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TABLES OF THE NUMBER OF PATIENTS REQUIRED IN
CLINICAL TRIALS USING THE LOGRANK TEST

L. S. FREEDMAN
MRC Cancer Trials Office, Medical Research Council Centre, Hills Road, Cambridge C B2 2QH England

SUMMARY

The logrank test is commonly used in the analysis of clinical trials in chronic diseases such as cancer. Existing
tables for the number of patients required in such trials are based on the direct comparison of two proportions.
This paper presents tables of numbers required in clinical trials using the logrank test and describes their use.
The numbers required are considerably smaller than those in existing tables when the event-free proportions
are small, but otherwise comparable.
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INTRODUCTION

The logrank test is now commonly used in the analysis of clinical trials data where outcome
becomes manifest after a prolonged time interval.' The test is particularly well established in the
analysis of results from trials of cancer treatments.

Recently, several authors have pointed out the inadequacy of the numbers of patients entered
into many cancer trials and the consequent lack of sensitivity to small treatment differences.?: 3
Consideration of the number of patients required is important in planning a trial. There are several
published tables of the numbers needed in comparative experiments or trials.*> > These entail the
assumption that analysis consists of a direct comparison of two proportions, ¢.g. the survival
proportions in two treatment groups. This paper presents more extensive tables of numbers
required in trials in which the logrank test constitutes the principal method of analysis.

Before describing the tables and their use, we elaborate the nature of the trials and explain several
technical terms. The trials consist of patients who are entered, treated and then followed up.
Principal interest during follow-up concerns the occurrence or non-occurrence of a particular
‘event’ which in many cancer trials is death but could also be local recurrence, metastatic spread or
some other clinical observation. Some patients may be withdrawn from follow-up. This does not (or
should not) mean that the investigator has consciously decided not to keep track of a patient but
that despite efforts the patient’s follow-up is in some sense incomplete. There are two primary
reasons for this. Either the investigator may lose touch with the patient (perhaps because the
patient has gone abroad) or some intervening event prevents gathering the necessary information.
An example of such an intervening event is a patient who dies in a car accident soon after treatment
when death from malignant disease 1s the event of interest. These concepts appear later in the paper.
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ASSUMPTIONS UNDERLYING THE CALCULATIONS

The tables give two quantities: the number of events needed to be observed and the number of
patients needed to be entered. The number of events results from a formula which approximates
the exact number required (see Appendix I). The formula assumes 1 : 1 randomization, i.e. equal
numbers entered in the two treatment groups. A comparison of the results obtained from the
formula with those obtained from Monte Carlo simulations appears in Appendix II. This
comparison assures that the approximation is reasonably accurate and shows that it provides a
slight over-estimate of the number of events, which, in practical terms, is an error in the right
direction. The number of patients needed can be estimated directly as that required to observe the
necessary number of events. The exact form of dependence of the number of accrued events on the
patient entry will be determined by the rate of acceptance of patients into the trial, the rate of
occurrence of the events and the timing of the definitive analysis of the results.®

The tables entail an assumption that analysis occurs at a fixed time T after the last patient has
entered the study; information on patient follow-up extending beyond T is excluded. This
assumption commonly (though not universally) accords with practice and is thereby partly
motivated. The consequent analysis does not utilize all available information and hence the
required number of patients is over-estimated. Only when the great majority of the relevant
information has been gathered, however, is it proper to conduct a definitive analysis. This implies
choice of a minimum follow-up time 7 beyond which the rate of occurrence of events is low. Such a
choice of T ensures that any over-estimation of the required numbers of patients is slight.

The assumption has the positive consequence that the number of required patients is
independent of the rates of entry of patients and occurrence of events and depends only on the
proportions of event-free patients in the two treatment groups after minimum follow-up time 7.
Thus, tabulation of the numbers required becomes feasible. The calculations are described in
Appendix L.

One other aspect of a trial which can affect the numbers required is the proportion of patients
who are withdrawn (see introduction for the definition of this term). The numbers in the tables
assume no withdrawals. Since some withdrawals almost always happen, the investigator must
make some allowance for this. For example, if he anticipates x per cent of patients to withdraw and
n is the required number of patients in the table, then he should actually aim to enter 1007/(100 — x)

patients.

DESCRIPTION OF THE TABLES AND THEIR USE

The form of the tables is similar to that of Tables 3A and 3B of Casagrande et al.® which, in turn, are
based on Table 2.1a of Cochran and Cox.* To use these tables one must first ‘guess’ the proportion
of patients event-free at the minimum follow-up interval in the less favourable of the two groups.
When the event is death this proportion is simply the survival rate. Many clinical trials compare a
‘new’ with a ‘standard’ treatment with the accompanying hope that the ‘new’ leads to improvement.
Here, the less favourable group consists of those patients treated by the ‘standard’; previous
experience usually provides a reasonable guess at the event-free rate. One must then specify the
smallest improvement in event-free rate one wishes the trial to be able to detect reliably. At this
point one chooses Table 1A or 1B depending, respectively, on interest in a one- or two-tailed test of
significance. Generally, one-tailed tests apply to trials of a standard with a new treatment when the
new is more toxic or more expensive. Interest focuses on differences in response which are
favourable to the new treatment group. This is particularly relevant to trials comparing a
combination of treatments with one component of the combination (e.g. surgery and radiotherapy
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vs. surgery alone). Two-tailed tests apply when there are no strong a priori grounds to favour one
or the other of the treatments such as a comparison of two single drugs with similar toxicities.

Now one turns to the appropriate table and looks along the row corresponding to the smallest
improvement. Each cell in the table contains 6 numbers. The numbers in parentheses are the total
number of events needed to be observed; the numbers without parentheses are the total numbers of
patients required. The 3 sets of numbers of patients and events correspond to three combinations of
significance levels and ‘power’. ‘Power’ is the chance of finding a significant difference if it exists.
The three combinations are: test of significance at 5 per cent level, power 80 per cent; test of
significance at 5 per cent level, power 90 per cent; and test of significance at 1 per cent level, power 95
per cent. These are the same combinations as chosen by Casagrande er a/.5 and Cochran and Cox*
and facilitate comparison between the different tables. We emphasize that the final choice of the
number of patients entails a compromise between the expected rate of patient entry and the
statistical ideal. Thus, if only 100 patients per annum are likely to be available it may be better to
plan a study of 300 patients with a power of 80 per cent than a trial of 500 patients with a power of
95 per cent. Although the latter trial is more sensitive to any differences between treatments, it may
not be realistic to expect to maintain enthusiasm for the trial beyond 3 years. On the other hand, if
expected patient entry rates are insufficient to provide adequate power, it may be better not to
embark on the study. In the absence of obvious restrictions imposed by patient entry rates one
might, as a general rule of thumb, recommend a power of 90 per cent at a significance level of 5 per
cent for comparative studies of two treatments.

Example

Consider the planning of a trial of superficial bladder cancer. With the current method of treatment
(resection of tumour at cystoscopy) the recurrence-free rate is 50 per cent at 2 years. One hopes to
increase this to at least 70 per cent using intravesical chemotherapy immediately after surgery at the
time of cystoscopy. Referring to Table 1A (one-tailed test), the appropriate cell indicates a sample
size of 153, 211, or 386 patients according to the particular combination of power and level of
significance. Allowance for a possible 20 per cent withdrawal rate increases these numbers to 190,
264 and 482 respectively. Thus, between 250 and 300 patients seems a reasonable size for this trial.
The relatively high incidence of this tumour (around 7000 new cases per annum in England and
Wales) and the high level of interest among urological surgeons make this sample size a realistic
goal for a trial.

DISCUSSION

The assumption that analysis excludes information beyond the minimum follow-up time may be
unattractive, particularly when patient accrual is extended over several yeras. In such circum-
stances, a large proportion (80 per cent of more) or the total events expected may have already
occurred a short time after patient entry has closed. If so, an analysis at this juncture may be
reasonable. For example, consider a trial in which patients are entered at a constant rate over 3
years. Suppose that the average survival rate at 1 year after treatment is 50 per cent and that there is
an exponential distribution of survival times up to 4 years beyond which time the death rate is
negligible. The total proportion of deaths in the trial is 94 per cent. One year after patient entry
closes the proportion of deaths is 79 per cent which is 84 per cent of the total deaths expected. There-
fore an analysis at one year after the last patient has entered, but including information beyond
one year’s follow-up is justified.

To estimate the required number of patients under this policy, it would be wrong to enter the
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table with event-free rates appropriate to the minimum follow-up time (in our example, 1 year). The
number of patients needed would thereby be over-estimated, often seriously. Instead, as an
approximate device, the table should be entered with event-free rates appropriate to the average
follow-up time (in our example 25 years). The number of patients estimated in this way is
approximate but adequate for practical purposes.

Some investigators are more used to thinking of treatment differences in terms of median
survival than survival rates. The following is meant to give a rough feeling for their relationship.
Survival times are assumed exponentially distributed. A treatment which increases the median
survival time by 50 per cent changes a survival rate of 50 per cent to 63 per cent, a rate of 25 per cent
to 40 per cent or a rate of 10 per cent to 22 per cent. A treatment which doubles the median survival
time increases the survival rate from 50 to 71 per cent, from 25 to 50 per cent or from 10 to 32 per
cent.

Table 1A and 1B are similar in form to those of Casagrande et al.®* and Cochran and Cox* but
differ in two notable ways. Firstly the values of the lower event-free rates are extended in our tables up
to 90 per cent instead of stopping at 50 per cent. The extension is necessary because, whereas the
numbers required in a direct comparison of proportions are symmetric around the 50 per cent
point (i.e. one needs the same numbers for detecting a difference between proportions of 30 per cent
and 40 per cent as between 70 per cent and 60 per cent), this is not true of the logrank test. Secondly
the numbers in the tables are total numbers of patients (or events required in a trial) whereas
Casagrande et al.’ give numbers required in each group. We made this change to total numbers
purposely because we believe this figure most directly interests investigators.

For the greater part of our tables the numbers of patients required are similar to those given by
Casagrande et al.’ although slightly smaller. This is of interest since the results from Appendix I1
suggest that the numbers in Tables 1A and 1B are slight over-estimates. In one part of the table the
differences are more important. When event-free rates are very low, namely under 25 per cent, then
it appears that substantially smaller numbers of patients are required with use of the logrank test
than one would have thought had one consulted the tables by Casagrande et al.’ or similar tables.
For example, at a significance level of 5 per cent and power 90 per cent the number of patients
required to detect an improvement from a baseline survival rate of 10 per cent to a new survival rate
of 20 per cent is, from Table 1A, 322. The equivalent number according to the tables of Casagrande
et al.” is 464, a figure about half as large again. This is not very surprising when one considers that
the logrank test takes account of the order in which events occur and not just simply the occurrence
or non-occurrence of events. Thus when only a small minority of patients remains event-free the
gain in information using the logrank test is considerable. In view of the important difference, we
recommend that the tables in this paper should be used when designing clinical trials that will
employ the logrank test as the principal analytic method.
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APPENDIX 1

Suppose that two treatments give rise to survival rates of P; and P,, respectively at some chosen
time point. If the ratio of the hazards (i.e. risks of death) in the two groups does not change with
time and is 6:1 then the quantities Py, P, and 0 are related by:

0 = log.(P,)/log.(P:) 1)
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The total number of events d in both series, needed to be observed in a trial is;
14+6)\?
d = (z,+2,)° (m) 2)

where z; is the normal deviate corresponding to the particular significance level employed in the
logrank test and z, is the normal deviate corresponding to the required power.

Formula (2) 1s derived by considering the expected value (E) and variance (V') of the logrank
statistic when the true hazard ratio is 0. By arguing conditionally on the set of patients at risk before
each event and letting ¢; denote the ratio of patients at risk in the two groups before event

ii=1,...,d) then
AT 6 & ¢ g,
E‘,-;[lw.ﬂ I ¢;]/\/<f§1(1+¢.~)2>

+
and
A0 e AT &
V= ;1[(1+¢,-92/.-;[(mm)z]'

Assuming ¢; = 1 these reduce to

E=d¥0—-1)/0+1)
V=40/(0+ 1)

and

By treating the logrank statistic as a Normal variable with mean E and variance ¥ one may then
show that

SO T e

RS 1)2[ 2z, \/9]2

where, as mentioned earlier, z; and z, are normal deviates corresponding to the required
significance level and power. Finally, taking the coefficient of z,, 2,/6/(6 + 1), as approximately
equal to 1, we obtain Formula (2).

As explained, this formula is an approximation and relies on the simplification that the ratio of
the number of patients in each group at risk just before each death is equal to 1. In a trial with equal
numbers of patients in each group this ratio will indeed be very near 1 at the start of treatment but
will increasingly diverge from 1 as the time from treatment increases, if there is a difference in the
survival rates. In addition, the true coefficient of z, will increasingly diverge from unity as 8 differs
from unity. The effect of such departures on the accuracy of formula (2}is examined in Appendix 1.
Unequal withdrawals from the two groups will also affect the accuracy of the approximation but
this is not examined further in the present paper. Note that formula (2) relates the power of the test
directly to the number of events and implies that power will be independent of the number of patients
given that the number of events is kept fixed. This is verified separately in Appendix II.

Once the number of events, d, has been estimated the total number of patients required in the
trial can be estimated by

n=2d4/2-P,—P,) (3)

assuming equal numbers in the two treatment groups.
The equivalent of formula (2) when the ratio of patients in the two groupsis ¢: 1 ratherthan1:1

1s

(z1+2,)* (14 0¢)

d=""51—oyp

“)
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This formula provides a basis for approximating the numbers required when randomization is, say,
2:1.7 Having calculated the total number of events required from (4) the total number of patients
required 1s

d{1+¢)

n= (5)
¢l =P+ (1 —Py)

Formula (2) corresponds to a formula (No. 22) given by Lachin® which arose as an ap-
proximation for the special case where event times have a negative exponential distribution.
Other formulae for this special case are given by George and Desu.® The use of one such formula,
d = 4(z; + z,)*/(In6)?, in the more general context of the logrank test is justified by Schoenfeld.® His
method gives estimates which are similar but slightly smaller than those derived from formula (2).

APPENDIX I

To check the formula (2) relating the number of events to the power of the logrank test, Monte
Carlo simulations were carried out. A set of 1000 clinical trials with equal numbers of patients in
each group, a given total number of events d and a constant hazard-ratio 8 between the groups were
generated for 5 values of d and 4 values of 6. The results appear in Table II. They indicate quite
good agreement between the power predicted by formula (2) and the Monte Carlo estimates. In
general the power is slightly under-estimated by the formula, the discrepancy increasing as the
hazard-ratio departs further from unity. However, these differences are of little practical
consequence and, as stated in the test, are in the preferred direction of slightly overestimating the
number required.

Formula (2) relates the power to the total number of events observed, but not to the total number
of patients entered. Thus the formula predicts that when the number of events remains constant,
while the number of patients entered varies, the power of the logrank test remains unchanged.

Table 11. Power of logrank test estimated by Monte-Carlo simulation (n = 1000) compared with
the power predicted by formula (2)

Hazard-ratio (6)
Total number Total number 133 1-5 2:0 30
of events, d  of patients Source

Sig. level () Sig. level (@) Sig. level (@) Sig. level («)
005 0061 005 601 005 001 005 001

20 40 Monte Carlo 0-088 0029 0-147 0046 0362 0148 0659 0419
2) 0092 0026 0143 0046 0320 0139 0609 0367
50 100 Monte Carlo 0-171 0054 0293 0115 0678 0442 0972 0-895
) 0169 0058 0293 0123 0654 0413 0942 0831
100 200 Monte Carlo 0-301 0129 0523 0303 0929 0796 0999 0992
(3] 0293 0123 0516 0282 0915 0775 0999 0992
200 400 Monte Carlo 0-522 0288 0808 0609 099 0983 - -
(2 0517 0283 0807 0600 0997 0984 - -
500 1000 Monte Carlo 0-890 0746 0993 0981 - - - -

(2) 0-886 0723 0994 0971 - - - -
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Table III. Power of logrank test estimated by Monte-Carlo simulation (n = 1000)
for varying number of patients entered

Hazard-ratio
Total number Total number 1-33 1-5 2:0 30
of events, d of patients —
Sig. level (2)  Sig. level (@)  Sig. level (¢)  Sig. level ()
005 001 005 001 005 001 005 001

20 22 0114 0032 0167 0050 0341 0161 0675 0419
40 0-088 0029 0147 0046 0362 0148 0659 0419

400 0-080 0028 0111 0046 0285 0161 0589 0394

50 56 0-190 0061 0283 0111 0656 0427 0975 0907
100 0171 0054 0293 0115 0678 0442 0972 0895

1000 0190 0073 0301 0135 0697 0462 0970 0903

100 110 0304 0119 0543 0284 0922 0811 1000 0998
200 0301 0129 0523 0303 0929 079 0999 0992

2000 0299 0139 0522 0291 0917 0798 0999 0993

Results of further Monte Carlo simulations to verify this appear in Table I11. There is no abvious
trend in power, thus confirming the use of formula (2).
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