Chapter 3

Categorical Data

3.1 Introduction

A particularly important application of generalised linear models is the analysis of categorical
data. Here, the data are observations of one or more categorical variables on each of a number
of units (often individuals). Therefore, each of the units are cross-classified by the categorical
variables. For example, the dataset job represents the cross-classification of 901 individuals

according to their income (4 levels) and job satisfaction (4 levels).

Job Statisfaction

Very Little Moderately Very
Income (US$) Dissatisfied Dissatisfied  Satisfied  Satisfied
<6000 20 24 80 82
6000-15000 22 38 104 125
15000-25000 13 28 81 113
>25000 7 18 54 92

Source: 1984 General Social Survey.

A cross-classification table, like the one above is called a contingency table. This is a
two-way table, as there are two classifying variables. We also describe the table above as a

4 x 4 contingency table.
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Remission
Cell Type Sex No Yes
Male 1 4
Nodular
Female 2 6
Male 12 1
Diffuse
Female 3 1

The above lymphoma dataset, representing 30 lymphoma patients classified by sex, cell type of
lymphoma and response to treatment, is an example of a three-way contingency table. It is a
2 x 2 x 2 or 23 table.

Each position in a contingency table is called a cell and the number of individuals in a particular
cell is the cell count. Partial classifications derived from the table are called margins. For a two-way

table these are often displayed in the margins of the table as below.

Job Statisfaction

Very Little Moderately Very
Income (US$) Dissatisfied Dissatisfied  Satisfied  Satisfied | Total
<6000 20 24 80 82 206
6000-15000 22 38 104 125 289
15000-25000 13 28 81 113 235
>25000 7 18 o4 92 171
Total 62 108 319 412 901

These are one-way margins as they represent the classification of items by a single variable;

Histological type and Response respectively.

For multiway tables, higher margins may be calculated. For example, for lymphoma, the two-way

Cell type/Sex margin is

Cell Type
Sex Nodular Diffuse

Male 5 13

Female 8 4
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We can model contingency table data using generalised linear models. To do this, we assume
that the cell counts are observations of independent Poisson random variables. This is intuitively

sensible as the cell counts are non-negative integers (the sample space for the Poisson distribution).

Therefore, if the table has n cells, which we label 1,... ,n, then the observed cell counts y1,... ,y,
are assumed to be observations of independent Poisson random variables Y7,...,Y,. We denote
the means of these Poisson random variables by p1,...,u,. The canonical link function for the

Poisson distribution is the log function, and we assume this link function throughout. A generalised

linear model for Poisson data using the log link function is called a log-linear model.

The explanatory variables in a log-linear model for contingency table data are the cross-classifying
variables. As these variables are categorical, they are factors. As usual with factors, we can in-
clude interactions in the model as well as just main effects. Such a model will describe how the
expected count in each cell depends on the classifying variables, and any interactions between them.

Interpretation of these models will be discussed further in Section 3.4.

Log-linear data structure for the job dataset.

Cell(i) income satis  count (y;)
1 <6000 Dissatis 20
2 <6000  L.Dissatis 24
3 <6000 MSatis 80
4 <6000 VSatis 82
5 6-15 Dissatis 22
6 6-15 L.Dissatis 38
7 6-15 MSatis 104
8 6-15 VSatis 125
9 15-25 Dissatis 13
10 15-25 L.Dissatis 28
11 15-25 MSatis 81
12 15-25 VSatis 113
13 >25000 Dissatis 7
14 >25000 L.Dissatis 18
15 >25000 MSatis 54
16 >25000 VSatis 92
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Log-linear data structure for the lymphoma dataset.

Explanatory variables
Cell (i) Response (y;)
Cell Type Sex Remission

1 1 Nodular Male No
2 2 Nodular  Female No
3 12 Diffuse Male No
4 3 Diffuse Female No
5 4 Nodular Male Yes
6 6 Nodular  Female Yes
7 1 Diffuse Male Yes
8 1 Diffuse Female Yes

3.2 Multinomial sampling

Although the assumption of Poisson distributed observations is convenient for the purposes of
modelling, it is often untenable, as a result of the way in which the data have been collected.
Frequently, when contingency table data are obtained, the total number of observations (the grand
total, the sum of all the cell counts) is fixed in advance. In this case, no individual cell count can
exceed the prespecified fixed total, so the assumption of Poisson sampling is invalid as the sample
space is bounded. Furthermore, with a fixed total, the observations can no longer be observations

of independent random variables.

For example, consider the lymphoma dataset.

Remission
Cell Type Sex No Yes
Male 1 4
Nodular
Female 2 6
Male 12 1
Diffuse
Female 3 1

It may be that these data were collected over a fixed period of time, and that in that time there

happened to be 30 patients. In this case, the Poisson assumption is perfectly valid. However, it
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may have been decided at the outset to collect data on 30 patients, in which case the grand total

is fixed at 30, and the Poisson assumption is not valid.

When the grand total is fixed, a more appropriate distribution for the cell counts is the multi-
nomial distribution. The multinomial distribution is the distribution of cell counts arising when a
prespecified total of IV items are each independently assigned to one of n cells, where the proba-
bility of being classified into cell 7 is p;, i =1,... ,n, so Y. ; p; = 1. The probability function for

the multinomial distribution is

n
vi
) NIIL G i) w=N
i=1
0 otherwise (1)

It is straightforward to see that the binomial is the special case of the multinomial with two cells
(n=2).

The expected value of a vector of multinomial cell counts Y is Np, that is
pi=E(Y;)=Np; i=1,...,n

We can still use a log-linear model for contingency table data when the data have been obtained by
multinomial sampling. We model log p; = log(Np;), 7 =1,... ,n as a linear function of explanatory
variables. However, such a model must preserve Y ;" u; = N, the grand total which is fixed in

advance, by design.

From (1), the log likelihood for a multinomial log-linear model is
n n
log fy (y;p) = ) _wilogpi — Nlog N — ) " logyi! +log N'.
=1 =1

Therefore, the maximum likelihood estimates @ maximise ;" ; y; log p1; subject to the constraints

St i =N=3" v (multinomial sampling) and log u = X3 (imposed by the model).

For a Poisson log-linear model,

fryimw) = [[—F
i1 Y
Therefore,
log fy(yip) = =200 i+ 200 yilog i — D57 log y! (2)

= — > exp(log ;) + Y0 yilog i — > i log yg!.

Now any Poisson log-linear model with an intercept can be expressed as

log 15 = o + other terms depending on ¢ 1=1,...,n
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Now
Llog fy(y;m) = — S0 exp(log ps) + Sor ¥i
= S =30 i (3)

From (2), we notice that, at @ = & the log likelihood takes the form
n n n
log fy (yim) ==Y yi+ Y wilogui — Y logyl.
i=1 i=1 i=1

Hence, when we maximise the log-likelihood, for a Poisson log-linear model with intercept, with re-
spect to the other log-linear parameters, we are maximising y ;- y; log y; subject to the constraints
oy i = Yoy y; from (3) and log p = X3 (imposed by the model).

Therefore, the maximum likelihood estimates for multinomial log-linear parameters are identical
to those for Poisson log-linear parameters. Furthermore, the maximised log-likelihoods for both
Poisson and multinomial models take the form Y7 | y; log fi; as functions of the log-linear parameter
estimates. Therefore any inferences based on maximised log-likelihoods (such as likelihood ratio

tests) will be the same.

Therefore, we can analyse contingency table data using Poisson log-linear models, even when
the data has been obtained by multinomial sampling. All that is required is that we ensure that

the Poisson model contains an intercept term.

3.3 Product multinomial sampling

Sometimes, the grand total is fixed in advance, as a result of certain margins being prespecified.

For example, consider the 1ymphoma dataset:

Remission
Cell Type Sex No Yes
Male 1 4
Nodular
Female 2 6
Male 12 1
Diffuse
Female 3 1

It may have been decided at the outset to collect data on 18 male patients and 12 female patients.

Alternatively, perhaps the distribution of both the Sex and Cell type of the patients was fixed in



MA325 Statistical Methods IT Academic year, 02—03 Dr S. K. Sahu 73

advance to be

Cell Type
Sex Nodular Diffuse
Male 5 13
Female 8 4

In cases where a margin is fixed by design, the data consist of a number of fixed total subgroups,
defined by the fixed margin. Neither Poisson nor multinomial sampling assumptions are valid. The
appropriate distribution combines a separate, independent multinomial for each subgroup. For
example, if just the Sex margin is fixed above, then the appropriate distribution for modelling the
data is two independent multinomials, one for males with N = 18 and one for females with N = 12.
Each of these multinomials has four cells, representing the cross-classification of the relevant patients
by Cell Type and Remission. Alternatively, if it is the Cell type/Sex margin which has been fixed,
then the appropriate distribution is four independent two-cell multinomials (binomials) representing

the remission classification for each of the four fixed-total patient subgroups.

When the data are modelled using independent multinomials, then the joint distribution of the
cell counts Yy,...,Y, is the product of terms of the same form as (1), one for each fixed-total
subgroup. We call this a distribution a product multinomial. Each subgroup has its own fixed
total. The full joint density is a product of n terms, as before, with each cell count appearing

exactly once.

For example, if the Sex margin is fixed for 1ymphoma, then the product multinomial distribution

has the form

Np! T 1z;mv M- 11;?1
fx(y;p) = if Zymz—N and nyl—
0 0therw1se
where N,,, and Ny are the two fixed marginal totals (18 and 12 respectively), Ymi,... ,Ymas are
the cell counts for the Cell type/Remission cross-classification for males and yy1,... ,ys4 are the

corresponding cell counts for females. Here Z?lemi = 2?21 pri = 1, E(Ymi) = NmpPmi, © =
1,... 4, and E(Yy;) = Nypgi, i =1,... 4

Using similar results to those used in §3.2 (but not proved here), we can analyse contingency table
data using Poisson log-linear models, even when the data has been obtained by product multinomial
sampling. However, we must ensure that the Poisson model contains a term corresponding to the
fixed margin (and all marginal terms). Then, the estimated means for the specified margin are

equal to the corresponding fixed totals.
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For example, for the lymphoma dataset, for inferences obtained using a Poisson model to be valid
when the Sex margin is fixed in advance, the Poisson model must contain the Sex main effect (and
the intercept). For inferences obtained using a Poisson model to be valid when the Cell type/Sex
margin is fixed in advance, the Poisson model must contain the Cell type/Sex interaction, and all

marginal terms (the Cell type main effect, the Sex main effect and the intercept).

Therefore, when analysing product multinomial data using a Poisson log-linear model, certain
terms must be present in any model we fit. Their removal is prohibited. Otherwise the inferences

do not remain valid.

A consequence of this result is that we can sometimes think of logistic regression models for
binomial data as log-linear models. For example, consider the data analysed in S-Plus worksheet 6
(presented on the next page). We previously analysed this table as binomial data with four ex-
planatory variables S, T', B and R. However, as each combination of the four explanatory factors
is present exactly once, we can think of these data as a five-way 3 X 2 X 2 X 2 X 2 contingency table,
with Survival (U) as the additional classifying variable. Then we can fit log-linear models to the
data.
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Survived?
S T B R
Yes No
Active 53 6
Yes
Placebo 42 7
< 12 hours
Active 207 20
No
Placebo 220 42
Anterior
Active 50 8
Yes
Placebo 44 12
> 12 hours
Active 241 29
No
Placebo 257 36
Active 41 7
Yes
Placebo 32 5
< 12 hours
Active 223 22
No
Placebo 210 20
Inferior
Active 40 4
Yes
Placebo 50 4
> 12 hours
Active 226 11
No
Placebo 226 13
Active 12 2
Yes
Placebo 20 8
< 12 hours
Active 73 9
No
Placebo 83 13
Other
Active 18 2
Yes
Placebo 17 5
> 12 hours
Active 90 13
No

Placebo 102 18

How do these kinds of model differ?

The logistic regression implicitly assumes that the STBR margin is fixed in advance. The



76

binomial denominators are input as fixed constants and no model is specified for them. The

likelihood is then a product of binomials (a special case of product multinomial).

We know that we can model data of this form using a Poisson log-linear model. However, if we
are assuming that the ST BR margin is fixed in advance, then S« T x B * R (the ST BR interaction
and all marginal terms) must be present in any log-linear model we fit. Now suppose that ¢ and
j are two cells in the same row of this table, i.e. they take identical values of S, T, B and R,
but different values of U. Furthermore, ¢ and j are the only cells contributing to a particular fixed

marginal total, so y; and y; have a fixed sum (call this V). Now

Npi_l Di

i
log pu; — log p1; = log — = log
Z ’ W Np; 1 —p;

as p; +p; = 1 in this product binomial scheme. So we can express logit p; as the difference between
two log cell means. Furthermore, as a log-linear model expresses log p; — log p; as a linear function
of explanatory variables, it is therefore equivalent to a logistic regression model for the product

binomial cell probabilities.

Any term which appears as a function of S, T', B or R (and not of U) in the log-linear model,
disappears when we consider log y;; —log 11, as ¢ and j take identical values of S, T, B and R. Any
term which depends on U remains. For example, the U main effect appears as Sy (yes) — Sy (no)
in every logit. The US interaction appears as fSys(yes, s;) — Bv(no, s;), as s; = s;. Therefore, this
term depends on the value of S for the row. It describes how logit p; depends on S and hence is

the main effect of S in the logistic model.

In general, if we have a 2 X m; X mg X --- X m, contingency table representing the cross-
classification of binary variable U and variables Xi,... , X,, then the log-linear model for the full
table which includes X % Xo % --- % X, is equivalent to the logistic regression model for P(U = 1),
with X1,..., X, as potential explanatory variables. The intercept for the logistic regression model
is derived from the U main effect in the log-linear model; the main effect for X; in the logistic
regression model is derived from the U X interaction in the log-linear model; the X; X5 interaction

in the logistic regression model is derived from the U X X5 interaction in the log-linear model, etc.

Both of these equivalent models assume (implicitly) that the X7 X5--- X, margin is fixed in
advance, by design. Even if this is not the case, the inferences are still valid, and we can still use
these models to learn about the way in which U depends on the explanatory variables. However, if
this margin is not fixed in advance, allowing log-linear models which do not include X * Xo*- - % X,
may provide interesting information about relationships between the other variables. For example,
for the lymphoma dataset, we can assume that the Cell-type/Sex margin is fixed and still learn
about how Remission depends on these variables. But if this margin is not fixed in advance, we

can also use log-linear models to learn about how Cell-type and Sex are associated.
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If margins are fixed in advance, then this must be respected. If they are not, then more can be

learn from the data by not imposing unnecessary conditions on the models.

3.4 Interpreting log linear models

Log linear models for contingency tables enable us to determine important properties concerning
the joint distribution of the classifying variables. In particular, the form of our preferred log linear

model for a table will have implications for how the variables are associated.

Each combination of the classifying variables occurs exactly once in a contingency table. There-
fore, the model with the highest order interaction (between all the variables) and all marginal terms
(all other interactions) is the saturated model. The implication of this model is that every combi-
nation of levels of the variables has its own mean (probability) and that there are no relationships

between these means (no structure). The variables are highly dependent.

To consider the implications of simpler models, we first consider a two-way r X ¢ table where
the two classifying variables R and C have r and c levels respectively. The saturated model R x C
implies that the two variables are associated. If we remove the RC interaction, we have the model
R+ C,

log i = a + Br(r;) + Be(c) t=1,...,n

where n = rc is the total number of cells in the table. Because of the equivalence of Poisson and
multinomial sampling, we can think of each cell mean u; as equal to Np; where N is the total
number of observations in the table, and p; is a cell probability. As each combination of levels of R
and C' is represented in exactly one cell, it is also convenient to replace the cell label ¢ by the pair

of labels j and k representing the corresponding levels of R and C' respectively. Hence

IngJkZCM-FﬁR(_])—FBC(k)—IOgN j=L...,r, k=1,...,c

Therefore
P(R=j,C=k) =expla+ Br(j)+ fc(k)—log N]
j=1,...,r, k=1,...,c
le)
L =370 =1 expla + Br(j) + Bo(k) — log N]
= v expla] 37, exp[Br(j)] Xk, explBo(k)]
Furthermore

P(R=j) =Y expla+ Br(j) + Bo(k) —log N]
= x expla]exp[Br(1)] Yoy explfe (k)] j=1,....rm,
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and
P(C=k) =375_ expla+ Br(j) + Bo(k) — log N]
— L expl] explBo(k)] X, explBr()] k=1,... c.
Therefore
P(R=j)P(C =k) = expla]exp[Bc(k)]exp[Br ()] x 1
=P(R=j5,C=k)
j=1...,r, k=1,... c

Absence of the interaction RC in a log linear model implies that R and C' are independent variables.
Absence of main effects is generally less interesting (implying uniformity of a particular margin).

Generally, main effects are not removed from a log linear model.

In multiway tables, absence of a two-factor interaction does not necessarily mean that the two
variables are independent. For example, consider the lymphoma dataset, with 3 binary classifying
variables Sex (5), Cell type (C) and Remission (R). A reasonable log linear model for these data
is R+C + C xS. Hence the RS interaction is absent. The estimated cell means, converted to

probabilities, for this model are

Remission
Cell Type Sex No Yes
Male 0.0385 0.1282
Nodular
Female 0.0615 0.2051
Male 0.3824 0.0510
Diffuse
Female 0.1176 0.0157

Hence the estimated probabilities for the two-way Sex/Remission margin (together with the corre-

sponding one-way margins) are

Remission
Sex No Yes
Male 0.4208 0.1792 0.6
Female 0.1792 0.2208 0.4
0.6 0.4 1

It can immediately be seen that this model does not imply independence of R and S, as P(R, S) #
P(R)P(S). What the model R C 4 C % S implies is that R is independent of S conditional on C,
that is

P(R,S|C) = P(R|C)P(S|C)
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Another way of expressing this is
P(R|S,C) = P(R|C),

that is, the probability of each level of R given a particular combination of S and C, does not
depend on which level C takes. [Equivalently, we can write P(S|R,C) = P(S|C)]. This can be

observed by calculating the estimated odds in favour of R = yes over R = no for the lymphoma

dataset.
Remission
Cell Type Sex No Yes Odds
Male 0.0385 0.1282 3.33
Nodular
Female 0.0615 0.2051 3.33
Male 0.3824 0.0510 0.13
Diffuse
Female 0.1176 0.0157 0.13

Therefore, the odds depend only on a patient’s Cell type, and not on their Sex.

In general, if we have an R-way contingency table with classifying variables Xy,... , X,, then
a log linear model which does not contain the X; X5 interaction (and therefore by the principle
of marginality contains no interaction involving both X; and X5) implies that X; and Xs are

conditionally independent given Xs,... , X,, that is
P(Xy, Xo|X3,...,X;) = P(X1]|X3,...,X,)P(X2| X35,...,X,).

The proof of this is similar to the proof in the two-way case. Again, an alternative way of expressing

conditional independence is
P(X| X9, X3,...,X;) = P(X1]|X3,...,X})

or
P(Xo| X1, X3,...,X;) = P(X2|X5,..., X;).

Although, for the lymphoma dataset, R and S are conditionally independent given C, we have

already seen that they are not marginally independent.

Remission
Sex No Yes Odds
Male 0.4208 0.1792 0.43
Female 0.1792 0.2208 1.23

Male patients have a much lower probability of remission. The reason for this is that, although R

and S are not directly associated, they are both associated with C. Observing the estimated values
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it is clear that patients with C' = nodular have a greater probability of remission, and furthermore,
that female patients are more likely to have this cell type than males. Hence females are more

likely to have R = yes than males.

Suppose the factors for a three-way tables are X;, X5 and X3. We can list all possible dependence

structures using the graphs (drawn in class) and the following.

1. Model 1 containing the terms X7, Xo, X3. All factors are mutually independent.

2. Model 2 containing the terms X; : X2, X3. The factor X3 is jointly independent of X; and
Xs.

3. Model 3 containing the terms X; : Xs, Xo : X3. The factors X; and X3 are conditionally

independent given Xo.

4. Model 4 containing the terms X; : X9, Xo : X3, X : X3. There is no conditional indepen-

dence structure. This is the model without the highest order interaction term.

5. Model 5 containing X; : X5 : X3. This is the saturated model. No more simplification of

dependence structure is possible.

Conditional and marginal association of two variables can therefore often appear somewhat
different. Sometimes, the association can be ‘reversed’ so that what looks like a positive association

marginally, becomes a negative association conditionally. This is known as Simpson’s paradoz.

In 1972-74, a survey of women was carried out in an area of Newcastle. A follow-up survey was
carried out 20 years later. Among the variables observed in the initial survey was whether or not
the individual was a smoker and among those in the follow-up survey was whether the individual

was still alive, or had died in the intervening period.

Smoker Dead Alive Odds(Dead)
Yes 139 443 0.31
No 230 502 0.46

Therefore, looking at this table, it appears that the non-smokers had a greater probability of
dying. However, there is an important extra variable to be considered, related to both smoking
habit and mortality — age (at the time of the initial survey). When we consider this variable, we
get the table on the following page. Conditional on every age at outset, it is now the smokers who

have a higher probability of dying. The marginal association is reversed in the table conditional on
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age, because mortality (obviously) and smoking are associated with age. There are proportionally

many fewer smokers in the older agegroups (where the probability of death is greater).

Age  Smoker Dead Alive Odds(Dead)  Odds ratio
Yes ) 174 0.029
18-34 1.02
No 6 213 0.028
Yes 14 95 0.147
35—44 2.40
No 7 114 0.061
Yes 27 103 0.262
45-54 1.44
No 12 66 0.182
Yes o1 64 0.797
55—64 1.61
No 40 81 0.494
Yes 29 7 4.143
65-74 1.15
No 101 28 3.607
Yes 13 0 —
75— —
No 64 0 —

When making inferences about associations between variables, it is important that all other

variables which are relevant are considered. Marginal inferences may lead to misleading conclusions.



