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MCMC methods are used in Bayesian inference to deal with multi-parameter
problems, in which the posterior distribution can not be calculated analyti-
cally. Instead, MCMC algorithms are used to simulate draws from the joint
posterior distribution of the model parameters. The most important MCMC
algorithms are the Gibbs sampler and the Metropolis-Hastings algorithm.

This course will be focussed on the application of MCMC methods to
Bayesian inference.

  

This part of the course will focus mostly on a class of very powerful 
simulation algorithms, known as Markov Chain Monte Carlo (MCMC). 
These algorithms allow us to tackle problems of real complexity that were 
impossible (or ex- tremely difficult) to handle before.

Overview of  MCMC
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Overview of Bayesian Inference

Let y = (y1, . . . , yn) be a vector of observations with sampling density
(likelihood) f (y|θ).

Let π(θ) be the prior distribution of the unknown parameter θ.

The posterior distribution is computed via Bayes’ theorem:

π(θ|y) =
f (y|θ)π(θ)

f (y)
∝ f (y|θ)π(θ) (posterior ∝ likelihood× prior),

where

f (y) =

∫
f (y|θ)π(θ)dθ (marginal likelihood).

Forecasting a future (or missing) value of an observation yf is based on the
predictive distribution:

f (yf |y) =

∫
f (yf |θ)π(θ|y)dθ.
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Quantities of Interest

Often interest lies in the posterior expectation of some function t(θ):

E[t(θ)|y] =

∫
t(θ)π(θ|y)dθ.

• if t(θ) = θ, the posterior expectation of the parameter θ;

• if t(θ) = θr, for some r > 1, higher order posterior moments of θ;

• if t(θ) = I [θ ∈ A], then E[t(θ)|y] is the posterior probability that the
parameter θ lies in the set A;

• if t(θ) = f (yf |θ), then E[t(θ)|y] is the predictive density f (yf |y)

Other features of interest might be quantiles (e.g. median or certain per-
centiles) of the posterior distribution.

If θ = (θ1, . . . , θd) is multi-dimensional, we are also interested in the marginal
posterior distributions of the components: π(θj|y) for j = 1, . . . , d.
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Conjugacy

The posterior belongs to the same family of distributions as the prior.

Example: y1, . . . , yn i.i.d. ∼ Exp(θ) = Gamma(1, θ)

=⇒ f (y|θ) =

n∏
i=1

f (yi|θ) = θn exp
[
−θ

n∑
i=1

yi

]
Prior: θ ∼ Gamma(2, 1) =⇒ π(θ) = θ exp(−θ)
Posterior: π(θ|y) ∝ f (y|θ)π(θ) ∝ θ1+n exp

[
−θ(1 +

∑
i yi)
]

=⇒ θ|y ∼ Gamma
(
2 + n, 1 +

n∑
i=1

yi

)
In many problems with a single parameter, it is possible to find useful con-
jugate priors. But, in multi-parameter models, it is much more difficult.
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Conditional Conjugacy

In multi-parameter models, we can often find conditionally conjugate priors.

Example 2.1: Yi|µ, ω ∼ N(µ, 1/ω), independently for i = 1, . . . , n.

Prior: µ and ω independent, π(µ) ∼ N(µ0, 1/κ0), π(ω) ∼ Gamma (α0, λ0)

=⇒ The posterior,

π(µ, ω|y) ∝ f (y | µ, ω)π(µ)π(ω)

∝ ωn/2 exp

[
−ω

2

n∑
i=1

(yi − µ)2

]
× exp

[
−κ0

2
(µ− µ0)

2
]
ωα0−1 exp [−λ0ω] I [ω > 0]

is a complex bi-variate density.
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However, the conditional posterior densities,

π(µ|ω,y) ∝ exp

[
−ω

2

n∑
i=1

(yi − µ)2

]
exp
[
−κ0

2
(µ− µ0)

2
]

∝ exp

[
−1

2
(κ0 + ωn)

(
µ− κ0µ0 + ω

∑n
i=1 yi

κ0 + nω

)2
]

=⇒ µ|ω,y ∼ N

(
κ0µ0 + ω

∑n
i=1 yi

κ0 + nω
,

1

κ0 + nω

)
,

π(ω|µ,y) ∝ exp

[
−ω

2

n∑
i=1

(yi − µ)2

]
ω

n
2 +α0−1 exp[−λ0ω]

=⇒ ω|µ,y ∼ Gamma

(
α0 +

n

2
, λ0 +

∑n
i=1(yi − µ)2

2

)
,

are tractable, and they belong to the same families of distributions as the
priors (conditional conjugacy).
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MCMC

In multi-dimensional Bayesian problems it is rarely possible to compute
analytically summary statistics such as posterior means and variances, or
even posterior probabilities.

Therefore, it is necessary to estimate the quantities of interest using a Monte
Carlo approach. However, simulating from an arbitrary high dimensional
distribution is usually difficult and often impossible to do directly. Instead,
Markov chain Monte Carlo (MCMC) methods are used to simulate a Markov
chain, whose stationary or limiting distribution is the posterior distribution
of interest.

The concept of conditional conjugacy is crucial in the construction of one of
the basic forms of MCMC: the Gibbs sampler.
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The Gibbs Sampler

When the conditional posterior distributions are of known form, Gibbs sam-
pling is possible.

Objective: To obtain a sample from a multivariate target distribution
π(θ1, . . . , θd). In Bayesian statistics, the target is the joint posterior.

The Gibbs sampling algorithm

1. Initialize with θ = (θ
(0)
1 , . . . , θ

(0)
d ).

2. Simulate θ
(1)
1 from the conditional distribution π(θ1|θ(0)

2 , θ
(0)
3 . . . , θ

(0)
d ).

3. Simulate θ
(1)
2 from the conditional distribution π(θ2|θ(1)

1 , θ
(0)
3 , . . . , θ

(0)
d ).

4. . . .

5. Simulate θ
(1)
d from the conditional distribution π(θd|θ(1)

1 , θ
(1)
2 , . . . , θ

(1)
d−1).

6. Iterate this procedure.
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Under mild regularity conditions, the above Markov chain converges to draws
from the stationary distribution π(θ1, . . . , θd). So, after a burn–in period,
the subsequent draws θ(1), . . . , θ(J) can be regarded as realizations from this
distribution.

Once we obtain a sample θ(1), . . . , θ(J) from π(θ|y) we can approximate any
feature of the posterior using the draws.
• Posterior mean of t(θ): E[t(θ)|y] ≈ 1

J

∑J
j=1 t(θ(j)).

• Posterior quantiles: Order the draws θ[1] < θ[2] < . . . < θ[J ]. Then,
Median of π(θ|y) ≈ θ[J/2]

95% credible region ≈
(
θ[J×0.025], θ[J×0.975]

)
If θ = (θ1, . . . , θd), then the ith component of each of the draws θ(1), . . . , θ(J)

constitutes a sample from π(θi|y).

With the Gibbs sampler, we obtain a sample from the joint posterior distri- 
bution without worrying about computing its normalising constant (needed 
for exact inference).
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Gibbs sampling for Normal example

1. Start the chain with some values (µ(0), ω(0)).

2. Simulate µ(1) from the distribution N
(

κ0µ0+ω(0)
∑n

i=1 yi

κ0+nω(0) , 1
κ0+nω(0)

)
.

3. Simulate ω(1) from the distribution Gamma
(
α0 + n

2 , λ0 +
∑n

i=1(yi−µ(1))2

2

)
.

4. Iterate this procedure.

The R function gibbs implements this algorithm in R. I have stored this
function in an external file called “gibbs.r”. To be able to use this function,
make sure you store the file “gibbs.r” in the same directory where you are
going to start R. Once you start an R session, simply do

> source("gibbs.r")

and you will have the function gibbs available for use.
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Implementing Gibbs sampling with R

I have generated a vector of observations y consisting of 50 independent
realizations from a Normal distribution with µ = 5 and ω = 0.2 (so the
variance is (1/ω) = 5).
To apply the function gibbs to the data-set y do:

> draws <- gibbs(data=y,mu0=3,kappa0=1,alpha0=0.1,
lambda0=0.1,nburn=0,ndraw=5000)

The draws from π(µ, ω|y) have been stored in a 5, 000 × 2 matrix called
draws. The first column contains the draws of µ and the second column the
draws of ω. To visualize these draws, we can plot, for example, 500 equally
spaced draws (out of the 5,000) for µ and similarly for ω.

> plot(draws[c(1:500)*10,1],type="l")

> plot(draws[c(1:500)*10,2],type="l")
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Convergence of the algorithm

An informal way to get an idea of the convergence of the sampler is to plot
the posterior mean of the parameters against the number of iterations of the
sampler. If convergence is achieved, the mean should settle around a certain
value. We do this for µ and ω:

> cum <- cumsum(draws[,1])/c(1:5000)
> plot(cum,type="l")

Note that the posterior mean for µ has settled at a value that is in between
its prior mean µ0 = 3 and the sample mean, which is:
> mean(y)
[1] 5.296271

> cum <- cumsum(draws[,2])/c(1:5000)
> plot(cum,type="l")
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Inference

The plots suggest that convergence has been achieved after about 1,000
iterations of the sampler. So we remove the first 1,000 draws (the burn-in)
and keep the remaining 4,000 to conduct inference and prediction.
> mu <- draws[c(1001:5000),1]
> omega <- draws[c(1001:5000),2]

To plot the prior and posterior distributions of µ do:
> par(mfrow=c(1,2))
> x <- seq(-1,7,length=200)
> plot(x,dnorm(x,3,1),type="l")
> title("prior dist of mu")
> hist(mu,probab=T)

To plot the prior and posterior distributions of ω do:
> x <- seq(0.01,5,length=200)
> plot(x,dgamma(x,0.1,rate=0.1),type="l")
> title("prior dist of w")
> hist(omega,probab=T)
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Prediction

Now suppose we want to forecast an observable yf . This is done according
to the predictive distribution, which has density

f (yf |y) =

∫
f (yf |µ, ω)π(µ, ω|y)dµdω

≈ 1

J

J∑
j=1

(
ω(j)

2π

)1/2

exp

{
−ω(j)

2
(yf − µ(j))2

}
where (µ(j), ω(j)) are the draws obtained through the Gibbs sampler.
To do this with R:

> x <- seq(-5,15,length=200)
> pred <- numeric(200)
> for(j in 1:200) pred[j] <- mean(dnorm(x[j],mu,1/sqrt(omega)))
> plot(x,pred,type="l")
> title("predictive density: p(y_f|y)")
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Prediction

If we want to compute some other characteristic of the predictive distribu-
tion, e.g. the probability that a future observable lies in the interval (0, 5),
we can take a sample of draws from the predictive distribution. So, for each
value (µ(j), ω(j)) drawn in the Gibbs sampler, we draw a value of yf from a
N(µ(j), 1/ω(j)) distribution. In R:

> yf <- rnorm(4000,mu,1/sqrt(omega))
> pos <- yf[yf>0]
> length(pos[pos<5])/length(yf)
[1] 0.47275
> hist(yf,probab=T)
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Poisson count change point problem

The time series stored in the file “coal.dat” gives the number of British coal
mining disasters per year, over the period 1851 – 1962.

Let Yi denote the number of disasters in year i, i = 1, . . . , 112. A model
that has been proposed in the literature has the form

Yi ∼ Poisson (θ); i = 1, . . . k;

Yi ∼ Poisson (λ); i = k + 1, . . . n.

Priors: θ ∼ Gamma (a1, b1), λ ∼ Gamma (a2, b2), k ∼ discrete uni-
form over {1, . . . , n}, each independent of one another, and then b1 ∼
Gamma (c1, d1) and b2 ∼ Gamma (c2, d2).
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Likelihood:

f (y1 | θ) =

k∏
i=1

e−θθyi

yi!
∝ e−θkθ

∑k
i=1 yi

f (y2 | λ) =

n∏
i=k+1

e−λλyi

yi!
∝ e−λ(n−k)λ

∑n
i=k+1 yi

Priors:
π(θ | a1, b1) ∝ ba1

1 θa1−1e−b1θ

π(λ | a2, b2) ∝ ba2
2 λa2−1e−b2λ

π(k) =
1

n
I [k ∈ {1, 2, . . . , n}]

π(b1 | c1, d1) ∝ bc1−1
1 e−d1b1

π(b2 | c2, d2) ∝ bc2−1
2 e−d2b2
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Joint posterior:

π(θ, λ, k, b1, b2|y) ∝ f (y1 | θ)f (y2 | λ)× π(θ | a1, b1)π(λ | a2, b2)

π(b1 | c1, d1)π(b2 | c2, d2)π(k)

∝ e−θkθ
∑k

i=1 yie−λ(n−k)λ
∑n

i=k+1 yi × ba1
1 θa1−1e−b1θba2

2 λa2−1e−b2λ

bc1−1
1 e−d1b1bc2−1

2 e−d2b2I [k ∈ {1, 2, . . . , n}]

Conditional posteriors:

π(θ|y, λ, b1, b2, k) ∝ e−θkθ
∑k

i=1 yiθa1−1e−b1θ = e−θ(b1+k)θ
∑k

i=1 yi+a1−1

=⇒ θ|y, λ, b1, b2, k ∼ Gamma

(
a1 +

k∑
i=1

yi, b1 + k

)
π(λ|y, θ, b1, b2, k) ∝ e−λ(n−k)λ

∑n
i=k+1 yiλa2−1e−b2λ = e−λ(b2+n−k)λ

∑n
i=k+1 yi+a2−1

=⇒ λ|y, θ, b1, b2, k ∼ Gamma

(
a2 +

n∑
i=k+1

yi, b2 + n− k

)
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π(b1|y, θ, λ, b2, k) ∝ ba1
1 e−b1θbc1−1

1 e−d1b1 = bc1+a1−1
1 e−b1(d1+θ)

=⇒ b1|y, θ, λ, b2, k ∼ Gamma (c1 + a1, d1 + θ)

π(b2|y, θ, λ, b1, k) ∝ ba2
2 e−b2λbc2−1

2 e−d2b2 = bc2+a2−1
2 e−b2(d2+λ)

=⇒ b2|y, θ, λ, b1, k ∼ Gamma (c2 + a2, d2 + λ)

P (k|y, θ, λ, b1, b2) =
e(λ−θ)k (θ/λ)

∑k
i=1 yi∑n

j=1

{
e(λ−θ)j

(
θ
λ

)∑j
i=1 yi

} I [k ∈ {1, 2, . . . , n}].
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Convergence of the algorithm

The corresponding Gibbs sampler is implemented in with the code stored in
the external file “gibbs2.r”. To run it with 1,100 iterations and no burn-in,
and plot the output, I did:

> draws <- gibbs2(data=coal,ndraw=1100)
> par(mfrow=c(3,2))
> plot(draws[,1],type="l",main="draws theta")
> plot(draws[,2],type="l",main="draws lambda")
> plot(draws[,3],type="l",main="draws b1")
> plot(draws[,4],type="l",main="draws b2")
> plot(draws[,5],type="l",main="draws k")

Convergence of the algorithm was rapid, so I deleted the first 100 values and
based the subsequent analysis on the remaining 1000 points:

> theta <- draws[c(101:1100),1]
> lambda <- draws[c(101:1100),2]
> k <- draws[c(101:1100),5]
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Histograms

Histograms of the posterior distributions of the model parameters can be
obtained in R as follows:

> par(mfrow=c(2,2))
> hist(k,breaks=seq(min(k)-0.5,max(k)+0.5,by=1),probab=T)
> hist(theta,probab=T)
> hist(lambda,probab=T)
> hist(theta-lambda,probab=T)

From the MCMC output, it is almost certain that a changepoint has oc-
curred, with the posterior mode estimate being k = 41, corresponding to a
changepoint at the year 1891.
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Prediction

The predictive distribution of a future observation yf given the current ob-
servations y is defined as

f (yf |y) =

∫
f (yf |θ)π(θ|y)dθ,

so that the likelihood, f (yf |θ) is averaged across the uncertainty in θ con-
tained in the posterior distribution π(θ|y).

Hence, given a sampled sequence of realizations θ(1), . . . , θ(J) from this pos-
terior, we can estimate

f (yf |y) ≈ 1

J

J∑
j=1

f (yf |θ(j))

For the coal mining example, we can use this estimator to estimate the
predictive distribution of the number of disasters in a future year for which
the Poisson rate is λ.
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Data Augmentation

Augment the model by including additional (random) variables in a way
that leads to a model that is easier to handle computationally

Data augmentation can be helpful in making problems amenable to Gibbs
sampling

It can be applied equally well to the following two situations:

1. missing data

2. intractable likelihood function that becomes tractable if we condition on
a collection of unobserved variables
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Example 1

Suppose Y0, Y1, . . . , Yn is a time series of random variables with Y0 = 0
and for each i = 1, . . . , n, Yi = Yi−1 + Si, where Si ∼ Beta(θ, θ), θ > 0.
Therefore,

Yi|Y0, Y1, . . . Yi−1 ∼ Yi−1 + Si.

f (y0, . . . , yn|θ) = f (y0|θ)

n∏
i=1

f (yi|y0, . . . , yi−1, θ) =

n∏
i=1

f (yi|yi−1, θ)

=

n∏
i=1

Γ(2θ)

{Γ(θ)}2
(yi − yi−1)

θ−1{1− (yi − yi−1)}θ−1I [0 < yi − yi−1 < 1]

If an observation yi∗ is missing =⇒ likelihood no longer available in closed
form
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Example 2

Suppose that Y1, . . . Yn are i.i.d. from the mixture density:

f (yi|θ) =
1

2

(
1

(2π)1/2
exp

(
−y2

i

2

)
+

1

(2π)1/2
exp

[
−(yi − θ)2

2

])
θ enters the likelihood in a non-straightforward way:

f (y|θ) =

n∏
i=1

f (yi|θ) ∝
n∏

i=1

(
exp

(
−y2

i

2

)
+ exp

[
−(yi − θ)2

2

])
.

=⇒ no prior on θ will lead to a recognisable posterior

This mixture density can be thought of as the density of the random variable
obtained by the following procedure.

Toss a fair coin (1 coin toss per observation yi):
If head =⇒ sample yi from a N(0, 1) distribution.
If tail =⇒ sample yi from a N(θ, 1) distribution.
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If I knew the result of the n coin tosses, I would know whether yi ∼ N(0, 1)
or yi ∼ N(θ, 1) for each i = 1, . . . , n, and the likelihood would be

f (y1, . . . , yn|θ, sequence of H and T) ∝
∏

i:toss = T

exp

[
−(yi − θ)2

2

]
,

which is very easy to handle!

In these examples exact inference is not possible, both in a Bayesian and in
a classical framework. Instead, we need to use Computationally intensive
methods.

Data augmentation ideas, used in a Bayesian framework, are very similar to
the EM algorithm for maximum likelihood inference.
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The Idea

Remark: in a Bayesian setting both data and parameters are treated as
random variables.

When doing data augmentation, we add further random variables (denoted
by z) to the model. Then the above examples demonstrate the situation
where the likelihood of the observed data, f (y|θ), is not tractable, but
complete data likelihood, f (y, z|θ), is easy to handle. As a result, the
posterior distribution of (θ, z) is proportional to

π(θ, z|y) ∝ f (y, z|θ)π(θ).

Data augmentation proceeds by carrying out Gibbs sampling to sample suc-
cessively from θ and z to produce a sample from this joint distribution. The
marginal distribution of θ is the posterior distribution of interest.
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Example 1

In this case, y is the vector (y0, . . . , yn) excluding yi∗, z = yi∗, and hence

f (y, yi∗|θ) = f (y0, . . . , yn|θ)

∝
n∏

i=1

Γ(2θ)

{Γ(θ)}2
(yi − yi−1)

θ−1{1− (yi − yi−1)}θ−1I [0 < yi − yi−1 < 1]

Therefore, the conditional posterior π(θ|y, yi∗) ∝ f (y, yi∗|θ)π(θ) is explicit
and can be sampled easily.

To complete the Gibbs sampler, we also need to sample from

f (yi∗|y, θ) ∝ f (y, yi∗|θ)

∝
[
(yi∗ − yi∗−1){1− (yi∗ − yi∗−1)}(yi∗+1 − yi∗){1− (yi∗+1 − yi∗)}

]θ−1

on the region yi∗ ∈ (yi∗−1, yi∗−1 + 1) ∩ (yi∗+1 − 1, yi∗+1). This sampling can
be carried out (among other ways) by rejection sampling.
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Example 2

Here z is a sequence of n heads or tails, with one element per observation.
Hence, z = (z1, . . . , zn) and zi equals 1 if observation i corresponds to head
and 2 if it corresponds to tail. Suppose that the prior for θ is N(0, 1). Then
we have

f (yi, zi|θ) = f (yi|zi, θ)P (zi),

where

f (yi|zi, θ) =


1

(2π)1/2 exp
(
−y2

i

2

)
if zi = 1

1
(2π)1/2 exp

(
−(yi−θ)2

2

)
if zi = 2

and

P (zi = 1) = P (zi = 2) =
1

2
.
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The complete data likelihood is

f (y, z | θ) =

{
n∏

i=1

f (yi|zi, θ)P (zi)

}
∝ exp

{
−1

2

∑
i:zi=1

y2
i

}
exp
{
−1

2

∑
i:zi=2

(yi − θ)2
}

Using that π(θ, z|y) ∝ f (y, z | θ)π(θ), it follows that

π(θ|y, z) ∝ exp
{
−1

2

∑
i:zi=2

(yi−θ)2
}

exp
(
−θ2

2

)
≡ N

(∑
i:zi=2 yi

1 + n2
,

1

1 + n2

)
,

where n2 is the number of observations for which zi = 2. For each i,

P (zi = 2|θ,y) =
e−(yi−θ)2/2

e−(yi−θ)2/2 + e−y2
i /2

, P (zi = 1|θ,y) =
e−y2

i /2

e−(yi−θ)2/2 + e−y2
i /2

.

Hence, it is easy to implement a Gibbs sampler to simulate the posterior
distribution of (θ, z1, . . . , zn).
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Genetic Linkage Example

This example concerns genetic linkage of 197 animals. The animals are
distributed into 4 categories:

y = (y1, y2, y3, y4) = (125, 18, 20, 34)

with cell probabilities(
2 + θ

4
,

1

4
(1− θ),

1

4
(1− θ),

θ

4

)
, 0 ≤ θ ≤ 1.

Prior of θ: Uniform(0, 1).

Posterior of θ :

π(θ|y) ∝ f (y|θ)π(θ) ∝ (2 + θ)y1(1− θ)y2+y3θy4I [θ ∈ (0, 1)].

Though it is possible to sample the posterior of θ directly (e.g. via rejection
sampling), data augmentation brings about a substantial simplification.
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Data Augmentation

Augment the observed data (y1, y2, y3, y4) by dividing the first cell into two
portions, with respective probabilities proportional to θ and 2:

z|y, θ ∼ Binomial

(
y1,

θ

2 + θ

)
.

This gives the augmented data set (y, z), for which we have that

f (y, z|θ) = f (y|θ)π(z|y, θ)

∝ (2 + θ)y1(1− θ)y2+y3θy4

(
y1

z

)(
θ

2 + θ

)z (
2

2 + θ

)y1−z

Now it is immediate that

π(θ|y, z) ∝ θz+y4(1− θ)y2+y3I [θ ∈ (0, 1)] ≡ Beta(z + y4 + 1, y2 + y3 + 1).

To complete the Gibbs sampler we also need to generate draws from the con-
ditional posterior distribution of z. I have implemented this Gibbs sampler
in R, with ndraw=600 iterations and no burn-in.
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Remark

It seems that convergence of the algorithm is very fast.

However, interpretation of the results does need care, since the sequence of
realisations are not independent. There are two alternative strategies:

1. Run a single chain for sufficiently long, so that dependence between
successive realisations does not diminish the precision of the sample
information; and

2. Run several chains, and average across them.

I’m going to stick with the first of these approaches, though it should also
be recognised that approaches to assessing convergence of such chains are
often based on comparisons of within–chain and across–chain variability.
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The general MCMC algorithm

The Gibbs sampler is the best publicised MCMC algorithm, but there are
many others. It is not possible to use Gibbs sampling in all problems since
sometimes the conditional posterior distributions can not be calculated.

Example 4.1. Suppose Yi|µ, ω ∼ Cauchy(µ, 1/ω) independently for i =
1, . . . , n. Hence, the sampling density is

f (y|µ, ω) =

n∏
i=1

f (yi|µ, ω) =

n∏
i=1

ω1/2

π

1

1 + ω(yi − µ)2

Suppose also that µ ∼ N(µ0, 1/κ0) and ω ∼ Gamma (α0, λ0), where µ
and ω are considered to be a priori independent, and µ0, κ0, α0 and λ0 are
considered to be known hyperparameters. Then,

π(µ, ω|y) ∝

{
n∏

i=1

1

1 + ω(yi − µ)2

}
e−

κ0
2 (µ−µ0)2ω

n
2 +α0−1e−λ0ωI [ω > 0].

Clearly, the posterior is a complex two-dimensional distribution.
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Conditional posterior densities:

π(µ|ω,y) ∝

{
n∏

i=1

1

1 + ω(yi − µ)2

}
e−

κ0
2 (µ−µ0)2,

and

π(ω|µ,y) ∝

{
n∏

i=1

1

1 + ω(yi − µ)2

}
ω

n
2 +α0−1e−λ0ω I [ω > 0].

None of these distributions has a well-known form, so Gibbs sampling is
precluded. In order to compute the posterior distribution in this model, we
need to use more general MCMC algorithms.

This example illustrates the need for MCMC algorithms that are more gen-
eral than Gibbs sampling.
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General MCMC algorithm

1. Break the components of θ into d groups θ1, . . . , θd, where each group
θj has dimension ≥ 1.

2. Initialize with θ
(0)
1 , . . . , θ

(0)
d .

3. Update θ
(0)
1 to θ

(1)
1 “according to” the conditional distribution

π(θ1|θ(0)
2 , θ

(0)
3 . . . , θ

(0)
d ).

4. Update θ
(0)
2 to θ

(1)
2 “according to” the conditional distribution

π(θ2|θ(1)
1 , θ

(0)
3 , . . . , θ

(0)
d ).

5. . . .

6. Update θ
(0)
d to θ

(1)
d “according to” the conditional distribution

π(θd|θ(1)
1 , θ

(1)
2 , . . . , θ

(1)
d−1).

7. Iterate this updating procedure.
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Remarks

Running any general MCMC algorithm, after discarding an initial number of
draws (the burn-in), the remaining draws can be regarded as a sample from
the target distribution π(θ) (under mild regularity conditions, see Appendix
1 in lecture notes).

In the updating steps of the general MCMC we “update according to” the
appropriate conditional distribution. For Gibbs sampling, this means sim-
ulating from the conditional distribution, but for other MCMC algorithms
“update according to” means something else.

The most general algorithm in this context is the Metropolis–Hastings algo-
rithm.
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The Metropolis-Hastings algorithm

In a general MCMC algorithm, suppose that the current value of the chain
is θ

(j)
1 , . . . , θ

(j)
d and that we now want to simulate θ

(j+1)
1 .

• Propose a candidate value θcan
1 , which is a draw from an arbitrary distri-

bution with density q(θcan
1 |θ(j)

1 , θ
(j)
2 , . . . , θ

(j)
d ).

• Take as the next value of θ1 in the chain

θ
(j+1)
1 =

{
θcan

1 with probability p

θ
(j)
1 with probability 1− p

where

p = min

{
1,

π(θcan
1 |θ(j)

2 , . . . , θ
(j)
d )

π(θ
(j)
1 |θ

(j)
2 , . . . , θ

(j)
d )

q(θ
(j)
1 |θcan

1 , θ
(j)
2 , . . . , θ

(j)
d )

q(θcan
1 |θ(j)

1 , θ
(j)
2 , . . . , θ

(j)
d )

}
,

with π(θcan
1 |θ(j)

2 , . . . , θ
(j)
d ) denoting the density corresponding to the condi-

tional posterior of θ1 at θ1 = θcan
1 and similarly for π(θ

(j)
1 |θ

(j)
2 , . . . , θ

(j)
d ).
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Some comments

• To implement the second part of MH: draw a value u from a Uniform(0, 1)

distribution, and take θ
(j+1)
1 = θcan

1 if u < p and θ
(j+1)
1 = θ

(j)
1 otherwise.

• The candidate generator q(θcan
1 |θ(j)

1 , θ
(j)
2 , . . . , θ

(j)
d ) is arbitrary so, in prin-

ciple, any choice should work. In practice, the choice matters for mixing
properties of the algorithm. Note that the candidate generator can depend
on the current value of the chain, although this is not a requirement.

• MH algorithm has the major advantage over Gibbs that it is not necessary
to know all the conditional posterior distributions. We only need to know
the conditionals up to proportionality.

• Gibbs sampling is a special case of the MH where the candidate generator
is q(θcan

1 |θ(j)
1 , θ

(j)
2 , . . . , θ

(j)
d ) = π(θcan

1 |θ(j)
2 , . . . , θ

(j)
d ). In this case, p = 1.
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• Random walk Metropolis algorithm with Normal increments:

q(θcan
1 |θ(j)

1 , θ
(j)
2 , . . . , θ

(j)
d ) is the density of a N(θ

(j)
1 , v) distribution. The sym-

metry of the candidate generator means that the terms involving q(·) cancel
in the formula for the acceptance probability:

p = min

{
1,

π(θcan
1 |θ(j)

2 , . . . , θ
(j)
d )

π(θ
(j)
1 |θ

(j)
2 , . . . , θ

(j)
d )

}
.

The variance of the candidate generator v plays an important role in the
mixing properties of the algorithm:
If v too large =⇒ moves proposed too bold =⇒ low acceptance probabilities
=⇒ slow mixing
If v too small =⇒ acceptance probability very high but moves in little steps
=⇒ slow mixing
v is typically chosen by trial and error, aiming at an acceptance probability
roughly around 30%.
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• To obtain θ
(j+1)
2 propose a candidate θcan

2 from an arbitrary distribution

q(θcan
2 |θ(j+1)

1 , θ
(j)
2 , . . . , θ

(j)
d ) and accept this candidate as θ

(j+1)
2 with probabil-

ity

p = min

{
1,

π(θcan
2 |θ(j+1)

1 , θ
(j)
3 , . . . , θ

(j)
d )

π(θ
(j)
2 |θ

(j+1)
1 , θ

(j)
3 , . . . , θ

(j)
d )

q(θ
(j)
2 |θ

(j+1)
1 , θcan

2 , . . . , θ
(j)
d )

q(θcan
2 |θ(j+1)

1 , θ
(j)
2 , . . . , θ

(j)
d )

}
.

If θcan
2 is rejected, then θ

(j+1)
2 = θ

(j)
2 .

• The most commonly used MCMC algorithms in practice consist of hybrid
chains. We use the general MCMC algorithm, where the various simulation
steps are conducted using Gibbs sampling where possible, and MH when
Gibbs is not possible.
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The genetic linkage example revisited

The target distribution is

π(θ|y) ∝ (2 + θ)y1(1− θ)y2+y3θy4I [0 ≤ θ ≤ 1].

As candidate generator, we can take a Uniform[0, 1] distribution. Thus,
given that the chain is currently at a certain value θ, we propose
θcan ∼Uniform[0, 1], and the acceptance probability p is

p = min

{
1,

π(θcan|y)

π(θ|y)

}
= min

{
1,

(
2 + θcan

2 + θ

)y1
(

1− θcan

1− θ

)y2+y3
(

θcan

θ

)y4
}

.
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The MH algorithm

1. Start the chain at some value θ(0)

2. Propose a candidate value θcan ∼Uniform[0, 1]. Take as the new value
of the chain

θ(1) =

{
θcan with probability p
θ(0) with probability 1− p

where

p = min

{
1,

(
2 + θcan

2 + θ(0)

)y1
(

1− θcan

1− θ(0)

)y2+y3
(

θcan

θ(0)

)y4
}

(the latter is carried out by sampling u ∼Uniform(0, 1), and taking
θ(1) = θcan if and only if u < p).

3. Iterate this procedure
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Convergence of the algorithm

As with the Gibbs sampler, it is necessary to monitor the output to ensure
convergence.

Running the MH algorithm in R with 1,100 iterations and no burn-in I
obtained acceptance rate of 16%, a bit low for good mixing. Hence, I decided
to run a longer chain of 5,500 iterations. Convergence seemed ok after the
first few iterations, so I deleted the first 500 draws. In addition, to counteract
for the slow mixing, I kept only every 5th draw.

> theta <- mh(data=c(125,18,20,34),ndraw=1100)
[1] "percentage accepted draws:" "15.6363636363636"
> plot(theta,type="l")
> theta <- mh(data=c(125,18,20,34),ndraw=5500)
> theta <- theta[-c(1:500)]
> theta <- theta[c(1:1000)*5]
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Example 4.1 revisited: Cauchy distribution

Conditional posterior densities:

π(µ|ω,y) ∝

{
n∏

i=1

1

1 + ω(yi − µ)2

}
e−

κ0
2 (µ−µ0)2,

π(ω|µ,y) ∝

{
n∏

i=1

1

1 + ω(yi − µ)2

}
ω

n
2 +α0−1e−λ0ω I [ω > 0].

Both for drawing µ and for drawing ω we are going to use Random Walk
Metropolis with Normal increments.
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MH algorithm

1. Choose initial values (µ(0), ω(0)).

2. Given that the chain is currently at (µ(j), ω(j)):

• Draw µcan ∼ N(µ(j), vµ) and take

µ(j+1) =

{
µcan with probability p
µ(j) with probability 1− p

where

p = min

(
1,

π(µcan | ω(j),y)

π(µ(j) | ω(j),y)

q(µ(j) | µcan)

q(µcan | µ(j))

)
= min

(
1, e

κ0
2

{
(µ(j)−µ0)2−(µcan−µ0)2

} n∏
i=1

{
1 + ω(j)(yi − µ(j))2

1 + ω(j)(yi − µcan)2

})

(this is implemented by drawing u ∼Uniform(0, 1) and taking µ(j+1) = µcan

if and only if u < p).
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2. • Draw ωcan ∼ N(ω(j), vω) and take

ω(j+1) =

{
ωcan with probability p
ω(j) with probability 1− p

where

p = min

(
1,

(
ωcan

ω(j)

)n
2 +α0−1

eλ0(ω(j)−ωcan)
n∏

i=1

{
1 + ω(j)(yi − µ(j+1))2

1 + ωcan(yi − µ(j+1))2

})

(this is implemented by drawing u ∼Uniform(0, 1) and taking ω(j+1) =
ωcan if and only if u < p).

3. Iterate Step 2 a large number of times. Discard an initial number of
draws (burn-in) and base inference on subsequent draws.

Important remark: The acceptance probability p for ωcan in Step 2 can only
be positive if the drawn value ωcan > 0. If we draw a value ωcan < 0, then
p = 0 and ω(j+1) = ω(j).
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Further recommendations about MCMC

• Assessing convergence of the algorithm is extremely important, but can
be problematic in high dimensional situations.

Always run the chain several times using different starting values and check
that the output from the various chains is very similar.

Run long chains and have long burn-in periods.

• Be extremely cautious if you use improper prior distributions.

If you use improper priors always check that the joint posterior distribution
is proper, otherwise you can not have any faith in the results obtained via
computation.

This problem does not arise if you use proper prior distributions.
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MCMC in GLMs

We will discuss various approaches to implementing MCMC algorithms in
GLMs. In particular, we will consider logistic and probit regression models
for binary data and log-linear Poisson regression models for count data.

These models have in common that there are no conjugate priors available
for regression parameters and, therefore, conditional posterior distributions
have non-standard forms. We will review different algorithms proposed in
the literature and discuss their implementation. Those will mostly involve
MH proposals.

We will first discuss models which are essentially Bayesian versions of GLMs.
Here we can perform a comparison with the ML approach.

We will then extend this class of models by introducing additional random
effects (generalised linear mixed models).
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Logistic regression

Response variable: the occurrence or non-occurrence of infection following
birth by Caesarian section.

Covariates:
x1 = 1 if Caesarian section was not planned and x1 = 0 otherwise;
x2 = 1 if there is presence of risk factor(s) and x2 = 0 otherwise;
x3 = 1 if antibiotics were given as prophylaxis and x3 = 0 otherwise.

There is a total of 251 births:

Covariates Infection
x1 x2 x3 yes no
0 0 0 8 32
0 0 1 0 2
0 1 0 28 30
0 1 1 1 17
1 0 0 0 9
1 0 1 0 0
1 1 0 23 3
1 1 1 11 87
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We have aggregated all binary responses in each covariate category obtaining
binomial responses. Thus,

yi ∼ Binomial(ni, pi)

where i is an index for each covariate combination, yi is the number of
infections, ni the total number of observations, and pi the probability of
infection for each individual with this covariate combination.

Suppose we assume the binary logistic regression model,

logit pi = log

(
pi

1− pi

)
= ηi = xT

i β

where xT
i = (1, x1i, x2i, x3i) denotes the vector of covariates. Then,

pi

1− pi

= exp(xT
i β) ⇒ pi =

exp(xT
i β)

1 + exp(xT
i β)

.
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Therefore, the likelihood is given by

f (y|β) =

n∏
i=1

f (yi|β) ∝
n∏

i=1

pyi

i (1− pi)
ni−yi

=

n∏
i=1

[
exp(xi

Tβ · yi)

1 + exp(xi
Tβ)

]yi
[

1

1 + exp(xi
Tβ)

]ni−yi

=

n∏
i=1

exp(xi
Tβ · yi)

[1 + exp(xi
Tβ)]ni

.

A Maximum likelihood analysis in R gives the following results.

Deviance Residuals:
[1] 1.21563 -0.15231 -0.78520 0.26470 -2.56229 0.00000 1.49623
[8] -0.07162
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.8926 0.4124 -4.590 4.44e-06 ***
noplan 1.0720 0.4253 2.520 0.0117 *
factor 2.0299 0.4552 4.459 8.23e-06 ***
antib -3.2544 0.4813 -6.762 1.37e-11 ***
---
Sig. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 83.491 on 6 degrees of freedom
Residual deviance: 10.997 on 3 degrees of freedom
AIC: 36.178

Number of Fisher Scoring iterations: 4

The 10.997 value for the residual deviance is not obviously inconsistent with
a χ2

3 distribution, since we can compute P (χ2
3 > 10.997) as

> 1-pchisq(10.997,3)
[1] 0.01174211

so there is no strong warning sign that the model may not fit adequately.
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Bayesian analysis

A Bayesian analysis places a prior on β = (β0, β1, β2, β3)
T , usually a mul-

tivariate normal prior β ∼ N4(µ0, C0). The posterior distribution for β
is

π(β|y) ∝ f (y|β)π(β)

∝

{
n∏

i=1

exp(xi
Tβ · yi)

(1 + exp(xi
Tβ))ni

}
exp

(
−(β − µ0)

TC−1
0 (β − µ0)

2

)
.

The posterior density is a complicated, non-linear function of β. How can
we construct an MCMC algorithm to sample from this distribution?
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1. Update β component-wise using Gibbs: Generate draws from
the conditional posterior of each component of β. Problems: •Tedious
to sample from conditionals (non-standard); • slow convergence due to
strong correlations between parameters.

2. Update β component-wise via MH: Simple random walk pro-
posal.
Problems: • Needs tuning; • problems with collinearity.

3. Update β jointly: Multivariate Normal candidate generator with
mean equal to posterior mode and covariance matrix equal to inverse
curvature at mode.
Problems: • Newton-Raphson for π(β|y); • relies on asymptotic nor-
mality of posterior distribution; • may rarely propose values in the tails
of the posterior.

4. Update β jointly: Multivariate Gaussian random walk candidate
generator, with covariance matrix equal to the inverse curvature at pos-
terior mode times a (scalar) tuning factor, or some other pre-estimated
covariance matrix
Problems: • Needs tuning and pre-calculation of covariance estimate.
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The code to implement algorithms 2, 3 and 4 is stored in the file “logistic.r”.
The output from running these algorithms is plotted in the files
“logistic2.pdf”, “logistic3.pdf” and “logistic4.pdf”.

Estimates (posterior mean, standard deviation and posterior probability of
exceeding 0) using the third algorithm (5,000 samples after burn-in of 500)
are given in the following table:

Coefficients: mean Std probability
(Intercept) -1.9544 0.4228 0
noplan 1.1071 0.4229 0.9968
factor 2.0955 0.467 1
antib -3.3322 0.4867 0

The overall acceptance rate of this run was 87.6%.

Generally, we prefer an algorithm which is automatic (no tuning required)
and updates β in one block, (to avoid strong autocorrelations in the samples).
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Weighted Least Squares

The ML estimator in a GLM and its asymptotic covariance matrix are ob-
tained by iterative use of WLS on transformed observations. The algorithm
takes a simple form in the case of canonical link functions g(µi) = ηi = xT

i β,
where µi = E(yi), such as the logit link for binary regression.

For logistic regression with binomial response, the canonical link is

g(µi) = log

(
pi

1− pi

)
= log

(
nipi

ni − nipi

)
= log

(
µi

ni − µi

)
.

Define a vector of transformed observations ỹ(β) and a diagonal matrix of
weights W (β) as

ỹi(β) = ηi + (yi − µi)g
′(µi)

Wi(β) = 1/g′(µi),

where g′(µi) is the first derivative of the link function. For the canonical
link for logistic regression g′(µi) = ni

µi(ni−µi)
.
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Iterative Weighted Least Squares

The Iterative Weighted Least Squares (IWLS) algorithm starts with some
arbitrary value β(0), and iteratively obtains β(t), t = 1, . . . as the least squares
estimator in the general (with weights) linear model

ỹ(β(t−1)) ∼ N(Xβ,W−1(β(t−1)))

i.e.
β(t) = (XTW (β(t−1))X)−1XTW (β(t−1))ỹ(β(t−1)).

After convergence, the final estimate β̂ is the ML estimate and the matrix
(XTW (β̂)X)−1 is the associated asymptotic covariance matrix.
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Bayesian context

The latter estimates also have a Bayesian interpretation: they can be shown
to correspond to the mode and inverse curvature matrix at the mode of the
posterior π(β|y) under a flat prior on β, i.e. under π(β) ∝ 1.

With a proper normal prior on β, β ∼ N(µ0, C0), the IWLS algorithm can
be modified in order to find the mode and curvature at the mode of π(β|y).

We will combine

ỹ(β(t−1)) ∼ N(Xβ,W−1(β(t−1))),

i.e.

f (ỹ(β(t−1)) | β) ∝ exp

{
−1

2

(
ỹ(β(t−1))−Xβ

)T
W
(
β(t−1)

) (
ỹ(β(t−1))−Xβ

)}
with the prior:

π(β) ∝ exp

{
−1

2
(β − µ0)

TC−1
0 (β − µ0)

}
.
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Posterior: π(β | ỹ(β(t−1)))

∝ π(β)f (ỹ(β(t−1)) | β)

∝ exp

{
−1

2
(β − µ0)

TC−1
0 (β − µ0)

}
× exp

{
−1

2

(
ỹ(β(t−1))−Xβ

)T
W
(
β(t−1)

) (
ỹ(β(t−1))−Xβ

)}
∝ exp

{
−1

2
[βTC−1

0 β − 2βTC−1
0 µ0]

}
× exp

{
−1

2
[βTXTW

(
β(t−1)

)
Xβ − 2βTXTW

(
β(t−1)

)
ỹ(β(t−1))]

}
= exp[−1

2
βT (C−1

0 +XTW
(
β(t−1)

)
X)β+βT (C−1

0 µ0+XTW
(
β(t−1)

)
ỹ(β(t−1)))],

that is
β|ỹ(β(t−1)) ∼ N(β(t), (C−1

0 + XTW (β(t−1))X)−1).

To find the posterior mode we iterate until convergence.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Gamerman’s MH IWLS algorithm

The idea of Gamerman’s IWLS proposal is to perform only one step of the
iteration, starting at the current value β, and use the resulting multivariate
Gaussian as the proposal distribution in a MH setting:

q(βcan|β, y) ∼ N(f (β), (C−1
0 + XTW (β)X)−1),

where

f (β) = (C−1
0 + XTW (β)X)−1(C−1

0 µ0 + XTW (β)ỹ(β)).

The resulting MCMC algorithm has several advantages:
• It does not require any tuning constants;
• The proposal obtained is reasonably close to the posterior, and therefore
the algorithm leads to high acceptance probabilities;
• It avoids problems with independence proposals at the posterior mode;
• A similar approach can also be used in GLMMs.
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Acceptance probability:

p = min

{
1,

π(βcan|y)

π(β|y)

q(β|βcan, y)

q(βcan|β, y)

}
Note that, to evaluate the proposal ratio, we also have to perform the inverse
IWLS step, starting at the proposed value βcan.

The results using Gamerman’s algorithm (in the file “logistic.r”) are as fol-
lows (using 5,000 samples after burn-in of 500):

Coefficients: mean Std probability
(Intercept) -1.9717 0.4328 0
noplan 1.092 0.4206 0.995
factor 2.1148 0.4823 1
antib -3.3148 0.4922 0

See also the file “logisticgamer.pdf”.

In general, there is good agreement with the results obtained earlier. The
overall acceptance rate of this run was 74.1%.
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Data augmentation in binary probit regression

Consider the Bayesian probit regression model,

yi ∼ Bernoulli
(
Φ(ηi)

)
ηi = xT

i β

β ∼ N(µ0, C0)

where yi ∈ {0, 1}, i = 1, . . . , n is a binary response variable for a collection
of n objects with associated covariate measurement xi,
Φ(·) is the standard normal distribution function,
ηi is the linear predictor and β represents a (p×1) column vector of regression
coefficients.

In the probit model, the mean is given by µi = Φ(ηi), hence, it corresponds
to the probit link function: g(µi) = Φ−1(µi).
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Equivalent representation

Using auxiliary variables zi (for i = 1, . . . , n):

yi =

{
1 if zi > 0
0 otherwise

zi ∼ N(xT
i β, 1),

where yi is now deterministic conditional on the sign of zi. Then,

P (yi = 1) = P (zi > 0) = P (N(xT
i β, 1) > 0) = P (N(0, 1) > −xT

i β) = Φ(xT
i β)

This representation lends itself to efficient simulation using Gibbs.
The joint posterior of (β, z1, . . . , zn) is given by

π(β, z1, . . . , zn|y) ∝
∏

i:yi=1

exp
[
−1

2
(zi − xi

Tβ)2
]
I [zi > 0]

×
∏

i:yi=0

exp
[
−1

2
(zi − xi

Tβ)2
]
I [zi < 0]

× exp
[
−1

2
(β − µ0)

TC−1
0 (β − µ0)

]
.
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It is now immediate that the conditional posterior distribution of β is normal:

β|z, y ∼ N
(
(C−1

0 + XTX)−1(C−1
0 µ0 + XTz), (C−1

0 + XTX)−1
)
,

where z = (z1, . . . , zn)
T , whereas the conditional posterior distribution for

each zi is truncated normal,

zi|β, y ∝
{

N(xT
i β, 1) I [zi > 0] if yi = 1

N(xT
i β, 1) I [zi ≤ 0] otherwise,

(1)

which is simple to sample from.

A slight disadvantage of the auxiliary variables approach, however, is that we
can not aggregate to binomial responses (as we have done when considering
logistic regression). Instead, we have to consider the individual n = 251
binary responses, which makes the algorithm slower.
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The results obtained using the probit approach can be found in the following
table (see file “probit.pdf” for additional details):

Coefficients: mean Std probability
(Intercept) -1.115 0.2211 0
noplan 0.6092 0.2501 0.9954
factor 1.2204 0.2608 1
antib -1.9115 0.2634 0

Those are quite different from the logistic model because of the different
link. However, the relationship between the Probit and the Logit links is
mainly a change in scale. So if we adjust our estimates of posterior mean
and standard deviation by a factor of π/

√
3 · 15/16 ≈ 1.7, the results look

very similar:

Coefficients: mean Std probability
(Intercept) -1.8955 0.3759 0
noplan 1.0356 0.4251 0.9954
factor 2.0747 0.4434 1
antib -3.2496 0.4478 0
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Poisson regression

In log-linear Poisson regression, it is assumed that

yi ∼ Poisson(µi), where g(µi) = log(µi) = ηi = xT
i β,

independently for i = 1, . . . , n. We consider a normal prior: β ∼ N(µ0, C0).
For these models, there exists no data augmentation approach. However, we
can implement methods similar to the ones discussed for logistic regression.

Often offsets are used in Poisson regression:

yi ∼ Poisson(µi = eiλi)

where ei are known expected cases. Assume now we want to investigate the
effect of covariates xi in this model. Assuming λi = exp(xT

i β), we obtain
that

g(µi) = log(µi) = ηi = log(ei) + xT
i β.
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Poisson regression

The posterior distribution of β is given by

f (β|y) ∝
n∏

i=1

(eiλi)
yi exp {−eiλi} × exp

{
−1

2
(β − µ0)

TC−1
0 (β − µ0)

}
∝ exp

{
n∑

i=1

[yix
T
i β − ei exp(xT

i β)]

}
× exp

{
−1

2
(β − µ0)

TC−1
0 (β − µ0)

}
Gamerman’s MH IWLS algorithm can be used to update β. Note that
log(ei) will now appear as an offset and have to be incorporated in the
IWLS proposal. The transformed variables and weghts are

ỹi(β) = ηi + (yi − µi)g
′(µi)− log(ei)

Wi(β) = 1/g′(µi),

where g′(µi) = 1/µi.
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IWLS MH Algorithm

IWLS proposal:

q(βcan|β, y) ∼ N(f (β), (C−1
0 + XTW (β)X)−1),

where

f (β) = (C−1
0 + XTW (β)X)−1(C−1

0 µ0 + XTW (β)ỹ(β)).
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Logistic regression with random effects

Models with random effects are often used to adjust for overdispersion.
The most common model is to assume that the random effects are indepen-
dent realizations from a Gaussian distribution with mean zero and unknown
variance.

Example. Plate i (i = 1, . . . , n) contains ni seeds of which yi germinated.
Relevant covariates in xi are seed type (2 types), root extract (2 types) and
an interaction term. A standard logistic regression model would assume

yi ∼ Binomial(ni, pi), where logit pi = log

(
pi

1− pi

)
= xT

i β.

If we want to adjust for overdispersion, we could extend this model by
including additional random effects bi (i = 1, . . . , n), as follows:

logit pi = ηi = xT
i β + bi, where bi ∼ N(0, ω−1)

are assumed to be independent. The precision ω is treated as unknown and
is typically assigned a Gamma prior, say ω ∼ Gamma(c, d).
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The joint posterior distribution of the model parameters is given as

π(β, b, ω|y) ∝ f (y|β, b)π(β)π(b|ω)π(ω),

where f (y|β, b) is the binomial likelihood and π(b|ω) is the normal random
effects prior. As usual, we will take a Normal prior for β: β ∼ N(µ0, C0).
Therefore,

π(β, b, ω|y) ∝

{
n∏

i=1

exp(xi
Tβ · yi + biyi)

(1 + exp(xi
Tβ + bi))ni

exp{−ω

2
b2
i}

}
ωn/2

× exp

(
−(β − µ0)

TC−1
0 (β − µ0)

2

)
ωc−1 exp{−ωd}.

How can we construct an efficient MCMC algorithm to sample from this
distribution, preferably without any need for tuning? We will discuss two
approaches, the first is based on Gamerman’s IWLS proposals, the other
one is based on a clever reparametrization of the model.
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The full conditionals

π(ω|β, b, y) ∝ exp{−ω[d +
1

2

n∑
i=1

b2
i ]}ωn/2+c−1

≡ Gamma(n/2 + c, d +
1

2

n∑
i=1

b2
i )

π(β|b, ω, y) ∝

{
n∏

i=1

exp(xi
Tβ · yi + biyi)

(1 + exp(xi
Tβ + bi))ni

}

× exp

(
−(β − µ0)

TC−1
0 (β − µ0)

2

)

π(bi|β, ω, y) ∝ exp(xi
Tβ · yi + biyi)

(1 + exp(xi
Tβ + bi))ni

exp{−ω

2
b2
i}
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An algorithm based on IWLS proposals

Note that, for updating β given b, the bi’s serve as an offset. Updating can
be done similarly to how it was done in the model without random effects:

ỹi(β) = ηi + (yi − µi)g
′(µi)− bi = xT

i β + (yi − µi)g
′(µi)

Wi(β) = 1/g′(µi).

IWLS proposal:

q(βcan|β, y) ∼ N(f (β), (C−1
0 + XTW (β)X)−1),

where

f (β) = (C−1
0 + XTW (β)X)−1(C−1

0 µ0 + XTW (β)ỹ(β)).
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Similarly, for updating bi, the term xT
i β will serve as an offset:

ỹi(bi) = ηi + (yi − µi)g
′(µi)− xT

i β = bi + (yi − µi)g
′(µi)

Wi(bi) = 1/g′(µi).

Note that only one likelihood term is relevant for each random effect. For
updating bi, i = 1, . . . , n, the IWLS proposal distribution takes the form

bcan
i ∼ N

(
Wi(bi)ỹi(bi)

ω + Wi(bi)
,

1

ω + Wi(bi)

)
.
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Reparametrising the model

Instead of considering the parameters b1, . . . , bn, where bi ∼ N(0, ω−1), we
can consider η1, . . . , ηn, where ηi|β ∼ N(xT

i β, ω−1). With this parametrisa-
tion, the model can be written as

yi ∼ Binomial(ni, pi), where logit pi = ηi

ηi ∼ N(xT
i β, ω−1)

β ∼ N(µ0, C0)

ω ∼ Gamma(c, d)

This procedure is termed hierarchical centering and has the advantage that
the full conditional for β is now multivariate normal:

β|η ∼ N((C−1
0 + ωXTX)−1(C−1

0 µ0 + ωXTη), (C−1
0 + ωXTX)−1).
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The updating of ηi can be done along similar lines as that of bi in the
algorithm discussed earlier. If fact, the only two differences are that (a) we
have to set the offset equal to zero and (b) we have to replace the prior mean
(which was µi = 0 for bi) by µi = xi

Tβ. The proposal is then

ηcan
i ∼ N

(
ωxT

i β + Wi(ηi)ỹi(ηi)

ω + Wi(ηi)
,

1

ω + Wi(ηi)

)
,

where

ỹi(ηi) = ηi + (yi − µi)g
′(µi)

Wi(ηi) = 1/g′(µi).

Finally, the full conditional for ω is Gamma with parameters c + n/2 and
d +

∑
i(ηi − xT

i β)2.

Note: Both algorithms can be found in the file “logisticrandom.r”, whereas
the files “crowderrand1.pdf” and “crowderrand2.pdf” display results from
running them.


