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Discrete sequential boundaries for clinical trials 

BY K. K. GORDON LAN 

National Heart, Lung and Blood Institute, Bethesda, Maryland, U.S.A. 

AND DAVID L. DEMETS 

Department of Statistics, University of Wisconsin, Madison, Wisconsin, U.S.A. 

SUMMARY 

Pocock (1977), O'Brien & Fleming (1979) and Slud & Wei (1982) have proposed 
different methods to construct discrete sequential boundaries for clinical trials. These 
methods require that the total number of decision times be specified in advance. In the 
present paper, we propose a more flexible way to construct discrete sequential 
boundaries. The method is based on the choice of a function, a*(t), which characterizes 
the rate at which the error level ac is spent. The boundary at a decision time is determined 
by a*(t), and by past and current decision times, but does not depend on the future 
decision times or the total number of decision times. 

Some key words: Brownian motion; Decision time; Group sequential design. 

1. INTRODUCTION 

It is common practice that accumulating data are reviewed periodically during the 
course of a clinical trial. In contrast to a single stage, fixed sample size or fixed duration, 
test, it is widely recognized that when statistical data analyses are performed repeatedly, 
some adjustment has to be made to maintain the probability of type I error at a specified 
level (Armitage, McPherson & Rowe, 1969). Pocock (1977) proposed use of an adjusted 
critical value, so that when standard significance tests are planned to be performed 
repeatedly for a fixed number of times, an overall significance level ac will be achieved. 
O'Brien & Fleming (1979) also proposed to use an adjusted constant to achieve a fixed 
level a, but their consecutive test statistics are defined to have variances proportional to 
the accumulated sample sizes. Recently, Slud & Wei (1982) derived the asymptotic 
distribution of sequentially computed modified Wilcoxon, i.e. Gehan, scores, and pointed 
out that for staggered patient entry and random loss to follow-up, the process is 
asymptotically Gaussian, but generally has dependent increments. They proposed a 
procedure to construct discrete sequential boundaries for this situation, as outlined in 
the next section. All the methods mentioned so far require specifying the total number of 
decision times K in advance. In practice, this could cause some problems since the 
decision making group of a trial may change the frequency of data review at some point 
during the course of the trial. Another possibility is that slower recruitment than 
anticipated could force extension of the trial, and hence increase the number of decision 
times. 

The purpose of this paper is to propose a procedure to compute a flexible discrete 
boundary (b1, ..., bK) for a discrete stochastic process (SI, ..., SK). The procedure requires 
only the specification in advance of an increasing function cx*(t), which characterizes the 
rate at which the error level cx is spent. 
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Although we describe our method in terms of a one-sided test, the generalization to a 
symmetric two-sided test is immediate. That is, we simply replace ac by 1oc to construct a 
one-sided boundary as proposed, and then apply it symmetrically. 

2. DESCRIPTION OF THE PROCEDURE 

Let {B(t): 0 < t < 1} be a standard Brownian motion process and consider the 
horizontal boundary b(t) = Zpa for 0 < t < 1, to be the boundary of interest. Let T be the 
first exit time across the boundary. If oc* (t) = pr (T < t) (O < t < 1) it is well known that 

a 2*(t) = {-2 2D(z j1t) (O < t <, 1), (1) 

where (D is the standard normal distribution function. The function c*(t) is strictly 
increasing in t and cx*(1) = ac, the predetermined significance level. 

Assume that B(t) be observed only at time ti (i = 1, ..., K) with 0 < t1 < ... < tK = 1. 
Since B(t) is not observed between 0 and t1, we can assign an accumulated boundary 
crossing probability ac*(tl) to the point tl, by defining b1 to satisfy 

pr {B(tl) > bl} = pr {I E [0, tl]} = cX*(tl). 

Similarly, we can find constants b2, ..., bK such that for i = 2, ..., K 

pr{B(tj) < bj, j = 1, ...,i-1; B(ti) > bil = pr{ E (ti I,til = a*(ti) -*(ti-1). 

It can be shown that b1 = 1tl(D-i{2(D(z,J/1/tl)-1}, but the evaluation of b2, ...,bK 
requires numerical integration (Armitage et al., 1969). A program in FORTRAN is available 
from the authors. Note that the evaluation of bi depends only on c*(t) and t1, ..., ti, but, in 
contrast to the procedures of Pocock and O'Brien & Fleming, we do not need to know the 
values of K or ti+ ..., tK. 

Theoretically, we can generalize the idea of discretizing a continuous boundary to 
more general settings. Suppose we have a continuous stochastic process {S(t); 0 < t < 1}, 
which is not necessarily Brownian motion, and a continuous boundary b(t) (O < t < 1) 
with probability ac of being crossed in 0 < t < 1. Then a*(t), the probability of crossing 
before t, is an increasing function with oc*(1) = ac. Applying the idea just described for 
Brownian motion, one can again compute the boundary points bi consecutively by using 
up the accumulated probabilities. In particular, if b(t) is the optimal continuous 
boundary for a certain one-sided alternative, the corresponding discretized boundary 
(b1, ..., bK) should enjoy, approximately, the same optimal properties. One could, of 
course, choose any increasing function oc* with cx*(1) = ac, and construct a boundary 
(bl, ..., bK) in the above manner. The oc* chosen need not be associated with a well-defined 
continuous sequential boundary, so long as the choice of cx* can be otherwise justified. 
Recently, Slud & Wei (1982) suggested the construction of a discrete sequential 
boundary (b1, ..., bK) by choosing positive constants c1, ..., CK, SO that E cx = c, 
pr{S(tl) > bl} =oc1 and, for i =2,...,K, 

pr {S(ti) > bi, S(ti) < bi,j = 1, .,i-1} = 11 

Their choice of {cxi} is independent of the decision times {tJ}. 
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3. CHOICE OF a*(t) 

In the previous section, we constructed an increasing function {a*(t), 0 < t < 1}, for a 
boundary {b(t), 0 < t < 1}, so that a*(t) is the cumulative boundary crossing probability 
of a process {S(t), 0 < t K 1}. In continuous sequential analysis, we can either introduce 
a boundary b(t), so that the total boundary crossing probability is a, or, we can introduce 
an increasing function a*(t) with a*(1) = a. These two concepts are essentially equiva- 
lent. A single stage test can be viewed as a special case of a sequential test, with 

x*(t) {?Jo (? t < 1), (2) 
a,~ (t =1), 

or equivalently, b(t) = oc (0 < t < 1) and b(l) = c, where c is chosen so that 
pr {S(1) > c} = a. Clearly, choice of a*(t) should be made before the data are monitored. 
We discuss three possible choices of a*(t) for the Brownian motion process. 

In case (i), a*(t) = a*(t) as defined in (1). This al*(t) corresponds to the horizontal 
boundary for the Brownian motion discussed in ? 2. For the continuous case, this 
boundary has been discussed by Davis (1978) and Koziol & Petkau (1978). O'Brien & 
Fleming's (1979) method can be viewed as one way to discretize this horizontal 
boundary. When ti = i/K (i = 1, ..., K) our procedure will result in a discrete boundary 
close to the O'Brien & Fleming boundary; see Table 1. Since a*(1) < 0 006 for ot = 0 05, if 
ac4(t) is employed a clinical trial is unlikely to stop very early. Therefore, ac(t) may be a 
suitable choice when long-term treatment effect is a major concern of a trial. Note, for 
this choice of a*(t), although we essentially obtain O'Brien & Fleming's boundary, we 
have no need to specify either K or spacing between decision times in advance. 

In case (ii), a*(t) = a log{l+(e-1)t}. Since a*(0-5) 0-62a, we spend 62% of the 
error probability a by t = 2. Thus, this a*(t) will generally result in earlier termination, 
but we will suffer a reduction in power. Note that when ti = i/K (i = 1, ..., K), this choice 
of a* (t) gives us a discrete boundary somewhat similar to Pocock's boundary; see Table 1. 
The function a* (t) just defined is not exactly the cumulative boundary crossing 

Table 1. One sided boundaries for {B(ti)/ /ti, ti = i/5, i = 1, 2, 3, 4, 5} 

(a) a = 0-025 (b) a = 0-05 
Cl C2 C3 C4 C5 C1 C2 C3 C4 C5 

O'Brien & Fleming 4-56 3-23 2-63 2-28 2-04 3-92 2-77 2.26 196 1-75 
41 (t) 490 3-35 2-68 2-29 2-03 4-23 289 2-30 196 1-74 
Pocock 2-41 2-41 2-41 2-41 2-41 2-12 2-12 2-12 2-12 2-12 

2*(t) 2-44 2-43 2-41 2-40 2-39 2-18 2-14 2-11 2.09 2-07 

3a*(t) 2-58 2-49 2-41 2-34 2-28 2-33 2-22 2-12 2-03 1-96 

probability function for a continuous version of the Pocock boundary. A natural 
continuous version of the Pocock boundary seems to be of the form b(t) = c Vt, 0 < t < 1. 
However, according to the law of the iterated logarithm, pr {B(t) ) c /t for some 
t, 0 < t < 1} = 1, no matter how large c is. One can by-pass this difficulty by introduc- 
ing a small positive number e, which represents a delay before the first examination of 
the data (Majumdar & Sen, 1977). Then there exists a constant c(cx, s) such that 
pr {B(t) > c(oc, s) V/t for some t, E < t < 1} = ac, but the distribution for the corresponding 
first exit time is complicated (DeLong, 1981). We chose cx*(t) here both because of its 
simplicity and the similarity of its derived boundary with the Pocock boundary. 
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For case (iii), ac(t) = at. This ac(t) represents a way of spending the error probability 
uniformly over time, and which is intermediate between the previous two functions a* (t) 
and ax(t). 

In Table 1, we compare the boundaries computed from al(t), a4(t), a4(t), and those 
proposed by Pocock (1977) and O'Brien & Fleming (1979). The comparison is made for a 
one-sided test with a = 0025 and 0 05, K = 5, and ti = i/K (i = 1, ..., 5). The stochastic 
process {B(t), 0 < t < 1} is assumed to be the standard Brownian motion. Since both 
Pocock and O'Brien & Fleming discussed their boundaries for the N(0, 1) process 
{Si = B(ti)/1ti, i = 1, ..., K}, the boundary given in Table 1 , is {ci = bi/1 ti, i = 1, ..., K}. 
As noted earlier, the correspondence between results for a* (t) and the O'Brien & Fleming 
boundary is close as also is the correspondence between a4(t) and Pocock's boundary. We 
have also compared boundaries for values of K up to 12, with a similar conclusion. 

In our experience, a*(t) tends to introduce a boundary that can be very conservative 
at the beginning, especially for large K. A quick and easy remedy to this conservatism is 
to impose an extra constraint that ci be bounded by some constant, say 3-5. With this 
constraint, for example, the boundary (4-23, 2-89, 2-30, 1P96, 1P74) for a*(t) in Table lb 
becomes (3 50, 291, 230, 196, 174). 

4. DiscussioN 

In the previous sections, we introduced the idea of constructing a discrete sequential 
boundary according to an increasing function a*, which characterizes the rate at which 
we wish to spend a. We did not define or consider the optimality of a* in differing 
situations. However, if response is immediate, we could adapt the approach of Pocock 
(1982) to find o* approximately optimal in Pocock's sense. That is, we would divide the 
unit interval into N equally spaced subintervals and then apply Pocock's numerical 
iterative minimization to evaluate a* at the values i/N for i = 1, ..., N. The value of N 
would govern the quality of the approximation. It would, of course, be of interest to 
define optimal a* and consider its determination in a variety of other contexts. We hope 
to pursue this issue. 

As noted earlier, our procedure is easily altered to consider two-sided symmetric tests. 
But for a treatment-placebo comparative trial, in order to protect patients from 
toxicity, we should introduce also a lower boundary. Since we would not be interested in 
proving a new treatment to be harmful, we should be interested in asymmetric 
boundaries. Recently, Lan, Simon & Halperin (1982) used a stochastic curtailing 
argument to propose a lower boundary for this situation. They proposed that when the 
conditional power of getting a positive conclusion drops below a certain level, con- 
sideration should be given to early termination of the trial. This type of lower boundary 
appears appropriate in the treatment-placebo case but the level of conditional power 
should be allowed to vary with time. 
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