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Motivation

Many applications of simulation are based on the idea of using
samples from a distribution in order to approximate characteristics
of this distribution. As a trivial example, suppose that we are
interested in the mean of a real random variable X with
distribution function F and probability density function f , i.e.

E (X ) =

∫ ∞
−∞

xf (x)dx .

However, it might be difficult or impossible to perform the above
integration. Suppose that a random sample x1, . . . , xn was
available where each xi is a realisation of Xi ∼ F , i = 1, . . . , n.
Then we could approximate the mean of X by the observed sample
mean

x̄ =
1

n

n∑
i=1

xi .

This result, which is routinely used in statistical estimation, will be
shown to be related with the so-called Monte Carlo integration.
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Some limit theorems

The Law of Large Numbers is the main result which validates
using sample averages to estimate population means.

Let X1, . . . ,Xn be a sequence of random variables, and
θn = θn(X1, . . . ,Xn) be a real function of them (e.g
θn = n−1

∑n
i=1 Xi ). We say that θn converges in mean square

sense to a fixed value θ if

E (θn − θ)2 → 0, as n→∞.

Theorem1. A Law of Large Numbers. Let X1, . . . ,Xn be a
sequence of independent random variables with common means
E (Xi ) = θ and variances Var(Xi ) = σ2 <∞. If θn = n−1

∑n
i=1 Xi

then
E (θn − θ)2 = σ2/n→ 0, as n→∞.
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Some limit theorems

Although Theorem 1 suggests that sample averages will converge
to the population mean (with rate 1/n), the following theorem
gives more information about the (asymptotic) error of θn in
estimating θ.

Theorem 2. A Law of Large Numbers. Let X1, . . . ,Xn be a
sequence of independent random variables with common means
E (Xi ) = θ and variances Var(Xi ) = σ2. If θn = n−1

∑n
i=1 Xi then

√
n

σ
(θn − θ)

is approximately distributed as a N(0, 1) r.v., as n→∞.

Therefore, we wish to have a small σ in order to obtain accurate
estimates of θ by θn.

Similar results show that sample quantiles converge to population
quantiles as the sample size increases.
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Issues in Simulation

It is reasonable to use samples from a distribution in order to
approximate characteristics of that distribution. Of key importance
becomes how to generate samples from a specified distribution.

Using basic results from probability theory, we will give some
answers to the following two questions:

1. How to do it; and

2. How to do it efficiently.

The raw material for any simulation is uniformly distributed
random numbers. Transformation or other manipulation can then
be applied to simulate from more complex distributions.

The standard approach to generating uniform random numbers is
to use a deterministic algorithm which, however, produces a
sequence of numbers which do not exhibit any obvious pattern:
they can pass all the statistical tests of randomness
(pseudo-random numbers).
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Inversion Method

Suppose we wand to simulate draws from a distribution with
distribution function F .

The Inversion method is the simplest of all procedures, and is
nothing more than a straightforward application of the probability
integral transform:

if X ∼ F , then F (X ) ∼ U[0, 1], so by inversion if U ∼ U[0, 1], then
F−1(U) ∼ F .

Thus, defining xi = F−1(ui ), generates a sequence of independent
realizations from F .

For example, to simulate from the exponential distribution we have
F (x) = 1− exp(−λx), so F−1(u) = −λ−1 log(1− u).

Loukia Meligkotsidou, University of Athens Introduction to Stochastic Simulation



Inversion Method

Suppose we wand to simulate draws from a distribution with
distribution function F .

The Inversion method is the simplest of all procedures, and is
nothing more than a straightforward application of the probability
integral transform:

if X ∼ F , then F (X ) ∼ U[0, 1], so by inversion if U ∼ U[0, 1], then
F−1(U) ∼ F .

Thus, defining xi = F−1(ui ), generates a sequence of independent
realizations from F .

For example, to simulate from the exponential distribution we have
F (x) = 1− exp(−λx), so F−1(u) = −λ−1 log(1− u).

Loukia Meligkotsidou, University of Athens Introduction to Stochastic Simulation



Inversion Method

Suppose we wand to simulate draws from a distribution with
distribution function F .

The Inversion method is the simplest of all procedures, and is
nothing more than a straightforward application of the probability
integral transform:

if X ∼ F , then F (X ) ∼ U[0, 1], so by inversion if U ∼ U[0, 1], then
F−1(U) ∼ F .

Thus, defining xi = F−1(ui ), generates a sequence of independent
realizations from F .

For example, to simulate from the exponential distribution we have
F (x) = 1− exp(−λx), so F−1(u) = −λ−1 log(1− u).

Loukia Meligkotsidou, University of Athens Introduction to Stochastic Simulation



Transformation of variables

Suppose that we want to simulate a random variable X ∼ F , and
we know that it can be written as X = t(Y ), where Y ∼ G is
another random variable and t(·) is some function. Then, defining
xi = t(yi ) where yi has been generated from G , generates a
sequence of independent realizations from F .

As an example, suppose that X ∼ Exp(θ), that is X has the
exponential distribution with mean 1/θ > 0, then X = θ−1Y ,
where Y ∼ Exp(1). Therefore, we can simulate X by first
simulating a standard exponential random variable, for example
using the inversion method, and then dividing it by θ.

The function t(·) can be a many-to-one function. For example,
suppose that X ∼ Gamma(m, θ), that is X has the gamma
distribution with mean m/θ and variance m/θ2, where m is some
integer. It is known that X = t(Y1, . . . ,Ym) =

∑m
i=1 Yi , where the

Yi s are i.i.d Exp(θ) random variables. Thus, X can be simulated
by simulating m independent Yi s and then summing them up.
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Rejection Sampling

The idea in rejection sampling is to simulate from a distribution
which is easy to sample from, but then to only accept that
simulated value with some probability p. By choosing p correctly,
we can ensure that the sequence of accepted simulated values are
from the desired distribution.

It can be proved that points can be simulated uniformly inside a
set C (e.g a star-shaped set) by simulating uniformly points on a
superset C ⊂ B (e.g the unit square) and rejecting those which fall
outside C . The hope is that it is easier to simulate points
uniformly inside B than inside C . In our example, it is trivial to
simulate a point uniformly inside B, simply take (U,V ), where
U,V are independent U[0, 1] variables. Notice that if B is much
larger than C then most of the simulated points will be rejected,
thus it is desirable to find B so that to match closely C .
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Rejection Sampling

We now turn to the problem of simulating from a given density f ,
and link this problem with the rejection idea described above.
Suppose that f is a probability density function on the real line.
Moreover, let (X ,Y ) be a uniformly distributed point under the
density f . Therefore, if h(X ,Y )(x , y) denotes the probability density
function of (X ,Y ), then

h(X ,Y )(x , y) = 1, −∞ < x <∞, 0 < y < f (x).

It is easy to show (check!) that the marginal density of X is
exactly f !

The rejection sampling idea can be used to generate samples
uniformly under f !
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Rejection Sampling

Suppose that we want to simulate from f (x) and that g(x) is
another density function, which is easy to sample from, and K a
constant such that

f (x) ≤ Kg(x), for all x ,

therefore the set of points under f lies entirely within the set of
points under Kg .

A point (X ∗,Y ∗) can be simulated uniformly under Kg , by
sampling X ∗ from g , and then simulating Y ∗ given X ∗ from a
uniform distribution U[0,Kg(X ∗)]. If we keep all such points that
fall under f , i.e all those (X ∗,Y ∗) such that Y ∗ < f (X ∗), we will
obtain a sample of points uniformly distributed under f . The X ∗s
of this sample are an independent sample from f .
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The Algorithm

1. Simulate x∗ from g(x).

2. Simulate y∗ from U(0,Kg(x∗)).

3. Accept x∗ if y∗ ≤ f (x∗).

4. Continue.

Furthermore, Pr(X accepted) = 1/K .

Note that we only need to know f up to a normalizing constant!
This is a big advantage of the method since in many statistical
applications we need to simulate from densities for which we
cannot compute the normalizing constant.

The efficiency of the procedure depends on the agreement between
f and the envelope Kg since if a large value of K is necessary, then
the acceptance probability is low, so that large numbers of
simulations are needed to achieve a required sample size.
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Example. Logistic Distribution.

Simulate from the logistic distribution with pdf

f (x) =
e−x

(1 + e−x)2
, x ∈ R.

The logistic distribution is symmetric around 0. We will consider
simulation from the truncated at zero logistic distribution,

f (x) = 2
e−x

(1 + e−x)2
, x > 0.

Then, simulating the symmetric, left part of the density is
straightforward.

We will use the envelope g(x) = e−x , x > 0. Then

f (x) ≤ Kg(x)⇒ 2

(1 + e−x)2
≤ K .

The best value of K is K = limx→∞(1 + e−x)2 = 2.
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Example. The Algorithm.

1. Simulate x∗ from g(x) = e−x , i.e the Exp(1) distribution.

2. Simulate y∗ from U(0,Kg(x∗)), i.e from U(0, 2e( − x)).

3. Accept x∗ if y∗ ≤ f (x∗).

4. Continue.

Equivalently,

1. Simulate x∗ from g(x) = e−x .

2. Simulate u from U(0, 1).

3. Accept x∗ if u ≤ f (x∗)
Kg(x∗) ⇒ u ≤ 1

(1+e−x )2
.

4. Continue.

Note. If U ∼ U(0, 1), then aU ∼ U(0, a).
If Y ∼ U(0, a), then U = Y

a ∼ (0, 1).

y ≤ b ⇒ u ≤ b
a . Here, a = Kg(x∗) and b = f (x∗).
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Monte Carlo Integration

The reason for simulation can often be evaluating an integral. We
have seen that we can use sample means of the form

θ̂n(f ) =
1

n

n∑
i=1

φ(xi ), (1)

where the xi s are a sample from the distribution of X with density
f , in order to approximate expectations

θ =

∫
φ(x)f (x)dx = Ef (φ(X )), (2)

where Ef (φ(X )) denotes the expectation of φ(X ) with respect to
the density f . The notation θ̂n(f ) reflects that it is an estimate of
θ which depends both on the sample size n and the fact that the
xi s have been simulated from f .
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Monte Carlo Integration

The idea behind Monte Carlo integration is to express an integral
we wish to compute as an expectation of a random variable and
then simulate samples from that random variable to approximate
the integral by the appropriate sample mean.

As an example of this, suppose we wish to calculate
P(X < 1,Y < 1) where (X ,Y ) are bivariate Standard Normal
with correlation 0.5. This can be written as∫

IA(x , y)f (x , y)dxdy

where f is the bivariate normal density, and IA is the indicator
function on A = {(x , y) : x < 1, y < 1}. Provided we can simulate
from the bivariate normal, we can estimate the probability as

n−1
n∑

i=1

IA(xi , yi )

which is simply the proportion of simulated points falling in A.
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Importance Sampling

Suppose that we want to estimate the expectation of several
different functions with respect to a distribution f , but we cannot
obtain samples from f by any of the available methods (inverse
CDF, rejection sampling, etc). Suppose, however, that instead we
can sample from a density g defined on the same space as f ,
which dominates f , in the sense that g(x) = 0 =⇒ f (x) = 0. For
a given function φ, we re-write (2) as,

θ =

∫
φ(x)

f (x)

g(x)
g(x)dx = Eg (φ(X )w(X )), where w(x) =

f (x)

g(x)
;

w(X ) is known as the importance weight associated to the
sampled point (particle) X , and g is called the importance density.
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Importance Sampling

The above expression suggests two different so-called importance
sampling estimators:

θ̂n(g) =
1

n

{
n∑

i=1

φ(xi )w(xi )

}
,

and

θ̂bn(g) =

∑n
i=1 φ(xi )w(xi )∑n

i=1 w(xi )
,

where the xi s are iid draws from g .

Generally θ̂bn(g) is a biased estimator of θ (thus the superscript
”b”), but in many cases it might have a smaller mean square error
than θ̂n(g). However, the main advantage of the biased estimator
over the unbiased is that the former does not require knowledge of
the normalizing constants of f and g in order to be computed.
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Example

Use (naive) Monte Carlo integration and Importance Sampling to
estimate the integral

I =

∫ 1

0
[x(1− x2)(2− x)]1/2dx .

Monte Carlo (naive):

I =

∫ 1

0
[x(1− x2)(2− x)]1/2f (x)dx , where f (x) = 1.

Then, simulate x1, . . . , xn draws from the U(0, 1) distribution and
use the estimate

În(f ) =
1

n

n∑
i=1

[xi (1− x2i )(2− xi )]1/2.
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Example

Importance Sampling: Use the Beta(32 ,
3
2) distribution as

importance density g(x). Then

I =

∫ 1

0
[x(1− x)(1 + x)(2− x)]1/2

B(32 ,
3
2)

x
3
2
−1(1− x)

3
2
−1

g(x)dx

=

∫ 1

0
[(1 + x)(2− x)]1/2

B(32 ,
3
2)

g
(x)dx

Then, simulate x1, . . . , xn draws from the Beta(32 ,
3
2) distribution

and use the estimate

În(g) =
1

n

n∑
i=1

[(1 + xi )(2− xi )]1/2B(
3

2
,

3

2
).

Loukia Meligkotsidou, University of Athens Introduction to Stochastic Simulation


