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BIOMETRICS 45, 925-937 
September 1989 

Design and Analysis of Phase I Clinical Trials 

Barry E. Storer 
Departments of Statistics and Human Oncology, University of Wisconsin-Madison, 

420 North Charter St., Madison, Wisconsin 53706, U.S.A. 

SUMMARY 

The Phase I clinical trial is a study intended to estimate the so-called maximum tolerable dose (MTD) 
of a new drug. Although there exists more or less a standard type of design for such trials, its 
development has been largely ad hoc. As usually implemented, the trial design has no intrinsic 
property that provides a generally satisfactory basis for estimation of the MTD. In this paper, the 
standard design and several simple alternatives are compared with regard to the conservativeness of 
the design and with regard to point and interval estimation of an MTD (33rd percentile) with small 
sample sizes. Using a Markov chain representation, we found several designs to be nearly as 
conservative as the standard design in terms of the proportion of patients entered at higher dose 
levels. In Monte Carlo simulations, two two-stage designs are found to provide reduced bias in 
maximum likelihood estimation of the MTD in less than ideal dose-response settings. Of the three 
methods considered for determining confidence intervals-the delta method, a method based on 
Fieller's theorem, and a likelihood ratio method-none was able to provide both usefully narrow 
intervals and coverage probabilities close to nominal. 

1. Introduction 

Although the number of Phase I and Phase II clinical trials involving new cancer treatments 
far surpasses the number of Phase III trials, relatively little attention has been given to their 
design and analysis in the statistical literature. This is especially true of Phase I trials, which 
are trials designed to estimate the so-called maximum tolerable dose (MTD) of new 
therapeutic agents. 

Some aspects of Phase I design have been described in a review article by Geller (1984). 
Typically, small groups of patients are treated at gradually escalating doses of the drug in 
question. Escalation continues until the number of patients experiencing a given degree of 
toxicity meets some set criterion, at which point the stopping dose or the next lower dose 
is taken as the MTD. With rare exception (Brown and Hu, 1980), there is no further 
analysis of the data. Even when other designs have been used (Schneiderman, 1965; 
Carbone et al., 1965), they have not involved objective estimation of MTD using a statistical 
model or consideration of sampling error. Although Anbar (1984) has considered the 
possible use of stochastic approximation methods in the Phase I setting, these methods are 
generally more appropriate for continuous, rather than binary response criteria, particularly 
at small sample sizes. However, some of the designs discussed here do, in a loose sense, 
involve elements of stochastic approximation. 

A strict quantitative definition of the MTD is rarely acknowledged in clinical protocols, 
though it should be taken to mean some percentile of a tolerance distribution with respect 
to some objective definition of clinical toxicity. Because it seems closest to what is implicitly 
intended in the protocols with which we are familiar, the 33rd percentile is used to define 
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MTD throughout this paper. So defined, the estimation of MTD is not a novel statistical 
problem and is considerd at length in many standard texts (e.g., Finney, 1978). The Phase 
I trial, however, has features that are not adequately addressed in the bioassay literature. 
These include, for example, the relatively small number of experimental subjects available 
for treatment, the relatively long time it takes to evaluate each subject, the ethical 
requirement to approach the MTD conservatively, the relative subjectiveness of the response 
(toxic/nontoxic instead of alive/dead), the heterogeneity of the subject population, and the 
possible difficulty in classifying response due to early dropout for reasons unrelated to 
toxicity. 

Although the traditional design, as described in Section 2, conforms to reasonable 
common sense, it does not have any intrinsic property that makes it stop close to the 33rd 
(or any other) percentile. Consequently, several simple alternatives are considered and 
described in Section 2. In Section 3 a Markov chain representation is used to evaluate the 
conservativeness of the designs. In Section 4, Monte Carlo simulations are used to evaluate 
the performance of maximum likelihood estimates (MLEs) of the 33rd percentile when 
these designs are used in the small-sample setting. Similarly, the small-sample performance 
of three standard methods of interval estimation is evaluated in Section 5. 

2. Designs Considered 

From a clinician's perspective, an optimal design would be one in which the MTD is 
defined by the dose at which the trial stops, as in current practice. Our view, however, is to 
consider the design a prescription for sampling, preferably a very simple one. If used 
correctly, the prescription should be expected to generate sample points in a reasonably 
efficient but conservative manner; actual estimation of MTD then follows from analysis of 
the observed response data. Such a combination of design and analysis should be more 
robust to the vagaries of patient treatment in a clinical setting, wherein the clinical protocol 
(design), may not be followed exactly. 

Four single-stage designs are defined here: 

Design A (traditional) Groups of three patients are treated. Escalation occurs if no 
toxicity is observed in all three; otherwise, an additional three patients are treated at the 
same dose level. If only one of six has toxicity, escalation again continues; otherwise, the 
trial stops. 

Design B Single patients are treated. The next patient is treated at the next lower dose 
level if a toxic response is observed, otherwise at the next higher dose level. 

Design C Similar to design B, except that two consecutive nontoxic responses must be 
obtained before escalation occurs, whereas de-escalation occurs whenever a toxic response 
is seen. 

Design D Groups of three patients are treated. Escalation occurs if no toxicity is seen 
and de-escalation if more than one patient has toxicity. If a single patient has toxicity, then 
the next group of three is treated at the same dose level. 

Designs B through D are variations on 'up and down" schemes described by Wetherill 
(1963) and Wetherill and Levitt (1965); they are implemented here with fixed sample sizes. 
Design B is not evaluated as a single-stage design by itself; rather it is included to define 
the two-stage designs described below. It is not a conservative design and will tend to 
sample around the 50th, instead of the 33rd, percentile. Design D could be considered a 
discretized version of the Robbins-Monro procedure (Robbins and Monro, 1951) with 
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equally spaced dose levels. During escalation, the dose Xj to be used at step j is given by 
Xj = Xj-1 + A\ sign(P -Pj- 1), where Pj1 is the observed fraction of toxic responses in the 
previous group of patients, P is the target fraction, and A\ is the space between doses. 

None of the designs above could be expected to perform well in an arbitrary dose- 
response setting when implemented with fixed sample sizes. For this reason, we propose 
two two-stage designs, denoted BC and BD, which combine single-stage designs. The first 
stage follows design B until the first toxic response occurs. From the point at which the 
next patient is entered at the next lower dose level, the second stage design is implemented, 
again with fixed sample size. 

All of the designs, both single-stage and two-stage, are implemented with equally spaced 
(presumably on a logarithmic scale) dose levels fixed in advance. In practice, dose levels 
may follow other schemes, the most popular being the modified Fibonacci sequence 
described by Schneiderman (1967), where dose levels are incremented by the diminishing 
multiples 2, 1.67, 1.5, 1.33, 1.33, ...; however, these dose increments are also equally 
spaced on a log scale after the first four dose levels. 

The designs are compared in dose-response settings determined by three logistic curves, 
wherein the probability of toxic response at dose X is given by 

P(X) = Pr[Y 1 IX] exp(a + OX) 
1+ exp(a + O3X)' 

where Y is the dichotomous random variable associated with response. These curves are 
illustrated in Figure 1. The first curve is intended to represent a relatively ideal setting, i.e., 
a steep dose-response and a starting dose close to the target percentile. The second curve, 
which probably more closely represents the typical situation, is shallower and the starting 
dose is several dose levels below the target. These two curves are examined with a fixed 
starting dose and sample sizes ranging from 12(6)36. The third curve represents the most 
difficult dose-response setting-a shallow curve with (relatively) closely spaced dose levels 
and a nonnegligible probability of a toxic response at all dose levels. This curve is examined 
using a fixed sample size but with the starting dose level varied from 1(1)8. 

0.6 

-- Curve 1 (start level-7) 
0.5 - u Curve 2 (start level-4) 

--- Curve 3 (start varied) 

0.4 

0 - - - - - - - - - - - - - - - - - - - 
~0.3 

co 

0.2- 

0.1 

0.0 
0 1 2 . 3 4 5 6 7 8 9 1 0 11 

Dose Level 

Figure 1. The three logistic dose-response curves used to compare designs. Symbols indicate the 
actual dose levels, which extend with equal spacing up to level 16. 
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3. Markov Chain Representation 

3.1 Single-Stage Designs 

The probabilistic properties of each of the designs considered here can be explicitly evaluated 
numerically through a representation as a discrete-time Markov chain with stationary 
transition probabilities. In designs B and D, each state in the Markov chain corresponds 
directly to the treatment of a patient or group of patients at a particular dose level. In 
designs A and C, two states are required for each dose level in order to preserve the property 
of stationarity: One state corresponds to the initial patient or group of patients evaluated 
at a dose level; another state corresponds to the second patient or group that is evaluated 
if no toxicity occurs in the first. Additionally, design A requires an absorbing state 
corresponding to stopping the trial. 

Under a specific dose-response assumption, the transition probabilities for any of the 
designs are simple binomial probabilities that are easily evaluated and summarized in the 
transition probability matrix, P. Although actual clinical trials could be conducted with an 
essentially open-ended set of dose levels, for purposes of computation it is necessary to 
specify a restricted number of states in the process. This does not compromise the open- 
ended design, since the range of states is extended such that the probability that any of the 
extreme states is reached is negligibly small. 

The (i, j)th element of P, Pij, gives the probability that a trial in state i will move to state 
j in the next transition. Based on standard properties of this matrix, the probability that a 
trial in state i will move to stage j in k transitions is given by the (i, j)th element of pk, 

where pk = p . pk-1 k = 2, 3, .... For a trial that starts in state i, the expected number 
of patients treated in state j after k transitions is given by NM = m(Ind[j = i] + Zk=IPf 

where m is the number of patients treated at each step, Pi3. is the (i, j)th element of Pk, and 
Ind is the indicator function. Depending on the design used, the expected number of 
patients treated at a particular dose level will be the sum of one or two corresponding Nk. 

3.2 Two-Stage Designs 

The two-stage designs BC and BD are evaluated similarly, except that the distribution of 
stopping states from the first stage yields a distribution of initial states for the second-stage 
Markov chain, leading to a slightly modified computation for the expected numbers of 
patients treated in a given state after k transitions as N = > Pr[I = i] * Nk3, where the 
subscript I denotes the random distribution of initial states and Nk is as above. The expected 
number of patients treated at a given dose level is then the sum of the appropriate Nk? from 
the first stage and the one (design BD) or two (design BC) appropriate N k from the second 
stage. 

3.3 Results 

Figure 2 presents the expected fractions of patients that would be treated at dose levels 
above the 50th percentile of the tolerance distribution for the three dose-response situations. 
The choice of dose levels above the 50th percentile is arbitrary and merely provides a 
point of reference. Although the two-stage designs are less conservative than either the 
standard design or their single-stage counterparts, the absolute level of conservativeness 
does not appear unreasonable in light of the increased sampling in the vicinity of the target 
percentile. 
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Figure 2. Expected fraction of patients treated above the 50th percentile for the various designs. 
Results for A, BC, and BD are plotted as a function of expected sample size. 
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4. Estimation of MTD 

In the standard design, the actual stopping dose or the next lower dose is usually taken as 
the estimate of MTD, perhaps depending on the actual amount and degree of toxicity 
observed in the last group of evaluated patients. Of course, no dose level need necessarily 
be close to the true MTD, except fortuitously. In a comparison of the different designs, the 
actual stopping dose level is taken to be the estimate of MTD for design A. The exact 
distribution of stopping dose levels is readily computed in a given dose-response setting 
using the Markov property. 

The MLE of MTD defined by any percentile (XA, where Pr[ Y = 1 I X,= p) is given by 
Xp - (kp&- )/3, where kp = logit(p), and a' and are MLEs of the logistic parameters 
obtained via a standard Newton-Raphson maximization scheme. Although this method is 
usually well behaved, in small samples it is possible that/ = 0 (which can be detected 
analytically prior to maximization, simply by observing whether the score equation for/ 
is satisfied by 0) or that/ < 0, which results in nonsensical estimates of the MTD. It is also 
possible that strict convergence cannot be obtained with respect to a' and (which can also 
be checked prior to maximization). This situation occurs when the log-likelihood can be 
maximized by putting unit mass at a single point, above which all responses (if any) are 
toxic and below which all responses (if any) are nontoxic. In this case, X, is not unique and 
is the same for any p. 

Although MLEs of the logistic parameters, and hence of the MTD, have desirable large- 
sample properties, one would by no means expect this to be true in the small-sample setting 
encountered here, especially when combined with the stochastic nature of the sampling 
schemes. Hence, a series of Monte Carlo experiments using the previously described dose- 
response curves was carried out to examine the performance of MLEs of the MTD in 
combination with the various trial designs. 

In simulated clinical trials, the outcome for each patient was determined by generating 
a pseudorandom U(O, 1) deviate using a standard IMSL subroutine. Response was taken 
to be toxic if the deviate generated was less than or equal to the underlying P(X) determined 
by the curve under consideration at the current dose level. Sample sizes for the first two 
curves varied from 12(6)36, and for the two-stage designs applied to the size of the second 
stage. For the third curve the sample size was fixed at 24 and the starting dose level was 
varied from 1(1)8 (see Figure 1). Each combination of curve, design, and sample size or 
starting dose was simulated 5,000 times, using initial seeds chosen independently from a 
table of random digits. 

For purposes of evaluating the designs, attention will be restricted to successful simula- 
tions; i.e., those where 0 </ < oo. The probability of obtaining a successful result thus 
becomes one basis for comparing the designs. Table 1 gives the fraction of 5,000 replications 
that were successful in each of the simulations. Except for the single-stage designs in the 
very smallest sample sizes, all of the alternative designs yield useable estimates a large 
fraction of the time. Unfortunately, the application of the logistic model to the sample data 
generated by design A does not give convergent estimates a usefully large fraction of the 
time and will not be considered further. 

Within the group of successful simulations, MLEs of MTD from designs C, D, BC, and 
BD and empirical estimates from design A are compared on the basis of median (Figure 3) 
and lower and upper quartiles (Table 2) of estimates. These are used rather than mean or 
mean squared error because a small fraction of estimates may be extremely large (due to 
division by 3 0) and the usual measures are sensitive to these outliers. Since the dose 
scale itself is meaningless, results here and elsewhere are expressed in terms of the 
corresponding percentile of the underlying tolerance distribution. 

Results using curve 1 were very similar for all of the alternative designs. At sample sizes 
of 18 or above all showed very little bias and similar interquartile ranges. For design A, 



Design and Analysis of Phase I Clinical Trials 931 

Table 1 
Fraction of successful trials for various designs in three dose-response settings 

Curve I (starting dose level = 7) 
Sample sizea 12 18 24 30 36 

Design 
A .310 
C .603 .849 .944 .978 .992 
D .399 .737 .884 .947 .972 
BC .793 .916 .963 .989 .996 
BD .652 .837 .935 .960 .984 

a Expected sample size for design A is 11.4. Expected additional sample size from B stage for designs BC and 
BD is 2.9. 

Curve 2 (starting dose level = 4) 

Sample size 12 18 24 30 36 
Design 

A .465 
C .469 .843 .959 .987 .996 
D .172 .603 .850 .938 .974 
BC .854 .950 .988 .996 .999 
BD .689 .875 .953 .978 .993 

b Expected sample size for design A is 16.5. Expected additional sample size from B stage for designs BC and 
BD is 4.4. 

Curve 3 (n = 24C) 

Startingdose level 1 2 3 4 5 6 7 8 
Design 

A .623 .578 .555 .540 .538 .307 .247 .176 
C .871 .905 .923 .938 .957 .965 .975 .980 
D .725 .768 .807 .835 .860 .888 .898 .912 
BC .961 .962 .972 .977 .980 .984 .981 .986 
BD .899 .906 .915 .926 .927 .939 .936 .941 

Expected sample size for design A ranges from 21.5 to 8.7. Expected additional sample size from B stage for 
designs BC and BD ranges from 5.8 to 2.9. 

38.5% of trials stop at the dose level below the true MTD [P(X) = .269] and 40.4% at the 
dose level above [P(X) = .5]. Results from curves 2 and 3, on the other hand, reveal that 
the designs can perform very differently in less than ideal settings. It is also clear that the 
two-stage designs have less bias than single-stage designs for a given sample size, i.e., the 
additional patients treated in the first stage contribute more to reducing bias than the same 
number added to the single-stage version of the same design, at least on average. Design 
BD in particular has negligible bias even with sample sizes as small as 18 in the second 
stage. Although the performance of even the two-stage designs falls off somewhat at the 
extreme starting doses used in curve 3, it does so to a much lesser extent that the others. A 
minor improvement in the variability of the estimates is also obtained with the two-stage 
designs, though only at the larger sample sizes. 

5. Confidence Intervals for the MTD 

One drawback of the usual procedures for estimating MTD is that they make no allowance 
for sampling error in the estimate. In the setting of maximum likelihood estimation, several 
methods are available for computing confidence intervals, any of which might prove 
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Table 2 
True percentile associated with lower and upper quartiles of estimates of MTD for various designs in 

three dose-response settings* 
Curve I (starting dose level = 7) 

Sample sizea 18 24 30 36 

Design 
A .269 .500 
C .235 .402 .255 .404 .264 .396 .271 .393 
D .260 .419 .269 .404 .278 .401 .283 .398 
BC .253 .409 .267 .400 .274 .398 .274 .389 
BD .273 .421 .279 .406 .280 .402 .285 .397 

a Expected sample size for design A is 11.4. Expected additional sample size from B stage for designs BC and 
BD is 2.9. 

Curve 2 (starting dose level = 4) 

Sample sizeb 18 24 30 36 
Design 

A .182 .378 
C .204 .385 .227 .386 .244 .380 .255 .380 
D .200 .348 .229 .386 .251 .391 .261 .387 
BC .241 .395 .255 .389 .265 .386 .271 .383 
BD .248 .415 .267 .404 .279 .400 .284 .397 

b Expected sample size for design A is 16.5. Expected additional sample size from B stage for designs BC and 
BD is 4.4. 

Curve 3 (n = 24C) 

Starting dose level 1 3 5 7 

Design 
A .148 .269 .148 .269 .182 .321 .269 .378 
C .191 .339 .208 .333 .227 .344 .253 .359 
D .172 .302 .202 .317 .235 .334 .275 .360 
BC .231 .370 .237 .369 .246 .366 .263 .370 
BD .235 .374 .244 .372 .258 .378 .283 .389 

'Expected sample size for design A ranges from 21.5 to 8.7. Expected additional sample size from B stage for 
designs BC and BD ranges from 5.8 to 2.9. 

* Results for design A are based on the actual stopping dose from 5,000 simulations. Results for other designs 
are based on maximum likelihood estimates in successful fraction of 5,000 simulations. 

satisfactory in large samples, but not necessarily in the small sample sizes under consider- 
ation here. For this reason we examined the small-sample properties of three types of 
confidence intervals: (1) intervals derived using the delta method, (2) intervals based on 
Fieller's theorem, and (3) intervals based on a likelihood ratio criterion. Since the properties 
of the intervals varied considerably by method, we focus on these differences rather than 
on a comparison among designs of the results of a specific method of interval computation. 

5.1 Methods Compared 

The simplest interval is given by a straightforward application of the multivariate delta 
method. Letting Va, and VA denote the usual asymptotic variance estimates for a' and I, 
respectively, and VaB the asymptotic covariance estimate, then a large-sample estimate of 
the variance of X, is given by Vd [VaJ + 2XpV, + XpVJ]/132. Therefore, an approximate 
100(1 - ca)% confidence interval for Xp is given by 

{Xp Xp Z/ d <X X a2V/ 
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Figure 3. Median of estimates of MTD (33rd percentile) for the various designs, expressed as the 
true percentile of the underlying dose-response curve. Results for A, BC, and BD are plotted as a 
function of expected sample size. Results for C, D, BC, and BD are plotted where the fraction of 

successful simulations (out of 5,000) was greater than .85. 
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where Za/2 is the upper a/2 critical value of the standard normal distribution. This interval 
has a simple form familiar to most medical investigators and is easily computed with output 
available from standard programs that fit a logistic curve. It has finite endpoints whenever 
Xk is finite and unique. 

A slightly more complicated computation is based on the quantity a' - k, + XJ3, which 
is asymptotically normally distributed with mean 0 and variance estimated by Vf = Vd32. 

An approximate 100(1 - ca)% confidence interval for X, is given by 

{Xp: l& - k1, + X 12 < X2Vf, 

where X2 is the upper ca percentile of the chi-squared distribution with 1 degree of freedom. 
We will refer to this as Fieller's interval, which is not necessarily symmetric about X1. The 
endpoints of a closed interval are obtained as a solution of a quadratic equation in Xp, 
provided that Za/2 13 0/ V:2 < 1. When this is not the case, which corresponds to failing to 
reject a level a test of the null hypothesis 1 = 0, based on 3/V>2, then the range of values 
of X, satisfying the inequality will either be infinite (the entire real line) or will comprise 
two disjoint half-lines, the area between which is exclusive. Though the latter outcome is 
often referred to as Fieller's paradox, it is always the case that one of the half-intervals will 
include Xp, and this half-interval is the natural choice for the confidence interval. The 
infinite ends of the half-intervals could be thought of as connected at a point corresponding 
to 1 = 0. The discarded half-interval corresponds to values such that 1 < 0, which in the 
present context are nonsensical. 

A final confidence interval is based on a likelihood ratio criterion and comprises 

{X, = (k, - ac)/3: 2[L(a, 1) - L(a, 1)] < , 

where L is the log-likelihood function for the logistic model. The confidence interval is 
determined by a direct search procedure essentially equivalent to that of Williams (1986), 
except that the search is restricted to 13> 0. 

5.2 Results 

None of the intervals proved completely satisfactory with respect to the criteria of coverage 
probability and width. Though performance differed among designs, these differences were 
in general not large. The results presented here are those obtained with design BC and 
curve 2. 

Figure 4 presents the actual coverage probabilities for the three methods for nominal 
80% and 95% confidence intervals. These are given both for the overall coverage and for 
the coverage of the lower bound only, which should be 90% and 97.5%, respectively. 
Although Fieller's interval clearly performs the best overall, the absolute level of perfor- 
mance is good only for the 95% intervals. Coverage for delta method intervals is markedly 
anticonservative, even at the largest sample sizes. Likelihood ratio intervals are intermediate 
in performance, but closer to Fieller's intervals than to delta method intervals. 

It is interesting that the lower-bound coverage probabilities are closer to the nominal 
level than are the overall coverage probabilities, and that there are much smaller differences 
among the methods for these probabilities. This is true even after taking into account the 
halving of the absolute amount of miscoverage that would occur if the miscoverage were 
symmetric. Since the point estimate of MTD has negligible bias, particularly at the larger 
sample sizes, it is apparent that the estimated variability of Xj must tend to be smaller 
when it is below X, than when it is above. 

Unfortunately, many of the covering intervals for the two most accurate methods were 
infinite, especially for the 95% intervals. This fraction is indicated by the solid portion of 
the bars in Figure 4. For this coverage level, the majority of Fieller's intervals were infinite 
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Figure 4. Coverage probabilities for nominal 80% and 95% confidence intervals for the MTD (33rd 
percentile) using three methods (D: Delta; L: Likelihood ratio; F: Fieller's). Results are for design 

BC and curve 2. Solid portions of the bars indicate the fraction of infinite intervals or bounds. 

Table 3 
True percentile associated with median lower and upper bounds of confidence intervals for the MTD 

computed by three methods 

Sample size 18 24 30 36 

80% confidence interval 
Delta method .218 .402 .229 .406 .239 .407 .246 .408 
Likelihood ratio .227 .471 .234 .463 .242 .454 .248 .446 
Fieller's .213 .478 .225 .466 .236 .456 .242 .447 

95% confidence interval 
Delta method .188 .452 .196 .452 .205 .453 .211 .451 
Likelihood ratio .155 .885 .172 .787 .182 .709 .193 .661 
Fieller's .000 1.00 .000 1.00 .106 .903 .146 .729 
a Based on successful fraction of 5,000 replications using design BC and curve 2. 
b Expected additional sample size from B stage is 4.4. 

except at the largest sample size; the proportion of infinite likelihood ratio intervals, though 
relatively smaller, was still undesirably high. Although the results considered here are 
restricted to simulations giving a finite and determinate estimate of MTD, it should be 
noted that in situations where the estimate of MTD is indeterminate, the likelihood ratio 
method can yield finite intervals, whereas Fieller's intervals (and delta method intervals) 
are always infinite. 
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The median lower and upper bounds of confidence intervals for the three methods are 
presented in Table 3. As would be expected from the above, delta method intervals 
are consistently narrowest and Fieller's intervals consistently widest. The differences are 
substantial for the 95% intervals. 

6. Discussion 

As was remarked earlier, the literature treating statistical aspects of Phase I clinical trials is 
quite small. One can find occasional discussions concerning the choice of starting dose or 
the spacing of dose levels (e.g., Schneiderman, 1965; Goldsmith, Slavik, and Carter, 1975; 
Penta et al., 1979), but none of which we are aware that consider the design of the trial and 
estimation of MTD as a whole. Although these results are not directly relevant to some 
Phase I settings (for example, where MTD is defined as a much different percentile), they 
do suggest that simple types of designs can be combined with relatively standard analytic 
techniques to provide a more quantitatively rational basis for estimation than that usually 
employed. 

It is not surprising that the two-stage designs perform better than the single-stage designs. 
Although they are still not entirely independent of the unknown underlying dose-response 
curve, they are relatively less sensitive to an unlucky choice of dose levels and perhaps in 
practice would prove satisfactory most of the time. Nevertheless, incorporation of a 
systematic basis for sequentially modifying the dose levels, as in Wu (1985), might be 
desirable. Although his methods are not directly applicable to the clinical trial setting, some 
modifications might be useful in determining, for example, the sample size and dose levels 
for a third stage of the trial, if a two-stage design did not give satisfactory results with the 
chosen number of patients. 

Though we have seen no data precisely defining a tolerance distribution for human 
subjects with a toxic drug, the logistic model used here is easy to work with and likely to 
be reasonably robust with respect to the actual shape of the distribution, provided that the 
MTD is not chosen to be too extreme a percentile. McLeish and Tosh (1983) discuss 
methods of conservatively estimating very small percentiles, but using sample sizes far in 
excess of those realizable in a Phase I trial. Although additional flexibility could be achieved 
by incorporating an additional parameter in the logistic model to accommodate asymmetry 
(as in Wu, 1985), it seems unlikely that this would have much impact on the estimates 
used here (where MTD is defined as the 33rd percentile) if the design has successfully 
concentrated sampling in the lower half of the distribution. 

The most unsatisfactory part of this work has been with respect to the provision of 
confidence intervals for the MTD; perhaps no method can be expected to perform well in 
this context with small sample sizes. Although the lower bound of simple delta method 
intervals always exists (when the MLE is determinate) and did not seem to perform too 
badly here in terms of coverage, one would not necessarily expect this result to hold in 
other settings. Williams (1986) reports quite reasonable performance by likelihood ratio 
intervals for the 50th percentile in sample sizes comparable to those considered here; 
however, we suspect that the dose-response situations studied were more ideal, i.e., with 
sampling uniformly spaced over a range symmetric about the true median. 

Finally, we suggest that additional improvement in Phase I trial design could be obtained 
by incorporating randomization into the design. Given the heterogeneity of the typical 
population of patients eligible for a Phase I study, it is obvious that decisions to enter or 
not enter patients at particular dose levels, based on the anticipated response, could bias 
the outcome no matter how sophisticated the design. Since the designs considered here 
determine the treatment assignments sequentially, they are not readily amenable to ran- 
domization. This will be one area of future work. 
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RfSUMf 

L'essai clinique de phase I est une etude destinee a estimer la dose maximale toleree (D.M.T.) d'une 
nouvelle molecule. Bien qu'il existe plus ou moins un schema type pour de tels essais, son developpe- 
ment s'est fait largement de maniere improvisee. Tel qu'il est habituellement applique, ce schema ne 
garantit pas toujours une estimation satisfaisante de la D.M.T. Dans cet article, nous comparons ce 
schema standard et plusieurs alternatives simples en regard (a) du conservatisme du schema, (b) de 
l'estimation ponctuelle et par intervalles de la D.M.T. (percentile 33%) sur de petits echantillons. En 
utilisant une representation par un processus de Markov, plusieurs schemas se revelent presque aussi 
conservatifs que le schema standard au sens de la proportion de malades inclus a des doses superieures. 
Des simulations montrent que deux schemas a deux tapes permetteni de reduire le biais dans 
l'estimation du maximum de vraisemblance de la D.M.T. Des trois methodes etudiees pour determiner 
des intervalles de confiances-la methode delta, un methode reposant sur le theoreme de Fieller et la 
methode du rapport de vraisemblance-aucune ne fournit a la fois des intervalles suffisamment 
&troits pour 6tre utilisables et des probabilit6s de recouvrement proches du niveau nominal. 
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