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SUMMARY

With mammography being the primary breast cancer screening strategy, it is essential to make full use of
the mammogram imaging data to better identify women who are at higher and lower than average risk.
Our primary goal in this study is to extract mammogram-based features that augment the well-established
breast cancer risk factors to improve prediction accuracy. In this article, we propose a supervised func-
tional principal component analysis (sFPCA) over triangulations method for extracting features that are
ordered by the magnitude of association with the failure time outcome. The proposed method accommo-
dates the irregular boundary issue posed by the breast area within the mammogram imaging data with
flexible bivariate splines over triangulations. We also provide an eigenvalue decomposition algorithm that
is computationally efficient. Compared to the conventional unsupervised FPCA method, the proposed
method results in a lower Brier Score and higher area under the ROC curve (AUC) in simulation studies.
We apply our method to data from the Joanne Knight Breast Health Cohort at Siteman Cancer Center. Our
approach not only obtains the best prediction performance comparing to unsupervised FPCA and bench-
mark models but also reveals important risk patterns within the mammogram images. This demonstrates
the importance of utilizing additional supervised image-based features to clarify breast cancer risk.

Keywords: Functional principal component analysis; Image analysis; Supervised learning; Survival analysis;
Triangulation.

1. INTRODUCTION

Accurate assessment of risk is a top priority in oncology due to the population burden of cancer and
advancing technologies for precision oncology. Breast cancer is the leading cancer diagnosis among
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women, with more than 2.1 million new cases identified worldwide each year (Bray and others, 2018).
With routine mammography being the primary breast cancer screening strategy, it is essential to make
full use of the mammogram images and derive features that can provide accurate mammography-based
breast cancer risk to better identify women who are at very high or low future risk. The problem that
motivated this study comes from the Joanne Knight Breast Health (JKBH) Cohort at Siteman Cancer
Center. The cohort was established to link breast cancer risk factors, mammographic breast density,
and blood markers in a diverse population of women undergoing routine mammographic screening. The
primary goal of this article is to build a prognostic model for prevention, using additional unexplored image-
based markers, augmenting the well-known breast cancer risk factors. The challenge lies in modeling such
high-dimensional mammogram imaging data, as the total number of pixels will greatly exceed the number
of women in the cohort, making the model nonidentifiable. An efficient dimension reduction technique is
thus needed.

Functional principal component analysis (FPCA) is a popular approach for dimension reduction. It
aims to identify major sources of variability among functional data, for example, data recorded as curves,
images, or other objects over a continuum, usually time or spatial locations (Ramsay and Silverman, 2005;
Ferraty and Vieu, 2006). The objective of FPCA is to project the infinite-dimensional functional data to
a low-dimensional vector space defined by the functional principal components (FPCs). A considerable
amount of literature has been published on FPCA for 1D functional data. For instance, Ramsay and Dalzell
(1991) and Rice and Silverman (1991) developed smoothed FPCA methods to control the smoothness of
FPCs. Yao and others (2005) proposed to calculate the FPC scores based on a conditional expectation
when functional data are collected on sparse points. Chen and Lei (2015), Lin and others (2016), and Nie
and Cao (2020) proposed to estimate FPCs which are only nonzero in a small interval in order to enhance
the interpretability of FPCs. Supervised methods with functional covariates have also been considered in
the literature. Kong and others (2018) and Gellar and others (2015) considered Cox regression model
with functional covariates with survival outcome. Li and others (2016) proposed the supervised sparse
functional principal component analysis, where they assumed that additional scalar supervision variables
drive the low-rank structure of the functional predictor. Nie and others (2018) considered supervised FPCA
in identifying the set of FPCs to boost the prediction performance. Zhang and others (2021) discussed
the supervised principal component regression on a newly defined expected integrated residual sum of
squares.

Less work has been proposed on FPCA methods for imaging data, that is, 2D functional data. Zipun-
nikov and others (2011) explored a connection between the singular value decomposition and FPCA for
analyzing brain images by transferring images to a long vector. Other approaches for functional or smooth
principal component analysis for tensor data have been proposed (see Huang and others, 2009; Allen,
2013; Lin and others, 2015 for example). Of note, these articles are based on the assumption that the
images are bounded within a rectangular domain.

One unique challenge that arises in mammogram images is that the breast area appearing in the mam-
mograms are irregularly shaped. Mammograms from two randomly chosen women within the JKBH
cohort are shown in Figure S1 of the Supplementary material available at Biostatistics online, where it is
apparent that the breast area is bounded within a semicircular region.

When the images are bounded within an arbitrary domain, triangulation is the most convenient tool
to partition the domain into pieces. Bivariate spline, smooth piecewise polynomial functions over trian-
gulations, is a natural approach that can be used to preserve important features of imaging data (Lai and
Wang, 2013). Wang and others (2020) recently considered modeling the imaging data under the FPCA
framework with triangulation. However, the conventional FPCA method does not consider the relationship
between the functional predictor and the response variable (failure time under the survival context). Thus,
the ordering of the eigenfunctions does not indicate the degree of association with the failure time, which
may be sub-optimal when our goal lies in prediction.
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In this article, we propose a novel supervised FPCA (sFPCA) over triangulations method for extracting
image-based features that are ordered by the magnitude of association with failure time. This newly
proposed method adopts the bivariate splines over triangulation to accommodate the irregularly shaped
boundary of the mammogram imaging data to avoid “leakage” over complex domains. The sFPCA method
is demonstrated to be versatile in simulation studies, where effective dimension reduction is achieved by
choosing the top few sFPCs that cumulatively explain a large proportion of association with the failure
time. We then apply the proposed sFPCA method to the Joanne Knight Breast Health Cohort at Siteman
Cancer Center to leverage new insights from the rich set of mammograms in relation to the onset of breast
cancer. The prediction performance for the proposed method is compared to the conventional FPCA
method, and further compared to benchmark models.

To this end, we summarize the main contributions of this article. First, we accommodate the irregular
boundary of the mammogram imaging data with bivariate splines over triangulations. Second, building
on the foundation of triangulation, we propose a novel supervised FPCA over triangulations method that
enables us to estimate the supervised FPCs ordered by the magnitude of association with the failure
time. Third, we provide an eigenvalue decomposition algorithm that is computationally efficient. Last, we
leverage new insights from the motivating mammogram imaging data in the Joanne Knight Breast Health
Cohort at Siteman Cancer Center.

This article is organized as follows. In Section 2, we introduce notation and the model setup. Specifically,
we discuss the bivariate splines over triangulation and propose a novel sFPCA method that enables us
to estimate the supervised FPCs. The connection between prediction under the survival context with
the estimated sFPCs is also discussed here. We investigate the finite sample performance of the proposed
method via intensive simulation studies in Section 3. The proposed method is then applied to the motivating
Joanne Knight Breast Health Cohort in Section 4. Concluding remarks are given in Section 5.

2. MODEL AND ESTIMATION

We first let Ti and Ci be the time of event occurrence and time of censoring for an individual i, respectively.
The observed time is denoted by T̃i = min(Ti, Ci), with �i = I (Ti < Ci) indicating that the observed time
is an event time. Further, we let � be a bounded 2D domain of arbitrary shape, and s = (s1, s2) represent
a particular point ∈ � ⊂ IR2. The imaging data can then be defined as {Zi(s), ∀s ∈ �}, i = 1, . . . , n.

Under the functional framework, the observed imaging data Zi can be viewed as realizations of a
stochastic process {Z(s), ∀s ∈ �}. If Z is a square-integrable process in space with continuous covariance
function, the process is known to have a Karhunen–Loève expansion,

Z(s) = μ(s)+
∞∑

k=1

λkψk(s),

whereμ(s) is the mean function, λk is the kth functional score that is defined as the inner product between
Z and the FPC ψk , that is, 〈Z −μ,ψ〉 = ∫

s∈�(Z(s)−μ(s))ψk(s)ds. Without loss of generality, we assume
that Z is demeaned from here on, that is,μ(s) = 0. In practice, this infinite summation is usually truncated
to the first K† terms that are sufficient to explain the first K† major sources of variation in the functional
data. However, the projection of the functional data Z(s) onto the first K† corresponding FPCs ordered by
the explained variation may not be associated with the response variable, which is suboptimal when our
goal lies in prediction.

In what follows, we will first consider the estimation of Z(s) using bivariate splines that are piecewise
polynomial functions over a 2D triangulated domain in Section 2.1 to accommodate the semicircular
shaped domain in mammogram images. Then, building on approximation over triangulations, we will
introduce the supervised FPCA (sFPCA) method in Section 2.2, where the features extracted will be
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Fig. 1. An example of triangulation within mammogram with 115 triangles.

ordered by the magnitude of association with the failure time. Finally, we establish a connection between
the sFPCA method and survival analysis in Section 2.3.

2.1. Bivariate spline basis approximation over triangulation

Triangulation is a well-known and effective tool for handling data with complex boundaries and/or interior
holes (Lai and Wang, 2013). We let τ be a triangle that is the convex hull of three points that are not
collinear. A collection � = {τ1, . . . , τM } of triangles is called a triangulation of � = ⋃M

m=1 τm if any
nonempty intersection between a pair of triangles in � is either a common vertex or a common edge. For
an integer r ≥ 0, let Cr(�) be the collection of all r-times continuously differentiable functions over �.
Then, let T r

d (�) = {t ∈ Cr(�) : t|τ ∈ Pd , τ ∈ �} be a spline space of degree d and smoothness r over
triangulation �, where t|τ is the polynomial piece of spline t restricted to triangle τ , and Pd is the space of
all polynomials of degree less than or equal to d. We then define the Bernstein basis polynomial of degree
d as Bτ ,d

ijk (s) = (i!j!k!)−1d!bi
1bj

2bk
3, where b1, b2, and b3 are the barycentric coordinates of s ∈ � relative

to τ ∈ �, and i + j + k = d. We show the triangulation over the mammogram imaging data in Figure
1. We can see that the semicircular boundary is well-approximated over triangulations. For illustration
purposes, we have also constructed the Bernstein polynomial basis function with d = 2 in Figure S2 of
the Supplementary material available at Biostatistics online.

In practice, the image data are only measured at a finite grid of pixels, sj ∈ �, for j = 1, . . . , J . We
can first smooth the image data {sj, Zi(sj)}J

j=1 individually by employing the bivariate spline smoothing
method. Let B(s) = (B1(s), . . . , BK(s))T be a vector of degree-d bivariate Bernstein basis polynomials
for T r

d (�), where K is the number of Bernstein basis polynomials. Our objective is to estimate the 2D
function gi(s) = aT

i B(s) by minimizing
∑n

i=1

∑J
j=1{Zi(sj)− gi(sj)}2 + ρi ·PEN(gi), where ai is the vector

of coefficients to the bivariate Bernstein basis polynomials, ρi is the roughness penalty parameter, and
the roughness penalty PEN(gi) = ∑

τ∈�
∫
τ

∑
p+q=2

(2
p

)
(Dp

s1
Dq

s2
gi)

2ds1ds2 with Dp
s1

being the pth-order
derivative in the direction s1, s = (s1, s2). We also need to impose some linear constraints on the spline
coefficients a, Ha = 0, such that the smoothness requirement of the splines are met. Examples of the
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H matrix can be found in Yu and others (2020). The minimization problem can also be converted to a
conventional unrestricted penalized regression problem (Zhou and Pan, 2014).

2.2. Supervised functional principal component analysis with failure time data

Up to this point, we have discussed a specific type of bivariate spline basis over triangulation to approximate
the imaging data Zi(s). However, the projection of the functional data Zi(s) onto the corresponding basis
functions may not be associated with the failure time. Thus, under the supervised framework, we aim to
allocate a specific set of orthonormal basis functions φ = (φ1,φ2, . . .), i.e., ||φ|| = 1, 〈φk ,φk ′ 〉 = 0 for
k < k ′, such that Q(φ) is maximized,

Q(φ) = θvar(〈Z,φ〉)+ (1 − θ)cov2(log(T̃), 〈Z,φ〉)
||φ|| , (2.1)

for 0 < θ ≤ 1. The orthonormal basis function φ is called the supervised functional principal components
(sFPCs). Note that when θ = 1, (2.1) is equivalent to the conventional FPCA method. The rationale
for using a squared covariance term is 2-fold: (i) it ensures that this term is always positive and (ii) it
facilitates the eigenvalue decomposition process discussed next. The optimal value of θ can be estimated
by conducting cross-validation on a user-specified grid in (0, 1], where it can be chosen to maximize the
prediction performance.

Due to the presence of right-censoring, the covariance function needs to be adjusted by using inverse
probability censoring weights (IPCW). For an ith observation, the IPCW can be expressed as wi = �i

Ĝ(log(T̃i))
,

where Ĝ(t) = P(log(C) > t), i = 1, . . . , n (Van der Laan and Robins, 2003; Welchowski and others,
2019). Under the assumption of independent censoring, the cumulative censoring distribution can be
estimated with the Kaplan–Meier estimator. The covariance term can then be estimated by,

cov(log(T̃), 〈Z,φ〉) = 1

n

n∑
i=1

wi〈Zi,φ〉(log(T̃i)− T ),

where T = 1
n

∑n
i=1 wi log(T̃i).

We now discuss an eigenvalue decomposition method for estimating the set of supervised FPCs (sFPCs)
to accommodate imaging data with irregular boundaries and/or interior holes. We first start with a set of
bivariate spline basis approximation over triangulations defined in Section 2.1 and rewrite {Zi(sj) =
aT

i B(sj)}J
j=1, where B(sj) denote the column vector (B1(sj), . . . , BK(sj))

T . Suppose each function φk(s) in
(2.1) has an expansion φk(s) = γ T

k B(s), then such set of coefficients, γ k = (γk ,1, . . . , γk ,K)
T , will serve as

surrogate for identifying the sFPCs. The empirical score can thus be written as 〈Zi,φ〉 = γ T Mai = γ T Mi,
where M(k , k ′) = 〈Bk , Bk ′ 〉, and γ = (γ 1, . . . , γ K)

T . The variance of the scores can then be estimated
empirically as var(〈Z,φ〉) = 1

nγ
T MaT aMγ . The empirical covariance function, on the other hand, can

be written as cov(Y, 〈Z,φ〉) = 1
nγ

T MaT (Y ◦ w), where Y = ((log(T̃1)− T ), . . . , (log(T̃n)− T ))T is the
vector of demeaned outcome measures, with w = (w1, . . . , wn)

T denoting the vector of IPCW weights,
and (a ◦ b) the element-wise multiplication between a and b.

Then, we can reconstruct the objective function in (2.1) as,

Q(φ) = γ T Uγ
γ T Mγ

, (2.2)

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/24/2/358/6357844 by guest on 05 D

ecem
ber 2024



Prediction using mammogram data with irregular boundary 363

where

U = θ

n
MaT aM + 1 − θ

n2
MaT (Y ◦ w)(Y ◦ w)T aMT .

Note that maximizing (2.2) is equivalent to maximizing, δT (M−1/2)T UM−1/2δ, subject to δTδ = I, where
δ = M1/2γ . We can then estimate δ1, . . . , δK
 by finding the leading K 
 eigenvectors of the matrix
(M−1/2)T UM−1/2. As a result, we are able to estimate γ̂ k = M−1/2δk , and consequently the sFPCs as
φ̂k(s) = γ̂

T
k B(s) for s ∈ �, k = 1, . . . , K 
. Note that φ̂k(s) is guaranteed to be orthogonal because of the

eigenvalue decomposition algorithm.

2.3. Survival analysis incorporating the imaging data

In this subsection, we will introduce the linkage between sFPCA and survival analysis. Given the set of
supervised FPCs, we are able to obtain the scores of the ith image using inner product as ξ̂i,k = 〈Ẑi, ̂φk〉,
k = 1, . . . , K 
. Note that Ẑi(s) ≈ âT

i B(s), for s ∈ �. If J is sufficiently large, the inner product can also be
approximate by

∑J
j=1 Ẑi(sj)φ̂k(sj)A(sj), where A(sj) is the area of the pixel sj. With a set of demographic

predictors xi of length P×1 and the set of estimated scoreŝξ i = (̂ξi,1, . . . , ξ̂i,K
 )
T , we can write the survival

distribution at time t as,

S0(t)
exp(αT xi+βT

̂ξ i) ,

under the proportional hazard assumption, where S0(t) = exp(− ∫ t
0 h0(u)du)with h0(t) being the baseline

hazard function, and α = (α1, . . . ,αP)
T , β = (β1, . . . ,βK
 )

T are the regression coefficients.

3. SIMULATION STUDIES

In this section, we will describe our simulation setup and examine the finite sample performance of the
proposed method. We first simulate K = 3 2D basis functions from tensor products of univariate Legendre
polynomials basis on [0, 1]×[0, 1] under the resolution of 40 × 40. We restrain 921 pixels to fall inside the
domain� formed by a circular boundary, similar to the mammograms in our motivating application. The
2D basis functions, ψ = (ψ1,ψ2,ψ3)

T , are weighted by random factors to ensure orthonormality (Happ
and Greven, 2018). We further simulate the individual-specific scores λi = (λi,1, λi,2, λi,3)

T with mean 0
and covariance of diag(10, 8, 4). Given the orthonormal basis functions and scores, the individual-specific
images are generated from the model:

Zi(s) = μ(s)+
3∑

k=1

λi,kψk(s) , s ∈ � ,

where μ(s) = 0 without loss of generality. We illustrate these basis functions with irregular boundaries
in Figure S3 of the Supplementary material available at Biostatistics online.

We consider a proportional hazards model in this simulation study where,

hi(t) = h0(t) exp
{ ∫

s∈�
c(s)[Zi(s)− μ(s)]ds

}
.

We aim to investigate two scenarios for the image data coefficient. Under Scenario 1, we set c(s) = ψ3(s),
such that the hazard over time only depends on the third basis function. Under Scenario 2, we set c(s) =
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Fig. 2. Boxplots for the estimated integrated area under the receiver operating characteristic (ROC) curve (AUC)
and integrated Brier scores (BS) with FPCA and supervised FPCA under simulation Scenario 1, with one and two
FPCs/sFPCs, respectively.

0.25ψ1(s) + 0.5ψ2(s) + ψ3(s), such that the hazard over time is effected by a linear combination of all
three basis functions. We set the maximum time to the end of the study to be 15 years. The baseline hazard
function is assumed to follow a Weibull distribution h0(t) = κρ(ρt)κ−1 with increasing risk over time,
where we set κ = 2 and ρ = 0.16. The survival time Ti is generated from the inverse of the cumulative
hazard function H −1

i (u), where u ∼ unif (0, 1). We have assumed the independent censoring scheme in
this simulation study, where Ci ∼ unif (0, Cmax), with Cmax set at a value such that the % of being censored
by the end of the study is approximately 30%.

We have simulated 400 individuals per data set, of which 300 are used for training the model and 100
are used as validation to avoid over-optimism. Within the training data set, the tuning parameter θ was
chosen by conducting a 5-fold cross-validation on a grid from 0.001 to 1, with an increment of 0.111. We
considered 80 triangles and degree d = 2 and r = 1 polynomial in this simulation study.

Figure 2 shows the prediction performance, repeated over 100 simulation runs, under Scenario 1 for
the image coefficient c(s) = ψ3(s). The prediction performance has been assessed in terms of both the
model discrimination and calibration, represented with the integrated area under the receiver operating
characteristic (ROC) curve (AUC) (Uno and others, 2007) and integrated Brier scores (Graf and others,
1999; Gerds and others, 2008). For a fair comparison, we constrain the sFPCA and conventional FPCA
to take on the same number of basis functions (1 and 2). Some important observations can be gathered
by looking at Figure 2. First, we observe that the sFPCA retains a higher integrated AUC and lower
BS in general, as compared to the conventional FPCA. Second, we can see that the performance of
the conventional FPCA did not improve with the increase in the number of FPCs. While the prediction
performance improved under the sFPCA method with increased number of sFPCs used. This aligns with
our expectation under Scenario 1, since the FPCA will not pick up the effect rising from the third basis
function that is associated with the hazard. The sFPCA, on the other hand, should be able to allocate the
set of basis functions that are ordered by association with the failure time.

We further investigated the gain in prediction performance for the sFPCA method by plotting the
first sFPC against the conventional FPC from a randomly selected simulation run. Figure S4 of the
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Supplementary material available at Biostatistics online shows the side-by-side plot of the first sFPC vs.
FPC, where these were further compared with the true basis functionψ3(s) under scenario 1. It is apparent
that the first basis of sFPCA mimics the true basis fairly well, while the conventional FPCA retains the
appearance of the basis function that explains the most variation, ψ1(s).

Additional results under Scenario 2 are displayed in Figure S5 of the Supplementary material available
at Biostatistics online. Similar conclusions can be drawn here as to Scenario 1. However, because the true
image coefficient c(s) is now a linear combination of all three basis functions, we do see improvements in
the performance of the conventional FPCA with increased number of FPCs used. The general conclusion
still remains valid, where the sFPCA outperforms the conventional FPCA, regardless of the number of
basis functions used.

Software in the form of R code, together with a sample input data set and complete documentation is
available on the github repository (https://github.com/jj113/Supervised-Triangulation).

4. THE JOANNE KNIGHT BREAST HEALTH COHORT AT SITEMAN CANCER CENTER

The motivating problem arose from the Joanne Knight Breast Health Cohort at Siteman Cancer Center,
Washington University School of Medicine in St. Louis. Women were recruited in St. Louis, MO, from
November 2008 to April 2012, and have been followed through October 2020. Upon recruitment, the
breast cancer risk factors, mammographic breast density, and blood markers in a diverse population of
women undergoing routine mammographic screening were documented. Recruited women are followed
and recorded for pathology review confirmed incidence of breast cancer. In this analysis, we focused on
the nested case–control study composed of 785 women who had a full field digital craniocaudal (CC)
view mammogram available at the baseline. Individuals who had a diagnosis of breast cancer within the
first 6 months since recruitment have been excluded. Of the 785 women, 246 have been diagnosed with
breast cancer prior to the end of follow-up.

The set of mammogram imaging data were preprocessed before they were analyzed. As can be seen
in an example presented in Figure S6(a) of the Supplementary material available at Biostatistics online,
the original images of breast area are of distinct size and position within the mammograms for different
individuals. To minimize the noise caused by this issue, we follow the approach proposed in Lee and
Nishikawa (2018, 2019). We first segmented the breast area using a tight rectangular box, followed by soft
tissue and label stamp removal procedures for parts outside of the breast region. Then, we resized each
mammogram to 500 × 800 pixels using bicubic interpolation. The result of such preprocessing procedure
is illustrated in Figure S6(b) of the Supplementary material available at Biostatistics online, where we can
see that the breast areas are well matched. As such, the pixel intensity can be well averaged between the
mammogram images for the left and the right breast as has often been done for the mammogram density
in the literature.

We consider the Cox proportional hazards model in this analysis,

hi(t) = h0(t) exp
{
α1agei + α2weighti + α3heighti +

∫
s∈�

c(s)[Zi(s)− μ(s)])ds
}

(4.3)

= h0(t) exp
{
α1agei + α2weighti + α3heighti + βT ξ̂ i

}
, (4.4)

where the baseline age, weight, and height are the demographic variables. The coefficient function c(s)
represents the effect of the demeaned mammogram image Zi(s) on the hazard function. Note that because
Zi(s) = μ(s) + ∑K∗

k=1 ξi,kφk(s), s ∈ �, the coefficient function can also be rewritten in the form of
c(s) = ∑K∗

k=1 βkφk(s) due to the orthogonality of φk(s), where the coefficients for the corresponding K 
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Table 1. Estimated median 5-year integrated receiver operating characteristic (ROC) curve (AUC) and
integrated Brier Score (BS), with the standard error in parentheses, under the 10-fold cross-validation
with benchmark model, and the inclusion of conventional and supervised FPC scores.

Benchmark FPCA sFPCA

AUC BS AUC BS AUC BS

Age 0.568 (0.108) 0.065 (0.018) — — — —
Age + ψ — — 0.627 (0.100) 0.068 (0.019) 0.657 (0.113) 0.066 (0.018)
Age + weight 0.596 (0.132) 0.064 (0.017) — — — —
+ height
Age + weight — — 0.639 (0.091) 0.065 (0.019) 0.694 (0.104) 0.065 (0.018)
+ height + ψ

supervised scores are denoted by β = (β1, . . . ,βK
 )
T . The proportional hazards assumption was deemed

reasonable upon formally inspecting the Schoenfeld residual plot for each of the baseline covariates.
In this analysis, the mammogram images and sFPCs are estimated as a linear combination of the

bivariate spline basis functions of degree d = 3 and smoothness r = 1 defined over 115 triangles as shown
previously in Figure 1. The number of triangles is chosen such that the breast area is well covered by the
triangulation. Additional sensitivity analysis with the decreasing and increasing number of triangles can
be found in the Supplemental Material. We have conducted a 10-fold internal cross-validation to avoid
over-optimism in the prediction performance. The tuning parameter θ was chosen from a nested 5-fold
cross-validation with fine increments on the grid (0, 1]. For each of the outer 10-fold cross-validation,
prediction performance under several submodels was recorded. As a first pass of visualizing the results, we
have randomly picked 20 individuals, 10 of which have been diagnosed with breast cancer before the end
of the follow-up. Their estimated Score 1 vs. Score 2 under both the conventional and supervised FPCA
are illustrated in Figure S10 of the Supplementary material available at Biostatistics online. The greater
distinction between the cases and noncases under the supervised framework suggests that accounting for
the covariance with the failure time indeed facilitates a better risk discriminatory performance. Additional
illustration of the survival curve under the conventional vs. the supervised framework for two randomly
chosen individual in the cohort can be found in Figure S11 of the Supplementary material available at
Biostatistics online. The overall model performance will be formally assessed next.

To achieve a benchmark, we first estimated the 5-year integrated AUC and BS without including any
conventional FPC or sFPC scores; see the first column of Table 1. Next, we assessed the prediction
performance when we add in the conventional and supervised FPC scores. We propose a 2D grid search
procedure for (θ , K 
) in the real data analysis. We start with one sFPC (K∗ = 1), then add new sFPC
one by one. For a given value of K∗, we select an optimal θ̂ (K∗) by maximizing AUC, and the maximum
is denoted as ÂUC(θ̂(K∗)). We stop adding new FPCs if AUC does not improve significantly, that is,
{ÂUC(θ̂(K∗ + 1))− ÂUC(θ̂(K∗))}/ÂUC(θ̂(K∗)) < ε, where ε is a threshold. We set ε = 10−3 in the real
data analysis. In this analysis, the number K 
 varied slightly across different folds with a mean value of
10. From Table 1, we see that both the unsupervised and supervised FPCA method, on average, achieved
higher 5-year integrated AUC as compared to the benchmark study. Of note, the sFPCA method retained
the best prediction performance (AUC = 0.694) in all sub-models, compared to the conventional FPCA
(AUC = 0.639), and the benchmark model (AUC = 0.596). These results suggest that the addition of
functional scores can provide complementary information to the established risk factors for breast cancer.

Finally, we would like to give some insights on the estimated sFPCs and coefficient function. As our
primary goal in this article lies in extracting mammogram features to improve prediction accuracy, we will
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Fig. 3. The first two estimated functional principal components (first row) and supervised functional principal
components (second row) for a randomly chosen fold within the cross-validation.

first elaborate on the interpretation of the estimated sFPCs. The features are represented with the scores to
the sFPCs estimated by our proposed method, i.e., ξik = ∫

s∈� φk(s)[Zi(s)− μ(s)]ds. Based on the above
formula, the kth sFPC score ξik can be interpreted as the weighted average of the demeaned mammograms,
while the kth sFPC φk(s) serves as the weight. Figure 3 shows the first two estimated FPC (first row) and
sFPC (second row) from our cohort under a random train/test split in the cross-validation study. Here,
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Fig. 4. The estimated coefficient surface c(s) for the conventional FPCA (left panel) and supervised FPCA (right
panel) for one fold within the cross-validation.

because the red regions represent positive estimates and the blue regions represent negative estimates, the
corresponding scores can be interpreted as the weighted difference of demeaned mammograms between
the red and blue regions. We notice that the first FPC estimated from the conventional FPCA method
is close to the second sFPC estimated from the supervised FPCA method, telling us that the supervised
FPCA method also considers this pattern of risk to be correlated with failure time.

The coefficient function can be expressed as a linear combination of sFPCs: c(s) = ∑K∗
k=1 βkφk(s).

Figure 4 displays the estimated coefficient function from the same train/test split in the cross-validation
study from Figure 3. As shown in (4.3), the coefficient function can be interpreted as the effect of the
demeaned mammograms at location s ∈ � to the hazard function. As the estimated coefficient function
c(s) is positive in the red regions and negative in the blue regions, the hazard function is affected by the
difference of the demeaned mammogram at the red regions in comparison with the blue regions. Note that
the coefficient functions estimated with the conventional and supervised FPCA methods have overlaps
in some areas but are with different magnitudes of effect. The entire estimation, applied on our cohort
data set, took approximately 45 mins on a standard laptop (2.9 GHz Intel Core i7, 16 GB RAM) without
parallel computing.

5. DISCUSSION

With mammography being the primary breast cancer screening strategy, it is crucial to make full use of
the mammogram imaging data to better discriminate women who are at higher and lower future risk. The
primary objective of this study is to better capture the between-patient heterogeneity in the breast tissue
by extracting mammogram-based features, in addition to the well-established breast cancer risk factors, to
improve the risk prediction performance. We have proposed a supervised FPCA method in this article in
facilitating feature extraction while accommodating the irregular boundary issue posed by the mammogram
images using the bivariate splines that are piecewise polynomial functions over triangulations. These
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extracted features based on the sFPCA over triangulations are then ordered by their association with the
failure time. The finite sample performance of the proposed method has been assessed in our simulation
studies, where we demonstrate improved prediction accuracy over the conventional unsupervised FPCA
method. Note that as we increase the number of basis functions to infinity, the conventional FPCA would
eventually span the same space with the supervised FPCA. However, it is important to maximize the
signal-to-noise ratio in selecting the few that are most correlated with the survival time. Additionally, it is
often more desirable to have fewer features to aid the interpretation from a clinical and practical point of
view.

We further applied the proposed method to the Joanne Knight Breast Health Cohort at Siteman Cancer
Center. Our results show that the sFPCA over triangulation method can achieve the best discriminatory
performance as compared to the conventional FPCA and the benchmark model. These results suggest that
the mammogram-based features extracted with the proposed sFPCA method can provide complementary
information to augment the well-established breast cancer risk factors.Additionally, the coefficient surface
estimated from the sFPCA revealed patches of hot spots within the breast area. This may facilitate future
research in precision prevention, where individuals with parenchymal complexity concentrated in the
identified hot areas may be followed more closely, or offered chemoprevention or other interventions,
as these individuals may be at higher breast cancer risk. These interesting aspects on risk locations and
subsequent lesions remain to be explored.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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