Chapter 8

Laplace Transform and
Applications

This final chapter gives an introduction to the Laplace transform and some of its
applications. &8.1 introduces two key properties that make the Laplace transform
useful for differential cquations: First, it behaves well with respect to differentiation,
and second, a [unction can be recovered if its Laplace fransform is known. The
closely related Fourier transform also enjoys these properties. It was discussed in
§4.3: see also the Internet Supplement for this chapter. 8.2 develops techniques
for inverting Laplace transforms, while §8.3 considers some applications of Laplace
transforms to ordinary differential equations.

8.1 Basic Properties of Laplace Transforms

The Laplace transform provides a powerful technique used in both pure and applied
mathematics. For example. in control theory it has been an indispensable tool.!
It is important, therefore, to have a good grasp of both its basic theory and its
usefulness. Consider a (real- or complex-valued) function f(t) defined on [0, oc.
The Laplace transform of f is defined to be the function f of a complex variable
z given by

fla)= / :r*_"'"f(t}(h‘..

S0

The Laplace transform f is defined for those z € C for which the integral converges.
Other common uotations for f are £(f) or simply F.
For technical reasons. it will be convenient to impose a mild restriction on the

funetions we consider. We require that f : [0,00][— € (or R) be of exponential

l8ee for example, J. (. Willems and J. W. Polderman, An Introduction to Mathematical
Systems Theory and Control; A Behowtoral Approach (New York: Springer-Verlag, Texts in
Applied Mathematics, 1997).
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458 Chapter 8 Laplace Transform and Applications

order. This means that there are constants A > 0, B € B, such that

[f(B)] < Aet?

for all £ > 0. In other words, f should not grow too fast: for example, any poly-
nomial satisfies this condition (Why?). All functions considered in the remainder
of this chapter will be assumed to be of exponential order. It will also be assumed
that on any finite interval [0, a], f is bounded and integrable. (If, for example, we
assume that [ is piecewise continuous, this last condition will hold.)

Abscissa of Convergence The first important result in this chapter concerns
the nature of the set on which f(z) is defined and is analytic.

Theorem 8.1.1 (Convergence Theorem for Laplace Transforms) Assume that
f:[0,00[— C (or R) is of exponential order and let

- e

I(z) =f e~ f(t)dt.
]

There exists a unique number a, —oc < o < oo, such that this integral converges if

Rez > o and diverges if Rez < o. Furthermore, f is analytic on the set

A={z|Rez >0}

and we have

d _ o0

—f(z) = / te ™ f(1)dt
iz ]

for Rez > o. The number o 1s called the abscissa of convergence, and if we

define the number p by

p=inf{B € R | there exists an A > ( such that |f(t)| < AeF'},

then o < p.

The set {z | Rez > o} is called the half-plane of convergence. (If o = —oc,
this set is all of C.) See Figure 8.1.1. In general, it is difficult to tell whether
f(z) will converge for z on the vertical line Rez = o. If there is any danger of
confusion we can write o(f) for o or p(f) for p. A convenient way to compute o(f)
is described in Worked Examples 8.1.12 and 8.1.13.

The proof of this theorem and more detailed convergence results are given at
the end of this section. The basic idea is that if Rez > p, then A and I may be
selected with p < B < Rez and |f(t)| < AeP'. The improper integral for f(2)
converges by comparison with [ Ael#—Re=lt g,

The map f — f is linear in the sense that (af + bg) = r;r.f + bg, valid for
Rez > max [o(f),o(g)]. It is also true that the map is one-to-one; that is, f=3i
implies that f = g; in other words, a function ¢(z) is the Laplace transform of at
most one function.
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Figure 8.1.1: Half plane of convergence of the Laplace transform.

Theorem 8.1.2 (Laplace Transforms) Suppose that the functions f and h are

continuous and that f(z) = h(z) for Rez > yo for some yg. Then f(t) = h(t) for
all t € [0, 00]

This theorem is not as simple as it scems. We do not have enough mathematical
tools to give a complete proof, but the main ideas are given at the end of the section.
Using ideas from integration theory, we could extend the result of the unigueness
theorem to discontinuous functions as well, but we would have to modify what we
mean by “equality of functions.” For example, if f(t) is changed at a single value
of t, then [ is unchanged.

The uniqueness theorem enables us to give a meaningful answer to the problem
“Given g(z), find f(t) such that f = ¢.” because it makes clear that there can be
at most one such (continuous) f. We call f the inverse Laplace transform of
¢: methods for finding f when g is given are considered in §8.2.

Laplace Transforms of Derivatives The main utility of Laplace transforms
is that they enable us to transform differential problems into algebraic problems.
When the latter are solved, the answers to the original problems are obtained
by using the inverse Laplace transform. The procedure is based on the following
theorem.

Proposition 8.1.3 Let f(t) be continuous on [0,00] and precewise C!, that is,
piecewise continuously differentiable. Then for Rez > p (as defined in the conver-
gence theorem (8.1.1)),

(%) (2) = 2f(z) - £(0).
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Proof DBy definition.

76 T
(E;) (z)—fo e rajg(t)df.

Integrating by parts, we get

o0

lim (e"”f(t} :j") +[ ze L f(t)dt.

Ir_n—i-’_\(_'- 0

By definition of p,|e”B% . f(tg)] < A for some B < Rez. Thus, we get
|‘..,.—¢tu . f(tﬂ” - :e—(zﬁ B}tuHE—BfH : Jr{tﬂn S E—[Rﬁz—ﬂjtu A1

which approaches 0 as ty — oc. Therefore, we get —f(0) +z f (2], as asserted. W

While (df /dt) (=) exists for Re z > p, its abscissa of convergence might be smaller
than p.
If we apply the preceding proposition to d”f/di?, we obtain

N o ek o
(_dt_") (2) = 2°/(2) = 2f(0) — —(0).
The formula for df/dz in the convergence theorem (8.1.1) is related to the formula

g(z)=df(z)/dz, where g(t)=—tf(t).

In Exercise 19 the student is asked to prove the next proposition, which contains a
similar formula for integrals.

Proposition 8.1.4 Let g(t) = .'n! Jir)dr. Then for Re z > max(0, p(f)],

Shifting Theorems Table 8.1.1 at the end of this section lists some formulas that
are useful for computing f(z). The proofs of these formulas are straightforward
and are included in the exercises and examples. However, three of the formulas
are sufficiently important to be given separate explanation, which is done in the
following three theorems.

Theorem 8.1.5 (First Shifting Theorem) Fir a € C and let g(t) = ¢ ™ f(1).
Then for Rez > o(f) — Rea, we have

g(z) = f(z+a).




8.1 Basic Properties of Laplace Transforms 461

Proof By definition,
gl o™ "
g(z) = ] e S f(t)dt = f g\ FdE = f{2 +a),
0 0
which is valid if Re(z +a) > 0. W
Theorem 8.1.6 (Second Shifting Theorem) Let H(t) = 0ift <0 and H(t) =
1 if t = 0, which is colled the Heaviside, or unit step, function. Also, let a = 0

and let ¢(t) = f(t —a)H(t — a); that is. g(t) = 0 if t < a while g(t) = fit —a) if
t > a. (See Figure 8.1.2.) Then for Rez > o, we have

dz) = 7% f(2).

fit) aft)
T
| T g
! — |
r
sl Y S S e A== Tl T ; ——— > 1
- T

Figure 8.1.2: The function g in the second shifting theorem.

Proof By definition and because g =0 for 0 <t < a,

A -
q(z) = / e *glt)dt = ] e “Hf(t —a)dt.
wil )

Letting 7 = t — a. we get

glz) = /ll ERTHE il e = e f(z). W

From the second shifting theorcm, we can deduce that if @ > 0 and g{t) =
() H(t —a), then §(z) = e **F(z) where (i) = f(t+a).t =0 (see Figure 8.1.3).

Convolutions The convolution of two fimctions f(t) and g(t) is defined for
t >0 by

(f*g)(t) = / .f[t — 1) g(T)dT
0

where we set f(i) = 0 if ¢ < 0. Thus, the integration is really only from 0 to t. The
convolution operation is related to Laplace transforms in the following way.
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Figure 8.1.3: F' is obtained from f by shifting and truncating.

Theorem 8.1.7 (Convolution Theorem) The equalities [+ g = g * f and
(f *9)(2) = f(2) - 3(2)
whenever Re z > max|p(f), p(g)]

In brief, this theorem states that the Laplace transform of a convolution of two
functions is the product of their Laplace transforms. 1t is precisely this property
that makes the convolution an operation of interest to us.

Proof We have
xg) = m-”’“ 1y p —=wap ) Vdr | dt
(f*g)(2) /D € UD ft—m) g(“r)f*r] dt

- /Oo [[m e“”e“*“_ﬂf(t - T]g[T)del dt.
0 0

For Rez > max|[p(f), p(¢)] the integrals for F(z) and §(z) converge absolutely, so
we can interchange the order of integration® to obtain

[:ﬁ - [/:u e~ =T) p( — ’r)dt:l g(r)dr.

Letting s = t — 7 and remembering that f(s) =01if s <0, we get

[ﬁ " e f()g(r)dr = f(2) - 5(z). ®

By changing variables, it is not difficult to verify that f*g = g+ £, but such
verification also follows from what we have done if f and g are continuous. We
have

(fro)=Ff-3=3-F=(9*f)
Thus, (f *g —g* f) = 0, so by uniqueness theorem (8.1.2), fxg—g* f=0.

2This is a theorem concerning integration theory from advanced calculus. See, for instance,
J. Marsden and M. Hoffman, Elementary Classical Analysis, Second Edition (New York: W. H.
Freeman and Company, 1993), Chapter 9.
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Technical Proofs of Theorems To prove the convergence theorem (8.1.1), we
shall use the following important result.

Lemma 8.1.8 Suppose that f(z) = fooc e~ f(t)dt converges for z = zy. Assume
that 0 < 8 < w/2 and define the set

Sy = {z such that |arg(z — z0)| < 6}

(see Figure 8.1.4). Then f converges uniformly on Se.

Y

Figure 8.1.4: Sector of uniform convergence.

Proof Let

h(z) = /'”«' e~=0t f(t)dt — [0 e~ f(t)dt

0

50 that B — 0 as @ — no. We must show that for every e > 0, there is a #y such
that t1, 12 = 1o implies that

Lty
[ e‘z“f(t}dt‘ <e
Jty

for all z € Sy. It follows that f; e~ *' f(t)dt converges uniformly on Sp as ¥ — o<,
by the Cauchy Criterion. We will make use of the function h(x) as follows. Write

ta i3
/ &= Hf(ﬂdi - f e_(Z—ZE})tEﬁ _uotf(t)]dt.
51 t

Integrating by parts, we get

iz
e~ (zm20Map () — e~ (=)t (g ) + (z—zﬂ)f e~ )t p(t)dt.

iy
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Given € > 0, choose tg such that |A(t)| < /3 and |h(t)| < ¢ = ¢/(6sect) if
t > tg. Then for t3 > tp,

e~ ==Y2hty)] < |hta)] < 3,
since |e~(z—#0)t2| = ¢~(Rez—Rez0)tz < 1 hecause Rez > Re zg. Similarly, for £; > to,
e~ =20t p(1y)] < %
We must still estimate the last term:

ta s
(z = 30) / e—{z "z'J}i!l(t‘-)dt‘ < |z L zder/ ﬁ—{r—mn}f,dt1
L

t1

where = Rez and 9 = Rezg. If z = 29, this term is zero. If z # 2o, then & # xy
(see the figure), and we get
|z — 20

Z2— 20 At I P : €
ﬁ'l——| (e R I“J“) <21 < %' sech = -
r—&p T —Zo 3

(see Figure 8.1.5). Note that the restriction 0 < # < /2 is necessary for sectl =
1/ cos @ to be finite.

Figure 8.1.5: Some geometry in the region Sp.

Combining the preceding inequalities, we get

vl
\f E‘_:f'f(t)dt'-‘ <€

if ;.12 > o for all z € Sy, thus completing the proof of the lemma. ¥
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Proof of the Convergence Theorem 8.1.1 Let

/. e f{t)dt (:Unverges} .

g = inf {.1: cR
t

where inf stands for “greatest lower bmuui Note from Lemma 8.1.8 that if f(z0)
converges. then, for Rez > Re 2, f z) converges because z lies in some Sy for zg
(Why?).

Let Re z > o. By the definition of o, there is an xg < Re z such that the integral
Jo et f(t)dt converges. Hence f('z) converges by Lemma 8.1.8. Conversely,
assume Rez < o and Rez < & < o. If f(z) converges, then so does f(x), and
therefore o < x gives a contradiction. Thus f(z) does not converges if Rez < .

We use the Analytic (‘onvu gence Theorem 3.1.8, to show that f is analytic on
the set {2 | Rez > a}. Let g.(z Jo e~#t f(t)dt. Then gn(z) — f(z). By Worked
Example 2.4.15, g, is analytic wrr.h gh(z) = — [} te”* f(t)dt. We must show that
gn — f uniformly on closed disks in {z | Rez > o}. But each disk lies in some Sy
relative to some zy with Re zg > o (Figure 8.1.6).

Yy

Figure 8.1.6: Each disk lies in Sy for some 0,0 < & < /2,

Thus, by the Analytic Convergence Theorem 3.1.8, f is analytic on the set
{z|Rez >} and

(@ == [ et
Jo
It follows that this integral representation for the derivative of f converges for
Rez > o, as do all the iterated derivatives.

It remains to be shown that o < p. To prove this we need to show that 0 < B
if |£(t)] < AeB’. This will hold, by what we have proven, if f(z) converges for
Rez > B. Indeed, we show absolute convergence. Note that

|B—z!,f[:t)l e |€ (z— B —Btf | < e—{l-{ez B)tA
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Since the integral [~ e~ *'dt = 1/ converges for e > 0, it follows that the integral
gr J 1 - i

fuao e~ "t f(£)dt converges absolutely. W

To prove that f = h implies that f = h for continuous functions f and h, it
suffices, by considering f — h, to prove the following special case of Theorem 8.1.2.

Proposition 8.1.9 Suppose that f is continuous and that for some real yo, flz) =
0 whenever Rez > yo. Then f(t) =0 for all t € [0, 00].

The crucial lemma we use to prove this is the following.

Lemma 8.1.10 Let f be continuous on [0,1] and suppose that fJ t" f(t)dt = 0 for
alln=0,1,2,.... Then f = 0.

This assertion is reasonable since it follows that {Ul P(t)f(t)dt = 0 for any
polynomial P.

Proof The precise proof depends on the Weierstrass approzimation theorem.,
which states that any continuous function is the uniform limit of polynomials.”
By this theorem we get _fnl g(t)f(t)dt = 0 for any continnous g. The result follows
by taking g(t) = f_(.{j and applying the fact that if the integral of a nonnegative
continuous function is zero, then the function is zero. ¥

Proof of Proposition 8.1.9 Suppose that
f(z2) :f e f(t)dt =0
0

whenever Rez > o. Fix @g > yg real and let s = ¢™*. By changing variables to

express the integrals in terms of s and letting z = xg +n forn=0,1,2,..., we get 3
20 0 1 1

g [ g Pgmoot f(Edt = / s"s" f(—log s) (——) ds = j s"h(s)ds = 0, 3
JO J1 $ 0 .

where h(s) = s*~1f(—logs) = e~ "7 f(t). By the Lemma, h must be identically
zero, and f must be also since the exponential function is never zero. |

It is useful to note that f(z) — 0 as Rez — oc. This follows from the argument
used to prove Theorem 8.1.1 (see Review Exercise 10).

3See, for example, J. Marsden and M. Hoffman, Elementary Classical Analysis, Second Edition
(New York: W. H. Freeman and Company, 1993), Chapter 5.
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Table 8.1.1 Some Common Laplace Transforms

Definition

Properties

1. §(z) = —if(z} where g(t) = tf(f).

iz

2. (af +bg) = af + bg.

3. (%)_{ZJ

4, glz)= -l-f[z} where g(t) = /!; f(r)dr.

zf(z) — f(0). (Assume that f is piecewise @)

oy}

. §(z) = f(z +a) where g(t) = e f(t).
6. j(z) = ¢ f(2), where a > 0, and

g{t)=f(t—a) for t>a and 0 if t<a.

7. §(z) = e **F(z), where a > 0, F(t) = f(t 4+ a), and

gt)=f(t) if t>a and 0 if 0<E<a.

8. (f*g)(2)= f(z) . G(z), where the convolution is defined by

(f»9)(6) = ] " fe—7)g(r)ar.

9. If f(t) = e, then f(z) = and o(f) = — Rea.

z4+a

10. For f(t) = cosat, f(2) = —2{? and o(f) = |Imal.

11. If f(1) =sinat, f(2) = z_g_j—_rIE and o(f) = |Imal.
12, 1f ft) = 5,0 > —1, f(z) = F(;jl” and o () =0

13. If f(t) = L. f(2) = % and a(f) = 0.
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Worked Examples
Example 8.1.11 Prove formula 9 in Table 8.1.1 and find o(f) in that case.

Solution By delinition,

20

X o0 f_}—l,'_n.—rz)f 1
f(Z) o ] P_—aﬂﬁ—ztdt . /‘ NS Eﬂ..—ziidt SR - = .
Y z+a

JB ﬂ+2 ) e

The evaluation at [ = oc is justified by noting that limy .o e (475" = 0 provided
Re(a + 2) > 0, since e~ (@73 = ¢~ Rele+=)t — ) as { — oc. Thus, the formula is
valid if Rez > —Rea. )

Note that the formula for f is valid only for Re z > — Rea, although f coincides

there with a function that is analytic except at z = —a. This situation is similar to
that for the gamma function (see formula 12 of Table 7.1.1).
Finally, we show that for f(t) = e “ a(f) = —Rea. We have already shown

that o(f) < —Rea. But the integral diverges at z = a, so o(f) > — Rea, and thus
a(f) = —Rea. If a = 0, this example specializes to formula 13 of Table 8.1.1.

Example 8.1.12 Suppose that we have compiited f (z) and found it to converge for
Rez > v. Suppose also that [ coincides with an analytic function that has a pole
on the line Rez =~. Show that o(f) = 7.

Solution We know that o(f) < 5 by the basic property of ¢ in the convergence
theorem. Also, since f is analytic for Re z > o, there can be no poles in the region

z | Rez > o). It aff) were < 7, there would be a pole in this region. Hence
a(f) = (see Fignre 8.1.7).

S

g[’oles (:—ff %

ONVergence

Figure 8.1.7: Location of poles of it

Example 8.1.13 Let f(i) = cosht. Compule f and o(f).
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Solution f(t) = cosht = (e + ¢ 1)/2. Thus, by formulas 2 and 9 of Table 8.1.1,

- 1 | L 3
f(z);ﬁ(:—l_kz—l—l-)_;a-l'

Here o( f) = 1 by Worked Example 8.1.12: o) =1ando(e ') =—-1,s00(f) <1
but it cannot be < 1 since f has a pole at z = 1.

Exercises

In Exercises 1 through 9. compute the Laplace transform of f(t) and find the
abscissa of convergence.

1. f(t)=1>+2
2. f(t) =sinht

3. f(ty=t+e " +sint

D 0<t<1
4° fity=4 1 1<t<?2
g £>3

5. f(t) = (t+ 1)",n a positive integer
6. f(t)=sintif0<t<mand0ift>n
7. f(t) =tsinot

8. f(t) = tsinhat

@

f(t) = teosat
10. Use the shifting theorems to show the following:
(a) If f(t) = e cos bt, then

= s o ]

flz) = (z+a)Z+b2
(b) If f(t) = e ™", then

] g r(ﬂ+l)
8= rapr

What is ¢{f) in each case?
11. Prove formula 10 of Table 8.1.1.

12. Prove formmla 11 of Table 8.1.1.
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13.* Prove formula 12 of Table 8.1.1.
14. Prove formula 13 of Table 8.1.1.

15.* Suppose that f is periodic with period p (that is. f(t + p) = f(¢) for all
t > 0). Prove that

o —zt
T fit)dt
fo) = L

is valid if Rez > 0. Hint: Write out _f(z} as an infinite sum.

16. Use Exercise 15 to prove that

o M 1 -
f(k)_;. ] —e—22

where f(t) is the pulse function illustrated in Figure 8.1.8.

__ w_____J_“*
1]
]

Figure 8.1.8: The unit pulse function.

17. Let g(t) = fJ ¢ *sin sds. Compute g(z). Compute f(z) if f(t) = tg(t).

18. Let f(t) = (sinat)/t. Show that f(z) = tan"'(a/z).

19.* Prove Proposition 8.1.4. First establish that p(g) < max|0, p(f)].

20. Cive a direct proof that f* g = g * f (see the Convolution Theorem 8.1.7).
21.* Let f(t) = e~¢ t > 0. Show that o(f) = —oc.

92. Referring to the Convergence Theorem 8.1.1, show that, in general, o # p.
Hint: Consider f(t) = e'sine’ and show that o =0,p = 1.




8.2 Complex Inversion Formula 471

8.2 Complex Inversion Formula

To be able to recover a function from its Laplace transform, it is important to be
able to compute f(f) when f(z) is known. One technique for such a computation,
using the complex inversion formula, will be established in this section. Using the
formulas of Table 8.1.1 in reverse gives useful alternative techniques. (See Worked
Examples 8.2.4 and 8.2.5.)

Main Inversion Formula The complex inversion formula, one of the key results
tor the Laplace transform. draws on many of the main points developed in the first
four chapters of this book.

Theorem 8.2.1 Suppose that F(z) is analytic on C except for a finite number of
isolated singularitics and that for some real number o, F is analytic on the half plane
{z | Rez > o}. Suppose also that there are positive constants M, R, and 8 such that
|E(z)] < M/|z|% whenever |z| > R (this is true, for example, if F(z) = P(z)/Q(z)
for polynomials P and () with deg(Q) > 1+ deg(P)). Fort >0, let

)= Z[reﬂicjues of ¢** F(z) at each of its singularities in C}.
Then f(z) = F| z) for Rez > o. We call this the complex inversion formula.

Proof TLet a > ¢ and consider a large rectangle T' with sides along the lines
Rez = —z),Rez = a3, Im z = gy, and Im z = —y; selected large enough so that all
the singularities of I are inside I' and |z| > R everywhere on I'. Split I' into a sum
of two rectangular paths v and 5 by a vertical line through Rez = a. (See Figure
8.2.1,)

The proof of the complex inversion formula could just as well be carried out
using a large circle instead of the rectangle I'. In fact, in the last paragraph of the
proof, I' is briefly deformed to such a circle. However, the rectangular path will be
useful in Corollary 8.2.2, in which it plays a role like that of the rectangular path
in the proof of Proposition 4.3.9 concerning the evaluation of Fourier transforms.

Since all singularities of /' are inside 4, the definition of f gives

/ e*' F(z)dz = 2mi Z{rnsidueﬁ of e® F(z)} = 2nif(t),
I

s
Q

2mif(z) = lim / e 3 [/ ra‘:tF(C)dC:[ dt = lim ff eC21 B () dt dC.
0 5 ~J 0

— i rP—00

We may interchange the order of integration, because both integrals are over finite
intervals. Therefare,

2mif(z) = lim / (e{‘i—z?" - 1) j'icidc.

¥
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Figure 8.2.1: The large contour is the sum of the smaller two: I' = v + 7.

With z fixed in the half plane Rez > «, the term el$=2)" approaches 0 and the
integrand converges uniformly to — I (C)/ (¢ — =) on v. We obtain

s F(Q) [F{é') Fig) ...
o = = h e AN g, fo e,
2mif(z) /Tr;—::"g '%{_E"C .L'C—zdl’

F(‘:)dc;
g

— 9miF(2) - [I ;

provided T is large enough so that z is inside 7. Finally,

Md{‘ < f ._ M de| < _2?1‘;".43',?_.

p¢—2 r 2P| — 2] p(p—R)

which is obtained by choosing I' large enough so that it lies outside the cirele
|¢| = p > R with all the singularities of F(C)/(C — z) inside this circle, and then
deforming T' to this circle. This last expression goes to 0 as p — oc. Thus, letting
I' expand outward toward oc, we obtain f(z) = F(z). Since a > ¢ is arbitrary, the
complex inversion formula holds for any 2 In the half plane Rez >0. 1

Corollary 8.2.2 Let the conditions of the complex inversion formula hold. 1f F(z)
is analytic for Rez > o and has a singularity on the line Rez = o, then (i) the
abscissa of convergence of f is o, and (ii)

l X100 o

f(ﬁ) = % - (iz!F(z}dz 2 )_?T e(_u.—r-!'i}}tfw{u 4 'f:?;'}ff'_!}
o — 100 U W

b

for any constant & > a. The first integral is taken along the vertical line Rez = o
and converges as an improper fiemann integral; the second integral is used as
alternative notation for the first.
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Proof

(i) The complex inversion formula shows that o(f) < o since f(z) converges for
Rez > o. If o(f) were < o, then f(z) would be analytic for Rez > a(f)
by the Convergence Theorem 8.1.1. But £ has a singularity at a point z; on
the line Rez = 0. so there is a sequence of points 2y, 2, 23, . . . CONVerging
to zp with F(z,) — oc. Since f(z) = F(z) for Rez > 0. and since both are
analytic in a deleted neighborhood of zg, they would be equal in that deleted
neighborhood by the principle of analytic continuation. This would mean that
f(z,) — oc. But that is impossible, since f(z) is analytic on Rez > o(f).
Thus, o(f) < o is not possible, so o(f) = 0.

(ii) From the complex inversion formula, 2mif(t) = el e** F'(2)dz. This integral
converges to the integral in the statement, txa.r:tly as in the proof of Propo-
sition 4.3.9, as @, y;, and yp — oo, Since Y and y2 go independently to 0o,
this establishes convergence of the improper integral. (The situation here is
rotated by 90° from that of Proposition 4.3.9.) R

In working examples, all conditions of the theorem must be checked. If they do
not hold. these formulas for f({) may not be valid (see Example 8.2.5). The complex
inversion formula is sometimes more convenient than Table 8.1. 1 for computing
inverse Laplace transforms since it is systematic and requires 1o guesswork as to
which formula is appropriate. However, the table may be useful in cases in which
hypotheses of the theorem do not apply or are inconvenient to check.

Heaviside Expansion Thenrcm Now we apply the complex inversion formula
to the case in which F'(z P(z)/Q(z) where P and @ are polynomials. We give
a simple case here.

Theorem 8.2.3 Let P(z) and Q(z) be polynomials with degQ > deg P+ 1. Sup-
pose that the zeros of Q are located at the points z1.... ,2m and are simple zeros.
Then the inverse Laplace transform of F(z) = P(2)/Q(z) 1s given by the Heaviside
expansion formula:

i P[Z;J
t) = g il :

Furthermore, o(f) = max{Rez; |i=1,2,... ,m}.

Proof Since degQ > deg P + 1, the conditions of the complex inversion formula
(8.2.1) are met (compare Proposition 4.3.9). Thus,

ft) = Z {resiclues of e SE;; }
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But the poles are all simple and so, by formula 4 of Table 4.1.1, we have

s F:aP_l:Zfl_ ,): zit P(Zi)
RE*’(‘ Q='") "¢ Q@)

The formula for o(f) is a consequence of Corollary 8.2.2, W

Worked Examples
Example 8.2.4 If f(z) = 1/(z — 3). find f(t).
Solution Refer to formula 9 of Table 8.1.1. Let a = —3; then we get f(t) =

¢3t. Alternatively, we could get the same result by using the Heaviside expansion
formula. In this example, o(f) = 3.

Example 8.2.5 If f(z) = log(2® + 2). what is f(t)¥

Solution If f were such a funetion and g(#) = tf(t), then by formula 1 of Table
8.1.1, we would have

]
0
_I_

d ; :
() = o= () = — - log(=® +2) = ==

(o]
b3

_|_

i

To find g(t) we could use partial fractions.

2241 1 1

y{v)A_zQ-f—: R e =]

Therefore g(t) = —1 — e ", and so

f#) ==+,

Although this argument seems satisfac mw, it is deceptive because there is in facl
no f(t) whose Laplace transform is log(z® + z). If there were, then this procedure .
would show that f(#) = —(1 +e")/L is the Dulv possibility. However, the integral

f e LF(t) dt
o

cannot converge for any real & because e~ ' is larger than 1/2 near 0 and |f(¢)| >
1/t. But 1/t is not integrable. Thus f does not exist in any seuse we have studied.
The argument above does not actnally find such an f. Tt assumes that there is one
and shows that there is only one possibility. But that one does not work. See also
the retnark at the end of §8.1.

Example 8.2.6 Compule the inverse Laplace transform of

=

(z+1)2(22 + 32— 10)

F{z) =

Then compute o(f), the abscissa of convergence of f.




-
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Solution In this case the hypotheses of the complex inversion formula clearly
hold. Thus

) = ._:‘.,‘ i g 3 e I~ ’
f(6) Z{““‘ A TR B0 Bt 1)2(z+5)(z—2}}

The poles are at z = —1,z = —5, and z = 2. The pole at ~1is double, whereas the
others are simple. By formula 7 of Table 4.1.1, the residue at —1 is g'(—1), where

etz

0= F 15—
Thus. we obtain

— i ,_E- _J—t. o ' ,__:
te™ e e )[?(1)+3]:i(tﬁ_,_€_f_+4ﬂ‘l_2>'

= i 144 12

The residue at —5 is e~ - 5/16 - 7; the residue at 2 is ¢** - 2/9 - 7. Thus,

| bty ety e
= — (e -t +—== .
1(t) 12(r ¥ +13)+15.7 63

By Corollary 8.2.2, o(f) = 2.

Exercises

1. Compute the inverse Laplace transform of each of the following,

(a) F(z2) = ——

N
(h) F [ZJ A (a. 4 1)2'
2

9. Check formulas 10 and 11 of Table 8.1.1 using Theorem 8.2.1.

3. Explain what is wrong with the following reasoning. Let g{t) = 0 on [0, 1]
and be 1 on [1,50). Then, by formulas 6 and 13 of Table 8.1.1. glz) =e %[z
By the complex inversion formula, g(t) = Res(e*!'~1)/z,0) = 1. Therefore,
I =itk

4.* Prove a Heaviside expansion formula for P/Q when Q has donble zeros.

4

5. Compute the inverse Laplace transform of each of the following:

(a) (z+1)(z+2)
(b) sinhz
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H(t-1) y'(t)

L

—
[a—

Figure 8.3.1: At t = 1,y receives an impulse.

Solution Let ns find the solution with y(0) = 0,9/(0) = 0. Taking Laplace
transforms,

2§(2) + 229(2) + 24(2) = f(2),
50 §(2) = f(2)/(z* + 22 4+ 2). The inverse Laplace transform of 1/(2% + 22+ 2) is

E,zlf 6"21"
1 ;
9= ) T Hmr )
thre 21, 2o are the two roots of z2 + 22 + 2, namely, —1 +i. Simplifying, g(t) =
“tsint. Thus, by formula 8 of Table 8.1.1.
y(t) = f flt — 7)g(r)dr = f(! — 7)e” 7 sin T dr.
0 0

This is the particular solution we sought., 4
Generally such particular solutions to differential equations of the form

any™ 4. 4 ay =,
where day.... , 4, are constants, may be expieased inn the form of a convolution. To

obtain a solution with the values (0). y'(0),... .y~ (0) prescribed, we can add
a particular solution y, satisfying

G (0) @ pll0) =0 A He)=0

to a solution y. of the homogeneous equation in which f is set equal to zero and
with g (0). .(0), ... 1 {” H (0) prescribed. The sum y, + y. is the solution sought.
(These statements are ltc].*-slhf checked. )

The method of Laplace transforms is a systematic method for handling constant
coefficient differential equations. (Of course. these equations can be handled by
other means as well.) If the coefficients are not constant, the method fails, because
transformation of a product then involves a convolution, and then solving for 4(z)
becomes difficult.
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Applying this again gives

12 , :
(52) ()= #2461 = 200) ~ o0 = #5a) - 1.

Therefore, our equation becomes 227j(2) — 1 + 42g(2) + 3g(z) = 0, so

I 1 i 1. 1

WA= o zrs G0z +d 2az+l 2z+38

By the inversion formula, the inverse Laplace transform of this function is
2t

y(t) = Z {residuus of m at — 1, —3} .

Thus,

(We could also apply line 9 of Table 8.1.1 to the partial fraction expansion.] This is
the desired solution, as can be checked directly by substitution into the differential
equation. @

Example 8.3.2 Solve the equation y'(t) — y(t) = H(t — 1), = 0,y(0) =0, where
H is the Heaviside function.

Solution Take the Laplace transforms of both sides of the equation. We get
z§(z) — y(0) — §z) = e 7/ 2.

Therefore, §(z) = ¢ */z(z — 1). The inverse Laplace transform of 1/[z(z — 1)] is
| — et so that of e~ */[z(z — 1)] is, by formula 6 of Table 8.1.1,

0 g< =<l
y(”:{ =T

Note that the complex inversion formula does not apply as stated. This solution
(see Figure 8.3.1) is not differentiable and thus cannot be considered a solution
in the strict sense. However, it is a solution in a generalized sense, as previously
explained. In Figure 8.3.1, the discontinuity in H({ — 1) causes the sudden jump in
' (t). We say that y(t) receives an “impulse” at ¢ = 1. ¢

Example 8.3.3 Find a particular solution of y"(t) + 2y (t) + 2y(t) = f(E).
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4. Let f(t) be a bounded function of . Show that o(f) < 0.

5. Compute the Laplace transform and the abscissa of convergence for

6. If f(t) = 0 for t < 0, then f(y) = (1/V2r)f(iy) is called the Fourier
transform of f. Using Corollary 8.2.2, show that, uinder suitable conditions,

fl@) = 7% /_  Feay

(This result is called the Inversion Theorem for Fourier transforms.)

7. Compute the inverse Laplace transform and the abscissa of convergence for

>

ez

8.* Compute the inverse Laplace transformm and the abscissa of convergence for

1

Flz) = —.

(2) (z+1)2
4. Compute the inverse Laplace transform and the abscissa of convergence for :
z i
o) iss :
(2) et s :
10. (a) Let f(z) be the Laplace transform of f(t). Show that f(z) — 0 as
Rez — oa. ]

(b) Use (a) to show that, under suitable conditions, zf(z) — f(0) asRez —
o0

(¢) Can a nonzero polynomial be the Laplace transform of any f(#)?
(d) Can a nonzero entire function F be the Laplace transform of a function
f)?

11. Solve the following differential equations using Laplace transforms:

(a) ¥’ +8y+15=0,4(0) = 1,y'(0) =0
(b) ¥ +y=3,y9(0)=0

12.* Suppose that f(t) > 0 and is infinitely differentiable. Prove that (—1)%f(8)(2) >
R E 3 i A for z > 0. (The converse, called Bernstein's Theorem. is

also true but is more difficult to prove.)
13. Solve the following differential equations using Laplace transforms:

(a) ¥ +y=H(t—1),»4(0) =0,4(0) =0
(b) ¥ +2¢ +y=0,40)=1,4(0) =1
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Exercises

Solve the differential equations in Exercises 1 through 6 using Laplace transforms.
L y" —4y = 0,y5(0) =2,(0) =1
2. 4" + 6y —T=0,90)=1,5(0) =0
3.0y +9y=H(t—1),y(0) =¢'(0) =0

4.y +y=ey(0) =0

of
y 4yt ] y(T)dr = f(t) where y(0) = 1 and where f(t) =0 for 0 <1 <1

0
ort>2and f(t)=1if1<i<2

ey |
.

6. v +9y = H(t), y(0) =y'(0)=0.

7. Solve the following systems of equations for g (1), y2(?) by using Laplace trans-

{orms.
(a)
#+yw=0 _. Ly
{ yo +y1 =0 where y1(0) = 1,42(0) = 0.
(b)

i+t =0 . e
{ Yo+ =3 where y;(0) = 0,32(0) = 0.

8. Solve: i +wy = cost, y(0) = L.
9.* Solve: y’ +y = tsint, »(0) = 0,4'(0) = 1.

10. Study the solution of 4" + wiy = sinwt, y(0) = ¥'(0) = 0, and examine the
behavior of solutions for various w, especially those near w = wy. Interpret
these solutions in terms of forced oscillations.

Review Exercises for Chapter 8

1. Compute the Laplace transform and the abscissa of convergence for f(t) =
H(t —1)sin(t —1).

2.* Compute the Laplace transform and the abscissa of convergence for f(t) =
Ht— 1) 4 Je=4t8,

3, Compute the Laplace transform and the abscissa of convergence for

t 0<t<
“”"{1 t> 1
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4. Let f(¢) be a bounded function of £. Show that o(f) < 0.

5. Compute the Laplace transform and the abscissa of convergence for

6. If f(t) = 0 for t < 0, then f(y) = (1/v27)f(iy) is called the Fourier
transform of f. Using Corollary 8.2.2, show that, under suitable conditions,

1 B
@) = <= / ey

(This result is called the Inversion Theorem for Fourier transforms.)

7. Compute the inverse Laplace transform and the abscissa of convergence for

6—2:

22417

F(z) =

8.* Compute the inverse Laplace transform and the abscissa of convergence for
1

i

9. Compute the inverse Laplace transform and the abscissa of convergence for

z e * |
Filz) = 5 4 ;
(2) (z+1)? z
10. (a) Let f(z) be the Laplace transform of f(t). Show that f(z) — 0 as :
Rez — o0,
(b) Use (a) to show that, under suitable conditions. 2 f(z) — f(0) as Re z —
<. :

(¢) Can a nonzero polynomial be the Laplace transform of any f(f)?
(d) Can a nonzero entire function F be the Laplace transform of a function
f()?
11. Solve the following differential equations using Laplace transforms:
(a) ¥" +8y+15=0,y4(0) =1,y'(0) =0
(b) ' +y=3,y(0)=0
12.* Suppose that f(¢) > 0 and is infinitely differentiable. Prove that (—1)% f(*)(z) >
0,k =0,1,2,..., for z = 0. (The converse, called Bernstein’s Theorem, is
also true but is more difficult to prove.)

13. Solve the following differential equations using Laplace transforms:

(a) y" +y=H( - 1),y(0)=0,4/(0) =0
(b) ¥/ + 2y +y=0,y4(0) = 1,4/(0) = 1




