The impact of information in service systems with strategic customers

Antonis Economou

National and Kapodistrian University of Athens, Greece

August 29, 2020

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-377-0)

 Ω

Part I: Introduction The basic queueing models with strategic customers

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

 $2Q$

メロメ メ都 トメ ヨ トメ ヨメ

重

 298

Queueing problems

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

4 0 8

E

 $2Q$

Queueing problems

Performance evaluation problems How does a given system perform? (no one makes decisions)

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

Queueing problems

Performance evaluation problems How does a given system perform? (no one makes decisions)

Static optimization problems How should we design a system? (choice of parameters)

(the constructor makes decisions once)

∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 $2Q$

Queueing problems

- Performance evaluation problems How does a given system perform? (no one makes decisions)
- Static optimization problems How should we design a system? (choice of parameters)

(the constructor makes decisions once)

Dynamic optimization problems How should we administrate a system? (dynamic control)

(the administrator makes decisions)

 2980

Queueing problems

Performance evaluation problems How does a given system perform? (no one makes decisions)

• Static optimization problems How should we design a system? (choice of parameters)

(the constructor makes decisions once)

Dynamic optimization problems How should we administrate a system? (dynamic control)

(the administrator makes decisions)

Strategic behavior problems How do the agents behave in a system? What can we do to induce a desirable behavior? (each agent makes his own decisio[n\)](#page-5-0)

メロメ メ都 トメ ヨ トメ ヨメ

重

 298

Mathematical tools

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

KABRA

 $2Q$

Mathematical tools

Performance evaluation

(no one makes decisions) Stochastic processes (Markov, semi-Markov)

Mathematical tools

- Performance evaluation (no one makes decisions) Stochastic processes (Markov, semi-Markov)
- Static optimization (design) (the constructor makes decisions once) Stochastic Processes + Nonlinear Programming

KABKAB

つへへ

Mathematical tools

- Performance evaluation (no one makes decisions) Stochastic processes (Markov, semi-Markov)
- Static optimization (design) (the constructor makes decisions once) Stochastic Processes + Nonlinear Programming
- Dynamic optimization (control) (the administrator makes decisions) Stochastic Dynamic Programming (Markov Decision Processes)

 \triangleright and \triangleright and \triangleright and \triangleright

 $2Q$

Mathematical tools

- Performance evaluation (no one makes decisions) Stochastic processes (Markov, semi-Markov)
- Static optimization (design) (the constructor makes decisions once) Stochastic Processes + Nonlinear Programming
- Dynamic optimization (control) (the administrator makes decisions) Stochastic Dynamic Programming (Markov Decision Processes)

• Strategic behavior

(each customer makes his own decision) Stochastic Processes + Game Theory

 298

活

Strategic queueing problems

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 8.

④ → → 君→ → 君→

医阿里氏阿里

4 0 8 ∢ ⊜⊺ 298

重

Strategic queueing problems

• To join or balk?

人名意 医气体 Þ

 \rightarrow

4 0 8

 299

E

Strategic queueing problems

- To join or balk?
- To stay or renege?

Strategic queueing problems

- To join or balk?
- To stay or renege?
- To buy priority or not?

 \leftarrow

ik ⊞ik iki

Strategic queueing problems

- To join or balk?
- To stay or renege?
- To buy priority or not?
- How often to retry for service?

Strategic queueing problems

- To join or balk?
- To stay or renege?
- To buy priority or not?
- How often to retry for service?
- Which queue to join?

メロト メタト メミト メミト

重

 298

Typical questions

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

 298

E

Typical questions

Strategic behavior problem:

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 3.

 $\left\{ \left\vert \mathbf{q}\right\vert \right\}$, and $\left\vert \mathbf{q}\right\vert$, and $\left\vert \mathbf{q}\right\vert$

← イヨート

4 0 8

 $2Q$

Typical questions

• Strategic behavior problem:

At a certain system, the arriving customers follow a given joining strategy,

 $\left\{ \left\vert \mathbf{q}\right\vert \right\}$, and $\left\vert \mathbf{q}\right\vert$, and $\left\vert \mathbf{q}\right\vert$

4 0 8

 $2Q$

Typical questions

• Strategic behavior problem:

At a certain system, the arriving customers follow a given joining strategy,

e.g.

 $2Q$

Typical questions

• Strategic behavior problem:

At a certain system, the arriving customers follow a given joining strategy,

e.g.

 \bullet join with prob. q (unobservable),

 $2Q$

Typical questions

• Strategic behavior problem:

At a certain system, the arriving customers follow a given joining strategy,

e.g.

- \bullet join with prob. q (unobservable),
- join if the queue length $\leq n$ (observable).

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\} \rightarrow \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$

 $2Q$

Typical questions

• Strategic behavior problem:

At a certain system, the arriving customers follow a given joining strategy,

e.g.

- \bullet join with prob. q (unobservable),
- join if the queue length $\leq n$ (observable).

 $\left\{ \left\vert \mathbf{q}\right\vert \right\}$, and $\left\vert \mathbf{q}\right\vert$, and $\left\vert \mathbf{q}\right\vert$

 $2Q$

Typical questions

• Strategic behavior problem:

At a certain system, the arriving customers follow a given joining strategy,

e.g.

- \bullet join with prob. q (unobservable),
- join if the queue length $\leq n$ (observable).

Consider a tagged customer.

• What is the best response of the tagged customer?

 $\left\{ \left. \left(\left. \left| \Phi \right| \right. \right) \left. \left. \left(\left. \left| \Phi \right| \right. \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right)$

 $2Q$

Typical questions

• Strategic behavior problem:

At a certain system, the arriving customers follow a given joining strategy,

e.g.

- \bullet join with prob. q (unobservable),
- join if the queue length $\leq n$ (observable).

- What is the best response of the tagged customer?
- Are there equilibrium strategies?

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\} \rightarrow \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$

 $2Q$

Typical questions

• Strategic behavior problem:

At a certain system, the arriving customers follow a given joining strategy,

e.g.

- \bullet join with prob. q (unobservable),
- join if the queue length $\leq n$ (observable).

- What is the best response of the tagged customer?
- Are there equilibrium strategies?
- Is a Follow-The-Crowd or Avoid-The-Crowd situation?

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\} \rightarrow \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$

 $2Q$

Typical questions

• Strategic behavior problem:

At a certain system, the arriving customers follow a given joining strategy,

e.g.

- \bullet join with prob. q (unobservable),
- join if the queue length $\leq n$ (observable).

- What is the best response of the tagged customer?
- Are there equilibrium strategies?
- Is a Follow-The-Crowd or Avoid-The-Crowd situation?
- Are the equilibrium strategies socially optimal?

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B}$

 $2Q$

Typical questions

• Strategic behavior problem:

At a certain system, the arriving customers follow a given joining strategy,

e.g.

- \bullet join with prob. q (unobservable),
- join if the queue length $\leq n$ (observable).

- What is the best response of the tagged customer?
- Are there equilibrium strategies?
- Is a Follow-The-Crowd or Avoid-The-Crowd situation?
- Are the equilibrium strategies socially optimal?
- What level of information should be provided?

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Problems](#page-2-0) [Observable](#page-41-0) [Unobservable](#page-59-0) [Comp](#page-80-0) [Structure](#page-96-0)

K 御 ▶ | K 唐 ▶ | K 唐 ▶

4 0 8

 $2Q$

活

The basic observable model (Naor (1969))

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

医阿里氏阿里

4 0 8

E

 $2Q$

The basic observable model (Naor (1969))

• Observable $M/M/1$ queue.

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

 \triangleright \rightarrow \equiv \rightarrow \rightarrow

 \leftarrow

 $2Q$

The basic observable model (Naor (1969))

• Observable $M/M/1$ queue.

1 Poisson(λ) arrival process.

 \triangleright \rightarrow \equiv \rightarrow \rightarrow

 $2Q$

The basic observable model (Naor (1969))

\bullet Observable M/M/1 queue.

- \bullet Poisson(λ) arrival process.
- 2 Exp (μ) service times.

KABRA

 $2Q$

The basic observable model (Naor (1969))

• Observable $M/M/1$ queue.

- **1** Poisson(λ) arrival process.
- **2** Exp (μ) service times.
- ³ 1 server that serves customers one by one.

おす 重 おうす

 $2Q$

The basic observable model (Naor (1969))

• Observable $M/M/1$ queue.

- **1** Poisson(λ) arrival process.
- **2** Exp (μ) service times.
- ³ 1 server that serves customers one by one.
- ⁴ Infinite waiting space.
The basic observable model (Naor (1969))

• Observable $M/M/1$ queue.

- **1** Poisson(λ) arrival process.
- **2** Exp (μ) service times.
- ³ 1 server that serves customers one by one.
- ⁴ Infinite waiting space.
- ⁵ FCFS queueing discipline.

The basic observable model (Naor (1969))

• Observable $M/M/1$ queue.

- **1** Poisson(λ) arrival process.
- **2** Exp (μ) service times.
- ³ 1 server that serves customers one by one.
- ⁴ Infinite waiting space.
- ⁵ FCFS queueing discipline.

•
$$
\rho = \frac{\lambda}{\mu}
$$
: the utilization rate.

The basic observable model (Naor (1969))

• Observable M/M/1 queue.

- **1** Poisson(λ) arrival process.
- **2** Exp (μ) service times.
- ³ 1 server that serves customers one by one.
- ⁴ Infinite waiting space.
- ⁵ FCFS queueing discipline.
- 6 $\rho = \frac{\lambda}{\mu}$ $\frac{\lambda}{\mu}$: the utilization rate.
- ⁷ R: customer's benefit from completed service.

The basic observable model (Naor (1969))

\bullet Observable M/M/1 queue.

- **1** Poisson(λ) arrival process.
- **2** Exp (μ) service times.
- ³ 1 server that serves customers one by one.
- ⁴ Infinite waiting space.
- ⁵ FCFS queueing discipline.
- 6 $\rho = \frac{\lambda}{\mu}$ $\frac{\lambda}{\mu}$: the utilization rate.
- ⁷ R: customer's benefit from completed service.
- ⁸ C: waiting cost per time unit for a customer

The basic observable model (Naor (1969))

\bullet Observable M/M/1 queue.

- **1** Poisson(λ) arrival process.
- **2** Exp (μ) service times.
- ³ 1 server that serves customers one by one.
- ⁴ Infinite waiting space.
- ⁵ FCFS queueing discipline.
- 6 $\rho = \frac{\lambda}{\mu}$ $\frac{\lambda}{\mu}$: the utilization rate.
- ⁷ R: customer's benefit from completed service.
- ⁸ C: waiting cost per time unit for a customer (it is paid even when he is in service).

The basic observable model (Naor (1969))

\bullet Observable M/M/1 queue.

- **1** Poisson(λ) arrival process.
- **2** Exp (μ) service times.
- **3** 1 server that serves customers one by one.
- ⁴ Infinite waiting space.
- ⁵ FCFS queueing discipline.
- 6 $\rho = \frac{\lambda}{\mu}$ $\frac{\lambda}{\mu}$: the utilization rate.
- ⁷ R: customer's benefit from completed service.
- ⁸ C: waiting cost per time unit for a customer (it is paid even when he is in service).
- ⁹ Upon arrival, a customer inspects the queue length and decides whether to join or balk.

人名意 医气体 Þ

 \leftarrow

 298

重

The basic observable model - Equilibrium I

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

The basic observable model - Equilibrium I

 \bullet A customer that observes *n* customers in the system prefers to join if his expected net benefit is non-negative:

The basic observable model - Equilibrium I

 \bullet A customer that observes *n* customers in the system prefers to join if his expected net benefit is non-negative:

$$
R - C\frac{n+1}{\mu} \ge 0.
$$

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

人名意 医气体 Þ

 \blacksquare

 298

E

The basic observable model - Equilibrium II

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

The basic observable model - Equilibrium II

Theorem

The individual's optimizing strategy for a customer that sees n customers upon arrival is the **threshold** strategy that presribes to join if $n + 1 \leq n_e$ with

$$
n_e = \lfloor \frac{\mu R}{C} \rfloor \text{ (Naor's threshold)}.
$$

The basic observable model - Equilibrium II

Theorem

The individual's optimizing strategy for a customer that sees n customers upon arrival is the **threshold** strategy that presribes to join if $n + 1 \leq n_e$ with

$$
n_e = \lfloor \frac{\mu R}{C} \rfloor \text{ (Naor's threshold)}.
$$

This is the unique equilibrium strategy, but also a dominant strategy.

 \triangleright \rightarrow \equiv \rightarrow \rightarrow

4 0 8

Þ

活

 298

The basic observable model - Social opt. I

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

.

 $2Q$

The basic observable model - Social opt. I

Social benefit per time unit, under a threshold strategy n :

$$
S_{soc}^{(obs)}(n) = \lambda R \frac{1 - \rho^n}{1 - \rho^{n+1}} - C \left[\frac{\rho}{1 - \rho} - \frac{(n+1)\rho^{n+1}}{1 - \rho^{n+1}} \right]
$$

 \triangleright \rightarrow \equiv \rightarrow \rightarrow

4 0 8

÷.

活

 $2Q$

The basic observable model - Social opt. II

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

The basic observable model - Social opt. II

Theorem

 $S_{soc}^{(obs)}(n)$ is unimodal.

The basic observable model - Social opt. II

Theorem

 $S_{soc}^{(obs)}(n)$ is unimodal. Its unique maximum is attained for

$$
n_{soc} = \lfloor x_{soc} \rfloor
$$

where x_{soc} is the unique solution to

$$
\frac{x(1-\rho) - \rho(1-\rho^x)}{(1-\rho^2)} = \frac{\mu R}{C}.
$$

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

The basic observable model - Social opt. II

Theorem

 $S_{soc}^{(obs)}(n)$ is unimodal. Its unique maximum is attained for

$$
n_{soc} = \lfloor x_{soc} \rfloor
$$

where x_{soc} is the unique solution to

$$
\frac{x(1-\rho) - \rho(1-\rho^x)}{(1-\rho^2)} = \frac{\mu R}{C}.
$$

Moreover:

 $n_{\rm soc} \leq n_{\rm e}$.

Individual optimization leads to longer queues than are socially desired.

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

The basic observable model - Profit max. I

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 8

 \triangleright \rightarrow \equiv \rightarrow \rightarrow

÷.

活

 \triangleright \rightarrow \equiv \rightarrow \rightarrow

 $2Q$

The basic observable model - Profit max. I

• Profit of the administrator when he uses a fee $p = R - \frac{Cn}{\mu}$ $\frac{\partial n}{\partial \mu}$ to induce a threshold strategy n:

$$
S_{prof}^{(obs)}(n) = \lambda \frac{1 - \rho^n}{1 - \rho^{n+1}} \left(R - \frac{Cn}{\mu} \right).
$$

医牙骨下的

4 0 8

÷.

活

 $2Q$

The basic observable model - Profit max. II

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

The basic observable model - Profit max. II

Theorem

The unique profit-optimizing threshold n_{prof} that maximizes $S_{prof}^{(obs)}(n)$ is given by

 $n_{mref} = |x_{mref}|$

where x_{prof} is the unique solution to

$$
x + \frac{(1 - \rho^{x-1})(1 - \rho^{x+1})}{\rho^{x-1}(1 - \rho)^2} = \frac{\mu R}{C}.
$$

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

The basic observable model - Profit max. II

Theorem

The unique profit-optimizing threshold n_{prof} that maximizes $S_{prof}^{(obs)}(n)$ is given by

 $n_{mref} = |x_{mref}|$

where x_{prof} is the unique solution to

$$
x + \frac{(1 - \rho^{x-1})(1 - \rho^{x+1})}{\rho^{x-1}(1 - \rho)^2} = \frac{\mu R}{C}.
$$

Moreover

$$
n_{prof}\leq n_{soc}\leq n_{e}.
$$

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Problems](#page-2-0) [Observable](#page-30-0) [Unobservable](#page-63-0) [Comp](#page-80-0) [Structure](#page-96-0)

医阿里氏阿里

 $2Q$

The basic unobservable model (Edelson and Hildebrand (1975))

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Problems](#page-2-0) [Observable](#page-30-0) [Unobservable](#page-63-0) [Comp](#page-80-0) [Structure](#page-96-0)

 $2Q$

The basic unobservable model (Edelson and Hildebrand (1975))

• Unobservable $M/M/1$ queue.

The basic unobservable model (Edelson and Hildebrand (1975))

• Unobservable $M/M/1$ queue.

¹ Same dynamics and operational parameters as in Naor's model $(\lambda, \mu \text{ and } \rho)$.

The basic unobservable model (Edelson and Hildebrand (1975))

• Unobservable $M/M/1$ queue.

- ¹ Same dynamics and operational parameters as in Naor's model $(\lambda, \mu \text{ and } \rho)$.
- 2 Same reward-cost structure $(R \text{ and } C)$.

The basic unobservable model (Edelson and Hildebrand (1975))

- • Unobservable $M/M/1$ queue.
	- ¹ Same dynamics and operational parameters as in Naor's model $(\lambda, \mu \text{ and } \rho)$.
	- 2 Same reward-cost structure $(R \text{ and } C)$.
	- ³ Upon arrival, a customer decides whether to join or balk without observing the queue length.

E

Braker Þ

The basic unobservable model - Equilibrium I

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

ik ⊞i⊁iki

 $2Q$

The basic unobservable model - Equilibrium I

 \bullet Suppose the customers follow a strategy q.

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

- \bullet Suppose the customers follow a strategy q.
- The system behaves as an $M/M/1$ queue with arrival rate λq and service rate μ .

- \bullet Suppose the customers follow a strategy q.
- The system behaves as an $M/M/1$ queue with arrival rate λq and service rate μ .
- Mean sojourn time of a customer: $\frac{1}{\mu \lambda q}$.

- \bullet Suppose the customers follow a strategy q.
- The system behaves as an $M/M/1$ queue with arrival rate λq and service rate μ .
- Mean sojourn time of a customer: $\frac{1}{\mu \lambda q}$.
- A tagged customer prefers to join, prefers to balk or he is indifferent, if his expected net benefit $R - C \frac{1}{\mu - \lambda q}$ is $> 0, < 0$ or $= 0.$

- \bullet Suppose the customers follow a strategy q.
- The system behaves as an $M/M/1$ queue with arrival rate λq and service rate μ .
- Mean sojourn time of a customer: $\frac{1}{\mu \lambda q}$.
- A tagged customer prefers to join, prefers to balk or he is indifferent, if his expected net benefit $R - C \frac{1}{\mu - \lambda q}$ is $> 0, < 0$ or $= 0$.
- If $R C \frac{1}{\mu \lambda q} > 0$, then the best response is to join.

∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

つへへ

- \bullet Suppose the customers follow a strategy q.
- The system behaves as an $M/M/1$ queue with arrival rate λq and service rate μ .
- Mean sojourn time of a customer: $\frac{1}{\mu \lambda q}$.
- A tagged customer prefers to join, prefers to balk or he is indifferent, if his expected net benefit $R - C \frac{1}{\mu - \lambda q}$ is $> 0, < 0$ or $= 0.$
- If $R C \frac{1}{\mu \lambda q} > 0$, then the best response is to join. If $R - C \frac{1}{\mu - \lambda q} < 0$, then the best response is to balk.

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B}$

つへへ

- \bullet Suppose the customers follow a strategy q.
- The system behaves as an $M/M/1$ queue with arrival rate λq and service rate μ .
- Mean sojourn time of a customer: $\frac{1}{\mu \lambda q}$.
- A tagged customer prefers to join, prefers to balk or he is indifferent, if his expected net benefit $R - C \frac{1}{\mu - \lambda q}$ is $> 0, < 0$ or $= 0.$
- If $R C \frac{1}{\mu \lambda q} > 0$, then the best response is to join. If $R - C \frac{1}{\mu - \lambda q} < 0$, then the best response is to balk. If $R - C \frac{1}{\mu - \lambda q} = 0$, then any strategy is best response.
A Brand Þ 298

E

The basic unobservable model - Equilibrium II

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Problems](#page-2-0) [Observable](#page-30-0) [Unobservable](#page-59-0) [Comp](#page-80-0) [Structure](#page-96-0)

 $2Q$

The basic unobservable model - Equilibrium II

Theorem

There always exist a unique equilibrium strategy.

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

 $2Q$

The basic unobservable model - Equilibrium II

Theorem

There always exist a unique equilibrium strategy.

 290

E

ik ⊞i⊁iki

The basic unobservable model - Social, prof. opt.

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

 \leftarrow

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Problems](#page-2-0) [Observable](#page-30-0) [Unobservable](#page-59-0) [Comp](#page-80-0) Structur The basic unobservable model - Social, prof. opt.

Social benefit function when customers follow a strategy q (coincides with the profit function):

$$
S_{soc}^{(un)}(q) = \lambda q R - C\lambda / (\mu - \lambda).
$$

 $2Q$

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Problems](#page-2-0) [Observable](#page-30-0) [Unobservable](#page-59-0) [Comp](#page-80-0) [Structure](#page-96-0) The basic unobservable model - Social, prof. opt.

Social benefit function when customers follow a strategy q (coincides with the profit function):

$$
S_{soc}^{(un)}(q) = \lambda q R - C\lambda / (\mu - \lambda).
$$

Theorem

 $S_{soc}^{(un)}(q)$ is strictly concave, so there exists a unique socially $optimal\ strategy\ q_{soc}.$

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Problems](#page-2-0) [Observable](#page-30-0) [Unobservable](#page-59-0) [Comp](#page-80-0) [Structure](#page-96-0) The basic unobservable model - Social, prof. opt.

Social benefit function when customers follow a strategy q (coincides with the profit function):

$$
S_{soc}^{(un)}(q) = \lambda q R - C\lambda / (\mu - \lambda).
$$

Theorem

 $S_{soc}^{(un)}(q)$ is strictly concave, so there exists a unique socially $optimal\ strategy\ q_{soc}.$

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Problems](#page-2-0) [Observable](#page-30-0) [Unobservable](#page-59-0) [Comp](#page-80-0) [Structure](#page-96-0) The basic unobservable model - Social, prof. opt.

Social benefit function when customers follow a strategy q (coincides with the profit function):

$$
S_{soc}^{(un)}(q) = \lambda q R - C\lambda / (\mu - \lambda).
$$

Theorem

 $S_{soc}^{(un)}(q)$ is strictly concave, so there exists a unique socially $optimal\ strategy\ q_{soc}.$

Moreover
$$
q_{soc} \leq q_e
$$
.

 $\bar{\Xi}$

 $2Q$

イロメ イ部メ イヨメ イヨメー

Observable vs. unobservable I

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

 $2Q$

Observable vs. unobservable I

Chen, H. and Frank, M. (2004) Monopoly pricing when customers queue. IIE Transactions.

(御) (高) (k

 $2Q$

Observable vs. unobservable I

- Chen, H. and Frank, M. (2004) Monopoly pricing when customers queue. IIE Transactions.
- Let $\lambda_e^{(obs)}$ and $\lambda_e^{(un)}$ be the equilibrium arrival rates in the observable and unobservable cases.

 $2Q$

Observable vs. unobservable I

- Chen, H. and Frank, M. (2004) Monopoly pricing when customers queue. IIE Transactions.
- Let $\lambda_e^{(obs)}$ and $\lambda_e^{(un)}$ be the equilibrium arrival rates in the observable and unobservable cases.
- Then, there exists a unique critical value λ^* such that

$$
\lambda_e^{(un)} > \lambda_e^{(obs)}, \text{ for } \lambda < \lambda^*,
$$

while

$$
\lambda_e^{(un)} < \lambda_e^{(obs)}, \text{ for } \lambda > \lambda^*.
$$

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \right\}$

 $2Q$

Observable vs. unobservable I

- Chen, H. and Frank, M. (2004) Monopoly pricing when customers queue. IIE Transactions.
- Let $\lambda_e^{(obs)}$ and $\lambda_e^{(un)}$ be the equilibrium arrival rates in the observable and unobservable cases.
- Then, there exists a unique critical value λ^* such that

$$
\lambda_e^{(un)} > \lambda_e^{(obs)}, \text{ for } \lambda < \lambda^*,
$$

while

$$
\lambda_e^{(un)}<\lambda_e^{(obs)},\ \text{for}\ \lambda>\lambda^*.
$$

For low arrival rates, it is better to conceal information from the customers to increase the throughput.

イロメ イ部メ イヨメ イヨメー

重

 $2Q$

Observable vs. unobservable II

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

おす 悪 おす

 $2Q$

Observable vs. unobservable II

Hassin, R. (1986) Consumer information in markets with random products quality: The case of queues and balking. Econometrica.

KIND RIVER

 $2Q$

Observable vs. unobservable II

- Hassin, R. (1986) Consumer information in markets with random products quality: The case of queues and balking. Econometrica.
- For any parameters of the model

$$
\max_{q} S_{soc}^{(un)}(q) < \max_{n} S_{soc}^{(obs)}(n).
$$

 Ω

Observable vs. unobservable II

- Hassin, R. (1986) Consumer information in markets with random products quality: The case of queues and balking. Econometrica.
- For any parameters of the model

$$
\max_{q} S_{soc}^{(un)}(q) < \max_{n} S_{soc}^{(obs)}(n).
$$

The social planner prefers to reveal the queue length to the customers.

イロメ イ部メ イヨメ イヨメー

重

 $2Q$

Observable vs. unobservable III

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

イロメ イ部メ イヨメ イヨメー

重

 $2Q$

Observable vs. unobservable III

• If
$$
R \leq \frac{2C}{\mu}
$$
, then

$$
\max_q S_{prof}^{(un)}(q) < \max_n S_{prof}^{(obs)}(n).
$$

おす 悪 おす

 $2Q$

Observable vs. unobservable III

• If
$$
R \leq \frac{2C}{\mu}
$$
, then

$$
\max_{q} S_{prof}^{(un)}(q) < \max_{n} S_{prof}^{(obs)}(n).
$$

The profit maximizer prefers to reveal the queue length to the customers.

(母) マミン マミン

重

 $2Q$

Observable vs. unobservable III

• If
$$
R \leq \frac{2C}{\mu}
$$
, then

$$
\max_{q} S_{prof}^{(un)}(q) < \max_{n} S_{prof}^{(obs)}(n).
$$

The profit maximizer prefers to reveal the queue length to the customers.

• If
$$
R > \frac{2C}{\mu}
$$
, then there exist λ_{prof} such that

 \triangleright \rightarrow \equiv \rightarrow \rightarrow

 $2Q$

Observable vs. unobservable III

• If
$$
R \leq \frac{2C}{\mu}
$$
, then

$$
\max_{q} S_{prof}^{(un)}(q) < \max_{n} S_{prof}^{(obs)}(n).
$$

The profit maximizer prefers to reveal the queue length to the customers.

If $R > \frac{2C}{\mu}$, then there exist λ_{prof} such that

$$
\max_{q} S_{prof}^{(un)}(q) > \max_{n} S_{prof}^{(obs)}(n), \text{ for } \lambda < \lambda_{prof},
$$

KABRA

 $2Q$

Observable vs. unobservable III

• If
$$
R \leq \frac{2C}{\mu}
$$
, then

$$
\max_{q} S_{prof}^{(un)}(q) < \max_{n} S_{prof}^{(obs)}(n).
$$

The profit maximizer prefers to reveal the queue length to the customers.

If $R > \frac{2C}{\mu}$, then there exist λ_{prof} such that

$$
\max_{q} S_{prof}^{(un)}(q) > \max_{n} S_{prof}^{(obs)}(n), \text{ for } \lambda < \lambda_{prof},
$$

$$
\max_{q} S_{prof}^{(un)}(q) < \max_{n} S_{prof}^{(obs)}(n), \text{ for } \lambda > \lambda_{prof}.
$$

つへへ

Observable vs. unobservable III

• If
$$
R \leq \frac{2C}{\mu}
$$
, then

$$
\max_{q} S_{prof}^{(un)}(q) < \max_{n} S_{prof}^{(obs)}(n).
$$

The profit maximizer prefers to reveal the queue length to the customers.

If $R > \frac{2C}{\mu}$, then there exist λ_{prof} such that

$$
\max_{q} S_{prof}^{(un)}(q) > \max_{n} S_{prof}^{(obs)}(n), \text{ for } \lambda < \lambda_{prof},
$$

$$
\max_{q} S_{prof}^{(un)}(q) < \max_{n} S_{prof}^{(obs)}(n), \text{ for } \lambda > \lambda_{prof}.
$$

The profit maximizer prefers to conceal the queue length for low values of λ and to reveal it for high values.

メロメ メ御き メミメ メミメ

重

 $2Q$

Structure of the talk

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

 298

活

Structure of the talk

• Models with **imperfect** observation structure.

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 3.

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \right\}$

 $\mathbf{A} = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{A}$

4 0 8

 $2Q$

Structure of the talk

• Models with **imperfect** observation structure. The customers observe imperfectly the queue length.

医牙骨下的

 $2Q$

- Models with **imperfect** observation structure. The customers observe imperfectly the queue length.
- Models with **delayed** observation structure.

医阿里氏阿里

 $2Q$

- Models with **imperfect** observation structure. The customers observe imperfectly the queue length.
- Models with **delayed** observation structure. The customers observe the queue length with delay.

医阿里氏阿里

 $2Q$

- Models with **imperfect** observation structure. The customers observe imperfectly the queue length.
- Models with **delayed** observation structure. The customers observe the queue length with delay.
- Models with **mixed** observation structure.

医阿雷氏阿雷氏

 $2Q$

- Models with **imperfect** observation structure. The customers observe imperfectly the queue length.
- Models with delayed observation structure. The customers observe the queue length with delay.
- Models with **mixed** observation structure. Only a fraction of the customers observe the queue length.

医阿雷氏阿雷氏

 298

- Models with **imperfect** observation structure. The customers observe imperfectly the queue length.
- Models with delayed observation structure. The customers observe the queue length with delay.
- Models with **mixed** observation structure. Only a fraction of the customers observe the queue length.
- Models with alternating observation structure.

(御) (唐) (唐)

 298

- Models with **imperfect** observation structure. The customers observe imperfectly the queue length.
- Models with **delayed** observation structure. The customers observe the queue length with delay.
- Models with **mixed** observation structure. Only a fraction of the customers observe the queue length.
- Models with alternating observation structure. There are observable and unobservable periods for the system.

す ヨ メ ミ メ イ ミ メ

 298

- Models with **imperfect** observation structure. The customers observe imperfectly the queue length.
- Models with **delayed** observation structure. The customers observe the queue length with delay.
- Models with **mixed** observation structure. Only a fraction of the customers observe the queue length.
- Models with alternating observation structure. There are observable and unobservable periods for the system.
- Models with **partial** observation structure.

イロト イ母 ト イヨ ト イヨ ト

 298

- Models with **imperfect** observation structure. The customers observe imperfectly the queue length.
- Models with **delayed** observation structure. The customers observe the queue length with delay.
- Models with **mixed** observation structure. Only a fraction of the customers observe the queue length.
- Models with alternating observation structure. There are observable and unobservable periods for the system.
- Models with **partial** observation structure. The state of the queue is 2-dimensional. The customers observe only one dimension of the state.

 298

- Models with **imperfect** observation structure. The customers observe imperfectly the queue length.
- Models with **delayed** observation structure. The customers observe the queue length with delay.
- Models with **mixed** observation structure. Only a fraction of the customers observe the queue length.
- Models with alternating observation structure. There are observable and unobservable periods for the system.
- Models with **partial** observation structure. The state of the queue is 2-dimensional. The customers observe only one dimension of the state.
- Other information structures, extensions, conclusions, bibliography. $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \right\}$
Part II:

Strategic customers in models with imperfect information structure

 298

E

 \rightarrow \equiv \rightarrow \rightarrow

Models with imperfect information structure

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

 $2Q$

Models with imperfect information structure

 \bullet $M/M/1$ queue with same dynamics and operational parameters as in Naor's model $(\lambda, \mu \text{ and } \rho)$.

 Ω

Models with imperfect information structure

- \bullet $M/M/1$ queue with same dynamics and operational parameters as in Naor's model $(\lambda, \mu \text{ and } \rho)$.
- Same reward-cost structure $(R \text{ and } C)$.

 Ω

Models with imperfect information structure

- \bullet $M/M/1$ queue with same dynamics and operational parameters as in Naor's model $(\lambda, \mu \text{ and } \rho)$.
- Same reward-cost structure $(R \text{ and } C)$.
- Upon arrival, a customer decides whether to join or balk based on an 'imperfect' observation of the queue length.

 Ω

Models with imperfect information structure

- \bullet $M/M/1$ queue with same dynamics and operational parameters as in Naor's model $(\lambda, \mu \text{ and } \rho)$.
- Same reward-cost structure $(R \text{ and } C)$.
- Upon arrival, a customer decides whether to join or balk based on an 'imperfect' observation of the queue length.
- 'imperfect' observation means that the customer gets some information about the queue length but not its exact value.

 298

Braker

A model with imperfect information structure

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Intro](#page-109-0) [Analysis](#page-145-0) [Numer. Res.](#page-160-0) [Other](#page-175-0)

A model with imperfect information structure

Economou, A. and Kanta, S. (2008) Optimal balking strategies and pricing for the single server Markovian queue with compartmented waiting space. Queueing Systems.

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Intro](#page-109-0) [Analysis](#page-145-0) [Numer. Res.](#page-160-0) [Other](#page-175-0)

A model with imperfect information structure

- Economou, A. and Kanta, S. (2008) Optimal balking strategies and pricing for the single server Markovian queue with compartmented waiting space. Queueing Systems.
- The waiting space of the system is partitioned in compartments of fixed capacity for a customers.

- Economou, A. and Kanta, S. (2008) Optimal balking strategies and pricing for the single server Markovian queue with compartmented waiting space. Queueing Systems.
- The waiting space of the system is partitioned in compartments of fixed capacity for a customers.
- Upon arrival, a customer gets informed about the number of the compartment in which he will enter (N) case) or the position within his compartment (P case).

 290

- Economou, A. and Kanta, S. (2008) Optimal balking strategies and pricing for the single server Markovian queue with compartmented waiting space. Queueing Systems.
- The waiting space of the system is partitioned in compartments of fixed capacity for a customers.
- Upon arrival, a customer gets informed about the number of the compartment in which he will enter (N) case) or the position within his compartment (P case).
- Suppose that a tagged customer arrives at a system with *n* present customers.

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B}$

 290

- Economou, A. and Kanta, S. (2008) Optimal balking strategies and pricing for the single server Markovian queue with compartmented waiting space. Queueing Systems.
- The waiting space of the system is partitioned in compartments of fixed capacity for a customers.
- Upon arrival, a customer gets informed about the number of the compartment in which he will enter (N) case) or the position within his compartment (P case).
- Suppose that a tagged customer arrives at a system with n present customers.
- In the N case, he gets informed about $\lfloor n/a \rfloor + 1$.

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B}$

- Economou, A. and Kanta, S. (2008) Optimal balking strategies and pricing for the single server Markovian queue with compartmented waiting space. Queueing Systems.
- The waiting space of the system is partitioned in compartments of fixed capacity for a customers.
- Upon arrival, a customer gets informed about the number of the compartment in which he will enter (N) case) or the position within his compartment (P case).
- Suppose that a tagged customer arrives at a system with *n* present customers.
- In the N case, he gets informed about $\lfloor n/a \rfloor + 1$.
- In the P case, he gets informed about $(n \mod a) + 1$.

(ロ) (個) (星) (星)

 299

œ

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

メロメ メ都 トメ ヨ トメ ヨメ

重

 299

• Suppose
$$
a = 10
$$
.

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

メロメ メ都 トメ ヨ トメ ヨメ

重

 299

- Suppose $a = 10$.
- \bullet In the N-case, the customer gets informed that his position belongs to the set

 $\left\{ \left. \left(\left. \left| \Phi \right| \right. \right) \left. \left. \left(\left. \left| \Phi \right| \right. \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right)$

4 0 8

- Suppose $a = 10$.
- \bullet In the N-case, the customer gets informed that his position belongs to the set $\{1, 2, \ldots, 10\}$ (first compartment)

 $\left\{ \left. \left(\left. \left| \Phi \right| \right. \right) \left. \left. \left(\left. \left| \Phi \right| \right. \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right)$

4 0 8

- Suppose $a = 10$.
- \bullet In the N-case, the customer gets informed that his position belongs to the set $\{1, 2, \ldots, 10\}$ (first compartment) or to the set

4 0 8

- Suppose $a = 10$.
- \bullet In the N-case, the customer gets informed that his position belongs to the set $\{1, 2, \ldots, 10\}$ (first compartment) or to the set $\{11, 12, \ldots, 20\}$ (second compartment)

- Suppose $a = 10$.
- \bullet In the N-case, the customer gets informed that his position belongs to the set $\{1, 2, \ldots, 10\}$ (first compartment) or to the set $\{11, 12, \ldots, 20\}$ (second compartment) or to the set

 $\mathbf{A} = \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{B}$

- Suppose $a = 10$.
- \bullet In the N-case, the customer gets informed that his position belongs to the set $\{1, 2, \ldots, 10\}$ (first compartment) or to the set $\{11, 12, \ldots, 20\}$ (second compartment) or to the set $\{21, 22, \ldots, 30\}$ (third compartment) etc.

∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

- Suppose $a = 10$.
- \bullet In the N-case, the customer gets informed that his position belongs to the set $\{1, 2, \ldots, 10\}$ (first compartment) or to the set $\{11, 12, \ldots, 20\}$ (second compartment) or to the set $\{21, 22, \ldots, 30\}$ (third compartment) etc.
- \bullet In the P-case, the customer gets informed that his position belongs to the set

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\} \rightarrow \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$

- Suppose $a = 10$.
- \bullet In the N-case, the customer gets informed that his position belongs to the set $\{1, 2, \ldots, 10\}$ (first compartment) or to the set $\{11, 12, \ldots, 20\}$ (second compartment) or to the set $\{21, 22, \ldots, 30\}$ (third compartment) etc.
- \bullet In the P-case, the customer gets informed that his position belongs to the set $\{1, 11, 21, \ldots\}$ (first position)

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\} \rightarrow \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$

- Suppose $a = 10$.
- \bullet In the N-case, the customer gets informed that his position belongs to the set $\{1, 2, \ldots, 10\}$ (first compartment) or to the set $\{11, 12, \ldots, 20\}$ (second compartment) or to the set $\{21, 22, \ldots, 30\}$ (third compartment) etc.
- \bullet In the P-case, the customer gets informed that his position belongs to the set

 $\{1, 11, 21, \ldots\}$ (first position) or to the set

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\} \rightarrow \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$

- Suppose $a = 10$.
- \bullet In the N-case, the customer gets informed that his position belongs to the set $\{1, 2, \ldots, 10\}$ (first compartment) or to the set $\{11, 12, \ldots, 20\}$ (second compartment) or to the set $\{21, 22, \ldots, 30\}$ (third compartment) etc.
- \bullet In the P-case, the customer gets informed that his position belongs to the set $\{1, 11, 21, \ldots\}$ (first position) or to the set
	- $\{2, 12, 22, \ldots\}$ (second position)

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\}$

- Suppose $a = 10$.
- \bullet In the N-case, the customer gets informed that his position belongs to the set $\{1, 2, \ldots, 10\}$ (first compartment) or to the set $\{11, 12, \ldots, 20\}$ (second compartment) or to the set $\{21, 22, \ldots, 30\}$ (third compartment) etc.
- \bullet In the P-case, the customer gets informed that his position belongs to the set $\{1, 11, 21, \ldots\}$ (first position) or to the set
	- $\{2, 12, 22, \ldots\}$ (second position) or to the set

- 4 母 ト 4 ヨ ト - 4 ヨ ト

- Suppose $a = 10$.
- \bullet In the N-case, the customer gets informed that his position belongs to the set $\{1, 2, \ldots, 10\}$ (first compartment) or to the set $\{11, 12, \ldots, 20\}$ (second compartment) or to the set $\{21, 22, \ldots, 30\}$ (third compartment) etc.
- \bullet In the P-case, the customer gets informed that his position belongs to the set $\{1, 11, 21, \ldots\}$ (first position) or to the set
	- $\{2, 12, 22, \ldots\}$ (second position) or to the set

 $\{3, 13, 23, \ldots\}$ (third compartment) etc.

イロト イ母 ト イヨ ト イヨ ト

メロメ メ都 トメ ヨ トメ ヨメ

重

 298

メロト メタト メミト メミト

 298

活

Extreme cases

• *n*: number of present customers.

K 御 × × 唐 × × 唐 ×

4 0 8

 298

E

Extreme cases

- \bullet *n*: number of present customers.
- *N* case information: compartment number $\vert n/a \vert + 1$.

医牙骨下的

 $2Q$

Extreme cases

- \bullet *n*: number of present customers.
- *N* case information: compartment number $n/a + 1$. The customer gets a rough estimate of his position:

- \bullet *n*: number of present customers.
- N case information: compartment number $|n/a| + 1$. The customer gets a rough estimate of his position: He knows if it will belong to $\{1, 2, \ldots, a\}$ or to ${a+1, a+2, \ldots, 2a}$ or to ${2a+1, 2a+2, \ldots, 3a}$ and so on.

医阿里氏阿里

- \bullet *n*: number of present customers.
- N case information: compartment number $|n/a| + 1$. The customer gets a rough estimate of his position: He knows if it will belong to $\{1, 2, \ldots, a\}$ or to ${a+1, a+2, \ldots, 2a}$ or to ${2a+1, 2a+2, \ldots, 3a}$ and so on.
- \bullet P case information: compartment position (n) mod a) + 1.

- \bullet *n*: number of present customers.
- N case information: compartment number $|n/a| + 1$. The customer gets a rough estimate of his position: He knows if it will belong to $\{1, 2, \ldots, a\}$ or to ${a+1, a+2, \ldots, 2a}$ or to ${2a+1, 2a+2, \ldots, 3a}$ and so on.
- \bullet P case information: compartment position (n) mod a) + 1.
- $a = 1$: N case = Observable $M/M/1$ (Naor).

- \bullet *n*: number of present customers.
- N case information: compartment number $|n/a| + 1$. The customer gets a rough estimate of his position: He knows if it will belong to $\{1, 2, \ldots, a\}$ or to ${a+1, a+2, \ldots, 2a}$ or to ${2a+1, 2a+2, \ldots, 3a}$ and so on.
- \bullet P case information: compartment position (n) mod a) + 1.
- $a = 1$: N case = Observable $M/M/1$ (Naor). P case = Unobservable $M/M/1$ (E&H).

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\} \rightarrow \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$

つへへ

- \bullet *n*: number of present customers.
- N case information: compartment number $|n/a| + 1$. The customer gets a rough estimate of his position: He knows if it will belong to $\{1, 2, \ldots, a\}$ or to ${a+1, a+2, \ldots, 2a}$ or to ${2a+1, 2a+2, \ldots, 3a}$ and so on.
- \bullet P case information: compartment position (n) mod a) + 1.
- $a = 1$: N case = Observable $M/M/1$ (Naor). P case = Unobservable $M/M/1$ (E&H).
- $a \to \infty$: N case = Unobservable $M/M/1$ (E&H).

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\} \rightarrow \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$

つへへ
Extreme cases

- \bullet *n*: number of present customers.
- N case information: compartment number $|n/a| + 1$. The customer gets a rough estimate of his position: He knows if it will belong to $\{1, 2, \ldots, a\}$ or to ${a+1, a+2, \ldots, 2a}$ or to ${2a+1, 2a+2, \ldots, 3a}$ and so on.
- \bullet P case information: compartment position (n) mod a) + 1.
- $a = 1$: N case = Observable $M/M/1$ (Naor). P case = Unobservable $M/M/1$ (E&H). • $a \to \infty$: N case = Unobservable $M/M/1$ (E&H).
	- P case = Observable $M/M/1$ (Naor).

 $\left\{ \left. \left(\left. \left(\mathbf{q} \right) \right| \right. \right. \right\} \left. \left. \left. \left(\mathbf{q} \right) \right| \right. \right.$

つへへ

4. 0. 8.

K 御 ▶ | K 唐 ▶ | K 唐 ▶

 298

活

N case - Equilibrium

つへへ

N case - Equilibrium

Theorem

An individual's optimizing strategy for a customer that gets informed that will be placed in the compartment i is the **threshold** strategy that prescribes to join if $i \leq i_e^N$ with $i_e^N = \lfloor x_e^N \rfloor$, with

$$
x_e^N = \begin{cases} \frac{R\mu}{aC} + \frac{1}{1-\rho^a} - \frac{1}{a(1-\rho)} & \text{if } \rho \neq 1, \\ \frac{R\mu}{aC} + \frac{a-1}{2a} & \text{if } \rho = 1. \end{cases}
$$

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

つへへ

N case - Equilibrium

Theorem

An individual's optimizing strategy for a customer that gets informed that will be placed in the compartment i is the **threshold** strategy that prescribes to join if $i \leq i_e^N$ with $i_e^N = \lfloor x_e^N \rfloor$, with

$$
x_e^N = \begin{cases} \frac{R\mu}{aC} + \frac{1}{1-\rho^a} - \frac{1}{a(1-\rho)} & \text{if } \rho \neq 1, \\ \frac{R\mu}{aC} + \frac{a-1}{2a} & \text{if } \rho = 1. \end{cases}
$$

This is the unique equilibrium strategy within the set of pure strategies.

 298

N case - Social optimization

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 3.

K 御 ▶ (K 重) → (重

 \mathbf{p} 活

N case - Social optimization

Theorem

The social benefit function $S_{\text{soc}}^N(i)$ is unimodal.

N case - Social optimization

Theorem

The social benefit function $S_{\text{soc}}^N(i)$ is unimodal. Its unique maximum is attained for

$$
i_{soc}^N = \lfloor x_{soc}^N \rfloor
$$

where x_{soc}^N is the unique solution of $g(x) = x_e^N$, with

$$
g(x) = \begin{cases} \frac{(xa+1)(1-\rho^a)-a(1-\rho^{xa+1})}{a(1-\rho)(1-\rho^a)} + \frac{1}{1-\rho^a} - \frac{1}{a(1-\rho)} & \text{if } \rho \neq 1\\ \frac{a}{2}x^2 - \frac{a-2}{2}x & \text{if } \rho = 1. \end{cases}
$$

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

 $\alpha \alpha$

N case - Social optimization

Theorem

The social benefit function $S_{\text{soc}}^N(i)$ is unimodal. Its unique maximum is attained for

$$
i_{soc}^N = \lfloor x_{soc}^N \rfloor
$$

where x_{soc}^N is the unique solution of $g(x) = x_e^N$, with

$$
g(x) = \begin{cases} \frac{(xa+1)(1-\rho^a)-a(1-\rho^{xa+1})}{a(1-\rho)(1-\rho^a)} + \frac{1}{1-\rho^a} - \frac{1}{a(1-\rho)} & \text{if } \rho \neq 1\\ \frac{a}{2}x^2 - \frac{a-2}{2}x & \text{if } \rho = 1. \end{cases}
$$

Moreover:

$$
i_{soc}^N \le i_e^N.
$$

Individual optimization leads to longer queues than are socially desired.

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

 290

4. 0. 8.

④ → → 君→ → 君→

 $2Q$

活

N case - Profit maximization

 2990

N case - Profit maximization

Theorem

The unique profit-optimizing threshold i_{prof}^N that maximizes $S^N_{prof}(i)$ is given by

$$
i_{prof}^{N} = \lfloor x_{prof}^{N} \rfloor
$$

where x_{proj}^N is the unique solution of the equation $h(x) = x_e^N$ in $[1, \infty]$ with

$$
h(x) = \begin{cases} x + \frac{(1 - \rho^{xa-a})(1 - \rho^{xa+1})}{\rho^{xa-a}(1 - \rho)(1 - \rho^a)}, & \text{if } \rho \neq 1 \\ x + (x - 1)(xa + 1), & \text{if } \rho = 1. \end{cases}
$$

 2990

N case - Profit maximization

Theorem

The unique profit-optimizing threshold i_{prof}^N that maximizes $S^N_{prof}(i)$ is given by

$$
i_{prof}^{N} = \lfloor x_{prof}^{N} \rfloor
$$

where x_{proj}^N is the unique solution of the equation $h(x) = x_e^N$ in $[1, \infty]$ with

$$
h(x) = \begin{cases} x + \frac{(1 - \rho^{xa-a})(1 - \rho^{xa+1})}{\rho^{xa-a}(1 - \rho)(1 - \rho^a)}, & \text{if } \rho \neq 1 \\ x + (x - 1)(xa + 1), & \text{if } \rho = 1. \end{cases}
$$

Moreover,

$$
i_{prof}^N \le i_{soc}^N \le i_e^N.
$$

メロメ メ御き メミメ メミメ

重

 $2Q$

P case - Results

 $2Q$

- イヨート

P case - Results

The best response of a customer against any strategy of the others is always a (mixed) threshold strategy.

 \rightarrow \equiv \rightarrow \rightarrow

 $2Q$

P case - Results

- The best response of a customer against any strategy of the others is always a (mixed) threshold strategy.
- The equilibrium strategies are of (mixed) threshold type.

 $2Q$

P case - Results

- The best response of a customer against any strategy of the others is always a (mixed) threshold strategy.
- The equilibrium strategies are of (mixed) threshold type.
- The equilibrium strategy is unique, if we exclude some very special values of the parameters (R being an integer multiple of $\frac{C}{\mu}$).

 Ω

P case - Results

- The best response of a customer against any strategy of the others is always a (mixed) threshold strategy.
- The equilibrium strategies are of (mixed) threshold type.
- The equilibrium strategy is unique, if we exclude some very special values of the parameters (R being an integer multiple of $\frac{C}{\mu}$).
- The equilibrium, social optimizing and profit maximizing thresholds can be computed in closed form.

メロメ メ御き メミメ メミメ

重

 $2Q$

Numerical results I

4 0 8

 299

Numerical results I

Figure 1: Optimal thresholds with respect to $R - N$ case

メロメ メ御き メミメ メミメ

重

 298

Numerical results II

 298

Þ

Numerical results II

• Scenario: $\lambda = 0.7$, $\mu = 1$, $a = 4$, $C = 1$.

4 0 8

す ヨ メ ミ メ イ ミ メ

← イヨート

4 0 8

 $2Q$

- Scenario: $\lambda = 0.7$, $\mu = 1$, $a = 4$, $C = 1$.
- The three thresholds are all increasing ladder functions of R.

 $2Q$

- Scenario: $\lambda = 0.7$, $\mu = 1$, $a = 4$, $C = 1$.
- The three thresholds are all increasing ladder functions of R.
- The individual optimal threshold increases more rapidly than the other optimal thresholds. Its increase is almost linear in R.

 $2Q$

- Scenario: $\lambda = 0.7$, $\mu = 1$, $a = 4$, $C = 1$.
- The three thresholds are all increasing ladder functions of R.
- The individual optimal threshold increases more rapidly than the other optimal thresholds. Its increase is almost linear in R.
- The other two thresholds increase almost logarithmically in R.

メロメ メ御き メミメ メミメ

重

 298

Numerical results III

 $2Q$

Numerical results III

Figure 2: Optimal social benefit and administrator's profit with respect to $a - N$ case

メロメ メ御き メミメ メミメ

重

 298

Numerical results IV

メロメ メ御き メミメ メミメ

重

 298

Numerical results IV

• Scenario:
$$
\lambda = 0.9
$$
, $\mu = 1$, $R = 25$, $C = 1$.

∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 $2Q$

- Scenario: $\lambda = 0.9, \mu = 1, R = 25, C = 1.$
- For $a = 1$ which corresponds to full information, the optimal social benefit is high, while the administrator's profit attains its minimum value.

∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 $2Q$

- Scenario: $\lambda = 0.9, \mu = 1, R = 25, C = 1.$
- For $a = 1$ which corresponds to full information, the optimal social benefit is high, while the administrator's profit attains its minimum value.
- \bullet For small values of a the difference of the two functions is positive, whereas for greater values of a the two functions coincide.

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B}$

 $2Q$

- Scenario: $\lambda = 0.9, \mu = 1, R = 25, C = 1.$
- For $a = 1$ which corresponds to full information, the optimal social benefit is high, while the administrator's profit attains its minimum value.
- \bullet For small values of a the difference of the two functions is positive, whereas for greater values of a the two functions coincide.
- There is a value of $a (a = 7)$, such that the administrator's profit is maximized and then it decreases. This is in some sense the 'ideal' compartment size for the administrator.

 $2Q$

- Scenario: $\lambda = 0.9, \mu = 1, R = 25, C = 1.$
- For $a = 1$ which corresponds to full information, the optimal social benefit is high, while the administrator's profit attains its minimum value.
- \bullet For small values of a the difference of the two functions is positive, whereas for greater values of a the two functions coincide.
- There is a value of $a (a = 7)$, such that the administrator's profit is maximized and then it decreases. This is in some sense the 'ideal' compartment size for the administrator.
- Take-away message: The administrator can improve its profit by an adequate selection of the compartment size. $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 299

 \rightarrow \equiv \rightarrow \rightarrow

Other models with imperfect information structure

医阿里氏阿里

 $2Q$

Other models with imperfect information structure

Guo, P. and Zipkin, P. (2009) The effects of the availability of waiting-time information on the balking queue. Eur. J. Oper. Res.

医阿里氏阿里氏

 $2Q$

Other models with imperfect information structure

Guo, P. and Zipkin, P. (2009) The effects of the availability of waiting-time information on the balking queue. Eur. J. Oper. Res. The nonnegative integers are partitioned into intervals and a customer is informed about the interval that contains the queue length at the time of his arrival.

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\} \rightarrow \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$

 $2Q$

Other models with imperfect information structure

- Guo, P. and Zipkin, P. (2009) The effects of the availability of waiting-time information on the balking queue. Eur. J. Oper. Res. The nonnegative integers are partitioned into intervals and a customer is informed about the interval that contains the queue length at the time of his arrival.
- Altman, E. and Jimenez, T. (2013) Admission control to a $M/M/1$ queue with partial information. Proceedings of 20th ASMTA Conference.

[Intro](#page-109-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) Intro [Analysis](#page-145-0) [Numer. Res.](#page-160-0) [Other](#page-175-0)

- 4 母 ト 4 ヨ ト - 4 ヨ ト

 $2Q$

Other models with imperfect information structure

Guo, P. and Zipkin, P. (2009) The effects of the availability of waiting-time information on the balking queue. Eur. J. Oper. Res. The nonnegative integers are partitioned into intervals and a customer is informed about the interval that

contains the queue length at the time of his arrival.

Altman, E. and Jimenez, T. (2013) Admission control to a $M/M/1$ queue with partial information. Proceedings of 20th ASMTA Conference. The customers get informed whether the queue size is smaller than some L or not.
Part III:

Strategic customers in models with delayed information structure

 Ω

 298

E

人名意 医气体 Þ

 \blacksquare

 \rightarrow \equiv \rightarrow \rightarrow

 $2Q$

Models with delayed information structure

 \bullet $M/M/1$ queue with same dynamics and operational parameters as in Naor's model $(\lambda, \mu \text{ and } \rho)$.

 $2Q$

- \bullet $M/M/1$ queue with same dynamics and operational parameters as in Naor's model $(\lambda, \mu \text{ and } \rho)$.
- Same reward-cost structure $(R \text{ and } C)$.

 Ω

- \bullet $M/M/1$ queue with same dynamics and operational parameters as in Naor's model $(\lambda, \mu \text{ and } \rho)$.
- Same reward-cost structure $(R \text{ and } C)$.
- Upon arrival, a customer decides whether to join or balk without observing the queue length.

 $2Q$

- \bullet $M/M/1$ queue with same dynamics and operational parameters as in Naor's model $(\lambda, \mu \text{ and } \rho)$.
- Same reward-cost structure $(R \text{ and } C)$.
- Upon arrival, a customer decides whether to join or balk without observing the queue length.
- Later, the customer gets informed about the queue length.

 298

E

A Brand Þ

A model with delayed information structure

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

KIND RIVER

 $2Q$

A model with delayed information structure

Burnetas, A., Economou, A. and Vasiliadis, G. (2015) Strategic balking behavior in a queueing system with delayed observations.

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Intro](#page-181-0) [Reneging](#page-197-0) [Balking](#page-202-0) [Analysis](#page-208-0) [Results](#page-237-0) [Other](#page-243-0)

 $2Q$

- Burnetas, A., Economou, A. and Vasiliadis, G. (2015) Strategic balking behavior in a queueing system with delayed observations.
- \bullet $M/M/1$ queue with same dynamics and operational parameters as in Naor's model $(\lambda, \mu \text{ and } \rho)$.

∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 $2Q$

- Burnetas, A., Economou, A. and Vasiliadis, G. (2015) Strategic balking behavior in a queueing system with delayed observations.
- \bullet $M/M/1$ queue with same dynamics and operational parameters as in Naor's model $(\lambda, \mu \text{ and } \rho)$.
- Same reward-cost structure $(R \text{ and } C)$.

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\} \rightarrow \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$

 $2Q$

- Burnetas, A., Economou, A. and Vasiliadis, G. (2015) Strategic balking behavior in a queueing system with delayed observations.
- \bullet $M/M/1$ queue with same dynamics and operational parameters as in Naor's model $(\lambda, \mu \text{ and } \rho)$.
- Same reward-cost structure $(R \text{ and } C)$.
- The administrator of the system announces to all customers their positions in the system, every $Exp(\theta)$ time units.

イロト イ母 ト イヨ ト イヨ ト

 $2Q$

- Burnetas, A., Economou, A. and Vasiliadis, G. (2015) Strategic balking behavior in a queueing system with delayed observations.
- \bullet $M/M/1$ queue with same dynamics and operational parameters as in Naor's model $(\lambda, \mu \text{ and } \rho)$.
- Same reward-cost structure $(R \text{ and } C)$.
- The administrator of the system announces to all customers their positions in the system, every $Exp(\theta)$ time units.
- Upon arrival, each customer decides whether to join or balk, without observing the system.

イロト イ母 ト イヨ ト イヨ ト

 $2Q$

- Burnetas, A., Economou, A. and Vasiliadis, G. (2015) Strategic balking behavior in a queueing system with delayed observations.
- \bullet $M/M/1$ queue with same dynamics and operational parameters as in Naor's model $(\lambda, \mu \text{ and } \rho)$.
- Same reward-cost structure $(R \text{ and } C)$.
- The administrator of the system announces to all customers their positions in the system, every $Exp(\theta)$ time units.
- Upon arrival, each customer decides whether to join or balk, without observing the system.
- Joining customers may decide to renege at any later time.

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

メロメ メ御き メミメ メミメ

重

The system is initially unobservable, but it becomes observable for any given customer after an $Exp(\theta)$ announcement time.

医牙骨下的

- The system is initially unobservable, but it becomes observable for any given customer after an $Exp(\theta)$ announcement time.
- $\bullet \theta \rightarrow 0$: Delayed model = Unobservable $M/M/1$ $(E&H)$.

(御) (唐) (唐)

- The system is initially unobservable, but it becomes observable for any given customer after an $Exp(\theta)$ announcement time.
- $\bullet \theta \rightarrow 0$: Delayed model = Unobservable $M/M/1$ $(E&H)$.
- $\bullet \theta \rightarrow \infty$: Delayed model = Observable $M/M/1$ (Naor).

∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Reneging

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

メロメ メ御き メミメ メミメ

重

Reneging

Because of the exponentiallity assumptions, the customers may renege only at announcement instants.

 298

E

医阿里氏阿里

 \leftarrow

 \rightarrow \equiv \rightarrow \rightarrow

 299

Reneging

- Because of the exponentiallity assumptions, the customers may renege only at announcement instants.
- Because of the FCFS discipline & the full observation, they may renege only after the first announcement.

医阿里氏阿里氏

 $2Q$

Reneging

- Because of the exponentiallity assumptions, the customers may renege only at announcement instants.
- Because of the FCFS discipline & the full observation, they may renege only after the first announcement.
- A customer stays after the first announcement, if his position *n* at the system is such that $R - C_m$ $\frac{n}{\mu}>0.$

 $2Q$

Reneging

- Because of the exponentiallity assumptions, the customers may renege only at announcement instants.
- Because of the FCFS discipline & the full observation, they may renege only after the first announcement.
- A customer stays after the first announcement, if his position *n* at the system is such that $R - C_m$ $\frac{n}{\mu}>0.$
- The best strategy of a customer taking into account the reaction of the others is to stay if his position n at the first announcement is such that

$$
n\leq n_{e},
$$

with

$$
n_e = \lfloor \frac{\mu R}{C} \rfloor \text{ (Naor's threshold)}.
$$

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

メロメ メ御き メミメ メミメ

重

The system is unobservable at arrival instants.

4. 0. 3.

④ → → 君→ → 君→

 298

活

- The system is unobservable at arrival instants.
- The strategic behavior of a customer regarding joining/balking is specified by a joining probability q_* .

医阿里氏阿里

- The system is unobservable at arrival instants.
- The strategic behavior of a customer regarding joining/balking is specified by a joining probability q_* .
- Suppose that all customers use a reneging threshold n_* and joining probability q_* .

- The system is unobservable at arrival instants.
- The strategic behavior of a customer regarding joining/balking is specified by a joining probability q_* .
- Suppose that all customers use a reneging threshold n_* and joining probability q_* .
- Under this (n_*, q_*) strategy the number of customers in the system is a CTMC with diagram

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\} \rightarrow \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$

- The system is unobservable at arrival instants.
- The strategic behavior of a customer regarding joining/balking is specified by a joining probability q_* .
- Suppose that all customers use a reneging threshold n_* and joining probability q_* .
- Under this (n_*, q_*) strategy the number of customers in the system is a CTMC with diagram

4 0 8

- イヨト イ

 299

E

De la Car

Stationary distrib. of the number of customers

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Intro](#page-181-0) [Reneging](#page-197-0) [Balking](#page-202-0) [Analysis](#page-213-0) [Results](#page-237-0) [Other](#page-243-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

重

 299

Stationary distrib. of the number of customers

Proposition

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

 299

E

Stationary distrib. of the number of customers

Proposition

Stationary distribution of the number of customers:

4. 0. 3.

4 同下

 299

E

Stationary distrib. of the number of customers

Proposition

Stationary distribution of the number of customers:

$$
\pi_n = \pi_n(n_*, q_*) = \begin{cases} B_* \rho_{*1}^n & \text{if } 0 \le n \le n_* - 1, \\ B_* \rho_{*1}^{n_*} \rho_{*2}^{n-n_*} & \text{if } n \ge n_*, \end{cases}
$$

4. 0. 8.

4 同下

一本 三 下

K ロ ト K 何 ト K ヨ ト K

÷.

E

 299

Stationary distrib. of the number of customers

Proposition

Stationary distribution of the number of customers:

$$
\pi_n = \pi_n(n_*, q_*) = \begin{cases} B_* \rho_{*1}^n & \text{if } 0 \le n \le n_* - 1, \\ B_* \rho_{*1}^{n_*} \rho_{*2}^{n-n_*} & \text{if } n \ge n_*, \end{cases}
$$

where

$$
\rho_{*1}=\frac{\lambda q_*}{\mu},\ \rho_{*2}=\frac{\lambda q_*+\mu+\theta-\sqrt{(\lambda q_*+\mu+\theta)^2-4\lambda q_*\mu}}{2\mu}
$$

Stationary distrib. of the number of customers

Proposition

Stationary distribution of the number of customers:

$$
\pi_n = \pi_n(n_*, q_*) = \begin{cases} B_* \rho_{*1}^n & \text{if } 0 \le n \le n_* - 1, \\ B_* \rho_{*1}^{n_*} \rho_{*2}^{n-n_*} & \text{if } n \ge n_*, \end{cases}
$$

where

$$
\rho_{*1} = \frac{\lambda q_*}{\mu}, \ \rho_{*2} = \frac{\lambda q_* + \mu + \theta - \sqrt{(\lambda q_* + \mu + \theta)^2 - 4\lambda q_* \mu}}{2\mu}
$$

and

$$
B_* = \frac{(1 - \rho_{*1})(1 - \rho_{*2})}{1 - \rho_{*2} - \rho_{*1}^{n_*+1} + \rho_{*1}^{n_*}\rho_{*2}}.
$$

イロト イ押ト イヨト イヨト

 $2Q$

E

 298

活

医阿里氏阿里

 \leftarrow

∢ ⊜⊺

Stationary mean number of customers

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

 $2Q$

Stationary mean number of customers

Proposition (continued)

The mean stationary number of customers in system is

$$
\mathbb{E}_{(n_*,q_*)}(N) = \frac{(1-\rho_{*2})[(n_*-1)\rho_{*1}^{n_*+1} - n_*\rho_{*1}^{n_*} + \rho_{*1}]}{(1-\rho_{*1})[1-\rho_{*2} - \rho_{*1}^{n_*+1} + \rho_{*1}^{n_*}\rho_{*2}]} + \frac{(1-\rho_{*1})[n_*\rho_{*1}^{n_*} - (n_*-1)\rho_{*1}^{n_*}\rho_{*2}]}{(1-\rho_{*2})[1-\rho_{*2} - \rho_{*1}^{n_*+1} + \rho_{*1}^{n_*}\rho_{*2}]}.
$$
活

Conditional expected net benefit

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 8

∢ ⊜⊺

어때 동어때 동

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Intro](#page-181-0) [Reneging](#page-197-0) [Balking](#page-202-0) [Analysis](#page-208-0) [Results](#page-237-0) [Other](#page-243-0)

 299

E

Conditional expected net benefit

Proposition

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 3.

 $\left\{ \left. \left(\left. \left| \Phi \right| \right. \right) \left. \left. \left(\left. \left| \Phi \right| \right. \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right)$

KABRA

 $2Q$

Conditional expected net benefit

Proposition

Suppose that the customers follow an (n_*, q_*) strategy.

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

 $2Q$

ik ⊞i⊁iki

Conditional expected net benefit

Proposition

Suppose that the customers follow an (n_*, q_*) strategy. Consider a tagged customer that finds n customers upon arrival

Conditional expected net benefit

Proposition

Suppose that the customers follow an (n_*, q_*) strategy. Consider a tagged customer that finds n customers upon arrival (but he does not know about it).

つへへ

Conditional expected net benefit

Proposition

Suppose that the customers follow an (n_*, q_*) strategy. Consider a tagged customer that finds n customers upon arrival (but he does not know about it). The conditional expected net benefit of the tagged, if he decides to join is

つへへ

Conditional expected net benefit

Proposition

Suppose that the customers follow an (n_*, q_*) strategy. Consider a tagged customer that finds n customers upon arrival (but he does not know about it). The conditional expected net benefit of the tagged, if he decides to join is

$$
\mathcal{U}(n|n_{*}) = \begin{cases} R - \frac{C(n+1)}{\mu} & \text{if } n < n_{*}, \\ \left(R - \frac{Cn_{*}}{\mu} + \frac{C}{\theta}\right) \left(\frac{\mu}{\mu+\theta}\right)^{n-n_{*}+1} - \frac{C}{\theta}, & \text{if } n \geq n_{*}. \end{cases}
$$

つへへ

Conditional expected net benefit

Proposition

Suppose that the customers follow an (n_*, q_*) strategy. Consider a tagged customer that finds n customers upon arrival (but he does not know about it). The conditional expected net benefit of the tagged, if he decides to join is

$$
\mathcal{U}(n|n_{*}) = \begin{cases} R - \frac{C(n+1)}{\mu} & \text{if } n < n_{*}, \\ \left(R - \frac{Cn_{*}}{\mu} + \frac{C}{\theta}\right) \left(\frac{\mu}{\mu+\theta}\right)^{n-n_{*}+1} - \frac{C}{\theta}, & \text{if } n \geq n_{*}. \end{cases}
$$

• $\mathcal{U}(n|n_{*})$ does not depend on λ nor on q_{*} .

Unconditional expected net benefit

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 8

∢ ⊜⊺

医牙骨下的

÷.

活

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Intro](#page-181-0) [Reneging](#page-197-0) [Balking](#page-202-0) [Analysis](#page-208-0) [Results](#page-237-0) [Other](#page-243-0)

 299

Þ

KABKA

E

Unconditional expected net benefit

Theorem

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 3.

∢母

 $2Q$

Unconditional expected net benefit

Theorem

Unconditional net benefit of a customer that decides to join given than the others follow a strategy (n_*, a_*) :

 $2Q$

Unconditional expected net benefit

Theorem

Unconditional net benefit of a customer that decides to join given than the others follow a strategy (n_*, q_*) :

$$
\mathcal{U}(n_*, q_*) = B_* \left(R - \frac{C}{\mu} \right) \frac{1 - \rho_{*1}^{n_*}}{1 - \rho_{*1}} \n- B_* \frac{C}{\mu} \frac{(n_* - 1)\rho_{*1}^{n_* + 1} - n_* \rho_{*1}^{n_*} + \rho_{*1}}{(1 - \rho_{*1})^2} \n+ B_* \left(R - \frac{Cn_*}{\mu} + \frac{C}{\theta} \right) \frac{\mu \rho_{*1}^{n_*}}{\mu + \theta - \mu \rho_{*2}} \n- B_* \frac{C}{\theta} \frac{\rho_{*1}^{n_*}}{1 - \rho_{*2}}.
$$

 Ω

Unconditional expected net benefit

Theorem

Unconditional net benefit of a customer that decides to join given than the others follow a strategy (n_*, q_*) :

$$
\mathcal{U}(n_*, q_*) = B_* \left(R - \frac{C}{\mu} \right) \frac{1 - \rho_{*1}^{n_*}}{1 - \rho_{*1}} \n- B_* \frac{C}{\mu} \frac{(n_* - 1)\rho_{*1}^{n_*+1} - n_*\rho_{*1}^{n_*} + \rho_{*1}}{(1 - \rho_{*1})^2} \n+ B_* \left(R - \frac{Cn_*}{\mu} + \frac{C}{\theta} \right) \frac{\mu \rho_{*1}^{n_*}}{\mu + \theta - \mu \rho_{*2}} \n- B_* \frac{C}{\theta} \frac{\rho_{*1}^{n_*}}{1 - \rho_{*2}}.
$$

• $\mathcal{U}(n_*, q_*)$ $\mathcal{U}(n_*, q_*)$ $\mathcal{U}(n_*, q_*)$ is d[e](#page-223-0)creasing in q_* for an[y](#page-227-0) [fix](#page-229-0)e[d](#page-224-0) n_* [.](#page-208-0)

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

活

Equilibrium strategies

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 8.

④ ト イヨト イヨ

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Intro](#page-181-0) [Reneging](#page-197-0) [Balking](#page-202-0) [Analysis](#page-208-0) [Results](#page-237-0) [Other](#page-243-0)

 299

Equilibrium strategies

Theorem

Let
$$
n_e = \lfloor \frac{\mu R}{C} \rfloor
$$
.

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 3.

∢母

医牙骨下的

÷.

E

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Intro](#page-181-0) [Reneging](#page-197-0) [Balking](#page-202-0) [Analysis](#page-208-0) [Results](#page-237-0) [Other](#page-243-0)

 299

Equilibrium strategies

Theorem

Let
$$
n_e = \lfloor \frac{\mu R}{C} \rfloor
$$
.
Case I: $\mathcal{U}(n_e, 0) \leq 0$.

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 3.

∢母

 \triangleright and \triangleright and \triangleright

Þ

E

Equilibrium strategies

Theorem

Let
$$
n_e = \lfloor \frac{\mu R}{C} \rfloor
$$
.
Case I: $\mathcal{U}(n_e, 0) \leq 0$. The unique equilibrium is $(n_e, 0)$.

4. 0. 3.

∢母

 \triangleright and \triangleright and \triangleright

Þ

E

Þ

E

Equilibrium strategies

Theorem

Let
$$
n_e = \lfloor \frac{\mu R}{C} \rfloor
$$
.
Case I: $\mathcal{U}(n_e, 0) \leq 0$. The unique equilibrium is $(n_e, 0)$.
Case II: $\mathcal{U}(n_e, 1) < 0 < \mathcal{U}(n_e, 0)$.

4. 0. 3.

∢母 \rightarrow - イヨト イ

 $2Q$

Equilibrium strategies

Theorem

Let $n_e = \lfloor \frac{\mu R}{C} \rfloor$ $\frac{\iota R}{C}$. Case I: $\mathcal{U}(n_e, 0) \leq 0$. The unique equilibrium is $(n_e, 0)$. Case II: $\mathcal{U}(n_e, 1) < 0 < \mathcal{U}(n_e, 0)$. The unique equilibrium is (n_e, q_e) , where q_e is the unique solution of the equation $U(x) = 0$

$$
u(n_e,q) = 0
$$

in $(0, 1)$, with respect to q.

 $2Q$

Þ

De la Car

E

Equilibrium strategies

Theorem

Let
$$
n_e = \lfloor \frac{\mu R}{C} \rfloor
$$
.
\nCase I: $\mathcal{U}(n_e, 0) \leq 0$. The unique equilibrium is $(n_e, 0)$.
\nCase II: $\mathcal{U}(n_e, 1) < 0 < \mathcal{U}(n_e, 0)$. The unique
\nequilibrium is (n_e, q_e) , where q_e is the unique
\nsolution of the equation
\n
$$
\mathcal{U}(n_e, q) = 0
$$

\nin $(0, 1)$, with respect to q.

Case III: $\mathcal{U}(n_e, 1) \geq 0$.

 \leftarrow

(A → (E → (E

つへへ

Equilibrium strategies

Theorem

Let $n_e = \lfloor \frac{\mu R}{C} \rfloor$ $\frac{\iota R}{C}$. Case I: $\mathcal{U}(n_e, 0) \leq 0$. The unique equilibrium is $(n_e, 0)$. Case II: $\mathcal{U}(n_e, 1) < 0 < \mathcal{U}(n_e, 0)$. The unique equilibrium is (n_e, q_e) , where q_e is the unique solution of the equation $\mathcal{U}(n_e, q) = 0$ in $(0, 1)$, with respect to q. Case III: $\mathcal{U}(n_e, 1) \geq 0$. The unique equilibrium is $(n_e, 1)$.

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

メロメ メ御き メミメ メミメ

画

 299

• Effect of θ on the equilibrium:

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

 298

活

メロト メタト メミト メミト

• Effect of θ on the equilibrium:

The equilibrium joining probability is an increasing function of θ .

 $\left\{ \frac{1}{100} \right\}$ $\left\{ \frac{1}{100} \right\}$ $\left\{ \frac{1}{100} \right\}$

4 0 8

÷.

 $2Q$

- Effect of θ on the equilibrium: The equilibrium joining probability is an increasing function of θ .
- Effect of θ on the equilibrium throughput:

 $2Q$

- Effect of θ on the equilibrium: The equilibrium joining probability is an increasing function of θ .
- Effect of θ on the equilibrium throughput: The equilibrium throughput is a unimodal funct. of θ .

∢ 何 ▶ . ィヨ ▶ . ィ

 $2Q$

- Effect of θ on the equilibrium: The equilibrium joining probability is an increasing function of θ .
- Effect of θ on the equilibrium throughput: The equilibrium throughput is a unimodal funct. of θ . There exists an 'ideal' announcement rate that maximizes the equilibrium throughput.

 Ω

E

George C

Other models with delayed information structure

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

 $2Q$

Other models with delayed information structure

Allon, G., Bassamboo, A. and Gurvich, I. (2011) 'We will be right with you': Managing customer expectations with vague promises and cheap talk. Oper. Res.

 \triangleright \rightarrow \Rightarrow \rightarrow \rightarrow \Rightarrow

 $2Q$

Other models with delayed information structure

- Allon, G., Bassamboo, A. and Gurvich, I. (2011) 'We will be right with you': Managing customer expectations with vague promises and cheap talk. Oper. Res.
- Allon, G. and Bassamboo, A. (2011) The impact of delaying the delay announcements. Oper. Res.

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\} \rightarrow \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$

 $2Q$

Other models with delayed information structure

- Allon, G., Bassamboo, A. and Gurvich, I. (2011) 'We will be right with you': Managing customer expectations with vague promises and cheap talk. Oper. Res.
- Allon, G. and Bassamboo, A. (2011) The impact of delaying the delay announcements. Oper. Res.
- Roet-Green, R. (2013) Information in Queueing Systems with Strategic Customers. PhD Thesis. Chapter 4: The armchair decision: to depart towards the queue or not.

Part IV: Strategic customers in models with mixed observation structure

 Ω

Þ

 $-4.29 + 4.$ ÷.

4 0 8

Models with mixed observation structure

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

 $2Q$

Models with mixed observation structure

 \bullet $M/M/1$ queue with known dynamics and operational parameters $(\lambda, \mu \text{ and } \rho)$.

 Ω

Models with mixed observation structure

- \bullet $M/M/1$ queue with known dynamics and operational parameters $(\lambda, \mu \text{ and } \rho)$.
- The customers are heterogeneous regarding information and possibly also regarding the rewards, costs.

 Ω

Models with mixed observation structure

- \bullet $M/M/1$ queue with known dynamics and operational parameters $(\lambda, \mu \text{ and } \rho)$.
- The customers are heterogeneous regarding information and possibly also regarding the rewards, costs.
- There are customers that may observe the system and then decide whether to join or balk.
Ω

Models with mixed observation structure

- \bullet $M/M/1$ queue with known dynamics and operational parameters $(\lambda, \mu \text{ and } \rho)$.
- The customers are heterogeneous regarding information and possibly also regarding the rewards, costs.
- There are customers that may observe the system and then decide whether to join or balk.
- There are also customers that cannot observe the system before making their decisions.

Þ

 \rightarrow \equiv \rightarrow \rightarrow ÷.

 \leftarrow

A model with mixed observation structure

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Intro](#page-248-0) O[-cust](#page-265-0) U[-cust](#page-268-0) [Results](#page-274-0) [Other](#page-316-0)

A model with mixed observation structure

Economou, A. and Grigoriou, M. (2015) Strategic balking behavior in a queueing system with a mixed observation structure. Proc. 10th SMMSO Conf., Volos.

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Intro](#page-248-0) O[-cust](#page-265-0) U[-cust](#page-268-0) [Results](#page-274-0) [Other](#page-316-0)

A model with mixed observation structure

- Economou, A. and Grigoriou, M. (2015) Strategic balking behavior in a queueing system with a mixed observation structure. Proc. 10th SMMSO Conf., Volos.
- $M/M/1$ queue (λ, μ, ρ) with 2 types of customers:

 Ω

- Economou, A. and Grigoriou, M. (2015) Strategic balking behavior in a queueing system with a mixed observation structure. Proc. 10th SMMSO Conf., Volos.
- $M/M/1$ queue (λ, μ, ρ) with 2 types of customers:
- Observing customers that see the queue length before deciding whether to join or balk.

- Economou, A. and Grigoriou, M. (2015) Strategic balking behavior in a queueing system with a mixed observation structure. Proc. 10th SMMSO Conf., Volos.
- $M/M/1$ queue (λ, μ, ρ) with 2 types of customers:
- Observing customers that see the queue length before deciding whether to join or balk.
- Uninformed customers.

- Economou, A. and Grigoriou, M. (2015) Strategic balking behavior in a queueing system with a mixed observation structure. Proc. 10th SMMSO Conf., Volos.
- $M/M/1$ queue (λ, μ, ρ) with 2 types of customers:
- Observing customers that see the queue length before deciding whether to join or balk.
- Uninformed customers.
- Each arriving customer is observing with probability p_o or uninformed with probability p_u $(p_o + p_u = 1)$.

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\} \rightarrow \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$

- Economou, A. and Grigoriou, M. (2015) Strategic balking behavior in a queueing system with a mixed observation structure. Proc. 10th SMMSO Conf., Volos.
- $M/M/1$ queue (λ, μ, ρ) with 2 types of customers:
- Observing customers that see the queue length before deciding whether to join or balk.
- Uninformed customers.
- Each arriving customer is observing with probability p_o or uninformed with probability p_u $(p_o + p_u = 1)$.
- Upon arrival, each customer decides to join or balk.

- 4 母 ト 4 ヨ ト - 4 ヨ ト

つへへ

- Economou, A. and Grigoriou, M. (2015) Strategic balking behavior in a queueing system with a mixed observation structure. Proc. 10th SMMSO Conf., Volos.
- $M/M/1$ queue (λ, μ, ρ) with 2 types of customers:
- Observing customers that see the queue length before deciding whether to join or balk.
- Uninformed customers.
- Each arriving customer is observing with probability p_o or uninformed with probability p_u $(p_o + p_u = 1)$.
- Upon arrival, each customer decides to join or balk.
- R_o, R_u : Service rewards for *o*-cust, *u*-cust.

イロト イ母 ト イヨ ト イヨ トー

- Economou, A. and Grigoriou, M. (2015) Strategic balking behavior in a queueing system with a mixed observation structure. Proc. 10th SMMSO Conf., Volos.
- $M/M/1$ queue (λ, μ, ρ) with 2 types of customers:
- Observing customers that see the queue length before deciding whether to join or balk.
- Uninformed customers.
- Each arriving customer is observing with probability p_o or uninformed with probability p_u $(p_o + p_u = 1)$.
- Upon arrival, each customer decides to join or balk.
- R_o, R_u : Service rewards for *o*-cust, *u*-cust.
- \bullet C_o , C_u : Waiting costs per time un[it.](#page-260-0)

Extreme cases

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

メロメ メ御き メミメ メミメ

重

 298

Extreme cases

$p_o = 0$: Mixed model = Unobservable $M/M/1$ (E& H).

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 8.

メ御 トメ ヨ ト メ ヨ ト

 298

活

Extreme cases

 $p_o = 0$: Mixed model = Unobservable $M/M/1$ (E& H). $p_o = 1$: Mixed model = Observable $M/M/1$ (Naor).

(母) マミンマミン

E

4. 0. 3.

K 御 ▶ | K 君 ▶ | K 君 ▶

 298

活

Observing customers

- イヨト イ

Observing customers

 \bullet An *o*-customer joins, if his position *n* at the system (including him) is such that $R_o - C_o \frac{n}{\mu} \ge 0$.

Observing customers

- An o-customer joins, if his position n at the system (including him) is such that $R_o - C_o \frac{n}{\mu} \ge 0$.
- The best strategy of a customer against any strategy of the others is to join, if his position n given that he joins is such that

$$
n\leq n_{e},
$$

with

$$
n_e = \lfloor \frac{\mu R_o}{C_o} \rfloor \text{ (Naor's threshold)}.
$$

メロト メタト メミト メミト

 $2Q$

活

Uninformed customers

 298

Þ

医阿雷氏阿雷氏

4 0 8

Uninformed customers

The system is unobservable for uninformed customers.

- The system is unobservable for uninformed customers.
- The strategic behavior of a *u*-customer regarding joining/balking is specified by a joining probability q_* .

- The system is unobservable for uninformed customers.
- The strategic behavior of a *u*-customer regarding joining/balking is specified by a joining probability q_* .
- Suppose that all *o*-customers follow an n_* -threshold policy and the u-customers use a joining probability q_* .

- The system is unobservable for uninformed customers.
- The strategic behavior of a *u*-customer regarding joining/balking is specified by a joining probability q_* .
- Suppose that all *o*-customers follow an n_* -threshold policy and the u-customers use a joining probability q_* .
- Under this (n_*, q_*) strategy the number of customers in the system is a CTMC with diagram

医毛囊 医牙骨

- The system is unobservable for uninformed customers.
- The strategic behavior of a *u*-customer regarding joining/balking is specified by a joining probability q_* .
- Suppose that all *o*-customers follow an n_* -threshold policy and the u-customers use a joining probability q_* .
- Under this (n_*, q_*) strategy the number of customers in the system is a CTMC with diagram

where $\lambda_{*1} = \lambda p_o + \lambda p_u q_*$, $\lambda_{*2} = \lambda p_u q_*$.

イロト イ押ト イヨト イヨト

 299

E

De la Car

Stationary distrib. of the number of customers

Stationary distrib. of the number of customers

Proposition

Stationary distrib. of the number of customers

Proposition

Stationary distribution of the number of customers:

Stationary distrib. of the number of customers

Proposition

Stationary distribution of the number of customers:

$$
\pi_n = \pi_n(n_*, q_*) = \begin{cases} B_* \rho_{*1}^n & \text{if } 0 \le n \le n_* - 1, \\ B_* \rho_{*1}^{n_*} \rho_{*2}^{n-n_*} & \text{if } n \ge n_*, \end{cases}
$$

Stationary distrib. of the number of customers

Proposition

Stationary distribution of the number of customers:

$$
\pi_n = \pi_n(n_*, q_*) = \begin{cases} B_* \rho_{*1}^n & \text{if } 0 \le n \le n_* - 1, \\ B_* \rho_{*1}^{n_*} \rho_{*2}^{n-n_*} & \text{if } n \ge n_*, \end{cases}
$$

where

$$
\rho_{*1}=\frac{\lambda_{*1}}{\mu},\;\rho_{*2}=\frac{\lambda_{*2}}{\mu}
$$

Stationary distrib. of the number of customers

Proposition

Stationary distribution of the number of customers:

$$
\pi_n = \pi_n(n_*, q_*) = \begin{cases} B_* \rho_{*1}^n & \text{if } 0 \le n \le n_* - 1, \\ B_* \rho_{*1}^{n_*} \rho_{*2}^{n-n_*} & \text{if } n \ge n_*, \end{cases}
$$

where

$$
\rho_{*1} = \frac{\lambda_{*1}}{\mu}, \ \rho_{*2} = \frac{\lambda_{*2}}{\mu}
$$

and

$$
B_* = \frac{(1 - \rho_{*1})(1 - \rho_{*2})}{1 - \rho_{*2} - \rho_{*1}^{n_*+1} + \rho_{*1}^{n_*} \rho_{*2}}.
$$

 298

医牙骨下的

 \blacksquare

÷.

活

Stationary mean number of customers

Stationary mean number of customers

Proposition (continued)

Stationary mean number of customers

Proposition (continued)

The mean stationary number of customers in the system is

 290

Stationary mean number of customers

Proposition (continued)

The mean stationary number of customers in the system is

$$
E_{(n_*,q_*)}(N) = \frac{(1-\rho_{*2})[(n_*-1)\rho_{*1}^{n_*+1} - n_*\rho_{*1}^{n_*} + \rho_{*1}]}{(1-\rho_{*1})[1-\rho_{*2} - \rho_{*1}^{n_*+1} + \rho_{*1}^{n_*}\rho_{*2}]} + \frac{(1-\rho_{*1})[n_*\rho_{*1}^{n_*} - (n_*-1)\rho_{*1}^{n_*}\rho_{*2}]}{(1-\rho_{*2})[1-\rho_{*2} - \rho_{*1}^{n_*+1} + \rho_{*1}^{n_*}\rho_{*2}]}.
$$

 290

Stationary mean number of customers

Proposition (continued)

The mean stationary number of customers in the system is

$$
E_{(n_*,q_*)}(N) = \frac{(1-\rho_{*2})[(n_*-1)\rho_{*1}^{n_*+1} - n_*\rho_{*1}^{n_*} + \rho_{*1}]}{(1-\rho_{*1})[1-\rho_{*2} - \rho_{*1}^{n_*+1} + \rho_{*1}^{n_*}\rho_{*2}]} + \frac{(1-\rho_{*1})[n_*\rho_{*1}^{n_*} - (n_*-1)\rho_{*1}^{n_*}\rho_{*2}]}{(1-\rho_{*2})[1-\rho_{*2} - \rho_{*1}^{n_*+1} + \rho_{*1}^{n_*}\rho_{*2}]}.
$$

4. 0. 3.

K 御 ▶ | K 君 ▶ | K 君 ▶

重

 298

Expected net benefit

メタメ メミメ メミメ

4. 0. 3.

 298

E

Expected net benefit

Proposition

ALCOHOL: YES

×

4 0 8

 $2Q$

Expected net benefit

Proposition

Suppose that the customers follow an (n_*, q_*) strategy.
$2Q$

Expected net benefit

Proposition

Suppose that the customers follow an (n_*, q_*) strategy. Consider a tagged u-customer upon arrival.

 $2Q$

Expected net benefit

Proposition

Suppose that the customers follow an (n_*, q_*) strategy. Consider a tagged u-customer upon arrival. His expected net benefit, if he decides to join is

つへへ

Expected net benefit

Proposition

Suppose that the customers follow an (n_*, q_*) strategy. Consider a tagged u-customer upon arrival. His expected net benefit, if he decides to join is

$$
\mathcal{U}(n_*, q_*) = R_u - C_u \frac{E_{(n_*,q_*)}(N) + 1}{\mu}.
$$

つへへ

Expected net benefit

Proposition

Suppose that the customers follow an (n_*, q_*) strategy. Consider a tagged u-customer upon arrival. His expected net benefit, if he decides to join is

$$
\mathcal{U}(n_*, q_*) = R_u - C_u \frac{E_{(n_*, q_*)}(N) + 1}{\mu}.
$$

 $\mathcal{U}(n_*, q_*)$ is a decreasing function of q_* for any fixed n_* (a coupling argument shows that N is stochastically increasing in q_* .

活

Equilibrium strategies

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 3.

K 御 ▶ (K 重) → (重

Þ \mathbf{p} 重

Equilibrium strategies

Theorem

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 3. ∢母 \rightarrow \sim 41 George C \rightarrow

Þ \mathbf{p} 重

Equilibrium strategies

Theorem

$$
Let n_e = \lfloor \frac{\mu R_o}{C_o} \rfloor,
$$

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 3. ∢母 \rightarrow \sim 41 De la Car

Þ

重

Equilibrium strategies

Theorem

Let
$$
n_e = \lfloor \frac{\mu R_o}{C_o} \rfloor
$$
,
\n $E_0 = E_{(n_e,0)}(N) + 1$ and $E_1 = E_{(n_e,1)}(N) + 1$.

4. 0. 3. ∢母 \rightarrow - イヨト イ

Þ

重

Equilibrium strategies

Theorem

Let
$$
n_e = \lfloor \frac{\mu R_o}{C_o} \rfloor
$$
,
\n $E_0 = E_{(n_e,0)}(N) + 1$ and $E_1 = E_{(n_e,1)}(N) + 1$.
\nCase I: $E_0 \ge \frac{\mu R_u}{C_u}$.

4. 0. 3. ∢母 \rightarrow 一本 草 下

重

Equilibrium strategies

Theorem

Let
$$
n_e = \lfloor \frac{\mu R_o}{C_o} \rfloor
$$
,
\n $E_0 = E_{(n_e,0)}(N) + 1$ and $E_1 = E_{(n_e,1)}(N) + 1$.
\nCase I: $E_0 \ge \frac{\mu R_u}{C_u}$. The unique equilibrium is $(n_e, 0)$.

4. 0. 3. ∢母 \rightarrow \equiv \rightarrow \rightarrow Þ

 \rightarrow

Þ

重

Equilibrium strategies

Theorem

Let
$$
n_e = \lfloor \frac{\mu R_o}{C_o} \rfloor
$$
,
\n $E_0 = E_{(n_e,0)}(N) + 1$ and $E_1 = E_{(n_e,1)}(N) + 1$.
\nCase I: $E_0 \ge \frac{\mu R_u}{C_u}$. The unique equilibrium is $(n_e, 0)$.
\nCase II: $E_0 < \frac{\mu R_u}{C_u} < E_1$.

4. 0. 3. ∢母 \rightarrow 一本 草 下

Equilibrium strategies

Theorem

Let
$$
n_e = \lfloor \frac{\mu R_o}{C_o} \rfloor
$$
,
\n $E_0 = E_{(n_e,0)}(N) + 1$ and $E_1 = E_{(n_e,1)}(N) + 1$.
\nCase I: $E_0 \ge \frac{\mu R_u}{C_u}$. The unique equilibrium is $(n_e, 0)$.
\nCase II: $E_0 < \frac{\mu R_u}{C_u} < E_1$. The unique equilibrium is (n_e, q_e) , where q_e is the unique solution of the equation

$$
E_{(n_e,q)}(N) + 1 = \frac{\mu R_u}{C_u}
$$

 \leftarrow

in $(0, 1)$, with respect to q.

 $2Q$

Equilibrium strategies

Theorem

Let
$$
n_e = \lfloor \frac{\mu R_o}{C_o} \rfloor
$$
,
\n $E_0 = E_{(n_e,0)}(N) + 1$ and $E_1 = E_{(n_e,1)}(N) + 1$.
\nCase I: $E_0 \ge \frac{\mu R_u}{C_u}$. The unique equilibrium is $(n_e, 0)$.
\nCase II: $E_0 < \frac{\mu R_u}{C_u} < E_1$. The unique equilibrium is (n_e, q_e) , where q_e is the unique solution of the equation
\n $E_{(n_e,q)}(N) + 1 = \frac{\mu R_u}{C_u}$

in $(0, 1)$, with respect to q.

Case III: $E_1 \leq \frac{\mu R_u}{C_u}$ $\frac{\iota R_u}{C_u}$.

 \leftarrow

 $2Q$

Equilibrium strategies

Theorem

Let
$$
n_e = \lfloor \frac{\mu R_o}{C_o} \rfloor
$$
,
\n $E_0 = E_{(n_e,0)}(N) + 1$ and $E_1 = E_{(n_e,1)}(N) + 1$.
\nCase I: $E_0 \ge \frac{\mu R_u}{C_u}$. The unique equilibrium is $(n_e, 0)$.
\nCase II: $E_0 < \frac{\mu R_u}{C_u} < E_1$. The unique equilibrium is (n_e, q_e) , where q_e is the unique solution of the equation
\n*E*_(n_e,q) $(N) + 1 = \frac{\mu R_u}{C}$

$$
E_{(n_e,q)}(N) + 1 = \frac{C_u}{C_u}
$$

in $(0, 1)$, with respect to q. Case III: $E_1 \leq \frac{\mu R_u}{C_u}$ $\frac{dH_u}{C_u}$. The unique equilibrium is $(n_e, 1)$.

Social benefit per time unit

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 8

∢ ⊜⊺

医牙骨下的

÷.

活

 298

Social benefit per time unit

The social benefit per time unit under a strategy (n_*, q_*) is

おす 悪 おす

 \leftarrow

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Intro](#page-248-0) O[-cust](#page-265-0) U[-cust](#page-268-0) [Results](#page-274-0) [Other](#page-316-0)

Social benefit per time unit

The social benefit per time unit under a strategy (n_*, q_*) is $S(n_*,q_*) = \sum_{n_*-1}^{n_*-1} \pi_n(n_*,q_*) \lambda p_o$ $n_{*}-1$ $n=0$ $\sqrt{ }$ $R_o - C_o \frac{n+1}{n}$ μ \setminus $+\sum_{n=1}^{\infty} \pi_n(n_*, q_*) \lambda p_u q_*$ $n=0$ $\sqrt{ }$ $R_u - C_u \frac{n+1}{n}$ μ \setminus

.

Social benefit per time unit

- The social benefit per time unit under a strategy (n_*, q_*) is $S(n_*,q_*) = \sum_{n_*-1}^{n_*-1} \pi_n(n_*,q_*) \lambda p_o$ $n_{*}-1$ $n=0$ $\sqrt{ }$ $R_o - C_o \frac{n+1}{n}$ μ \setminus $+\sum_{n=1}^{\infty} \pi_n(n_*, q_*) \lambda p_u q_*$ $n=0$ $\sqrt{ }$ $R_u - C_u \frac{n+1}{n}$ μ \setminus
- It is too complicated to reduce it in closed form and to maximize.

.

Social benefit per time unit

- The social benefit per time unit under a strategy (n_*, q_*) is $S(n_*,q_*) = \sum_{n_*-1}^{n_*-1} \pi_n(n_*,q_*) \lambda p_o$ $n_{*}-1$ $n=0$ $\sqrt{ }$ $R_o - C_o \frac{n+1}{n}$ μ \setminus $+\sum_{n=1}^{\infty} \pi_n(n_*, q_*) \lambda p_u q_*$ $n=0$ $\sqrt{ }$ $R_u - C_u \frac{n+1}{n}$ μ \setminus
- It is too complicated to reduce it in closed form and to maximize.

.

 $2Q$

• For each $n_*=0,1,2,\ldots,n_e$ we find q_* that maximizes $S(n_*, q_*)$ and then choose the one that gives the overall maximum, namely (n_{soc}, q_{soc}) .

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

メロメ メ都 トメ ヨ トメ ヨメ

重

 298

活

Conclusions

• Effect of p_o on the social benefit:

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4 0 8

④ → → 君→ → 君→

メ御き メミメ メミメ

E

 $2Q$

Conclusions

• Effect of p_o on the social benefit: The optimal social benefit per time unit seems to be an increasing or unimodal function of p_o .

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

• Effect of p_o on the social benefit: The optimal social benefit per time unit seems to be an increasing or unimodal function of p_o . There exists a somehow 'ideal' fraction of observing customers for the society.

医阿里氏阿里氏

- Effect of p_o on the social benefit: The optimal social benefit per time unit seems to be an increasing or unimodal function of p_o . There exists a somehow 'ideal' fraction of observing customers for the society.
	- In many cases, it is strictly between 0 and 1.

∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

• Effect of p_o on the social benefit: The optimal social benefit per time unit seems to be an increasing or unimodal function of p_o . There exists a somehow 'ideal' fraction of observing customers for the society.

In many cases, it is strictly between 0 and 1.

• Effect of p_o on the price of anarchy (PoA), defined as

$$
PoA = \frac{S(n_{soc}, q_{soc})}{S(n_e, q_e)}:
$$

(御) (唐) (唐)

• Effect of p_o on the social benefit: The optimal social benefit per time unit seems to be an increasing or unimodal function of p_o . There exists a somehow 'ideal' fraction of observing customers for the society.

In many cases, it is strictly between 0 and 1.

• Effect of p_o on the price of anarchy (PoA), defined as

$$
PoA = \frac{S(n_{soc}, q_{soc})}{S(n_e, q_e)}:
$$

In most cases, PoA is a convex smooth function of p_{α} .

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\}$

• Effect of p_o on the social benefit: The optimal social benefit per time unit seems to be an increasing or unimodal function of p_o . There exists a somehow 'ideal' fraction of observing customers for the society.

In many cases, it is strictly between 0 and 1.

• Effect of p_o on the price of anarchy (PoA), defined as

$$
PoA = \frac{S(n_{soc}, q_{soc})}{S(n_e, q_e)}:
$$

In most cases, PoA is a convex smooth function of p_{α} . Again this shows the existence of an 'ideal' fraction of observing customers for the society.

イ押 トラミン イヨン

• Effect of p_o on the social benefit: The optimal social benefit per time unit seems to be an increasing or unimodal function of p_o . There exists a somehow 'ideal' fraction of observing customers for the society.

In many cases, it is strictly between 0 and 1.

• Effect of p_o on the price of anarchy (PoA), defined as

$$
PoA = \frac{S(n_{soc}, q_{soc})}{S(n_e, q_e)}:
$$

In most cases, PoA is a convex smooth function of p_o . Again this shows the existence of an 'ideal' fraction of observing customers for the society. But there are cases where the graph of PoA [s](#page-315-0)[ho](#page-316-0)[w](#page-247-0)[s](#page-318-0) peculiar be[ha](#page-316-0)vior with very abrupt $\overline{chan\sigma}e^{(\frac{z}{z})+\frac{z}{z}}$ $\overline{chan\sigma}e^{(\frac{z}{z})+\frac{z}{z}}$ $\overline{chan\sigma}e^{(\frac{z}{z})+\frac{z}{z}}$ $\overline{chan\sigma}e^{(\frac{z}{z})+\frac{z}{z}}$ $\overline{chan\sigma}e^{(\frac{z}{z})+\frac{z}{z}}$ Antonis Economou, aeconom@math.uoa.gr

Þ

Britannia э

 \blacksquare

Other models with mixed information structure

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Intro](#page-248-0) O[-cust](#page-265-0) U[-cust](#page-268-0) [Results](#page-274-0) [Other](#page-318-0)

 $2Q$

Other models with mixed information structure

• Hu, Ling and Wang (2014) Efficient ignorance: Information heterogeneity in a queue.

 Ω

Other models with mixed information structure

- Hu, Ling and Wang (2014) Efficient ignorance: Information heterogeneity in a queue.
- Hassin and Roet-Green (2013) Equilibrium in a two dimensional queueing game: When inspecting the queue is costly.

Part V:

Strategic customers in models with partial information structure

 Ω

Models with partial information structure

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

 298

E

 \rightarrow \equiv \rightarrow \rightarrow Þ [Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Intro](#page-329-0) [Results](#page-355-0)

Models with partial information structure

 \bullet $M/M/1$ queue with same dynamics and operational parameters $(\lambda, \mu \text{ and } \rho)$ but with some additional characteristic.

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Intro](#page-329-0) [Results](#page-355-0)

Models with partial information structure

- \bullet $M/M/1$ queue with same dynamics and operational parameters $(\lambda, \mu \text{ and } \rho)$ but with some additional characteristic.
- Additional characteristic regarding the server: setup times, vacations, random environment that influences the arrival/service rates etc.

 Ω

[Intro](#page-1-0) [Imperfect](#page-108-0) [Delayed](#page-180-0) [Mixed](#page-247-0) [Partial](#page-319-0) [Concl](#page-363-0) [Intro](#page-329-0) [Results](#page-355-0)

Models with partial information structure

- \bullet $M/M/1$ queue with same dynamics and operational parameters $(\lambda, \mu \text{ and } \rho)$ but with some additional characteristic.
- Additional characteristic regarding the server: setup times, vacations, random environment that influences the arrival/service rates etc.
- Same reward-cost structure $(R \text{ and } C)$.

 Ω
Models with partial information structure

- \bullet $M/M/1$ queue with same dynamics and operational parameters $(\lambda, \mu \text{ and } \rho)$ but with some additional characteristic.
- Additional characteristic regarding the server: setup times, vacations, random environment that influences the arrival/service rates etc.
- Same reward-cost structure $(R \text{ and } C)$.
- Upon arrival, a customer decides whether to join or balk.

Models with partial information structure

- \bullet $M/M/1$ queue with same dynamics and operational parameters $(\lambda, \mu \text{ and } \rho)$ but with some additional characteristic.
- Additional characteristic regarding the server: setup times, vacations, random environment that influences the arrival/service rates etc.
- Same reward-cost structure $(R \text{ and } C)$.
- Upon arrival, a customer decides whether to join or balk.
- There are various informational cases:

Models with partial information structure

- \bullet $M/M/1$ queue with same dynamics and operational parameters $(\lambda, \mu \text{ and } \rho)$ but with some additional characteristic.
- Additional characteristic regarding the server: setup times, vacations, random environment that influences the arrival/service rates etc.
- Same reward-cost structure $(R \text{ and } C)$.
- Upon arrival, a customer decides whether to join or balk.
- There are various informational cases:
	- ¹ Observe both the queue length and the server's status.

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \right\}$

Models with partial information structure

- \bullet $M/M/1$ queue with same dynamics and operational parameters $(\lambda, \mu \text{ and } \rho)$ but with some additional characteristic.
- Additional characteristic regarding the server: setup times, vacations, random environment that influences the arrival/service rates etc.
- Same reward-cost structure $(R \text{ and } C)$.
- Upon arrival, a customer decides whether to join or balk.
- There are various informational cases:
	- ¹ Observe both the queue length and the server's status.

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \right\}$

 Ω

² Observe only the queue length.

Models with partial information structure

- \bullet $M/M/1$ queue with same dynamics and operational parameters $(\lambda, \mu \text{ and } \rho)$ but with some additional characteristic.
- Additional characteristic regarding the server: setup times, vacations, random environment that influences the arrival/service rates etc.
- Same reward-cost structure $(R \text{ and } C)$.
- Upon arrival, a customer decides whether to join or balk.
- There are various informational cases:
	- ¹ Observe both the queue length and the server's status.

(御) (唐) (唐)

- ² Observe only the queue length.
- ³ Observe only the server's status.

Models with partial information structure

- \bullet $M/M/1$ queue with same dynamics and operational parameters $(\lambda, \mu \text{ and } \rho)$ but with some additional characteristic.
- Additional characteristic regarding the server: setup times, vacations, random environment that influences the arrival/service rates etc.
- Same reward-cost structure $(R \text{ and } C)$.
- Upon arrival, a customer decides whether to join or balk.
- There are various informational cases:
	- ¹ Observe both the queue length and the server's status.

- ² Observe only the queue length.
- ³ Observe only the server's status.
- ⁴ Observe nothing.

 298

E

Braker

Burnetas, A. and Economou, A. (2007) Equilibrium customer strategies in a single server Markovian queue with setup times. Queueing Systems.

- Burnetas, A. and Economou, A. (2007) Equilibrium customer strategies in a single server Markovian queue with setup times. Queueing Systems.
- $M/M/1$ queue with setup times.

- Burnetas, A. and Economou, A. (2007) Equilibrium customer strategies in a single server Markovian queue with setup times. Queueing Systems.
- $M/M/1$ queue with setup times.
- When the server becomes idle, he deactivated immediately.

- Burnetas, A. and Economou, A. (2007) Equilibrium customer strategies in a single server Markovian queue with setup times. Queueing Systems.
- $M/M/1$ queue with setup times.
- When the server becomes idle, he deactivated immediately.
- When a new customer arrives at an empty system, a setup process starts.

- Burnetas, A. and Economou, A. (2007) Equilibrium customer strategies in a single server Markovian queue with setup times. Queueing Systems.
- $M/M/1$ queue with setup times.
- When the server becomes idle, he deactivated immediately.
- When a new customer arrives at an empty system, a setup process starts.
- The setup times are $Exp(\theta)$ random variables.

メロメ メ御き メミメ メミメ

重

 \bullet $N(t)$: Number of customers in the system.

4. 0. 3.

K 御 ▶ (K 重) → (重

 298

活

- \bullet $N(t)$: Number of customers in the system.
- $I(t)$: State of the server.

 $\mathbb{R}^n \times \mathbb{R} \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n$

 \leftarrow

∢ ⊜⊺

э

E

- \bullet $N(t)$: Number of customers in the system.
- $I(t)$: State of the server.
- \bullet { $(N(t), I(t))$ } is a CTMC with transition diagram

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

メロメ メ御き メミメ メミメ

 $2Q$

活

• Fully observable case: Customers observe both $N(t)$ and $I(t)$.

 \triangleright \rightarrow \equiv \rightarrow \rightarrow

4 0 8

÷.

E

- Fully observable case: Customers observe both $N(t)$ and $I(t)$.
- Almost observable case: Customers observe $N(t)$ but not $I(t)$.

4 0 8

- Fully observable case: Customers observe both $N(t)$ and $I(t)$.
- Almost observable case: Customers observe $N(t)$ but not $I(t)$.
- Almost unobservable case: Customers observe $I(t)$ but not $N(t)$.

∢ 伊 ▶ → 君 ▶ → 君

- Fully observable case: Customers observe both $N(t)$ and $I(t)$.
- Almost observable case: Customers observe $N(t)$ but not $I(t)$.
- Almost unobservable case: Customers observe $I(t)$ but not $N(t)$.
- Fully unobservable case: Customers do not observe $N(t)$ nor $I(t)$.

4 何 ▶ . 4 回 ▶ . 4

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 3. ∢母 \triangleright and \triangleright and \triangleright

Þ

活

• fo case:

4. 0. 3.

K 御 ▶ (K 重) → (重

 \mathbf{p} 活

• fo case: There exists a unique 2-threshold equilibrium strategy $(n_e(0), n_e(1))$.

 \triangleright \rightarrow \equiv \rightarrow \rightarrow

 \leftarrow

э

- fo case: There exists a unique 2-threshold equilibrium strategy $(n_e(0), n_e(1))$.
- ao case:

∢ 伊 ▶ → 君 ▶ → 君

4 0 8

E

- fo case: There exists a unique 2-threshold equilibrium strategy $(n_e(0), n_e(1))$.
- ao case: There always exist a threshold equilibrium strategy n_e .

医牙骨下的

- fo case: There exists a unique 2-threshold equilibrium strategy $(n_e(0), n_e(1))$.
- ao case: There always exist a threshold equilibrium strategy n_e . There may be multiple threshold equilibrium strategies that form an interval of integers ${n_L, n_L + 1, \ldots, n_U}.$

医阿里氏阿里

- fo case: There exists a unique 2-threshold equilibrium strategy $(n_e(0), n_e(1))$.
- ao case: There always exist a threshold equilibrium strategy n_e . There may be multiple threshold equilibrium strategies that form an interval of integers ${n_L, n_L + 1, \ldots, n_U}.$
- au case:

医阿里氏阿里

- fo case: There exists a unique 2-threshold equilibrium strategy $(n_e(0), n_e(1))$.
- ao case: There always exist a threshold equilibrium strategy n_e . There may be multiple threshold equilibrium strategies that form an interval of integers ${n_L, n_L + 1, \ldots, n_U}.$
- au case: There exists a unique equilibrium mixed strategy $(q_e(0), q_e(1))$.

∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

- fo case: There exists a unique 2-threshold equilibrium strategy $(n_e(0), n_e(1))$.
- ao case: There always exist a threshold equilibrium strategy n_e . There may be multiple threshold equilibrium strategies that form an interval of integers ${n_L, n_L + 1, \ldots, n_U}.$
- au case: There exists a unique equilibrium mixed strategy $(q_e(0), q_e(1))$.
- fu case:

∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

- fo case: There exists a unique 2-threshold equilibrium strategy $(n_e(0), n_e(1))$.
- ao case: There always exist a threshold equilibrium strategy n_e . There may be multiple threshold equilibrium strategies that form an interval of integers ${n_L, n_L + 1, \ldots, n_U}.$
- au case: There exists a unique equilibrium mixed strategy $(q_e(0), q_e(1))$.
- fu case: There exists a unique equilibrium mixed strategy q_e .

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B}$

Numerical results I

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

メロメ メ御き メミメ メミメ

重

Numerical results II

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

メロメ メ御き メミメ メミメ

 298

活

Numerical results II

The difference in the equilibrium social benefits is small between the fully and almost observable case, when θ is high.

 $2Q$

KABRA

Numerical results II

- The difference in the equilibrium social benefits is small between the fully and almost observable case, when θ is high.
- But it may be large for low values of θ .

 \rightarrow \equiv \rightarrow \rightarrow
Numerical results II

- The difference in the equilibrium social benefits is small between the fully and almost observable case, when θ is high.
- But it may be large for low values of θ .
- There are quite significant differences between the observable and the unobservable cases.

A Braker

Numerical results II

- The difference in the equilibrium social benefits is small between the fully and almost observable case, when θ is high.
- But it may be large for low values of θ .
- There are quite significant differences between the observable and the unobservable cases.
- The lowest optimal social benefit corresponds to the fu case.

 \triangleright \rightarrow \exists \triangleright \rightarrow \exists

Numerical results II

- The difference in the equilibrium social benefits is small between the fully and almost observable case, when θ is high.
- But it may be large for low values of θ .
- There are quite significant differences between the observable and the unobservable cases.
- The lowest optimal social benefit corresponds to the fu case.
- \bullet For low values of R the optimal social benefit under ao may surpass the optimal social benefit under fo.

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \right\}$

つへへ

Part VI: Final remarks

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

4. 0. 8

 \mathbf{p}

∢ ⊜⊺

医毛囊 医牙骨

 \mathbf{p} E

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

メロメ メ御き メミメ メミメ

重

Controlling the information provided to the customers in various ways can improve the equilibrium social benefit.

 \triangleright and \triangleright and \triangleright

 $2Q$

- Controlling the information provided to the customers in various ways can improve the equilibrium social benefit.
- This indirect influence of the customers can be less disturbing for them than imposing admission fees etc.

- Controlling the information provided to the customers in various ways can improve the equilibrium social benefit.
- This indirect influence of the customers can be less disturbing for them than imposing admission fees etc.
- The throughput of the system can be also controlled by tuning the information provided to the customers.

Bibliography I

メロメ メ御き メミメ メミメ

重

4 0 8 ∢ ⊜⊺ 298

э

 \triangleright and \exists in \triangleright and a

E

Bibliography I

A. Books on economic analysis of queueing systems.

 $2Q$

Bibliography I

- A. Books on economic analysis of queueing systems.
	- ¹ Hassin, R. and Haviv, M. (2003) To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems. Kluwer Academic Publishers, Boston.

 $2Q$

Bibliography I

- A. Books on economic analysis of queueing systems.
	- ¹ Hassin, R. and Haviv, M. (2003) To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems. Kluwer Academic Publishers, Boston.
	- ² Stidham, S. Jr. (2009) Optimal Design of Queueing Systems. CRC Press, Taylor and Francis Group, Boca Raton.

Bibliography I

- A. Books on economic analysis of queueing systems.
	- ¹ Hassin, R. and Haviv, M. (2003) To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems. Kluwer Academic Publishers, Boston.
	- ² Stidham, S. Jr. (2009) Optimal Design of Queueing Systems. CRC Press, Taylor and Francis Group, Boca Raton.
	- ³ Hassin, R. (2015) Rational Queueing. To be published soon. It is the sequel of the 2003 book.

つへへ

Bibliography II

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

メロメ メ御き メミメ メミメ

重

Bibliography II

B. Some papers treating intermediate strategic situations between observable and unobservable queues for non-Markovian models.

KIND KIN

 $2Q$

Bibliography II

- B. Some papers treating intermediate strategic situations between observable and unobservable queues for non-Markovian models.
	- ¹ Haviv, M. and Kerner, Y. (2007) On balking from an empty queue. Queueing Systems.
	- ² Kerner, Y. (2011) Equilibrium joining probabilities for an $M/G/1$ queue. *Games Econ. Behav.*
	- ³ Manou, A., Economou, A. and Karaesmen, F. (2014) Strategic customers in a transportation station: When is it optimal to wait? Oper. Res.

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \times \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \right\}$

 $2Q$

Thank you!

4. 0. 8

× \prec ∍ **D** 298

Þ

重

Thank you! Questions?

Antonis Economou, aeconom@math.uoa.gr [Strategic customers in queueing systems](#page-0-0)

 \leftarrow

 \mathbf{K} Ξ. \rightarrow 298

Þ

E