeld* residuals are generated in the stcox command itself, using the schoenfeld (newvar(s)) option:

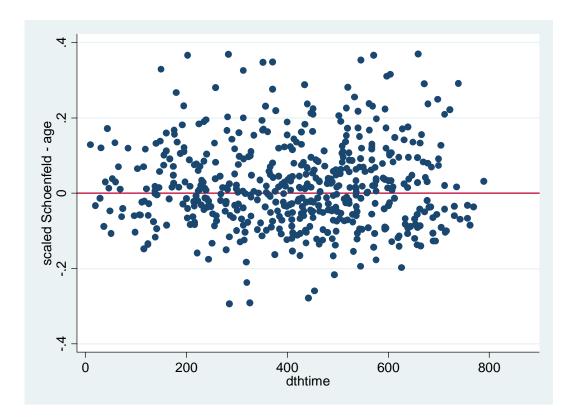
 ${\tt stcox}$ age ${\tt sex}$ cd4 karnof antiret , ${\tt schoenf(ageres\ sexres\ cd4res\ karnres\ antires)}$


(The output is exactly the same as before)

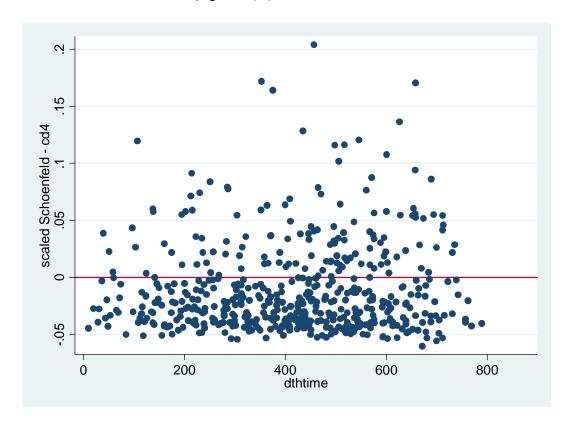
Then we plot them against event time:

scatter ageres dthtim, yline(0)

scatter cd4res dthtim, yline(0)


♦ Weighted Schoenfeld Residuals:

These residuals are used more than the previous unweighted version, because they are symmetric around 0. In this case we use the following command:


stcox age sex cd4 karnof antiret , scaledsch(ageres2 sexres2 cd4res2
karnres2 antires2)

(Same output as before)

scatter ageres2 dthtim, yline(0)

scatter cd4res2 dthtim, yline(0)

