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Econometrica, Vol. 37, No. 1 (January, 1969) 

THE REGULATION OF QUEUE SIZE BY LEVYING TOLLS' 

BY P. NAOR 

A queueing model together with a cost structure is presented, which envisages the 
imposition of tolls on newly arriving customers. It is shown that frequently this is a strategy 
which might lead to the attainment of social optimality. 

1. INTRODUCTION 

SOME DISCUSSION has arisen recently as to whether the imposition of an "entrance 
fee" on arriving customers who wish to be serviced by a station and hence join 
a waiting line is a rational measure. Not much of this discussion has appeared 
in print; indeed this author is aware of only three short communications, repre- 
senting an exchange of arguments between Leeman [1, 2] and Saaty [3]. The 
ideas advanced there were of qualitative character and no attempt was made to 
quantify the arguments. 

The problem under consideration is obviously analogous to one that arises in 
connection with the control of vehicular traffic congestion on a road network. It 
has been argued2 by traffic economists that the individual car driver on making 
an optimal routing choice for himself-does not optimize the system at large. The 
purpose of this communication is to demonstrate that, indeed, analogous conclu- 
sions can be drawn for queueing models if two basic conditions are satisfied: 

CONDITION I: A public good is identifiable for which an objective function 
(typically a profit function) can be set up and maximized. This state of affairs-the 
existence of a public good may manifest itself in several distinct ways, two of which 
are as follows: (a) The population of arriving customers and the service station(s) 
are under the control of a single decision maker who represents the public good. 
(b) The arriving customers represent decision makers and "everybody is in business 
for himself." Utilities to these distinct decision makers are comparable and addi- 
tive, however, and gains may be redistributed, e.g., through the agency of a mutual 
risk insurance company. Hence the expected overall profit (in unit time) accruing 
to arriving customers is a proper objective function representing public good. 

CONDITION II: Customers are liable to be diverted from the service station. 
'This research was supported by the Office of Naval Research under Contract No. Nonr-855(09). 
2 This author had the privilege of attending a Colloquium on "Decision Making in Traffic Planning" 

organized in summer 1965 by Professor Arne Jensen of the Technical University, Copenhagen. Pro- 
fessor Martin Beckmann of Brown University and Bonn University, in his lecture at that Colloquium, 
presented convincing arguments in favor of the thesis that the routing decision of the individual driver 
optimizing his own interest will not typically optimize an overall objective function. Hence imposing 
appropriate tolls may bring about optimal redistribution of vehicles moving within the road network. 
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16 P. NAOR 

In other words, some of them will be directed not to queue up (and not to invest 
time in that process) and not to reap the benefits available through the service at 
the station. This condition is in striking contrast to the usual assumptions made in 
queueing situations and therefore it is thought useful to elaborate a little on this 
point. Typically, it is assumed in most models that the mission of the station is to 
render service to all arriving customers (if only this does not violate the steady 
state condition) and an amelioration of congestion (that is: cutting of losses) may 
be brought about by sequencing the customers in some prescribed order. This is 
the rationale of most priority queueing models. In the present model the sole means 
of control at the disposition of the decision maker is the possible nonadmission 
of the newly arrived customer to the waiting line. The purpose of a toll (or an equi- 
valent administrative measure) is precisely to prevent customers from joining the 
queue in case of heavy congestion, and without the present condition "customers 
are liable to be diverted from the service station" there can be no rationale for 
the levying of tolls. 

Having posed the above fundamental conditions necessary to create a frame- 
work for a queueing system with tolls we can now proceed to a detailed descrip- 
tion of a model and a cost structure: 

(i) A stationary Poisson stream of customers with parameter A arrives at a 
single service station. 

(ii) The station renders service in such a way that the service times are inde- 
pendently, identically, and exponentially distributed with intensity parameter p. 

(iii) On successful completion of service, the customer is endowed with a reward 
R (expressible in monetary units). All customer rewards are equal. 

(iv) The cost to a customer for staying in a queue (i.e. for queueing) is C mone- 
tary units in unit time. All customer costs are equal. 

(v) The newly arrived customer is required to choose one of two alternatives: 
either (a) he joins the queue, incurs the losses associated with spending some of 
his time in it, and finally obtains the reward; or (b) he refuses to join the queue an 
action which does not bring about any gain or loss. The choice of one of these two 
alternatives will be made by the customer on comparing the net gains associated 
with each of them. To avoid ambiguity it will be stipulated that, in the case of a tie, 
the customer will join the queue. 

It is immediately clear that some of these assumptions represent gross simplifi- 
cations of "real life" and cannot ordinarily be asserted to faithfully represent 
reality. Thus, for instance, there is no reason to assume that in "real life" service 
times are exponentially distributed, that rewards to all customers are equal (rather 
than statistically distributed), that queueing expenditure per unit time is identical 
for all customers, etc. These specific assumptions were made here since they facili- 
tate mathematical manipulation without needlessly obscuring structure. A perti- 
nent feature of our model rather easily demonstrated on making the present 
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specific assumptions is the following: Exercise of narrow self interest by all 
customers does not optimize public good. This feature of the model is preserved under 
generalizations, e.g., if no specific assumptions as to the nature of the service process 
are made. 

Finally, in this section, two existing characteristics of our model are stated. 
First, it is not necessary to make the assumption usual in most queueing models 
with a single service station-that, for steady state conditions to exist, the service 
intensity p must exceed the arrival intensity A. Arriving customers are liable to be 
diverted from the service station in the present model so that what is required for 
steady state conditions to prevail is only that the average number (per unit time) 
of nondiverted customers must fall short of service capacity P. This will always be 
the case under the model assumptions enumerated before. 

Secondly, for our model to make sense it is required that under favorable cir- 
cumstances a customer will desire to queue up for (completion of) service. Hence if a 
newly arrived customer encounters a completely empty service station he should 
make the "pro-queueing" choice. His expected loss is given by CV' whereas his 
reward to be collected at the end of service equals R. If the dimensionless quantity 
(Rp/C) is denoted by v, it is clear that in meaningful models the following inequality 
must hold 

(1) VS= >C ) 1. 

If inequality (1) does not hold the optimal policy is to disband the service station 
and divert the customer stream altogether. 

2. SOME PROPERTIES OF THE MODEL 

Under the model assumptions given in the previous section, it is clear that all 
reasonable strategies will be of the following nature. A newly arrived customer 
will observe the queue size, i say, at that instant. This quantity is a random variable 
whose distribution is partly determined by the strategy pursued. Now if the ob- 
served value of this random variable falls short of a constant n (the selected strategy), 
the newly arrived customer will join the queue; if the observed value i is equal to n 
the new customer is diverted and does not join the queue. The observed value i 
can never exceed n in this model. 

Clearly we are confronted with a system that is identical with a queueing model 
in which finite waiting space only is available to queueing customers. If we define 

(2) P 
it' 

we obtain the following steady state equations: 

(3) pip) = pi. (0n< i< n), 
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the solution3 of which is 

(4) Pi 1 +p + +pp p IP (Oi n). 

The generating function is derived as 

(5) 
n ~~I -p P -(pZ)n+ ' 

(5) g(z) = pIz 1 p l 
Pn+ 1 -pz 

The expected value, q, of the random variable equals 

p[1-(n+ 1) pn +npn+ 1] P (n +1) pn 

(6) q=E{i} = (1-p)(l-_ pn+) I -P 1pn+p 

The expected number of customers, C say, diverted from the service station in 

unit time is given by 

(7) = iPn - 
pI(n+1 

We mention, in passing, that the busy fraction b, i.e., the degree of utilization of 

the service station, is, of course, not equal to p (as in the "usual" models) but rather 

nP _ p(n~f) 
(8) b = Pi -Po - n1 

i=l P 

The expected number of customers joining the queue in unit time equals 

(9) pn~X(-~=1 p___ Pn__ (9) ,1-4 = (-Pn) =ip n+1t) n +1t 

The expected number of customers leaving the service station in unit time equals 

(10) jbb=u(l-po)=u - Iij ;Pt;]1 

These two quantities must be identical under steady state conditions and, indeed, 
it is easy to verify that 

(11) p = 1- Po 
l-pn 

3. SELF-OPTIMIZATION 

Let us now assume that a strategy (which will be designated as ns) is selected in 
the following manner (envisaged already in a general way in the Introduction): 

3 Throughout this study functions of p will make their appearance which generate indeterminate 

forms 0/0 or x - ooon insertion of the value p= 1; in all cases a unique (nonzero and finite) limit 

exists. Hence we shall omit notice that the formulas are valid only if p # 1. 
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The newly arrived customer weighs the two alternatives-to join or not to join 
the queue-by the net gains associated with them. The net gain, in the first case, 
is equal to 

(t2) Gi = R- (i+ 1) C-. 

In the alternative case the net gain is zero. Hence self interest is served if a strategy 
is established in the following fashion. An integer, ns, is found which satisfies simul- 
taneously two inequalities 

(13) R-n C- 0 

and 

(14) R- (ns+ l)C- < O . 

Inequality (13) pertains to the case where the number of queueing customers 
(including the one in service) encountered by the newly arrived customer falls 
short of the critical number by one. The customer, of course, is supposed to join 
and indeed the inequality is in his favor. Inequality (14) relates to the unfavorable 
event: the critical number, ns, of customers is already in the queue. We can in- 
corporate the two inequalities in one expression 

(15) nS <C 1 

Alternatively we may express the same idea in different notation 

(16) nS-I[Vs] 

where [ ] is the well known bracket function; that is, ns is the largest integer not 
exceeding vs. 

We note that the critical number, ns, derived by "actualizing self interest" de- 
pends on ,u, R, and C, but not on the arrival intensity A. This fact alone suffices- 
before pursuing further detailed investigation-to throw serious doubt on the 
social optimality of the strategy ns. 

4. OVERALL OPTIMIZATION 

If the viewpoint is taken that the expected sum of the net gains accruing to 
customers in unit time is the public good which should be optimized, we must 
proceed in a different mode from that outlined in the previous section. We note 
that expected total net gain, P, under some strategy n is given by 

(17) P =(-C)R=-RCE {i} = (l -Pn)-Cq 

-AR l pna cL1P p n pn+l 
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By some elementary (but lengthy) considerations it can be shown that the 
function P in its dependence on n is "discretely unimodal" or, in other words, a 
local maximum is a global maximum. Hence we seek that strategy, no say, which is 
associated with two inequalities 

(18) ,.R [P ?('1-np) p noI (1P] - [(n O+1)Pn'+- (no+2)p no+2] <0 ( ) Ll~_pno+- I_pno+2-c l pno+l - _pno+2 < 

and 
Fpno-l(1_p) Pnon(oP) C nopno (no+1)Pno+'j 

(19) .R L no I p l +1 - _ __ _ l I p P _ pno+l -P L_pno _-pno + ! 

Further manipulations transform (18) and (19) into equivalent inequalities 

(20) R(1 -p)2 < - [1-2p+no(1 _ p) + pno+21] 
't 

= -[(nO+1)(1-_p)-p(l _pno+ 1)] 

and 

(21) R (1 - p)2 > _ [no(1-p)-p(l-pno)] 

These two inequalities in turn can be cast into the following form 

no2P)) (1 _-( _pno) R/i (no + l) (l-P) P2( P 
n 

(i-p)2 C (1p)2 

To deal with (22) it will be convenient to investigate a function, 

(23) Vs = [vo( (-p)-p (' -P vo)] (1 _p)- 2 

of two independent variables p (> 0) and vo () 1). We note, in passing, that no true 
singularity exists for this function if p = 1; rather the function is well behaved and 
a nonzero and finite function value exists at that value of p, to wit: vs = (vo (vo + 1)/2). 
Next we study a setting in which the value of p is arbitrary (positive) but fixed; we 
note that vs is a boundlessly increasing function of vo. Hence the integers between 
which vo lies (viewed now as a function of v, and p) will obey the inequalities associ- 
ated with (22). As a result we arrive at 

(24) no = [vo], 

an expression which is completely analogous to (18). Further manipulations lead 
to the inequality 

(25) VO < Vs 

where the equality sign holds only4 if vs equals unity. 

4 The equality sign would hold also in the physically meaningless, and therefore excluded, case 
p=O (arbitrary v). 
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To exhibit some properties of the functional relationship discussed in the pre- 
sent section the form vo = vo (v, p), i.e., vo as a function of the arguments v, and p, 
was chosen. A set of numerical values of vo was computed for selected values of the 
arguments vs and p. The results are presented in Table I. We note, in passing, that 
an interesting specific numerical relationship exists: whenever v, - p =2 this results 

TABLE I 

THE FUNCTION vO DEPENDENT ON THE ARGUMENTS VS AND P 

VI pP=0.100 p =0.200 p =0.500 p= 1.000 p =2.000 p =3.000 p =4.000 p=5.000 

1.000 1.000 1.000 1.000 1.000 1.000 1.000 

1.500 1.457 1.425 1.360 1.303 1.247 1.218 
2.000 1.910 1.837 1.690 1.561 1.445 1.387 
2.500 2.361 2.243 2.000 1.791 1.612 1.527 
3.000 2.811 2.647 2.297 2.000 1.756 1.645 
3.500 3.261 3.048 2.583 2.192 1.885 1.750 
4.000 3.711 3.449 2.863 2.372 2.000 1.841 1.749 
4.500 4.161 3.849 3.136 2.541 2.105 1.925 1.821 
5.000 4.611 4.250 3.405 2.702 2.202 2.000 1.886 1.811 
5.500 5.061 4.650 3.671 2.854 2.292 2.070 1.945 1.864 
6.000 5.511 5.050 3.935 3.000 2.375 2.134 2.000 1.913 
6.500 5.961 5.450 4.195 3.140 2.453 2.194 2.051 1.958 
7.000 6.411 5.850 4.454 3.275 2.527 2.249 2.098 2.000 
7.500 6.861 6.250 4.712 3.405 2.597 2.301 2.142 2.039 
8.000 7.311 6.650 4.968 3.531 2.663 2.351 2.184 2.077 
8500 7.761 7.050 5.223 3.653 2.725 2.398 2.223 2.111 
9.000 8.211 7.450 5.478 3.772 2.785 2.442 2.260 2.144 
9.500 8.661 7.850 5.731 3.887 2.842 2.484 2.295 2.175 

10.000 9.111 8.250 5.984 4.000 2.897 2.524 2.328 2.205 

in vo =2 and the converse of this statement holds as well. It is easy to prove both 
implications. Indeed one may even state (and prove) the following generalizations: 
(a) whenever the inequality v, - p >2 holds, the appropriate value of vo can be 
bracketed by v, - p > vo > 2; and (b) whenever the inequality v, - p < 2 holds, it 
may be established that v, - p < vo < 2. 

5. BENEFICIAL TOLL IMPOSITION 

Inequality (25) (which typically would be strict) points to the fact that considera- 
tion of narrow self interest does not ordinarily lead to overall optimality. We note, 
of course, that even a strict inequality need not demonstrate a socially nonoptimal 
situation if self interest is actualized since both vs and vo may possibly be found 
between the same integers such that [vs] and [vo] are identical. Frequently it 
should be expected however, that a situation is realized in which for the sake of 
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narrow self interest-the facilities of the system are overly congested. To arrive at 
an ameliorated state of affairs it is necessary to reduce the strategy n from n, to no. 
This can be done in two distinct ways: either through an administrative rule to 
the effect that the maximally permissible queue size should be smaller5 than a 
prima facie admissible number n8; or, alternatively, a toll 0 is imposed on customers 
joining the queue and their (individually) expected net gain is reduced in such a way 
that no is the current criterion of newly arrived customers based on their present 
comparison of alternatives. 

What is the optimal value, 0*, or rather the optimal range, of the toll? Clearly 
this is given by 

(26) -(v5-no-1) = R - ( 1 
< 0* R - Cn = At (V5-no) 

If a toll taken from this range is levied on customers joining the queue, the com- 
bined income (in unit time) of customers and the revenue agency is maximized. 
We might explicitly mention that expenditure incurred in toll collection and in 
information processing is considered negligible in this presentation. 

Clearly, if the toll revenue may be used for redistribution of income among the 
population or for socially useful purposes the proposed imposition of tolls is an 
optimal procedure. 

6. REVENUE MAXIMIZATION 

The toll collecting agency may be completely divorced from the individual and 
collective economic interests of the customers. In that case the agency will seek to 
impose a toll, Or, designed to maximize its own revenue rather than to optimize the 
whole system. 

The objective function of the toll collector is given by 

(27) M = (x-) = Pn (R- A ) = 
-Pn+ 1 V 

The maximization of M (which is considered a function of feasible n-s) is 
brought about by techniques similar to those used in previous sections. Let the 
appropriate value of n be designated by nr, It is then possible to manipulate the 
inequalities associated with the maximum value of M in (27) in such a fashion that 
a convenient quantity vr-analogous to vo in (23)-should be defined by 

28~ ~~( ( P, 1) - (1 1 
(28) Vr pv- 1 (1 p)2 Vs 

The integer nr which maximizes toll revenue is derived (as analogous integers 
before) by applying the bracket function on Vr: 

' Such a measure would have to be explained very carefully to the participants since it is in apparent 
contradiction with "common sense." 
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(29) nr = [Vrl. 

Further (rather tedious) manipulation yields 

(30) Vr< v0< vS (given vs > 1), 

the approximative meaning of which is the following. Some toll collection may be 
beneficial to a queueing system if an appropriate objective function (representing 
public good) is chosen. If the toll collecting agency is a decision maker tending to 
maximize its own revenue, however, the entrance fees Or, levied on joining customers, 
will be too high and social optimality will (frequently) not be attained: 

Cnlr C 
(31) Or = R - r- - (Vs-nr) 

7. SOME CONCLUDING REMARKS 

There is very little to add to the critique of the model and the general conclusions 
drawn from its structure. One point should be re-emphasized: The results in quali- 
tative form are independent of the specifics of the model. Thus, for instance, if 
service times were distributed in some manner other then exponentially, we still 
would derive benefits from the collection of tolls, though the derivation of no (or 
an equivalent doctrine) may be much more complex than that presented in this 
study. 

The basic features of the model are shaped by the assumption of the existence of 
a public good and by the assumption of possible nonadmission of customers to 
the service station. Rewards are considered to be constant and equal. Again, no 
basically different results would have been obtained had these rewards been 
drawn from a distribution. A strong modification may be called for if we were to 
assume that the reward obtained depends in some way on the effective traffic den- 
sity. Again, without going into detailed arguments, it can be shown that a policy of 
"laissez faire" is only rarely and accidentally a correct one (i.e., socially optimal). 
In this latter more general case, in which effective interaction between customers 
and therefore dependence on traffic density is assumed, the proper strategy is not 
necessarily the imposition of a toll; cases can be constructed where the handing 
out of subsidies to joining customers optimizes public good. The detailed analysis 
of such situations is the subject of further investigation. 

Technion, Israel Institute of Technology, 
and 

University of North Carolina 
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