Chapter 2

Generalised Linear Models

2.1 The Exponential family

A probability distribution is said to be a member of the exponential family if its probability

density function (or probability function, if discrete) can be written in the form

y0 — b(0)

) ()

fr(y;0,¢) = exp <

The parameter 6 is called the natural or canonical parameter. The parameter ¢ is usually

assumed known. If it is unknown then it is often called the nuisance parameter.

The density (1) can be thought of as a likelihood resulting from a single observation y.
Then

logfy(yﬁ ¢) = Lo + c(y, ¢)
= u(f) = 5 log fy(y,e ¢> = Lt

¢) a(¢)
Qb(g) "
= H(9) = W log fy (y; 9/; o) = 61(45) = —ba(Ef))
=  I(0) = E[-H(0)] = Z(%)-

From the properties of the score function in Section 1.7.3, we know that E[U(f)] = 0.
Therefore
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Furthermore,

Var[U(0)] = Var [Y - bl(g)] _ VorlY]

a(@) | a(6)
as 0/ (0) and a(¢) are constants (not random variables). Now, we also know from Section 1.7.4
that Var[U(0)] = Z(0). Therefore,

Var[Y] = a(¢)*Var[U(0)] = a(¢)*Z(0) = a(¢)b"(9).

and hence the mean and variance of a random variable with probability density function (or
probability function) of the form (1), are &'(0) and a(¢)b" (@) respectively.

We often denote the mean by p, so = b'(#). The variance is the product of two functions;
b"(#) depends on the canonical parameter § (and hence p) only and is called the variance
function (V(u) = 0"(0)); a(¢) is sometimes of the form a(¢) = o*/w where w is a known

weight and o2 is called the dispersion parameter or scale parameter.

O Example 2.1. Normal distribution, Y ~ N(u, 0?)

fryimo®) = 5= 1 —5(y—n)?) YER; neR
= ( _25 -3 [02 + log(27o? )])
This is in the form (1), with 6 = p, b(0) = a(¢) = o? and
0.6) = [ ? o5+ ostznala))|.

Therefore
EY)=00)=0=pu
Var(Y) = a(¢)b" () = o?
Vip) =1.

O Example 2.2. Poisson distribution, Y ~ Poisson(\)

iy A) = exm;¢ ye{0,1,...}; NeR,
= exp(ylogA — X —logy!)

This is in the form (1), with = log\, b(f) = expf, a(¢) = 1 and c(y,¢) = —logy!.
Therefore

EY)="V(0) =expf =X

Var(Y) = a(¢)b"(8) = expf = A

Vip) = p.
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O Example 2.3. Bernoulli distribution, Y ~ Bernoulli(p)

fyyip) = pA-p)' Y  ye{0,1} pe(0,1)
= exp (y log 1%) + log(1 — p))

This is in the form (1), with 6 = log £, b(6) = log(1 + exp#), a(¢) = 1 and c(y, ) = 0.
Therefore

E(Y)=V(0) = 1220 = p
Var(Y) = a(@)l"(0) = 7225 = p(1 —p)
Vip) = p(l = p).

O Example 2.4. Binomial distribution, Y ~ Binomial(n,p) Here, n is assumed known
(as usual) and the random variable Y is taken as the proportion of successes, so

frlyip) = (,fy)p"y(l —p)"t ye {052, 1} €(0,1)

_p_ —
— exp (ylog 1_pirlog(1 P) n 10g(:y))

n

This is in the form (1), with § = log £, b(6) = log(1 + exp8), a(¢) = L and c(y,¢) =
log(y?y). Therefore

EY)=v(0)= 1?2239 =P

ex 1—
Var(Y) = a(0)0"(0) = & i = 2072
Vi) = p(l = p).

Here, we can write a(¢) = o?/w where the scale parameter 02 = 1 and the weight w is n,

the binomial denominator.

2.2 Components of a generalised linear model

2.2.1 The random component

In practical applications, we often distinguish between a response variable and a group of
explanatory variables. The aim is to determine the pattern of dependence of the response
variable on the explanatory variables. We denote the n observations of the response by y =
(Y1,Y2,- -+ ,Yn)". In a generalised linear model (g.l.m.), these are assumed to be observations
of independent random variables Y = (Y},Y5,...,Y,)?, which take the same distribution

from the exponential family. In other words, the functions a, b and ¢ and usually the scale
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parameter ¢ are the same for all observations, but the canonical parameter  may differ.

Therefore, we write

fyvi (Y 0, ¢i) = exp <y7,9%¢:))(92) + (i, (f)z))

and the joint density for Y = (Y1, Vs, ..., V)T is

fY(y;07¢) = H?:lin(yi;Hia¢i)

n W) 5 @)
- P (Zi:l %;()gl) + > i ey, @))

(3

where @ = (0y,...,0,)T is the collection of canonical parameters and ¢ = (¢1,... ,¢,)7 is

the collection of nuisance parameters (where they exist).

Note that for a particular sample of observed responses, y = (y1,¥a, .- ,%n)", (2) is the
likelihood function for 8 and ¢.

2.2.2  The systematic (or structural) component

Associated with each y; is a vector x; = (z;1, Zj2, . . . ,xz-p)T of values of p explanatory vari-
ables. In a generalised linear model, the distribution of the response variable Y; depends on

x; through the linear predictor n; where

i = P+ BoZio + ...+ Bpxip
> i1 wiiB
— XTB
== [X,B]“ izl,...,n

where, as with a linear model,

Xl r11 ot xlp
Xg Tpl :L-np
and B = (B1,...,B,)" is a vector of fixed but unknown parameters describing the dependence

of Y; on x;. The four ways of describing the linear predictor in (3) are equivalent, but the
most, economical is the matrix form

n =Xg. (4)
Again, we call the n x p matrix X the design matriz. The ith row of X is x!, the explanatory
data corresponding to the ith observation of the response. The jth column of X contains

the n observations of the jth explanatory variable.
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2.2.3 The link function

For specifying the pattern of dependence of the response variable on the explanatory vari-
ables, the canonical parameters 6;,...,0, in (2) are not of direct interest. Furthermore, we
have already specified that the distribution of Y; should depend on x; through the linear
predictor n;. It is the parameters fi,..., [, of the linear predictor which are of primary

interest.

The link between the distribution of Y and the linear predictor n is provided by the link

function g,
n; = g(1) i=1,...,n
where p; = E(Y;), i =1,... ,n. Hence, the dependence of the distribution of the response

on the explanatory variables is established as
gEY) =g(w)=n=x/B i=1...,n

In principle, the link function g can be any one-to-one differentiable function. However,
we note that n; can in principle take any value in R (as we make no restriction on possible
values taken by explanatory variables or model parameters). However, for some exponential
family distributions p; is restricted. For example, for the Poisson distribution p; € R, ; for
the Bernoulli distribution p; € (0,1). If g is not chosen carefully, then there may exist a
possible x; and B such that n; # g(u;) for any possible value of p;. Therefore, ‘sensible’

choices of link function map the set of allowed values for u; onto R.

Recall that for a random variable Y with a distribution from the exponential family,

E(Y) =V/(0). Hence, for a generalised linear model

Therefore

and as g(u;) = n; = x{ B, then
0;=b"'(g'xIB) i=1,...,n (5)

Hence, we can express the joint density (2) in terms of the coefficients 8, and for observed
data y, this is the likelihood fy(y;B,¢) for B. As B is our parameter of real interest
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(describing the dependence of the response on the explanatory variables) this likelihood will

play a crucial role.

Note that considerable simplification is obtained in (5) if the functions g and b ' are
identical. Then

and the resulting likelihood is

(v B, @) = exp (Z % ﬁa(¢§)(xl B, > el ¢i)> :
i=1 ! i=1

The link function
g(1) = 6" ()
is called the canonical link function. Under the canonical link, the canonical parameter is

equal to the linear predictor.

Canonical link functions

Distribution Normal Poisson Bernoulli
Binomial
b(6) 56? exp 0 log(1 + exp 6)
exp
b'(0) = 0 6 —_—
(6) = n P 1+expf
b ) =0 L log it log
I—p
Link g =p gl =logu  g(u) =log— .
Identity link Log link Logistic link

(Logit link)

2.2.4 The linear model

Clearly the linear model considered in Section 1.9 is also a generalised linear model. We
assume Y7,...,Y, are independent normally distributed random variables. The normal

distribution is a member of the exponential family.
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Furthermore, the explanatory variables enter a linear model through the linear predictor

Ui:XiT,B 1=1,...,n.

Finally, the link between E(Y) = p and the linear predictor i is through the (canonical)

identity link function

2.3 Maximum likelihood estimation

The regression coefficients i, ... , 5, describe the pattern by which the response depends on
the explanatory variables. We use the observed data y1,...,y, to estimate this pattern of
dependence.

Recall the maximum likelihood estimate (m.l.e.) B of B is the value of @ which maximises
fy(y; B, ®) as a function of B. Recall also that the m.l.e. has ‘good’ properties. It is

intuitively sensible and asymptotically normal and unbiased.

As usual, we maximise the log likelihood function which, from (2), can be written

log fy (y; B, d) = Zyl +Z (i, 1) (6)

and depends on B through

u,:b’(Hl) izl,...,n
g(u;) = n; 1=1,...,
mi=xB=> b i=1...,n

To find B, we consider the scores

and then
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Now from (6)

ur(B) = 55 log fx(y; 8, ¢)
n 10; —0b(0;
:%Zilya( ())+a,3kzz1 c(Yi, i)
— n 0 yithi— b(el)
- zi—l 3ﬁk a(di)

=3 yifi—b(0:) | 00; dpi Oni k=1
i=1 39 a(opi) Ou; 9n; OBy T

_ ysz 30 O On; —
=i @) Oy o, B k=1,....p

where
9;

o=
|

Opi
om;

oni __ 0 P R —
3By, _a_ﬁkzj‘ﬂxwﬁj—xzk-

Therefore

i —b'(0; i
w(B) = i Ly m
n i) i —
- Zl 1Var(‘;/)g’z&:i) k_]-a 7p(7)

which depends on 8 through p; = E(Y;) and Var(Y;),i=1,... ,n.

In theory, we solve the p simultaneous equations uk(B) =0, k=1,...,p to evaluate B
In practice, these equations are usually non-linear and have no analytic solution. Therefore,

we rely on numerical methods to solve them.

First, we note that the Hessian and Fisher information matrices can be derived directly
from (7).

2
(B = 75557 108 (32 .9) = 3-e(8).
Therefore
e = o T it
= Zz 1 Vafﬁ] x(l;i)
+ ¥ (Y — Mi)a%j [W]
and

n 0B T;
[I(B)]]k = Zi:l Var(]Yi) g’(:i)

0 i
= SN - 1) [variyn]
ag; Tik
Var(Y;) ¢' (ki)
TijTik
1 Var(Y;)g' (pi)?-

] 1]

—
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Hence we can write

7(8) = X"WX (8)
where
X{ T11 xlp
xg Tl Tnp
w1 0 0
0
W = diag(w) = 2
0
0 0 w,
and
1 1 n
w; = 2 ) )
Var(Y:)g'(p1:)?

The Fisher information matrix Z(€) depends on 3 through g and Var(V;), i=1,... ,n.
We notice that the score in (7) may now be written as
up(B) = 2?21(%' — i) Tipwig' (1)
= LWz k=1,...,p

where

Therefore
u(f) = X’ Wz. (9)

One possible method to solve the p simultaneous equations u(B) = 0 that give B is
the (multivariate) Newton-Raphson method. [Recall that the univariate Newton-Raphson

method obtains a solution to u(3) = 0 by iteratively updating 3°, the current estimate of
the solution to A = B¢ — [u(B")/u/(8Y)].]
If B! is the current estimate of ,[:] then the next estimate is
Bt =g - H(B) "u(B"). (10)

In practice, an alternative to Newton-Raphson replaces H(0) in (10) with E[H(0)] = —Z(8).

Therefore, if 8% is the current estimate of B then the next estimate is

B =B+ I(B) "u(p). (11)
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The resulting iterative algorithm is called Fisher scoring. Notice that if we substitute (8)
and (9) into (11) we get

IBH-I — IBz 4 [XTWiX]_IXTWiZi
= [XTWiX] [XTWXB' + XTWiz]
= [XTWiX] ' XTW[X B + 2]
— [XTwix]—lewi[,r’i + zi]

where 5*, W' and z’ are all functions of 8"

Note that this is a weighted least squares equation, that is 8°"' minimises the weighted

sum of squares
m+z—XB)'W(n+z—-XB)= Zwi (mi +2i — XiTB)Z
i=1

as a function of 3 where wy, ... ,w, are the weights and n+z is called the adjusted dependent
variable. Therefore , the Fisher scoring algorithm proceeds as follows.

1. Choose an initial estimate 8° for B at i=0.

2. Evaluate ', W’ and z' at '

3. Calculate B't! = [XTWX|"'X"W'[n’ + 2.

4. If |8 — B'|| > some prespecified (small) tolerance then set i — i + 1 and go to 2.

5. Use B! as the solution for B

As this algorithm involves iteratively minimising a weighted sum of squares, it is some-
times known as iteratively (re)weighted least squares.

Notes

1. Recall that the canonical link function is g(u) = b ~'(p1) and with this link n; = g(u;) =

91’- Then
L Ow O

g'(i) O 00;
Therefore Var(Y;)g'(1;) = a(¢;) which does not depend on B3, and hence

:b”(gz) Z:]_,,TL

75 vt ="
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forall j =1,...,p. It follows that H(@) = —Z(8) and, for the canonical link, Newton-

Raphson and Fisher scoring are equivalent.

2. The linear model is a generalised linear model with identity link, n, = g(u;) =
and Var(Y;) = o? for all i = 1,... ,n. Therefore w; = [Var(Y;)g' ()]~ = 072 and
zi=(yi—p)g' (W) =vi —mini=1,...,n.

Hence z + 1 =y and W = 0721, neither of which depend on 3. Hence, the Fisher

scoring algorithm converges in a single iteration to the usual least squares estimate.

3. Estimation of an unknown scale parameter o2 is discussed later. A common (to all 7)

o2 has no effect on 3.

2.4 Inference

Recall from Section 1.7.5 that the maximum likelihood estimator 3 is asymptotically nor-
mally distributed with mean 3 (it is unbiased) and variance covariance matrix Z(8) '. For

‘large enough n’ we treat this distribution as an approximation.

Therefore, standard errors (estimated standard deviations) are given by

A

se(B) =) = [(X"WX)"2 i=1,....p.

where the diagonal matrix W = diag(w) is evaluated at @, that is w; = (Var(Y;)g (ii:)%) ™"
where [i; and VELT(Y;) are evaluated at @ for i = 1, ... ,n. Furthermore, if Var(Y;) depends

on an unknown scale parameter, then this too must be estimated in the standard error.

The asymptotic distribution of the maximum likelihood estimator can be used to provide

approximate large sample confidence intervals. We can find h such that

p(_hguggh)
7(6)72
Therefore ) )

P (B~ hTO) " < i < i+ HIT0O) 13 = 0.

The endpoints of this interval cannot be evaluated because they also depend on the unknown

A

parameter vector 3. However, if we replace Z(8) by its m.l.e. Z(3) we obtain the approximate

large sample 100a% confidence interval

~

[3; — s.e.(Bi)h, B; + s.e.(B;)h].
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For a = 0.9,0.95,0.99, h = 1.64, 1.96, 2.58.

2.5 Comparing generalised linear models

2.5.1 The generalised likelihood ratio test

If we have a set of competing generalised linear models which might explain the dependence
of the response on the explanatory variables, we will want to determine which of the models
is most appropriate. Recall that we have three main requirements of a statistical model;
plausibility, parsimony and goodness of fit, of which parsimony and goodness of fit are

statistical issues.

As with linear models, we proceed by comparing models pairwise using a generalised
likelihood ratio test. This kind of comparison is restricted to situations where one of the
models, Hy, is nested in the other, H;. Then the asymptotic distribution of the log likelihood

ratio statistic under Hy is a chi-squared distribution with known degrees of freedom.

For generalised linear models, ‘nested” means that Hy and H; are

1. based on the same exponential family distribution, and
2. have the same link function, but

3. the explanatory variables present in Hy are a subset of those present in Hj.

We will assume that model H; contains p linear parameters and model Hy a subset of

q < p of these. Without loss of generality, we can think of H; as the model
p
ni:Zl'iij izl,...,n
j=1
and Hjy is the same model with

Bq+1:Bq+2:"':Bp:0-

Then model Hy is a special case of model H;, where certain coefficients are set equal to zero,
and therefore O the set of values of the canonical parameter 8 allowed by Hy, is a subset
of @) the set of values allowed by Hj.
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Now, the log likelihood ratio statistic for a test of Hy against H; is

Loy =2log maxé’eeu)fY(y;@)
b maxg o fx(v:0)

0)

~(1 ~
= 2log fy(y; 9 )) — 2log fy (y; 9 )(12)

where 9(1) and 9(0) follow from b'(éi) = [1;, g(f1;) = mi, i = 1,... ,n where 7 for each model is
the linear predictor evaluated at the corresponding maximum likelihood estimate for 8. Here,

we assume that a(¢;), i =1,... ,n are known; unknown a(¢) is discussed in Section 2.6.

Recall that we reject Hy in favour of H; when Ly is ‘too large’ (the observed data are
much more probable under H; than Hy). To determine a threshold value k for Ly, beyond
which we reject Hg, we set the size of the test a and use the result of Section 1.8.1 that,
because Hy is nested in Hy, Ly; has an asymptotic chi-squared distribution with p—q degrees
of freedom. Usually @ = 0.05 and hence we reject Hy in favour of H; when Lg; is greater
than the 95% point of the x._, distribution.

Note that setting up our model selection procedure in this way is consistent with our
desire for parsimony. The simpler model is Hy, and we do not reject Hg in favour of the
more complex model H; unless the data provide convincing evidence for H; over Hy, that is

unless H; provides fits the data significantly better.

2.5.2 Scaled deviance and the saturated model

Consider a model where 3 is n-dimensional, and therefore n = X3. Assuming that X is
invertible, then this model places no constraints on the linear predictor n = (ny,... ,n,). It
can take any value in R™. Correspondingly the means p and the canonical parameters 0 are
unconstrained. The model is of dimension n and can be parameterised equivalently using 3,

1, p or 6. Such a model is called the saturated model.

As the canonical parameters @ are unconstrained, we can calculate their maximum like-
lihood estimates @ directly from their likelihood (2) (without first having to calculate 3)

- yibi — b(0; .
log fy (y;0) = > G(T)() + ) elyi, ¢i)- (13)
i=1 ! i=1
We obtain 0 by first differentiating with respect to 60,,... , 60, to give
0 ye — b'(0k)
— 1o 10) = ——~ kE=1,...,n.
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Therefore b’(ék) =y, k=1,...,n, and it follows immediately that fz = yx, kK =1,... ,n.
Hence the saturated model fits the data perfectly, as the fitted values fi, and observed values

Y, are the same for every observation £ =1,... ,n.

The saturated model is rarely of any scientific interest in its own right. It is highly
parameterised, having as many parameters as there are observations. This goes against our
desire for parsimony in a model. However, every other model is necessarily nested in the
saturated model, and a test comparing a model Hy against the saturated model Hg can be
interpreted as a goodness of fit test. If the saturated model, which fits the observed data
perfectly, does not provide a significantly better fit than model Hy, we can conclude that H

is an acceptable fit to the data.

The log likelihood ratio statistic for a test of Hy against Hg is, from (12)
(0)
)

where 8" follows from Y (0) = fp =y and 9 is a function of the corresponding maximum

- (s) o
Los = 2log fy(y;0 ) — 2log fy(y; 0

likelihood estimate for B8 = (B1,...,05,)". Under Hy, Los has an asymptotic chi-squared
distribution with n — ¢ degrees of freedom. Therefore, if Ly is ‘too large’ (in practice, larger
than the 95% point of the x;_, distribution) then we reject Hy as a plausible model for the
data, as it does not fit the data adequately.

The degrees of freedom of model Hy is defined to be the degrees of freedom for this test,
n — ¢, the number of observations minus the number of linear parameters of Hy. We call L,

the scaled deviance (S-Plus calls it the residual deviance) of model Hy.

From (12) and (13) we can write the deviance of model Hy as

n q(s) _ po) 7(s) 1(0)
yilti” — 0;7] — [b(6;) — b(6; )]
Lo, = 2 i i iy (14)
; a(¢:)
which can be calculated using the observed data, provided that a(¢;), i = 1,... ,n is known.

Notes

1. The log likelihood ratio statistic (12) for testing Hy against a non-saturated alternative

H; can be written as

~ (1) ~(0)
Loy =2log fy(y;0 ") —2log fy(y;0 )

~ (s) -+ (0) ~(s) - (1)
= [2log fy(y;0 °) —2log fy(y; 6 )] — [2log fy(y;0 ') — 2log fy(y; 0 )]
= Loy — L. (15)
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Therefore the log likelihood ratio statistic for comparing two nested models is the
difference of their deviances. Furthermore, as p — ¢ = (n — ¢q) — (n — p), the degrees of

freedom for the test is the difference in degrees of freedom of the two models.

. The asymptotic theory used to derive the distribution of the log likelihood ratio statis-
tic under Hy does not really apply to the goodness of fit test (comparison with the
saturated model). However, for binomial or Poisson data, we can proceed as long as
the relevant binomial or Poisson distributions are likely to be reasonably approximated
by normal distributions (i.e. for binomials with large denominators or Poissons with
large means). However, for Bernoulli data, we cannot use the scaled deviance as a
goodness of fit statistic in this way.

. An alternative goodness of fit statistic for a model Hy is Pearson’s X? given by

502

XQZZ(ylA /‘LZ ) . (16)

o Var(Yy)

X? is small when the squared differences between observed and fitted values (scaled
by variance) is small. Hence, large values of X? correspond to poor fitting models.
In fact, X2 and Lo, are asymptotically equivalent and under Hy, X2, like Lg,, has
an asymptotic chi-squared distribution with n — ¢ degrees of freedom. However, the
asymptotics associated with X2 are often more reliable for small samples, so if there

is a discrepancy between X? and Ly,, it is usually safer to base a test of goodness of
fit on X?2.

. Although the deviance for a model is expressed in (14) in terms of the maximum
likelihood estimates of the canonical parameters, it is more usual to express it in terms
of the maximum likelihood estimates fi;, ¢ = 1,... ,n of the mean parameters. For the
saturated model, these are just the observed values y;, i = 1,... ,n, and for the model
of interest, Hy, we call them the fitted values. Hence, for a particular generalised linear
model, the scaled deviance function describes how discrepancies between the observed

and fitted values are penalised.

O Example 2.5. Y; ~ Poisson()\;), i =1,...,n Recall from 2.1 that § = log ), b(d) =
expl, u =V (0) =expf and Var(Y) = a(¢)V () =1 - p. Therefore, by (14) and (16)

Lo, =230 willog iy —log "] = [” — 1"

=2%""  ylog ( yi)) — Ui +ﬂz(-0)

~(0
it
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and

O Example 2.6. Y; ~ Binomial(n;,p;), i =1,...,n Recall from Section 2.1 that § =

log 125, b(6) = log(1 + exp), 11 = B(0) = 12225 and Var(¥) = a(6)V (1) = - (1 — ).
Therefore, by (14) and (16)

@ 2 ©
log (0)

> log(1 — %)

1-—
>+nZ — Y log< ( >

LOs =2 Zz 1 n;Y; |:10g (
+n;[log(

=2 2?21 n;y; log

and . 0
niyi — i)
X?=) s
N NG
= a1 )
Bernoulli data are binomial with n; =1, t=1,... ,n.

2.6 Models with unknown a(¢)

Thus far, the theory of Section 2.5 has assumed that a(¢) is known. This is the case for both
the Poisson distribution (a(¢) = 1) and the binomial distribution (a(¢) = 1/n). Neither the
scaled deviance (14) nor Pearson X? statistic (16) can be evaluated unless a(¢) is known.
Therefore, when a(¢) is not known, we cannot use the scaled deviance as a measure of
goodness of fit, or to compare models using (15). For such models, there is no equivalent

goodness of fit test, but we can develop a test for comparing nested models.

2 is a common unknown scale

Here assume that a(¢;) = o?/m;, i=1,...,n where o
parameter and my, ... ,m, are known weights. (A normal generalised linear model takes this
form, if we assume that Var(Y;) = o, ¢=1,...,n, in which case m; = 1, i =1,... ,n).

Under this assumption

Los = 5 iy miild)” = 6] = milb(0") = (0,
- LZ)Us (17)

where Dy, is defined to be twice the sum above, which can be calculated using the observed
data. We call Dy, the deviance of the model.
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In order to test nested models Hy and H; as set up in Section 2.5.1 we calculate the test

statistic
F = Lo/(b—a) _ (Los—L1s)/(p—q)
Lis/(n—p) Lis/(n—p)
(J2D0:= 5 D1:)/(0=0) _ (Dy.—D1)/(p—a) (18)

“3D1s/(n—p) Dis/(n—p)

This statistic does not depend on the unknown scale parameter o2, so can be calculated using
the observed data. Asymptotically, if Hq is true, we know that Ly; has a X12)—q distribution
and L, has a Xi—p distribution. furthermore, Ly; and Ly, are independent (not proved here)
so F' has an asymptotic F distribution with p — ¢ degrees of freedom in the numerator and
n — p degrees of freedom in the denominator. Hence, we compare nested generalised linear
models by calculating F' and rejecting Hy in favour of H; if F' is too large (in practice, greater

than the 95% point of the relevant F distribution).

The dependence of the maximum likelihood equations u(8) = 0 on o2 (where u is given

2. However, inference based on the

by (7)) can be eliminated by multiplying through by o
maximum likelihood estimates, as described in Section ?? does require knowledge of o2. This
is because asymptotically Var(B) is the Fisher information matrix Z(8) = X" WX, and this

depends on w; = m where Var(Y;) = a(¢p;)0"(0;) = ob"(6;)/m; here.

Therefore, to calculate standard errors and confidence intervals, we need to supply an
estimate 62 of 0. Generally, we do not use the maximum likelihood estimate. Instead, we
notice that, from (17), Ly, = Dy,/0?, and we know that asymptotically, if model Hy is an

adequate fit, Ly, has a X%ﬁq distribution. Hence

1 1
E(Ly) =FE <—2D05> =n—-q¢ = E (—D05> = o’
o

n—gq

Therefore the deviance of a model divided by its degrees of freedom is an asymptotically

unbiased estimator of the scale parameter 0. Hence 62 = Dys/(n — q).

An alternative estimator of o? is based on the Pearson X? statistic. As Var(Y) =

a(p)V (1) = o?V (u)/m here, then from (16)
L & muyi - ﬂEO))Z
D D )

Again, if Hy is an adequate fit, X? has an chi-squared distribution with n — ¢ degrees of

freedom, so
(0))2

o Lyl i

2 1\J1 7

g = N
n—4q V(Mz‘)

=1
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is an alternative unbiased estimator of o2. This estimator tends to be more reliable in small

samples.

Q Example 2.7. Y; ~ Normal(y;,0?), i =1,...,n Recall from Section 2.1 that 6 = p,
b(#) = 62/2, p =b'(#) =0 and Var(Y) = a(¢)V(p) = o*-1,s0m; =1, i=1,...,n.

Therefore, by (17)
n ~(s ~ ~(8)2 ~(0)2
Doy =230yl — p”) = 5l = 3™
n ~(0
= S [y — P (20)

N[

which is just the residual sum of squares for model Hy. Therefore, we estimate o2 for a
normal g.l.m. by its residual sum of squares for the model divided by its degrees of freedom.

From (19), the estimate for 02 based on X? is identical.

We compare normal generalised linear models, using the F statistic (18) where the de-
viances Dy; and Dy for the two nested models being compared are their residual sums of

squares.

2.7 Residuals

Recall that for linear models, we define the residuals to be the differences between the
observed and fitted values 1; — ﬂgo), i=1,...,n. From (20) we notice that both the scaled
deviance and Pearson X? statistic for a normal g.l.m. are the sum of the squared residuals
divided by o?. We can generalise this to define residuals for other other generalised linear

models in a natural way.
For any g.l.m. we define the Pearson residuals to be

yi — il
rP=2"t_  i=1,...,n
Var(Y;)2

Then, from (16), X? is the sum of the squared Pearson residuals.

For any g.l.m. we define the deviance residuals to be

D (0)y | 5l =001 b(0) =60 | 2
Ti _Slgn(yz :u’y, ) a(¢i)

1=1,...,n,



MA325 Statistical Methods IT Academic year, 02—03 Dr S. K. Sahu 65

where sign(z) = 1 if x > 0 and —1 if x < 0. Then, from (14), the scaled deviance, Ly, is
the sum of the squared deviance residuals.

When a(¢) = 0?/m and o? is unknown, as in Section 2.6 the residuals are based on
(17) and (19), and the expressions above need to be multiplied through by o2 to eliminate
dependence on the unknown scale parameter. Therefore, for a normal g.l.m. the Pearson
(0)

and deviance residuals are both equal to the usual residuals, y; — 1,7, ¢ =1,... ,n.

Residual plots are most commonly of use in normal linear models, where they provide
an essential check of the model assumptions. This kind of check is less important for a
model without an unknown scale parameter as the scaled deviance provides a useful overall

assessment of fit which takes into account most aspects of the model.

However, when data have been collected in serial order, a plot of the deviance or Pearson

residuals against the order may again be used as a check for potential serial correlation.

Otherwise, residual plots are most useful when a model fails to fit (scaled deviance is too
high). Then, examining the residuals may give an indication of the reason(s) for lack of fit.

For example, there may be a small number of outlying observations.

A plot of deviance or Pearson residuals against the linear predictor should produce some-
thing that looks like a random scatter. If not, then this may be due to incorrect link
function, wrong scale for an explanatory variable, or perhaps a missing polynomial term in

an explanatory variable.



