Chapter 1

Preliminaries

1.1 Elements of Statistical Modelling

Probability and statistics can be characterised as the study of variability. In particular,
statistical inference is the science of analysing statistical data, viewed as the outcome of

some random process, in order to draw conclusions about that random process.

Statistical models help us to understand the random process by which observed data have
been generated. This may be of interest in itself, but also allows us to make predictions and

perhaps most importantly decisions contingent on our inferences concerning the process.

It is also important, as part of the modelling process, to acknowledge that our conclusions
are only based on a (potentially small) sample of possible observations of the process and are
therefore subject to error. The science of statistical inference therefore involves assessment

of the uncertainties associated with the conclusions we draw.

Probability theory is the mathematics associated with randomness and uncertainty. We
usually try to describe random processes using probability models. Then, statistical inference
may involve estimating any unspecified features of a model, comparing competing models,

and assessing the appropriateness of a model; all in light of observed data.

One (rather simplistic) view of the process of statistical analysis might be displayed as
follows
Specify models

I

7



Estimate model parameters

I

Compare models

!

Assess chosen model

I

Base predictions/decisions on chosen model

In order to identify ‘good’ statistical models, we require some principles on which to
base our modelling procedures. In general, we have three requirements of a statistical model
Plausibility

Parsimony

Goodness of fit

The first of these is not a statistical consideration, and a subject-matter expert usually
needs to be consulted about this. Parsimony and goodness of fit are statistical issues. Indeed,
there is usually a trade-off between the two and our statistical modelling strategies will take

account of this.

Almost all statistical models, and all the ones we shall deal with in MA325, can be

formulated as regression models.

In practical applications, we often distinguish between a response variable and a group
of explanatory variables. The aim is to determine the pattern of dependence of the response
variable on the explanatory variables. We denote the n observations of the response variable
by y = (y1,¥2,--- ,¥n)" - In a statistical model, these are assumed to be observations of ran-
dom variables Y = (Y1,Ys, ..., Y,)". Usually, we assume that Y7, Y5, ..., Y, are independent
random variables. Associated with each y; is a vector x; = (71, Zi2, ... , )7 of values of p

explanatory variables.
A regression model has the general form
response = structure * randomness.
In other words, the structural part of the model, which describes how the response
depends on the explanatory variables, combines with the random part, which depends on

the probability distribution of the response. The statistical modellers task is to ‘separate’
these.
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Regression with a single explanatory variable

Associated with each observation of a continuous response is a single continuous explana-

tory variable, so the data may be represented as (y1,x1), (y2,%2), - - » (Yn, Tn)-

Possible models include

Yi =+ € 1=1,...,n
Yy, = a+ Bx; + ¢ 1=1,...,n
Yi = o+ Biw; + Box? + € 1=1,...,n
Yi = a+ iz + Boxl + .. 4 Bralt + ¢ i=1,...,n

In each case the random part of the model € = (e, €s,... ,¢,)T has some probability dis-
tribution. This might be fully specified, partially specified, or even totally unspecified. In
examples like this, it is common to assume that the ¢; are independent and normally dis-

tributed with zero mean, but unspecified variance.

For complex datasets, a wider class of models is required. In MA325, we will study
the generalised linear models. These are a flexible family of models allowing fairly general
patterns of dependence of the response variable on the explanatory variables, together with

a wide range of probability distributions for the response.

1.2 Example datasets to be analysed

1.2.1 weld: Welding diameter

This dataset, obtained from the Welding Institute in Abingdon, represents 21 measurements

of the current (in amps) and the resulting minimum diameter of the weld.

1.2.2 nitric: Nitric acid

This dataset represents 21 successive days of operation of a plant oxidising ammonia to nitric
acid. The variables x1, x2 and x3 are respectively, flow of air to the plant, temperature of
the cooling water entering the absorption tower, and concentration of nitric acid in the
absorbing liquid. The response y is ten times the percentage of ingoing ammonia that is lost

as unabsorbed nitric acid (an indirect measure of the yield).
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Figure 1.1: Possible models for the welding data

1.2.3 survival: Time to death

This dataset represents survival times (in 10 hour units) of 48 animals each allocated to one

of 12 combinations of 4 treatments and 3 poisons. This will be taken up in Worksheet 3.

1.2.4 birth: Weight of newborn babies

This dataset contains data on the weight of 24 newborn babies. There are two explanatory
variables; sex (S; a qualitative variable, coded “l=male” and “2=female”) and gestational
age (X; a quantitative variable, in weeks) together with the response variable, birth weight

(Y; in grams).

1.2.5 ©beetle: Mortality from carbon disulphide

This dataset represents the number of beetles exposed (N) and number killed (Y') in eight
groups exposed to different doses (X) of a particular insecticide. Interest is focussed on how
mortality is related to dose. It seems sensible to model the number of beetles killed in each

group as the binomial random variable with probability of death depending on dose.
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1.2.6 shuttle: Challenger disaster

This dataset concerns the 23 space shuttle flights before the Challenger disaster. The disaster
is thought to have been caused by the failure of a number of O-rings, of which there are
six in total. The data consist of four columns, the number Y of damaged O-rings for each
pre-Challenger flight, together with the launch temperature 7" in degrees Fahrenheit, the
pressure P at which the pre-launch test of O-ring leakage was carried out and the name of
the orbiter (S; coded 1 = “Atlantis”, 2 = “Challenger”, 3 = “Columbia”, 4 = “Discovery”,).
The Challenger launch temperature on 20th January 1986 was 31F. By fitting generalised
linear models to this data, we can predict the probability of O-ring damage at the Challenger

launch.

1.2.7 heart: Treatment for heart attack

This dataset represents the results of a clinical trial to assess the effectiveness of a throm-
bolytic (clot-busting) treatment for patients who have suffered an acute myocardial infarc-
tion (heart attack). The two columns represent the number of patients who did and did not
survive for 35 days. There are four categorical explanatory variables, representing site of
infarction (S: anterior, inferior or other); time between infarction and treatment (7: < 12
or > 12 hours); whether the patient was already taking Beta-blocker medication prior to the

infarction (B: yes or no); and the treatment the patient was given (R: active or placebo).

1.2.8 hodk: Treatment for Hodgkin’s disease

This dataset is a cross-classification of 538 patients (with Hodgkin’s disease) according to two
factors, H, the histological type of their disease (4 levels) and R, their response to treatment
(3 levels).

1.2.9 accident: Road traffic accident

This dataset concerns the number of road accidents and the volume of traffic observed on
Mill Road and Trumptington Road in Cambridge during morning, midday and afternoon.
By analysing this we should be able to answer questions like: (i) Is Mill Road more dangerous
than Trumpington Road? (ii) How does time of day affect the rate of road accident?
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1.3 Distribution theory (revision)

1.3.1 Probability Distributions

A random variable Y is described by its sample space Sy, together with the probabilities
assigned to subsets of the sample space. These define the probability distribution of the

random variable.

We distinguish between Discrete probability distributions and Continuous probability
distributions Discrete probability distributions are defined by a probability (mass) function

(p.f)
fyr(y) =P(Y =y) for y € Sy

where

Z fr(y) =1.

yESy

Continuous probability distributions are defined by a probability density function (p.d.f.)

fy (y) where
Y2
Py <Y <) :/ fy (y)dy.

Y1
and hence

| sty =1.
The expectation of a random variable Y is given by.
EY)=)Y yfr(y)
YyESY

if Y is discrete, and

EY) = / ) yfy(y)dy

o0

if Y is continuous.

More generally, for any function g, we can write

ElgWM)] =Y g)fr(y)

yESy
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if Y is discrete, and
o0

Elg(Y)] = / o) v (4)dy

—o0

if Y is continuous.
Note that expectation is a linear operator, so
E(a+bY)=a+bE(Y)
for any a,b € R.

The wvariance of a random variable Y is defined by

Var(Y)= E(Y —E(Y)]P?) = E(Y?) —E({Y).

1.4 Examples of discrete probability distributions

1.4.1 Bernoulli distribution

The Bernoulli distribution depends on one parameter, p € (0,1). If random variable Y has
a Bernoulli(p) distribution then Sy = {0,1} and

_J1—p ify=0
fY(?J)—{p ify=1

Thus fy(y) =p’(1—p)'¥ ye€{0,1}.

E(Y)=p, Var(Y)=p(l-p).

The Bernoulli distribution can be used to model any situation where the only two out-

comes are possible, and can be coded as 0 and 1 (binary response).

1.4.2 Binomial distribution

The binomial distribution depends on two parameters, n € Z, and p € (0,1). If random

variable Y has a binomial(n, p) distribution then Sy = {0,1,... ,n} and

frly) = (Z) PA-p" Y ye{o1,...,n}
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E(Y)=mnp, Var(Y)=np(l—p).

If Yq,...,Y, are independent Bernoulli(p) random variables then Y3 + ... + Y, is a
binomial(n, p) random variable. Therefore, the binomial distribution is used to model any
situation where a series of events have two possible outcomes, the chances of which remain

constant.
The binomial(1, p) distribution is the Bernoulli(p) distribution.

Applications include studies of mortality, or remission under treatment.

1.4.3 Poisson distribution

The Poisson distribution depends on one parameter, A € R,. If random variable Y has a
Poisson(A) distribution then Sy = {0,1,...} and

fy(y)zw ye{0,1,...},

EY)=A Var(Y)=A\
IfYy,...,Y, are independent Poisson random variables with parameters A{,... , \,, then
Yi +...+4Y, is a Poisson random variable with parameter \; + ...+ A,,.

A binomial(n, p) distribution with large n may be approximated by a Poisson distribution

with mean np.

The Poisson distribution is used to model ‘counts’, particularly counts of a phenomenon
over a particular unit of time, or in a particular spatial region. Applications include counts

of cases of a particular disease, or number of arrivals in a queue.

1.5 Examples of continuous probability distributions

1.5.1 Normal distribution

The normal (or Gaussian) distribution depends on two parameters, the mean p € R and the

variance o> € Ry, and is usually denoted N(u,c?). If random variable Y has a N(u,0?)
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distribution then Sy = R and

) = o exw (5w -n?)  wER,

EY)=p, Var(Y)=o"

If Yy,...,Y, are independent normal random variables with means j, ... , 4, and vari-

ances 02,...,02, then Y] + ...+ Y, is a normal random variable with mean p; + ... + p,

b n’

and variance o7 + ...+ o2
If Y is a N(u, 0?) random variable then a + bY is a N(a + by, b*c?) random variable.

The central limit theorem states that if Y7,Y5,... .Y, are independent identically dis-
tributed random variables with E(Y;) = pu and Var(Y;) = 0? < oo for ¢ = 1,... ,n, then
as n — oo, the distribution of Y = £ 37" 'V} tends to N(u,0?/n). Similar central limit
theorems for the distribution of Y exist when Y7, Y5, ... ,Y, are not identically distributed,

or even independent, although these theorems require additional conditions to be satisfied.

1.5.2 Gamma distribution

The gamma distribution depends on two parameters, the shape parameter « € R,, and
the scale parameter f € R,. If random variable Y has a gamma(«, $) distribution then
Sy =R, and

«

fr(y) = Fﬁ(oé)y”‘1 exp(—fy) Y€ Ry,

%, Var(Y) = °

E(Y) = 52

The gamma function I'(¢) is defined by

['(t) = /000 7! exp(—x)du.

IfYy,... .Y, are independent Gamma random variables with common scale parameter 3
and shape parameters aq,... ,a,, then Y] +...4Y, is a Gamma random variable with scale

parameter J and shape parameter a; + ...+ «,,.

If Y is a Gamma(c, f) random variable then Y is a Gamma(«, 5/b) random variable.
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The gamma distribution is a flexible model for many positive variables, including those

arising in meteorology, lifetime testing, demography and economics.

There are two important special cases of the gamma distribution.
1. A gamma distribution with shape parameter o = 1 is an exponential distribution,
i.e. gamma(1, 3) = exponential(j).

2. A gamma distribution with shape parameter a = g and scale parameter 5 = % is called

a chi-squared distribution with k& degrees of freedom, usually denoted x2.

3. If random variable Y has a 7 distribution then Sy = R, and

1

fr(y) = WW“ exp(-y/2) Y€ Ry,

EY)=k, Var(Y) =2k

1.5.3 Derived distributions

If Y7 is a x}, random variable, Y5 is a x7, random variable and Z is a N(0, 1) random variable,
and Y7, Y5 and Z are independent then

1. Z? has a chi-squared distribution with 1 degree of freedom.

2. Y7 4+ Y5 has a chi-squared distribution with &; + ko degrees of freedom.

w

. Z[\/Y1/k; has a t distribution with k; degrees of freedom.

W

. (Y1/k1)/(Y2/ks) has an F distribution with k; degrees of freedom in the numerator and
ko degrees of freedom in the denominator.

1.6 Multivariate Probability Distribution

A multivariate probability distribution describes the joint variation of a collection of random

variables.



MA325 Statistical Methods 11 Academic year, 02-03 Dr S. K. Sahu 17

Figure 1.2: Density functions for some gamma distributions

Figure 1.3: Density functions for some gamma distributions

Suppose that Y7,Y5, ..., Y, are random variables. Then we write Y = (Y,Y5,...,Y,)T
as the wvector of random variables, and Sy as the sample space for Y. Usually we assume
that‘Sy-::7€”.

Discrete multivariate probability distributions are defined by a probability (mass) func-
tion (p.f.)

P(Y =y)
= PMi=uy,Yo=1y2..., Y0 =un) fory € Sy

fY(Y)

where

d fxly)=1.

YESY

Continuous multivariate probability distributions are defined by a joint probability
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density function (p.d.f.) fy(y) where

and hence
fy(y)dy = 1.
Rn

Henceforth, we shall restrict attention to continuous distributions. All of the properties
we describe, can be applied to discrete distributions by replacing integration by summation.

If Y has p.d.f. fy(y), then the p.d.f of random variable Y7, a component of Y is obtained

from the joint p.d.f. fy by integrating out all the other variables (or for a discrete distribution

by summing the p.f.), for example

le(yl) :/ / fY(y17y27y37'-- 7yn)dy2dy3dyn

The distribution of a component (or a set of components, or a function of components) of a

jointly distributed collection of variables is called the marginal distribution.

The expectation (mean) E(Y) of Y = (Y1,Y,...,Y,)7 is defined to be
E(Y) =[EMY1), E(Ya), ... E(Y,)]",

the vector containing the marginal expectations of each of the random variables. It is clear

that, for example,
E(Y1) :/ / / yify (Y1, v, - - Yn)dyrdys - - - dyy.
More generally, for any function g(Y) of Y, we define

EMOQFE/HﬂYVﬂYWM

It is immediately clear that

EVi+Ye+...4Y,) =EMY)+ E(Ys)+...+ E(Y,).
A more general and useful result is

E(a+BY) =a+BE(Y)
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where B is any p x n matrix of constants, and a is any vector of p constants. The covariance

of a pair of jointly distributed random variables, Y; and Y5 is defined to be

Cov(Y1,Y2) = E(Yi—EM)][Y2— E(Y2)))
= EMWY3) — E(Y1)E(Y,)

Note that Cov(Y}, Y1) = Var(Y;) and Cov(Y;,Y;) = Cov(Y},Y;), and

Var(Yi+Ys+...+Y,) = ZZC’OU(Y},Yj)

i=1 j=1

= ZVCLT(Yi) + ZCOU(Yi, Y;)
i=1 i#j

= ZV@T(K) + ZQC’OU(YZ, Y;)
i=1 1<j

A more general and useful result is
Var(a+BY) = BVar(Y)B”
where B is any p X n matrix of constants, and a is any vector of p constants.

The correlation of random variables Y; and Y5 is defined as

Corr(Y1,Ys) = Cou(1s, 12)
b \/Var(Yl)Var(YZ).

Note that —1 < Corr(Y7,Y;) < 1.

For a jointly distributed collection of random variables Y = (V,Y,...,Y,)T, Var(Y)

is the variance-covariance matriz, a n X n matrix whose entries are given by
Var(Y);; = Couv(Y;,Y;).

> =]

1.6.1 Independent random variables

A collection of continuous random variables Y7, Y5, ... ,Y,, are said to be jointly independent

if and only if their joint density is the product of their marginal densities i.e.

F(y) = i) fra(y2) - fro(Yn)
Furthermore, if Y7,Y5,...,Y, are independent then E(Y1Y,---Y,) = E(V)E(Ys)--- E(Y,),

and hence for any pair of independent random variables
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Y1 and Y5 are independent = Cov(Y7,Ys2) = 0.

Independent random variables are uncorrelated, but uncorrelated random variables are not

necessarily independent.

It follows that if Y7,Y5,... .Y, are independent random variables then

Var(Yi+ Yo+ ...+ Y,) =Var(Y1) + Var(Ya) + ... + Var(Yy,).

1.6.2 Conditional distributions

If Y7 and Y5 are jointly distributed random variables with p.d.f. fy(yi,y2), then the distri-
bution of Y7 conditional on Yy = yo, for any value y, for which fy,(y2) > 0 is determined by

the conditional p.d.f

v (i|Ya = o) = %

Hence, if Y7 and Y5 are independent, fy,v,(y1|Y2 = ¥2) = fv,(y1), and ‘knowledge of Y

does not influence the distribution of Y;.’

More generally, Y; and Y5 can be replaced in the definition above by collections of jointly

distributed random variables.

1.6.3 The multivariate normal distribution

Suppose that Y = (Y7, Y5, ... ,Y,) is a collection of jointly distributed random variables, with
E(Y) = p and Var(Y) = 3. Then Y is said to have a multivariate normal distribution,
denoted N(u, X) if the p.d.f. of Y is given by

Fx(y) = @2m) E[B[ 2 exp [~y — w) =My — )]

The multivariate normal distribution has several appealing properties. If Y has the

multivariate normal distribution denoted N(u, X) then:

1. The marginal distribution of any component of Y is univariate normal. For example,

Y7 is a N(p1,X11) random variable.
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2. The conditional distribution of any component given the other components is univariate

normal.

3. If X = a+ BY, where B is any p X n matrix of constants, and a is any vector of
p constants, then X is a multivariate normal, with F(X) = a + Bu and Var(X) =
BXBT.

4. If Y has a multivariate normal distribution then Cov(Y;,Y;) =0 =Y; and Y are

independent.

1.7 Likelihood based statistical theory

1.7.1 The likelihood function

The probability distribution theory discussed previously enables us to calculate probabilities,
and other quantities of interest (e.g. expectations) for a probability model of a random
process. Therefore, given the model, we can make statements about possible outcomes of

the process.

Statistical inference is concerned with the inverse problem. Given outcomes of a random

process (observed data), what conclusions (inferences) can we draw about the process itself?

T are observations

We assume that the n observations of the response y = (y1,...,yn)
of random variables Y = (Vi,...,Y,)”, which have joint p.d.f. fy (joint p.f. for discrete

variables). We use the observed data y to make inferences about fy.

We usually make certain assumptions about fy. In particular, we usually assume that

Yi,---,Y, are observations of independent random variables. Hence

() = ) fro(ya) - fro (yn) = Hin(yz’)-

In parametric statistical inference, we specify a joint distribution fy, for Y, which is
known, except for the values of parameters 6;,6s,... .6, (sometimes denoted 8). Then we
use the observed data y to make inferences about 6,0,,...,0,. In this case, we usually

write fy as fy(y; @), to make explicit the dependence on the unknown 6.

An important concept for parametric statistical inference, particularly for complex sta-

tistical models is likelihood.
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Until now, we have thought of the joint density fy(y;0) as a function of y for fixed 6,
which describes the relative probabilities of different possible (sets of) y, given a particular
set of parameters 6. However, in statistical inference, we have observed yi, ... ,y, (values of
Yi,...,Y,). Knowledge of the probability of alternative possible realisations of Y is largely

irrelevant. What we want to know about is 6.

Our only link between the observed data y;, . .. , y, and @ is through the function fy (y; ).
Therefore, it seems sensible that parametric statistical inference should be based on this
function. We can think of fy(y;@) as a function of @ for fixed y, which describes the
relative [ikelihoods of different possible (sets of) 6, given observed data y,... , Y.

When fy(y;0) is considered as a function of @ for fixed (observed)
Y1y .-+, Yn, we call it the likelihood function.

The likelihood function is of central importance in parametric statistical inference. It pro-
vides a means for comparing different possible values of 8, based on the probabilities (den-

sities) that they assign to the observed data yq,... ,yn-

1. Often the likelihood function is written L(@) or L(@;y). We shall continue to use
Jy(y;0). Wherever parametric statistical inference is our concern, we treat fy(y;®)
as a function of @ and call it the likelihood.

2. Frequently it is more convenient to consider the log-likelihood function log fy (y; @),
This is often denoted (@) or 1(8;y).

3. Nothing in the definition of the likelihood requires yq,...,y, to be observations of

independent random variables, although we shall frequently make this assumption.

4. Any factors which depend on yy, ... , y, alone (and not on 8) can be ignored when writ-
ing down the likelihood. Such factors give no information about the relative likelihoods

of different possible values of 6.

O Example 1.1. y,...,y, are observations of Y7,...,Y,, independent identically dis-
tributed (i.i.d.) Bernoulli(p) random variables. Here 8 = (p) and

fY(y;p) = pri(l — p)l_yi — pzyi(l _ p)n—Zyi
=1
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Note that as @ = (6y,...,6,), the m.l.e. for any component of @ is given by the corre-

sponding component of 6 = (él, cee ép)T. Similarly, the m.l.e. for any function of parameters

¢(0) is given by ¢(0).

As log is a strictly increasing function, the value of @ which maximises fy(y;@) also
maximises log fy (y; @). It is almost always easier to maximise log fy (y; @). This is achieved
in the usual way; finding a stationary point by differentiating log fy (y;0) with respect to
01,...,0, and solving the resulting p simultaneous equations. It should also be checked that

the stationary point is a maximum.

O Example 1.3.  y,...,y, are observations of Yj,... Y, ii.d. Bernoulli(p) random
variables. Here 8 = (p) and

log fy (y;p) = nylogp + n(1 — y) log(1 — p)
Zlog fy(y;p) = 2 — 20
—ny _ n(1=y)

= 0=F -7

= p=7.
Note that %2 log fy(y;p) = —ny/p?> — n(1 —7)/(1 — p)? < 0 everywhere, so the stationary

point is clearly a maximum.

Q Example 1.4. vy, ... ,y, are observations of Y1,... , Y, i.i.d. N(u, 0%) random variables.
Here 6 = (u,0?%) and

log fy (y; p, 0*) = =5 log(27) — §log(0?) — 5523 (y; — p)*
an10g fy (5 11,0%) = =20y — 1) = nF )

> 0="gh 1)
a7 108 fy (5 11, 0%) = =5l + g 2o (yi — 1)?
= 0=—5k +5mpErvi— )’ (2)
Solving (1) and (2), we obtain
i= 7
6" = %Z(% ) = (- 7

Strictly, to show that this stationary point is a maximum, we need to show that the

Hessian matrix (the matrix of second derivatives with elements [H(0)];; = %{;_ log fy(y; 0))
10U;

is negative definite at @ = 0, that is a”H(@)a < 0 for every a # 0. Here

—n 0
H(ﬂ,&2>=( A )
2(6’2)2
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which is clearly negative definite.

1.7.3 Score

Suppose that yi,...,y, are observations of Y7,...,Y,, whose joint p.d.f. fy(y;@) is com-

pletely specified except for the values of p unknown parameters @ = (61, ... ,6,)T. Let

0 )
ui(0) = %long(y;e) 1=1,...,p

and u(0) = [ui(0),...,u,(0)]". Then we call u(@) the vector of scores or score vector.
Where p =1 and 0 = (6), the score is the scalar defined as

u(0) = - log fu (y:0).

The maximum likelihood estimate @ satisfies
wu@ =0 o @) =0 i=1,...,p.

Note that u(8) is a function of @ for fixed (observed) y. However, if we replace y1,... ,y, in
u(0), by the corresponding random variables Y7, ..., Y], then we obtain a vector of random
variables U(0) = [U,(0), ... ,U,(0)]".

An important result in likelihood theory is that the expected score at the true (but

unknown) value of @ is zero, i.e.

provided that

1. The expectation exists.

2. The sample space for Y does not depend on 6.

Proof (continuous y — in discrete case replace [ by 3)

E[U(8)] = / U.(8) fy (y; 0)dy

0
= / a—gilog fx(y;0) fx(y; 0)dy
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- /af Py (y; O)dy
= /892fYya
= aaei/fYYQ
- a%1_0 i=1,...p.

O Example 1.5.  y,...,y, are observations of Yi,... Y}, ii.d. Bernoulli(p) random
variables. Here 8 = (p) and, from §2.4.2,

u(p) =ny/p—n(l =7)/(1 -p)
EUp|=0 = E[Y]=

Q Example 1.6. yi,...,y, are observations of Y7, ..., Y, i.i.d. N(u, 0?) random variables.
Here @ = (i, 0?) and, from §2.4.2,

ui(p,0%) = 7’t(?—u)/ff21
uy(p, 0%) = —%JFWZ(%—M)Z

BE[U(u,0")]=0 = E[Y]=p and E[3(y—p)]=0"

1.7.4 Information

Suppose that yi,...,y, are observations of Y7,...,Y,, whose joint p.d.f. fy(y;@) is com-
pletely specified except for the values of p unknown parameters @ = (4, ... ,0,)". Previously,
we defined the Hessian matrix H(8) to be the matrix with components

2

0
H(0)];; = ——1 10 =1,...,p;7=1,...,p.

We call the matrix —H(0) the observed information matriz. Where p = 1 and 0 = (6), the

observed information is a scalar defined as

~H(B) =~ log fr(y:0).

Here, we are interpreting 6 as the true (but unknown) value of the parameter. As with

the score, if we replace yq, ... ,y, in H(0), by the corresponding random variables Y7, ... , Y},
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we obtain a matrix of random variables. Then, we define the expected information matriz or

Fisher information matriz to be (@), where

An important result in likelihood theory is that the variance-covariance matrix of the

score vector is equal to the expected information matrix i.e.
Var[U(0)] =Z(0) < Var[U(0)];; =[Z(0)]; i=1,...,p;i=1...,p,

provided that

1. The variance exists.

2. The sample space for Y does not depend on 6.

Proof (continuousy — in discrete case replace [ by >°)

Var[U(0));; = E[U;(0)U;(0)]

o 0
_ / 567105 ¥ (330) 55108 f (3:6) f (y:6)dy

80-fY(y’ ) ae-fY(Ya )

- }Yl(y;m fe(y:0) YO

ma—esz(y; o)a—gij(y; O)dy
v=1,...,p;5=1,...,p.

Now
[Z(6)];; = E[ aeaae log fy (¥; )]
_ / 5a,90, 08 1 (1) (v: O)dy

0 aeij(Y; ) ‘
- [ [W] Pty

/ [_ o Y (:0) | i fx(¥:0)g5 fy (v:6)

fx(y;0) * Fr(y; 9)2 fx(y; 0)dy




28

0? 19 9
= —agiagj/fY(y,o)dy+/ma—9ifY(y,0)a—9ij(y,0)dy

O Example 1.7.  y,...,y, are observations of Yi,... Y, ii.d. Bernoulli(p) random

variables. Here 8 = (p) and

ny n(l-7)
u(lp) = — —
®) p ((1 —p))
ny n(l—7y
Vg,
) p (l-p p(l-p)
Q Example 1.8. yi,...,y, are observations of Y7, ... ,Y,, i.i.d. N(u, 0%) random variables.
Here 0 = (p, 0?) and,
ny—p
UI(ILL7O—2) = ( 0_2 )
2y _ n 1 2
ug(p,0°) = —T‘Z—FWZ(%_N)

1.7.5 Asymptotic distribution of the m.l.e.

Maximum likelihood estimation is an attractive method of estimation for a number of reasons.
It is intuitively sensible (choosing € which makes the observed data most probable) and
usually reasonably straightforward to carry out. Even when the simultaneous equations we
obtain by differentiating the log likelihood function are impossible to solve directly, solution

by numerical methods is usually feasible.

Perhaps the most compelling reason for considering maximum likelihood estimation is the

asymptotic behaviour of maximum likelihood estimators.
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Suppose that yi, ... ,y, are observations of independent random variables
Yi,...,Y,, whose joint p.d.f. fy(y;0) =11, fv;(yi; @) is completely spec-
ified except for the values of an unknown parameter vector @, and that 0

is the maximum likelihood estimator of 6.

Then, as n — oo, the distribution of 6 tends to a multivariate normal

. . . . . . . —1
distribution with mean vector @ and variance covariance matrix Z(60)™ .

Where p = 1 and @ = (), the distribution of the m.lLe. § tends to
N[#,1/Z(0)].

Proof (one parameter case; identically distributed Y;)

Suppose that y, ... ,y, are observations of independent identically distributed random vari-
ables Y1,...,Y,, whose joint p.d.f. is therefore fy(y;0) =[], fy(vi;0). We can write the

score as

0 =~ 0
w() = o5log fr(y;0) = D =5 108 fv (yis0)
=1

so U(@) can be expressed as the sum of n i.i.d. random variables. Therefore, asymptotically,
as n — 0o, by the central limit theorem , U(#) is normally distributed. Furthermore, for the
unknown true 6 we know that E[U ()] = 0 and Var[U(#)] = Z(0), so U(f) is asymptotically
NI[0,Z(8)].

Now, a Taylor series expansion of U (é) around the true 0 gives

U@)=U®)+ 0 —0)U'0) +...
Now, U(f) = 0, and if we approximate U’(§) = H(#) by E[H(0)] = —Z(6), and also ignore

higher order terms,! we obtain

As U(6) is asymptotically N[0,Z(6)], 0 is asymptotically N[0, Z(0)~'].

For ‘large enough n’, we can treat the asymptotic distribution of the m.l.e. as an approxima-

~

tion. The fact that E£(0) ~ 6 means that the maximum likelihood estimator is approximately

unbiased (correct on average) for large samples. Furthermore, its variability, as measured by

-1

its variance Z(@)~" is the smallest possible amongst unbiased estimators, so the maximum

! This requires that 6 is close to 6 in large samples, which is true but we do not prove it here.
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likelihood has good precision. Therefore the m.l.e. is a desirable estimator in large samples

(and therefore presumably also reasonable in small samples).

The usefulness of an estimate is always enhanced if some kind of measure of its precision
can also be provided. Usually, this will be a standard error, an estimate of the standard
deviation of the associated estimator. For the maximum likelihood estimator é, a standard

error is given by

and for a vector parameter

s.e.(0;) = [Z(0)7")2 i=1,...,p.
An alternative summary of the information provided by the observed data about the location
of a parameter # and the associated precision is an interval estimate or confidence interval.

The asymptotic distribution of the maximum likelihood estimator can be used to provide
approximate large sample confidence intervals. Asymptotically, 6; has a N(6;,[Z(8)™']:)
distribution and we can find A such that

P (h < Lel"l < h) = a.
Z(0)" 1

P (0~ WZ©O) T} < 0, < b, + hZ(0)]3) = o

Therefore

The endpoints of this interval cannot be evaluated because they also depend on the unknown
parameter vector 8. However, if we replace Z(8) by its m.l.e. I(é) we obtain the approximate

large sample 100a% confidence interval

~

0: — hZ(8)")2, 6; + h[Z(8)7']2].
For o = 0.9,0.95,0.99, h = 1.64, 1.96, 2.58.

O Example 1.9. If y;,...,y, are observations of Y3,...,Y,, i.i.d. Bernoulli(p) random
variables then asymptotically p = Y has a N(p, p(1 — p)/n) distribution, and a large sample

95% confidence interval for p is

[P~ 1.96[Z(p)™']%,5 + 1.96[Z(5)"']:]
= [p—1.96[p(1 = p)/n]*,p+ 1.96[5(1 — p) /]|
= [ 1.96[5(1 — )/n)%,7 + 1.96[5(1 ~5)/n]?]
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1.8 Comparing statistical models

If we have a set of competing probability models which might have generated the observed
data, we may want to determine which of the models is most appropriate. In practice, we
proceed by comparing models pairwise. Suppose that we have two competing alternatives,
fg]) (model Hy) and fg) (model Hy) for fy, the joint distribution of Y7,...,Y,. The most
common situation is where Hy and H; both take the same parametric form, fy(y;@) but
with @ € OO for Hy and 8 € O for Hy, where ©© and ©(") are alternative sets of possible

values for 0.

A hypothesis test provides a mechanism for comparing the two competing statistical models,
Hy and Hy. A hypothesis test does not treat the two hypotheses (models) symmetrically. One
hypothesis, Hg, is accorded special status, and referred to as the null hypothesis. The null
hypothesis is the reference model, and will be assumed to be appropriate unless the observed
data strongly indicate that Hy is inappropriate, and that Hy (the alternative hypothesis)
should be preferred.

Hence, the fact that a hypothesis test does not reject Hy should not be taken as evidence
that Hy is true and H; is not, or that Hy is better supported by the data than H;, merely

that the data does not provide significant evidence to reject Hy in favour of H;.

A hypothesis test is defined by its critical region or rejection region, which we shall denote
by C. C'is a subset of R" and is the set of possible y which would lead to rejection of H

in favour of Hy, i.e.

Ify e C  Hjis rejected in favour of Hy
Ify C  Hj is not rejected

As Y is a random variable, there remains the possibility that a hypothesis test will produce
in an erroneous result. We define
a = max P(Y €C;0)

Oco©
w(@ = P(YeC;0)

We call « the size (or significance level) of the test; it is the maximum probability of erro-
neously rejecting Hg, over all possible distributions for Y implied by Hy. The function w(8) is
called the power function. It represents the probability of rejecting Hy for a particular value

of . Clearly we would like to find a test with where w(@) is large for every 8 € 0\ 00,

while at the same time avoiding erroneous rejection of Hy. In other words, a good test will
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have small size, but large power.

The general hypothesis testing procedure is to fix « to be some small value (often 0.05), so
that the probability of erroneous rejection of Hy is limited. In doing this, we are giving Hy
precedence over H;. Given our specified a, we try to choose a test, defined by its rejection
region C, to make w(@) as large as possible for § € 01\ O©),

Suppose that Hy and H; both take the same parametric form, fy(y;®@) with 8 € ©© for
Hy and 8 € OO for H;, where ©© and O are alternative sets of possible values for 8. A

generalised likelithood ratio test of Hy against Hy has a critical region of the form

C— {y  maxggm fy(y;0) N k}
maxg g o fy(y;0)

where k is determined by «, the size of the test, so

max P(y € C;0) = «.
Oco©

Therefore, we will only reject Hy if H; offers a distribution for Y;,...,Y, which makes
the observed data are more much more probable than any distribution under Hy. This is
intuitively appealing and tends to produce good tests (large power) across a wide range of

examples.

O Example 1.10. yy,...,y, are observations of Yj,... Y}, i.i.d. Bernoulli(p) random
variables. Suppose that we require a size « test of the hypothesis Hy: p = py against the

general alternative Hy: ‘p is unrestricted’ where o and p, are specified.

Here 8 = (p), ©© = {py} and O = (0,1) and the generalised likelihood ratio test rejects
Hy when

maXy,c(0,1) Iy (y;p) k
maxp=p, fy (y;p)
j yzyi (lfy)n_zyi > k

py Vi (1—po)n—Svi

2\ [ _7\"(-D)
N (pl) (#) > k.

Now the left hand side of (1.1), is minimised as a function of § at ¥ = p, and increases as ¥

moves away from pq in either direction. Therefore, the rejection region (1.1) is equivalent to

C={y:y>kory<k'}
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where &' and k" are chosen so that
P(y € C;py) = a.

Therefore, we can use the binomial(n, py) distribution to find a precise rejection region for a

test of specified size a.

Alternatively, if n is large, we can use the asymptotic distribution of Y, N(pg, po[l — po]/n)

1.8.1 The log-likelihood ratio statistic

A generalised likelihood ratio test of Hy against H; has a critical region of the form

C = {y. maxg oo fy(¥;60) . k}
Inaxee@w)fY(Y§0)

where k is determined by «, the size of the test, so

max P(y € C;0) = «.
Bco©®

Therefore, in order to determine k, we need to know the distribution of the likelihood ratio,
or an equivalent statistic, under Hy. In general, this will not be available to us. However,

we can make use of an important asymptotic result.

First we notice that, as log is a strictly increasing function, the rejection region is equivalent

to

o=y alg (P00 YO
v & maxg. oo fY(y; 0)

where

max P(y € C;0) = a.
Oco®

Now, provided that Hy is nested within Hy, in other words O ¢ 6 (O is a subspace of
©W) then under Hy: @ € O, asymptotically as n — oo

maxg. g fY (y; 0) )
maxg. g fY (y; 0)

Loy = 2log <

has a chi-squared distribution with degrees of freedom equal to the difference in the dimen-
sions of ©() and ).
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Proof First we note that in the case where € is one-dimensional and 8 = (), a Taylor

series expansion of log fy (y;0) around around the m.le. 6 gives
~ ~ ~ 1 ~ A
log fy (v;0) = log fy (y;0) + (0 = O)U(0) + 5(6 = 6)°T'(6) + ...

Now, U(f) = 0, and if we approximate U'(0) = H(f) by E[H ()] = —Z(6), and also ignore
higher order terms, we obtain

2[log fy (v;0) — log fy (y;0)] = (8 — 0)*Z(9)

As 0 is asymptotically N[0,Z(0)7'], (0 — 0)2Z(0) is asymptotically x2, and hence so is
2[log fy (y; 0) — log fy (y; 0)).

Similarly it can be shown that when @ € ©, a multidimensional space, 2[log fy(y;8) —
log fy(y;8)] is asymptotically x2, where p is the dimension of ©.

that log fy(y; 8) is maximised in ©© b 0"

2log <maX9€@m fy(y; 0))
maXO(e()a(o) fy (y; 0) o
~(1 A (0
= 2log fy(y; Q(I)) —2log fy(y; 60 ") o)
= 2llog fy(y; 0 ) —log fy(y; 0)] — 2[log fy(y;0 °) —log fy(y; 0)]
= Ll - LO

Now, suppose that Hy is true and 8 € O and therefore @ € ©(). Furthermore, suppose
y

and is maximised in @) by 0" Then

Loy

Therefore Ly = Lo + Ly and we know that, under Hy, L; has a le distribution and L
has a XZO distribution. Furthermore, it is possible to show (although we will not do so
here) that under Hy, Lo, and L are independent. Therefore, from the properties of the
chi-squared distribution, it follows that under Hy, the log likelihood ratio statistic Ly, has a

X3, _q, distribution.

O Example 1.11.  yy,...,y, are observations of Yj,...,Y,, i.i.d. Bernoulli(p) random
variables. Suppose that we require a size « test of the hypothesis Hy: p = py against the

general alternative Hy: ‘p is unrestricted’” where a and p, are specified.

Here 8 = (p), ©® = {py} and O = (0,1) and the log likelihood ratio statistic is

|
Lo1 = 2nylog <£) +2n(1 —7) log (1 y) .

Po — Do
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As d; = 1 and dy = 0, under Hy, the log-likelihood ratio statistic has an asymptotic x?
distribution. For a log likelihood ratio test, we only reject Hy in favour of H; when the test
statistic is too large (observed data are much more probable under model H; than under
model Hy), so in this case we reject Hy, when the observed value of the test statistic above is
‘too large’ to have come from a x? distribution. What we mean by ‘too large’ depends on the
significance level a of the test. For example, if & = 0.05, a common choice, then we should
reject Hy if the test statistic is greater than the 3.84, the 95% point of the x? distribution.

1.0

0.8 -

0.6 -

0.4 -

0.2

0.0

Figure 1.5: The x? distribution

1.9 Linear Models (a brief revision)

1.9.1 Introduction

In practical applications, we often distinguish between a response variable and a group of
explanatory variables. The aim is to determine the pattern of dependence of the response vari-
able on the explanatory variables. We denote the n observations of the response variable by
y = (Y1,¥2,--- ,¥)". In a statistical model, these are assumed to be observations of random
variables Y = (Y1,Ya,...,Y,)". Associated with each y; is a vector x; = (w1, Tig, ... , Tip) "

of values of p explanatory variables.
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Linear models are those for which the relationship between the response and explanatory
variables is of the form

E(Y;) = [iza + Pavio+ ...+ Bpzip

p
= Db
j=1

= XZTB
= [XB];, i=1,...,n (1)
where
XT Tir 0 T
xF Tpl Ty
and B = (B1,...,B,)7T is a vector of fixed but unknown parameters describing the dependence

of ¥; on x;. The four ways of describing the linear model in (1) are equivalent, but the most
economical is the matrix form

E(Y) = XB. 2)

The n X p matrix X consists of known (observed) constants and is called the design matriz.
The ith row of X is xI', the explanatory data corresponding to the ith observation of the

response. The jth column of X contains the n observations of the jth explanatory variable.

O Example 1.12. The null model

X = . B = (5).

One (dummy) explanatory variable. In practice, this variable is present in all models.
O Example 1.13. Simple linear regression
E(Y;) = B1 + Baw i=1,...,n

].IL'I

L @ B
X = =
Do & (52)



MA325 Statistical Methods IT Academic year, 02—03 Dr S. K. Sahu 37

Two explanatory variables; the dummy variable and one ‘real’ variable.

O Example 1.14. Polynomial regression

E(Yi):51+52$i+53$?+---+3pr_1 1=1,...,n

1
1z 22 - af Io
1 2y 22 -+ 27! Bo
X=1. . :2 . 2: B =
1 oay oy - 2h! By

p explanatory variables; the dummy variable and one ‘real’ variable, transformed to p — 1
variables.

O Example 1.15. Multiple regression

E(Y;) = B+ Bawi + Bamio + ... + Bpip_1 1=1,...,n

1 21 212 - Tip—1 B

1 xo1 @ --- Tap—1 B2
X=1. . . . B =

1 Tn1 Tp2z - Tpp-1 Bp

p explanatory variables; the dummy variable and p — 1 ‘real’ variables.

Strictly, the only requirement for a model to be linear is that the relationship between the
response variables, Y, and any explanatory variables can be written in the form (2). No
further specification of the joint distribution of Y;,... Y, is required. However, the linear

model is more useful for statistical analysis if we can make three further assumptions:

1. Yy,...,Y, are independent random variables.
2. Yq,...,Y, are normally distributed.

3. Var(Y1) =Var(Yy) = --- =Var(Y,) (Y1,...,Y, are homoscedastic).

We denote this common variance by o2

With these assumptions the linear model completely specifies the distribution of Y, in that
Yy, ..., Y, are independent and

YiNN(X;TF,B,UZ) 1=1,...,n.
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Another way of writing this is
Yi:x;fp,BqLez- 1=1,...,n

where €y, ..., €, are i.i.d. N(0,0?) random variables.

A linear model can now be expressed in matrix form as
Y=XB+e (3)

where € = (e1,...,¢6,)T has a multivariate normal distribution with mean vector 0 and

2 and €,...,¢€, are independent

variance covariance matrix oI, (because all Var(e;) = o
implies all Cov(e;,€;) = 0). It follows from (3) that the distribution of Y is multivariate

normal with mean vector X3 and variance covariance matrix 0?1, i.e. Y ~ N(X3, 0’I).

1.9.2 Least squares estimation

The regression coefficients i, ... , 5, describe the pattern by which the response depends on
the explanatory variables. We use the observed data y1,...,y, to estimate this pattern of
dependence.

In least squares estimation, roughly speaking, we choose B, the estimates of 8 to make the
fitted values E(Y) = XB as close as possible to the observed values y, i.e. B minimises the

sum of squares

n n

DMy — B = 3 (5 —xi8)’
= Z (yz - injﬁj)

as a function of By,. .., 8,. The sum of squares may also be written as (y — X8)T (y — X23).

Differentiating w.r.t. B¢, k =1,...,p, and setting equal to 0 gives

n p
—22%1@ (yi—zﬂﬁijﬁj) =0 k=1,...,p
=1 =1
n

n

p
= TiplYi = szikxzjﬁj E=1,...,p
i=1 j=1

=1
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= X"yl = [XTXB:
= X'y = XT™Xp

The least squares estimates B are the solutions to this set of p simultaneous linear equations,
which are known as the normal equations. If XTX is invertible (as it usually is) then the

least squares estimates are given by
B=(X"X)"'X"y.

The corresponding fitted values are

E(Y)=XB=XX"X)"'X"y
= E(Y;) =x!p i=1,...,n.
Recalling that Y = X3 + €, we notice that the least squares estimates for € = (ey,... ,€,)7
are obtained as the difference between the observed and fitted values
e=y—Xp3
= éi:yi—XiTB 1=1,...,n.
€1,...,€, describe the variability in the observed responses ¥i,...,y, which has not been
explained by the linear model. It is residual variability, and we call é, ... , €,, the residuals.

We call

n

D =) ¢

=1

= 2": (yi - X;TFBY

=1

the residual sum of squares or deviance for the linear model. Tt is the actual minimum value

attained in the least squares estimation.

1.9.3 Properties of the least squares estimator

1. B(B) =B and Var(B) = o2(XTX)™"
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This follows by recalling that Y ~ N(XA3,0%I) and B = (XTX)"'X"y is a linear
function of y. Therefore, from the properties of expectation and variance of a vector

random variable we have
E@) = E[X"X)'X"Y]
= (XTX)"'XTE[Y]
= (X'X)"'X'XpB

8.
Var(B) = Var[(X"X)"'X7Y]
= X'X)"'X"Var[Y)[(X"X)"'X"]"
= oA(XTX) ' XTIX(XTX)*
oA(XTX) .
. Assuming that €,... ¢, are i.i.d. N(0,0?) the least squares estimate B is also the

maximum likelihood estimate.

This is obvious when one considers the likelihood for a linear model

Fx(y;B,0%) = (2m0%) % exp (—% > (i - XiTﬂ)2> : (4)

=1

. B is multivariate normal (with mean and variance given above).

As Y is normally distributed, and A3 is a linear function of Y, then @ must also be

normally distributed.

1.9.4 Estimation of o2

In addition to the linear coefficients /i, ... , 3, estimated using least squares, a linear model

usually involves the unknown residual variance o2, representing the variability of observations

about their mean.

We can estimate o

gives

2 using maximum likelihood. Maximising (4) with respect to 8 and o2

n
o D 1ZA2
g = — = — GZ.
n ni:l
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It is possible to prove (although we shall not do so here) that if the model is correct,

D 2
o2~ Xnop
which implies that
n JE—
B(5?) = —=d",
n

so the maximum likelihood estimate is biased for o2 (although still asymptotically unbiased

as =2 — 1 as n — 00). We usually prefer to use the unbiased estimate of o

o2 o] Xn:€?-

L L 1

The denominator n—p, the number of observations minus the number of linear coefficients in
the model is called the degrees of freedom of the model. Therefore, we estimate the residual

variance by the deviance divided by the degrees of freedom.

1.9.5 Comparing linear models

If we have a set of competing linear models which might explain the dependence of the
response on the explanatory variables, we will want to determine which of the models is most
appropriate. Recall that we have three main requirements of a statistical model; plausibility,

parsimony and goodness of fit, of which parsimony and goodness of fit are statistical issues.

The goodness of fit of a linear model to the observed data is encapsulated by its deviance or
residual sum of squares. Models which fit the data well have a low deviance, whereas those
which fit the data poorly have a high deviance. However, the calibration of ‘low’ and ‘high’
is unclear, and depends on the scale of measurement of the response. We can calibrate the

deviance by dividing it by the natural variation in the data, > (y; — y)?. Then

D
R=l-=——
> i1 (i — )
is the proportion of natural variation in the data which has been accounted for, or explained,

by the linear model.

R? is still not an entirely satisfactory measure by which to compare models (although it is
an easily interpretable summary of the goodness-of-fit of a selected model) because adding

terms to a model increases R? whether or not the increased complexity is justified.
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The C, statistic combines the deviance (a measure of goodness of fit) and the number of
linear parameters of the model (a measure of complexity) into an overall measure for a model.
The C), statistic calculated by S-Plus is

C, = D + 2po?

which clearly penalises a model for lack of fit (through D) and complexity (through p,

2

the number of linear parameters). Here o2 is replaced by the most reliable estimate of o2

available, in practice the estimate based on the most complex model under consideration.

Although C), provides a mechanism for comparing any pair of models, it is essentially an
ad hoc summary measure. In practice, we use it as a guide to direct a model comparison
strategy based on hypothesis tests.

As described previously, we proceed by comparing models pairwise using a generalised like-
lihood ratio test. For linear models this kind of comparison is restricted to situations where
one of the models, Hy, is nested in the other, H;. For linear models, this usually means that
the explanatory variables present in Hy are a subset of those present in H;. In this case
model Hy is a special case of model Hy, where certain coefficients are set equal to zero. We
let @ represent the collection of linear parameters for model Hy, together with the residual
variance 02, and let ©") be the unrestricted parameter space for 8. Then O is the param-
eter space corresponding to model Hy, ¢.e. with the appropriate coefficients constrained to

Zero.

We will assume that model H; contains p linear parameters and model Hy a subset of ¢ < p
of these. Without loss of generality, we can think of H; as the model

p
j=1
and Hy being the same model with

Bq+1:Bq+2:"':Bp:0-

Now, a generalised likelithood ratio test of Hy against Hy has a critical region of the form

max g fx(y;:B,0%)
- y: (13, 2)eo) g >k
maX(,B,UQ)EG(O) fY (y7 /37 o )

where k£ is determined by «, the size of the test, so

max P(y € C;8,0%) = a.
Oco®
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For a linear model,
_n 1 <
L3 A2\ 2 T g2
fx(y;B,0°%) = (2m0®) * exp (_Tc? z;(yi - x; B) ) -
This is maximised with respect to (8,02%) at 8 = 8 and 02 = 6% = D/n. Therefore

rélﬁé(fy(y;ﬂ,ﬁ) = (27D/n)" % exp <—@ ." (yi—XiTB)2>

= (2nD/n) 2 exp (—g)

Let the deviances under models Hy and H; be denoted Dy and D; respectively. Then the
critical region for the generalised likelihood ratio test is of the form

roar T "
_ (%) o
. (B -1)stow
N (Do 51271,3 /_(2;)_ L

We refer to the left hand side of this inequality as the F-statistic. We reject the simpler

model Hy in favour of the more complex model H; if F is ‘too large’.

As we have required Hy to be nested in Hy, F' has a known distribution when Hg is true. It
is an F distribution with p — ¢ degrees of freedom in the numerator and n — p degrees of
freedom in the denominator. To see this, note that
Dy Do—Dy D
22 o
Furthermore, we know from §1.4.3 that, under Hy, D;/0? has a x_, distribution and Dy /o
has a x7_, distribution. It is possible to show (although we will not do so here) that under
Hy, (Dy — D;)/0? and Dy/o? are independent. Therefore, from the properties of the chi-
squared distribution, it follows that under Hy, (Dy — D;)/o? has a X,QHI distribution, and F

has a F,_, n—, distribution.

Therefore, the precise critical region can be evaluated given the size, «, of the test. We reject

Hy in favour of H; when
(Do — D1)/(p—q)

Din-p "
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where £ is the 100(1 — @)% point of the F,,_, ,_, distribution.

1.9.6 Assessing a selected model

An easily interpreted overall measure of goodness of fit of a model is provided by the R?
coefficient, discussed in §1.4.4. If predictions are required, then confidence intervals for
the predictions will provide an appropriate measure for assessing the likely accuracy of the
model. Remember that it is always risky to use a model to make predictions for values of the

explanatory variables which are not in the range of those which were used to fit the model.

Confidence intervals and hypothesis tests for linear models may be unreliable if all the
model assumptions are not justified. In particular, we have made three assumptions about
the distribution of Y7,... Y.

1. Yy,...,Y, are independent random variables.
2. Yq,...,Y, are normally distributed.

3. Var(Y1) =Var(Ys) = --- =Var(Y,).
The validity of these assumptions can be checked using residual plots.

1. In general, independence is difficult to validate, but where observations have been
collected in serial order, serial correlation may be detected by a plot of the residuals

€1,...,€, against the serial order 2 =1,... ,n.

2. A simple check for non-normality is obtained by plotting the ordered residuals against
the expected order statistics of a sample of size n from a standard normal distribution.

The plot should look like a straight line. Beware of any obvious curves in the plot.

3. A simple check for non-constant variance is obtained by plotting the residuals €;, ... , €,
against the corresponding fitted values xiTB, t=1,...,n. The plot should look like

a random scatter. Beware of ‘funneling’.

Other residual plots may also be useful. For example, if a plot of the residuals against the
values of an explanatory variable reveals a pattern, then this suggests that the explanatory

variable, or perhaps some function of it, should be included in the model.
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Another place where residual diagnostics are useful is in assessing influence. An observa-
tion is influential if deleting it would lead to estimates of model parameters being substan-
tially changed. S-Plus calculates Cook’s distance for each observation. Cook’s distance is a

measure of the change in B when the observation is omitted from the dataset.

(B —B)TX"X(B - B)

po?

Cook’s distance =

where B, is the least squares estimate of 3 based on the observed data with the ith observation

omitted.

A rule of thumb is that a Cook’s distance of 1 or more indicates a potentially important

change in B and may be worthy of further investigation.
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