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Chapter 1

Introduction

1.1 What is statistical inference?

Before defining Bayesian inference we should consider the broader question, ‘what is statistical

inference?’. Many definitions are possible, but most boil down to the principle that statistical

inference is the science of making conclusions about a ‘population’ from ‘sample’, items drawn

from that population. This itself begs many questions about what is meant by a population,

how the sample relates to the population, how we should enact the sampling if all options are

available and so on. But we’ll leave these issues aside, and focus our discussion on a simple

example.

Suppose the Forestry Commission wish to estimate the proportion of trees in a large forest which

suffer from a particular disease. It’s impractical to check every tree, so they select a sample of

just n trees. Again, we won’t discuss here how they might choose their sample, but we’ll suppose

their sampling is random, in the sense that if θ is the proportion of trees having the disease in

the forest, then each tree in the sample will have the disease, independently of all others in the

sample, with probability θ. Denoting by X the random variable corresponding to the number

of diseased trees in the sample, the Commission will use the observed value of X = x, to draw

an inference about the population parameter θ. This inference could take the form of a point

estimate (θ̂ = 0.1); a confidence interval (95 % confident that θ lies in the range [0.08,0.12]); a

hypothesis test (reject the hypothesis that θ < 0.07 at the 5% significance level); or a prediction

(predict that 15% of trees will be affected by next year).

In each case, knowledge of the observed sample value X = x is being used to draw inferences

about the population characteristic θ. Moreover, these inferences are made by specifying a

probability model, f(x|θ), which determines how, for a given value of θ, the probabilities of the
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4 CHAPTER 1. INTRODUCTION

different values of X are distributed.

Here for instance, under the assumptions made about random sampling, our model would be

X|θ ∼ Binomial (n, θ)

Therefore

f(x | θ) =

(
n
x

)
θx(1− θ)n−x

Statistical inference then amounts to an inference about the population parameter θ on the

basis of observing X = x, and basically we’d infer that values of θ which give high probability

to the value of x we observed are ‘more likely’ than those which assign x low probability —

the principle of maximum likelihood. (Note that in its widest context, statistical inference also

encompasses the issues of model choice, model verification etc., but we’ll restrict attention to

the inference of parameters within a parametric family of models.)

Before moving on to Bayesian inference in particular, there are some points to be made about

this classical approach to inference. The most fundamental point is that the parameter θ, whilst

not known, is being treated as constant rather than random. This is the cornerstone of classical

theory, but leads to problems of interpretation. We’d like a 95% confidence interval of [0.08, 0.12]

to mean there’s a 95% probability that θ lies between 0.08 and 0.12. It cannot mean this, since

θ is not random: it either is in the interval, or it isn’t — probability doesn’t (and cannot)

come in to it. The only random element in this probability model is the data, so the correct

interpretation of the interval is that if we applied our procedure ‘many times’, then ‘in the long

run’, the intervals we construct will contain θ on 95% of occasions. All inferences based on

classical theory are forced to have this type of long–run–frequency interpretation, even though,

for example, we only have the one interval [0.08, 0.12] to interpret.

1.2 What is Bayesian inference?

The overall framework which Bayesian inference works within is identical to that above: there is

a population parameter θ which we wish to make inferences about, and a probability mechanism

f(x | θ) which determines the probability of observing different data x, under different parameter

values θ. The fundamental difference however is that θ is treated as a random quantity. This

might seem innocuous enough, but in fact leads to a substantially different approach to statistical

modelling and inference.

In essence, our inference will be based on f(θ | x) rather than f(x | θ); that is the probability

distribution of the parameter given the data, rather than the data given the parameter. In
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many ways this leads to much more natural inferences, but to achieve this we will see that it

is necessary to specify a prior probability distribution, f(θ), which represents beliefs about the

distribution of θ prior to having any information about the data.

This notion of a prior distribution for the parameter θ is at the heart of Bayesian thinking, and

depending on whether you are talking to an advocate or an opponent of the methodology, is

either its primary advantage over classical theory or its biggest pitfall.

The coin sampling example.

This example is similar in idea to the forestry example, but sufficiently simple to illustrate the

Bayesian approach to inference. In this example the use of the prior distribution is uncontro-

versial. We will note how the likelihood still has a central role in the Bayesian method.

Five coins have been placed on the table. You are required to estimate the proportion θ of these

coins which are tails, by looking at a sample of just two coins. Now there are only 6 possible

values of θ, written M/5 for M = 0, 1, . . . , 5. Let X be the number of tails in the sample of two

coins, and suppose we observe X = 1. In the second line of the table are the probabilities of

observing this outcome, depending on the (unknown) value of θ.

To make sure you can work out these probabilities, consider for example P(X = 1|θ = 3
5).

We have 3 tails and 2 heads in the set of 5 coins. We find 1 tail and 1 head in the sample of 2

coins.

The number of ways of picking these is
(3
1

)
×
(2
1

)
= 3× 2 = 6, out of a total number of ways

(5
2

)
= 10. The probability is then 6

10 = 0.6.

θ 0
5

1
5

2
5

3
5

4
5

5
5

f(X = 1|θ) 0.0 0.4 0.6 0.6 0.4 0.0

f(θ) 1
32

5
32

10
32

10
32

5
32

1
32

f(X = 1|θ)× f(θ) = f(X = 1, θ) 0 2
32

6
32

6
32

2
32 0

f(θ|X = 1) 0 4
32

12
32

12
32

4
32 0

Now the second row in the table is the likelihood of θ. It is not a probability distribution - it

does not sum to 1. The most likely values of θ are 2
5 and 3

5 ; the values 0
5 and 5

5 are completely
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excluded.

The Bayesian approach uses this likelihood function, but combines it with prior knowledge. The

third line in the table shows the distribution of θ which we would plausibly assume even if we

had not been allowed to look at a sample of 2 coins. Put another way, it is the distribution

which would have plausibly described our knowledge before we had looked at the sample.

We use this by multiplying the second and third rows together to give part of the joint distri-

bution of X and θ in the fourth row. This does not sum to 1 because it is only part of the joint

distribution. In fact it sums to P(X = 1).

The important step is to get the conditional distribution of θ given X = 1 by dividing through

by this sum. That is given in the fifth line. It does sum to 1; we made that happen by doing

the division, a process we call normalizing a distribution.

This last row contains all the information we require to make any of the types of inference about

θ that we have discussed. It is called the (Bayesian) posterior distribution of θ. It tells us that

the values of θ = 2
5 and 3

5 are equally probable, so it happens to give us a similar picture to the

likelihood function in this case.

1.3 The prior distribution

In almost all situations, when we are trying to estimate a parameter θ, we do have some knowl-

edge, or some belief, about the value of θ before we take account of the data. An example from

O’Hagan (1994) makes this clear in qualitative terms.

You look out of your window and see a large wooden thing with branches covered by small green

things. You entertain two possible hypotheses: one is that it’s a tree, the other that it’s the

postman. Of course, you reject the postman hypothesis because postmen don’t usually look like

that, whereas trees do. Thus, in formal language, denoting by A the event that you see a wooden

thing with green bits, B1 the event it’s a tree and B2 the event it’s the postman, you reject B2

in favour of B1 because f(A|B1) > f(A|B2). Here, you’re using the principle of maximising the

likelihood.

But, you might also entertain a third possibility, B3, that the thing is a replica of a tree. In

this case it may well be that f(A|B1) = f(A|B3), and yet you would still reject this hypothesis

in favour of B1. That is, even though the probability of seeing what you observed is the same

whether it is a tree or a replica, your prior belief is that it’s more likely to be a tree than a
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replica and so you include this information when making your decision.

Consider another example, where in each of the following cases our data model is X|θ ∼
Bin(10, θ) and we observe x = 10 so that the hypothesis H0 : θ ≤ 0.5 is rejected in favour

of H1 : θ > 0.5 each time:

1. A woman tea–drinker claims she can detect from a cup of tea whether the milk was added

before or after the tea. She does so correctly for ten cups.

2. A music expert claims she can distinguish between a page of Hayden’s work and a page of

Mozart. She correctly categorizes 10 pieces.

3. A drunk friend claims she can predict the outcome of tossing a fair coin, and does so

correctly for 10 tosses.

Now, just in terms of the data, we would be forced to draw the same inferences in each case. But

our prior beliefs suggest that we are likely to remain highly sceptical about the drunk friend,

slightly impressed about the tea–drinker, and not surprised at all about the music expert.

The essential point is this: experiments are not abstract devices. Invariably, we have some

knowledge about the process being investigated before obtaining the data. It is sensible (many

would say essential) that inferences should be based on the combined information that this prior

knowledge and the data represent. Bayesian inference is the mechanism for drawing inference

from this combined knowledge.

Just to put the alternative point of view, it’s this very reliance on prior beliefs which opponents

of the Bayesian viewpoint object to. Different prior beliefs will lead to different inferences in the

Bayesian view of things, and it’s whether you see this as a good or a bad thing which determines

your acceptability of the Bayesian framework.

1.4 Characteristics of the Bayesian approach

Following O’Hagan (1994), we can identify four fundamental aspects which characterize the

Bayesian approach to statistical inference:

• Prior Information. All problems are unique and have their own context. That context

derives prior information, and it is the formulation and exploitation of that prior knowledge

which sets Bayesian inference apart from classical statistics.
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• Subjective Probability. Classical statistics hinges on an objective ‘long–run–frequency’

definition of probabilities. Even if this is desirable, which is arguable, it leads to cumber-

some inferences. By contrast, Bayesian statistics formalizes explicitly the notion that all

probabilities are subjective, depending on an individual’s beliefs and knowledge to hand.

Thus, a Bayesian analysis is personalistic — unique to the specifications of each individ-

ual’s prior beliefs. Inference is based on the posterior distribution f(θ|x), whose form will

be seen to depend (through Bayes’ theorem) on the particulars of the prior specification

f(θ).

• Self–consistency. By treating the parameter θ as random, it emerges that the whole

development of Bayesian inference stems quite naturally from probability theory only. This

has many advantages, and means that all inferential issues can be addressed as probability

statements about θ, which then derive directly from the posterior distribution. We will

see one such advantage when we consider prediction in chapter 6.

• No ‘adhockery’. Because classical inference cannot make probability statements about

θ, various criteria are developed to judge whether a particular estimator is in some sense

‘good’. This has led to a proliferation of procedures, often in conflict with one another.

Bayesian inference sidesteps this tendency to invent ad hoc criteria for judging and com-

paring estimators by relying on the posterior distribution to express in straightforward

probabilistic terms the entire inference about the unknown θ.

1.5 Objections to Bayesian inference

The main objections to Bayesian inference, as described above, are that the conclusions will

depend on the specific choice of prior. This is particularly important for scientific papers, which

should aim to be objective, and try and present the information in the data, not the beliefs of

the author.

However, often there is prior information, that can sensibly be formulated in a prior distribution,

and in such cases Bayesian inference is clearly the best approach.

Even when there is no prior information, it is possible to construct priors which reflect this lack

of information (at least to some degree - see Chapter 3). Providing such uninformative priors

are used, and there is sufficient data, then the posterior will closely resemble the likelihood, and

the choice of prior will have had little effect on the inferences that are made.
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1.6 Review of Bayes’ Theorem

In its basic form, Bayes’ Theorem is a simple result concerning conditional probabilities:

If A and B are two events with Pr(A) > 0. Then

Pr(B|A) =
Pr(A|B) Pr(B)

Pr(A)

Proof.

Pr(B|A) =
Pr(A ∩B)

Pr(A)
=

Pr(A|B) Pr(B)

Pr(A)

The use of Bayes’ Theorem, in probability applications, is to reverse the conditioning of events.

That is, it shows how the probability of B|A is related to A|B.

A slight extension of Bayes’ Theorem is obtained by considering events C1, . . . , Ck which parti-

tion the sample space Ω, so that Ci ∩ Cj = φ if i 6= j and C1 ∪ . . . ∪ Ck = Ω. Then

Pr(Ci|A) =
Pr(A|Ci) Pr(Ci)∑k
j=1 Pr(A|Cj) Pr(Cj)

for i = 1, . . . , k.

Proof.

Pr(Ci|A) =
Pr(A ∩ Ci)

Pr(A)
=

Pr(A|Ci) Pr(Ci)

Pr(A)
for i = 1, . . . , k,

where

Pr(A) =
k∑
i=1

Pr(A ∩ Ci) =
k∑
i=1

Pr(A|Ci) Pr(Ci),

since the Ci’s are disjoint and their union is Ω.

A further extension is to continuous random variables:

f(θ | x) =
f(x | θ)f(θ)

f(x)
.

Common Mistake 1 When normalising a posterior distribution, take care with the limits on

the parameters.
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Example 1.1 A screening procedure for HIV is applied to a population which is at high risk for

HIV; 10% of this population are believed to be HIV positive. The screening test is positive for

90% of people who are genuinely HIV positive, and negative for 85% of people who are not HIV

positive. What are the probabilities of false positive and false negative results?

Denoting A: person is HIV positive, and B: test result is positive, we have Pr(A) = 0.1,

Pr(B|A) = 0.9 and Pr(Bc|Ac) = 0.85.

We need to calculate Pr(false positive) = Pr(Ac|B) and Pr(false negative) = Pr(A|Bc).

We have:

Pr(A) = 0.1 and Pr(Ac) = 1− Pr(A) = 0.9

Pr(B | A) = 0.9 and Pr(Bc | A) = 1− Pr(B | A) = 0.1

Pr(Bc | Ac) = 0.85 and Pr(B | Ac) = 1− Pr(Bc | Ac) = 0.15

Pr(B) = Pr(B | A) Pr(A) + Pr(B | Ac) Pr(Ac) = 0.9 × 0.1 + 0.15 × 0.9 = 0.09 + 0.135 = 0.225

and Pr(Bc) = 1− Pr(B) = 0.775

So:

Pr(Ac|B) =
Pr(B|Ac) Pr(Ac)

Pr(B)
=

0.15× 0.9

0.225
= 0.6

and

Pr(A|Bc) =
Pr(Bc|A) Pr(A)

Pr(Bc)
=

0.1× 0.1

0.775
= 0.0129
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Example 1.2 In a bag there are 6 balls of unknown colours. Three balls are drawn without

replacement and are found to be black. Find the probability that no black ball is left in the bag.

So, let A: 3 black balls are drawn, and Ci: there were i black balls in the bag. Then, by Bayes’

Theorem:

Pr(Ci|A) =
Pr(A|Ci) Pr(Ci)∑6
j=0 Pr(A|Cj) Pr(Cj)

, i = 0, . . . , 6

But here’s the key issue: what values do we give Pr(C0), . . . ,Pr(C6)? These are the probabilities

of the different numbers of black balls in the bag, prior to having seen the data. Without any

information to the contrary, we might well assume that all possible numbers are equally likely, so

taking Pr(C0) = Pr(C1) = . . . = Pr(C6) = 1
7 . In fact, we will use this prior specification for the

remainder of the problem. But, is it the most sensible? You could take the view that it’s quite

likely that all balls in the bag are likely to be of the same colour, and consequently give higher

prior probabilities to Pr(C0) and Pr(C7). Or you could find out from the ball manufacturers

that they produce balls of 10 different colours. You might then take the prior view that each

ball is black with probability 1
10 and use this as a basis for calculating prior probabilities. The

point is we have to think hard about how to express our prior beliefs, and the answer we get will

depend on what we believe to begin with.

This argument will be taken up again later. For now though, using the prior specified above,

we simply apply Bayes’ Theorem to obtain:

Pr(C3|A) =
Pr(C3) Pr(A|C3)∑6
j=0 Pr(A|Cj) Pr(Cj)

=
1
7 × (3

6 ×
2
5 ×

1
4)

1
7

{
0 + 0 + 0 + (3

6 ×
2
5 ×

1
4) + (4

6 ×
3
5 ×

2
4) + (5

6 ×
4
5 ×

3
4) + (6

6 ×
5
5 ×

4
4)
}

=
1

35
.

Thus, the data has updated our prior belief of Pr(C3) = 1
7 to the posterior probability Pr(C3|A) =

1
35 . That is, the event is much less likely having seen the data than it was previously.
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Stratum Fossil present Fossil absent

A 0.9 0.1
B 0.2 0.8

Table 1.1: Strata probabilities for fossil presence and absence.

1.7 Exercises

Exercise 1.1 The rock strata A and B are difficult to distinguish in the field. Through careful

laboratory studies it has been determined that the only characteristic which might be useful in

aiding discrimination is the presence or absence of a particular brachipod fossil. In rock exposures

of the size usually encountered, the probabilities of fossil presence are found to be as in table 1.1.

It is also known that rock type A occurs about four times as often as type B in this area of study.

If a sample is taken, and the fossil found to be present, calculate the posterior distribution of

rock types.

If the geologist always classifies as A when the fossil is found to be present, and classifies as B

when it is absent, what is the probability she will be correct in a future classification?

Exercise 1.2 Repeat Example 1.2 using a different choice of prior distribution. You may use

any prior distribution but must give some convincing (but brief) reason for its use. In what way

does this change of prior affect the posterior probability of no black balls left in the bag?

Exercise 1.3 Repeat the coin sampling example, by writing out the table for the case when the

sample of 2 coins are observed both to be tails, i.e. X = 2. Just rows 2, 4 and 5 will change.

In a word or two, say how the picture given by the posterior distribution differs from that of the

likelihood in this case.

Exercise 1.4 A seed collector, who has acquired a small number of seeds from a plant, has a

prior belief that the probability θ of germination of each seed is uniform over the range 0 ≤ θ ≤
1. She experiments by sowing two seeds and finds that they both germinate. (i) Write down

the likelihood function for θ deriving from this observation, and obtain the collector’s posterior

distribution of θ. (ii) Compute the posterior probability that θ is less than one half.

Exercise 1.5 A posterior distribution is calculated up to a normalising constant as

f(θ | x) ∝ θ−3,
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for θ > 1. Calculate the normalising constant of this posterior, and the posterior probability of

θ < 2.

Exercise 1.6 A bee-keeper has 4 hives and in late winter his prior distribution of the number

θ of hives in which the bees are still alive, is given in the table.

θ 0 1 2 3 4

f(θ) 0.3 0.1 0.1 0.2 0.3

He selects two hives at random and on careful inspection finds that the bees are alive in both.

(i) Write down the table of likelihoods of θ given this observation.

(ii) Evaluate the posterior probability that the bees are alive in all 4 of the hives.
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Chapter 2

Bayesian updating

2.1 Introduction

As set out in Chapter 1, the essence of the Bayesian approach is to treat the unknown parameter

θ as a random variable, specify a prior distribution for θ representing your beliefs about θ prior

to having seen the data, use Bayes’ Theorem to update prior beliefs into posterior probabilities,

and draw appropriate inferences. Thus, there are four key steps to the Bayesian approach:

1. Specification of a likelihood model f(x | θ);

2. Determination of a prior f(θ);

3. Calculation of posterior distribution, f(θ | x) from Bayes’ Theorem;

4. Drawing inferences from this posterior information.

In this chapter, we’ll re–state Bayes’ Theorem in a form appropriate for random variables rather

than events, and consider some issues which arise when we try to use this result in the context

of inference for a parameter θ. These issues will be addressed in subsequent chapters. We’ll also

look here at a number of examples where particular combinations of prior and likelihood give

rise to convenient mathematical forms for the posterior distribution.

2.2 Bayes’ Theorem

Stated in terms of random variables with densities denoted generically by f , Bayes Theorem

takes the form:

15
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f(θ | x) =
f(θ)f(x | θ)∫
f(θ)f(x | θ)dθ

We will use this notation to cover the case where x is either continuous or discrete, where in

the continuous case f is the p.d.f. as usual, but in the discrete case, f is the probability mass

function of x. Similarly, θ can be discrete or continuous, but in the discrete case
∫
f(θ)f(x | θ)dθ

is to be interpreted as
∑
j f(θj)f(x | θj).

Notice that the denominator in Bayes’ Theorem is a function of x only — θ having been ‘inte-

grated out’. Thus another way of writing Bayes’ Theorem is

f(θ | x) = cf(θ)f(x | θ)

∝ f(θ)f(x | θ)

= h(θ)

or, in words, ‘the posterior is proportional to the prior times the likelihood’. The constant of

proportionality c, which may depend on x but not θ, is a normalising constant, determined so

that the posterior distribution integrates to one.

There is a unique pdf, say g(θ) which is proportional to any given function h(θ), because g(θ)

can be determined uniquely as g(θ) = ch(θ) where c = 1/
∫
h(θ)dθ. We shall use this fact soon,

to recognise standard pdfs which are proportional to certain posterior distributions.

This fact also allows us to remove any factors of h(θ), which in our application is f(θ)f(x|θ),
which do NOT depend upon θ, before carrying out the normalisation. Examples will illustrate

this.

Common Mistake 2 The posterior distribution is NOT h(θ); this is particularly important for

making probability statements about θ (see Chapter 5) and for calculating predictive distributions

(see Chapter 6).

2.3 Issues

2.3.1 Choice of likelihood model

This depends on the mechanics of the problem to hand, and is the same problem faced using

classical inference — what is the most suitable model for our data? Often, knowledge of the
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structure by which the data is obtained may suggest appropriate models (Binomial sampling,

or Poisson counts, for example), but often a model will be ‘hypothesised’ (Y is linearly related

to X with independent Normal errors, for example) and its plausibility assessed later in the

context of the data.

2.3.2 Choice of prior

This issue is fundamental to the Bayesian framework, and will be discussed at length in Chapter

3. However, some points should be noted now:

1. Because the prior represents your beliefs about θ before observing the data, it follows that

the subsequent analysis is unique to you. Someone else’s priors would lead to a different

posterior analysis. In this sense the analysis is subjective.

2. We will see later that as long as the prior is not ‘completely unreasonable’ then the effect

of the prior becomes less influential as more and more data become available. Thus, there

is a sense in which mis–specification of the prior is unimportant so long as there is enough

data available.

3. Often we might have a ‘rough idea’ what the prior should look like (perhaps we could give

its mean and variance), but cannot be more precise than that. In such situations we could

use a ‘convenient’ form for the prior which is consistent with our beliefs, but which also

makes the mathematics relatively straightforward. We’ll see some examples of this type

of analysis shortly.

4. Sometimes we might feel that we have no prior information about a parameter. In such

situations we might wish to use a prior which reflects our ignorance about the parameter.

This is often possible, but there are some difficulties involved. These will be discussed in

Chapter 3.

2.3.3 Computation

Though straightforward enough in principle, the implementation of Bayes’ Theorem in practice

can be computationally difficult, mainly as a result of the normalizing integral in the denom-

inator. We will see that for some choices of prior–likelihood combination, this integral can be

avoided, but in general, specialised techniques are required to simplify this calculation.
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2.3.4 Inference

Bayesian analysis gives a more complete inference in the sense that all knowledge about θ avail-

able from the prior and the data is represented in the posterior distribution. That is, f(θ|x) is

the inference. Still, it is often desirable to summarize that inference in the form of a point esti-

mate, or an interval estimate. We will discuss this in Chapter 5. Moreover, desirable properties

or concepts of statistics, functions of the data that are used for inferential purposes, are also

present in Bayesian analysis. For example, in classical inference, the role of sufficient statistics

is discussed in considerable detail. This concept has analogous role in Bayesian inference, but is

more intuitively appealing. For instance, in Bayesian statistics, sufficiency can be characterised

by saying that if we partition our data by x = (x1, x2), then x1 is sufficient for θ if f(θ|x)

depends only on x1 and does not depend on x2.

2.4 Examples

Example 2.1 (Binomial sample.) Suppose our likelihood model is X ∼ Binomial (n, θ), and we

wish to make inferences about θ, from a single observation x.

So

f(x|θ) =

(
n

x

)
θx(1− θ)n−x; x = 0, . . . , n.

Of course, in general, the choice of prior specification for θ will vary from problem to problem,

and by definition will depend on the extent of our prior knowledge about the situation. However,

we will proceed here by considering a possible family of prior distributions which, as we shall

see, gives rise to simple computations. The point about this is that hopefully, provided the

family is large enough and covers a sufficient range of possible forms, we can use a prior within

this family which comes close to our true prior beliefs. If so, we get simple answers. If, however,

there is no prior within this family which resembles what we really believe then we should avoid

this approach.

So, in this case, suppose we can represent our prior beliefs about θ by a beta distribution:

θ ∼ Beta (p, q)

so that

f(θ) =
Γ(p+ q)

Γ(p)Γ(q)
θp−1(1− θ)q−1 (0 ≤ θ ≤ 1)

∝ θp−1(1− θ)q−1.
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Figure 2.1: Cases of the beta distribution.

The parameters of this distribution are p > 0 and q > 0. (They are NOT probabilities and may

have any positive value.) The mean and variance of this distribution are

E (θ) = m =
p

p+ q
and Var (θ) = v =

pq

(p+ q)2(p+ q + 1)
. (2.1)

The Beta distribution is also written

f(θ) =
θp−1(1− θ)q−1

B(p, q)
where B(p, q) =

Γ(p)Γ(q)

Γ(p+ q)
=

∫ 1

0
θp−1(1− θ)q−1dθ.

We call B(p, q) the beta function.

In Figure 2.1 are shown some simple cases of the beta distribution.

Now we apply Bayes’ Theorem using this prior distribution:

f(θ|x) ∝ f(θ)f(x|θ)

∝ θp−1(1− θ)q−1 × θx(1− θ)n−x

= θp+x−1(1− θ)q+n−x−1
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= θP−1(1− θ)Q−1

where P = p+ x and Q = q+ n− x. There is only one density function proportional to this, so

it must be the case that

θ|x ∼ Beta (P,Q).

Thus, by careful choice, we have obtained a posterior distribution which is in the same family as

the prior distribution, and in doing so have avoided the need to calculate explicitly any integrals

for the normalising constant. That has been done already in the general formula for the beta

distribution.

The effect of the data is to modify the parameters of the beta distribution from their prior values

of (p, q), to the posterior values of (p+ x, q + n− x).

As a numerical example, consider the data set ‘CANCER’ taken from First Bayes.1 Of 70

patients given a new treatment protocol for a particular form of cancer, 34 are found to survive

beyond a specified period. Denote by θ the probability of a patient’s survival. Consultation with

medical experts, who are familiar with similar trials leads them to express the prior belief that

E (θ) = 0.4 and Var (θ) = 0.02 (i.e. standard deviation about 0.14). Now, if a beta distribution

is reasonable for their prior beliefs, then we should choose a prior distribution θ ∼ Beta (p, q)

such that E (θ) = 0.4 and Var (θ) = 0.02. Thus we require

m =
p

p+ q
= 0.4 and v =

pq

(p+ q)2(p+ q + 1)
= 0.02.

These equations are solved by

p =
(1−m)m2

v
−m and q =

(1−m)2m

v
− (1−m),

leading in this case to p = 4.4 and q = 6.6. This specifies the prior distribution for θ. This is a

simple example of what is called elicitation of the prior distribution. In practice, it would now

be necessary to ensure that the whole prior distribution was consistent with the experts’ prior

beliefs.

Presuming it is, we obtain P = 4.4 + 34 = 38.4 and Q = 6.6 + 70− 34 = 42.6, so the posterior

distribution of θ is

θ|x ∼ Beta (38.4, 42.6).

This posterior distribution summarizes all available information about θ and represents the

complete inference about θ. We will discuss later how, if required, we might choose to summarize

this inference, but for now we can see how the data modifies our prior beliefs by comparing prior

1First Bayes is a computer package, written by Tony O’Hagan, which illustrates a variety of Bayesian analyses.
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and posterior expectations:

E (θ) =
p

p+ q
= 0.4 E (θ|x) =

P

P +Q
=

p+ x

p+ q + n
= 0.474.

The effect of the observed data has been to increase the prior estimate of θ from 0.4 to 0.474.

On the other hand, a natural estimate for θ on the basis of the data only is x/n = 0.486, which

is the maximum likelihood estimate. Thus, the posterior estimate is a balance between our prior

beliefs and the information provided by the data.

More generally, if x and n are large relative to p and q then the posterior expectation is approx-

imately x/n, the maximum likelihood estimate. On the other hand, if p and q are moderately

large then they will have reasonable influence on the posterior mean. It can also be checked

that as x and n become larger — or indeed if p and q are chosen larger — then the posterior

variance is lower.

Example 2.2 (Poisson sample.) Suppose we have a random sample (i.e. independent observa-

tions) of size n, x = (x1, x2, . . . , xn) of a random variable X whose distribution is Poisson (θ) ,

so that

f(x | θ) =
θxe−θ

x!
, θ ≥ 0.

The mean and the variance of this distribution are:

E(X) = θ

V ar(X) = θ

The likelihood is

f(x|θ) =
n∏
i=1

e−θθxi

xi!

∝ e−nθθΣxi

As in the binomial example, prior beliefs about θ will vary from problem to problem, but we’ll

look for a form which gives a range of different possibilities, but is also mathematically tractable.

In this case we suppose our prior beliefs can be represented by a gamma distribution:

θ ∼ Gamma (p, q),

so

f(θ) =
qp

Γ(p)
θp−1 exp{−qθ}, θ > 0.
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m=1/q 
θ θ 

m=3/q 

p=1 p=3 

f(θ) f(θ) 

q/2 

mode 

θ ~ Exp(q) 

f(θ)=qe−qθ
Sum of 3 i.i.d 
Exp(q) r.v.s

f(θ)=cθ2e−qθ 

Figure 2.2: Examples of the gamma distribution.

The parameter p > 0 is a shape parameter, and q > 0 is a scale parameter. The mean and

variance of this distribution are

E (θ) = m =
p

q
and Var (θ) = v =

p

q2
. (2.2)

In Figure 2.2 are shown some examples.

Applying Bayes’ Theorem with this prior distribution,

f(θ|x) ∝ θp−1 exp{−qθ} × exp{−nθ}θΣxi

= θ(p+Σxi−1) exp{−(q + n)θ}

= θP−1 exp(−Qθ)

where P = p +
∑
xi and Q = q + n. Again, there is only one density function proportional to

this, so it must be the case that

θ|x ∼ Gamma (P,Q),

another gamma distribution whose parameters are modified by the sum of the data,
∑n
i=1 xi,

and the sample size n2.

2Note that the individual values of xi are not required, only their sum. We say that
∑

xi is sufficient for θ.
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Common Mistake 3 When recognising the posterior distribution, remember that it is a distri-

bution for the parameter, θ, not the data xi. For example, it is a common mistake to recognise

f(θ | x) ∝ θ(p+Σxi−1) exp{−(q + n)θ},

as a Poisson distribution.

As a numerical example, again taken from First Bayes, we’ll let θ be the mean number of geese

in a flock within a particular region. Detailed aerial photographs of 45 flocks gave
∑
xi = 4019.

We’ll suppose our prior expectation and variance for θ are p/q = m = 100 and p/q2 = v = 20

respectively. We can solve for q = m/v = 5 and p = q ×m = 500. Hence P = 500 + 4019 and

Q = 5 + 45, so our posterior distribution is θ|x ∼ Gamma (4519, 50). The mean and variance

of this are:

m =
4519

50
= 90.4 v =

90.4

50
= 1.81

Example 2.3 (Normal mean.) Let x = (x1, x2, . . . , xn) be a random sample of size n of a

random variable X with the Normal
(
θ, σ2

)
distribution, where σ2 is known:

f(x | θ) =
1√
2πσ

exp

{
−(x− θ)2

2σ2

}
.

The mean and the variance of this distribution are:

E(X) = θ

V ar(X) = σ2

Given a single observation xi from the Normal
(
θ, σ2

)
pdf, the likelihood of θ is given by

f(xi | θ) = 1√
2πσ

exp
{
− (xi−θ)2

2σ2

}
∝ exp

{
− 1

2σ2 (x2
i − 2xiθ + θ2)

}
= exp

(
− 1

2σ2x
2
i

)
exp

(
1
σ2xiθ − 1

2σ2 θ
2
)

∝ exp
(
− 1

2σ2 θ
2 + 1

σ2xiθ
)
.

The likelihood of the whole sample is then

f(x | θ) =
∏
i f(xi | θ)

∝
∏
i exp

(
− 1

2σ2 θ
2 + 1

σ2xiθ
)

= exp
[∑

i

(
− 1

2σ2 θ
2 + 1

σ2xiθ
)]

= exp
[
−
(

n
2σ2

)
θ2 +

(
1
σ2

∑
i xi
)
θ
]
.
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Suppose our prior beliefs about θ can themselves be represented as a normal distribution: θ ∼
Normal

(
b, d2

)
. Again, this is to achieve simple mathematical analysis, but should only be used

if such a choice is a good approximation to your prior belief about θ.

The mean and variance of this prior distribution are

E (θ) = b and Var (θ) = d2. (2.3)

Now, we can write our prior distribution for θ as

f(θ) = 1√
2πd

exp
{
− (θ−b)2

2d2

}
∝ exp

(
− 1

2d2
θ2 + 1

d2
b θ − 1

2d2
b2
)

∝ exp
(
− 1

2d2
θ2 + 1

d2
b θ
)
.

We now derive the posterior distribution of θ as follows

f(θ | x) ∝ f(θ)f(x | θ)

∝ exp
(
− 1

2d2
θ2 + 1

d2
bθ
)

exp
[
−
(

n
2σ2

)
θ2 +

(
1
σ2

∑
i xi
)
θ
]

= exp
[
−1

2

(
1
d2

+ n
σ2

)
θ2 +

(
1
d2
b+ 1

σ2

∑
i xi
)
θ
]

= exp
(
− 1

2D2 θ
2 + 1

D2Bθ
)
.

Therefore, we can conclude that the posterior distribution of θ is

θ|x ∼ Normal
(
B,D2

)
where

B = E (θ|x) =
1
d2
b+ n

σ2 x̄
1
d2

+ n
σ2

and D2 = Var (θ|x) =

(
1

d2
+

n

σ2

)−1

,

and we have replaced
∑
xi by nx̄.

This result is expressed more concisely if we define ‘precision’ to be the reciprocal of variance:

i.e. let τ = 1/σ2 and c = 1/d2. Then

θ|x ∼ Normal
(
cb+nτx
c+nτ ,

1
c+nτ

)

Before looking at a numerical example, a number of observations can be made:

1. Observe that

E(θ|x) = γnb+ (1− γn)x
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where

γn =
c

c+ nτ
and (1− γn) =

nτ

c+ nτ
.

Thus, the posterior mean is simply a weighted average of the prior mean and x. Moreover,

the weighting parameter γn is determined by the relative precision of the prior and data

components. That is, if nτ is large relative to c, then γn ≈ 0 and the posterior mean is

close to x.

2. Observe that ‘posterior precision’ = ‘prior precision’ + n× ‘precision of each data item’.

3. As n→∞, then (loosely)

θ|x ∼ Normal
(
x, σ

2

n

)
so that the prior has no effect in the limit.

4. As d→∞, or equivalently c→ 0, we again obtain

θ|x ∼ Normal
(
x, σ

2

n

)

5. Note that the posterior distribution depends on the data only through x and not through

the individual values of the xi themselves. Again, we say that x is sufficient for θ.

Points 3 and 4 above are subtle, and will be discussed at some length below.

As a numerical example, taken from First Bayes, we look at a historical data set recorded by

Henry Cavendish in the 18th century. He made 23 measurements of the density of the earth.

For these data, x = 5.48 and we’ll suppose the variance of his measurement errors is known to

be 0.04. Now, suppose from previous experiments the prior for θ, the earth’s density, is taken

as Normal (5.4, 0.01). Then

B =
1

0.015.4 + 23
0.045.48

1
0.01 + 23

0.04

and D2 =

(
1

0.01
+

23

0.04

)−1

so θ|x ∼ Normal (5.47, 0.00148).

2.5 General issues

The principles and details met in the above examples give rise to a number of issues which it is

useful to discuss now.
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2.5.1 Sequential updating

We have seen that Bayes’ Theorem provides the machine by which your prior information is

updated by data to give your posterior information. This then serves as your ‘new’ prior infor-

mation before more data become available. This gives rise to one question in particular: if we

obtain a sequence of data, and we update our beliefs on the arrival of each data item, would

we get a different result from waiting till all the data had arrived, then updating our prior?

Consider the simple case of two independent variables X1 and X2, each having density f(x|θ).
Now, suppose we observe x1, and update our prior via Bayes’ Theorem to obtain

f(θ|x1) ∝ f(θ)× f(x1|θ).

This becomes our new prior before observing x2. Thus,

f(θ|x1, x2) ∝ f(θ)× f(x1|θ)× f(x2|θ)

= f(θ)× f(x1, x2|θ)

which is the same result we would have obtained by updating on the basis of the entire infor-

mation (x1, x2) directly. By induction this argument extends to sequences of any number of

observations.

2.5.2 Sufficiency

In classical inference, sufficiency plays a central role both in theoretical development and in

practical applications. The classical result by which we recognise that a function s(x), of the

data alone, is a sufficient statistic for a parameter θ, is that

f(x|θ) = g(x)h(s, θ)

where g(x) does not involve θ, only the data (though not necessarily even the data - it could be

some constant).

If this is the case, in the Bayesian analysis

f(x|θ) ∝ h(s, θ)

so the likelihood depends on the data only through the sufficient statistic s(x), as we have

already seen a number of examples. In that case the posterior distribution f(θ|x) also depends

on the data only through the sufficient statistic s(x).

The reverse is also true, that if the posterior distribution f(θ|x) is seen to depend on the data

only through a single function s(x) of the data, then s(x) is a sufficient statistic for θ.
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2.5.3 The Likelihood Principle

The likelihood principle states that if two experiments yield the same likelihood (up to propor-

tionality), then the inference we draw about θ should be the same in each case. In other words,

all aspects of inference should be based only on the likelihood function. A major virtue of the

Bayesian framework is that Bayesian techniques are inherently consistent with the likelihood

principle, whereas many simple procedures from classical statistics violate it.

Example 2.4 Consider two experiments concerned with estimating the probability of success θ

in independent trials. In the first experiment, the number x of successes in n trials is recorded.

In the second, the number y of trials required to obtain m successes is recorded.

The distributions of the random variables X, Y describing the outcomes of these experiments

differ. They are the Binomial and Negative Binomial distributions.

f(x|θ) = P (X = x) =

(
n

x

)
θx(1− θ)n−x, x = 0, 1, . . . , n

and

f(y|θ) = P (Y = y) =

(
y − 1

m− 1

)
θm(1− θ)y−m, y = m,m+ 1, . . . ,∞.

The corresponding maximum likelihood estimators are θ̂ = x/n and θ̂ = m/y. Their sampling

distributions are quite different. If n = 2, then x/n can take the values 0, 1
2

and 1. If m = 1,

then m/y can take the values 1, 1
2
, 1

3
, . . . . But if it happened that also x = 1 and y = 2,

f(x|θ) = 2θ(1− θ) and f(y|θ) = θ(1− θ)

so that the likelihoods are proportional, and the Bayesian inference would be the same in both

cases. It would not depend on the probability of any other possible outcome of the experiment,

i.e. not on the distribution of X or Y .
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2.6 Exercises

Exercise 2.1 In each of the following cases, derive the posterior distribution:

a) x1, . . . , xn are a random sample from the distribution with probability function

f(x|θ) = θx−1(1− θ); x = 1, 2, . . .

with the Beta (p, q) prior distribution

f(θ) =
θp−1(1− θ)q−1

B(p, q)
, 0 ≤ θ ≤ 1.

b) x1, . . . , xn are a random sample from the distribution with probability density function

f(x|θ) =
e−θθx

x!
x = 0, 1, . . .

with the prior distribution

f(θ) = e−θ, θ ≥ 0.

Exercise 2.2 The proportion, θ, of defective items in a large shipment is unknown, but expert

assessment assigns θ the Beta (2, 200) prior distribution. If 100 items are selected at random

from the shipment, and 3 are found to be defective, what is the posterior distribution of θ?

If another statistician, having observed the 3 defectives, calculated her posterior distribution as

being a beta distribution with mean 4/102 and variance 0.0003658, then what prior distribution

had she used?

Exercise 2.3 The diameter of a component from a long production run varies according to a

Normal (θ, 1) distribution. An engineer specifies that the prior distribution for θ is Normal (10, 0.25).

In one production run 12 components are sampled and found to have a sample mean diameter

of 31/3. Use this information to find the posterior distribution of mean component diameter.

Hence calculate the probability that this is more than 10 units.

Exercise 2.4 The number of defects in a single roll of magnetic tape has a Poisson (θ) distri-

bution. The prior distribution for θ is Gamma (3, 1). When 5 rolls of this tape are selected

at random, the number of defects found on each are 2,2,6,0 and 3 respectively. Determine the

posterior distribution of θ.

Exercise 2.5 Suppose that the time x in minutes required to serve a customer in a bank has an

Exp (θ) distribution with pdf θ exp(−θx), for x ≥ 0. A prior for θ is determined to be a gamma
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distribution with mean 0.2 and standard deviation 1. The times x1, x2, . . . , x20 taken to serve

20 customers are observed, and their average value x̄ is 3.8 minutes. Determine the posterior

distribution for θ.

Exercise 2.6 A random sample x1, . . . , xn is taken from a Poisson distribution with mean θ.

The prior distribution for θ is a gamma distribution with mean µ0. If the sample mean is xn,

show that the mean of the posterior distribution of θ will be a weighted average of the form

γnxn + (1− γn)µ0,

and show that γn → 1 as n→∞.

Exercise 2.7 An engineer uses a Gamma (p, q) distribution to describe the prior distribution

of a parameter θ, the expected number of faults x to be found in a plastic moulding.

(a) Given that the mean and variance of the gamma distribution are p/q and p/q2 respectively,

what values should she take for p and q in order that θ should have mean 12 and standard

deviation 4.

(b) The engineer then ascertains that there are a total of 37 faults in 5 of the plastic mouldings.

Assuming that the numbers of faults in each moulding are independent and have a Poisson

distribution, obtain the posterior distribution of θ given this information.

(c) What is the posterior mean of θ?

Exercise 2.8 (i) Observations y1, y2, . . . , yn are obtained from independent random variables

which are normally distributed, each with the same (known) variance σ2 but with respective

means x1θ, x2θ, . . . , xnθ. The values of x1, x2, . . . , xn are known but θ is unknown. Show

that the likelihood, given a single observation yi, is of the form

f(yi|θ) ∝ exp

(
−1

2

1

σ2
x2
i θ

2 +
1

σ2
yixiθ

)
.

(ii) Given the prior distribution for the unknown coefficient θ may be described as normal with

mean b and variance σ2/a2, show that the posterior distribution of θ is proportional to

exp

{
−1

2

[
(a2 +

n∑
i=1

x2
i )/σ

2

]
θ2 +

[
(a2b+

n∑
i=1

yixi)/σ
2

]
θ

}
.

(iii) Use this to write down the posterior mean of θ. Show that it may be written as

θ̂ = wb+ (1− w)

∑n
i=1 yixi∑n
i=1 x

2
i

,

and obtain an expression for w.
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Chapter 3

Specifying priors

3.1 Introduction

We have seen that the fundamental difference between Bayesian and classical statistics is that

in Bayesian statistics unknown parameters are treated as random variables, and that the use of

Bayes’ theorem requires the specification of prior distributions for these parameters. Whilst this

facilitates the inclusion of genuine prior belief about parameters, the choice of prior distribution

cannot be made blindly; considerable care is needed and there are some very substantial issues

involved. In this chapter we look at some of these issues.

3.2 Conjugate priors

The computational difficulties arise in using Bayes’ Theorem when it is necessary to evaluate

the normalizing constant in the denominator,∫
f(θ)f(x|θ)dθ.

For example, suppose X1, . . . , Xn are independent Poisson(θ) variables, and our beliefs about

θ are that it definitely lies in the range [0, 1], but that all values within that range are equally

likely: thus, f(θ) = 1; 0 ≤ θ ≤ 1 and f(θ|x) ∝ exp(−nθ)θΣxi . Then the normalizing constant is∫ 1

0
exp(−nθ)θΣxidθ,

and this integral, an incomplete gamma function, can only be evaluated numerically.

31
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So, even simple choices of priors can lead to awkward numerical problems. However, we saw three

examples in the previous chapter where judicious choices of prior led to posterior calculations

which did not require any integration. In each of these cases we were able to identify a prior

distribution for which the posterior distribution was in the same family of distributions as the

prior; such priors are called conjugate priors. Let’s consider another example where a conjugate

prior can be found.

Example 3.1 (Gamma sample.) Let X1, . . . Xn be independent variables having the Gamma (k, θ)

distribution, where k is known. Note that the case k = 1 corresponds to the exponential distri-

bution.

Then

f(xi | θ) =
1

Γ(k)
θkxk−1

i e−θxi

∝ θke−θxi

So

f(x | θ) ∝
n∏
i=1

θke−θxi

= θnk exp{−θΣxi}.

Now, studying this form, regarded as a function of θ suggests we could take a prior of the form

f(θ) ∝ θp−1 exp{−qθ}

that is, θ ∼ Gamma (p, q), since then by Bayes’ Theorem

f(θ|x) ∝ θp+nk−1 exp{−(q + Σxi)θ},

and so θ|x ∼ Gamma (p+ nk, q +
∑
xi).

3.2.1 Use of conjugate priors

The use of conjugate priors should be seen for what it is: a convenient mathematical device.

However, expression of one’s prior beliefs as a parametric distribution is always an approxima-

tion. In many situations the richness of the conjugate family is great enough for a conjugate

prior to be found which is sufficiently close to one’s beliefs for this extra level of approximation

to be acceptable. However, if this is not the case, they should not be used just because they

made the maths easier.
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3.2.2 Obtaining conjugate priors

Provided they are not in direct conflict with our prior beliefs, and provided such a family can be

found, the simplicity induced by using a conjugate prior is compelling. But in what situations

can a conjugate family be obtained?

It emerges that the only case where conjugates can be easily obtained is for data models within

the exponential family. That is,

f(x|θ) = h(x)g(θ) exp{t(x)c(θ)}

for functions h, g, t and c such that∫
f(x|θ)dx = g(θ)

∫
h(x) exp{t(x)c(θ)}dx = 1.

This might seem restrictive, but in fact includes the exponential distribution, the Poisson dis-

tribution, the gamma distribution with known shape parameter, the binomial distribution and

the normal distribution with known variance.

Given a random sample x = (x1, x2, . . . , xn) from this general distribution, the likelihood for θ

is then

f(x | θ) =
n∏
i=1

{h(xi)}g(θ)n exp{
n∑
i=1

t(xi)c(θ)}

∝ g(θ)n exp{
n∑
i=1

t(xi)c(θ)}.

Thus if we choose a prior of the form

f(θ) ∝ g(θ)d exp{b c(θ)},

we obtain

f(θ|x) ∝ f(θ)f(x | θ)

∝ g(θ)d exp{b c(θ)} × g(θ)n exp{
n∑
i=1

t(xi)c(θ)}

= g(θ)n+d exp{[b+
n∑
i=1

t(xi)]c(θ)}

= g(θ)D exp{Bc(θ)},

where D = n + d and B = b +
∑
t(xi). This results in a posterior in the same family as the

prior, but with modified parameters.
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It is easily checked that all the examples of conjugate priors we have met so far can be derived

in this way. For example, a binomial random variable has pdf

f(x|θ) =

(
n

x

)
θx(1− θ)n−x

=

(
n

x

)
(1− θ)n

(
θ

1− θ

)x

=

(
n

x

)
(1− θ)n exp{x log(

θ

1− θ
)}.

So, in exponential family notation we have h(x) =
(n
x

)
, g(θ) = (1 − θ)n, t(x) = x, and c(θ) =

log( θ
1−θ ). Thus, we construct a conjugate prior with the form

f(θ) ∝ [(1− θ)n]d exp{b log(
θ

1− θ
)}

= (1− θ)nd−bθb

which is a member of the beta family of distributions.

3.2.3 Standard conjugate analyses

Table 3.1 lists many of the standard prior–likelihood conjugate analyses.

Likelihood Prior Posterior

x ∼ Binomial (n, θ) Beta (p, q) Beta (p+ x, q + n− x)

x1, . . . , xn ∼ Geometric (θ) Beta (p, q) Beta (p+ n, q +
∑n
i=1 xi − n)

x ∼ Negative-Binomial (n, θ) Beta (p, q) Beta (p+ n, q + x− n)
x1, . . . , xn ∼ Poisson (θ) Gamma (p, q) Gamma (p+

∑n
i=1 xi, q + n)

x1, . . . , xn ∼ Gamma (k, θ) (k known) Gamma (p, q) Gamma (p+ nk, q +
∑n
i=1 xi)

x1, . . . , xn ∼ Normal
(
θ, τ−1

)
, (τ known) Normal

(
b, c−1

)
Normal

(
cb+nτx
c+nτ ,

1
c+nτ

)

Table 3.1: Standard conjugate analyses.

Some of these have been given as examples; the others you should verify.
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Figure 3.1: A mixture of prior distributions.

3.3 Mixtures of priors

The arguments for the use of conjugate families of prior distributions were set out in Section

3.1. However, we emphasise again, that such families should only be used if a suitable member

of the family can be found which is in accord with your true prior beliefs. In some situations

the natural conjugate family may be too restrictive for this to be possible.

Consider the following example (which is often quoted). When a coin is tossed, then almost

invariably there is a 0.5 chance of it coming up heads. However, if the coin is spun on a table,

it is often the case that slight imperfections in the edge of the coin cause it to have a tendency

to prefer either heads or tails. Taking this into account, we may wish to give the probability θ

of the coin coming up heads a prior distribution which favours values around either 0.3 or 0.7

say. That is, our prior beliefs may be reasonably represented by a bimodal distribution (or even

trimodal if we wish to give extra weight to the unbiased possibility, θ = 0.5). Our likelihood

model for the number of heads in n spins will be binomial: X|θ ∼ Binomial (n, θ) and so the

conjugate prior family is the beta family. However, no member of this family is multimodal.

One solution is to use mixtures of conjugate distributions (see Figure 3.1).
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This extended family will also be a conjugate prior family for the following reason. Sup-

pose f1(θ), . . . , fk(θ) are all conjugate distributions for θ, leading to posterior distributions

f1(θ|x), . . . , fk(θ|x). Now consider the family of mixture distributions:

f(θ) =
k∑
i=1

pifi(θ),

where 0 ≤ pi ≤ 1, i = 1, . . . , k and
∑k
i=1 pi = 1. Then,

f(θ|x) ∝ f(θ)f(x|θ)

=
k∑
i=1

pifi(θ)f(x|θ)

=
k∑
i=1

pifi(x)fi(θ|x)

Hence
k∑
i=1

p∗i fi(θ|x),

where p∗i ∝ pifi(x). So the posterior is in the same mixture–family. Notice though that the

mixture proportions in the posterior p∗i generally will be different from those in the prior.

It can be proved that finite mixtures of conjugate priors can be made arbitrarily close to any

prior distribution. However, the number of terms in the mixing may be large, and it may be

possible to represent one’s prior beliefs much more succinctly using other non–conjugate families

of models.

3.4 Improper priors

Consider again the posterior analysis obtained when estimating a normal mean with known

variance, and using a normal prior. Thus, X1, . . . , Xn ∼ Normal
(
θ, τ−1

)
, θ ∼ Normal

(
b, c−1

)
,

leading to θ|x ∼ Normal
(
cb+nτx
c+nτ ,

1
c+nτ

)
. Now, the strength of our prior beliefs about θ are

determined by the variance, or equivalently the precision, c, of the normal prior. A large value

of c corresponds to very strong prior beliefs; on the other hand small values of c reflect very

weak prior information. Now, suppose our prior beliefs about θ were so weak that we let c→ 0.

Then simply enough, the posterior distribution becomes Normal
(
x, 1

nτ

)
, or in the more familiar

notation: Normal
(
x, σ

2

n

)
. Thus we seemingly obtain a perfectly valid posterior distribution

through this limiting procedure.

But there’s a catch. Consider what’s happening to the prior as c → 0. In effect, we obtain a

Normal (b,∞) distribution, which is not a genuine distribution. In fact, as c→ 0, the distribution
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of Normal
(
b, c−1

)
becomes increasingly flatter, so that in any interval −K ≤ θ ≤ K, provided c

is sufficiently close to 0, we have approximately

f(θ) ∝ 1; −K ≤ θ ≤ K.

But this cannot be valid, in the limit as c→ 0, over the whole real line R, because∫
R
f(θ)dθ =∞.

So, the posterior Normal
(
x, σ

2

n

)
, obtained by letting c→ 0 in the standard conjugate analysis,

cannot arise through the use of any proper prior distribution. It does arise however by formal

use of the prior specification f(θ) ∝ 1, which is an example of what is termed an improper prior

distribution.

So, is it valid to use a posterior distribution obtained by specifying an improper prior to reflect

vague knowledge? Although there are some further difficulties involved (see below), generally

the use of improper prior distributions is considered to be acceptable. The point really is that

if we chose c to be any value other than zero, we would have obtained a perfectly proper prior

and there would have been no qualms about the subsequent analysis. Thus, we could choose c

arbitrarily close to zero and obtain a posterior arbitrarily close to the one we actually obtained

by using the improper prior f(θ) ∝ 1.

3.5 Representations of ignorance

In the previous section, we saw that attempting to represent ignorance within the standard

conjugate analysis of a Normal mean led to the concept of improper priors. But there are

more fundamental problems as well. Consider that we might have specified a prior fΘ(θ) for a

parameter θ in a model. It is quite reasonable to decide to use instead the parameter φ = 1/θ.

For example θ may be the parameter of the exponential distribution of inter-arrival times in

a queue, which represents the arrival rate. Then φ represents the mean inter-arrival time. By

probability theory the corresponding prior density for φ must be given by

fΦ(φ) = fΘ(θ)×
∣∣∣∣ dθdφ

∣∣∣∣
= fΘ(1/φ)

1

φ2
.

In Figure 3.2 are shown plots of the prior distributions of a parameter θ and of φ = 1/θ.
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Figure 3.2: Jeffreys’ priors of θ and φ = 1/θ.

If we decided that we wished to express our ignorance about θ by choosing fΘ(θ) ∝ 1, then we

are forced to take fΦ(φ) ∝ 1/φ2. But if we are ignorant about θ, we are surely equally ignorant

about φ, and so might equally have made the specification fΦ(φ) ∝ 1. Thus, prior ignorance as

represented by uniformity of belief, is not preserved under re-parameterisation.

There is one way of using the likelihood f(x|θ), or more accurately, the log likelihood `(θ) =

log f(x | θ), to specify a prior which is consistent across 1—1 parameter transformations. This

is the ‘Jeffreys’ prior’, and is based on the concept of Fisher information:

I(θ) = −E

{
d2 `(θ)

dθ2

}
= E

{(
d `(θ)

dθ

)2
}
.

Then, the Jeffreys’ prior is defined as

JΘ(θ) ∝ |I(θ)| 12 .

The consistency of this prior under a parameter transformation φ(θ) may be stated as:

JΦ(φ) = JΘ(θ)

∣∣∣∣ dθdφ
∣∣∣∣ .

Substituting the definition of Jeffrey’s prior’s, and squaring, we need to verify that

I(φ) = I(θ)

∣∣∣∣ dθdφ
∣∣∣∣2 .
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We can do this by using the chain rule for change of variable in differentiation. We have

`Φ(φ) = `Θ(θ(φ)).

and
d`Φ(φ)

dφ
=
d`Θ(θ)

dθ

dθ(φ)

dφ
.

Therefore

I(φ) = E

{(
d `(φ)

dφ

)2
}

= E

{(
d `(θ)

dθ

dθ

dφ

)2
}

=

(
dθ

dφ

)2

IΘ(θ).

3.5.1 Examples

Example 3.2 (Normal mean.) Suppose X1, . . . , Xn are independent variables distributed as

Normal
(
θ, σ2

)
, (σ2 known).

Then,

f(x|θ) ∝ exp{−
∑n
i=1(xi − θ)2

2σ2
}

So,

`(θ) = log(f(x|θ)) = − 1

2σ2

n∑
i=1

(xi − θ)2 + c,

d`(θ)

dθ
= − 1

2σ2
2[−

n∑
i=1

(xi − θ)] =
1

σ2

n∑
i=1

(xi − θ),

and
d2`(θ)

dθ2
=

1

σ2

n∑
i=1

(−1) = − n

σ2
.

Then,

I(θ) = −E
{
d2`(θ)

dθ2

}

= E

{
n

σ2

}
=

n

σ2

Hence, J(θ) ∝ 1. Note that we have worked with the full likelihood here. However, we could

have worked with the likelihood from a single observation x, and used the property that because

of independence In(θ) = nI1(θ), where I1 and In are the information from 1 and n independent

values of x respectively. Thus we would (as required) obtain the same Jeffreys prior regardless

of how many observations we subsequently make.
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Example 3.3 (Binomial sample.) Suppose X|θ ∼ Binomial (n, θ).

Then,

f(x | θ) =

(
n

x

)
θx(1− θ)n−x

and

`(θ) = log(f(x|θ)) = x log(θ) + (n− x) log(1− θ) + c.

So,
d`(θ)

dθ
=
x

θ
− n− x

1− θ
and

d2`(θ)

dθ2
=
−x
θ2
− (n− x)

(1− θ)2
,

and since E(x) = nθ,

I(θ) =
nθ

θ2
+

(n− nθ)
(1− θ)2

= n

(
1

θ
+

1

1− θ

)

= n

(
1− θ + θ

θ(1− θ)

)
= nθ−1(1− θ)−1,

leading to

J(θ) ∝ θ−1/2(1− θ)−1/2

which in this case is the proper distribution Beta
(

1
2 ,

1
2

)
.

3.6 Prior elicitation

There are no easy answers as to how best to elicit prior information, but the point of mentioning

it here is that it is an important issue. It must be remembered however that nobody can make

an infinite number of (or even many) accurate probability judgements. Thus, the specification

of a prior distribution should be seen as an attempt to reconcile the beliefs an individual has into

a unifying form. As we have seen, one approach is to take a particular family of distributions

(the conjugate family, say), request prior information about some summary features such as

prior mean and variance, and then choose as a prior the conjugate family member with those

particular values. Generally though, it can be enormously difficult to reconcile an expert’s (or

even more so, experts’) prior beliefs into a prior distribution.
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3.7 Exercises

Exercise 3.1 Which of the following densities belong to the exponential family (explain your

working)?

f1(x|θ) = θ2θx−(θ+1) for x > 2,

f2(x|θ) = θxθ−1 exp{−xθ} for x > 0.

In each case calculate the conjugate prior if the density belongs to the exponential family.

Exercise 3.2 Find the Jeffreys prior for θ in the geometric model:

f(x|θ) = (1− θ)x−1θ; x = 1, 2, . . . .

(Note E(X) = 1/θ.)

Exercise 3.3 Suppose x has the Pareto distribution Pareto (a, b), where a is known but b is

unknown. So,

f(x|b) = babx−b−1; (x > a, b > 0).

Find the Jeffreys prior and the corresponding posterior distribution for b.

Exercise 3.4 (a) An observation x is made from the pdf f(x|θ). Define the Jeffreys’ prior

distribution Jθ(θ) for the parameter θ in this context. State the invariance propert of this

prior distribution, with respect to a parameter transformation φ = φ(θ).

(b) Let f(x|θ) = θ exp(−xθ) for x, θ ≥ 0. Derive Jeffreys’ prior Jθ(θ) for this model.

(c) Hence derive Jeffreys’ prior Jφ(φ) for this model when θ = exp(φ).

Exercise 3.5 You are interested in estimating θ, the probability that a drawing pin will land

point up. Your prior belief can be described by a mixture of Beta distributions:

f(θ) =
Γ(a+ b)

2Γ(a)Γ(b)
θa−1(1− θ)b−1 +

Γ(p+ q)

2Γ(p)Γ(q)
θp−1(1− θ)q−1.

You throw a drawing pin n independent times, and observe x occasions on which the pin lands

point up. Calculate the posterior distribution for θ.
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Chapter 4

Multi–parameter problems

All the examples we have looked at so far involve just a single parameter — typically, a mean

or variance of a population. Most statistical problems involve a statistical model which contains

more than one unknown parameter. It might be the case that there is just one parameter of

particular interest, but usually there will also be other parameters whose values are unknown.

The method of analysing multiparameter problems in Bayesian statistics is much more straight-

forward (at least in principle) than in the corresponding field of classical statistics. Indeed, there

is absolutely no new theory required beyond what we have already looked at. We now have a

vector θ = (θ1, . . . , θd) of parameters which we wish to make inferences about. We specify a prior

(multivariate) distribution f(θ) for θ, and combine with a likelihood f(x|θ) via Bayes’ theorem

to obtain

f(θ|x) =
f(θ)f(x|θ)∫
f(θ)f(x|θ)dθ

as before. Of course, the posterior distribution will now also be a multivariate distribution.

However, the simplicity of the Bayesian approach now means that inference about any subset

of parameters within θ is obtained by straightforward probability calculations on this joint

distribution.

The conditional posterior distribution of a component of θ, θi say, given the values of the re-

maining components θ−i is given by

fi(θi | x, θ−i) ∝ f(θ | x),

where the values of θ−i are held fixed. That is the conditional posterior distribution of θi is

given by the joint posterior distribution of θ, f(θ | x), regarded as a function of θi alone with

the other components θ−i of θ fixed, normalised to be a density function as appropriate.

43
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However, exact Bayesian inference about the scalar parameter θi can only be made from the

posterior distribution integrated over θ−i,

f(θi | x) =

∫
f(θ | x)dθ−i.

This resulting marginal posterior of a given parameter of interest θi, after eliminating the nui-

sance parameters θ−i by integration, can be used for drawing inferences about that parameter.

If marginalization is not possible, another approach which can be used to eliminate the nuisance

parameters is to compute the posterior distribution of the parameter of interest conditioning

on the maximum likelihood estimates of the other components of the parameter vector. This

technique, which is not fully Bayesian, is called the empirical Bayes method, to be distinguished

from fully Bayesian inferential methods.

Although no new theory is needed in multi-parametr problems, the increase in dimensionality

does give rise to a number of practical problems:

1. Prior specification. Priors are now multivariate distributions. This means that the

prior specification needs to reflect prior belief not just about each parameter individually,

but also about dependence between different combinations of parameters (if one parame-

ter is thought to be large, is it likely that another parameter should be correspondingly

low?). Choosing suitable families of prior distributions and summarizing experts’ prior

information in this way is substantially more complicated.

2. Computation. Even in one–dimensional problems we saw the benefit of using conjugate

families to simplify posterior analyses arising from the use of Bayes’ theorem. With multi-

variate problems the integrals become even more difficult to evaluate. This makes the use of

conjugate prior families even more valuable, and creates the need for numerical techniques

to obtain inferences when conjugate families are either unavailable or inappropriate.

3. Interpretation. The entire posterior inference is contained in the posterior distribution,

which will have as many dimensions as the variable θ. The structure of the posterior

distribution may be highly complex, and it may require considerable skill (and a computer

with good graphics facilities) to identify the most important relationships it contains.

Despite these practical aspects it is important to re–emphasise that precisely the same the-

ory is being used for multi–parameter problems as one–dimensional problems. The Bayesian

framework means that all inferences follow from elementary rules of probability.
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4.1 Examples

Example 4.1 Suppose a machine is either satisfactory (x = 1) or unsatisfactory (x = 2). The

probability of the machine being satisfactory depends on the room temperature (θ1 = 0 : cool,

θ1 = 1 : hot) and humidity (θ2 = 0 : dry, θ2 = 1: humid). The probabilities of x = 1 are given

in table 4.1. Furthermore, the joint prior distribution of (θ1, θ2) is given in table 4.2.

Pr(x = 1|θ1, θ2) θ1 = 0 θ1 = 1

θ2 = 0 0.6 0.8
θ2 = 1 0.7 0.6

Table 4.1: Conditional probabilities of machine being satisfactory.

Pr(θ1, θ2) θ1 = 0 θ1 = 1

θ2 = 0 0.3 0.2
θ2 = 1 0.2 0.3

Table 4.2: Prior probabilities of room conditions.

The joint posterior distribution can be calculated as in table 4.3. Hence, by summing across

θ1 = 0 θ1 = 1

Pr(x = 1|θ1, θ2)× Pr(θ1, θ2) θ2 = 0 0.18 0.16
= Pr(x = 1, θ1, θ2) θ2 = 1 0.14 0.18

Pr(x = 1) 0.66

Pr(θ1, θ2|x = 1) θ2 = 0 18/66 16/66
θ2 = 1 14/66 18/66

Table 4.3: Posterior probabilities of room conditions.

margins we obtain the marginal posterior distributions:

Pr(θ1 = 0) = 32/66, Pr(θ1 = 1) = 34/66

and

Pr(θ2 = 0) = 34/66, Pr(θ2 = 1) = 32/66.

Example 4.2 Suppose Y1 ∼ Poisson (αβ) and Y2 ∼ Poisson ((1− α)β) with Y1 and Y2 inde-

pendent given α and β. Now, suppose our prior information for α and β can be expressed as:

α ∼ Beta (p, q) and β ∼ Gamma (p+ q, 1) with α and β independent, for specified hyperparam-

eters p and q.
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Note that it is necessary to specify the joint prior distribution of α and β. This is made more

simple if we can assume prior independence of these parameters, because we need only then

specify their marginal distributions. But this should only be done if it is a realistic assumption.

(For example, we may have: β = expected number of motor vehicle accidents and α = expected

proportion of those which are alcohol related).

Then we have the following likelihood:

f(y1, y2|α, β) =
exp(−αβ)(αβ)y1

y1!
× exp(−(1− α)β)[(1− α)β]y2

y2!

and the prior

f(α, β) =
Γ(p+ q)

Γ(p)Γ(q)
αp−1(1− α)q−1 × e−ββp+q−1

Γ(p+ q)
.

Hence, by Bayes’ theorem:

f(α, β|y1, y2) ∝ e−ββy1+y2αy1(1− α)y2αp−1(1− α)q−1e−ββp+q−1

= βy1+y2+p+q−1e−2βαy1+p−1(1− α)y2+q−1

over the region 0 ≤ α ≤ 1 and 0 ≤ β ≤ ∞. This is the (joint) posterior distribution for α and β

and contains all the information from the prior and data. In this particular case, the posterior

factorises into functions of α and β. Therefore, we can write:

f(α, β | y1, y2) ∝ g(α)h(β),

where

g(α) = αy1+p−1(1− α)y2+q−1

and

h(β) = βy1+y2+p+q−1e−2β.

It follows, therefore, that the marginal posterior distributions are given by

f(α|y1, y2) =

∫ ∞
0

f(α, β|y1, y2)dβ ∝ g(α),

and

f(β|y1, y2) =

∫ 1

0
f(α, β|y1, y2)dα ∝ h(β).

That is, α|y1, y2 ∼ Beta (y1 + p, y2 + q) and β|y1, y2 ∼ Gamma (y1 + y2 + p+ q, 2).

4.2 Exercises

Exercise 4.1 The quality of an electrical component is either excellent (x = 1), good (x = 2) or

poor (x = 3). The probability of the various levels of quality depend on the factory of production
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(θ1 = 0 : factory A, θ1 = 1 : factory B) and machine type (θ2 = 0 : machine I, θ2 = 1: machine

II, θ2 = 3 : machine III). The probabilities of x = 3 are given in table 4.4. Furthermore, the

Pr(x = 3|θ1, θ2) θ1 = 0 θ1 = 1

θ2 = 0 0.2 0.3
θ2 = 1 0.4 0.1
θ2 = 2 0.5 0.2

Table 4.4: Conditional probabilities of x = 3.

joint prior distribution of (θ1, θ2) is given in table 4.5. Find the joint posterior distribution of

Pr(θ1, θ2) θ1 = 0 θ1 = 1

θ2 = 0 0.1 0.2
θ2 = 1 0.2 0.3
θ2 = 2 0.1 0.1

Table 4.5: Prior probabilities of machine/factory combinations.

θ1, θ2|x = 3 and each of the marginal distributions. Has having observed x = 3 affected which

factory/machine combination is the most likely to have produced the component?

Exercise 4.2 The random variable X is either 0 or 1 with probabilities depending on parameters

α and β:

Pr(X = 0|α, β) =


0.2 α = α1, β = β1

0.8 α = α1, β = β2

0.9 α = α2, β = β1

0.3 α = α2, β = β2

The joint prior is

Pr(α, β) =


0.1 α = α1, β = β1

0.5 α = α1, β = β2

0.3 α = α2, β = β1

0.1 α = α2, β = β2

Suppose we take 2 independent values of X, each of which happen to be 0.

(a) Write down the table of likelihoods.

(b) Obtain the joint posterior distribution.

(c) Obtain the marginal posterior distribution for α .

Exercise 4.3 (a) Observations x1 and x2 are obtained of random variables X1 and X2, hav-

ing Poisson distributions with respective means θ and φ θ, where φ is a known positive
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coefficient. Show, by evaluating the posterior density of θ, that the Gamma (p, q) family,

of prior distributions of θ, is conjugate for this data model.

What is the posterior mean for θ in the case that p = 1 and q = 1?

(b) Now suppose that φ is also an unknown parameter with prior density f(φ) = 1/(1 + φ)2,

and independent of θ. Obtain the joint posterior distribution of θ and φ, and show that

the marginal posterior distribution of φ is proportional to

φx2

(1 + φ)2(1 + φ+ q)x1+x2+p
.

Exercise 4.4 Let x1, x2, . . . , xn be a set of independent observations from the Normal distribu-

tion with mean θ and variance φ−1.

Show that the likelihood of the observations x1, x2, . . . , xn is

L(θ, φ) ∝ φn/2 exp

{
−φ

2

[
s2 + n(x̄− θ)2

]}
,

where

x̄ =
1

n

n∑
i=1

xi and s2 =
n∑
i=1

(xi − x̄)2.

Assume a Gamma prior for φ with parameters p and q and a Normal prior for θ with mean 0

and variance φ−1. Write down the joint posterior for θ and φ (up to a normalising constant);

what is the marginal posterior for φ and the conditional posterior for θ given φ?
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Summarizing posterior information

5.1 Decision theory

This is an extremely important area in its own right. Within this course we will only touch on

the main issues.

Many problems in the real world are those of making decisions in the face of uncertainty: ‘which

political party will be best to vote for?’; ‘should I accept one job offer or wait in the hope that I

get offered a better job?’. All of statistical inference can also be thought of as decision making:

having observed a particular set of data, what value should we decide to estimate a parameter

by? There are many approaches to decision theory, but by far the most coherent is an approach

based on Bayesian analysis. Indeed, it can be shown that if certain axioms are obeyed (that is, a

number of common–sense decision rules are adopted) then a Bayesian analysis is the only logical

approach to decision making. This is often used as an argument to justify Bayesian inference in

preference to classical inference.

The elements needed to construct a decision problem are as follows:

1. A parameter space Θ which contains the possible states of nature;

2. A set A of actions which are available to the decision maker;

3. A loss function L, where L(θ, a) is the loss incurred by adopting action a when the true

state of nature is θ.

We’ll look at these terms in the context of a specific example:

49
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Example 5.1 First part. A public health officer is seeking a rational policy of vaccination

against a relatively mild ailment which causes absence from work. Surveys suggest that 60% of

the population are already immune. It is estimated that the money–equivalent of man–hours lost

from failing to vaccinate a vulnerable individual is 20, that the unnecessary cost of vaccinating

an immune person is 8, and that there is no cost incurred in vaccinating a vulnerable person or

failing to vaccinate an immune person.

So, for this particular case we have:

1. The parameter space Θ = {θ1, θ2}, where θ1 and θ2 correspond to the individual being

immune and vulnerable respectively;

2. The set of actions A = {a1, a2} where a1 and a2 correspond to vaccinating and not vacci-

nating respectively;

3. The loss function L(θ, a) defined in Table 5.1

L(θ, a) θ1 θ2

a1 8 0
a2 0 20

Table 5.1: Loss function.

The decision strategy is then to evaluate the expected loss for each action and choose the

action which has the minimum expected loss. This will be the same for each individual, in this

case. Table 5.2 shows the calculation of the expected loss for each action, based upon the prior

distribution of θ. The conclusion is that it does pay to vaccinate everyone. The cost (or loss) is

4.8 per individual.

f(θ) 0.6 0.4

L(θ, a) θ1 θ2 E [L(θ, a)]

a1 8 0 0.6× 8 + 0.4× 0 = 4.8
a2 0 20 0.6× 0 + 0.4× 20 = 8.0

Table 5.2: Expected loss function.

The assumption of zero loss in the case of ‘correct’ action is not a restrictive one. We can add

or subtract one quantity to the first column in the loss function and another quantity to the

second column without affecting the best action. So if the loss function had no zeros, we could

adjust it so that the lowest value in each column was zero. All that matters for a given ‘state of

nature’, θ, is the relative costs of the actions.
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Suppose now that we had further information or data x available to us which reflected the value

of θ. To be precise suppose that we have observed x from f(x|θ). Then we can replace f(θ) by

the posterior f(θ|x) in the calculation of the expected loss. The best action will then depend on

the particular outcome x.

Example 5.2 Continuation. A simple skin test has been developed which, though not completely

reliable, tends to indicate the immune status of the individual with respect to the disease. The

probabilities of reaction are summarized in table 5.3

Immune Status

Immune Vulnerable
θ1 θ2

Negligible x1 0.35 0.09
Reaction Mild x2 0.30 0.17

Moderate x3 0.21 0.25
Strong x4 0.14 0.49

Table 5.3: Probabilities of reaction given immune status.

Our general procedure is therefore to use Bayes’ theorem to give us the posterior distribution

f(θ|x). Then, for any particular action a, the posterior expected loss is

ρ(a, x) = E [L(θ, a)|x] =

∫
L(θ, a)f(θ|x)dθ.

Having observed a particular value of x, we choose the action a which results in the lowest value

of ρ. Writing a = d(x), we call d(x) the Bayes decision rule.

For our example, Table 5.4 shows the way we calculate the decision rule. We consider all the

possible outcomes x, calculating for each of these the corresponding posterior f(θ|x). For each

of these we next work out the expected posterior loss for each action. Finally we select the best

action, that with the minimum expected posterior loss, for that outcome.

Table 5.5 shows the decision rule we obtain for this example.

So in summary, if either a negligible or mild reaction is observed, the Bayes decision is not to

vaccinate, whereas if a moderate or strong reaction is observed, the decision is to vaccinate.

We can go one stage further and calculate the risk associated with this policy, by averaging

across the uncertainty in the observations x. That is, we define the Bayes risk by:

BR(d) =

∫
ρ(d(x), x)f(x)dx
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Immune Status

Immune Vulnerable
θ1 θ2

f(x1|θ) 0.35 0.09
Likelihoods f(x2|θ) 0.30 0.17

f(x3|θ) 0.21 0.25
f(x4|θ) 0.14 0.49

Prior f(θ) 0.6 0.4

f(x1, θ) 0.210 0.036 0.246 f(x1)
Joints f(x2, θ) 0.180 0.068 0.248 f(x2)

f(x3, θ) 0.126 0.100 0.226 f(x3)
f(x4, θ) 0.084 0.196 0.280 f(x4)

Actions
a1 a2

f(θ|x1) 0.854 0.146 6.829 2.927
Posteriors f(θ|x2) 0.726 0.274 5.806 5.484 Expected

f(θ|x3) 0.558 0.442 4.460 8.847 Losses
f(θ|x4) 0.300 0.700 2.400 14.000

Table 5.4: Tabulation of Bayesian decision analysis.

x d(x) ρ(d(x), x)

x1 a2 2.927
x2 a2 5.484
x3 a1 4.460
x4 a1 2.400

Table 5.5: Tabulation of Bayesian decision rule.

For our example this becomes the sum

BR(d) =
∑

ρ(d(x), x)f(x) = 2.927× 0.246 + 5.484× 0.248 + 4.460× 0.226 + 2.400× 0.280 = 3.76

This is smaller than the least cost per individual, of 4.8, which we obtain by using the prior

information alone, without the knowledge of x. This must always be the case. It does not mean

that making the measurement is always worth while, because there is typically a fixed cost per

individual associated with that. In this case there is a net benefit of measuring x if it costs less

than the saving, of 4.8-3.76=1.04.
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5.2 Point estimation

We’ve stressed throughout that the posterior distribution is a complete summary of the inference

about a parameter θ. In essence, the posterior distribution is the inference. However, for

some applications it is desirable (or necessary) to summarize this information in some way.

In particular, we may wish to give a single ‘best’ estimate of the unknown parameter. (Note

the distinction with classical statistics in which point estimates of parameters are the natural

consequence of an inference, and it is reflecting uncertainty in that estimate which is more

troublesome).

So, in the Bayesian framework, how do we reduce the information in a posterior distribution to

give a single ‘best’ estimate? In fact, the answer depends on what we mean by ‘best’, and this

in turn is specified by turning the problem into a decision problem. That is, we specify a loss

function L(θ, a) which measures our perceived penalty in estimating θ by a. There are a range

of natural loss functions we could use, and the particular choice for any specified problem will

depend on the context. The most commonly used are:

1. Squared Error (or Quadratic) loss: L(θ, a) = (θ − a)2;

2. Absolute Error loss: L(θ, a) = |θ − a|;

3. 0—1 loss:

L(θ, a) =

{
0 if |θ − a| ≤ ε
1 if |θ − a| > ε

In each of these cases, by minimizing the posterior expected loss, we obtain simple forms for the

Bayes decision rule, which is taken to be the point estimate of θ for that particular choice of

loss function.

5.2.1 Squared error loss

In this case we can simplify ρ(a, x) = E
[
(θ − a)2|x

]
by letting µ = E (θ|x) and expanding:

E
[
(θ − a)2|x

]
= E

{
[(θ − µ) + (µ− a)]2 |x

}
= E

[
(θ − µ)2|x

]
+ (µ− a)2 + 2 E [(θ − µ)|x] (µ− a)

= Var[θ|x] + (µ− a)2
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On the right, the first term no longer depends on a, and the second term attains its minimum of

zero by taking a = µ. In summary, the posterior expected squared error loss has its minimum

value of Var[θ|x], the posterior variance of θ, when a = E (θ|x), the posterior expectation of θ.

5.2.2 Absolute error loss

We show that in this case the minimum posterior expected loss is obtained by taking a = m,

the median of the posterior distribution f(θ|x). We assume that this is unique, and is defined

by

Pr(θ < m|x) = Pr(θ > m|x) = 1
2
.

To prove the result note first that the function

s(θ) =

{
−1, for θ < m
+1, for θ > m

has the property

E [s(θ) | x] = −
∫ m

−∞
f(θ | x)dθ +

∫ ∞
m

f(θ | x)dθ

= −Pr(θ < m | x) + Pr(θ > m | x) = 0.

Now consider L(θ, a)− L(θ,m) = |θ − a| − |θ −m| for some a < m.

If θ < a: L(θ, a)− L(θ,m) = −θ + a+ θ −m = a−m = (m− a)s(θ)

If θ > m: L(θ, a)− L(θ,m) = −a+ θ − θ +m = −a+m = (m− a)s(θ)

If a < θ < m: L(θ, a)− L(θ,m) = −a+ θ + θ −m = 2θ − a−m > (m− a)s(θ)

It can be seen that L(θ, a)− L(θ,m) is greater than (m− a)s(θ) so

E [L(θ, a)− L(θ,m)|x] > (m− a)E [s(θ)|x] = 0.

So E [L(θ, a)|x] > E [L(θ,m)|x]. This also holds by a similar argument when a > m, so

E [L(θ, a)|x] is a minimum when a = m.
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Figure 5.1: Plot of L(θ, a)− L(θ,m) and (m− a)s(θ).

5.2.3 0—1 loss

Clearly in this case

ρ(a, x) = Pr{|θ − a| > ε|x) = 1− Pr{|θ − a| ≤ ε|x).

Consequently, if we define a modal interval of length 2ε as the interval [θ − ε, θ + ε] which

has highest probability, then the Bayes estimate is the midpoint of the interval with highest

probability. By choosing ε arbitrarily small, this procedure will lead to the posterior mode as

the Bayes estimate with this particular loss function.

Example 5.3 If the posterior density for θ is

f(θ|x) = 1 for 0 ≤ θ ≤ 1,

calculate the best estimator of φ = θ2 with respect to quadratic loss.

The best estimator of φ with respect to quadratic loss is

E (φ | x) = E (θ2 | x) =

∫ 1

0
θ2dθ =

[
θ3

3

]1

0

=
1

3
.

5.2.4 Conclusion

In conclusion then, the important point is that in the Bayesian framework a point estimate of a

parameter is a single summary statistic of the posterior distribution. By defining the quality of
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an estimator through a loss function, the decision theory methodology leads to optimal choices

of point estimates. In particular, the most natural choices of loss function lead respectively to

the posterior mean, median and mode as optimal point estimators.

5.3 Credibility intervals - Credibility Regions

The idea of a credibility interval is to give an analogue of a confidence interval in classical

statistics. The reasoning is that point estimates give no measure of accuracy, so it is preferable

to give an interval within which it is ‘likely’ that the parameter lies. This causes problems

in classical statistics since parameters are not regarded as random, so it is not possible to

give an interval with the interpretation that there is a certain probability that the parameter

lies in the interval. (Instead, confidence intervals have the interpretation that if the sampling

were repeated, there is a specified probability that the interval so obtained would contain the

parameter — it is the interval which is random and not the parameter.)

There is no such difficulty in the Bayesian approach because parameters are treated as random.

Thus, a region Cα(x) is a 100(1− α)% credible region for θ if∫
Cα(x)

f(θ|x)dθ = 1− α.

That is, there is a probability of 1−α, based on the posterior distribution, that θ lies in Cα(x).

Some Bayesians argue that credible intervals have little value since it is the entire posterior

distribution which contains the information for inference and that credible intervals have only

been proposed in order to give something comparable to confidence intervals.

One difficulty with credible intervals (in common with confidence intervals) is that they are not

uniquely defined. Any region with probability 1 − α will do. Since we want the interval to

contain only the ‘most plausible’ values of the parameter, it is usual to impose an additional

constraint which is that the width of the interval should be as small as possible. This amounts

to an interval (or region) of the form

Cα(x) = {θ : f(θ|x) ≥ γ}

where γ is chosen to ensure that ∫
Cα(x)

f(θ|x)dθ = 1− α.

Such regions are called highest posterior density regions. If the posterior density is unimodal,

the highest posterior density regions are intervals of the form (a, b) (for example, see Figure 5.2).
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θ 

f(θ | x) 

Figure 5.2: Highest posterior density region of a unimodal posterior distribution. The region is
an interval of the form (a, b).

In general, these intervals have to be found numerically, though for most standard univariate

posterior distributions values are tabulated for a range of values of α. (In passing, note that

there is the usual trade–off in making the choice an appropriate α: small values of α will give

large intervals; large values give intervals which the parameter has only a low probability of

lying within.)

Common Mistake 4 You should ALWAYS sketch the posterior density before trying to calcu-

late the HPD region.

Example 5.4 (Normal mean). Let X1, . . . , Xn be independent variables from Normal
(
θ, σ2

)
(σ2 known) with a prior for θ of the form θ ∼ Normal

(
b, d2

)
.

With this construction we obtained the posterior:

θ|x ∼ Normal
(
µ, s2

)
where µ =

b
d2

+nx
σ2

1
d2

+ n
σ2

and s2 = 1
1
d2

+ n
σ2

.

Now, since the normal distribution is uni–modal and symmetric the highest posterior density

regions are symmetric intervals of the form (µ − c, µ + c) (see Figure 5.3). It follows that the
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µ µ−c µ+c 

γ 

f(θ | x) 

Figure 5.3: Highest posterior density region of a Normal
(
µ, s2

)
posterior distribution. The

region is an interval of the form (µ− c, µ+ c).

100(1− α)%–highest posterior density region for θ is:(
b
d2

+ nx
σ2

1
d2

+ n
σ2

)
± zα/2

(
1

1
d2

+ n
σ2

) 1
2

,

where zα/2 is the appropriate percentage point of the standard normal, Normal (0, 1) distribution.

Notice, moreover, that as n→∞ this interval becomes

x± zα/2σ/
√
n,

which is precisely the 100(1 − α)% confidence interval for θ obtained in classical inference. In

this special case then, the Bayesian credible interval and the confidence interval are identical,

though their interpretations are quite different.

Example 5.5 Let X1, . . . , Xn be independent variables from Normal (θ, φ) (φ unknown) and

assume a reference prior of the form

f(θ, φ) ∝ 1

φ
; −∞ < θ <∞, 0 < φ.

This leads to the marginal posterior distributions:

t =
θ − x
s/
√
n
∼ tn−1
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and

S2/φ ∼ χ2
n−1.

So, because of the symmetry of the t–distribution, the 100(1− α)% credible interval for θ is:

x± tn−1,α/2s/
√
n

where tn−1,α/2 is the appropriate percentage point from the tn−1 distribution.

On the other hand, the credible interval for φ is slightly more troublesome. Since S2/φ ∼ χ2
n−1,

it follows that φ/S2 ∼ 1/χ2
n−1, a so–called inverse chi–squared distribution. Critical points of

highest posterior density intervals for a variety of values of α are available in tables.

Example 5.6 Suppose x ∼ Binomial (n, θ) with the prior

θ ∼ Beta (p, q).

This gives the posterior distribution

θ|x ∼ Beta (p+ x, q + n− x)

Thus, the 100(1− α)% highest posterior density interval [a, b] satisfies:

1

B(p+ x, q + n− x)

∫ b

a
θp+x−1(1− θ)q+n−x−1dθ = 1− α,

and

1

B(p+ x, q + n− x)
ap+x−1(1− a)q+n−x−1 =

1

B(p+ x, q + n− x)
bp+x−1(1− b)q+n−x−1 = γ.

Generally, this has to be solved numerically.

5.4 Hypothesis testing

Hypothesis tests are decisions of the form of choosing between two different hypotheses:

H0 : θ ∈ Ω0,

H1 : θ ∈ Ω1.

In the simplest case where Ω1 and Ω2 consist of single points, the test is of the form

H0 : θ = θ0,

H1 : θ = θ1.
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The classical approach to this problem is usually to base the test on the likelihood ratio:

λ =
f(x|θ1)

f(x|θ0)
.

Large values of λ indicate that the observed data x is more likely to have occurred if θ1 is the

true value of θ than if θ0 is. In the Bayesian view of things, we should also bring to bear the

prior information we have about θ. Therefore, we may compute the posterior probabilities of θ1

and θ0:

f(θ1|x) =
f(θ1)f(x|θ1)

f(θ0)f(x|θ0) + f(θ1)f(x|θ1)

f(θ0|x) = 1− f(θ1|x).

Hence it is natural to base test considerations on the relative posterior probabilities of the

hypothesised values. That is we look at

λB =
f(θ1|x)

f(θ0|x)
=
f(θ1)f(x|θ1)

f(θ0)f(x|θ0)
. (5.1)

This is usually called the posterior odds. Observe in particular that there is no requirement

to calculate normalizing factors since the same factor would appear on the numerator and the

denominator. Again, large values of λB would indicate in favour of H1.

There is a related concept known as the Bayes Factor. We can see from equation 5.1 that the

posterior odds is the product of the prior odds times the likelihood ratio. In this context, the

likelihood ratio is termed the Bayes factor. That is

BF =
f(x|θ1)

f(x|θ0)
=
f(θ1|x)/f(θ0|x)

f(θ1)/f(θ0)

The purpose of focusing on the Bayes factor is that it is a measure of the weight of information

contained in the data in favour of H1 over H0. If the Bayes factor is sufficiently large, then it

will overcome any prior preference we might have had for H0 so that our posterior preference

might be for H1.

In the general case that we are interested in testing the hypotheses:

H0 : θ ∈ Ω0,

H1 : θ ∈ Ω1,

we can still calculate the posterior probabilities of the two hypotheses, after specifying prior

probabilities, f(θ ∈ Ω0) and f(θ ∈ Ω1), on the hypotheses. Then we have

f(θ ∈ Ω1|x) =
f(θ ∈ Ω1)f(x|θ ∈ Ω1)

f(θ ∈ Ω0)f(x|θ ∈ Ω0) + f(θ ∈ Ω1)f(x|θ ∈ Ω1)
,
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where

f(x|θ ∈ Ω) =

∫
Ω
f(θ)f(x|θ)dθ.

Obviously, it is straightforward to generalise the above testing approach to the case of testing

more than two hypotheses.

5.5 Bayesian Model Comparison

Comparing a number of competing models for a given set of observed data is an important area

within Bayesian decision making. Before introducing the problem of model comparison, let us

define the marginal likelihood of a given model.

The marginal likelihood or evidence f(x) of a given model f(x | θ) is the marginal distribution

of the data under that model. It is obtained by integrating the product of the likelihood times

a prior distribution f(θ) on the model parameters θ over θ:

f(x) =

∫
f(x | θ)f(θ)dθ.

That is f(x) is the normalising constant of the posterior distribution of θ, given by

f(θ | x) =
f(x | θ)f(θ)

f(x)
.

Note that all constants in the likelihood and the prior are included in the product.

Equivalently, the marginal likelihood is defined as the expectation of the likelihood with respect

to the prior distribution f(θ). In order to be able to evaluate the integral(s) involved in the

calculation of f(x) we need to choose carefully a proper (preferably conjugate) prior on θ.

Marginal likelihoods play an important role in Bayesian model comparison. Consider a number

of competing models M1, . . . ,Mk, parameterised respectively by θ1, . . . , θk, for an observed data

set. In the presence of uncertainty about the correct model, Bayesian inference involves:

1. Evaluation of the posterior probability Pr(Mj | x) of each model Mj , j = 1, . . . , k.

2. Evaluation of the posterior distribution f(θj | x,Mj) of the parameters θj of model Mj ,

j = 1, . . . , k.

After specifying prior model probabilities, Pr(Mj), for all competing models and carefully choos-

ing proper prior distributions for the model specific parameters, f(θj |Mj), j = 1, . . . , k, poste-

rior inferences are obtained as follows.
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1. The posterior probability of model Mj is calculated using Bayes therom as

Pr(Mj | x) =
Pr(Mj)f(x |Mj)∑k
i=1 Pr(Mi)f(x |Mi)

, j = 1, . . . , k,

where f(x |Mj) is the marginal likelihood of model Mj .

2. The posterior distribution of the parameters θj of model Mj is given by Bayes therom as

f(θj | x,Mj) =
f(θj |Mj)f(x | θj ,Mj)

f(x |Mj)
, j = 1, . . . , k.

Example 5.7 To demonstrate Bayesian model comparison, we’ll look at a fairly intricate ex-

ample concerning the change point in a Poisson process. The data consists of a series relating

to the number of British coal mining disasters per year, over the period 1851 — 1962. A plot of

these data is given in Figure 5.4. From this plot it does seem to be the case that there has been

a reduction in the rate of disasters over the period.
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Figure 5.4: Time series of counts of coal mine disasters.

For the coal-mining disasters data we may, therefore, consider two models:

M1 each xi is an independent draw from a Poisson random variable with mean θ;

M2 for i ≤ t, xi is an independent draw from a Poisson random variable with mean θ1, and

for i > t, xi is an independent draw from a Poisson random variable with mean θ2.
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5.6 Exercises

Exercise 5.1 An art ‘expert’ has undergone a test of her reliability in which she has separately

pronounced judgement — ‘genuine’ or ‘counterfeit’ — on a large number of art subjects of know

origin. From these it appears that she has probability 0.8 of detecting a counterfeit and probability

0.7 of recognising a genuine object. I have been offered an objet d’art at what seems a bargain

price of £100. If it is not genuine, then it is worth nothing. If it is genuine I believe I can sell

it immediately for £300. I believe there is a 0.5 chance that the object is genuine. The expert

charges £30 for her services. Is it to my advantage to pay her for an assessment?

Exercise 5.2 Consider a decision problem with two actions, a1 and a2, and a loss function

which depends on a parameter θ, with 0 ≤ θ ≤ 1. The loss function is

L(θ, a) =

{
0 a = a1,

2− 3θ a = a2.

Assume a Beta(1, 1) prior for θ, and an observation X ∼ Binomial(n, θ). The posterior distri-

bution is Beta(x+ 1, n− x+ 1).

Calculate the expected loss of each action and the Bayes rule. (You may use the fact that if

θ ∼ Beta(p, q), then E(θ) = p/(p+ q).)

Exercise 5.3 (a) For a parameter θ with a posterior distribution described by the Beta (P,Q)

distribution, find the posterior mode in terms of P and Q and compare it with the posterior

mean. (b) Repeat part (a) for the case when the posterior distribution of θ is Gamma (P,Q).

Exercise 5.4 The parameter θ has a Beta (3, 2) posterior density. Show that the interval

[5/21,20/21] is a 94.3% highest posterior density region for θ.

Exercise 5.5 A parameter θ has posterior expected value µ and variance v. Let φ = θ2. Show

that the estimate of φ which has minimum expected posterior squared error loss is given by

a = µ2 + v.

Exercise 5.6 A parameter θ has posterior density that is Gamma (1, 1). Calculate the 95%

highest posterior density region for θ. Now consider the transformation of the parameter given

by φ =
√

2θ. Obtain the posterior density of φ and explain why the highest posterior density

region for φ is not obtained by transforming the interval for θ in the same way.
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Exercise 5.7 In a decision theory setting, let L(θ, a) be the loss incurred by taking action a

when the value of an unknown parameter is θ, and let f(θ|x) be the posterior distribution of θ

given the measurement of a relevant variable x.

(a) Determine the Bayes decision rule d(x), and the corresponding losses, for the discrete

example, where the loss function and posterior distribution are given in the tables below.

Losses θ1 θ2 θ3

a1 5 10 25
a2 15 15 5

θ1 θ2 θ3

f(θ|x1) 0.5 0.3 0.2
f(θ|x2) 0.1 0.5 0.4

(b) What further information would be required to determine the Bayes risk for this problem,

and whether the cost of measuring x was worthwhile?

Exercise 5.8 Consider a sample x1, . . . , xn consisting of independent draws from a Poission

random variable with mean θ. Consider the hypothesis test, with Null hypothesis

H0 : θ = 1

against an alternative hypothesis

H1 : θ 6= 1

Assume a prior probability of 0.95 for H0 and a Gamma prior

f(θ) =
qp

Γ(p)
θp−1 exp{−qθ},

under H1.

(a) Calculate the posterior probability of H0.

(b) Assume n = 10,
∑n
i=1 xi = 20, and p = 2q. What is the posterior probability of H0 for each

of p = 2, 1, 0.5, 0.1. What happens to this posterior probability as p→ 0?



Chapter 6

Prediction

6.1 The predictive distribution

So far we have focused on parameter estimation. That is, we have specified a probability model to

describe the random process which has generated a set of data, and have shown how the Bayesian

framework combines sample information and prior information to give parameter estimates in

the form of a posterior distribution. Commonly the purpose of formulating a statistical model

is to make predictions about future values of the process. This is handled much more elegantly

in Bayesian statistics than in the corresponding classical theory. The essential point is that in

making predictions about future values on the basis of an estimated model there are two sources

of uncertainty:

• Uncertainty in the parameter values which have been estimated on the basis of past data;

and

• Uncertainty due to the fact that any future value is itself a random event.

In classical statistics it is usual to fit a model to the past data, and then make predictions of

future values on the assumption that this model is correct, the so–called estimative approach.

That is, only the second source of uncertainty is included in the analysis, leading to estimates

which are believed to be more precise than they really are. There is no completely satisfactory

way around this problem in the classical framework since parameters are not thought of as being

random.

Within Bayesian inference it is straightforward to allow for both sources of uncertainty by simply

averaging over the uncertainty in the parameter estimates, the information of which is completely

65
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contained in the posterior distribution.

So, suppose we have past observations x = (x1, . . . , xn) of a variable with density function (or

likelihood) f(x|θ) and we wish to make inferences about the distribution of a future value of a

random variable Y from this same model. With a prior distribution f(θ), Bayes’ theorem leads

to a posterior distribution f(θ|x). Then the predictive density function of y given x is:

f(y|x) =

∫
f(y|θ)f(θ|x)dθ. (6.1)

Thus the predictive density, evaluated at a particular value of y, is the integral of the likelihood

of y times the posterior. The result can also be written as the expectation of the predictive

density with respect to the posterior distribution of θ:

f(y|x) = E [f(y|θ)|x] .

Again it is important to notice that this result is simply constructed from the usual laws of

probability manipulation, and has a straightforward interpretation itself in terms of probabilities.

The derivation must, however be presented carefully, with due emphasis on the assumptions. In

the following, Y need not come from the same distribution as the observations x. It is important

however that, supposing θ to be known, we assume that Y is independent of x. This enables us

to write the joint density of Y and x, given θ as the product of their densities:

f(y, x|θ) = f(y|θ)f(x|θ),

and from this we get the joint density of y, x and θ:

f(y, x, θ) = f(y|θ)f(x|θ)f(θ).

Then

f(y, θ|x) = f(y|θ)f(x|θ)f(θ)/f(x) = f(y|θ)f(θ|x),

and finally, integrating out θ we get the result

f(y|x) =

∫
f(y|θ)f(θ|x)dθ.

The corresponding approach in classical statistics would be, for example, to obtain the maxi-

mum likelihood estimate θ̂ of θ and to base inference on the distribution f(y|θ̂), the estimative

distribution. To emphasise again, this makes no allowance for the variability incurred as a result

of estimating θ, and so gives a false sense of precision (the predictive density f(y|x) is more

variable by averaging across the posterior distribution for θ).

Common Mistake 5 You CANNOT remove a constant of proportionality in f(y|θ).
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Common Mistake 6 It is usually simplest to use the (normalised) posterior distribution in

f(y|x) =

∫
f(y|θ)f(θ|x)dθ.

(If you use the posterior density up to a constant of proportionality, then the answer will be for

f(y|x) up to a constant of proportionality.)

Though simple in principle, computation can be difficult. However, many of the standard conju-

gate families of prior–likelihood forms do lead to tractable forms for the predictive distribution.

Example 6.1 (Binomial sample.) Suppose we have made an observation x ∼ Binomial (n, θ)

and our (conjugate) prior for θ is θ ∼ Beta (p, q). Then, we have shown, the posterior for θ is

given by:

θ|x ∼ Beta (p+ x, q + n− x).

Now, suppose we intend to make a further N observations in the future, and we let z be the

number of successes in those N trials, so that z|θ ∼ Binomial (N, θ).

So, we have the likelihood for our future observation:

f(z|θ) =

(
N

z

)
θz(1− θ)N−z.

Before continuing with the general case let us look at the simple special case when N = 1, that

is z is the outcome of a single Bernoulli trial. Writing, as before P = p+ x, Q = q + n− x, the

predictive distribution of z given x is

z 0 1

f(z | θ) 1− θ θ

E (f(z | θ) | x) 1− P
P+Q

P
P+Q

Therefore, the distribution of z | x is Bernoulli with probability of success P
P+Q , the posterior

mean of θ.

In the general case, for z = 0, 1, . . . , N ,

f(z|x) =

∫ 1

0

(
N

z

)
θz(1− θ)N−z × θp+x−1(1− θ)q+n−x−1

B(p+ x, q + n− x)
dθ

=

(
N

z

)
1

B(P,Q)

∫ 1

0
θP+z−1(1− θ)Q+N−z−1

=

(
N

z

)
B(P + z,Q+N − z)

B(P,Q)
.
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This is, in fact, known as a Beta–binomial distribution.

Example 6.2 (Gamma sample.) As in Chapter 2, suppose X1, . . . Xn are independent variables

having the Gamma (k, θ) distribution, where k is known, and we use the conjugate prior θ ∼
Gamma (p, q):

f(θ) ∝ θp−1 exp{−qθ}

leading via Bayes’ theorem to θ|x ∼ Gamma (p+ nk, q + Σxi) = Gamma (G,H) say.

The likelihood for a future observation y is

f(y|θ) =
θkyk−1 exp{−θy}

Γ(k)

and so

f(y|x) =

∫ ∞
0

θkyk−1 exp{−θy}
Γ(k)

× HGθG−1 exp{−Hθ}
Γ(G)

dθ

=
HGyk−1

Γ(k)Γ(G)

∫ ∞
0

θk+G−1 exp{−θ(y +H)}dθ

=
HGyk−1

Γ(k)Γ(G)

Γ(k +G)

(y +H)k+G
=

HGyk−1

B(k,G)(H + y)G+k
, y > 0,

since (y+H)k+G

Γ(k+G) θk+G−1 exp{−θ(y +H)} is a pdf, and therefore

∫ ∞
0

(y +H)k+G

Γ(k +G)
θk+G−1 exp{−θ(y +H)}dθ = 1.

We can relate f(y | x) to a standard distribution by writing

Y = (Hν1/ν2)Fν1,ν2,

where ν1 = 2k and ν2 = 2G and Fν1,ν2 has the Fisher ‘F’ distribution.

Common Mistake 7 Generally, to calculate these predictive distributions requires integrating

a function of θ that is proportional to a standard density function. We can use the fact that we

know the normalising constant of the density function to help us calculate the integral. When

recognising the density function, remember that it will be density for θ (as opposed to θ being a

known parameter in the density). (See common mistake 3).
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6.2 Exercises

Exercise 6.1 A random sample x1, . . . , xn is observed from a Poisson (θ) distribution. The

prior on θ is Gamma (g, h) (g and h are integers). Show that the predictive distribution for a

future observation, y, from this Poisson (θ) distribution is

f(y|x) =

(
y +G− 1

G− 1

)(
1

1 +H

)y (
1− 1

1 +H

)G
; y = 0, 1, . . . ,

for some value of G and H. What is this distribution? (Use the fact that Γ(n+ 1) = n! if n is

an integer.)

Exercise 6.2 The distribution of flaws along the length of an artificial fibre follows a Poisson

process, so that the number of flaws in a length l of the fibre is Poisson (lθ). Very little is known

about θ, so the Jeffrey’s prior is used for it. The number of flaws obtained in 5 fibres of lengths

10, 15, 25, 30 and 40 metres respectively were 3, 2, 7, 6 and 10. Find the predictive distribution

for the number of flaws in another fibre of length 60 metres.

Exercise 6.3 A random sample x1, . . . , xn is observed from a Normal
(
θ, σ2

)
distribution with

σ2 known, and a normal prior for θ is assumed, leading to a posterior distribution Normal
(
B,D2

)
for θ. Show that the predictive distribution for a further observation, y, from the Normal

(
θ, σ2

)
distribution, is Normal

(
B,D2 + σ2

)
.

Exercise 6.4 The weights of items from a particular production process are independently and

identically distributed, each with a N(θ, 4) distribution. The production manager believes that

θ varies from batch to batch according to a N(110, 0.4) distribution. A sample of 5 items is

randomly selected, yielding the measurements:

108.0, 109.0, 107.4, 109.6, 112.0.

Derive the posterior distribution for θ. Find also the predictive distribution for a) the weight of

one further item from the batch; b) the sample mean of the weights of m further items from the

batch.

Exercise 6.5 Observations x = (x1, x2, . . . , xn) are made of independent random variables X =

(X1, X2, . . . , Xn) with Xi having uniform distribution

f(xi|θ) =
1

θ
; 0 ≤ xi ≤ θ.
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Assume that θ has an improper prior distribution

f(θ) =
1

θ
; θ ≥ 0.

(a) Show that the posterior distribution of θ is given by

f(θ|x) =
nMn

θn+1
; θ ≥ M,

where M = max(x1, x2, . . . , xn).

(b) Show that θ has posterior expectation

E (θ|x) =
n

n− 1
M.

(c) Verify the posterior probability:

Pr(θ > tM |x) =
1

tn
for any t ≥ 1.

(d) A further, independent, observation Y is made from the same distribution as X. Show

that the predictive distribution of Y has density

f(y|x) =
1

M

(
n

n+ 1

)
1

[max(1, y/M)]n+1 ; y ≥ 0.

(e) Sketch this density in the case n = 1 and M = 1.



Chapter 7

Asymptotics

7.1 Introduction

Looking back at the conjugate analysis for the Normal mean θ with X1 . . . Xn ∼ Normal
(
θ, τ−1

)
,

we obtained for a prior θ ∼ N(b, c−1)

θ|x ∼ Normal
(
cb+nτx
c+nτ ,

1
c+nτ

)
Now, as n→∞, this becomes:

θ|x ∼ Normal (x, 1/(nτ)) = Normal
(
x, σ2/n

)
Thus, as n becomes large, the effect of the prior disappears, and the posterior is determined

solely by the data. Moreover, the posterior distribution becomes increasingly more concentrated

around x, which by the strong law of large numbers converges to the true value of θ. These

arguments are formalized and generalized as follows.

7.2 Consistency

If the true value of θ is θ0, and the prior probability of θ0 (or in the continuous case an arbi-

trary neighbourhood of θ0) is not zero, then with increasing amounts of data x, the posterior

probability that θ = θ0 (or lies in a neighbourhood of θ0) tends to unity. This is proved as

follows:

Let x1, . . . xn be IID observations, each with distribution g(x|θ). Then the posterior density is

f(θ|x1, . . . xn) ∝ f(θ)
n∏
i=1

g(xi|θ)

71
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= f(θ) exp

{
n∑
i=1

log g(xi|θ)
}

= f(θ) exp{n¯̀
n(θ)}

∝ f(θ) exp{n[¯̀n(θ)− ¯̀
n(θ0)]}

say. Now, for fixed θ, ¯̀
n(θ)− ¯̀

n(θ0) is the mean of n IID random variables, and so converges in

probability to its expectation∫
{log g(x|θ)− log g(x|θ0)}g(x|θ0)dx.

This can be shown to be less than 0, except that it is equal to 0 when θ = θ0. Thus, for θ 6= θ0,

it follows that exp{n[¯̀n(θ, x)− ¯̀
n(θ0, x)]} tends to 0 with probability 1 as n→∞, but remains

at 1 for θ = θ0. This is sufficient, provided f(θ0) 6= 0, to prove the assertion.

Thus, as long as the prior distribution gives non–zero weight to the true value of θ, eventually,

the posterior probability will concentrate on the true value.

7.3 Asymptotic Normality

When θ is continuous, this argument can be extended to obtain the approximate form of the

posterior distribution when n is large. By the argument in the previous section, as n increases

exp{n[¯̀n(θ, x) − ¯̀
n(θ0, x)]} is negligibly small on all but a vanishingly small neighbourhood of

θ0. Hence f(θ) can be regarded as constant over this neighbourhood and we obtain

f(θ|x1, . . . xn) ∝ exp{n¯̀
n(θ)}

∝ exp{n[¯̀n(θ)− ¯̀
n(θ̂)]},

where θ̂ is the maximum likelihood estimate of θ. Now we expand the exponent in this expression

as a Taylor series about θ̂. The first two terms are both zero because the expression is corrected

to be zero at this point, and it has a maximum there, so

n[¯̀n(θ)− ¯̀
n(θ̂)] ≈ 1

2
n ¯̀′′(θ̂)× (θ − θ̂)2.

Then

f(θ|x1, . . . xn) ∝ exp{− 1
2
n
[
−¯̀′′(θ̂)

]
× (θ − θ̂)2}.

That is

θ|x ∼ Normal

(
θ̂,
[
−n¯̀′′(θ̂)

]−1
)
.
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So, as n → ∞, the distribution of the posterior is approximately Normal about the maximum

likelihood estimate θ̂, and with variance given by minus the second derivative of the log likelihood

at the maximum. Notice again, that this result is true independently of the prior specification,

provided the prior is not zero at the true value.

This result has a number of uses. First, it can be used directly to obtain approximate posterior

probabilities in situations where computations to obtain the true posterior are difficult. Second,

it can give useful starting values for numerical computations where analytical solutions are

intracable. Most importantly perhaps though, it demonstrates that once you get enough data,

concerns about the particular prior you have selected become irrelevant. Two individuals might

specify quite different forms for their prior beliefs, but eventually, once enough data become

available, their posterior inferences will agree.

Example 7.1 (Normal mean.) Let X1, . . . , Xn be a set of independent variables from Normal
(
θ, σ2

)
,

where σ2 is known.

As usual, this gives the likelihood

f(x|θ) ∝ exp{−
∑n
i=1(xi − θ)2

2σ2
}

Thus, we can take

log(f(x|θ)) = − 1

2σ2

n∑
i=1

(xi − θ)2

so that
d log(f(x|θ))

dθ
=

1

σ2

n∑
i=1

(xi − θ)

and
d2 log(f(x|θ))

d2θ
= −n/σ2.

Consequently, the m.l.e. θ̂ = x and −n¯̀′′(θ̂) = n/σ2. Hence, asymptotically as n→∞,

θ|x ∼ Normal
(
x, σ2/n

)
.

This is true for any prior distribution which places non–zero probability around the true value

of θ.

Example 7.2 (Binomial sample.) Consider again the likelihood model x ∼ Binomial (n, θ).

So

f(x|θ) =

(
n

x

)
θx(1− θ)n−x; x = 0, . . . , n.
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Thus

log(f(x|θ)) = x log θ + (n− x) log(1− θ).

So,
d log(f(x|θ))

dθ
=
x

θ
− (n− x)

1− θ
and

d2 log l(θ)

d2θ
=
−x
θ2
− (n− x)

(1− θ)2
.

Consequently, θ̂ = x/n and

−n¯̀′′(θ̂) =
nθ̂

θ̂2
− n(1− θ̂)

(1− θ̂)2
=

n

θ̂(1− θ̂)
.

Thus, as n→∞,

θ|x ∼ Normal
(
x
n ,

x
n

(1− x
n

)

n

)
.
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7.4 Exercises

Exercise 7.1 Find the asymptotic posterior distribution for θ for each of the two models in

exercise 2.1.

Exercise 7.2 Find the asymptotic posterior distribution for b in the Pareto model of exercise

3.3.


