
Motivation / Context Type theory Extensions

Prety much a summary of the 1st chapter
The “Homotopy Type Theory” book (a.k.a. The Univalent

Foundations Program)

Andreas Avoukatos

Algorithms, Logic and Discrete Mathematics, DIT @ UOA

2025

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Table of Contents

Motivation / Context
State of affairs
Type Theory vs Set Theory

Type theory
Particular types, Type formers
Some comments

Extensions
Theory

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

Table of Contents

Motivation / Context
State of affairs
Type Theory vs Set Theory

Type theory
Particular types, Type formers
Some comments

Extensions
Theory

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

Classic vs Construcivistic Mathematics

Taking the principle of excluded middle from the mathe-
matician would be the same, say, as proscribing the tele-
scope to the astronomer or to the boxer the use of his
fists. [...]

For, compared with the immense expanse of
modern mathematics, what would the wretched remnants
mean, the few isolated results, incomplete and unrelated,
that the intuitionists have obtained?

David Hilbert, 1927

▶ All-or-nothing approach: only constructive proofs are correct
(and all others are illusory), or non-constructive proofs are
valid, occasionally interesting / valuable, (but of zero
philosophical importance)

▶ No productive interplay between these camps

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

Classic vs Construcivistic Mathematics

Taking the principle of excluded middle from the mathe-
matician would be the same, say, as proscribing the tele-
scope to the astronomer or to the boxer the use of his
fists. [...]

For, compared with the immense expanse of
modern mathematics, what would the wretched remnants
mean, the few isolated results, incomplete and unrelated,
that the intuitionists have obtained?

David Hilbert, 1927

▶ All-or-nothing approach: only constructive proofs are correct
(and all others are illusory), or non-constructive proofs are
valid, occasionally interesting / valuable, (but of zero
philosophical importance)

▶ No productive interplay between these camps

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

Classic vs Construcivistic Mathematics

Taking the principle of excluded middle from the mathe-
matician would be the same, say, as proscribing the tele-
scope to the astronomer or to the boxer the use of his
fists. [...] For, compared with the immense expanse of
modern mathematics, what would the wretched remnants
mean, the few isolated results, incomplete and unrelated,
that the intuitionists have obtained?

David Hilbert, 1927

▶ All-or-nothing approach: only constructive proofs are correct
(and all others are illusory), or non-constructive proofs are
valid, occasionally interesting / valuable, (but of zero
philosophical importance)

▶ No productive interplay between these camps

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

Classic vs Construcivistic Mathematics

Taking the principle of excluded middle from the mathe-
matician would be the same, say, as proscribing the tele-
scope to the astronomer or to the boxer the use of his
fists. [...] For, compared with the immense expanse of
modern mathematics, what would the wretched remnants
mean, the few isolated results, incomplete and unrelated,
that the intuitionists have obtained?

David Hilbert, 1927

▶ All-or-nothing approach: only constructive proofs are correct
(and all others are illusory), or non-constructive proofs are
valid, occasionally interesting / valuable, (but of zero
philosophical importance)

▶ No productive interplay between these camps

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

Classic vs Construcivistic Mathematics

Taking the principle of excluded middle from the mathe-
matician would be the same, say, as proscribing the tele-
scope to the astronomer or to the boxer the use of his
fists. [...] For, compared with the immense expanse of
modern mathematics, what would the wretched remnants
mean, the few isolated results, incomplete and unrelated,
that the intuitionists have obtained?

David Hilbert, 1927

▶ All-or-nothing approach: only constructive proofs are correct
(and all others are illusory), or non-constructive proofs are
valid, occasionally interesting / valuable, (but of zero
philosophical importance)

▶ No productive interplay between these camps

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

Exciting development

Erret Bishop writes “Foundations of Constructive Analysis”
(1967).

What’s new:

▶ unlike previous attempts, large swaths of mathematics were
constructively developed, with minor changes from
classical theory

▶ worked in the common ground, s.t. both “camps” can be
viewed as generalisation of his work

What followed:

▶ intuitionistic set theories got developed,
▶ Bishop’s worked got extended:

▶ “Constructive Functional Analysis” [Bridges, 1979]
▶ “Varieties of Constructive Mathematics” [Bridges, Richman,

1981]
▶ “A Course in Constructive Algebra” [Mines, Richman,

Ruitenberg, 1988]

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

Exciting development

Erret Bishop writes “Foundations of Constructive Analysis”
(1967). What’s new:
▶ unlike previous attempts, large swaths of mathematics were

constructively developed, with minor changes from
classical theory

▶ worked in the common ground, s.t. both “camps” can be
viewed as generalisation of his work

What followed:

▶ intuitionistic set theories got developed,
▶ Bishop’s worked got extended:

▶ “Constructive Functional Analysis” [Bridges, 1979]
▶ “Varieties of Constructive Mathematics” [Bridges, Richman,

1981]
▶ “A Course in Constructive Algebra” [Mines, Richman,

Ruitenberg, 1988]

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

Exciting development

Erret Bishop writes “Foundations of Constructive Analysis”
(1967). What’s new:
▶ unlike previous attempts, large swaths of mathematics were

constructively developed, with minor changes from
classical theory

▶ worked in the common ground, s.t. both “camps” can be
viewed as generalisation of his work

What followed:

▶ intuitionistic set theories got developed,
▶ Bishop’s worked got extended:

▶ “Constructive Functional Analysis” [Bridges, 1979]
▶ “Varieties of Constructive Mathematics” [Bridges, Richman,

1981]
▶ “A Course in Constructive Algebra” [Mines, Richman,

Ruitenberg, 1988]

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

Exciting development

Erret Bishop writes “Foundations of Constructive Analysis”
(1967). What’s new:
▶ unlike previous attempts, large swaths of mathematics were

constructively developed, with minor changes from
classical theory

▶ worked in the common ground, s.t. both “camps” can be
viewed as generalisation of his work

What followed:

▶ intuitionistic set theories got developed,
▶ Bishop’s worked got extended:

▶ “Constructive Functional Analysis” [Bridges, 1979]
▶ “Varieties of Constructive Mathematics” [Bridges, Richman,

1981]
▶ “A Course in Constructive Algebra” [Mines, Richman,

Ruitenberg, 1988]

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

Exciting development

Erret Bishop writes “Foundations of Constructive Analysis”
(1967). What’s new:
▶ unlike previous attempts, large swaths of mathematics were

constructively developed, with minor changes from
classical theory

▶ worked in the common ground, s.t. both “camps” can be
viewed as generalisation of his work

What followed:
▶ intuitionistic set theories got developed,

▶ Bishop’s worked got extended:

▶ “Constructive Functional Analysis” [Bridges, 1979]
▶ “Varieties of Constructive Mathematics” [Bridges, Richman,

1981]
▶ “A Course in Constructive Algebra” [Mines, Richman,

Ruitenberg, 1988]

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

Exciting development

Erret Bishop writes “Foundations of Constructive Analysis”
(1967). What’s new:
▶ unlike previous attempts, large swaths of mathematics were

constructively developed, with minor changes from
classical theory

▶ worked in the common ground, s.t. both “camps” can be
viewed as generalisation of his work

What followed:
▶ intuitionistic set theories got developed,
▶ Bishop’s worked got extended:

▶ “Constructive Functional Analysis” [Bridges, 1979]
▶ “Varieties of Constructive Mathematics” [Bridges, Richman,

1981]
▶ “A Course in Constructive Algebra” [Mines, Richman,

Ruitenberg, 1988]

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

Exciting development

Erret Bishop writes “Foundations of Constructive Analysis”
(1967). What’s new:
▶ unlike previous attempts, large swaths of mathematics were

constructively developed, with minor changes from
classical theory

▶ worked in the common ground, s.t. both “camps” can be
viewed as generalisation of his work

What followed:
▶ intuitionistic set theories got developed,
▶ Bishop’s worked got extended:

▶ “Constructive Functional Analysis” [Bridges, 1979]

▶ “Varieties of Constructive Mathematics” [Bridges, Richman,
1981]

▶ “A Course in Constructive Algebra” [Mines, Richman,
Ruitenberg, 1988]

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

Exciting development

Erret Bishop writes “Foundations of Constructive Analysis”
(1967). What’s new:
▶ unlike previous attempts, large swaths of mathematics were

constructively developed, with minor changes from
classical theory

▶ worked in the common ground, s.t. both “camps” can be
viewed as generalisation of his work

What followed:
▶ intuitionistic set theories got developed,
▶ Bishop’s worked got extended:

▶ “Constructive Functional Analysis” [Bridges, 1979]
▶ “Varieties of Constructive Mathematics” [Bridges, Richman,

1981]

▶ “A Course in Constructive Algebra” [Mines, Richman,
Ruitenberg, 1988]

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

Exciting development

Erret Bishop writes “Foundations of Constructive Analysis”
(1967). What’s new:
▶ unlike previous attempts, large swaths of mathematics were

constructively developed, with minor changes from
classical theory

▶ worked in the common ground, s.t. both “camps” can be
viewed as generalisation of his work

What followed:
▶ intuitionistic set theories got developed,
▶ Bishop’s worked got extended:

▶ “Constructive Functional Analysis” [Bridges, 1979]
▶ “Varieties of Constructive Mathematics” [Bridges, Richman,

1981]
▶ “A Course in Constructive Algebra” [Mines, Richman,

Ruitenberg, 1988]

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

[...] Namely both of them [Hilbert and Brouwer] thought
that if one took constructive mathematics seriously, it
would be necessary to “give up” the most important parts
of modern mathematics (such as, for example, measure
theory or complex analysis).

Bishop showed that this was
simply false, and in addition that it is not necessary to
introduce unusual assumptions that appear contradictory
to the uninitiated. [...] One only had to proceed with a
certain grace, instead of with Hilbert’s “boxer’s fists”.

Michael Beeson

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

[...] Namely both of them [Hilbert and Brouwer] thought
that if one took constructive mathematics seriously, it
would be necessary to “give up” the most important parts
of modern mathematics (such as, for example, measure
theory or complex analysis).

Bishop showed that this was
simply false, and in addition that it is not necessary to
introduce unusual assumptions that appear contradictory
to the uninitiated. [...] One only had to proceed with a
certain grace, instead of with Hilbert’s “boxer’s fists”.

Michael Beeson

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

[...] Namely both of them [Hilbert and Brouwer] thought
that if one took constructive mathematics seriously, it
would be necessary to “give up” the most important parts
of modern mathematics (such as, for example, measure
theory or complex analysis). Bishop showed that this was
simply false, and in addition that it is not necessary to
introduce unusual assumptions that appear contradictory
to the uninitiated. [...]

One only had to proceed with a
certain grace, instead of with Hilbert’s “boxer’s fists”.

Michael Beeson

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

State of affairs

[...] Namely both of them [Hilbert and Brouwer] thought
that if one took constructive mathematics seriously, it
would be necessary to “give up” the most important parts
of modern mathematics (such as, for example, measure
theory or complex analysis). Bishop showed that this was
simply false, and in addition that it is not necessary to
introduce unusual assumptions that appear contradictory
to the uninitiated. [...] One only had to proceed with a
certain grace, instead of with Hilbert’s “boxer’s fists”.

Michael Beeson

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Table of Contents

Motivation / Context
State of affairs
Type Theory vs Set Theory

Type theory
Particular types, Type formers
Some comments

Extensions
Theory

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Main differences

Set theory consists of:

▶ the deductive system of First Order Logic

▶ the axioms of a theory, ZFC, (inside of the deductive system)

There is interplay between the objects of the 2nd layer (sets) and
the objects of the 1st layer (propositions).

Type theory is its own deductive system, and it consists of:

▶ types

Propositions are identified with particular types.
Proving a theorem coincides with with constructing an object
(an inhabitant) of a type.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Main differences

Set theory consists of:

▶ the deductive system of First Order Logic

▶ the axioms of a theory, ZFC, (inside of the deductive system)

There is interplay between the objects of the 2nd layer (sets) and
the objects of the 1st layer (propositions).

Type theory is its own deductive system, and it consists of:

▶ types

Propositions are identified with particular types.
Proving a theorem coincides with with constructing an object
(an inhabitant) of a type.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Main differences

Set theory consists of:

▶ the deductive system of First Order Logic

▶ the axioms of a theory, ZFC, (inside of the deductive system)

There is interplay between the objects of the 2nd layer (sets) and
the objects of the 1st layer (propositions).

Type theory is its own deductive system, and it consists of:

▶ types

Propositions are identified with particular types.
Proving a theorem coincides with with constructing an object
(an inhabitant) of a type.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Main differences

Set theory consists of:

▶ the deductive system of First Order Logic

▶ the axioms of a theory, ZFC, (inside of the deductive system)

There is interplay between the objects of the 2nd layer (sets) and
the objects of the 1st layer (propositions).

Type theory is its own deductive system, and it consists of:

▶ types

Propositions are identified with particular types.
Proving a theorem coincides with with constructing an object
(an inhabitant) of a type.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Main differences

Set theory consists of:

▶ the deductive system of First Order Logic

▶ the axioms of a theory, ZFC, (inside of the deductive system)

There is interplay between the objects of the 2nd layer (sets) and
the objects of the 1st layer (propositions).

Type theory is its own deductive system, and it consists of:

▶ types

Propositions are identified with particular types.
Proving a theorem coincides with with constructing an object
(an inhabitant) of a type.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Main differences

Set theory consists of:

▶ the deductive system of First Order Logic

▶ the axioms of a theory, ZFC, (inside of the deductive system)

There is interplay between the objects of the 2nd layer (sets) and
the objects of the 1st layer (propositions).

Type theory is its own deductive system, and it consists of:

▶ types

Propositions are identified with particular types.
Proving a theorem coincides with with constructing an object
(an inhabitant) of a type.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Main differences

Set theory consists of:

▶ the deductive system of First Order Logic

▶ the axioms of a theory, ZFC, (inside of the deductive system)

There is interplay between the objects of the 2nd layer (sets) and
the objects of the 1st layer (propositions).

Type theory is its own deductive system, and it consists of:

▶ types

Propositions are identified with particular types.

Proving a theorem coincides with with constructing an object
(an inhabitant) of a type.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Main differences

Set theory consists of:

▶ the deductive system of First Order Logic

▶ the axioms of a theory, ZFC, (inside of the deductive system)

There is interplay between the objects of the 2nd layer (sets) and
the objects of the 1st layer (propositions).

Type theory is its own deductive system, and it consists of:

▶ types

Propositions are identified with particular types.
Proving a theorem coincides with with constructing an object
(an inhabitant) of a type.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Deductive systems

A collection of rules, for deriving judgments.

FOL’s judgment: “a given proposition has a proof”.
Example of a rule: “from A and B infer A ∧ B”.

Type Theory’s judgments: “a : A”, read as

▶ “the term a has type A” / “a is an element of type A”

▶ “a is a point of the space A” (in Homotopy Type Theory)

▶ “a is a witness (or evidence of truth) of A” (when A is a
proposition)

The judgement “a : A” is derivable in type theory, precisely when
“A has a proof” is derivable in FOL.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Deductive systems

A collection of rules, for deriving judgments.

FOL’s judgment: “a given proposition has a proof”.

Example of a rule: “from A and B infer A ∧ B”.

Type Theory’s judgments: “a : A”, read as

▶ “the term a has type A” / “a is an element of type A”

▶ “a is a point of the space A” (in Homotopy Type Theory)

▶ “a is a witness (or evidence of truth) of A” (when A is a
proposition)

The judgement “a : A” is derivable in type theory, precisely when
“A has a proof” is derivable in FOL.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Deductive systems

A collection of rules, for deriving judgments.

FOL’s judgment: “a given proposition has a proof”.
Example of a rule: “from A and B infer A ∧ B”.

Type Theory’s judgments: “a : A”, read as

▶ “the term a has type A” / “a is an element of type A”

▶ “a is a point of the space A” (in Homotopy Type Theory)

▶ “a is a witness (or evidence of truth) of A” (when A is a
proposition)

The judgement “a : A” is derivable in type theory, precisely when
“A has a proof” is derivable in FOL.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Deductive systems

A collection of rules, for deriving judgments.

FOL’s judgment: “a given proposition has a proof”.
Example of a rule: “from A and B infer A ∧ B”.

Type Theory’s judgments: “a : A”, read as

▶ “the term a has type A” / “a is an element of type A”

▶ “a is a point of the space A” (in Homotopy Type Theory)

▶ “a is a witness (or evidence of truth) of A” (when A is a
proposition)

The judgement “a : A” is derivable in type theory, precisely when
“A has a proof” is derivable in FOL.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Deductive systems

A collection of rules, for deriving judgments.

FOL’s judgment: “a given proposition has a proof”.
Example of a rule: “from A and B infer A ∧ B”.

Type Theory’s judgments: “a : A”, read as

▶ “the term a has type A” / “a is an element of type A”

▶ “a is a point of the space A” (in Homotopy Type Theory)

▶ “a is a witness (or evidence of truth) of A” (when A is a
proposition)

The judgement “a : A” is derivable in type theory, precisely when
“A has a proof” is derivable in FOL.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Deductive systems

A collection of rules, for deriving judgments.

FOL’s judgment: “a given proposition has a proof”.
Example of a rule: “from A and B infer A ∧ B”.

Type Theory’s judgments: “a : A”, read as

▶ “the term a has type A” / “a is an element of type A”

▶ “a is a point of the space A” (in Homotopy Type Theory)

▶ “a is a witness (or evidence of truth) of A” (when A is a
proposition)

The judgement “a : A” is derivable in type theory, precisely when
“A has a proof” is derivable in FOL.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Deductive systems

A collection of rules, for deriving judgments.

FOL’s judgment: “a given proposition has a proof”.
Example of a rule: “from A and B infer A ∧ B”.

Type Theory’s judgments: “a : A”, read as

▶ “the term a has type A” / “a is an element of type A”

▶ “a is a point of the space A” (in Homotopy Type Theory)

▶ “a is a witness (or evidence of truth) of A” (when A is a
proposition)

The judgement “a : A” is derivable in type theory, precisely when
“A has a proof” is derivable in FOL.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Deductive systems

A collection of rules, for deriving judgments.

FOL’s judgment: “a given proposition has a proof”.
Example of a rule: “from A and B infer A ∧ B”.

Type Theory’s judgments: “a : A”, read as

▶ “the term a has type A” / “a is an element of type A”

▶ “a is a point of the space A” (in Homotopy Type Theory)

▶ “a is a witness (or evidence of truth) of A” (when A is a
proposition)

The judgement “a : A” is derivable in type theory, precisely when
“A has a proof” is derivable in FOL.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Membership and equality

Set theory:

▶ membership may (or may not) hold between two pre-existing
objects “a” and “A”

▶ “let x ∈ N” introduces an object x and assumes that x ∈ N

Type Theory:

▶ the statement “let x : N” is atomic

Equality is a type, that is for a, b : A, we have a type a =A b.
When a =A b is inhabited, we say that a and b are
(propositionally) equal.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Membership and equality

Set theory:

▶ membership may (or may not) hold between two pre-existing
objects “a” and “A”

▶ “let x ∈ N” introduces an object x and assumes that x ∈ N

Type Theory:

▶ the statement “let x : N” is atomic

Equality is a type, that is for a, b : A, we have a type a =A b.
When a =A b is inhabited, we say that a and b are
(propositionally) equal.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Membership and equality

Set theory:

▶ membership may (or may not) hold between two pre-existing
objects “a” and “A”

▶ “let x ∈ N” introduces an object x and assumes that x ∈ N

Type Theory:

▶ the statement “let x : N” is atomic

Equality is a type, that is for a, b : A, we have a type a =A b.
When a =A b is inhabited, we say that a and b are
(propositionally) equal.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Membership and equality

Set theory:

▶ membership may (or may not) hold between two pre-existing
objects “a” and “A”

▶ “let x ∈ N” introduces an object x and assumes that x ∈ N

Type Theory:

▶ the statement “let x : N” is atomic

Equality is a type, that is for a, b : A, we have a type a =A b.
When a =A b is inhabited, we say that a and b are
(propositionally) equal.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Membership and equality

Set theory:

▶ membership may (or may not) hold between two pre-existing
objects “a” and “A”

▶ “let x ∈ N” introduces an object x and assumes that x ∈ N

Type Theory:

▶ the statement “let x : N” is atomic

Equality is a type, that is for a, b : A, we have a type a =A b.
When a =A b is inhabited, we say that a and b are
(propositionally) equal.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Membership and equality

Set theory:

▶ membership may (or may not) hold between two pre-existing
objects “a” and “A”

▶ “let x ∈ N” introduces an object x and assumes that x ∈ N

Type Theory:

▶ the statement “let x : N” is atomic

Equality is a type, that is for a, b : A, we have a type a =A b.

When a =A b is inhabited, we say that a and b are
(propositionally) equal.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Membership and equality

Set theory:

▶ membership may (or may not) hold between two pre-existing
objects “a” and “A”

▶ “let x ∈ N” introduces an object x and assumes that x ∈ N

Type Theory:

▶ the statement “let x : N” is atomic

Equality is a type, that is for a, b : A, we have a type a =A b.
When a =A b is inhabited, we say that a and b are
(propositionally) equal.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Judgmental vs propositional equality

The equality at the same level as “x : A” is called judgmental or
defintional equality,

a ≡ b : A

▶ we want to control the other form of judgement, “a : A”.

Example

Suppose we define f : N → N by f (x) = x2, then f (3) is equal to
32 by definition. Imagine we have derived the judgment
“p : 32 = 9”. What about “f(3) = 9”? Since f (3) is 32 by
definition, p should count as proof that f (3) = 9.

As a rule

▶ Given a : A and A ≡ B, we derive a : B

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Judgmental vs propositional equality

The equality at the same level as “x : A” is called judgmental or
defintional equality,

a ≡ b : A

▶ we want to control the other form of judgement, “a : A”.

Example

Suppose we define f : N → N by f (x) = x2,

then f (3) is equal to
32 by definition. Imagine we have derived the judgment
“p : 32 = 9”. What about “f(3) = 9”? Since f (3) is 32 by
definition, p should count as proof that f (3) = 9.

As a rule

▶ Given a : A and A ≡ B, we derive a : B

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Judgmental vs propositional equality

The equality at the same level as “x : A” is called judgmental or
defintional equality,

a ≡ b : A

▶ we want to control the other form of judgement, “a : A”.

Example

Suppose we define f : N → N by f (x) = x2,

then f (3) is equal to
32 by definition. Imagine we have derived the judgment
“p : 32 = 9”. What about “f(3) = 9”? Since f (3) is 32 by
definition, p should count as proof that f (3) = 9.

As a rule

▶ Given a : A and A ≡ B, we derive a : B

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Judgmental vs propositional equality

The equality at the same level as “x : A” is called judgmental or
defintional equality,

a ≡ b : A

▶ we want to control the other form of judgement, “a : A”.

Example

Suppose we define f : N → N by f (x) = x2,

then f (3) is equal to
32 by definition. Imagine we have derived the judgment
“p : 32 = 9”. What about “f(3) = 9”? Since f (3) is 32 by
definition, p should count as proof that f (3) = 9.

As a rule

▶ Given a : A and A ≡ B, we derive a : B

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Judgmental vs propositional equality

The equality at the same level as “x : A” is called judgmental or
defintional equality,

a ≡ b : A

▶ we want to control the other form of judgement, “a : A”.

Example

Suppose we define f : N → N by f (x) = x2, then f (3) is equal to
32 by definition.

Imagine we have derived the judgment
“p : 32 = 9”. What about “f(3) = 9”? Since f (3) is 32 by
definition, p should count as proof that f (3) = 9.

As a rule

▶ Given a : A and A ≡ B, we derive a : B

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Judgmental vs propositional equality

The equality at the same level as “x : A” is called judgmental or
defintional equality,

a ≡ b : A

▶ we want to control the other form of judgement, “a : A”.

Example

Suppose we define f : N → N by f (x) = x2, then f (3) is equal to
32 by definition. Imagine we have derived the judgment
“p : 32 = 9”.

What about “f(3) = 9”? Since f (3) is 32 by
definition, p should count as proof that f (3) = 9.

As a rule

▶ Given a : A and A ≡ B, we derive a : B

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Judgmental vs propositional equality

The equality at the same level as “x : A” is called judgmental or
defintional equality,

a ≡ b : A

▶ we want to control the other form of judgement, “a : A”.

Example

Suppose we define f : N → N by f (x) = x2, then f (3) is equal to
32 by definition. Imagine we have derived the judgment
“p : 32 = 9”. What about “f(3) = 9”?

Since f (3) is 32 by
definition, p should count as proof that f (3) = 9.

As a rule

▶ Given a : A and A ≡ B, we derive a : B

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Judgmental vs propositional equality

The equality at the same level as “x : A” is called judgmental or
defintional equality,

a ≡ b : A

▶ we want to control the other form of judgement, “a : A”.

Example

Suppose we define f : N → N by f (x) = x2, then f (3) is equal to
32 by definition. Imagine we have derived the judgment
“p : 32 = 9”. What about “f(3) = 9”? Since f (3) is 32 by
definition, p should count as proof that f (3) = 9.

As a rule

▶ Given a : A and A ≡ B, we derive a : B

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Judgmental vs propositional equality

The equality at the same level as “x : A” is called judgmental or
defintional equality,

a ≡ b : A

▶ we want to control the other form of judgement, “a : A”.

Example

Suppose we define f : N → N by f (x) = x2, then f (3) is equal to
32 by definition. Imagine we have derived the judgment
“p : 32 = 9”. What about “f(3) = 9”? Since f (3) is 32 by
definition, p should count as proof that f (3) = 9.

As a rule

▶ Given a : A and A ≡ B, we derive a : B

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Judgmental vs propositional equality

The equality at the same level as “x : A” is called judgmental or
defintional equality,

a ≡ b : A

▶ we want to control the other form of judgement, “a : A”.

Example

Suppose we define f : N → N by f (x) = x2, then f (3) is equal to
32 by definition. Imagine we have derived the judgment
“p : 32 = 9”. What about “f(3) = 9”? Since f (3) is 32 by
definition, p should count as proof that f (3) = 9.

As a rule
▶ Given a : A and A ≡ B, we derive a : B

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Recap

There are two forms of judgment,

▶ a : A (a is an object of type A)

▶ a ≡ b : A (a and b are definitionally equal objects of type A)

(This) Type Theory:

▶ consists entirely of rules

▶ has zero axioms

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Recap

There are two forms of judgment,

▶ a : A (a is an object of type A)

▶ a ≡ b : A (a and b are definitionally equal objects of type A)

(This) Type Theory:

▶ consists entirely of rules

▶ has zero axioms

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Recap

There are two forms of judgment,

▶ a : A (a is an object of type A)

▶ a ≡ b : A (a and b are definitionally equal objects of type A)

(This) Type Theory:

▶ consists entirely of rules

▶ has zero axioms

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Recap

There are two forms of judgment,

▶ a : A (a is an object of type A)

▶ a ≡ b : A (a and b are definitionally equal objects of type A)

(This) Type Theory:

▶ consists entirely of rules

▶ has zero axioms

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Recap

There are two forms of judgment,

▶ a : A (a is an object of type A)

▶ a ≡ b : A (a and b are definitionally equal objects of type A)

(This) Type Theory:

▶ consists entirely of rules

▶ has zero axioms

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Recap

Set theory:
▶ Axioms contain all the information about the behavior of

sets

Type theory:

▶ The rules contain all the information (usually), with no
axioms being necessary.

Pros:

▶ rules are procedural, which make possible (but don’t
automatically ensure) good computational properties of
type theory, such as canonicity

Cons:

▶ we do not understand how to formulate everything we
need. For homotopy type theory, we will have to augment
the rules of type theory, notably the univalence axiom

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Recap

Set theory:
▶ Axioms contain all the information about the behavior of

sets

Type theory:

▶ The rules contain all the information (usually), with no
axioms being necessary.

Pros:

▶ rules are procedural, which make possible (but don’t
automatically ensure) good computational properties of
type theory, such as canonicity

Cons:

▶ we do not understand how to formulate everything we
need. For homotopy type theory, we will have to augment
the rules of type theory, notably the univalence axiom

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Recap

Set theory:
▶ Axioms contain all the information about the behavior of

sets

Type theory:
▶ The rules contain all the information (usually), with no

axioms being necessary.

Pros:

▶ rules are procedural, which make possible (but don’t
automatically ensure) good computational properties of
type theory, such as canonicity

Cons:

▶ we do not understand how to formulate everything we
need. For homotopy type theory, we will have to augment
the rules of type theory, notably the univalence axiom

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Recap

Set theory:
▶ Axioms contain all the information about the behavior of

sets

Type theory:
▶ The rules contain all the information (usually), with no

axioms being necessary.

Pros:

▶ rules are procedural, which make possible (but don’t
automatically ensure) good computational properties of
type theory, such as canonicity

Cons:

▶ we do not understand how to formulate everything we
need. For homotopy type theory, we will have to augment
the rules of type theory, notably the univalence axiom

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Recap

Set theory:
▶ Axioms contain all the information about the behavior of

sets

Type theory:
▶ The rules contain all the information (usually), with no

axioms being necessary.

Pros:
▶ rules are procedural, which make possible (but don’t

automatically ensure) good computational properties of
type theory, such as canonicity

Cons:

▶ we do not understand how to formulate everything we
need. For homotopy type theory, we will have to augment
the rules of type theory, notably the univalence axiom

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Recap

Set theory:
▶ Axioms contain all the information about the behavior of

sets

Type theory:
▶ The rules contain all the information (usually), with no

axioms being necessary.

Pros:
▶ rules are procedural, which make possible (but don’t

automatically ensure) good computational properties of
type theory, such as canonicity

Cons:

▶ we do not understand how to formulate everything we
need. For homotopy type theory, we will have to augment
the rules of type theory, notably the univalence axiom

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Type Theory vs Set Theory

Recap

Set theory:
▶ Axioms contain all the information about the behavior of

sets

Type theory:
▶ The rules contain all the information (usually), with no

axioms being necessary.

Pros:
▶ rules are procedural, which make possible (but don’t

automatically ensure) good computational properties of
type theory, such as canonicity

Cons:
▶ we do not understand how to formulate everything we

need. For homotopy type theory, we will have to augment
the rules of type theory, notably the univalence axiom

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Table of Contents

Motivation / Context
State of affairs
Type Theory vs Set Theory

Type theory
Particular types, Type formers
Some comments

Extensions
Theory

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Function Types (1/3)

Given types A, B, we construct the type A → B of functions with
domain A and codomain B.

▶ Set theory: functions are defined as functional relations

▶ Type theory: primitive concept

Behaviour?
We explain the type by prescribing what we can do with its
objects, how to construct them, what equalities they induce and
so on.

Usage

Given f : A → B, a : A, we can apply the function to obtain an
element of the codomain B, denoted f (a), also written as f a.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Function Types (1/3)

Given types A, B, we construct the type A → B of functions with
domain A and codomain B.

▶ Set theory: functions are defined as functional relations

▶ Type theory: primitive concept

Behaviour?
We explain the type by prescribing what we can do with its
objects, how to construct them, what equalities they induce and
so on.

Usage

Given f : A → B, a : A, we can apply the function to obtain an
element of the codomain B, denoted f (a), also written as f a.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Function Types (1/3)

Given types A, B, we construct the type A → B of functions with
domain A and codomain B.

▶ Set theory: functions are defined as functional relations

▶ Type theory: primitive concept

Behaviour?
We explain the type by prescribing what we can do with its
objects, how to construct them, what equalities they induce and
so on.

Usage

Given f : A → B, a : A, we can apply the function to obtain an
element of the codomain B, denoted f (a), also written as f a.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Function Types (1/3)

Given types A, B, we construct the type A → B of functions with
domain A and codomain B.

▶ Set theory: functions are defined as functional relations

▶ Type theory: primitive concept

Behaviour?
We explain the type by prescribing what we can do with its
objects, how to construct them, what equalities they induce and
so on.

Usage

Given f : A → B, a : A, we can apply the function to obtain an
element of the codomain B, denoted f (a), also written as f a.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Function Types (1/3)

Given types A, B, we construct the type A → B of functions with
domain A and codomain B.

▶ Set theory: functions are defined as functional relations

▶ Type theory: primitive concept

Behaviour?
We explain the type by prescribing what we can do with its
objects, how to construct them, what equalities they induce and
so on.

Usage

Given f : A → B, a : A, we can apply the function to obtain an
element of the codomain B, denoted f (a), also written as f a.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Function Types (1/3)

Given types A, B, we construct the type A → B of functions with
domain A and codomain B.

▶ Set theory: functions are defined as functional relations

▶ Type theory: primitive concept

Behaviour?
We explain the type by prescribing what we can do with its
objects, how to construct them, what equalities they induce and
so on.

Usage

Given f : A → B, a : A, we can apply the function to obtain an
element of the codomain B, denoted f (a), also written as f a.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Function Types, definitions (2/3)

Construction of elements of A → B

▶ Direct definition: provide f (x) :≡ Φ and check that Φ: B,
assuming x : A.

▶ Lambda abstraction: given an expression Φ of type B, which
may use x : A, write λ(x : A).Φ to indicate the same function
as f (x) :≡ Φ

Example

Let f be of type N → N, defined by f (x) :≡ x + x .

Then f (2) is
judgmentaly equal to 2 + 2. Similarly, (λ(x : N).x + x) : N → N.

Remark
In the lambda abstraction, we can skip the domain since it’s
infered in the type, that is λx .Φ: A → B.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Function Types, definitions (2/3)

Construction of elements of A → B
▶ Direct definition: provide f (x) :≡ Φ and check that Φ: B,

assuming x : A.

▶ Lambda abstraction: given an expression Φ of type B, which
may use x : A, write λ(x : A).Φ to indicate the same function
as f (x) :≡ Φ

Example

Let f be of type N → N, defined by f (x) :≡ x + x .

Then f (2) is
judgmentaly equal to 2 + 2. Similarly, (λ(x : N).x + x) : N → N.

Remark
In the lambda abstraction, we can skip the domain since it’s
infered in the type, that is λx .Φ: A → B.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Function Types, definitions (2/3)

Construction of elements of A → B
▶ Direct definition: provide f (x) :≡ Φ and check that Φ: B,

assuming x : A.

▶ Lambda abstraction: given an expression Φ of type B, which
may use x : A, write λ(x : A).Φ to indicate the same function
as f (x) :≡ Φ

Example

Let f be of type N → N, defined by f (x) :≡ x + x .

Then f (2) is
judgmentaly equal to 2 + 2. Similarly, (λ(x : N).x + x) : N → N.

Remark
In the lambda abstraction, we can skip the domain since it’s
infered in the type, that is λx .Φ: A → B.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Function Types, definitions (2/3)

Construction of elements of A → B
▶ Direct definition: provide f (x) :≡ Φ and check that Φ: B,

assuming x : A.

▶ Lambda abstraction: given an expression Φ of type B, which
may use x : A, write λ(x : A).Φ to indicate the same function
as f (x) :≡ Φ

Example

Let f be of type N → N, defined by f (x) :≡ x + x .

Then f (2) is
judgmentaly equal to 2 + 2. Similarly, (λ(x : N).x + x) : N → N.

Remark
In the lambda abstraction, we can skip the domain since it’s
infered in the type, that is λx .Φ: A → B.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Function Types, definitions (2/3)

Construction of elements of A → B
▶ Direct definition: provide f (x) :≡ Φ and check that Φ: B,

assuming x : A.

▶ Lambda abstraction: given an expression Φ of type B, which
may use x : A, write λ(x : A).Φ to indicate the same function
as f (x) :≡ Φ

Example

Let f be of type N → N, defined by f (x) :≡ x + x .

Then f (2) is
judgmentaly equal to 2 + 2. Similarly, (λ(x : N).x + x) : N → N.

Remark
In the lambda abstraction, we can skip the domain since it’s
infered in the type, that is λx .Φ: A → B.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Function Types, definitions (2/3)

Construction of elements of A → B
▶ Direct definition: provide f (x) :≡ Φ and check that Φ: B,

assuming x : A.

▶ Lambda abstraction: given an expression Φ of type B, which
may use x : A, write λ(x : A).Φ to indicate the same function
as f (x) :≡ Φ

Example

Let f be of type N → N, defined by f (x) :≡ x + x . Then f (2) is
judgmentaly equal to 2 + 2.

Similarly, (λ(x : N).x + x) : N → N.

Remark
In the lambda abstraction, we can skip the domain since it’s
infered in the type, that is λx .Φ: A → B.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Function Types, definitions (2/3)

Construction of elements of A → B
▶ Direct definition: provide f (x) :≡ Φ and check that Φ: B,

assuming x : A.

▶ Lambda abstraction: given an expression Φ of type B, which
may use x : A, write λ(x : A).Φ to indicate the same function
as f (x) :≡ Φ

Example

Let f be of type N → N, defined by f (x) :≡ x + x . Then f (2) is
judgmentaly equal to 2 + 2. Similarly, (λ(x : N).x + x) : N → N.

Remark
In the lambda abstraction, we can skip the domain since it’s
infered in the type, that is λx .Φ: A → B.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Function Types, definitions (2/3)

Construction of elements of A → B
▶ Direct definition: provide f (x) :≡ Φ and check that Φ: B,

assuming x : A.

▶ Lambda abstraction: given an expression Φ of type B, which
may use x : A, write λ(x : A).Φ to indicate the same function
as f (x) :≡ Φ

Example

Let f be of type N → N, defined by f (x) :≡ x + x . Then f (2) is
judgmentaly equal to 2 + 2. Similarly, (λ(x : N).x + x) : N → N.

Remark
In the lambda abstraction, we can skip the domain since it’s
infered in the type, that is λx .Φ: A → B.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Computation rule (aka β-conversion / reduction)

(λx .Φ)(a) ≡ Φ′, where Φ′ is the expression Φ with x having been
replaced by a. (E.g.: (λx .x + x)(2) ≡ 2 + 2)

Uniqueness principle (aka η-conversion / expansion)

Given f : A → B, we can construct a lambda λx .f (x) and we
consider it definitionally equal to f : f ≡ (λx .f (x))

Dummy variables (aka α-conversion)

As per usual we are careful about variables getting captured. (E.g.:
given f (x) :≡ λy .x + y ,

▶ f (y) ≡ λy .y + y - (not possible), f (y) ≡ λz .y + z -
(acceptable)

More inputs?

More functions: f : A× B → C [?] ✓f : A → (B → C )
f (x)(y)[?]✓f (x , y) :≡ Φ, in λ-notation, f :≡ λx .λy .Φ

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Computation rule (aka β-conversion / reduction)

(λx .Φ)(a) ≡ Φ′, where Φ′ is the expression Φ with x having been
replaced by a. (E.g.: (λx .x + x)(2) ≡ 2 + 2)

Uniqueness principle (aka η-conversion / expansion)

Given f : A → B, we can construct a lambda λx .f (x) and we
consider it definitionally equal to f : f ≡ (λx .f (x))

Dummy variables (aka α-conversion)

As per usual we are careful about variables getting captured. (E.g.:
given f (x) :≡ λy .x + y ,

▶ f (y) ≡ λy .y + y - (not possible), f (y) ≡ λz .y + z -
(acceptable)

More inputs?

More functions: f : A× B → C [?] ✓f : A → (B → C )
f (x)(y)[?]✓f (x , y) :≡ Φ, in λ-notation, f :≡ λx .λy .Φ

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Computation rule (aka β-conversion / reduction)

(λx .Φ)(a) ≡ Φ′, where Φ′ is the expression Φ with x having been
replaced by a. (E.g.: (λx .x + x)(2) ≡ 2 + 2)

Uniqueness principle (aka η-conversion / expansion)

Given f : A → B, we can construct a lambda λx .f (x) and we
consider it definitionally equal to f : f ≡ (λx .f (x))

Dummy variables (aka α-conversion)

As per usual we are careful about variables getting captured. (E.g.:
given f (x) :≡ λy .x + y ,

▶ f (y) ≡ λy .y + y - (not possible), f (y) ≡ λz .y + z -
(acceptable)

More inputs?

More functions: f : A× B → C [?] ✓f : A → (B → C )
f (x)(y)[?]✓f (x , y) :≡ Φ, in λ-notation, f :≡ λx .λy .Φ

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Computation rule (aka β-conversion / reduction)

(λx .Φ)(a) ≡ Φ′, where Φ′ is the expression Φ with x having been
replaced by a. (E.g.: (λx .x + x)(2) ≡ 2 + 2)

Uniqueness principle (aka η-conversion / expansion)

Given f : A → B, we can construct a lambda λx .f (x) and we
consider it definitionally equal to f : f ≡ (λx .f (x))

Dummy variables (aka α-conversion)

As per usual we are careful about variables getting captured. (E.g.:
given f (x) :≡ λy .x + y ,

▶ f (y) ≡ λy .y + y - (not possible), f (y) ≡ λz .y + z -
(acceptable)

More inputs?

More functions: f : A× B → C [?] ✓f : A → (B → C )
f (x)(y)[?]✓f (x , y) :≡ Φ, in λ-notation, f :≡ λx .λy .Φ

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Computation rule (aka β-conversion / reduction)

(λx .Φ)(a) ≡ Φ′, where Φ′ is the expression Φ with x having been
replaced by a. (E.g.: (λx .x + x)(2) ≡ 2 + 2)

Uniqueness principle (aka η-conversion / expansion)

Given f : A → B, we can construct a lambda λx .f (x) and we
consider it definitionally equal to f : f ≡ (λx .f (x))

Dummy variables (aka α-conversion)

As per usual we are careful about variables getting captured.

(E.g.:
given f (x) :≡ λy .x + y ,

▶ f (y) ≡ λy .y + y - (not possible), f (y) ≡ λz .y + z -
(acceptable)

More inputs?

More functions: f : A× B → C [?] ✓f : A → (B → C )
f (x)(y)[?]✓f (x , y) :≡ Φ, in λ-notation, f :≡ λx .λy .Φ

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Computation rule (aka β-conversion / reduction)

(λx .Φ)(a) ≡ Φ′, where Φ′ is the expression Φ with x having been
replaced by a. (E.g.: (λx .x + x)(2) ≡ 2 + 2)

Uniqueness principle (aka η-conversion / expansion)

Given f : A → B, we can construct a lambda λx .f (x) and we
consider it definitionally equal to f : f ≡ (λx .f (x))

Dummy variables (aka α-conversion)

As per usual we are careful about variables getting captured.

(E.g.:
given f (x) :≡ λy .x + y ,

▶ f (y) ≡ λy .y + y - (not possible), f (y) ≡ λz .y + z -
(acceptable)

More inputs?

More functions: f : A× B → C [?] ✓f : A → (B → C )
f (x)(y)[?]✓f (x , y) :≡ Φ, in λ-notation, f :≡ λx .λy .Φ

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Computation rule (aka β-conversion / reduction)

(λx .Φ)(a) ≡ Φ′, where Φ′ is the expression Φ with x having been
replaced by a. (E.g.: (λx .x + x)(2) ≡ 2 + 2)

Uniqueness principle (aka η-conversion / expansion)

Given f : A → B, we can construct a lambda λx .f (x) and we
consider it definitionally equal to f : f ≡ (λx .f (x))

Dummy variables (aka α-conversion)

As per usual we are careful about variables getting captured. (E.g.:
given f (x) :≡ λy .x + y ,

▶ f (y) ≡ λy .y + y - (not possible), f (y) ≡ λz .y + z -
(acceptable)

More inputs?

More functions: f : A× B → C [?]

✓f : A → (B → C )
f (x)(y)[?]✓f (x , y) :≡ Φ, in λ-notation, f :≡ λx .λy .Φ

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Computation rule (aka β-conversion / reduction)

(λx .Φ)(a) ≡ Φ′, where Φ′ is the expression Φ with x having been
replaced by a. (E.g.: (λx .x + x)(2) ≡ 2 + 2)

Uniqueness principle (aka η-conversion / expansion)

Given f : A → B, we can construct a lambda λx .f (x) and we
consider it definitionally equal to f : f ≡ (λx .f (x))

Dummy variables (aka α-conversion)

As per usual we are careful about variables getting captured. (E.g.:
given f (x) :≡ λy .x + y ,

▶ f (y) ≡ λy .y + y - (not possible), f (y) ≡ λz .y + z -
(acceptable)

More inputs?

More functions: f : A× B → C [?]

✓f : A → (B → C )
f (x)(y)[?]✓f (x , y) :≡ Φ, in λ-notation, f :≡ λx .λy .Φ

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Computation rule (aka β-conversion / reduction)

(λx .Φ)(a) ≡ Φ′, where Φ′ is the expression Φ with x having been
replaced by a. (E.g.: (λx .x + x)(2) ≡ 2 + 2)

Uniqueness principle (aka η-conversion / expansion)

Given f : A → B, we can construct a lambda λx .f (x) and we
consider it definitionally equal to f : f ≡ (λx .f (x))

Dummy variables (aka α-conversion)

As per usual we are careful about variables getting captured. (E.g.:
given f (x) :≡ λy .x + y ,

▶ f (y) ≡ λy .y + y - (not possible), f (y) ≡ λz .y + z -
(acceptable)

More inputs?

More functions: f : A× B → C [?]

✓f : A → (B → C )
f (x)(y)[?]✓f (x , y) :≡ Φ, in λ-notation, f :≡ λx .λy .Φ

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Computation rule (aka β-conversion / reduction)

(λx .Φ)(a) ≡ Φ′, where Φ′ is the expression Φ with x having been
replaced by a. (E.g.: (λx .x + x)(2) ≡ 2 + 2)

Uniqueness principle (aka η-conversion / expansion)

Given f : A → B, we can construct a lambda λx .f (x) and we
consider it definitionally equal to f : f ≡ (λx .f (x))

Dummy variables (aka α-conversion)

As per usual we are careful about variables getting captured. (E.g.:
given f (x) :≡ λy .x + y ,

▶ f (y) ≡ λy .y + y - (not possible), f (y) ≡ λz .y + z -
(acceptable)

More inputs?

More functions: f : A× B → C [?] ✓f : A → (B → C )
f (x)(y)[?]

✓f (x , y) :≡ Φ, in λ-notation, f :≡ λx .λy .Φ

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Computation rule (aka β-conversion / reduction)

(λx .Φ)(a) ≡ Φ′, where Φ′ is the expression Φ with x having been
replaced by a. (E.g.: (λx .x + x)(2) ≡ 2 + 2)

Uniqueness principle (aka η-conversion / expansion)

Given f : A → B, we can construct a lambda λx .f (x) and we
consider it definitionally equal to f : f ≡ (λx .f (x))

Dummy variables (aka α-conversion)

As per usual we are careful about variables getting captured. (E.g.:
given f (x) :≡ λy .x + y ,

▶ f (y) ≡ λy .y + y - (not possible), f (y) ≡ λz .y + z -
(acceptable)

More inputs?

More functions: f : A× B → C [?] ✓f : A → (B → C )
f (x)(y)[?]✓f (x , y) :≡ Φ, in λ-notation, f :≡ λx .λy .Φ

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Universes (1/2)

A universe is a type whose elements are types.

(Can there be a U∞ that includes itself? As in set theory, no.)

To avoid this, we introduce a hierarchy U0 : U1 : U2 : . . ., and we
assume that our universes are cumulative, i.e. if A : Ui then
A : Ui+1.

▶ Convinient (avoids Girard’s paradox, compatibility with
categorical semantics, (Grothendieck universes))

▶ But, elements no longer have unique types (which
complicates algorithms for inferring and checking types)

When we say A is a type, we mean that it inhabits some universe
Ui .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Universes (1/2)

A universe is a type whose elements are types.
(Can there be a U∞ that includes itself?

As in set theory, no.)

To avoid this, we introduce a hierarchy U0 : U1 : U2 : . . ., and we
assume that our universes are cumulative, i.e. if A : Ui then
A : Ui+1.

▶ Convinient (avoids Girard’s paradox, compatibility with
categorical semantics, (Grothendieck universes))

▶ But, elements no longer have unique types (which
complicates algorithms for inferring and checking types)

When we say A is a type, we mean that it inhabits some universe
Ui .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Universes (1/2)

A universe is a type whose elements are types.
(Can there be a U∞ that includes itself? As in set theory, no.)

To avoid this, we introduce a hierarchy U0 : U1 : U2 : . . ., and we
assume that our universes are cumulative, i.e. if A : Ui then
A : Ui+1.

▶ Convinient (avoids Girard’s paradox, compatibility with
categorical semantics, (Grothendieck universes))

▶ But, elements no longer have unique types (which
complicates algorithms for inferring and checking types)

When we say A is a type, we mean that it inhabits some universe
Ui .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Universes (1/2)

A universe is a type whose elements are types.
(Can there be a U∞ that includes itself? As in set theory, no.)

To avoid this, we introduce a hierarchy U0 : U1 : U2 : . . .,

and we
assume that our universes are cumulative, i.e. if A : Ui then
A : Ui+1.

▶ Convinient (avoids Girard’s paradox, compatibility with
categorical semantics, (Grothendieck universes))

▶ But, elements no longer have unique types (which
complicates algorithms for inferring and checking types)

When we say A is a type, we mean that it inhabits some universe
Ui .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Universes (1/2)

A universe is a type whose elements are types.
(Can there be a U∞ that includes itself? As in set theory, no.)

To avoid this, we introduce a hierarchy U0 : U1 : U2 : . . ., and we
assume that our universes are cumulative, i.e. if A : Ui then
A : Ui+1.

▶ Convinient (avoids Girard’s paradox, compatibility with
categorical semantics, (Grothendieck universes))

▶ But, elements no longer have unique types (which
complicates algorithms for inferring and checking types)

When we say A is a type, we mean that it inhabits some universe
Ui .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Universes (1/2)

A universe is a type whose elements are types.
(Can there be a U∞ that includes itself? As in set theory, no.)

To avoid this, we introduce a hierarchy U0 : U1 : U2 : . . ., and we
assume that our universes are cumulative, i.e. if A : Ui then
A : Ui+1.

▶ Convinient (avoids Girard’s paradox, compatibility with
categorical semantics, (Grothendieck universes))

▶ But, elements no longer have unique types (which
complicates algorithms for inferring and checking types)

When we say A is a type, we mean that it inhabits some universe
Ui .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Universes (1/2)

A universe is a type whose elements are types.
(Can there be a U∞ that includes itself? As in set theory, no.)

To avoid this, we introduce a hierarchy U0 : U1 : U2 : . . ., and we
assume that our universes are cumulative, i.e. if A : Ui then
A : Ui+1.

▶ Convinient (avoids Girard’s paradox, compatibility with
categorical semantics, (Grothendieck universes))

▶ But, elements no longer have unique types (which
complicates algorithms for inferring and checking types)

When we say A is a type, we mean that it inhabits some universe
Ui .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Universes (1/2)

A universe is a type whose elements are types.
(Can there be a U∞ that includes itself? As in set theory, no.)

To avoid this, we introduce a hierarchy U0 : U1 : U2 : . . ., and we
assume that our universes are cumulative, i.e. if A : Ui then
A : Ui+1.

▶ Convinient (avoids Girard’s paradox, compatibility with
categorical semantics, (Grothendieck universes))

▶ But, elements no longer have unique types (which
complicates algorithms for inferring and checking types)

When we say A is a type, we mean that it inhabits some universe
Ui .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Universes (1/2)

A universe is a type whose elements are types.
(Can there be a U∞ that includes itself? As in set theory, no.)

To avoid this, we introduce a hierarchy U0 : U1 : U2 : . . ., and we
assume that our universes are cumulative, i.e. if A : Ui then
A : Ui+1.

▶ Convinient (avoids Girard’s paradox, compatibility with
categorical semantics, (Grothendieck universes))

▶ But, elements no longer have unique types (which
complicates algorithms for inferring and checking types)

When we say A is a type, we mean that it inhabits some universe
Ui .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Universes (2/2)

Typical Ambiguity: we omit i , and assume that levels can be
assigned in a consistent way.

We may write A : U (meaning A : Ui ), U : U (Ui : Ui+1).

▶ Convenient

▶ But, it can be a bit dangerous

In case of ambiguity (eg during a proof that seemingly reproduces
self-referencial arguments), the way to check is to try to assign
levels consistently to all universes appearing in it.

When some universe U is assumed, we may refer to the types
belonging to U as small types.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Universes (2/2)

Typical Ambiguity: we omit i , and assume that levels can be
assigned in a consistent way.

We may write A : U (meaning A : Ui ), U : U (Ui : Ui+1).

▶ Convenient

▶ But, it can be a bit dangerous

In case of ambiguity (eg during a proof that seemingly reproduces
self-referencial arguments), the way to check is to try to assign
levels consistently to all universes appearing in it.

When some universe U is assumed, we may refer to the types
belonging to U as small types.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Universes (2/2)

Typical Ambiguity: we omit i , and assume that levels can be
assigned in a consistent way.

We may write A : U (meaning A : Ui ), U : U (Ui : Ui+1).

▶ Convenient

▶ But, it can be a bit dangerous

In case of ambiguity (eg during a proof that seemingly reproduces
self-referencial arguments), the way to check is to try to assign
levels consistently to all universes appearing in it.

When some universe U is assumed, we may refer to the types
belonging to U as small types.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Universes (2/2)

Typical Ambiguity: we omit i , and assume that levels can be
assigned in a consistent way.

We may write A : U (meaning A : Ui ), U : U (Ui : Ui+1).

▶ Convenient

▶ But, it can be a bit dangerous

In case of ambiguity (eg during a proof that seemingly reproduces
self-referencial arguments), the way to check is to try to assign
levels consistently to all universes appearing in it.

When some universe U is assumed, we may refer to the types
belonging to U as small types.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Universes (2/2)

Typical Ambiguity: we omit i , and assume that levels can be
assigned in a consistent way.

We may write A : U (meaning A : Ui ), U : U (Ui : Ui+1).

▶ Convenient

▶ But, it can be a bit dangerous

In case of ambiguity (eg during a proof that seemingly reproduces
self-referencial arguments), the way to check is to try to assign
levels consistently to all universes appearing in it.

When some universe U is assumed, we may refer to the types
belonging to U as small types.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Universes (2/2)

Typical Ambiguity: we omit i , and assume that levels can be
assigned in a consistent way.

We may write A : U (meaning A : Ui ), U : U (Ui : Ui+1).

▶ Convenient

▶ But, it can be a bit dangerous

In case of ambiguity (eg during a proof that seemingly reproduces
self-referencial arguments), the way to check is to try to assign
levels consistently to all universes appearing in it.

When some universe U is assumed, we may refer to the types
belonging to U as small types.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Universes (2/2)

Typical Ambiguity: we omit i , and assume that levels can be
assigned in a consistent way.

We may write A : U (meaning A : Ui ), U : U (Ui : Ui+1).

▶ Convenient

▶ But, it can be a bit dangerous

In case of ambiguity (eg during a proof that seemingly reproduces
self-referencial arguments), the way to check is to try to assign
levels consistently to all universes appearing in it.

When some universe U is assumed, we may refer to the types
belonging to U as small types.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Families (1/1)

What is a family of types (or dependent types) over a given type
A?

A function B : A → U , whose codomain is a
universe.(Corresponding notion in Set Theory, families of sets.)

Examples

▶ Fin : N → U , where Fin(n) is a type with exactly n elements

▶ a constant type family, given B : U , (λ(x : A).B) : A → U

Non-example

(λ(i : N).Ui ) - there is no universe large enough to be its
codomain, we do not even identify the indices i with the naturals.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Families (1/1)

What is a family of types (or dependent types) over a given type
A? A function B : A → U , whose codomain is a
universe.

(Corresponding notion in Set Theory, families of sets.)

Examples

▶ Fin : N → U , where Fin(n) is a type with exactly n elements

▶ a constant type family, given B : U , (λ(x : A).B) : A → U

Non-example

(λ(i : N).Ui ) - there is no universe large enough to be its
codomain, we do not even identify the indices i with the naturals.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Families (1/1)

What is a family of types (or dependent types) over a given type
A? A function B : A → U , whose codomain is a
universe.(Corresponding notion in Set Theory, families of sets.)

Examples

▶ Fin : N → U , where Fin(n) is a type with exactly n elements

▶ a constant type family, given B : U , (λ(x : A).B) : A → U

Non-example

(λ(i : N).Ui ) - there is no universe large enough to be its
codomain, we do not even identify the indices i with the naturals.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Families (1/1)

What is a family of types (or dependent types) over a given type
A? A function B : A → U , whose codomain is a
universe.(Corresponding notion in Set Theory, families of sets.)

Examples

▶ Fin : N → U , where Fin(n) is a type with exactly n elements

▶ a constant type family, given B : U , (λ(x : A).B) : A → U

Non-example

(λ(i : N).Ui ) - there is no universe large enough to be its
codomain, we do not even identify the indices i with the naturals.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Families (1/1)

What is a family of types (or dependent types) over a given type
A? A function B : A → U , whose codomain is a
universe.(Corresponding notion in Set Theory, families of sets.)

Examples

▶ Fin : N → U , where Fin(n) is a type with exactly n elements

▶ a constant type family, given B : U , (λ(x : A).B) : A → U

Non-example

(λ(i : N).Ui ) - there is no universe large enough to be its
codomain, we do not even identify the indices i with the naturals.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Families (1/1)

What is a family of types (or dependent types) over a given type
A? A function B : A → U , whose codomain is a
universe.(Corresponding notion in Set Theory, families of sets.)

Examples

▶ Fin : N → U , where Fin(n) is a type with exactly n elements

▶ a constant type family, given B : U , (λ(x : A).B) : A → U

Non-example

(λ(i : N).Ui ) - there is no universe large enough to be its
codomain, we do not even identify the indices i with the naturals.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Families (1/1)

What is a family of types (or dependent types) over a given type
A? A function B : A → U , whose codomain is a
universe.(Corresponding notion in Set Theory, families of sets.)

Examples

▶ Fin : N → U , where Fin(n) is a type with exactly n elements

▶ a constant type family, given B : U , (λ(x : A).B) : A → U

Non-example

(λ(i : N).Ui ) - there is no universe large enough to be its
codomain, we do not even identify the indices i with the naturals.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (1/3)

The elements of such a type are functions,

whose codomain
type can vary depending on the element of the domain, to which
the function is applied; these are called dependent functions.

Formation rule:
Given a type A : U and a family B : A → U, we may construct the
type

∏
(x : A) B(x) : U . (If B is a constant family,

∏
(x : A) B is just

A → B.)

Introduction rule (construction of dependent functions):

▶ explicitly: in order to define f :
∏

(x : A) B(x) we need an
expression Φ: B(x), and we write f (x) :≡ Φ, for x : A

▶ λ-abstracton: λx .Φ: Π(x : A).B(x)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (1/3)

The elements of such a type are functions, whose codomain
type can vary depending on the element of the domain,

to which
the function is applied; these are called dependent functions.

Formation rule:
Given a type A : U and a family B : A → U, we may construct the
type

∏
(x : A) B(x) : U . (If B is a constant family,

∏
(x : A) B is just

A → B.)

Introduction rule (construction of dependent functions):

▶ explicitly: in order to define f :
∏

(x : A) B(x) we need an
expression Φ: B(x), and we write f (x) :≡ Φ, for x : A

▶ λ-abstracton: λx .Φ: Π(x : A).B(x)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (1/3)

The elements of such a type are functions, whose codomain
type can vary depending on the element of the domain, to which
the function is applied;

these are called dependent functions.

Formation rule:
Given a type A : U and a family B : A → U, we may construct the
type

∏
(x : A) B(x) : U . (If B is a constant family,

∏
(x : A) B is just

A → B.)

Introduction rule (construction of dependent functions):

▶ explicitly: in order to define f :
∏

(x : A) B(x) we need an
expression Φ: B(x), and we write f (x) :≡ Φ, for x : A

▶ λ-abstracton: λx .Φ: Π(x : A).B(x)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (1/3)

The elements of such a type are functions, whose codomain
type can vary depending on the element of the domain, to which
the function is applied; these are called dependent functions.

Formation rule:
Given a type A : U and a family B : A → U, we may construct the
type

∏
(x : A) B(x) : U . (If B is a constant family,

∏
(x : A) B is just

A → B.)

Introduction rule (construction of dependent functions):

▶ explicitly: in order to define f :
∏

(x : A) B(x) we need an
expression Φ: B(x), and we write f (x) :≡ Φ, for x : A

▶ λ-abstracton: λx .Φ: Π(x : A).B(x)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (1/3)

The elements of such a type are functions, whose codomain
type can vary depending on the element of the domain, to which
the function is applied; these are called dependent functions.

Formation rule:
Given a type A : U and a family B : A → U, we may construct the
type

∏
(x : A) B(x) : U . (If B is a constant family,

∏
(x : A) B is just

A → B.)

Introduction rule (construction of dependent functions):

▶ explicitly: in order to define f :
∏

(x : A) B(x) we need an
expression Φ: B(x), and we write f (x) :≡ Φ, for x : A

▶ λ-abstracton: λx .Φ: Π(x : A).B(x)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (1/3)

The elements of such a type are functions, whose codomain
type can vary depending on the element of the domain, to which
the function is applied; these are called dependent functions.

Formation rule:
Given a type A : U and a family B : A → U, we may construct the
type

∏
(x : A) B(x) : U . (If B is a constant family,

∏
(x : A) B is just

A → B.)

Introduction rule (construction of dependent functions):

▶ explicitly: in order to define f :
∏

(x : A) B(x) we need an
expression Φ: B(x), and we write f (x) :≡ Φ, for x : A

▶ λ-abstracton: λx .Φ: Π(x : A).B(x)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (1/3)

The elements of such a type are functions, whose codomain
type can vary depending on the element of the domain, to which
the function is applied; these are called dependent functions.

Formation rule:
Given a type A : U and a family B : A → U, we may construct the
type

∏
(x : A) B(x) : U . (If B is a constant family,

∏
(x : A) B is just

A → B.)

Introduction rule (construction of dependent functions):

▶ explicitly: in order to define f :
∏

(x : A) B(x) we need an
expression Φ: B(x), and we write f (x) :≡ Φ, for x : A

▶ λ-abstracton: λx .Φ: Π(x : A).B(x)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (1/3)

The elements of such a type are functions, whose codomain
type can vary depending on the element of the domain, to which
the function is applied; these are called dependent functions.

Formation rule:
Given a type A : U and a family B : A → U, we may construct the
type

∏
(x : A) B(x) : U . (If B is a constant family,

∏
(x : A) B is just

A → B.)

Introduction rule (construction of dependent functions):

▶ explicitly: in order to define f :
∏

(x : A) B(x) we need an
expression Φ: B(x), and we write f (x) :≡ Φ, for x : A

▶ λ-abstracton: λx .Φ: Π(x : A).B(x)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (1/3)

The elements of such a type are functions, whose codomain
type can vary depending on the element of the domain, to which
the function is applied; these are called dependent functions.

Formation rule:
Given a type A : U and a family B : A → U, we may construct the
type

∏
(x : A) B(x) : U . (If B is a constant family,

∏
(x : A) B is just

A → B.)

Introduction rule (construction of dependent functions):

▶ explicitly: in order to define f :
∏

(x : A) B(x) we need an
expression Φ: B(x), and we write f (x) :≡ Φ, for x : A

▶ λ-abstracton: λx .Φ: Π(x : A).B(x)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (2/3)

Usage:

We can apply a dependent function f : Π(x : A).B(x), to a term
a : A, to get the value f (a) : B(a). As previously, we have the
computation rule and the uniqueness principle.

Example

Recall the family Fin : N → U , whose values are the standard
finite sets with elements 0n, 1n, . . . , (n − 1)n : Fin(n).

We can
then introduce

▶ fmax:
∏

(n : N) Fin(n + 1), which returns the “largest” element
of each non-empty finite type, that is fmax(n) :≡ nn+1

▶ Similarly we can introduce fmin(n) :≡ 0n+1.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (2/3)

Usage:

We can apply a dependent function f : Π(x : A).B(x), to a term
a : A, to get the value f (a) : B(a). As previously, we have the
computation rule and the uniqueness principle.

Example

Recall the family Fin : N → U , whose values are the standard
finite sets with elements 0n, 1n, . . . , (n − 1)n : Fin(n).

We can
then introduce

▶ fmax:
∏

(n : N) Fin(n + 1), which returns the “largest” element
of each non-empty finite type, that is fmax(n) :≡ nn+1

▶ Similarly we can introduce fmin(n) :≡ 0n+1.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (2/3)

Usage:

We can apply a dependent function f : Π(x : A).B(x), to a term
a : A, to get the value f (a) : B(a). As previously, we have the
computation rule and the uniqueness principle.

Example

Recall the family Fin : N → U , whose values are the standard
finite sets with elements 0n, 1n, . . . , (n − 1)n : Fin(n).

We can
then introduce

▶ fmax:
∏

(n : N) Fin(n + 1), which returns the “largest” element
of each non-empty finite type, that is fmax(n) :≡ nn+1

▶ Similarly we can introduce fmin(n) :≡ 0n+1.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (2/3)

Usage:

We can apply a dependent function f : Π(x : A).B(x), to a term
a : A, to get the value f (a) : B(a). As previously, we have the
computation rule and the uniqueness principle.

Example

Recall the family Fin : N → U , whose values are the standard
finite sets with elements 0n, 1n, . . . , (n − 1)n : Fin(n). We can
then introduce

▶ fmax:
∏

(n : N) Fin(n + 1), which returns the “largest” element
of each non-empty finite type, that is fmax(n) :≡ nn+1

▶ Similarly we can introduce fmin(n) :≡ 0n+1.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (2/3)

Usage:

We can apply a dependent function f : Π(x : A).B(x), to a term
a : A, to get the value f (a) : B(a). As previously, we have the
computation rule and the uniqueness principle.

Example

Recall the family Fin : N → U , whose values are the standard
finite sets with elements 0n, 1n, . . . , (n − 1)n : Fin(n). We can
then introduce

▶ fmax:
∏

(n : N) Fin(n + 1), which returns the “largest” element
of each non-empty finite type, that is fmax(n) :≡ nn+1

▶ Similarly we can introduce fmin(n) :≡ 0n+1.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (3/3)

Another class of dependent function types, are those who are
polymorphic over a given universe,

that is, they take a type as one
of its arguments, and then acts on elements of that type.

(Fancier) Examples

▶ id :
∏

(A : U) A → A, defined as id :≡ λ(A : U).λ(x : A).x
▶ swap:

∏
(A : U)

∏
(B : U)

∏
(C : U)(A → B → C ) → (B → A →

C ), defined as swap(A,B,C , g) :≡ λb.λa.g(a)(b).
We allow ourselves to write swapA,B,C (g)(b, a) :≡ g(a, b),
and swap:

∏
(A,B,C : U) . . .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (3/3)

Another class of dependent function types, are those who are
polymorphic over a given universe,that is, they take a type as one
of its arguments, and then acts on elements of that type.

(Fancier) Examples

▶ id :
∏

(A : U) A → A, defined as id :≡ λ(A : U).λ(x : A).x
▶ swap:

∏
(A : U)

∏
(B : U)

∏
(C : U)(A → B → C ) → (B → A →

C ), defined as swap(A,B,C , g) :≡ λb.λa.g(a)(b).
We allow ourselves to write swapA,B,C (g)(b, a) :≡ g(a, b),
and swap:

∏
(A,B,C : U) . . .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (3/3)

Another class of dependent function types, are those who are
polymorphic over a given universe,that is, they take a type as one
of its arguments, and then acts on elements of that type.

(Fancier) Examples

▶ id :
∏

(A : U) A → A, defined as id :≡ λ(A : U).λ(x : A).x
▶ swap:

∏
(A : U)

∏
(B : U)

∏
(C : U)(A → B → C ) → (B → A →

C ),

defined as swap(A,B,C , g) :≡ λb.λa.g(a)(b).
We allow ourselves to write swapA,B,C (g)(b, a) :≡ g(a, b),
and swap:

∏
(A,B,C : U) . . .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (3/3)

Another class of dependent function types, are those who are
polymorphic over a given universe,that is, they take a type as one
of its arguments, and then acts on elements of that type.

(Fancier) Examples

▶ id :
∏

(A : U) A → A, defined as id :≡ λ(A : U).λ(x : A).x

▶ swap:
∏

(A : U)

∏
(B : U)

∏
(C : U)(A → B → C ) → (B → A →

C ),

defined as swap(A,B,C , g) :≡ λb.λa.g(a)(b).
We allow ourselves to write swapA,B,C (g)(b, a) :≡ g(a, b),
and swap:

∏
(A,B,C : U) . . .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (3/3)

Another class of dependent function types, are those who are
polymorphic over a given universe,that is, they take a type as one
of its arguments, and then acts on elements of that type.

(Fancier) Examples

▶ id :
∏

(A : U) A → A, defined as id :≡ λ(A : U).λ(x : A).x
▶ swap:

∏
(A : U)

∏
(B : U)

∏
(C : U)(A → B → C ) → (B → A →

C ),

defined as swap(A,B,C , g) :≡ λb.λa.g(a)(b).
We allow ourselves to write swapA,B,C (g)(b, a) :≡ g(a, b),
and swap:

∏
(A,B,C : U) . . .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (3/3)

Another class of dependent function types, are those who are
polymorphic over a given universe,that is, they take a type as one
of its arguments, and then acts on elements of that type.

(Fancier) Examples

▶ id :
∏

(A : U) A → A, defined as id :≡ λ(A : U).λ(x : A).x
▶ swap:

∏
(A : U)

∏
(B : U)

∏
(C : U)(A → B → C ) → (B → A →

C ),

defined as swap(A,B,C , g) :≡ λb.λa.g(a)(b).
We allow ourselves to write swapA,B,C (g)(b, a) :≡ g(a, b),
and swap:

∏
(A,B,C : U) . . .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (3/3)

Another class of dependent function types, are those who are
polymorphic over a given universe,that is, they take a type as one
of its arguments, and then acts on elements of that type.

(Fancier) Examples

▶ id :
∏

(A : U) A → A, defined as id :≡ λ(A : U).λ(x : A).x
▶ swap:

∏
(A : U)

∏
(B : U)

∏
(C : U)(A → B → C ) → (B → A →

C ), defined as swap(A,B,C , g) :≡ λb.λa.g(a)(b).

We allow ourselves to write swapA,B,C (g)(b, a) :≡ g(a, b),
and swap:

∏
(A,B,C : U) . . .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent function types (
∏
-types), (3/3)

Another class of dependent function types, are those who are
polymorphic over a given universe,that is, they take a type as one
of its arguments, and then acts on elements of that type.

(Fancier) Examples

▶ id :
∏

(A : U) A → A, defined as id :≡ λ(A : U).λ(x : A).x
▶ swap:

∏
(A : U)

∏
(B : U)

∏
(C : U)(A → B → C ) → (B → A →

C ), defined as swap(A,B,C , g) :≡ λb.λa.g(a)(b).
We allow ourselves to write swapA,B,C (g)(b, a) :≡ g(a, b),
and swap:

∏
(A,B,C : U) . . .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

A helpful collection of rules

General pattern for introducing a new kind of type in type
theory:

▶ Formation rules: how to form new types of this kind (e.g.:
if A,B are types then A → B is a type)

▶ Introduction rules: how to construct elements of that type
(e.g. λ-abstraction)

▶ Elimination rules: how to use elements of that type
(function application)

▶ Computation rule: how an eliminator acts on a
constructor ((λx .Φ)(a) is judgmentally equal to the
substitution of a for x in Φ)

▶ (Optionally) a uniqueness principle - expressing uniqueness
of maps into or out of that type (f is judgmentally equal to
the “expanded” function λx .f (x))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

A helpful collection of rules

General pattern for introducing a new kind of type in type
theory:
▶ Formation rules: how to form new types of this kind (e.g.:

if A,B are types then A → B is a type)

▶ Introduction rules: how to construct elements of that type
(e.g. λ-abstraction)

▶ Elimination rules: how to use elements of that type
(function application)

▶ Computation rule: how an eliminator acts on a
constructor ((λx .Φ)(a) is judgmentally equal to the
substitution of a for x in Φ)

▶ (Optionally) a uniqueness principle - expressing uniqueness
of maps into or out of that type (f is judgmentally equal to
the “expanded” function λx .f (x))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

A helpful collection of rules

General pattern for introducing a new kind of type in type
theory:
▶ Formation rules: how to form new types of this kind (e.g.:

if A,B are types then A → B is a type)
▶ Introduction rules: how to construct elements of that type

(e.g. λ-abstraction)

▶ Elimination rules: how to use elements of that type
(function application)

▶ Computation rule: how an eliminator acts on a
constructor ((λx .Φ)(a) is judgmentally equal to the
substitution of a for x in Φ)

▶ (Optionally) a uniqueness principle - expressing uniqueness
of maps into or out of that type (f is judgmentally equal to
the “expanded” function λx .f (x))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

A helpful collection of rules

General pattern for introducing a new kind of type in type
theory:
▶ Formation rules: how to form new types of this kind (e.g.:

if A,B are types then A → B is a type)
▶ Introduction rules: how to construct elements of that type

(e.g. λ-abstraction)
▶ Elimination rules: how to use elements of that type

(function application)

▶ Computation rule: how an eliminator acts on a
constructor ((λx .Φ)(a) is judgmentally equal to the
substitution of a for x in Φ)

▶ (Optionally) a uniqueness principle - expressing uniqueness
of maps into or out of that type (f is judgmentally equal to
the “expanded” function λx .f (x))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

A helpful collection of rules

General pattern for introducing a new kind of type in type
theory:
▶ Formation rules: how to form new types of this kind (e.g.:

if A,B are types then A → B is a type)
▶ Introduction rules: how to construct elements of that type

(e.g. λ-abstraction)
▶ Elimination rules: how to use elements of that type

(function application)
▶ Computation rule: how an eliminator acts on a

constructor ((λx .Φ)(a) is judgmentally equal to the
substitution of a for x in Φ)

▶ (Optionally) a uniqueness principle - expressing uniqueness
of maps into or out of that type (f is judgmentally equal to
the “expanded” function λx .f (x))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

A helpful collection of rules

General pattern for introducing a new kind of type in type
theory:
▶ Formation rules: how to form new types of this kind (e.g.:

if A,B are types then A → B is a type)
▶ Introduction rules: how to construct elements of that type

(e.g. λ-abstraction)
▶ Elimination rules: how to use elements of that type

(function application)
▶ Computation rule: how an eliminator acts on a

constructor ((λx .Φ)(a) is judgmentally equal to the
substitution of a for x in Φ)

▶ (Optionally) a uniqueness principle - expressing uniqueness
of maps into or out of that type (f is judgmentally equal to
the “expanded” function λx .f (x))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, formation, introduction (1/7)

Formation rules
Given types A,B : U , we introduce the type A× B : U .

A nullary
version of the product type, called the unit type, is 1 : U .

Introduction rule (how to construct pairs)

Given a : A and b : B, we may form (a, b) : A× B
(There’s a unique way to construct elements of 1, i.e. ⋆ : 1)

Expectation
“Every element of A× B is a pair” (aka the uniqueness principle
for products). We do not assert this as a rule, but we will prove it later
on as a propositional equality.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, formation, introduction (1/7)

Formation rules
Given types A,B : U , we introduce the type A× B : U .

A nullary
version of the product type, called the unit type, is 1 : U .

Introduction rule (how to construct pairs)

Given a : A and b : B, we may form (a, b) : A× B
(There’s a unique way to construct elements of 1, i.e. ⋆ : 1)

Expectation
“Every element of A× B is a pair” (aka the uniqueness principle
for products). We do not assert this as a rule, but we will prove it later
on as a propositional equality.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, formation, introduction (1/7)

Formation rules
Given types A,B : U , we introduce the type A× B : U . A nullary
version of the product type, called the unit type, is 1 : U .

Introduction rule (how to construct pairs)

Given a : A and b : B, we may form (a, b) : A× B

(There’s a unique way to construct elements of 1, i.e. ⋆ : 1)

Expectation
“Every element of A× B is a pair” (aka the uniqueness principle
for products). We do not assert this as a rule, but we will prove it later
on as a propositional equality.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, formation, introduction (1/7)

Formation rules
Given types A,B : U , we introduce the type A× B : U . A nullary
version of the product type, called the unit type, is 1 : U .

Introduction rule (how to construct pairs)

Given a : A and b : B, we may form (a, b) : A× B

(There’s a unique way to construct elements of 1, i.e. ⋆ : 1)

Expectation
“Every element of A× B is a pair” (aka the uniqueness principle
for products). We do not assert this as a rule, but we will prove it later
on as a propositional equality.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, formation, introduction (1/7)

Formation rules
Given types A,B : U , we introduce the type A× B : U . A nullary
version of the product type, called the unit type, is 1 : U .

Introduction rule (how to construct pairs)

Given a : A and b : B, we may form (a, b) : A× B
(There’s a unique way to construct elements of 1, i.e. ⋆ : 1)

Expectation
“Every element of A× B is a pair” (aka the uniqueness principle
for products). We do not assert this as a rule, but we will prove it later
on as a propositional equality.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, formation, introduction (1/7)

Formation rules
Given types A,B : U , we introduce the type A× B : U . A nullary
version of the product type, called the unit type, is 1 : U .

Introduction rule (how to construct pairs)

Given a : A and b : B, we may form (a, b) : A× B
(There’s a unique way to construct elements of 1, i.e. ⋆ : 1)

Expectation
“Every element of A× B is a pair” (aka the uniqueness principle
for products). We do not assert this as a rule, but we will prove it later
on as a propositional equality.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, formation, introduction (1/7)

Formation rules
Given types A,B : U , we introduce the type A× B : U . A nullary
version of the product type, called the unit type, is 1 : U .

Introduction rule (how to construct pairs)

Given a : A and b : B, we may form (a, b) : A× B
(There’s a unique way to construct elements of 1, i.e. ⋆ : 1)

Expectation
“Every element of A× B is a pair” (aka the uniqueness principle
for products). We do not assert this as a rule, but we will prove it later
on as a propositional equality.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, formation, introduction (1/7)

Formation rules
Given types A,B : U , we introduce the type A× B : U . A nullary
version of the product type, called the unit type, is 1 : U .

Introduction rule (how to construct pairs)

Given a : A and b : B, we may form (a, b) : A× B
(There’s a unique way to construct elements of 1, i.e. ⋆ : 1)

Expectation
“Every element of A× B is a pair” (aka the uniqueness principle
for products). We do not assert this as a rule, but we will prove it later
on as a propositional equality.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, elimination (2/7)

Elimination rule
By providing g : A → B → C , we can define a function
f : A× B → C by f ((a, b)) :≡ g(a)(b), (for any such g).

▶ Set theory: we would justify this by the fact that every
element of A× B is an ordered pair, (it suffices to define f on
such pairs).

▶ Type theory: we assume that a function on a A× B is
well-defined as soon as we specify its values on pairs, (this
allows us to prove that every element of A× B is a pair).

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, elimination (2/7)

Elimination rule
By providing g : A → B → C , we can define a function
f : A× B → C by f ((a, b)) :≡ g(a)(b), (for any such g).

▶ Set theory: we would justify this by the fact that every
element of A× B is an ordered pair, (it suffices to define f on
such pairs).

▶ Type theory: we assume that a function on a A× B is
well-defined as soon as we specify its values on pairs, (this
allows us to prove that every element of A× B is a pair).

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, elimination (2/7)

Elimination rule
By providing g : A → B → C , we can define a function
f : A× B → C by f ((a, b)) :≡ g(a)(b), (for any such g).

▶ Set theory: we would justify this by the fact that every
element of A× B is an ordered pair, (it suffices to define f on
such pairs).

▶ Type theory: we assume that a function on a A× B is
well-defined as soon as we specify its values on pairs, (this
allows us to prove that every element of A× B is a pair).

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, recursor (3/7)

The projection functions,

▶ pr1 : A× B → A, defined as pr1((a, b)) :≡ a

▶ pr2 : A× B → B, defined as pr2((a, b)) :≡ b

An alternative approach: invoke the principle once (in a universal
case), and then simply apply the resulting function in all other
cases.

Recursor
We may define a function of type
recAxB :

∏
(C : U)(A → B → C ) → A× B → C , with defining

equation
recAxB(C , g , (a, b)) :≡ g(a)(b)

Then, the projections become
pr1 :≡ recAxB(A, λa.λb.a), pr2 :≡ recAxB(B, λa.λb.b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, recursor (3/7)

The projection functions,

▶ pr1 : A× B → A, defined as pr1((a, b)) :≡ a

▶ pr2 : A× B → B, defined as pr2((a, b)) :≡ b

An alternative approach: invoke the principle once (in a universal
case), and then simply apply the resulting function in all other
cases.

Recursor
We may define a function of type
recAxB :

∏
(C : U)(A → B → C ) → A× B → C , with defining

equation
recAxB(C , g , (a, b)) :≡ g(a)(b)

Then, the projections become
pr1 :≡ recAxB(A, λa.λb.a), pr2 :≡ recAxB(B, λa.λb.b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, recursor (3/7)

The projection functions,

▶ pr1 : A× B → A, defined as pr1((a, b)) :≡ a

▶ pr2 : A× B → B, defined as pr2((a, b)) :≡ b

An alternative approach: invoke the principle once (in a universal
case), and then simply apply the resulting function in all other
cases.

Recursor
We may define a function of type
recAxB :

∏
(C : U)(A → B → C ) → A× B → C , with defining

equation
recAxB(C , g , (a, b)) :≡ g(a)(b)

Then, the projections become
pr1 :≡ recAxB(A, λa.λb.a), pr2 :≡ recAxB(B, λa.λb.b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, recursor (3/7)

The projection functions,

▶ pr1 : A× B → A, defined as pr1((a, b)) :≡ a

▶ pr2 : A× B → B, defined as pr2((a, b)) :≡ b

An alternative approach: invoke the principle once (in a universal
case), and then simply apply the resulting function in all other
cases.

Recursor
We may define a function of type
recAxB :

∏
(C : U)(A → B → C ) → A× B → C , with defining

equation
recAxB(C , g , (a, b)) :≡ g(a)(b)

Then, the projections become
pr1 :≡ recAxB(A, λa.λb.a), pr2 :≡ recAxB(B, λa.λb.b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, recursor (3/7)

The projection functions,

▶ pr1 : A× B → A, defined as pr1((a, b)) :≡ a

▶ pr2 : A× B → B, defined as pr2((a, b)) :≡ b

An alternative approach: invoke the principle once (in a universal
case), and then simply apply the resulting function in all other
cases.

Recursor
We may define a function of type
recAxB :

∏
(C : U)(A → B → C ) → A× B → C , with defining

equation
recAxB(C , g , (a, b)) :≡ g(a)(b)

Then, the projections become
pr1 :≡ recAxB(A, λa.λb.a), pr2 :≡ recAxB(B, λa.λb.b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, recursor (3/7)

The projection functions,

▶ pr1 : A× B → A, defined as pr1((a, b)) :≡ a

▶ pr2 : A× B → B, defined as pr2((a, b)) :≡ b

An alternative approach: invoke the principle once (in a universal
case), and then simply apply the resulting function in all other
cases.

Recursor
We may define a function of type
recAxB :

∏
(C : U)(A → B → C ) → A× B → C , with defining

equation
recAxB(C , g , (a, b)) :≡ g(a)(b)

Then, the projections become
pr1 :≡ recAxB(A, λa.λb.a), pr2 :≡ recAxB(B, λa.λb.b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, recursor (3/7)

The projection functions,

▶ pr1 : A× B → A, defined as pr1((a, b)) :≡ a

▶ pr2 : A× B → B, defined as pr2((a, b)) :≡ b

An alternative approach: invoke the principle once (in a universal
case), and then simply apply the resulting function in all other
cases.

Recursor
We may define a function of type
recAxB :

∏
(C : U)(A → B → C ) → A× B → C , with defining

equation
recAxB(C , g , (a, b)) :≡ g(a)(b)

Then, the projections become
pr1 :≡ recAxB(A, λa.λb.a), pr2 :≡ recAxB(B, λa.λb.b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, recursor cont. (4/7)

The name recursor is a bit unfortunate, as no recursion is taking
place.

In inductive types (such as the product types), the recursor
is used for defining functions out of a type, (and in types such as
the naturals, it will be recursive).

Exercise
Derive recA×B from the projections and vice versa.

Recursor for the unit type

rec1 :
∏

(C : U) C → 1 → C , with defining equation
rec1(C , c , ∗) :≡ c

What would a generalisation of the recursor be?

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, recursor cont. (4/7)

The name recursor is a bit unfortunate, as no recursion is taking
place. In inductive types (such as the product types), the recursor
is used for defining functions out of a type, (and in types such as
the naturals, it will be recursive).

Exercise
Derive recA×B from the projections and vice versa.

Recursor for the unit type

rec1 :
∏

(C : U) C → 1 → C , with defining equation
rec1(C , c , ∗) :≡ c

What would a generalisation of the recursor be?

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, recursor cont. (4/7)

The name recursor is a bit unfortunate, as no recursion is taking
place. In inductive types (such as the product types), the recursor
is used for defining functions out of a type, (and in types such as
the naturals, it will be recursive).

Exercise
Derive recA×B from the projections and vice versa.

Recursor for the unit type

rec1 :
∏

(C : U) C → 1 → C , with defining equation
rec1(C , c , ∗) :≡ c

What would a generalisation of the recursor be?

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, recursor cont. (4/7)

The name recursor is a bit unfortunate, as no recursion is taking
place. In inductive types (such as the product types), the recursor
is used for defining functions out of a type, (and in types such as
the naturals, it will be recursive).

Exercise
Derive recA×B from the projections and vice versa.

Recursor for the unit type

rec1 :
∏

(C : U) C → 1 → C , with defining equation
rec1(C , c , ∗) :≡ c

What would a generalisation of the recursor be?

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, recursor cont. (4/7)

The name recursor is a bit unfortunate, as no recursion is taking
place. In inductive types (such as the product types), the recursor
is used for defining functions out of a type, (and in types such as
the naturals, it will be recursive).

Exercise
Derive recA×B from the projections and vice versa.

Recursor for the unit type

rec1 :
∏

(C : U) C → 1 → C , with defining equation
rec1(C , c , ∗) :≡ c

What would a generalisation of the recursor be?

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, recursor cont. (4/7)

The name recursor is a bit unfortunate, as no recursion is taking
place. In inductive types (such as the product types), the recursor
is used for defining functions out of a type, (and in types such as
the naturals, it will be recursive).

Exercise
Derive recA×B from the projections and vice versa.

Recursor for the unit type

rec1 :
∏

(C : U) C → 1 → C , with defining equation
rec1(C , c , ∗) :≡ c

What would a generalisation of the recursor be?

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, recursor cont. (4/7)

The name recursor is a bit unfortunate, as no recursion is taking
place. In inductive types (such as the product types), the recursor
is used for defining functions out of a type, (and in types such as
the naturals, it will be recursive).

Exercise
Derive recA×B from the projections and vice versa.

Recursor for the unit type

rec1 :
∏

(C : U) C → 1 → C , with defining equation
rec1(C , c , ∗) :≡ c

What would a generalisation of the recursor be?

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, dependent functions (5/7)

Dependent functions over the product type

Given C : A× B → U , we may define a f :
∏

(x : A×B) C (x), by
providing a g :

∏
(x : A)

∏
(y : B) C ((x , y)) with defining equation

f ((x , y)) :≡ g(x)(y)

We can begin the search of an element of the type
uniqA×B :

∏
(x : A×B)((pr1(x), pr2(x)) =A×B x)(aka the

propositional uniqueness principle)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, dependent functions (5/7)

Dependent functions over the product type

Given C : A× B → U , we may define a f :
∏

(x : A×B) C (x), by
providing a g :

∏
(x : A)

∏
(y : B) C ((x , y)) with defining equation

f ((x , y)) :≡ g(x)(y)

We can begin the search of an element of the type
uniqA×B :

∏
(x : A×B)((pr1(x), pr2(x)) =A×B x)(aka the

propositional uniqueness principle)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, dependent functions (5/7)

Dependent functions over the product type

Given C : A× B → U , we may define a f :
∏

(x : A×B) C (x), by
providing a g :

∏
(x : A)

∏
(y : B) C ((x , y)) with defining equation

f ((x , y)) :≡ g(x)(y)

We can begin the search of an element of the type
uniqA×B :

∏
(x : A×B)((pr1(x), pr2(x)) =A×B x)

(aka the
propositional uniqueness principle)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, dependent functions (5/7)

Dependent functions over the product type

Given C : A× B → U , we may define a f :
∏

(x : A×B) C (x), by
providing a g :

∏
(x : A)

∏
(y : B) C ((x , y)) with defining equation

f ((x , y)) :≡ g(x)(y)

We can begin the search of an element of the type
uniqA×B :

∏
(x : A×B)((pr1(x), pr2(x)) =A×B x)(aka the

propositional uniqueness principle)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, uniqueness principle (6/7)

(Looking for an element of
∏

(x : A×B)((pr1(x), pr2(x)) =A×B x))
(What we need to know regarding the identity type: there is a
reflexivitiy element reflx : x =A x , for any x : A)

How to define uniqA×B((a, b))?

In the case that x :≡ (a, b),

we can calculate

(pr1((a, b)), pr2((a, b))) ≡ (a, b),

therefore,

refl(a,b) : (pr1((a, b)), pr2((a, b))) = (a, b)

is well-typed, since both sides are judgmentally equal.Hence, it
suffices to define uniqA×B((a, b)) :≡ refl(a,b).

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, uniqueness principle (6/7)

(Looking for an element of
∏

(x : A×B)((pr1(x), pr2(x)) =A×B x))
(What we need to know regarding the identity type: there is a
reflexivitiy element reflx : x =A x , for any x : A)

How to define uniqA×B((a, b))?

In the case that x :≡ (a, b),

we can calculate

(pr1((a, b)), pr2((a, b))) ≡ (a, b),

therefore,

refl(a,b) : (pr1((a, b)), pr2((a, b))) = (a, b)

is well-typed, since both sides are judgmentally equal.Hence, it
suffices to define uniqA×B((a, b)) :≡ refl(a,b).

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, uniqueness principle (6/7)

(Looking for an element of
∏

(x : A×B)((pr1(x), pr2(x)) =A×B x))
(What we need to know regarding the identity type: there is a
reflexivitiy element reflx : x =A x , for any x : A)

How to define uniqA×B((a, b))?

In the case that x :≡ (a, b), we can calculate

(pr1((a, b)), pr2((a, b))) ≡ (a, b),

therefore,

refl(a,b) : (pr1((a, b)), pr2((a, b))) = (a, b)

is well-typed, since both sides are judgmentally equal.Hence, it
suffices to define uniqA×B((a, b)) :≡ refl(a,b).

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, uniqueness principle (6/7)

(Looking for an element of
∏

(x : A×B)((pr1(x), pr2(x)) =A×B x))
(What we need to know regarding the identity type: there is a
reflexivitiy element reflx : x =A x , for any x : A)

How to define uniqA×B((a, b))?

In the case that x :≡ (a, b), we can calculate

(pr1((a, b)), pr2((a, b))) ≡ (a, b),

therefore,

refl(a,b) : (pr1((a, b)), pr2((a, b))) = (a, b)

is well-typed,

since both sides are judgmentally equal.Hence, it
suffices to define uniqA×B((a, b)) :≡ refl(a,b).

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, uniqueness principle (6/7)

(Looking for an element of
∏

(x : A×B)((pr1(x), pr2(x)) =A×B x))
(What we need to know regarding the identity type: there is a
reflexivitiy element reflx : x =A x , for any x : A)

How to define uniqA×B((a, b))?

In the case that x :≡ (a, b), we can calculate

(pr1((a, b)), pr2((a, b))) ≡ (a, b),

therefore,

refl(a,b) : (pr1((a, b)), pr2((a, b))) = (a, b)

is well-typed, since both sides are judgmentally equal.

Hence, it
suffices to define uniqA×B((a, b)) :≡ refl(a,b).

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, uniqueness principle (6/7)

(Looking for an element of
∏

(x : A×B)((pr1(x), pr2(x)) =A×B x))
(What we need to know regarding the identity type: there is a
reflexivitiy element reflx : x =A x , for any x : A)

How to define uniqA×B((a, b))?

In the case that x :≡ (a, b), we can calculate

(pr1((a, b)), pr2((a, b))) ≡ (a, b),

therefore,

refl(a,b) : (pr1((a, b)), pr2((a, b))) = (a, b)

is well-typed, since both sides are judgmentally equal.Hence, it
suffices to define uniqA×B((a, b)) :≡ refl(a,b).

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, induction principle (7/7)

As previously, let’s apply the principle once (in the universal
case).

We call the resulting function induction for product types:

Induction
Given A,B : U , we have
indA×B :

∏
(C : A×B → U ) (

∏
(x : A)

∏
(y : B) C ((x , y))) →∏

(z : A×B) C (z), with the defining equation

indA×B(C , g , (a, b)) :≡ g(a)(b)

Induction, for the unit type

ind1 :
∏

(C : 1→U) C (∗) →
∏

(x : 1) C (x), with defining equation
ind1(C , c , ∗) :≡ c

The propositional uniqueness principle for 1, uniq1 :
∏

(x : 1) x = ⋆,
with the defining equation uniq1(⋆) :≡ refl⋆,
or via induction uniq1 :≡ ind1(λx .x = ⋆, refl⋆)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, induction principle (7/7)

As previously, let’s apply the principle once (in the universal
case). We call the resulting function induction for product types:

Induction
Given A,B : U , we have
indA×B :

∏
(C : A×B → U ) (

∏
(x : A)

∏
(y : B) C ((x , y))) →∏

(z : A×B) C (z), with the defining equation

indA×B(C , g , (a, b)) :≡ g(a)(b)

Induction, for the unit type

ind1 :
∏

(C : 1→U) C (∗) →
∏

(x : 1) C (x), with defining equation
ind1(C , c , ∗) :≡ c

The propositional uniqueness principle for 1, uniq1 :
∏

(x : 1) x = ⋆,
with the defining equation uniq1(⋆) :≡ refl⋆,
or via induction uniq1 :≡ ind1(λx .x = ⋆, refl⋆)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, induction principle (7/7)

As previously, let’s apply the principle once (in the universal
case). We call the resulting function induction for product types:

Induction
Given A,B : U , we have
indA×B :

∏
(C : A×B → U ) (

∏
(x : A)

∏
(y : B) C ((x , y))) →∏

(z : A×B) C (z), with the defining equation

indA×B(C , g , (a, b)) :≡ g(a)(b)

Induction, for the unit type

ind1 :
∏

(C : 1→U) C (∗) →
∏

(x : 1) C (x), with defining equation
ind1(C , c , ∗) :≡ c

The propositional uniqueness principle for 1, uniq1 :
∏

(x : 1) x = ⋆,
with the defining equation uniq1(⋆) :≡ refl⋆,
or via induction uniq1 :≡ ind1(λx .x = ⋆, refl⋆)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, induction principle (7/7)

As previously, let’s apply the principle once (in the universal
case). We call the resulting function induction for product types:

Induction
Given A,B : U , we have
indA×B :

∏
(C : A×B → U ) (

∏
(x : A)

∏
(y : B) C ((x , y))) →∏

(z : A×B) C (z), with the defining equation

indA×B(C , g , (a, b)) :≡ g(a)(b)

Induction, for the unit type

ind1 :
∏

(C : 1→U) C (∗) →
∏

(x : 1) C (x), with defining equation
ind1(C , c , ∗) :≡ c

The propositional uniqueness principle for 1, uniq1 :
∏

(x : 1) x = ⋆,
with the defining equation uniq1(⋆) :≡ refl⋆,
or via induction uniq1 :≡ ind1(λx .x = ⋆, refl⋆)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Product types, induction principle (7/7)

As previously, let’s apply the principle once (in the universal
case). We call the resulting function induction for product types:

Induction
Given A,B : U , we have
indA×B :

∏
(C : A×B → U ) (

∏
(x : A)

∏
(y : B) C ((x , y))) →∏

(z : A×B) C (z), with the defining equation

indA×B(C , g , (a, b)) :≡ g(a)(b)

Induction, for the unit type

ind1 :
∏

(C : 1→U) C (∗) →
∏

(x : 1) C (x), with defining equation
ind1(C , c , ∗) :≡ c

The propositional uniqueness principle for 1, uniq1 :
∏

(x : 1) x = ⋆,
with the defining equation uniq1(⋆) :≡ refl⋆,
or via induction uniq1 :≡ ind1(λx .x = ⋆, refl⋆)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types (
∑

-types), (1/4)

A generalisation of product types,

that allows the type of the
second component of a pair to vary depending on the choice of
the first component. This is called a dependent pair type (or∑

-type). (Corresponds to an indexed sum over a given index, in
Set Theory).

Formation
Given type A : U , a family B : A → U , their dependent pair type is∑

(x : A) B(x). (If B is constant, then
∑

(x : A) B ≡ A× B)

The way to construct an element of a dependent pair type, is by
pairing.

Introduction
Given a : A and b : B(a), we may construct (a, b) :

∑
(x : A) B(x)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types (
∑

-types), (1/4)

A generalisation of product types, that allows the type of the
second component of a pair to vary depending on the choice of
the first component.

This is called a dependent pair type (or∑
-type). (Corresponds to an indexed sum over a given index, in

Set Theory).

Formation
Given type A : U , a family B : A → U , their dependent pair type is∑

(x : A) B(x). (If B is constant, then
∑

(x : A) B ≡ A× B)

The way to construct an element of a dependent pair type, is by
pairing.

Introduction
Given a : A and b : B(a), we may construct (a, b) :

∑
(x : A) B(x)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types (
∑

-types), (1/4)

A generalisation of product types, that allows the type of the
second component of a pair to vary depending on the choice of
the first component. This is called a dependent pair type (or∑

-type).

(Corresponds to an indexed sum over a given index, in
Set Theory).

Formation
Given type A : U , a family B : A → U , their dependent pair type is∑

(x : A) B(x). (If B is constant, then
∑

(x : A) B ≡ A× B)

The way to construct an element of a dependent pair type, is by
pairing.

Introduction
Given a : A and b : B(a), we may construct (a, b) :

∑
(x : A) B(x)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types (
∑

-types), (1/4)

A generalisation of product types, that allows the type of the
second component of a pair to vary depending on the choice of
the first component. This is called a dependent pair type (or∑

-type). (Corresponds to an indexed sum over a given index, in
Set Theory).

Formation
Given type A : U , a family B : A → U , their dependent pair type is∑

(x : A) B(x). (If B is constant, then
∑

(x : A) B ≡ A× B)

The way to construct an element of a dependent pair type, is by
pairing.

Introduction
Given a : A and b : B(a), we may construct (a, b) :

∑
(x : A) B(x)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types (
∑

-types), (1/4)

A generalisation of product types, that allows the type of the
second component of a pair to vary depending on the choice of
the first component. This is called a dependent pair type (or∑

-type). (Corresponds to an indexed sum over a given index, in
Set Theory).

Formation
Given type A : U , a family B : A → U , their dependent pair type is∑

(x : A) B(x). (If B is constant, then
∑

(x : A) B ≡ A× B)

The way to construct an element of a dependent pair type, is by
pairing.

Introduction
Given a : A and b : B(a), we may construct (a, b) :

∑
(x : A) B(x)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types (
∑

-types), (1/4)

A generalisation of product types, that allows the type of the
second component of a pair to vary depending on the choice of
the first component. This is called a dependent pair type (or∑

-type). (Corresponds to an indexed sum over a given index, in
Set Theory).

Formation
Given type A : U , a family B : A → U , their dependent pair type is∑

(x : A) B(x). (If B is constant, then
∑

(x : A) B ≡ A× B)

The way to construct an element of a dependent pair type, is by
pairing.

Introduction
Given a : A and b : B(a), we may construct (a, b) :

∑
(x : A) B(x)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types (
∑

-types), (1/4)

A generalisation of product types, that allows the type of the
second component of a pair to vary depending on the choice of
the first component. This is called a dependent pair type (or∑

-type). (Corresponds to an indexed sum over a given index, in
Set Theory).

Formation
Given type A : U , a family B : A → U , their dependent pair type is∑

(x : A) B(x). (If B is constant, then
∑

(x : A) B ≡ A× B)

The way to construct an element of a dependent pair type, is by
pairing.

Introduction
Given a : A and b : B(a), we may construct (a, b) :

∑
(x : A) B(x)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types
∑

-types, recursion principle (2/4)

Recursion principle

In order to define a non-dependent function ouf of a
∑

-type
f :
∑

(x : A) B(x) → C ,

we provide a function
g :
∏

(x : A) B(x) → C , and then we can define f via

f ((a, b)) :≡ g(a)(b)

Example, projections

▶ pr1 : (
∑

x : A B(x)) → A

▶ pr1((a, b)) :≡ a

▶ pr2 :
∏

p :
∑

x : A B(x) B(pr1(p))

▶ ? (we need the induction principle)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types
∑

-types, recursion principle (2/4)

Recursion principle

In order to define a non-dependent function ouf of a
∑

-type
f :
∑

(x : A) B(x) → C ,

we provide a function
g :
∏

(x : A) B(x) → C , and then we can define f via

f ((a, b)) :≡ g(a)(b)

Example, projections

▶ pr1 : (
∑

x : A B(x)) → A

▶ pr1((a, b)) :≡ a

▶ pr2 :
∏

p :
∑

x : A B(x) B(pr1(p))

▶ ? (we need the induction principle)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types
∑

-types, recursion principle (2/4)

Recursion principle

In order to define a non-dependent function ouf of a
∑

-type
f :
∑

(x : A) B(x) → C , we provide a function
g :
∏

(x : A) B(x) → C ,

and then we can define f via

f ((a, b)) :≡ g(a)(b)

Example, projections

▶ pr1 : (
∑

x : A B(x)) → A

▶ pr1((a, b)) :≡ a

▶ pr2 :
∏

p :
∑

x : A B(x) B(pr1(p))

▶ ? (we need the induction principle)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types
∑

-types, recursion principle (2/4)

Recursion principle

In order to define a non-dependent function ouf of a
∑

-type
f :
∑

(x : A) B(x) → C , we provide a function
g :
∏

(x : A) B(x) → C , and then we can define f via

f ((a, b)) :≡ g(a)(b)

Example, projections

▶ pr1 : (
∑

x : A B(x)) → A

▶ pr1((a, b)) :≡ a

▶ pr2 :
∏

p :
∑

x : A B(x) B(pr1(p))

▶ ? (we need the induction principle)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types
∑

-types, recursion principle (2/4)

Recursion principle

In order to define a non-dependent function ouf of a
∑

-type
f :
∑

(x : A) B(x) → C , we provide a function
g :
∏

(x : A) B(x) → C , and then we can define f via

f ((a, b)) :≡ g(a)(b)

Example, projections

▶ pr1 : (
∑

x : A B(x)) → A

▶ pr1((a, b)) :≡ a

▶ pr2 :
∏

p :
∑

x : A B(x) B(pr1(p))

▶ ? (we need the induction principle)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types
∑

-types, recursion principle (2/4)

Recursion principle

In order to define a non-dependent function ouf of a
∑

-type
f :
∑

(x : A) B(x) → C , we provide a function
g :
∏

(x : A) B(x) → C , and then we can define f via

f ((a, b)) :≡ g(a)(b)

Example, projections

▶ pr1 : (
∑

x : A B(x)) → A

▶ pr1((a, b)) :≡ a

▶ pr2 :
∏

p :
∑

x : A B(x) B(pr1(p))

▶ ? (we need the induction principle)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types
∑

-types, recursion principle (2/4)

Recursion principle

In order to define a non-dependent function ouf of a
∑

-type
f :
∑

(x : A) B(x) → C , we provide a function
g :
∏

(x : A) B(x) → C , and then we can define f via

f ((a, b)) :≡ g(a)(b)

Example, projections

▶ pr1 : (
∑

x : A B(x)) → A
▶ pr1((a, b)) :≡ a

▶ pr2 :
∏

p :
∑

x : A B(x) B(pr1(p))

▶ ? (we need the induction principle)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types
∑

-types, recursion principle (2/4)

Recursion principle

In order to define a non-dependent function ouf of a
∑

-type
f :
∑

(x : A) B(x) → C , we provide a function
g :
∏

(x : A) B(x) → C , and then we can define f via

f ((a, b)) :≡ g(a)(b)

Example, projections

▶ pr1 : (
∑

x : A B(x)) → A
▶ pr1((a, b)) :≡ a

▶ pr2 :
∏

p :
∑

x : A B(x) B(pr1(p))

▶ ? (we need the induction principle)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types
∑

-types, recursion principle (2/4)

Recursion principle

In order to define a non-dependent function ouf of a
∑

-type
f :
∑

(x : A) B(x) → C , we provide a function
g :
∏

(x : A) B(x) → C , and then we can define f via

f ((a, b)) :≡ g(a)(b)

Example, projections

▶ pr1 : (
∑

x : A B(x)) → A
▶ pr1((a, b)) :≡ a

▶ pr2 :
∏

p :
∑

x : A B(x) B(pr1(p))

▶ ? (we need the induction principle)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types
∑

-types, recursion principle (2/4)

Recursion principle

In order to define a non-dependent function ouf of a
∑

-type
f :
∑

(x : A) B(x) → C , we provide a function
g :
∏

(x : A) B(x) → C , and then we can define f via

f ((a, b)) :≡ g(a)(b)

Example, projections

▶ pr1 : (
∑

x : A B(x)) → A
▶ pr1((a, b)) :≡ a

▶ pr2 :
∏

p :
∑

x : A B(x) B(pr1(p))

▶ ? (we need the induction principle)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types
∑

-types, induction principle (3/4)

Induction principle

In order to construct a dependent function out of a
∑

-type into a
family C : (

∑
x : A B(x)) → U , we need a function

g :
∏
x : A

∏
b : B(a)

C ((a, b))

in order to derive a function

f :
∏

p :
∑

x : A B(x)

C (p)

with defining equation

f ((a, b)) :≡ g(a)(b)

Hence, pr2((a, b)) :≡ b

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types
∑

-types, packaging (4/4)

Recursor

rec∑
x : A B(x) :

∏
C : U

(∏
x : A

B(x) → C

)
→

(∑
x : A

B(x)

)
→ C

with defining equation

rec∑
x : A B(x)(C , g , (a, b)) :≡ g(a)(b)

Induction operator

ind∑
x : A B(x) :

∏
C : (

∑
x : A B(x))→U

∏
a : A

∏
b : B(a)

C ((a, b))

→
∏

p :
∑

x : A B(x)

C (p)

with the defining equation

ind∑
x : A B(x)(C , g , (a, b)) :≡ g(a)(b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types
∑

-types, packaging (4/4)

Recursor

rec∑
x : A B(x) :

∏
C : U

(∏
x : A

B(x) → C

)
→

(∑
x : A

B(x)

)
→ C

with defining equation

rec∑
x : A B(x)(C , g , (a, b)) :≡ g(a)(b)

Induction operator

ind∑
x : A B(x) :

∏
C : (

∑
x : A B(x))→U

∏
a : A

∏
b : B(a)

C ((a, b))

→
∏

p :
∑

x : A B(x)

C (p)

with the defining equation

ind∑
x : A B(x)(C , g , (a, b)) :≡ g(a)(b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types
∑

-types, packaging (4/4)

Recursor

rec∑
x : A B(x) :

∏
C : U

(∏
x : A

B(x) → C

)
→

(∑
x : A

B(x)

)
→ C

with defining equation

rec∑
x : A B(x)(C , g , (a, b)) :≡ g(a)(b)

Induction operator

ind∑
x : A B(x) :

∏
C : (

∑
x : A B(x))→U

∏
a : A

∏
b : B(a)

C ((a, b))

→
∏

p :
∑

x : A B(x)

C (p)

with the defining equation

ind∑
x : A B(x)(C , g , (a, b)) :≡ g(a)(b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types
∑

-types, packaging (4/4)

Recursor

rec∑
x : A B(x) :

∏
C : U

(∏
x : A

B(x) → C

)
→

(∑
x : A

B(x)

)
→ C

with defining equation

rec∑
x : A B(x)(C , g , (a, b)) :≡ g(a)(b)

Induction operator

ind∑
x : A B(x) :

∏
C : (

∑
x : A B(x))→U

∏
a : A

∏
b : B(a)

C ((a, b))

→
∏

p :
∑

x : A B(x)

C (p)

with the defining equation

ind∑
x : A B(x)(C , g , (a, b)) :≡ g(a)(b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types
∑

-types, packaging (4/4)

Recursor

rec∑
x : A B(x) :

∏
C : U

(∏
x : A

B(x) → C

)
→

(∑
x : A

B(x)

)
→ C

with defining equation

rec∑
x : A B(x)(C , g , (a, b)) :≡ g(a)(b)

Induction operator

ind∑
x : A B(x) :

∏
C : (

∑
x : A B(x))→U

∏
a : A

∏
b : B(a)

C ((a, b))

→
∏

p :
∑

x : A B(x)

C (p)

with the defining equation

ind∑
x : A B(x)(C , g , (a, b)) :≡ g(a)(b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Dependent pair types
∑

-types, packaging (4/4)

Recursor

rec∑
x : A B(x) :

∏
C : U

(∏
x : A

B(x) → C

)
→

(∑
x : A

B(x)

)
→ C

with defining equation

rec∑
x : A B(x)(C , g , (a, b)) :≡ g(a)(b)

Induction operator

ind∑
x : A B(x) :

∏
C : (

∑
x : A B(x))→U

∏
a : A

∏
b : B(a)

C ((a, b))

→
∏

p :
∑

x : A B(x)

C (p)

with the defining equation

ind∑
x : A B(x)(C , g , (a, b)) :≡ g(a)(b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (1/3)

Formation rule
Given A,B : U , we introduce their coproduct type A+ B : U .

(A
nullary version: the empty type 0 : U .)

Introduction rule
Two ways of constructing elements of A+ B.

▶ inl(a) : A+ B for a : A

▶ inr(b) : A+ B for b : B

▶ (No ways to construct elements of the empty type)

Functions f : A+ B → C
Given g0 : A → C , g1 : B → C , we have the defining equations

f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (1/3)

Formation rule
Given A,B : U , we introduce their coproduct type A+ B : U .

(A
nullary version: the empty type 0 : U .)

Introduction rule
Two ways of constructing elements of A+ B.

▶ inl(a) : A+ B for a : A

▶ inr(b) : A+ B for b : B

▶ (No ways to construct elements of the empty type)

Functions f : A+ B → C
Given g0 : A → C , g1 : B → C , we have the defining equations

f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (1/3)

Formation rule
Given A,B : U , we introduce their coproduct type A+ B : U . (A
nullary version: the empty type 0 : U .)

Introduction rule
Two ways of constructing elements of A+ B.

▶ inl(a) : A+ B for a : A

▶ inr(b) : A+ B for b : B

▶ (No ways to construct elements of the empty type)

Functions f : A+ B → C
Given g0 : A → C , g1 : B → C , we have the defining equations

f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (1/3)

Formation rule
Given A,B : U , we introduce their coproduct type A+ B : U . (A
nullary version: the empty type 0 : U .)

Introduction rule
Two ways of constructing elements of A+ B.

▶ inl(a) : A+ B for a : A

▶ inr(b) : A+ B for b : B

▶ (No ways to construct elements of the empty type)

Functions f : A+ B → C
Given g0 : A → C , g1 : B → C , we have the defining equations

f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (1/3)

Formation rule
Given A,B : U , we introduce their coproduct type A+ B : U . (A
nullary version: the empty type 0 : U .)

Introduction rule
Two ways of constructing elements of A+ B.

▶ inl(a) : A+ B for a : A

▶ inr(b) : A+ B for b : B

▶ (No ways to construct elements of the empty type)

Functions f : A+ B → C
Given g0 : A → C , g1 : B → C , we have the defining equations

f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (1/3)

Formation rule
Given A,B : U , we introduce their coproduct type A+ B : U . (A
nullary version: the empty type 0 : U .)

Introduction rule
Two ways of constructing elements of A+ B.

▶ inl(a) : A+ B for a : A

▶ inr(b) : A+ B for b : B

▶ (No ways to construct elements of the empty type)

Functions f : A+ B → C
Given g0 : A → C , g1 : B → C , we have the defining equations

f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (1/3)

Formation rule
Given A,B : U , we introduce their coproduct type A+ B : U . (A
nullary version: the empty type 0 : U .)

Introduction rule
Two ways of constructing elements of A+ B.

▶ inl(a) : A+ B for a : A

▶ inr(b) : A+ B for b : B

▶ (No ways to construct elements of the empty type)

Functions f : A+ B → C
Given g0 : A → C , g1 : B → C , we have the defining equations

f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (1/3)

Formation rule
Given A,B : U , we introduce their coproduct type A+ B : U . (A
nullary version: the empty type 0 : U .)

Introduction rule
Two ways of constructing elements of A+ B.

▶ inl(a) : A+ B for a : A

▶ inr(b) : A+ B for b : B

▶ (No ways to construct elements of the empty type)

Functions f : A+ B → C
Given g0 : A → C , g1 : B → C , we have the defining equations

f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (1/3)

Formation rule
Given A,B : U , we introduce their coproduct type A+ B : U . (A
nullary version: the empty type 0 : U .)

Introduction rule
Two ways of constructing elements of A+ B.

▶ inl(a) : A+ B for a : A

▶ inr(b) : A+ B for b : B

▶ (No ways to construct elements of the empty type)

Functions f : A+ B → C
Given g0 : A → C , g1 : B → C , we have the defining equations

f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (2/3)

Recursor
We have recA+B :

∏
(C : U)(A → C ) → (B → C ) → A+ B → C

with defining equations

▶ recA+B(C , g0, g1, inl(a)) :≡ g0(a)

▶ recA+B(C , g0, g1, inr(b)) :≡ g1(b)

We can always construct a function f : 0 → C (without any
defining equation),thus rec0 :

∏
(C : U) 0 → C . (This corresponds

to the principle ex falso quodlibet, principle of explosion.)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (2/3)

Recursor
We have recA+B :

∏
(C : U)(A → C ) → (B → C ) → A+ B → C

with defining equations

▶ recA+B(C , g0, g1, inl(a)) :≡ g0(a)

▶ recA+B(C , g0, g1, inr(b)) :≡ g1(b)

We can always construct a function f : 0 → C (without any
defining equation),thus rec0 :

∏
(C : U) 0 → C . (This corresponds

to the principle ex falso quodlibet, principle of explosion.)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (2/3)

Recursor
We have recA+B :

∏
(C : U)(A → C ) → (B → C ) → A+ B → C

with defining equations

▶ recA+B(C , g0, g1, inl(a)) :≡ g0(a)

▶ recA+B(C , g0, g1, inr(b)) :≡ g1(b)

We can always construct a function f : 0 → C (without any
defining equation),thus rec0 :

∏
(C : U) 0 → C . (This corresponds

to the principle ex falso quodlibet, principle of explosion.)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (2/3)

Recursor
We have recA+B :

∏
(C : U)(A → C ) → (B → C ) → A+ B → C

with defining equations

▶ recA+B(C , g0, g1, inl(a)) :≡ g0(a)

▶ recA+B(C , g0, g1, inr(b)) :≡ g1(b)

We can always construct a function f : 0 → C (without any
defining equation),thus rec0 :

∏
(C : U) 0 → C . (This corresponds

to the principle ex falso quodlibet, principle of explosion.)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (2/3)

Recursor
We have recA+B :

∏
(C : U)(A → C ) → (B → C ) → A+ B → C

with defining equations

▶ recA+B(C , g0, g1, inl(a)) :≡ g0(a)

▶ recA+B(C , g0, g1, inr(b)) :≡ g1(b)

We can always construct a function f : 0 → C (without any
defining equation),

thus rec0 :
∏

(C : U) 0 → C . (This corresponds
to the principle ex falso quodlibet, principle of explosion.)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (2/3)

Recursor
We have recA+B :

∏
(C : U)(A → C ) → (B → C ) → A+ B → C

with defining equations

▶ recA+B(C , g0, g1, inl(a)) :≡ g0(a)

▶ recA+B(C , g0, g1, inr(b)) :≡ g1(b)

We can always construct a function f : 0 → C (without any
defining equation),thus rec0 :

∏
(C : U) 0 → C .

(This corresponds
to the principle ex falso quodlibet, principle of explosion.)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (2/3)

Recursor
We have recA+B :

∏
(C : U)(A → C ) → (B → C ) → A+ B → C

with defining equations

▶ recA+B(C , g0, g1, inl(a)) :≡ g0(a)

▶ recA+B(C , g0, g1, inr(b)) :≡ g1(b)

We can always construct a function f : 0 → C (without any
defining equation),thus rec0 :

∏
(C : U) 0 → C . (This corresponds

to the principle ex falso quodlibet, principle of explosion.)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (3/3)

Dependent function f :
∏

z : A+B C (z)

Given family C : A+ B → U ,

we require g0 :
∏

(a : A) C (inl(a)),
g1 :

∏
(b : B) C (inr(b)), in order to produce a functtion f via the

defining equations

f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

In a nice package (induction principle):

indA+B :
∏

(C : (A+B)→U)

∏
(a : A)

C (inl(a)) →
∏

(b : B)

C (inr(b)) →
∏

(x : A+B)

C (x)

For the empty type, ind0 :
∏

(C : 0→U)

∏
(z : 0) C (z)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (3/3)

Dependent function f :
∏

z : A+B C (z)

Given family C : A+ B → U ,

we require g0 :
∏

(a : A) C (inl(a)),
g1 :

∏
(b : B) C (inr(b)), in order to produce a functtion f via the

defining equations

f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

In a nice package (induction principle):

indA+B :
∏

(C : (A+B)→U)

∏
(a : A)

C (inl(a)) →
∏

(b : B)

C (inr(b)) →
∏

(x : A+B)

C (x)

For the empty type, ind0 :
∏

(C : 0→U)

∏
(z : 0) C (z)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (3/3)

Dependent function f :
∏

z : A+B C (z)

Given family C : A+ B → U , we require g0 :
∏

(a : A) C (inl(a)),
g1 :

∏
(b : B) C (inr(b)),

in order to produce a functtion f via the
defining equations

f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

In a nice package (induction principle):

indA+B :
∏

(C : (A+B)→U)

∏
(a : A)

C (inl(a)) →
∏

(b : B)

C (inr(b)) →
∏

(x : A+B)

C (x)

For the empty type, ind0 :
∏

(C : 0→U)

∏
(z : 0) C (z)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (3/3)

Dependent function f :
∏

z : A+B C (z)

Given family C : A+ B → U , we require g0 :
∏

(a : A) C (inl(a)),
g1 :

∏
(b : B) C (inr(b)), in order to produce a functtion f via the

defining equations

f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

In a nice package (induction principle):

indA+B :
∏

(C : (A+B)→U)

∏
(a : A)

C (inl(a)) →
∏

(b : B)

C (inr(b)) →
∏

(x : A+B)

C (x)

For the empty type, ind0 :
∏

(C : 0→U)

∏
(z : 0) C (z)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

Coproduct types, (3/3)

Dependent function f :
∏

z : A+B C (z)

Given family C : A+ B → U , we require g0 :
∏

(a : A) C (inl(a)),
g1 :

∏
(b : B) C (inr(b)), in order to produce a functtion f via the

defining equations

f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

In a nice package (induction principle):

indA+B :
∏

(C : (A+B)→U)

∏
(a : A)

C (inl(a)) →
∏

(b : B)

C (inr(b)) →
∏

(x : A+B)

C (x)

For the empty type, ind0 :
∏

(C : 0→U)

∏
(z : 0) C (z)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (1/3)

We introduce 2 : U , which is intended to have exactly two
elements, 02, 12 : 2. (Alternative definitions?)

Functions f : 2 → C
We require c0, c1 : C , to define a function f via the defining
equations f (02) :≡ c0, f (12) :≡ c1

Recursion principle

Is a term rec2 :
∏

(C : U) C → C → 2 → C , with defining
equations,

rec2(C , c0, c1, 02) :≡ c0, rec2(C , c0, c1, 12) :≡ c1

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (1/3)

We introduce 2 : U , which is intended to have exactly two
elements, 02, 12 : 2. (Alternative definitions?)

Functions f : 2 → C
We require c0, c1 : C , to define a function f via the defining
equations f (02) :≡ c0, f (12) :≡ c1

Recursion principle

Is a term rec2 :
∏

(C : U) C → C → 2 → C , with defining
equations,

rec2(C , c0, c1, 02) :≡ c0, rec2(C , c0, c1, 12) :≡ c1

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (1/3)

We introduce 2 : U , which is intended to have exactly two
elements, 02, 12 : 2. (Alternative definitions?)

Functions f : 2 → C
We require c0, c1 : C , to define a function f via the defining
equations f (02) :≡ c0, f (12) :≡ c1

Recursion principle

Is a term rec2 :
∏

(C : U) C → C → 2 → C , with defining
equations,

rec2(C , c0, c1, 02) :≡ c0, rec2(C , c0, c1, 12) :≡ c1

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (1/3)

We introduce 2 : U , which is intended to have exactly two
elements, 02, 12 : 2. (Alternative definitions?)

Functions f : 2 → C
We require c0, c1 : C , to define a function f via the defining
equations f (02) :≡ c0, f (12) :≡ c1

Recursion principle

Is a term rec2 :
∏

(C : U) C → C → 2 → C , with defining
equations,

rec2(C , c0, c1, 02) :≡ c0, rec2(C , c0, c1, 12) :≡ c1

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (2/3)

Dependent functions f :
∏

(x : 2) C (x)

Given family C : 2 → U ,

we require elements c0 : C (02), c1 : C (12),
in order to derive a dep function f :

∏
(x : 2) C (x), via defining

equations f (02) :≡ c0, f (12) :≡ c1

In a nice packaging (induction principle)

We have ind2 :
∏

(C : 2→U) C (02) → C (12) →
∏

(x : 2) C (x), via the
defining equations

ind2(C , c0, c1, 02) :≡ c0
ind2(C , c0, c1, 12) :≡ c1

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (2/3)

Dependent functions f :
∏

(x : 2) C (x)

Given family C : 2 → U ,

we require elements c0 : C (02), c1 : C (12),
in order to derive a dep function f :

∏
(x : 2) C (x), via defining

equations f (02) :≡ c0, f (12) :≡ c1

In a nice packaging (induction principle)

We have ind2 :
∏

(C : 2→U) C (02) → C (12) →
∏

(x : 2) C (x), via the
defining equations

ind2(C , c0, c1, 02) :≡ c0
ind2(C , c0, c1, 12) :≡ c1

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (2/3)

Dependent functions f :
∏

(x : 2) C (x)

Given family C : 2 → U , we require elements c0 : C (02), c1 : C (12),

in order to derive a dep function f :
∏

(x : 2) C (x), via defining
equations f (02) :≡ c0, f (12) :≡ c1

In a nice packaging (induction principle)

We have ind2 :
∏

(C : 2→U) C (02) → C (12) →
∏

(x : 2) C (x), via the
defining equations

ind2(C , c0, c1, 02) :≡ c0
ind2(C , c0, c1, 12) :≡ c1

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (2/3)

Dependent functions f :
∏

(x : 2) C (x)

Given family C : 2 → U , we require elements c0 : C (02), c1 : C (12),
in order to derive a dep function f :

∏
(x : 2) C (x),

via defining
equations f (02) :≡ c0, f (12) :≡ c1

In a nice packaging (induction principle)

We have ind2 :
∏

(C : 2→U) C (02) → C (12) →
∏

(x : 2) C (x), via the
defining equations

ind2(C , c0, c1, 02) :≡ c0
ind2(C , c0, c1, 12) :≡ c1

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (2/3)

Dependent functions f :
∏

(x : 2) C (x)

Given family C : 2 → U , we require elements c0 : C (02), c1 : C (12),
in order to derive a dep function f :

∏
(x : 2) C (x), via defining

equations f (02) :≡ c0, f (12) :≡ c1

In a nice packaging (induction principle)

We have ind2 :
∏

(C : 2→U) C (02) → C (12) →
∏

(x : 2) C (x), via the
defining equations

ind2(C , c0, c1, 02) :≡ c0
ind2(C , c0, c1, 12) :≡ c1

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (2/3)

Dependent functions f :
∏

(x : 2) C (x)

Given family C : 2 → U , we require elements c0 : C (02), c1 : C (12),
in order to derive a dep function f :

∏
(x : 2) C (x), via defining

equations f (02) :≡ c0, f (12) :≡ c1

In a nice packaging (induction principle)

We have ind2 :
∏

(C : 2→U) C (02) → C (12) →
∏

(x : 2) C (x), via the
defining equations

ind2(C , c0, c1, 02) :≡ c0
ind2(C , c0, c1, 12) :≡ c1

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (3/3)

Is it true that
∏

(x : 2)(x = 02) + (x = 12)?

▶ Let’s define the family C (x) :≡ x = 02 + x = 12

▶ C (02) ≡ 02 = 02 + 02 = 12
▶ C (12) ≡ 12 = 02 + 12 = 12

▶ Can we find elements for each case?

▶ inl(refl02) : C (02)
▶ inr(refl12) : C (12)

Lastly, we derive,

ind2(λx .(x = 02+x = 12), inl(refl02), inr(refl12)) :
∏
(x : 2)

x = 01+x = 12

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (3/3)

Is it true that
∏

(x : 2)(x = 02) + (x = 12)?

▶ Let’s define the family C (x) :≡ x = 02 + x = 12

▶ C (02) ≡ 02 = 02 + 02 = 12
▶ C (12) ≡ 12 = 02 + 12 = 12

▶ Can we find elements for each case?

▶ inl(refl02) : C (02)
▶ inr(refl12) : C (12)

Lastly, we derive,

ind2(λx .(x = 02+x = 12), inl(refl02), inr(refl12)) :
∏
(x : 2)

x = 01+x = 12

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (3/3)

Is it true that
∏

(x : 2)(x = 02) + (x = 12)?

▶ Let’s define the family C (x) :≡ x = 02 + x = 12

▶ C (02) ≡ 02 = 02 + 02 = 12
▶ C (12) ≡ 12 = 02 + 12 = 12

▶ Can we find elements for each case?

▶ inl(refl02) : C (02)
▶ inr(refl12) : C (12)

Lastly, we derive,

ind2(λx .(x = 02+x = 12), inl(refl02), inr(refl12)) :
∏
(x : 2)

x = 01+x = 12

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (3/3)

Is it true that
∏

(x : 2)(x = 02) + (x = 12)?

▶ Let’s define the family C (x) :≡ x = 02 + x = 12
▶ C (02) ≡ 02 = 02 + 02 = 12

▶ C (12) ≡ 12 = 02 + 12 = 12

▶ Can we find elements for each case?

▶ inl(refl02) : C (02)
▶ inr(refl12) : C (12)

Lastly, we derive,

ind2(λx .(x = 02+x = 12), inl(refl02), inr(refl12)) :
∏
(x : 2)

x = 01+x = 12

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (3/3)

Is it true that
∏

(x : 2)(x = 02) + (x = 12)?

▶ Let’s define the family C (x) :≡ x = 02 + x = 12
▶ C (02) ≡ 02 = 02 + 02 = 12
▶ C (12) ≡ 12 = 02 + 12 = 12

▶ Can we find elements for each case?

▶ inl(refl02) : C (02)
▶ inr(refl12) : C (12)

Lastly, we derive,

ind2(λx .(x = 02+x = 12), inl(refl02), inr(refl12)) :
∏
(x : 2)

x = 01+x = 12

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (3/3)

Is it true that
∏

(x : 2)(x = 02) + (x = 12)?

▶ Let’s define the family C (x) :≡ x = 02 + x = 12
▶ C (02) ≡ 02 = 02 + 02 = 12
▶ C (12) ≡ 12 = 02 + 12 = 12

▶ Can we find elements for each case?

▶ inl(refl02) : C (02)
▶ inr(refl12) : C (12)

Lastly, we derive,

ind2(λx .(x = 02+x = 12), inl(refl02), inr(refl12)) :
∏
(x : 2)

x = 01+x = 12

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (3/3)

Is it true that
∏

(x : 2)(x = 02) + (x = 12)?

▶ Let’s define the family C (x) :≡ x = 02 + x = 12
▶ C (02) ≡ 02 = 02 + 02 = 12
▶ C (12) ≡ 12 = 02 + 12 = 12

▶ Can we find elements for each case?

▶ inl(refl02) : C (02)
▶ inr(refl12) : C (12)

Lastly, we derive,

ind2(λx .(x = 02+x = 12), inl(refl02), inr(refl12)) :
∏
(x : 2)

x = 01+x = 12

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (3/3)

Is it true that
∏

(x : 2)(x = 02) + (x = 12)?

▶ Let’s define the family C (x) :≡ x = 02 + x = 12
▶ C (02) ≡ 02 = 02 + 02 = 12
▶ C (12) ≡ 12 = 02 + 12 = 12

▶ Can we find elements for each case?
▶ inl(refl02) : C (02)

▶ inr(refl12) : C (12)

Lastly, we derive,

ind2(λx .(x = 02+x = 12), inl(refl02), inr(refl12)) :
∏
(x : 2)

x = 01+x = 12

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (3/3)

Is it true that
∏

(x : 2)(x = 02) + (x = 12)?

▶ Let’s define the family C (x) :≡ x = 02 + x = 12
▶ C (02) ≡ 02 = 02 + 02 = 12
▶ C (12) ≡ 12 = 02 + 12 = 12

▶ Can we find elements for each case?
▶ inl(refl02) : C (02)
▶ inr(refl12) : C (12)

Lastly, we derive,

ind2(λx .(x = 02+x = 12), inl(refl02), inr(refl12)) :
∏
(x : 2)

x = 01+x = 12

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (3/3)

Is it true that
∏

(x : 2)(x = 02) + (x = 12)?

▶ Let’s define the family C (x) :≡ x = 02 + x = 12
▶ C (02) ≡ 02 = 02 + 02 = 12
▶ C (12) ≡ 12 = 02 + 12 = 12

▶ Can we find elements for each case?
▶ inl(refl02) : C (02)
▶ inr(refl12) : C (12)

Lastly, we derive,

ind2(λx .(x = 02+x = 12), inl(refl02), inr(refl12)) :
∏
(x : 2)

x = 01+x = 12

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The type of booleans, (3/3)

Is it true that
∏

(x : 2)(x = 02) + (x = 12)?

▶ Let’s define the family C (x) :≡ x = 02 + x = 12
▶ C (02) ≡ 02 = 02 + 02 = 12
▶ C (12) ≡ 12 = 02 + 12 = 12

▶ Can we find elements for each case?
▶ inl(refl02) : C (02)
▶ inr(refl12) : C (12)

Lastly, we derive,

ind2(λx .(x = 02+x = 12), inl(refl02), inr(refl12)) :
∏
(x : 2)

x = 01+x = 12

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, (1/7)

Introduction rules

▶ zero : N
▶ succ : N → N

Usual notation: 0 :≡ zero, 1 :≡ succ(0), 2 :≡ succ(1), . . .

Recursion principle

In order to construct f : N → C , we need

▶ a starting point c0 : C , a next step func cs : N → C → C

These give rise to f , with the defining equations

f (0) :≡ c0, f (succ(n)) :≡ cs(n, f (n))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, (1/7)

Introduction rules
▶ zero : N

▶ succ : N → N

Usual notation: 0 :≡ zero, 1 :≡ succ(0), 2 :≡ succ(1), . . .

Recursion principle

In order to construct f : N → C , we need

▶ a starting point c0 : C , a next step func cs : N → C → C

These give rise to f , with the defining equations

f (0) :≡ c0, f (succ(n)) :≡ cs(n, f (n))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, (1/7)

Introduction rules
▶ zero : N
▶ succ : N → N

Usual notation: 0 :≡ zero, 1 :≡ succ(0), 2 :≡ succ(1), . . .

Recursion principle

In order to construct f : N → C , we need

▶ a starting point c0 : C , a next step func cs : N → C → C

These give rise to f , with the defining equations

f (0) :≡ c0, f (succ(n)) :≡ cs(n, f (n))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, (1/7)

Introduction rules
▶ zero : N
▶ succ : N → N

Usual notation: 0 :≡ zero, 1 :≡ succ(0), 2 :≡ succ(1), . . .

Recursion principle

In order to construct f : N → C , we need

▶ a starting point c0 : C , a next step func cs : N → C → C

These give rise to f , with the defining equations

f (0) :≡ c0, f (succ(n)) :≡ cs(n, f (n))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, (1/7)

Introduction rules
▶ zero : N
▶ succ : N → N

Usual notation: 0 :≡ zero, 1 :≡ succ(0), 2 :≡ succ(1), . . .

Recursion principle

In order to construct f : N → C , we need

▶ a starting point c0 : C , a next step func cs : N → C → C

These give rise to f , with the defining equations

f (0) :≡ c0, f (succ(n)) :≡ cs(n, f (n))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, (1/7)

Introduction rules
▶ zero : N
▶ succ : N → N

Usual notation: 0 :≡ zero, 1 :≡ succ(0), 2 :≡ succ(1), . . .

Recursion principle

In order to construct f : N → C , we need

▶ a starting point c0 : C ,

a next step func cs : N → C → C

These give rise to f , with the defining equations

f (0) :≡ c0, f (succ(n)) :≡ cs(n, f (n))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, (1/7)

Introduction rules
▶ zero : N
▶ succ : N → N

Usual notation: 0 :≡ zero, 1 :≡ succ(0), 2 :≡ succ(1), . . .

Recursion principle

In order to construct f : N → C , we need

▶ a starting point c0 : C ,

a next step func cs : N → C → C

These give rise to f , with the defining equations

f (0) :≡ c0, f (succ(n)) :≡ cs(n, f (n))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, (1/7)

Introduction rules
▶ zero : N
▶ succ : N → N

Usual notation: 0 :≡ zero, 1 :≡ succ(0), 2 :≡ succ(1), . . .

Recursion principle

In order to construct f : N → C , we need

▶ a starting point c0 : C ,

a next step func cs : N → C → C

These give rise to f , with the defining equations

f (0) :≡ c0, f (succ(n)) :≡ cs(n, f (n))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, (1/7)

Introduction rules
▶ zero : N
▶ succ : N → N

Usual notation: 0 :≡ zero, 1 :≡ succ(0), 2 :≡ succ(1), . . .

Recursion principle

In order to construct f : N → C , we need

▶ a starting point c0 : C , a next step func cs : N → C → C

These give rise to f , with the defining equations

f (0) :≡ c0, f (succ(n)) :≡ cs(n, f (n))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, (1/7)

Introduction rules
▶ zero : N
▶ succ : N → N

Usual notation: 0 :≡ zero, 1 :≡ succ(0), 2 :≡ succ(1), . . .

Recursion principle

In order to construct f : N → C , we need

▶ a starting point c0 : C , a next step func cs : N → C → C

These give rise to f , with the defining equations

f (0) :≡ c0, f (succ(n)) :≡ cs(n, f (n))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, (2/7)

Example

Define double : N → N which doubles its input.

▶ c0 :≡ 0, cs(n, y) :≡ succ(succ(y))

▶ double(0) :≡ 0, double(succ(n)) :≡ succ(succ(double(n)))

Calculation

double(2) ≡ double(succ(succ(0))) ≡ cs(succ(0), double(succ(0)))

≡ succ(succ(double(succ(0)))) ≡ succ(succ(cs(0, double(0))))

≡ succ(succ(succ(succ(double(0)))))[≡ succ4(c0)]

≡ succ(succ(succ(succ(0)))) ≡ 4

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, (2/7)

Example

Define double : N → N which doubles its input.

▶ c0 :≡ 0, cs(n, y) :≡ succ(succ(y))

▶ double(0) :≡ 0, double(succ(n)) :≡ succ(succ(double(n)))

Calculation

double(2) ≡ double(succ(succ(0))) ≡ cs(succ(0), double(succ(0)))

≡ succ(succ(double(succ(0)))) ≡ succ(succ(cs(0, double(0))))

≡ succ(succ(succ(succ(double(0)))))[≡ succ4(c0)]

≡ succ(succ(succ(succ(0)))) ≡ 4

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, (2/7)

Example

Define double : N → N which doubles its input.

▶ c0 :≡ 0, cs(n, y) :≡ succ(succ(y))

▶ double(0) :≡ 0, double(succ(n)) :≡ succ(succ(double(n)))

Calculation

double(2) ≡ double(succ(succ(0))) ≡ cs(succ(0), double(succ(0)))

≡ succ(succ(double(succ(0)))) ≡ succ(succ(cs(0, double(0))))

≡ succ(succ(succ(succ(double(0)))))[≡ succ4(c0)]

≡ succ(succ(succ(succ(0)))) ≡ 4

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, (2/7)

Example

Define double : N → N which doubles its input.

▶ c0 :≡ 0, cs(n, y) :≡ succ(succ(y))

▶ double(0) :≡ 0, double(succ(n)) :≡ succ(succ(double(n)))

Calculation

double(2) ≡ double(succ(succ(0))) ≡ cs(succ(0), double(succ(0)))

≡ succ(succ(double(succ(0)))) ≡ succ(succ(cs(0, double(0))))

≡ succ(succ(succ(succ(double(0)))))[≡ succ4(c0)]

≡ succ(succ(succ(succ(0)))) ≡ 4

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, multivariable functions (3/7)

(Just allow C to be a function type.)

Example

Define add : N → N → N, with the following “starting point” and
“next step” data:

▶ c0 : N → N, c0(n) :≡ n

▶ cs : N → (N → N) → (N → N), cs(m, g)(n) :≡ succ(g(n))

That is, we have the following defining equations:

add(0, n) :≡ n

add(succ(m), n) :≡ succ(add(m, n))

Calculation

add(1, 2) ≡ add(succ(0), 2) ≡ succ(add(0, 2))

≡ succ(2) ≡ 3

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, multivariable functions (3/7)

(Just allow C to be a function type.)

Example

Define add : N → N → N, with the following “starting point” and
“next step” data:

▶ c0 : N → N, c0(n) :≡ n

▶ cs : N → (N → N) → (N → N), cs(m, g)(n) :≡ succ(g(n))

That is, we have the following defining equations:

add(0, n) :≡ n

add(succ(m), n) :≡ succ(add(m, n))

Calculation

add(1, 2) ≡ add(succ(0), 2) ≡ succ(add(0, 2))

≡ succ(2) ≡ 3

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, multivariable functions (3/7)

(Just allow C to be a function type.)

Example

Define add : N → N → N, with the following “starting point” and
“next step” data:

▶ c0 : N → N, c0(n) :≡ n

▶ cs : N → (N → N) → (N → N), cs(m, g)(n) :≡ succ(g(n))

That is, we have the following defining equations:

add(0, n) :≡ n

add(succ(m), n) :≡ succ(add(m, n))

Calculation

add(1, 2) ≡ add(succ(0), 2) ≡ succ(add(0, 2))

≡ succ(2) ≡ 3

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, multivariable functions (3/7)

(Just allow C to be a function type.)

Example

Define add : N → N → N, with the following “starting point” and
“next step” data:

▶ c0 : N → N, c0(n) :≡ n

▶ cs : N → (N → N) → (N → N), cs(m, g)(n) :≡ succ(g(n))

That is, we have the following defining equations:

add(0, n) :≡ n

add(succ(m), n) :≡ succ(add(m, n))

Calculation

add(1, 2) ≡ add(succ(0), 2) ≡ succ(add(0, 2))

≡ succ(2) ≡ 3

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, multivariable functions (3/7)

(Just allow C to be a function type.)

Example

Define add : N → N → N, with the following “starting point” and
“next step” data:

▶ c0 : N → N, c0(n) :≡ n

▶ cs : N → (N → N) → (N → N), cs(m, g)(n) :≡ succ(g(n))

That is, we have the following defining equations:

add(0, n) :≡ n

add(succ(m), n) :≡ succ(add(m, n))

Calculation

add(1, 2) ≡ add(succ(0), 2) ≡ succ(add(0, 2))

≡ succ(2) ≡ 3

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, multivariable functions (3/7)

(Just allow C to be a function type.)

Example

Define add : N → N → N, with the following “starting point” and
“next step” data:

▶ c0 : N → N, c0(n) :≡ n

▶ cs : N → (N → N) → (N → N), cs(m, g)(n) :≡ succ(g(n))

That is, we have the following defining equations:

add(0, n) :≡ n

add(succ(m), n) :≡ succ(add(m, n))

Calculation

add(1, 2) ≡ add(succ(0), 2) ≡ succ(add(0, 2))

≡ succ(2) ≡ 3

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, multivariable functions (3/7)

(Just allow C to be a function type.)

Example

Define add : N → N → N, with the following “starting point” and
“next step” data:

▶ c0 : N → N, c0(n) :≡ n

▶ cs : N → (N → N) → (N → N), cs(m, g)(n) :≡ succ(g(n))

That is, we have the following defining equations:

add(0, n) :≡ n

add(succ(m), n) :≡ succ(add(m, n))

Calculation

add(1, 2) ≡ add(succ(0), 2) ≡ succ(add(0, 2))

≡ succ(2) ≡ 3

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, multivariable functions (3/7)

(Just allow C to be a function type.)

Example

Define add : N → N → N, with the following “starting point” and
“next step” data:

▶ c0 : N → N, c0(n) :≡ n

▶ cs : N → (N → N) → (N → N), cs(m, g)(n) :≡ succ(g(n))

That is, we have the following defining equations:

add(0, n) :≡ n

add(succ(m), n) :≡ succ(add(m, n))

Calculation

add(1, 2) ≡ add(succ(0), 2) ≡ succ(add(0, 2))

≡ succ(2) ≡ 3

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, multivariable functions (3/7)

(Just allow C to be a function type.)

Example

Define add : N → N → N, with the following “starting point” and
“next step” data:

▶ c0 : N → N, c0(n) :≡ n

▶ cs : N → (N → N) → (N → N), cs(m, g)(n) :≡ succ(g(n))

That is, we have the following defining equations:

add(0, n) :≡ n

add(succ(m), n) :≡ succ(add(m, n))

Calculation

add(1, 2) ≡ add(succ(0), 2) ≡ succ(add(0, 2))

≡ succ(2) ≡ 3

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, multivariable functions (3/7)

(Just allow C to be a function type.)

Example

Define add : N → N → N, with the following “starting point” and
“next step” data:

▶ c0 : N → N, c0(n) :≡ n

▶ cs : N → (N → N) → (N → N), cs(m, g)(n) :≡ succ(g(n))

That is, we have the following defining equations:

add(0, n) :≡ n

add(succ(m), n) :≡ succ(add(m, n))

Calculation

add(1, 2) ≡ add(succ(0), 2) ≡ succ(add(0, 2))

≡ succ(2) ≡ 3

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, recursor (4/7)

Recursor
recN :

∏
C : U C → (C → N → N) → (N → C ) with defining

equations,

recN(C , c0, cs , 0) :≡ c0

recN(C , c0, cs , succ(n)) :≡ cs(n, recN(C , c0, cs , n))

This way,

double :≡ recN(N, 0, λn.λy . succ(succ(y)))
add :≡ recN(N → N, λn.n, λn.λg .λm. succ(g(m)))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, recursor (4/7)

Recursor
recN :

∏
C : U C → (C → N → N) → (N → C ) with defining

equations,

recN(C , c0, cs , 0) :≡ c0

recN(C , c0, cs , succ(n)) :≡ cs(n, recN(C , c0, cs , n))

This way,

double :≡ recN(N, 0, λn.λy . succ(succ(y)))
add :≡ recN(N → N, λn.n, λn.λg .λm. succ(g(m)))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, recursor (4/7)

Recursor
recN :

∏
C : U C → (C → N → N) → (N → C ) with defining

equations,

recN(C , c0, cs , 0) :≡ c0

recN(C , c0, cs , succ(n)) :≡ cs(n, recN(C , c0, cs , n))

This way,

double :≡ recN(N, 0, λn.λy . succ(succ(y)))
add :≡ recN(N → N, λn.n, λn.λg .λm. succ(g(m)))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, induction principle (5/7)

Induction principle

Assuming a family f : N → U , an element c0 : C (0), and a function
cs :

∏
(n : N) C (n) → C (succ(n)), we can construct f :

∏
(n : N) C (n)

with the defining equations:

f (0) :≡ c0, f (succ(n)) :≡ cs(n, f (n))

- in nice packaging

We can construct indN :
∏

C : N→U C (0) → (
∏

n : N C (n) →
C (succ(n))) →

∏
n : N C (n) with defining equations

indN(C , c0, cs , 0) :≡ c0

indN(C , c0, cs , succ(n)) :≡ cs(n, indN(C , c0, cs , n))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, induction principle (5/7)

Induction principle

Assuming a family f : N → U , an element c0 : C (0), and a function
cs :

∏
(n : N) C (n) → C (succ(n)), we can construct f :

∏
(n : N) C (n)

with the defining equations:

f (0) :≡ c0, f (succ(n)) :≡ cs(n, f (n))

- in nice packaging

We can construct indN :
∏

C : N→U C (0) → (
∏

n : N C (n) →
C (succ(n))) →

∏
n : N C (n) with defining equations

indN(C , c0, cs , 0) :≡ c0

indN(C , c0, cs , succ(n)) :≡ cs(n, indN(C , c0, cs , n))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, induction principle, ex (6/7)

Example

Construct an element assoc :
∏

i ,j ,k : N i + (j + k) = (i + j) + k

By induction, it suffices to supply,

assoc0 :
∏

j ,k : N

0 + (j + k) = (0 + j) + k, and

assocs :
∏
i : N

∏
j ,k : N

i + (j + k) = (i + j) + k →

∏
j ,k : N

succ(i) + (j + k) = (succ(i) + j) + k

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, induction principle, ex (6/7)

Example

Construct an element assoc :
∏

i ,j ,k : N i + (j + k) = (i + j) + k

By induction, it suffices to supply,

assoc0 :
∏

j ,k : N

0 + (j + k) = (0 + j) + k, and

assocs :
∏
i : N

∏
j ,k : N

i + (j + k) = (i + j) + k →

∏
j ,k : N

succ(i) + (j + k) = (succ(i) + j) + k

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, induction principle, ex (6/7)

Example

Construct an element assoc :
∏

i ,j ,k : N i + (j + k) = (i + j) + k

By induction, it suffices to supply,

assoc0 :
∏

j ,k : N

0 + (j + k) = (0 + j) + k, and

assocs :
∏
i : N

∏
j ,k : N

i + (j + k) = (i + j) + k →

∏
j ,k : N

succ(i) + (j + k) = (succ(i) + j) + k

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, induction principle, ex cont (7/7)

▶ Calculate 0 + (j + k) ≡ j + k ≡ (0 + j) + k, define
assoc0(j , k) :≡ reflj+k

▶ Regarding assocs , notice that,

▶ succ(i) + (j + k) ≡ succ(i + (j + k))
▶ (succ(i) + j) + k ≡ succ((i + j) + k)
▶ The needed type for assocs(i , p, j , k) is equivalently

succ(i + (j + k)) ≡ succ((i + j) + k)
▶ We are given p(j , k) : i + (j + k) ≡ (i + j) + k (the ”inductive

hypothesis”)

▶ Invoke: if two naturals are equal, then their successors are.
Provable in HoTT, we call this

apsucc : (m =N n) → (succ(m) =N succ(n))

Hence, assocs(i , p, j , k) :≡ apsucc(p(j , k))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, induction principle, ex cont (7/7)

▶ Calculate 0 + (j + k) ≡ j + k ≡ (0 + j) + k, define
assoc0(j , k) :≡ reflj+k

▶ Regarding assocs , notice that,

▶ succ(i) + (j + k) ≡ succ(i + (j + k))
▶ (succ(i) + j) + k ≡ succ((i + j) + k)
▶ The needed type for assocs(i , p, j , k) is equivalently

succ(i + (j + k)) ≡ succ((i + j) + k)
▶ We are given p(j , k) : i + (j + k) ≡ (i + j) + k (the ”inductive

hypothesis”)

▶ Invoke: if two naturals are equal, then their successors are.
Provable in HoTT, we call this

apsucc : (m =N n) → (succ(m) =N succ(n))

Hence, assocs(i , p, j , k) :≡ apsucc(p(j , k))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, induction principle, ex cont (7/7)

▶ Calculate 0 + (j + k) ≡ j + k ≡ (0 + j) + k, define
assoc0(j , k) :≡ reflj+k

▶ Regarding assocs , notice that,
▶ succ(i) + (j + k) ≡ succ(i + (j + k))

▶ (succ(i) + j) + k ≡ succ((i + j) + k)
▶ The needed type for assocs(i , p, j , k) is equivalently

succ(i + (j + k)) ≡ succ((i + j) + k)
▶ We are given p(j , k) : i + (j + k) ≡ (i + j) + k (the ”inductive

hypothesis”)

▶ Invoke: if two naturals are equal, then their successors are.
Provable in HoTT, we call this

apsucc : (m =N n) → (succ(m) =N succ(n))

Hence, assocs(i , p, j , k) :≡ apsucc(p(j , k))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, induction principle, ex cont (7/7)

▶ Calculate 0 + (j + k) ≡ j + k ≡ (0 + j) + k, define
assoc0(j , k) :≡ reflj+k

▶ Regarding assocs , notice that,
▶ succ(i) + (j + k) ≡ succ(i + (j + k))
▶ (succ(i) + j) + k ≡ succ((i + j) + k)

▶ The needed type for assocs(i , p, j , k) is equivalently
succ(i + (j + k)) ≡ succ((i + j) + k)

▶ We are given p(j , k) : i + (j + k) ≡ (i + j) + k (the ”inductive
hypothesis”)

▶ Invoke: if two naturals are equal, then their successors are.
Provable in HoTT, we call this

apsucc : (m =N n) → (succ(m) =N succ(n))

Hence, assocs(i , p, j , k) :≡ apsucc(p(j , k))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, induction principle, ex cont (7/7)

▶ Calculate 0 + (j + k) ≡ j + k ≡ (0 + j) + k, define
assoc0(j , k) :≡ reflj+k

▶ Regarding assocs , notice that,
▶ succ(i) + (j + k) ≡ succ(i + (j + k))
▶ (succ(i) + j) + k ≡ succ((i + j) + k)
▶ The needed type for assocs(i , p, j , k) is equivalently

succ(i + (j + k)) ≡ succ((i + j) + k)

▶ We are given p(j , k) : i + (j + k) ≡ (i + j) + k (the ”inductive
hypothesis”)

▶ Invoke: if two naturals are equal, then their successors are.
Provable in HoTT, we call this

apsucc : (m =N n) → (succ(m) =N succ(n))

Hence, assocs(i , p, j , k) :≡ apsucc(p(j , k))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, induction principle, ex cont (7/7)

▶ Calculate 0 + (j + k) ≡ j + k ≡ (0 + j) + k, define
assoc0(j , k) :≡ reflj+k

▶ Regarding assocs , notice that,
▶ succ(i) + (j + k) ≡ succ(i + (j + k))
▶ (succ(i) + j) + k ≡ succ((i + j) + k)
▶ The needed type for assocs(i , p, j , k) is equivalently

succ(i + (j + k)) ≡ succ((i + j) + k)
▶ We are given p(j , k) : i + (j + k) ≡ (i + j) + k (the ”inductive

hypothesis”)

▶ Invoke: if two naturals are equal, then their successors are.
Provable in HoTT, we call this

apsucc : (m =N n) → (succ(m) =N succ(n))

Hence, assocs(i , p, j , k) :≡ apsucc(p(j , k))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, induction principle, ex cont (7/7)

▶ Calculate 0 + (j + k) ≡ j + k ≡ (0 + j) + k, define
assoc0(j , k) :≡ reflj+k

▶ Regarding assocs , notice that,
▶ succ(i) + (j + k) ≡ succ(i + (j + k))
▶ (succ(i) + j) + k ≡ succ((i + j) + k)
▶ The needed type for assocs(i , p, j , k) is equivalently

succ(i + (j + k)) ≡ succ((i + j) + k)
▶ We are given p(j , k) : i + (j + k) ≡ (i + j) + k (the ”inductive

hypothesis”)

▶ Invoke: if two naturals are equal, then their successors are.
Provable in HoTT, we call this

apsucc : (m =N n) → (succ(m) =N succ(n))

Hence, assocs(i , p, j , k) :≡ apsucc(p(j , k))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, induction principle, ex cont (7/7)

▶ Calculate 0 + (j + k) ≡ j + k ≡ (0 + j) + k, define
assoc0(j , k) :≡ reflj+k

▶ Regarding assocs , notice that,
▶ succ(i) + (j + k) ≡ succ(i + (j + k))
▶ (succ(i) + j) + k ≡ succ((i + j) + k)
▶ The needed type for assocs(i , p, j , k) is equivalently

succ(i + (j + k)) ≡ succ((i + j) + k)
▶ We are given p(j , k) : i + (j + k) ≡ (i + j) + k (the ”inductive

hypothesis”)

▶ Invoke: if two naturals are equal, then their successors are.
Provable in HoTT, we call this

apsucc : (m =N n) → (succ(m) =N succ(n))

Hence, assocs(i , p, j , k) :≡ apsucc(p(j , k))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Particular types, Type formers

The natural numbers, induction principle, ex cont (7/7)

▶ Calculate 0 + (j + k) ≡ j + k ≡ (0 + j) + k, define
assoc0(j , k) :≡ reflj+k

▶ Regarding assocs , notice that,
▶ succ(i) + (j + k) ≡ succ(i + (j + k))
▶ (succ(i) + j) + k ≡ succ((i + j) + k)
▶ The needed type for assocs(i , p, j , k) is equivalently

succ(i + (j + k)) ≡ succ((i + j) + k)
▶ We are given p(j , k) : i + (j + k) ≡ (i + j) + k (the ”inductive

hypothesis”)

▶ Invoke: if two naturals are equal, then their successors are.
Provable in HoTT, we call this

apsucc : (m =N n) → (succ(m) =N succ(n))

Hence, assocs(i , p, j , k) :≡ apsucc(p(j , k))
Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Table of Contents

Motivation / Context
State of affairs
Type Theory vs Set Theory

Type theory
Particular types, Type formers
Some comments

Extensions
Theory

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Pattern matching and recursion, an observation (1/3)

Reminder
We are able to define a function f : A+ B → C in two ways,

1. via the recursor f :≡ recA+B(C , g0, g1)

2. by the defining eqs f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

Relation between the two?

▶ 1 ⇒ 2: use the computation rules of rec

▶ 2 ⇒ 1: we’re given f (inl(a)) :≡ F0, f (inr(b)) :≡ F1, thus

f :≡ recA+B(C , λa.F0, λb.F1)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Pattern matching and recursion, an observation (1/3)

Reminder
We are able to define a function f : A+ B → C in two ways,

1. via the recursor f :≡ recA+B(C , g0, g1)

2. by the defining eqs f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

Relation between the two?

▶ 1 ⇒ 2: use the computation rules of rec

▶ 2 ⇒ 1: we’re given f (inl(a)) :≡ F0, f (inr(b)) :≡ F1, thus

f :≡ recA+B(C , λa.F0, λb.F1)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Pattern matching and recursion, an observation (1/3)

Reminder
We are able to define a function f : A+ B → C in two ways,

1. via the recursor f :≡ recA+B(C , g0, g1)

2. by the defining eqs f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

Relation between the two?

▶ 1 ⇒ 2: use the computation rules of rec

▶ 2 ⇒ 1: we’re given f (inl(a)) :≡ F0, f (inr(b)) :≡ F1, thus

f :≡ recA+B(C , λa.F0, λb.F1)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Pattern matching and recursion, an observation (1/3)

Reminder
We are able to define a function f : A+ B → C in two ways,

1. via the recursor f :≡ recA+B(C , g0, g1)

2. by the defining eqs f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

Relation between the two?

▶ 1 ⇒ 2: use the computation rules of rec

▶ 2 ⇒ 1: we’re given f (inl(a)) :≡ F0, f (inr(b)) :≡ F1, thus

f :≡ recA+B(C , λa.F0, λb.F1)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Pattern matching and recursion, an observation (1/3)

Reminder
We are able to define a function f : A+ B → C in two ways,

1. via the recursor f :≡ recA+B(C , g0, g1)

2. by the defining eqs f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

Relation between the two?
▶ 1 ⇒ 2: use the computation rules of rec

▶ 2 ⇒ 1: we’re given f (inl(a)) :≡ F0, f (inr(b)) :≡ F1, thus

f :≡ recA+B(C , λa.F0, λb.F1)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Pattern matching and recursion, an observation (1/3)

Reminder
We are able to define a function f : A+ B → C in two ways,

1. via the recursor f :≡ recA+B(C , g0, g1)

2. by the defining eqs f (inl(a)) :≡ g0(a), f (inr(b)) :≡ g1(b)

Relation between the two?
▶ 1 ⇒ 2: use the computation rules of rec

▶ 2 ⇒ 1: we’re given f (inl(a)) :≡ F0, f (inr(b)) :≡ F1, thus

f :≡ recA+B(C , λa.F0, λb.F1)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Pattern matching and recursion, problems? (2/3)

What if the defining eq involves the function itself in the definiens?

Solution
Read “double(n)” as the result of the recursive call. (Given
double :≡ recN(N, c0, cs), that’s the second argument of cs .)

If we have an f : N → C given as f (0) :≡ Φ0, f (succ(n)) :≡ Φs ,
where Φs may infolve n and the symbol “f (n)”, we may translate
it to f :≡ recN(C ,F0, λn.λr .Φ

′
s), where Φ′

s is Φs with “f (n)” being
replaced by r .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Pattern matching and recursion, problems? (2/3)

What if the defining eq involves the function itself in the definiens?

Solution
Read “double(n)” as the result of the recursive call. (Given
double :≡ recN(N, c0, cs), that’s the second argument of cs .)

If we have an f : N → C given as f (0) :≡ Φ0, f (succ(n)) :≡ Φs ,
where Φs may infolve n and the symbol “f (n)”, we may translate
it to f :≡ recN(C ,F0, λn.λr .Φ

′
s), where Φ′

s is Φs with “f (n)” being
replaced by r .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Pattern matching and recursion, problems? (2/3)

What if the defining eq involves the function itself in the definiens?

Solution
Read “double(n)” as the result of the recursive call. (Given
double :≡ recN(N, c0, cs), that’s the second argument of cs .)

If we have an f : N → C given as f (0) :≡ Φ0, f (succ(n)) :≡ Φs ,
where Φs may infolve n and the symbol “f (n)”, we may translate
it to f :≡ recN(C ,F0, λn.λr .Φ

′
s), where Φ′

s is Φs with “f (n)” being
replaced by r .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Pattern matching and recursion, problems? (2/3)

What if the defining eq involves the function itself in the definiens?

Solution
Read “double(n)” as the result of the recursive call. (Given
double :≡ recN(N, c0, cs), that’s the second argument of cs .)

If we have an f : N → C given as f (0) :≡ Φ0, f (succ(n)) :≡ Φs ,
where Φs may infolve n and the symbol “f (n)”,

we may translate
it to f :≡ recN(C ,F0, λn.λr .Φ

′
s), where Φ′

s is Φs with “f (n)” being
replaced by r .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Pattern matching and recursion, problems? (2/3)

What if the defining eq involves the function itself in the definiens?

Solution
Read “double(n)” as the result of the recursive call. (Given
double :≡ recN(N, c0, cs), that’s the second argument of cs .)

If we have an f : N → C given as f (0) :≡ Φ0, f (succ(n)) :≡ Φs ,
where Φs may infolve n and the symbol “f (n)”, we may translate
it to f :≡ recN(C ,F0, λn.λr .Φ

′
s),

where Φ′
s is Φs with “f (n)” being

replaced by r .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Pattern matching and recursion, problems? (2/3)

What if the defining eq involves the function itself in the definiens?

Solution
Read “double(n)” as the result of the recursive call. (Given
double :≡ recN(N, c0, cs), that’s the second argument of cs .)

If we have an f : N → C given as f (0) :≡ Φ0, f (succ(n)) :≡ Φs ,
where Φs may infolve n and the symbol “f (n)”, we may translate
it to f :≡ recN(C ,F0, λn.λr .Φ

′
s), where Φ′

s is Φs with “f (n)” being
replaced by r .

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Pattern matching and recursion, problems? (3/3)

Definition by pattern matching

occurs when one conviniently constructs a function via defining
equations (by recursion), or a dependent function (via induction).

A restriction on the recursive calls
In order for a definition to be re-expressible using the recursive
principle, the defined function can appear in the body of
f (succ(n)) as part of the symbol “f (n)”.

Bad example

Defying the aforementioned can lead to
f (0) :≡ 0, f (n) :≡ f (succ(succ(n))), which doesn’t compute for all
n : N.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Pattern matching and recursion, problems? (3/3)

Definition by pattern matching

occurs when one conviniently constructs a function via defining
equations (by recursion), or a dependent function (via induction).

A restriction on the recursive calls
In order for a definition to be re-expressible using the recursive
principle, the defined function can appear in the body of
f (succ(n)) as part of the symbol “f (n)”.

Bad example

Defying the aforementioned can lead to
f (0) :≡ 0, f (n) :≡ f (succ(succ(n))), which doesn’t compute for all
n : N.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Pattern matching and recursion, problems? (3/3)

Definition by pattern matching

occurs when one conviniently constructs a function via defining
equations (by recursion), or a dependent function (via induction).

A restriction on the recursive calls
In order for a definition to be re-expressible using the recursive
principle, the defined function can appear in the body of
f (succ(n)) as part of the symbol “f (n)”.

Bad example

Defying the aforementioned can lead to
f (0) :≡ 0, f (n) :≡ f (succ(succ(n))), which doesn’t compute for all
n : N.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, (1/4)

refers to the following translation of logical connectives, into
type-forming operations:

English Type Theory

True 1
False 0
A and B A× B
If A then B A → B
A iff B (A → B)× (B → A)
not A A → 0
For all x : A, P(x) holds

∏
(x : A) P(x)

There exists x : A, such that P(x)
∑

(x : A) P(x)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, some comments (2/4)

▶ Type 0 corresponds to falsity: an inhabitant of 0 is a
contradiction and there is no basic way to prove a
contradiction.

▶ We define the negation of A as A → 0. A witness of ¬A is a
function A → 0, which we may construct assuming x : A and
deriving an element of 0.

▶ This “proof by contradiction” is constractively valid. The
invalid “PBC” is assuming ¬A, to derive A. Constructively,
such an argument would only allow to conclude ¬¬A, and
there is no obvious way to get ¬¬A → A.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, some comments (2/4)

▶ Type 0 corresponds to falsity: an inhabitant of 0 is a
contradiction and there is no basic way to prove a
contradiction.

▶ We define the negation of A as A → 0. A witness of ¬A is a
function A → 0, which we may construct assuming x : A and
deriving an element of 0.

▶ This “proof by contradiction” is constractively valid. The
invalid “PBC” is assuming ¬A, to derive A. Constructively,
such an argument would only allow to conclude ¬¬A, and
there is no obvious way to get ¬¬A → A.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, some comments (2/4)

▶ Type 0 corresponds to falsity: an inhabitant of 0 is a
contradiction and there is no basic way to prove a
contradiction.

▶ We define the negation of A as A → 0. A witness of ¬A is a
function A → 0, which we may construct assuming x : A and
deriving an element of 0.

▶ This “proof by contradiction” is constractively valid. The
invalid “PBC” is assuming ¬A, to derive A. Constructively,
such an argument would only allow to conclude ¬¬A, and
there is no obvious way to get ¬¬A → A.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, an example (3/4)

“If not A and not B, then not (A or B)”
(one of) De Morgan’s Law(s)

The proposition, in Type Theory

The corresponding type is (A → 0)× (B → 0) → (A+ B) → 0

Its proof, in Type Theory

(A recursion principle out of (A → 0)× (B → 0), such that)

f ((x , y)) :≡ □ : A+ B → 0,

for (x , y) : (A → 0)× (B → 0)

▶ Letting z : A+ B, we need f ((x , y))(z) :≡ □ : 0
▶ There are two cases,

f ((x , y))(inl(a)) :≡ □ : 0 and f ((x , y))(inr(b)) :≡ □ : 0
▶ Hence,

f ((x , y))(inl(a)) :≡ x(a) : 0 and f ((x , y))(inr(b)) :≡ y(b) : 0

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, an example (3/4)

“If not A and not B, then not (A or B)”
(one of) De Morgan’s Law(s)

The proposition, in Type Theory

The corresponding type is (A → 0)× (B → 0) → (A+ B) → 0

Its proof, in Type Theory

(A recursion principle out of (A → 0)× (B → 0), such that)

f ((x , y)) :≡ □ : A+ B → 0,

for (x , y) : (A → 0)× (B → 0)

▶ Letting z : A+ B, we need f ((x , y))(z) :≡ □ : 0
▶ There are two cases,

f ((x , y))(inl(a)) :≡ □ : 0 and f ((x , y))(inr(b)) :≡ □ : 0
▶ Hence,

f ((x , y))(inl(a)) :≡ x(a) : 0 and f ((x , y))(inr(b)) :≡ y(b) : 0

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, an example (3/4)

“If not A and not B, then not (A or B)”
(one of) De Morgan’s Law(s)

The proposition, in Type Theory

The corresponding type is (A → 0)× (B → 0) → (A+ B) → 0

Its proof, in Type Theory

(A recursion principle out of (A → 0)× (B → 0), such that)

f ((x , y)) :≡ □ : A+ B → 0,

for (x , y) : (A → 0)× (B → 0)

▶ Letting z : A+ B, we need f ((x , y))(z) :≡ □ : 0
▶ There are two cases,

f ((x , y))(inl(a)) :≡ □ : 0 and f ((x , y))(inr(b)) :≡ □ : 0
▶ Hence,

f ((x , y))(inl(a)) :≡ x(a) : 0 and f ((x , y))(inr(b)) :≡ y(b) : 0

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, an example (3/4)

“If not A and not B, then not (A or B)”
(one of) De Morgan’s Law(s)

The proposition, in Type Theory

The corresponding type is (A → 0)× (B → 0) → (A+ B) → 0

Its proof, in Type Theory

(A recursion principle out of (A → 0)× (B → 0), such that)

f ((x , y)) :≡ □ : A+ B → 0,

for (x , y) : (A → 0)× (B → 0)

▶ Letting z : A+ B, we need f ((x , y))(z) :≡ □ : 0

▶ There are two cases,

f ((x , y))(inl(a)) :≡ □ : 0 and f ((x , y))(inr(b)) :≡ □ : 0
▶ Hence,

f ((x , y))(inl(a)) :≡ x(a) : 0 and f ((x , y))(inr(b)) :≡ y(b) : 0

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, an example (3/4)

“If not A and not B, then not (A or B)”
(one of) De Morgan’s Law(s)

The proposition, in Type Theory

The corresponding type is (A → 0)× (B → 0) → (A+ B) → 0

Its proof, in Type Theory

(A recursion principle out of (A → 0)× (B → 0), such that)

f ((x , y)) :≡ □ : A+ B → 0,

for (x , y) : (A → 0)× (B → 0)

▶ Letting z : A+ B, we need f ((x , y))(z) :≡ □ : 0
▶ There are two cases,

f ((x , y))(inl(a)) :≡ □ : 0 and f ((x , y))(inr(b)) :≡ □ : 0

▶ Hence,

f ((x , y))(inl(a)) :≡ x(a) : 0 and f ((x , y))(inr(b)) :≡ y(b) : 0

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, an example (3/4)

“If not A and not B, then not (A or B)”
(one of) De Morgan’s Law(s)

The proposition, in Type Theory

The corresponding type is (A → 0)× (B → 0) → (A+ B) → 0

Its proof, in Type Theory

(A recursion principle out of (A → 0)× (B → 0), such that)

f ((x , y)) :≡ □ : A+ B → 0,

for (x , y) : (A → 0)× (B → 0)

▶ Letting z : A+ B, we need f ((x , y))(z) :≡ □ : 0
▶ There are two cases,

f ((x , y))(inl(a)) :≡ □ : 0 and f ((x , y))(inr(b)) :≡ □ : 0
▶ Hence,

f ((x , y))(inl(a)) :≡ x(a) : 0 and f ((x , y))(inr(b)) :≡ y(b) : 0
Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, another example (4/4)

“If for all x : A, P(x) and Q(x), then for all x : A,P(x)
and for all x : A,Q(x)”

What’s the type?

(
∏

(x : A) P(x)× Q(x)) → (
∏

(x : A) P(x))× (
∏

(x : A)Q(x))

▶ Supposing p :
∏

(x : A) P(x)× Q(x), we’re looking for

▶ f (p) :≡ □ :
(∏

(x : A) P(x)
)
×
(∏

(x : A)Q(x)
)

▶ f (p) :≡
(
□ :

∏
(x : A) P(x),□ :

∏
(x : A)Q(x)

)
▶ f (p) :≡ (λx .(□ : P(x)),□ :

∏
(x : A)Q(x))

▶ We have that p(x) : P(x)× Q(x), hence pr1(p(x)) : P(x) and
f (p) := (λx . pr1(p(x)),□ :

∏
(x : A) Q(x))

▶ Lastly,
f (p) :≡ (λx . pr1(p(x)), λx . pr2(p(x)))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, another example (4/4)

“If for all x : A, P(x) and Q(x), then for all x : A,P(x)
and for all x : A,Q(x)”

What’s the type?

(
∏

(x : A) P(x)× Q(x)) → (
∏

(x : A) P(x))× (
∏

(x : A)Q(x))

▶ Supposing p :
∏

(x : A) P(x)× Q(x), we’re looking for

▶ f (p) :≡ □ :
(∏

(x : A) P(x)
)
×
(∏

(x : A)Q(x)
)

▶ f (p) :≡
(
□ :

∏
(x : A) P(x),□ :

∏
(x : A)Q(x)

)
▶ f (p) :≡ (λx .(□ : P(x)),□ :

∏
(x : A)Q(x))

▶ We have that p(x) : P(x)× Q(x), hence pr1(p(x)) : P(x) and
f (p) := (λx . pr1(p(x)),□ :

∏
(x : A) Q(x))

▶ Lastly,
f (p) :≡ (λx . pr1(p(x)), λx . pr2(p(x)))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, another example (4/4)

“If for all x : A, P(x) and Q(x), then for all x : A,P(x)
and for all x : A,Q(x)”

What’s the type?

(
∏

(x : A) P(x)× Q(x)) → (
∏

(x : A) P(x))× (
∏

(x : A)Q(x))

▶ Supposing p :
∏

(x : A) P(x)× Q(x), we’re looking for

▶ f (p) :≡ □ :
(∏

(x : A) P(x)
)
×
(∏

(x : A)Q(x)
)

▶ f (p) :≡
(
□ :

∏
(x : A) P(x),□ :

∏
(x : A)Q(x)

)
▶ f (p) :≡ (λx .(□ : P(x)),□ :

∏
(x : A)Q(x))

▶ We have that p(x) : P(x)× Q(x), hence pr1(p(x)) : P(x) and
f (p) := (λx . pr1(p(x)),□ :

∏
(x : A) Q(x))

▶ Lastly,
f (p) :≡ (λx . pr1(p(x)), λx . pr2(p(x)))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, another example (4/4)

“If for all x : A, P(x) and Q(x), then for all x : A,P(x)
and for all x : A,Q(x)”

What’s the type?

(
∏

(x : A) P(x)× Q(x)) → (
∏

(x : A) P(x))× (
∏

(x : A)Q(x))

▶ Supposing p :
∏

(x : A) P(x)× Q(x), we’re looking for

▶ f (p) :≡ □ :
(∏

(x : A) P(x)
)
×
(∏

(x : A)Q(x)
)

▶ f (p) :≡
(
□ :

∏
(x : A) P(x),□ :

∏
(x : A)Q(x)

)
▶ f (p) :≡ (λx .(□ : P(x)),□ :

∏
(x : A)Q(x))

▶ We have that p(x) : P(x)× Q(x), hence pr1(p(x)) : P(x) and
f (p) := (λx . pr1(p(x)),□ :

∏
(x : A) Q(x))

▶ Lastly,
f (p) :≡ (λx . pr1(p(x)), λx . pr2(p(x)))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, another example (4/4)

“If for all x : A, P(x) and Q(x), then for all x : A,P(x)
and for all x : A,Q(x)”

What’s the type?

(
∏

(x : A) P(x)× Q(x)) → (
∏

(x : A) P(x))× (
∏

(x : A)Q(x))

▶ Supposing p :
∏

(x : A) P(x)× Q(x), we’re looking for

▶ f (p) :≡ □ :
(∏

(x : A) P(x)
)
×
(∏

(x : A)Q(x)
)

▶ f (p) :≡
(
□ :

∏
(x : A) P(x),□ :

∏
(x : A)Q(x)

)

▶ f (p) :≡ (λx .(□ : P(x)),□ :
∏

(x : A)Q(x))

▶ We have that p(x) : P(x)× Q(x), hence pr1(p(x)) : P(x) and
f (p) := (λx . pr1(p(x)),□ :

∏
(x : A) Q(x))

▶ Lastly,
f (p) :≡ (λx . pr1(p(x)), λx . pr2(p(x)))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, another example (4/4)

“If for all x : A, P(x) and Q(x), then for all x : A,P(x)
and for all x : A,Q(x)”

What’s the type?

(
∏

(x : A) P(x)× Q(x)) → (
∏

(x : A) P(x))× (
∏

(x : A)Q(x))

▶ Supposing p :
∏

(x : A) P(x)× Q(x), we’re looking for

▶ f (p) :≡ □ :
(∏

(x : A) P(x)
)
×
(∏

(x : A)Q(x)
)

▶ f (p) :≡
(
□ :

∏
(x : A) P(x),□ :

∏
(x : A)Q(x)

)
▶ f (p) :≡ (λx .(□ : P(x)),□ :

∏
(x : A)Q(x))

▶ We have that p(x) : P(x)× Q(x), hence pr1(p(x)) : P(x) and
f (p) := (λx . pr1(p(x)),□ :

∏
(x : A) Q(x))

▶ Lastly,
f (p) :≡ (λx . pr1(p(x)), λx . pr2(p(x)))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, another example (4/4)

“If for all x : A, P(x) and Q(x), then for all x : A,P(x)
and for all x : A,Q(x)”

What’s the type?

(
∏

(x : A) P(x)× Q(x)) → (
∏

(x : A) P(x))× (
∏

(x : A)Q(x))

▶ Supposing p :
∏

(x : A) P(x)× Q(x), we’re looking for

▶ f (p) :≡ □ :
(∏

(x : A) P(x)
)
×
(∏

(x : A)Q(x)
)

▶ f (p) :≡
(
□ :

∏
(x : A) P(x),□ :

∏
(x : A)Q(x)

)
▶ f (p) :≡ (λx .(□ : P(x)),□ :

∏
(x : A)Q(x))

▶ We have that p(x) : P(x)× Q(x), hence pr1(p(x)) : P(x) and
f (p) := (λx . pr1(p(x)),□ :

∏
(x : A) Q(x))

▶ Lastly,
f (p) :≡ (λx . pr1(p(x)), λx . pr2(p(x)))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, another example (4/4)

“If for all x : A, P(x) and Q(x), then for all x : A,P(x)
and for all x : A,Q(x)”

What’s the type?

(
∏

(x : A) P(x)× Q(x)) → (
∏

(x : A) P(x))× (
∏

(x : A)Q(x))

▶ Supposing p :
∏

(x : A) P(x)× Q(x), we’re looking for

▶ f (p) :≡ □ :
(∏

(x : A) P(x)
)
×
(∏

(x : A)Q(x)
)

▶ f (p) :≡
(
□ :

∏
(x : A) P(x),□ :

∏
(x : A)Q(x)

)
▶ f (p) :≡ (λx .(□ : P(x)),□ :

∏
(x : A)Q(x))

▶ We have that p(x) : P(x)× Q(x), hence pr1(p(x)) : P(x) and
f (p) := (λx . pr1(p(x)),□ :

∏
(x : A) Q(x))

▶ Lastly,
f (p) :≡ (λx . pr1(p(x)), λx . pr2(p(x)))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Propositions as types, another example (4/4)

“If for all x : A, P(x) and Q(x), then for all x : A,P(x)
and for all x : A,Q(x)”

What’s the type?

(
∏

(x : A) P(x)× Q(x)) → (
∏

(x : A) P(x))× (
∏

(x : A)Q(x))

▶ Supposing p :
∏

(x : A) P(x)× Q(x), we’re looking for

▶ f (p) :≡ □ :
(∏

(x : A) P(x)
)
×
(∏

(x : A)Q(x)
)

▶ f (p) :≡
(
□ :

∏
(x : A) P(x),□ :

∏
(x : A)Q(x)

)
▶ f (p) :≡ (λx .(□ : P(x)),□ :

∏
(x : A)Q(x))

▶ We have that p(x) : P(x)× Q(x), hence pr1(p(x)) : P(x) and
f (p) := (λx . pr1(p(x)),□ :

∏
(x : A) Q(x))

▶ Lastly,
f (p) :≡ (λx . pr1(p(x)), λx . pr2(p(x)))

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

The “natural” propositions-as-types logic confines itself to effective
and computationally meaningful constructions.

LEM has no
effective procedure for deciding whether a proposition is true or
false. Pros:

▶ there’s an intrinsic computational meaning

▶ axiomatic freedom: there’s no construction witnessing LEM,

▶ the logic is compatible with the existence of on (type theory
does not deny LEM)

Thus, type theory enriches, rather than constrains, convential
mathematical practice.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

The “natural” propositions-as-types logic confines itself to effective
and computationally meaningful constructions. LEM has no
effective procedure for deciding whether a proposition is true or
false. Pros:

▶ there’s an intrinsic computational meaning

▶ axiomatic freedom: there’s no construction witnessing LEM,

▶ the logic is compatible with the existence of on (type theory
does not deny LEM)

Thus, type theory enriches, rather than constrains, convential
mathematical practice.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

The “natural” propositions-as-types logic confines itself to effective
and computationally meaningful constructions. LEM has no
effective procedure for deciding whether a proposition is true or
false. Pros:

▶ there’s an intrinsic computational meaning

▶ axiomatic freedom: there’s no construction witnessing LEM,

▶ the logic is compatible with the existence of on (type theory
does not deny LEM)

Thus, type theory enriches, rather than constrains, convential
mathematical practice.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

The “natural” propositions-as-types logic confines itself to effective
and computationally meaningful constructions. LEM has no
effective procedure for deciding whether a proposition is true or
false. Pros:

▶ there’s an intrinsic computational meaning

▶ axiomatic freedom: there’s no construction witnessing LEM,

▶ the logic is compatible with the existence of on (type theory
does not deny LEM)

Thus, type theory enriches, rather than constrains, convential
mathematical practice.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

The “natural” propositions-as-types logic confines itself to effective
and computationally meaningful constructions. LEM has no
effective procedure for deciding whether a proposition is true or
false. Pros:

▶ there’s an intrinsic computational meaning

▶ axiomatic freedom: there’s no construction witnessing LEM,

▶ the logic is compatible with the existence of on (type theory
does not deny LEM)

Thus, type theory enriches, rather than constrains, convential
mathematical practice.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

n ≤ m :≡
∑

k : N n + k = m
n < m :≡

∑
(k : N) n+ succ(k) = m n < m :≡ (n ≤ m)×¬(n = m)

—– we can use the universes in typoe theory to represent ”higher
order logic” - ie quantify over all propositions or over all predicates
for example, we can represent the prop ”for all prop P: A -¿ U, if
P(a) then P(b)” Pi(P : A− > U).P(a) → P(b)
where A : U, a,b : A. Apriori, this lives in a different, higher,
universe than the props we are quantifying over, ie
(Pi(P : A → Ui )... : Ui + 1
—

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Proof relevance, what is (1/2)

We described “proof-relevant” translation of propositions, where
the proofs of disjuctions and existential statements carry some
information:

▶ an inhabitant of A+ B (regarded as a witness of “A or B”),
points to whether it came from A or from B

▶ an inhabitant
∑

x : A P(x), informs us at what x is; (the first
projection of the inhabitant)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Proof relevance, what is (1/2)

We described “proof-relevant” translation of propositions, where
the proofs of disjuctions and existential statements carry some
information:

▶ an inhabitant of A+ B (regarded as a witness of “A or B”),
points to whether it came from A or from B

▶ an inhabitant
∑

x : A P(x), informs us at what x is; (the first
projection of the inhabitant)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Proof relevance, what is (1/2)

We described “proof-relevant” translation of propositions, where
the proofs of disjuctions and existential statements carry some
information:

▶ an inhabitant of A+ B (regarded as a witness of “A or B”),
points to whether it came from A or from B

▶ an inhabitant
∑

x : A P(x), informs us at what x is; (the first
projection of the inhabitant)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Proof relevance, consequences (2/2)

An observation
We can have “A iff B”, with A and B exhibiting different
behaviour: N iff 1 (N → 1)× (1 → N)

Explanation

This equivalence tells us only that, when regarded as a mere
propositions, N represents the same proposition as 1 (the true
proposition)

so far
“A iff B” tells us that A and B are logically equivalent - which
differs from equivalence of types. N and 1 are logically equivalent
but not equivalent types.

Foreshadowing: there is class of types called “mere propositions”,
where logical and type equivalence coincide.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Proof relevance, consequences (2/2)

An observation
We can have “A iff B”, with A and B exhibiting different
behaviour: N iff 1 (N → 1)× (1 → N)

Explanation

This equivalence tells us only that, when regarded as a mere
propositions, N represents the same proposition as 1 (the true
proposition)

so far
“A iff B” tells us that A and B are logically equivalent - which
differs from equivalence of types. N and 1 are logically equivalent
but not equivalent types.

Foreshadowing: there is class of types called “mere propositions”,
where logical and type equivalence coincide.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Proof relevance, consequences (2/2)

An observation
We can have “A iff B”, with A and B exhibiting different
behaviour: N iff 1 (N → 1)× (1 → N)

Explanation

This equivalence tells us only that, when regarded as a mere
propositions, N represents the same proposition as 1 (the true
proposition)

so far
“A iff B” tells us that A and B are logically equivalent - which
differs from equivalence of types. N and 1 are logically equivalent
but not equivalent types.

Foreshadowing: there is class of types called “mere propositions”,
where logical and type equivalence coincide.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Proof relevance, consequences (2/2)

An observation
We can have “A iff B”, with A and B exhibiting different
behaviour: N iff 1 (N → 1)× (1 → N)

Explanation

This equivalence tells us only that, when regarded as a mere
propositions, N represents the same proposition as 1 (the true
proposition)

so far
“A iff B” tells us that A and B are logically equivalent - which
differs from equivalence of types.

N and 1 are logically equivalent
but not equivalent types.

Foreshadowing: there is class of types called “mere propositions”,
where logical and type equivalence coincide.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Proof relevance, consequences (2/2)

An observation
We can have “A iff B”, with A and B exhibiting different
behaviour: N iff 1 (N → 1)× (1 → N)

Explanation

This equivalence tells us only that, when regarded as a mere
propositions, N represents the same proposition as 1 (the true
proposition)

so far
“A iff B” tells us that A and B are logically equivalent - which
differs from equivalence of types.

N and 1 are logically equivalent
but not equivalent types.

Foreshadowing: there is class of types called “mere propositions”,
where logical and type equivalence coincide.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Proof relevance, consequences (2/2)

An observation
We can have “A iff B”, with A and B exhibiting different
behaviour: N iff 1 (N → 1)× (1 → N)

Explanation

This equivalence tells us only that, when regarded as a mere
propositions, N represents the same proposition as 1 (the true
proposition)

so far
“A iff B” tells us that A and B are logically equivalent - which
differs from equivalence of types. N and 1 are logically equivalent
but not equivalent types.

Foreshadowing: there is class of types called “mere propositions”,
where logical and type equivalence coincide.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Proof relevance, consequences (2/2)

An observation
We can have “A iff B”, with A and B exhibiting different
behaviour: N iff 1 (N → 1)× (1 → N)

Explanation

This equivalence tells us only that, when regarded as a mere
propositions, N represents the same proposition as 1 (the true
proposition)

so far
“A iff B” tells us that A and B are logically equivalent - which
differs from equivalence of types. N and 1 are logically equivalent
but not equivalent types.

Foreshadowing: there is class of types called “mere propositions”,
where logical and type equivalence coincide.

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Identity types, (1/3)

Formation rule
Given type A : U and two elements a, b : A, we form the type

(a =A b) : U , [Typically, IdA(a, b)]

Introduction rule
The basic way to construct an element of a =A b is to know that a
and b are the same.

Thus,

refl:
∏
a : A

a =A a

In particular, if a ≡ b, then we also have an element refla : a =A b

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Identity types, (1/3)

Formation rule
Given type A : U and two elements a, b : A, we form the type

(a =A b) : U , [Typically, IdA(a, b)]

Introduction rule
The basic way to construct an element of a =A b is to know that a
and b are the same.

Thus,

refl:
∏
a : A

a =A a

In particular, if a ≡ b, then we also have an element refla : a =A b

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Identity types, (1/3)

Formation rule
Given type A : U and two elements a, b : A, we form the type

(a =A b) : U , [Typically, IdA(a, b)]

Introduction rule
The basic way to construct an element of a =A b is to know that a
and b are the same.

Thus,

refl:
∏
a : A

a =A a

In particular, if a ≡ b, then we also have an element refla : a =A b

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Identity types, (1/3)

Formation rule
Given type A : U and two elements a, b : A, we form the type

(a =A b) : U , [Typically, IdA(a, b)]

Introduction rule
The basic way to construct an element of a =A b is to know that a
and b are the same. Thus,

refl:
∏
a : A

a =A a

In particular, if a ≡ b, then we also have an element refla : a =A b

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Identity types, (1/3)

Formation rule
Given type A : U and two elements a, b : A, we form the type

(a =A b) : U , [Typically, IdA(a, b)]

Introduction rule
The basic way to construct an element of a =A b is to know that a
and b are the same. Thus,

refl:
∏
a : A

a =A a

In particular, if a ≡ b, then we also have an element refla : a =A b

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Identity types, equals may be substituted for equals, induction (2/3)

Indiscernibility of identicals (a consequence of ind princ)

For every family C : A → U there is a function

f :
∏

(x ,y : A)

∏
(p : x=Ay)

C (x) → C (y)

such that f (x , x , reflx) :≡ idC(x)

Path induction
Given a family C :

∏
x ,y : A(x =A y) → U and a function

c :
∏

x : A C (x , x , reflx) there is a function

f :
∏

(x ,y : A)

∏
(p : x=Ay)

C (x , y , p)

such that f (x , x , reflx) :≡ c(x).

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Identity types, equals may be substituted for equals, induction (2/3)

Indiscernibility of identicals (a consequence of ind princ)

For every family C : A → U there is a function

f :
∏

(x ,y : A)

∏
(p : x=Ay)

C (x) → C (y)

such that f (x , x , reflx) :≡ idC(x)

Path induction
Given a family C :

∏
x ,y : A(x =A y) → U and a function

c :
∏

x : A C (x , x , reflx) there is a function

f :
∏

(x ,y : A)

∏
(p : x=Ay)

C (x , y , p)

such that f (x , x , reflx) :≡ c(x).

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Some comments

Identity types, disequality (3/3)

Definition
is the negation of equality: (x ̸=A y) :≡ ¬(x =A y)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Theory

Table of Contents

Motivation / Context
State of affairs
Type Theory vs Set Theory

Type theory
Particular types, Type formers
Some comments

Extensions
Theory

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Theory

Homotopy Type Theory

Homotopy Type Theory (HoTT) extends MLTT by changing the
interpretation of equality and incorporating ideas from homotopy
theory and higher category theory:

▶ Identity types: HoTT views equality as a path in a space,
leading to a richer structure.

▶ Univalence Axiom (UA): Introduced by Vladimir Voevodsky,
states that equivalent types are identifiable (i.e., they are
equal in the type-theoretic sense). Formally, for a universe U ,
there is an equivalence: (A ≃ B) ≃ (A =U B)

▶ Higher inductive types (HITs): generalisation of inductive
types, (allows the introduction of paths and higher paths)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Theory

Homotopy Type Theory

Homotopy Type Theory (HoTT) extends MLTT by changing the
interpretation of equality and incorporating ideas from homotopy
theory and higher category theory:

▶ Identity types: HoTT views equality as a path in a space,
leading to a richer structure.

▶ Univalence Axiom (UA): Introduced by Vladimir Voevodsky,
states that equivalent types are identifiable (i.e., they are
equal in the type-theoretic sense). Formally, for a universe U ,
there is an equivalence: (A ≃ B) ≃ (A =U B)

▶ Higher inductive types (HITs): generalisation of inductive
types, (allows the introduction of paths and higher paths)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA



Motivation / Context Type theory Extensions

Theory

Homotopy Type Theory

Homotopy Type Theory (HoTT) extends MLTT by changing the
interpretation of equality and incorporating ideas from homotopy
theory and higher category theory:

▶ Identity types: HoTT views equality as a path in a space,
leading to a richer structure.

▶ Univalence Axiom (UA): Introduced by Vladimir Voevodsky,
states that equivalent types are identifiable (i.e., they are
equal in the type-theoretic sense). Formally, for a universe U ,
there is an equivalence: (A ≃ B) ≃ (A =U B)

▶ Higher inductive types (HITs): generalisation of inductive
types, (allows the introduction of paths and higher paths)

Prety much a summary of the 1st chapter Algorithms, Logic and Discrete Mathematics, DIT @ UOA


	Motivation / Context
	State of affairs
	Type Theory vs Set Theory

	Type theory
	Particular types, Type formers
	Some comments

	Extensions
	Theory


