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Chapter 1

A brief Abstract

In chapter 2 we introduce the notion of Γ−convergence and it’s main properties
together with two basic examples. The first example is the Γ−limit of the Modica-
Mortola functional which relates phase transition type problems with minimal
surfaces. The second, is an example from homogenization.

In chapter 3, we introduce the notion of G-convergence for elliptic equations
in divergence form together with the main properties. Then, we state the ho-
mogenization theorem of G-convergence and we also provide an example for linear
elliptic operators.

Furthermore, in chapter 4, we illustrate the relationship between G-convergence
with Γ−convergence and the second example stated in the beginning allow us to
compare the G-limit with the weak* L∞ limit.

Finally, in chapter 5, we introduce the notion of H-convergence that general-
izes the notion of G-convergence in the non symmetric case. Moreover, we provide
the basic properties of H-convergence and the main tool for the homogenization
theorem based on compensated compactness, that is, the div-curl lemma. Addi-
tionally, we state and prove the homogenization theorem for H-convergence and
define the corrector matrix that gives an approximation for the solutions of the
homogenization problem, i.e. the corrector result.

These lecture notes provide some of the basic homogenization techniques and
the notions of convergence for the case of linear operators, however these can
be extended for nonlinear operators, the so called monotone operators. We refer
the interested reader to Chapter 5,6 in [12] and in [24] for nonlinear elliptic and
parabolic operators.
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Chapter 2

An introduction to Γ−convergence

The notion of Γ−convergence was introduced by E. De Giorgi and T. Franzoni
in [9] and in particular relates phase transition type problems with the theory of
minimal surfaces. We can think of this notion as a generalization of the Direct
Method in the Calculus of Variations as follows, if F0 is lower semicontinuous and
coercive we can take Fε = F0 and then the Γ limit of Fε equals F0.

One application of Γ−convergence is the proof of existence of minimizers of
a limiting functional, say F0 by utilizing an appropriate sequence of functionals
Fε that we know they admit a minimizer and the Γ−limit of Fε is F0. Also vise
virsa (see [23]), we can obtain information for the Fε energy functional from the
properties of minimizers of the limiting functional F0.

We now provide the definition of Γ−convergence in metric spaces.

Definition 2.1. Let X be a metric space, and for ε > 0 let Fε , F : X → [0,+∞].
We say that Fε Γ−converge to F on X as ε → 0, if the following two condition
hold

(LB) ∀ u ∈ X and ∀ (uε) ⊂ X such that uε → u in X, there holds

F (u) ≤ lim inf
ε→0

Fε(uε)
(2.1)

(UB) ∀ u ∈ X, there exist (uε) ⊂ X such that uε → u in X and

lim sup
ε→0

Fε(uε) ≤ F (u) (2.2)

If Fε Γ−converge to F we write Fε
Γ−→ F .

7



8 CHAPTER 2. AN INTRODUCTION TO Γ−CONVERGENCE

Note: Sometimes we replace the strong convergence uε → u in X with the
weak convergence uε ⇀ u. In homogenization and in the relationship between
Γ−convergence and G-convergence the weak convergence is often more convenient.
In fact, there is a more general definition of Γ−convergence in topological spaces
and we refer the reader in [6] (or [2]) for further details.

Remark 2.2. Notice also that if (LB) inequality holds, we can replace the (UB)
inequality in the definition 2.1, by

∀ u ∈ X, there exist (uε) ⊂ X such that uε → u in X and

lim
ε→0

Fε(uε) = F (u)
(2.3)

The main properties of Γ−convergence are listed in the following statement:

Proposition 2.3. We have the following:
(i) The Γ−limit F is always lower semicontinuous on X.

(ii) (Stability under continuous perturbations) If Fε
Γ−→ F and G is continuous,

then Fε +G
Γ−→ F +G.

(iii) (Stability of minimizing sequences) If Fε
Γ−→ F and uε minimizes Fε over X,

then every limit point of (uε) minimizes F over X.

Proof. (i) see Proposition 6.8 in [6] (or Proposition 1.28 in [2]).
(ii) If (2.1) holds, then for all u ∈ X and uε → u, we get

F (u) +G(u) ≤ lim inf
ε→0

Fε(uε) + lim
ε→0

G(uε) = lim inf
ε→0

(Fε(uε) +G(uε)) (2.4)

and if (2.2) inequality holds, in view of Remark 2.2 we have

F (u) +G(u) = lim
ε→0

Fε(uε) + lim
ε→0

G(uε) = lim
ε→0

(Fε(uε) +G(uε)) (2.5)

and (uε) is a recovery sequence also for F +G.
(iii) Consider a subsequence (uεk) such that uεk → u in X. Without loss of
generality we denote (uεk) by (uε). Let v ∈ X, then by the (UB) inequality (2.2),
∃ vε such that

lim sup
ε→0

Fε(vε) ≤ F (v) (2.6)
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In addition, by the (LB) inequality (2.1) and the minimality of uε,

F (u) ≤ lim inf
ε→0

Fε(uε) ≤ lim inf
ε→0

Fε(vε) ≤ lim sup
ε→0

Fε(vε) ≤ F (v) (2.7)

Thus, u is a minimizer of F .

In particular, if Fε satisfies the Equicoercive Condition:

(EC) If Fε(uε) is bounded, then (uε) is precompact in X (2.8)

we have the following fundamental theorem of Γ−convergence:

Theorem 2.4. If Fε
Γ−→ F and Fε satisfies (EC), then ∀ uε minimizing sequence

of Fε there exist a subsequence uεk that converges to a minimizer of F .

We will now provide two examples for the Γ−limit in a sequence of energy func-
tionals. The first example arise from the theory of phase transition type problems
and the Euler-Lagrange equations are the Allen-Cahn equations. The Γ−limit is
the perimeter functional and thus a relationship between minimal surfaces and
phase transition type problems occurs. The second example is from homogeniza-
tion and shows that even if the pointwise limit of a sequence of functionals exist,
it differs from the Γ−limit.

Example 2.5. (Phase transition type problems and minimal surfaces)
Let X be the space of the measurable functions u : Ω ⊂ Rn → R endowed with the
L1 norm and

Fε(u,Ω) :=

®∫
Ω

ε
2
|∇u|2 + 1

ε
W (u)dx , u ∈ W 1,2(Ω;R) ∩X

+∞ , elsewhere in X

F0(u,Ω) :=

®
σHn−1(Su) , u ∈ BV (Ω; {−1, 1}) ∩X
+∞ , elsewhere in X

where W : R → [0,+∞) , {W = 0} = {−1, 1} , σ =

∫ 1

−1

»
2W (u)du

and Su is the singular set of the BV function u.
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Let now uε be a minimizer of Fε subject to a mass constraint, that is,
∫
Ω
u =

V ∈ (0, |Ω|). The asymptotic behavior of uε was first studied by Modica and
Mortola in [14] and by Modica in [15, 16].

To be more precise, they proved that Γ−limit Fε = F0. We briefly describe a
possible physical meaning of this problem. Su is often considered as the interface
between two fluids (i.e. the set of discontinuity points of u) and by Theorem 2.4
this interface minimizes the perimeter functional, which means that the surface
that is formed between the two fluids is eventually a minimal surface subject to
a volume constraint. In other words, the level sets of the minimizers uε of Fε

converge to minimal surfaces in some sense.
So, one of the most important outcomes of Γ−convergence in the scalar phase

transition type problems is the relationship with minimal surfaces. This relation-
ship is deeper as indicated in the De Giorgi conjecture (see [8]), which states that
the level sets of global entire solutions of the scalar Allen-Cahn equations that
are bounded and strictly monotone with respect to xn, are hyperplanes if n ≤ 8.
The relationship with the Bernstein problem for minimal graphs is the reason why
n ≤ 8 appears in the conjecture. The Γ-limit of the ε−energy functional Fε of the
Allen-Cahn equation is a possible motivation behind the conjecture.

Example 2.6. (An example from homogenization)
Let X be the class of all u ∈ H1(0, 1) such that u(0) = u(1) = 0, endowed with the
strong topology of L2(0, 1). Let A be the 1−periodic function defined as

A(x) =

®
α1 , x ∈ [0, 1/2)

α2 , x ∈ [1/2, 1)

with 0 < α1 < α2 < +∞ and set

Fε(u) :=

∫ 1

0

A(
x

ε
)|u′(x)|2dx (2.9)

The functional Fε Γ−converge on X to

F (u) := α

∫ 1

0

|u′(x)|2dx , α =
2α1α2

α1 + α2

(2.10)

This is a simple example of homogenization. We just give a sketch for the proof
and for further details and the proof of the Γ−limit see Chapter 24 and 25 in [6]).
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1) Start with the constructive part of the proof, that is, with the upper bound in-
equality. Take u affine on (0, 1) and show that (2.2) can be fulfilled by suitable
approximating functions u which are affine on every interval where a(x/ε) is con-
stant, that is, intervals of the type [nε, (n+ 1/2)ε) with n = 0, 1, .. .
2) Extend the previous construction to every u which is piecewise affine on (0, 1).
3) Since for every u ∈ H1(0, 1) there exists an approximating sequence un by
piecewise affine functions such that un → u and F (un) → F (u), a simple diago-
nal argument shows it is enough to verify condition (2.2) only for piecewise affine
functions. So, use a proper density argument to conclude the proof of the upper
bound inequality.
4) Try to understand why the approximation proposed in step 2 is optimal, and
then prove the lower bound inequality, i.e. (2.1).

The choice of the L2−topology is for the following reason:
Since

Fε(u) ≥ α1

∫ 1

0

|u′(x)|2dx,

when Fε(uε) is bounded, the functions uε are weakly pre-compact in H1(0, 1), but
not strongly. Hence the compactness condition (EC) (i.e. (2.8)) is verified if we
endow X with the L2 topology (recall that the weak topology of H1 is not metrizable,
and anyhow conditions (LB) and (UB) in the Definition 2.1 remain unchanged if
we replace L2−topology with the weak H1−topology.

Note also that the pointwise limit of Fε as ε→ 0 is

F (u) = α

∫ 1

0

|u′(x)|2dx , where α =
α1 + α2

2
,

while α is the harmonic mean of α1 , α2, since α = 2
1
α1

+ 1
α2

and so, α < α.
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Chapter 3

An introduction to G-convergence

The notion of G-convergence for second order linear elliptic operators was in-
troduced by De Giorgi and S. Spagnolo in [10], [27], [28], [29] as the convergence,
in a suitable topology, of the Green’s operator associated to the Dirichlet bound-
ary value problems, in the symmetric case. Moreover, there is a relation of G-
convergence with Γ−convergence as we will see in the next chapter.

We note that throughout the rest of the chapters we use the notation ⟨·, ·⟩ for
both the inner product in a Hilbert space and for the inner product in Rn.

Definition 3.1. Let Ω be a bounded open subset of Rn and α , β constants such
that 0 < α ≤ β < +∞. We denote by m s(Ω, α, β) the set of all n× n symmetric
matrices A : Ω → Mn×n , (Aij = Aji) satisfying the following properties:
(I) A ∈ L∞(Ω)n×n and ||A||L∞(Ω)n×n ≤ β. (i.e. Aij ∈ L∞(Ω) , i, j ∈ {1, ..., n} and
|A(x)ξ| ≤ β|ξ| , for a.e. x ∈ Ω and ∀ ξ ∈ Rn)
(II) (Equicoercivity) ∃ α > 0 such that A(x) ≥ αI a.e. in Ω, where I is the
identity matrix. (i.e. ⟨A(x)ξ, ξ⟩ ≥ α|ξ|2, for a.e. x ∈ Ω , ∀ξ ∈ Rn)

Let Aε be a sequence in m s(Ω, α, β) and let f ∈ H−1(Ω) (for the sake of
simplicity and without loss of generality, we consider the right hand side term
independent of ε). Let uε be the unique solution of®

−div(Aε∇uε) = f , in H−1(Ω)

uε ∈ H1
0 (Ω)

(3.1)

The equation (3.1) can be written in the form∫
Ω

Aε∇uε∇v = ⟨f, v⟩ , ∀ v ∈ H1
0 (Ω) (3.2)

13
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and for v = uε this gives

α||uε||H1
0 (Ω) ≤ ||f ||H−1(Ω) (3.3)

Hence, there exists a subsequence uε
′
and u ∈ H1

0 (Ω) such that

uε
′
⇀ u weakly in H1

0 (Ω) (3.4)

In addition, if we define σε = Aε∇uε we have

||σε||L2(Ω)n ≤ ||Aε||L∞(Ω)n×n||∇uε||L2(Ω)n ≤ β

α
||f ||H−1(Ω) (3.5)

Thus, ∃ σ ∈ L2(Ω)n such that

σε′ ⇀ σ weakly in L2(Ω)n

and − divσ = f in the sense of distributions
(3.6)

So the problem is the following: What can we say about u and σ? Does u satisfy
an equation of the same type as uε?

Definition 3.2. (G-convergence) Let Aε ∈m s(Ω, α, β) and let A0 ∈m s(Ω, α, β).
We say that Aε G-converges to A0 if ∀ f ∈ H−1(Ω) the solutions uε of the equations®

−div(Aε(x)∇uε) = f , in Ω

uε ∈ H1
0 (Ω)

(3.7)

satisfy uε ⇀ u weakly in H1
0 (Ω), where u is the solution of®
−div(A0(x)∇u) = f , in Ω

u ∈ H1
0 (Ω)

(3.8)

We can replace the weak convergence in H1
0 (Ω) with the strong convergence in

L2(Ω) or some other convergence and the definition remains unchanged.

The main result (which motivates the definition) is the sequential compactness
of the class of symmetric functions belonging to m s(Ω, α, β) with respect to G-
convergence.
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Theorem 3.3. (Homogenization) Let (Aε) ⊂ms(Ω, α, β), then there is a subse-
quence Aε′ of (Aε) and A0 ∈ms(Ω, α, β), such that Aε′ G-converges to A0.

Proof. We will provide the proof in Chapter 5 for the non symmetric case in H-
convergence which is more general.

The original proof of Spagnolo is rather technical and uses results of semigroup
theory for linear operators and the G-convergence of parabolic equations. Many
different proofs have been given subsequently (see for example [26], [31]).

We note also that the G-convergence satisfy a localization property:

Theorem 3.4. (localization) Assume that (Aε) , (Bε) , A0 , B0 belong inms(Ω, α, β).
If (Aε) G-converges to A0 , (Bε) G-converges to B0 and Aε(x) = Bε(x) for a.e.
x ∈ Ω′ ⊂ Ω open, then A0(x) = B0(x) for a.e. x ∈ Ω′.

Proof. See [29].

Additionally, the G-limit is unique:

Theorem 3.5. (uniqueness) The G-limit of a G-converging sequence (Aε) ⊂
ms(Ω, α, β) is unique.

Example 3.6. (Homogenization of elliptic operators)
Let aij ∈ L∞(Rn) and consider

f(x, ξ) =
n∑

i,j=1

aij(x)ξiξj ,

where A = (aij) is a n× n symmetric matrix satisfying

α|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ β|ξ|2 (3.9)
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for a.e. x ∈ Ω and for every ξ ∈ Rn.
Let ξ ∈ Rn and let wξ ∈ H1

loc(Rn) is such that ∇wξ is Y−periodic,
∫
Y
∇wkdy =

ξ and
n∑

i,j=1

∂i(aij∂jwξ) = 0 (3.10)

It holds that wξ is unique up to an additive constant and

wξ =
n∑

k=1

ξkwk(y) + c (3.11)

where e1, ..., en is the canonical basis of Rn , c ∈ R and we write wk instead of wek .
Consider now

f0(ξ) =

∫
Y

(
n∑

i,j=1

aij∂iwξ∂jwξ

)
dy =

n∑
h,l=1

dhlξhξl (3.12)

where

dhl =

∫
Y

(
n∑

i,j=1

aij∂iwh∂jwl

)
dy (3.13)

for h, l = 1, ..., n. The computation of f0(ξ) is therefore reduced to the solutions of
the n boundary value problems (3.10) corresponding to ξ = e1, ..., en.

For every ε > 0 let Aε be the elliptic operator defined by

Aεu = −
n∑

i,j=1

∂i(a
ε
ij∂ju) (3.14)

where aεij(x) = aij(
x
ε
), and let A0 be the elliptic operator defined by

A0u = −
n∑

i,j=1

∂i(dij∂ju) (3.15)

By Theorem 22.4 in [6], the sequence (Aε′) G-converges to A0 in the strong topology
of L2(Ω) for every sequence (ε′) of real positive numbers such that ε′ → 0 and for
every bounded open Ω ⊂ Rn.



Chapter 4

The relation of G-convergence
and Γ−convergence

In this chapter we will see the relationship between G-convergence and Γ−convergence.
To be more precise, there is a connection between the Γ−convergence of lower
semicontinuous quadratic forms that are coercive and the G-convergence of the
corresponding self-adjoint operators. We present the theorem in the case of ellip-
tic operators with corresponding coefficients that belong in the class m s(Ω, α, β)
and we refer the reader to Theorem 13.5 and 13.12 in [6] for further details in the
more general setting.

Theorem 4.1. Let Aε , A0 ∈ms(Ω, α, β) and consider

Fε(u) =

∫
Ω

Aε∇u∇udx

F0(u) =

∫
Ω

A0∇u∇udx
(4.1)

Then the following conditions are equivalent:
(i) Fε Γ−converges to F0 in the weak topology of H1

0 (Ω).
(ii) For any linear map H(u) = ⟨f, u⟩ , f ∈ H1

0 (Ω), it holds

min
u∈H1

0 (Ω)
(F0(u) +H(u)) = lim

ε→0
min

u∈H1
0 (Ω)

(Fε(u) +H(u))

(iii) Aε G-converges to A0 in the weak topology of H1
0 (Ω).

These equivalences also hold if we replace the weak topology of H1
0 (Ω) with the

strong topology of L2(Ω).
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Proof. (i)⇒(ii). Let f ∈ H1
0 (Ω) and H be a linear map defined as H(u) = ⟨f, u⟩

for every u ∈ H1
0 (Ω), where ⟨·, ·⟩ is the inner product in H1

0 (Ω). By the second
property in Proposition 2.3 the sequence of functionals Fε + H Γ−converges to
F0 +H in the weak topology of H1

0 (Ω). By the property (II) in definition 3.1 and
Hölder inequality we have that

Fε(u) +H(u) ≥ αC||u||2H1
0 (Ω) − ||f ||H1

0 (Ω)||u||H1
0 (Ω) (4.2)

This means that Fε(u) +H(u) tends to +∞ as ||u||H1
0 (Ω) tends to +∞ and since

H1
0 (Ω) is reflexible, it holds that Fε +H is equi-coercive. Then we apply Theorem

7.8 in [6] and we conclude.

(ii)⇒(iii). Assume (ii), then for every f ∈ H1
0 (Ω), the points u0 = (A0)−1f

and uε = (Aε)−1f are the minimum points of the functionals F0(v) − 2⟨f, v⟩ and
Fε(v)− 2⟨f, v⟩ respectively, where

Aεuε = −div(Aε∇uε) and A0u0 = −div(A0∇u0) (4.3)

It suffices to prove that uε ⇀ u0 weakly in H1
0 (Ω). We have Aεuε = f and

A0u0 = f and thus

Fε(u
ε) = ⟨Aε∇uε,∇uε⟩ = ⟨Aεuε, uε⟩ = ⟨f, uε⟩

⇒ ⟨f, uε⟩ = −Fε(u
ε) + 2⟨f, uε⟩ = − min

v∈H1
0 (Ω)

(Fε(v)− 2⟨f, v⟩)

and similarly ⟨f, u0⟩ = − min
v∈H1

0 (Ω)
(F0(v)− 2⟨f, v⟩)

(4.4)

so we get
⟨f, (A0)−1f⟩ = lim

ε→0
⟨f, (Aε)−1f⟩ (4.5)

for every f ∈ H1
0 (Ω). Now we apply (4.5) to f+g and f−g and by the polarization

identity this implies
⟨g, (A0)−1f⟩ = lim

ε→0
⟨g, (Aε)−1f⟩ (4.6)

for every f, g ∈ H1
0 (Ω). Hence (Aε)−1f converges to (A0)−1f weakly in H1

0 (Ω) for
every f ∈ H1

0 (Ω). That is, u
ε converges weakly in H1

0 (Ω) to u
0 and we conclude.

The last assertion, (iii)⇒(i), is more technical and we refer the reader to the
proof of Theorem 13.5 in [6] (and to Theorem 13.12 for the case of strong conver-
gence).
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Remark 4.2. If (Aε) ⊂ m s(Ω, α, β) and A
ε → A0 strongly in L∞(Ω)n×n, we can

pass to the limit in Aε∇uε and we have:

Aε∇uε ⇀ A0∇u , weakly in L2(Ω)n (4.7)

and hence u is the solution (unique since A0 ∈m s(Ω, α, β)) to®
−div(A0∇u) = f , in Ω

u ∈ H1
0 (Ω)

(4.8)

We note that the previous result does not hold if we do not have the strong
convergence of the sequence (Aε). That is, in view of Theorem 3.3, the G-limit of
Aε (i.e. A0) is not equal with the weak* L∞ limit of Aε. In the example 2.6 in
chapter 2, we illustrated a case where

Fε(u) =

∫ 1

0

A(
x

ε
)|u′(x)|2dx , F0(u) = α

∫ 1

0

|u′(x)|2dx (4.9)

where α =
2α1α2

α1 + α2

is the harmonic mean of α1 , α2 and it holds that Fε
Γ−→ F0.

By theorem 4.1 it holds that Aε = A(x
ε
) G-converges to A0 = αI, where I is the

identity matrix (the equivalence of the two notions of convergence also holds with
respect to the strong convergence).

On the other hand, the pointwise limit of Fε as ε→ 0 is

F (u) = α

∫ 1

0

|u′(x)|2dx

where α =
α1 + α2

2
.

In other words, Aε converges weakly* in L∞ to A = αI, and α > α =
2α1α2

α1 + α2

,

since α1 < α2. Therefore, in this case we have a strict inequality A > A0 (that is,
⟨Aξ, ξ⟩ > ⟨A0ξ, ξ⟩ , ∀ ξ ∈ Rn).

However, if A0 is the G-limit of Aε, in general it holds that

A0 ≤ A , where A is the weak* L∞ limit of Aε. (4.10)

One way to see this inequality is by Proposition 5.1 in [6], where there is a similar
inequality that compare the Γ−limit of a sequence of functionals with the pointwise
limit, and then utilize theorem 4.1.
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A simpler way to prove (4.10) is the following:
Let A0 be the G-limit of Aε , A be the weak* L∞ limit of Aε and A be the the
weak* L∞ limit of (Aε)−1. Then it holds

⟨(Aε)−1(Aελ− µ), (Aελ− µ)⟩ ≥ 0 , ∀λ , µ ∈ Rn.

⇒ ⟨λ,Aελ⟩ − ⟨λ, µ⟩ − ⟨(Aε)−1µ,Aελ⟩+ ⟨(Aε)−1µ, µ⟩ ≥ 0

⇒ ⟨Aελ, λ⟩ − 2⟨λ, µ⟩+ ⟨(Aε)−1µ, µ⟩ ≥ 0

since Aε is self-adjoint. Now by taking the weak* L∞ limit we have

⟨Aλ, λ⟩ − 2⟨λ, µ⟩+ ⟨Aµ, µ⟩ ≥ 0

so we set µ = (A)−1λ and thus

⟨Aλ, λ⟩ ≥ ⟨(A)−1λ, λ⟩

and we conclude since (A)−1 = A0 (see also Definition 13.3 in [6]).



Chapter 5

H-convergence and the
Homogenization theorem

The notion of G-convergence has been extended to the non-symmetric case by
Murat and Tartar under the name of H-convergence (see [17], [34] and [35]). This
notion of convergence has been extended to sequences of matrices which are not
necessarily symmetric and it allow us to deal with problems that do not have a
variational structure in general.

One could define similarly to the case of G-convergence the space of matrices in
Definition 3.1 that are not necessarily symmetric. However if we define it this way,
the H-limit provided by compactness Theorem 5.3 is in a larger class of matrices as
we can see in [22] (or [3],[11]). So we follow the definition as in the recent lecture
of Professor F. Murat.

Definition 5.1. Let Ω be a bounded open subset of Rn and α , β constants such
that 0 < α ≤ β < +∞. We denote by m(Ω, α, β) the set of all n × n matrices
A : Ω → Mn×n defined as:

m(Ω, α, β) :=

ß
A ∈ L∞(Ω)n×n : A ≥ αI and A−1 ≥ 1

β
I a.e. x ∈ Ω

™
(5.1)

where by A ≥ αI we denote ⟨A(x)ξ, ξ⟩ ≥ α|ξ|2 , ∀ξ ∈ Rn and I is the identity
matrix.

Notice that, the 1
β
−coercivity of the inverse matrix A−1 gives in fact that

|Aξ| ≤ β|ξ| for a.e. x ∈ Ω and ∀ ξ ∈ Rn, which is the property (I) in the
Definition 3.1.

21
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Let Aε be a sequence in m(Ω, α, β) and let f ∈ H−1(Ω) (for simplicity and
without loss of generality we consider the right hand side term independent of ε).

Definition 5.2. (H-convergence) Let Aε ∈m(Ω, α, β) and let A0 ∈m(Ω, α′, β′).
We say that Aε H-converges to A0 if ∀ f ∈ H−1(Ω) the solutions uε of the equations®

−div(Aε(x)∇uε) = f , in Ω

uε ∈ H1
0 (Ω)

(5.2)

satisfy ®
(i) uε ⇀ u0 weakly in H1

0 (Ω)

(ii) Aε∇uε ⇀ A0u0 weakly in L2(Ω)n
(5.3)

where u0 is the solution of®
−div(A0(x)∇u0) = f , in Ω

u0 ∈ H1
0 (Ω)

(5.4)

Let us point out the main difference between these two notions of convergence.
G-convergence deals with symmetric matrices and supposes the convergence of the
solutions uε only. H-convergence is defined for general sequences (not necessarily
symmetric) and supposes not only the convergence of solutions uε but also the
convergence of Aε∇uε. The main feature of H-convergence is that the additional
condition on the convergence of Aε∇uε is essential in order to keep the main three
properties stated in Chapter 3 for the G-convergence, i.e. (i) uniqueness (Theorem
3.5), (ii) locality (Theorem 3.4) and (iii) compactness (Theorem 3.3).

The main result, which motivates the definition of H-convergence, as in the case
of G-convergence, is the sequential compactness with respect to the H-convergence.

Theorem 5.3. (Homogenization) Let (Aε) ⊂ m(Ω, α, β), then there is a subse-
quence Aε′ of (Aε) and A0 ∈m(Ω, α, β), such that Aε′ H-converges to A0.

We note here again that, if we give an alternative definition of the space of
matrices similar to Definition 3.1 (without symmetry), the H-limit provided by
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compactness Theorem 5.3 is in a larger class of matrices as we can see in [22]
(or [3],[11]). In any case, the Proposition 5.6 that relates the two notions of
convergence remains unchanged.

Before the proof of Theorem 5.3, we state some additional properties of H-
convergence. As mentioned previously, the two of the main properties are:

Theorem 5.4. (localization) Assume that (Aε) , (Bε) belong in m(Ω, α, β) which
H-converge respectively to A0 and B0. If Aε(x) = Bε(x) for a.e. x ∈ Ω′ ⊂ Ω open,
then A0(x) = B0(x) for a.e. x ∈ Ω′.

Theorem 5.5. (uniqueness) The H-limit of a H-converging sequence (Aε) ⊂
m(Ω, α, β) is unique.

For a proof of Theorems 5.4 and 5.5 we refer to Proposition 1 in [22] or [11].

A natural question is what is the relation between the two converges for a
sequence of symmetric matrices?

The answer is given by the next proposition.

Proposition 5.6. Let Aε be a sequence of symmetric matrices in ms(Ω, α, β),
then G-convergence is equivalent to H-convergence.

Proof. The proof of this result makes use of a comparison theorem and we refer
for it to De Giorgi and Spagnolo [10] and to Tartar [36].

Corollary 5.7. Let (Aε) ⊂ms(Ω, α, β) which G-converges to A0. Then Aε∇uε ⇀
A0∇u0 weakly in L2(Ω)n.

One of the main tools for proving Theorem 5.3 is the compensated compactness
due to F. Murat and L. Tartar (see for instance [17] and [32]).

As it is well known, the product of two weakly convergent sequences does not
converge in general to the product of limits and this is the principal difficulty when
trying to characterize the weak limit of Aε∇uε is terms of u0. The compensated
compactness show that under some additional assumptions, the product of two
weak convergent sequences in L2(Ω)n converges in the sense of distributions to the
product of the limits.

This result is interesting itself and is widely used in many applications
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Theorem 5.8. (div-curl lemma/ compensated compactness) Let Ω ⊂ Rn open and
(Xε) , (Y ε) ⊂ L2(Ω)n such that®

Xε ⇀ X0 weakly in L2(Ω)n

Y ε ⇀ Y 0 weakly in L2(Ω)n
(5.5)

Suppose that (divXε) is compact in H−1(Ω) and (curlY ε) is compact in L2(Ω)n×n,
where the matrix curlY ε = ((curlY ε)ij)1≤i,j≤n is defined by

(curlY ε)ij =
∂Y ε

i

∂xj
−
∂Y ε

j

∂xi
, i, j = 1, ..., n (5.6)

Then

Xε · Y ε =
n∑

i=1

Xε
i Y

ε
i ⇀ X0 · Y 0 =

n∑
i=1

X0
i Y

0
i , in D′ (5.7)

In the framework of H-convergence, the above theorem can be applied to the
case:

Xε = Aε∇uε and Y ε = ∇vε

Proof of Theorem 5.8. So, we will prove the above theorem in the special case
where Y ε = ∇vε, where vε bounded in H1(Ω) and thus vε ⇀ v0 weakly in

H1(Ω) (Y ε
k =

∂vεi
∂xk

and so curlY ε ≡ 0).

We want to prove that ∀ ϕ ∈ C∞
c (Ω),∫

Ω

ϕXεY ε →
∫
Ω

ϕX0Y 0 (5.8)

where Y ε = ∇vε and Y 0 = ∇v0.
We have∫

Ω

ϕXεY ε =

∫
Ω

n∑
i=1

Xε
i

∂vε

∂xi
= −

∫
Ω

n∑
i=1

∂ϕ

∂xi
Xε

i v
ε −

∫
Ω

n∑
i=1

ϕ
∂Xε

i

∂xi
vε

⇒
∫
Ω

ϕXε∇vε = −
∫
Ω

∇ϕXεvε −
∫
Ω

divXεϕvε
(5.9)

For the first term of the last equation we have that Xε ⇀ X0 weakly in L2(Ω)n

and vε ⇀ v0 weakly in H1(Ω) and by the Rellich–Kondrachov theorem, vε → v0

strongly in L2(Ω).
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Therefore ∫
Ω

∇ϕXεvε →
∫
Ω

∇ϕX0v0 (5.10)

For the second term, since (divXε) is compact in H−1(Ω) and ϕvε ⇀ ϕv0

weakly in H1
0 (Ω) it holds ∫

Ω

divXεϕvε →
∫
Ω

divX0ϕv0 (5.11)

Thus,∫
Ω

ϕXε∇vε → −
∫
Ω

∇ϕX0v0−
∫
Ω

divX0ϕv0 =

∫
Ω

ϕX0∇v0 , ∀ϕ ∈ C∞
c (Ω) (5.12)

and we conclude.

A proof of Theorem 5.8 can also be found in [12] (see Theorem 5.2.1).

In the proof of theorem 5.3 we also utilize the following:

Theorem 5.9. Under the assumptions of Theorem 5.3, ∀ i = 1, ..., n there exist
wε′′ ∈ H1(Ω), where (ε′′) ⊂ (ε′) and there exist hi such that®

wε′′
i ⇀ xi weakly in H1(Ω)

−div(Aε′′∇wε′′
i ) = hi ∈ H−1(Ω)

(5.13)

and
Aε′′∇wε′′

i ⇀ ξi weakly in L2(Ω)n. (5.14)

In addition, if we define a matrix A0 ∈ L2(Ω)n×n by

A0ei = ξi , where {ei}i=1,...,n is the canonical basis of Rn (5.15)

then it holds that A0 ∈ L∞(Ω)n×n and A0 ≥ αI.

Remark 5.10. The intuition for this theorem is given by the “Corrector result” in
Theorem 5.14 which tell us that if uε is the solution of (5.2), then

∇uε ≈
∑
i

∇wε
i

∂u0

∂xi

and ∇wε
i ⇀ ei weakly in L2

plus a τ ε term that converges to zero strongly in L1(Ω)n.
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Now we proceed to the proof of the Homogenization theorem and we will prove
theorem 5.9 afterwards.

Proof of Theorem 5.3. Let λ ∈ Rn, by Theorem 5.9 we have

n∑
i=1

λiw
ε′′

i ⇀
n∑

i=1

λixi

weakly in H1(Ω) and
∑n

i=1∇(λixi) =
∑n

i=1 λiei = λ, where e1, ..., en is the canon-
ical basis of Rn.

Set
E ε = Aε′′(∇uε′′ −∇wε′′)(∇uε′′ −∇wε′′)

= (σε′′ − Aε′′∇wε′′)(∇uε′′ −∇wε′′)
(5.16)

For the first term of the last equation equals

div
Ä
σε′′ − Aε′′∇wε′′

ä
= −f +

n∑
i=1

λihi

and σε′′ − Aε′′∇wε′′ ⇀ σ0 −
n∑

i=1

λiξi =: σ0 − A0λ

(5.17)

by Theorem 5.9.
The second term of the last equality in (5.16) has zero curl and

∇uε′′ −∇wε′′ ⇀ ∇u0 − λ , weakly in L2(Ω)n (5.18)

Therefore, we utilize the div-curl lemma (that is, Theorem 5.8) by setting
Xε′′ = σε′′ − Aε′′∇wε′′ and Y ε′′ = ∇uε′′ −∇wε′′ and obtain∫

Ω

ϕE ε →
∫
Ω

ϕ(σ0 − A0λ)(∇u0 − λ) , in D′(Ω) ∀ϕ ∈ C∞
c (Ω) (5.19)

and 0 ≤ E ε, thus

(σ0 − A0λ)(∇u0(x)− λ) ≥ 0 , for a.e. x ∈ Ω

⇒ σ0(x) = A0(x)∇u0(x) , for a.e. x ∈ Ω
(5.20)

Indeed, take the lebesgue points of σ0 , ∇u0 , A0 and denote this set as Z.
The first equation of (5.20) holds for all x ∈ Ω \ Z , ∀λ, so for fixed x0 and ε > 0
small, consider λ = ∇u0(x0)− εµ , µ ∈ Rn, then

(σ0(x0)− A0(x0)(∇u0(x0)− εµ))µ ≥ 0 (5.21)
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so taking the limit as ε→ 0,

(σ0(x0)− A0(x0)∇u0(x0))µ ≥ 0 , ∀µ ∈ Rn

⇒ σ0(x0) = A0(x0)∇u0(x0)
(5.22)

as claimed.

Abstract Setting

For the proof of Theorem 5.9 we will utilize an abstract result for linear operators,
in the spirit of Lax Milgram formulation.

First, we provide the following lemma.

Lemma 5.11. Let V , W be two Banach spaces, where V is separable and W is
reflexible. Let Aε ∈ L(V,W ) such that ||Aε||L(V,W ) ≤ C.

Then there exists a subsequence (Aε′) and A0 ∈ L(V,W ) such that ∀f ∈ V ,

Aε′f ⇀ A0f , weakly in W. (5.23)

Proof. A diagonal process ensures the existence of a subsequence such that Aε′x
has a weak limit in W denoted by A0x , ∀x ∈ X, where X is the countable dense
subset of V . For f ∈ V and g ∈ W ′ we can prove that ⟨Aε′f, g⟩W,W ′ is Caushy
sequence (by approximating f by elements x ∈ X). Denote by ⟨A0f, g⟩W,W ′ the
limit, then A0 is linear and bounded, thus

||A0f ||W ≤ lim inf ||Aε′f ||W ≤ C||f ||V (5.24)

We denote by V reflexible and separable Banach space with dual V ′ and by
⟨·, ·⟩V,V ′ the dual pairing between V, V ′.
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Proposition 5.12. Let Aε ∈ L(V, V ′) a sequence of linear operators such that
(i) Aε is α−coercive, that is, ⟨Aεv, v⟩V ′,V ≥ α||v||2V , ∀v ∈ V,
(ii) (Aε)−1 exist and it is 1

β
−coercive, that is, ⟨(Aε)−1g, g⟩V,V ′ ≥ 1

β
||g||2V ′ , ∀g ∈ V ′.

Then there exists a subsequence (Aε′)−1 and A0 ∈ L(V, V ′) with A0 α−coercive
and (A0)−1 1

β
−coercive, such that ∀ f ∈ V ′

Aε′uε
′
= f

and uε
′
⇀ u0 weakly in V , with A0u0 = f

(5.25)

Note that uε
′
⇀ u0 can be also written as (Aε′)−1f ⇀ (A0)−1f.

Proof. Since Aε is α−coercive, we know that (Aε)−1 exists and

||(Aε)−1||L(V ′,V ) ≤
1

α
.

From Lemma 5.11, there exists a subsequence (Aε′) and B0 ∈ L(V,V’) such
that ||B0||L(V,V’) ≤ 1

α
and ∀f ∈ V ′,

(Aε′)−1f ⇀ B0f , weakly in V. (5.26)

Without loss of generality we still denote the subsequence by Aε.
We know that (Aε)−1 is 1

β
−coercive, so

⟨(Aε)−1f, f⟩ ≥ 1

β
||f ||2

⇒ ⟨B0f, f⟩ ≥ 1

β
||f ||2

(5.27)

and thus B0 is 1
β
−coercive and in particular B0 is invertible.

We denote as A0 := (B0)−1. It remains to show that A0 is α−coercive. For
f ∈ V ′, take uε = (Aε)−1f and we have

α||uε|| ≤ ⟨Aεuε, uε⟩ = ⟨f, uε⟩
and uε = (Aε)−1f ⇀ (A0)−1f =: u0

(5.28)

so, by weak lower semicontinuity of the norm

α||u0||2 ≤ ⟨f, u0⟩ = ⟨A0u0, u0⟩ (5.29)

for all u0 ∈ V , since equations (5.28) and (5.29) hold for every f ∈ V ′.
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Proof of Theorem 5.9. Let Ω̂ open bounded set such that Ω ⊂ Ω̂ (for example
Ω̂ is a big ball and we enlarge the domain so that we can have zero boundary
conditions). Let ψ̂ ∈ C∞

c (Ω̂) such that ψ̂ = 1 on Ω.
In Ω̂, we consider the problem®

ûε ∈ H1
0 (Ω̂)

−div(Âε∇ûε) = f̂ , in D′ (5.30)

where

Âε(x) =

®
Aε(x) , x ∈ Ω

αI , x ∈ Ω̂ \ Ω
(5.31)

or even Âε is any matrix inm(Ω̂, α, β) which coincides with Aε in Ω. We consider
the operator Âε defined in (5.30) by

Âεûε = f̂ in H−1(Ω̂) (5.32)

and we apply to Âε the abstract setting of Lax Milgram in (H1
0 (Ω̂), H

−1(Ω̂)), i.e.
Proposition 5.12 and thus there exist Â0 and a subsequence (Âε′) such that

ûε
′
⇀ u0 (ûε

′
= (Âε′)−1f) (5.33)

We choose
ĥi = Â0(xiψ̂(x)) and ĥi ∈ H−1(Ω̂) (5.34)

and note that xiψ̂(x) ∈ H1
0 (Ω̂).

So we define ŵε′′
i by ®

ŵε
i ∈ H1

0 (Ω̂)

−div(Âε∇ŵε
i ) = ĥi in D′(Ω̂)

(5.35)

up to subsequnce that we still denote as ŵε
i . That is, Âεŵε

i = ĥi. Then by
Proposition 5.12,

ŵε
i ⇀ (A0)−1ĥi in H1

0 (Ω̂)

and (Â0)−1(A0(xiψ̂(x))) = xiψ̂(x) in H1
0 (Ω̂) (which is xi in Ω)

ŵε
i |Ω ⇀ xiψ̂(x)|Ω = xi weakly in H1(Ω)

(5.36)

and wε
i := ŵε

i |Ω ⇀ xi weakly in H1(Ω), therefore equation (5.35) reads®
wε

i ∈ H1
0 (Ω)

−div(Aε∇wε
i ) = ĥi|Ω in D′(Ω)

(5.37)
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Finally, it remains to prove that A0 defined in (5.15) is α−coercive and it’s
inverse is 1

β
−coercive and so in L∞(Ω)n×n. We have A0ei = ξi where recall that ξ

are the functions such that Aε′′∇wε′′ ⇀ ξ weakly in L2.
Let λ ∈ Rn, take the function

wε =
∑
i

λiw
ε
i ⇀

∑
i

λixi = w0 (5.38)

up to subsequence and ∇w0 = λ, so∫
Ω

Aε∇wε∇wεϕ ≥ α

∫
Ω

|∇wε|2ϕ , ∀ϕ ∈ C∞
c (Ω) , ϕ ≥ 0 (5.39)

and ∫
Ω

|∇wε|2ϕ ≥
∫
Ω

|∇w0|2ϕ , by weak lower semicontinuity. (5.40)

Now by the div-curl lemma, i.e. Theorem 5.8 with Xε = Aε∇uε , Y ε = ∇wε we
have ∫

Ω

A0∇w0∇w0ϕ ≥ α

∫
Ω

|∇w0|2ϕ (5.41)

That is, ∫
Ω

A0λλϕ ≥ α

∫
Ω

|λ|2ϕ , ∀ϕ ∈ C∞
c (Ω) and ∀λ ∈ Rn. (5.42)

Thus, A0 is α−coercive.

For the 1
β
−coercivity of (A0)−1, let λ ∈ Rn and consider again the functions

wε , w0 as in (5.38),

Iε =

∫
Ω

ϕ(Aε)−1(Aε∇wε)(Aε∇wε) ≥ 1

β

∫
Ω

|Aε∇wε|2ϕ , ∀ϕ ∈ C∞
c (Ω) , ϕ ≥ 0

(5.43)
and ∫

Ω

|Aε∇wε|2ϕ ≥
∫
Ω

|A0λ|2ϕ by weak lower semicontinuity (5.44)

Iε =
∫
Ω
ϕ∇wεAε∇wε and by Theorem 5.8 we obtain

Iε →
∫
Ω

ϕλA0λ =

∫
Ω

(A0)−1(A0λ)(A0λ)ϕ

⇒
∫
Ω

(A0)−1(A0λ)(A0λ)ϕ ≥ 1

β

∫
Ω

|A0λ|2ϕ , ∀ϕ ∈ C∞
c (Ω)

(5.45)
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⇒ (A0)−1(A0λ)(A0λ) ≥ 1

β
|A0λ|2 , a.e. x ∈ Ω (5.46)

Let µ ∈ Rn, since A0 is invertible we can choose λ so that A0λ = µ and by (5.46)
we get

(A0)−1µµ ≥ 1

β
|µ|2 , a.e. x ∈ Ω and ∀µ ∈ Rn (5.47)

Therefore (A0)−1 is 1
β
−coercive and A0 ∈ L∞(Ω)n×n.

The Corrector result

Definition 5.13. (Corrector) Suppose (Aε) H-converges to A0 and let uε be the
solution of ®

−div(Aε∇uε) = f , in Ω

uε ∈ H1
0 (Ω)

(5.48)

The corrector matrix P ε = (P ε
ij)i,j∈{1,...,n} ∈ L2(Ω)n×n is defined by

P ε
ij =

∂wε
j

∂xi
(5.49)

where wj defined in Theorem 5.9 and it holds that

P ε ⇀ I weakly in L2(Ω)n×n (I : the identity matrix) (5.50)

Then, H-convergence implies in particular that

∇uε − P ε∇u0 ⇀ 0 , weakly in L1(Ω)n. (5.51)

The main corrector result is

Theorem 5.14. Suppose (Aε) H-converges to A0 and uε be the solution of (5.48).
Let (P ε) be any sequence of corrector matrices given by definition 5.13.

Then
∇uε − P ε∇u0 → 0 , strongly in L1(Ω)n. (5.52)

In other words, we have the expression:

∇uε = P ε∇u0 + τ ε (definition of the remainder of uε)

and τ ε → 0 strongly in L1(Ω)
(5.53)
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so ∇uε is “very close” to P ε∇u0 (similar to a 1st order Taylor expansion in some
sense).

Proof. We consider for simplicity the case where u0 ∈ C∞
c (Ω). Let

Eε =
∫
Ω

φAε(∇uε − P εϕ)(∇uε − P εϕ)dx , φ ∈ C∞
c (Ω) , φ ≥ 0

and ϕ ∈ C∞
c (Ω)n. So, we have

Eε ≥
∫
Ω

φα|∇uε − P εϕ|2dx

and we apply Theorem 5.8 with Xε = Aε(∇uε − P εϕ) and Y ε = ∇uε − P εϕ,

⇒
∫
Ω

XεY ε →
∫
Ω

φA0(∇u0 − ϕ)(∇u0 − ϕ)

⇒ lim sup
ε

α

∫
Ω

φ|∇uε − P εϕ|2dx ≤
∫
Ω

φA0(∇u0 − ϕ)(∇u0 − ϕ)

≤
∫
Ω

φβ|∇uε − P εϕ|2 , ∀ϕ ∈ C∞
c (Ω)n

(5.54)

so since u0 ∈ C∞
c (Ω), we take ϕ = ∇u0 and we conclude. In this case, actually we

have strong convergence in L2(Ω)n.

In the general case, we consider τ ε = ∇uε − P ε∇u0 and we write

τ ε = (∇uε − P εϕ) + P ε(ϕ−∇u0)

The first term is handled as,

lim sup
ε

∫
Ω

|∇uε − P εϕ| ≤ |Ω|1/2(lim sup
ε

∫
Ω

|∇uε − P εϕ|2)1/2

≤ β|Ω|1/2||∇u0 − ϕ||L2(Ω)n

(5.55)

arguing as in the previous simpler case.
For the second term,

||P ε(∇u0 − ϕ)||L1(Ω)n ≤ ||P ε||L2(Ω)n×n||∇u0 − ϕ||L2(Ω)n

≤ (lim sup
ε

||P ε||L2(Ω)n×n)||∇u0 − ϕ||L2(Ω)n
(5.56)

Thus we obtain

lim sup
ε

||τ ε||L1 ≤ C||∇u0 − ϕ||L2

where C = C(β, |Ω|1/2, lim sup
ε

||P ε||L2)
(5.57)

so we take ϕ such that given δ > 0 , ||∇u0 − ϕ||L2 < δ
C
and we conclude.
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[33] L. Tartar, Homogénéisation d’opérateurs monotones. Manuscript, 1981.

[34] L. Tartar, Cours Peccot au Collége de France. Paris, 1977.

[35] L. Tartar, Quelques remarques sur l’homogénéisation. Proc. of the Japan-
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