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1 | INTRODUCTION

While conventional survival analysis methods assume all individuals to be susceptible to the event of interest given suf-
ficient follow-up time,'* advancements in medical science have led to a proportion of patients responding favorably to
treatment and experiencing no recurrence of disease until the end of a long follow-up time. These patients are described
as recurrence-free survivors. An effective treatment for certain types of diseases (eg, cancer, heart disease) may result in
some of these recurrence-free patients not presenting with recurrence for a sufficiently long period after the follow-up time
due to the disease reaching an undetectable and harmless stage. These survivors are termed as cured or non-susceptible.
The remaining patients are subject to recurrence of the disease and are described as susceptible. The population can then
be viewed as a mixture of susceptible and non-susceptible patients. Survival models that allow for a proportion of the
population to be cured are termed cure rate models. Cure models are instrumental in reliability and biomedical science
and commonly used in cancer clinical trials.
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The first cure rate model, known in the literature as the mixture cure rate model, was developed by Boag,* where the
author proposed a cure component to represent the proportion of patients not susceptible to recurrence of disease.® In
the mixture cure rate model, the population survival function of a time-to-event variable Y is given by

Spop() = po + (1 — po)Ssusc(),

where py is the cure rate and Sgysc(+) is @ proper survival function of the susceptible patients only. Interested readers may
refer to the research monographs by Maller and Zhou® and Peng and Yu’ for a book-length account on mixture cure rate
models. While the mixture cure rate model is the most used cure rate model, Chen et al® addressed several drawbacks
of the mixture cure rate model in developing the promotion time cure rate model. The promotion time cure rate model
introduces a latent competing risk variable, which follows a Poisson distribution, to describe the underlying biological
process producing the failure time. In this case, the population survival function is given by

Spop(Y) = e 11=S0))

where 7 represents the mean number of competing risks and S(-) represents the common survival function correspond-
ing to the promotion time of each competing risk. Rodrigues et al® proposed the flexible Conway Maxwell Poisson
(COM-Poisson) cure rate model which includes the cure rate models proposed by Boag* and Chen et al® as special cases
while allowing for both over-dispersion and under-dispersion. Rodrigues et al'® extended the COM-Poisson model by
introducing a natural destructive process to the original number of competing risks, while Borges et al'! introduced to
this destructive model a biological dependence between the initiated cells. The development of likelihood inference and
finding maximum likelihood estimates (MLESs) in cure rate models has been well studied, largely making use of the expec-
tation maximization (EM) algorithm. Interested readers may refer to Balakrishnan and Pal,'?'6 Pal and Balakrishnan,'”-20
Pal et al,?! and Majakwara and Pal,??> among others. A novel variation of the EM algorithm for the destructive weighted
Poisson cure rate model was developed by Gallardo et al?® This variation, which makes use of conditional distributions of
the missing data, allows the complete log-likelihood function to be split into simpler functions which may be maximized
independently.

In a practical scenario such that subjects are not monitored continuously but rather observed at discrete times, an
observed lifetime may be said only to lie in an interval.?* Though interval-censored data have been described extensively
in the literature, limited studies deal with interval-censored data in a cure rate setup. Banerjee and Carlin? extended the
model of Chen et al® to accommodate interval-censored data while considering spatial correlation and used Markov Chain
Monte Carlo methods to develop Bayesian inference. Covariate effects were introduced to the mixture cure rate model
under interval censoring and the EM algorithm was developed for this framework.?® Pal and Balakrishnan'® formulated
the EM algorithm for the COM-Poisson cure rate model parameters with interval censoring; see also Wiangnak and Pal.?’
Most recently, an efficient EM algorithm was formulated for the destructive shifted Poisson cure rate model under interval
censoring,?8

In this article, we extend the destructive cure rate model developed by Rodrigues et al'® to accommodate
interval-censored data assuming initial competing risks follow a negative binomial distribution.?® It is of particular inter-
est for practitioners to obtain accurate and precise estimates for the cure probability of subjects, as a high probability of
cure can inform a patient’s continued treatment, allowing them to avoid further unnecessary and potentially harmful
interventions. Similarly, a low probability of cure can help a clinician to decide on the need to develop adjuvant thera-
pies. In the context of public health applications, a child may be susceptible to death due to a number of risk factors, such
as poorly sanitized water or air pollution, poor nutrition of the mother while in utero, or inadequate access to medical
facilities. These factors can be viewed as working together to produce a quantity of competing risks of death to a child.
In this context, a cure to child mortality would involve reducing the competing risks through remedial measures such
as improved access to healthcare and nutrition for child-bearing women. It is therefore of interest for practitioners to
accurately assess the prognostic effect of demographic indicators when developing strategies to reduce risk of child mor-
tality. While most established parameter estimation methods for the destructive negative binomial cure rate model with
right censored data employ an EM algorithm with a profile likelihood approach (for the shape parameter of the negative
binomial distribution) which may result in inaccurate and imprecise estimates for cure rate, we aim to identify an effi-
cient estimation method that can provide accurate and precise cure estimates. To this end, we propose a novel stochastic
variation of the EM algorithm, called the stochastic EM (SEM) algorithm, to find the MLEs of the destructive negative
binomial cure rate model in the presence of interval censored data. To compare the SEM algorithm with the commonly
used EM algorithm, we also develop the steps of the EM algorithm since such an algorithm does not exist in the context
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of destructive negative binomial cure rate model with interval censored data. We show that the SEM algorithm easily
avoids calculation of complicated conditional expectations and hence allows simultaneous maximization of all model
parameters. We further show that the SEM algorithm results in more accurate and precise estimates of model parame-
ters, specifically those that are related to the estimation of cure rate. In addition, through a real data analysis, we show
the destructive mechanism when taken into account results in a better model fit.

The rest of this article is organized as follows: in Section 2, we present the destructive negative binomial cure rate
model under interval censoring and define the complete and observed log-likelihood functions. In Section 3, the steps of
the EM algorithm are formulated in detail, while Section 4 presents the steps of the SEM algorithm in detail and describes
the advantages of the proposed SEM algorithm over the EM algorithm. A Monte Carlo simulation study is presented in
Section 5 to compare the performances of the SEM and EM algorithms. In Section 6, the SEM and EM algorithms are
applied to real data on children’s mortality arising from the 2018 Nigeria Demographic Health Survey, illustrating both
the advantage of the SEM algorithm and the practicality of using a destructive model in this context. Finally, in Section 7
we summarize and discuss directions for future research.

2 | DESTRUCTIVE NEGATIVE BINOMIAL CURE RATE MODEL UNDER
INTERVAL CENSORING

Consider a practical scenario where an unobserved number of risk factors (also called competing risks or competing
causes) compete to produce an event of interest (eg, death or recurrence of a disease). For example, several malignant cells
are related to the occurrence of a cancerous tumor. However, the number of malignant cells produced by nature remains
unobserved. Similarly, in the context of child mortality, while a number of adverse environmental factors can act jointly
to produce a quantity of competing risks of death to a child, the quantity of fatal risks is not directly observable. Hence,
we term malignant cells or quantity of fatal risks as competing risks.

Let M be a random variable denoting the unobserved number of initial competing risks. Since M is unobserved, we
assume it to follow a negative binomial distribution with probability mass function (pmf)

L T@ m (g
AM =i 1= T tymi (1 ¥ o

> A+¢n)* ,m=0,1,2, ..., (1)

wheren > 0, ¢ > 0,and I'(-) is the complete gamma function. We call (1) as a negative binomial distribution with param-
etersr=¢ ! and p = % Suppose that an intervention takes place resulting in a quantity D(< M) competing risks
remaining active, each of which could bring about the event of interest with probability p. For example, after a patient
goes through a chemotherapy or a radiation session, it is expected that a certain number of initial competing risks will be
destroyed. Similarly, risk of death to a child may be decreased through environmental intervention. After the destructive
process, only D(< M) active competing risks are still capable of producing the event of interest. Consistent with the exist-
ing literature (see Rodrigues et al),!° we assume a common activation probability for each risk factor within a subject.
Later, to capture heterogeneity in the population we propose to vary the activation probabilities across subjects through
incorporation of subject-related characteristics or covariates. To model the destruction process of risk factors, we can asso-
ciate a Bernoulli random variable Xj, such that P(X; = 1) = p, to each competing risk M. Note that p denotes the activation
probability. The remaining quantity of competing risks not destroyed can then be modeled as

D= X1 +X+ ... + Xy, ifM>0,
0, ifM=o0.
Note that unlike the standard cure models that do not look at the destruction process of risk factors (see Pal),?° the pro-
posed approach allows a subject to be cured even in the presence of initial risk factors. For the cure rate model with the
pmf of the number of competing risks as in (1), the distribution of active risks D is given by

(¢! +d
PID = d:n, b, p] = s )< $np

d
—¢ g _
O 1+¢>np> 1+¢np)™® ,d=0,1,2, ... ,M. )

A detailed proof of (2) has been provided by Pal and Balakrishnan.!”
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Let W, represent the time taken for the ath active risk to produce the event. Consistent with the existing literature and
conditioned on D, the waiting times W,,a = 1,2, ... , D, are assumed to be identically and independently distributed with
a common distribution function F(t; 1), where 4 is an unknown set of parameters, and are also independent of D. Because
the number of active risks D and waiting times W, associated with each given risk are latent variables, one typically only
observes the minimum of W1, ... , Wp. To accommodate the presence of a cured proportion, the time-to-event or lifetime
is defined as

T= min{WO,Wl, ,WD},

where W is such that P[W,, = co] = 1. Utilizing the results of Rodrigues et al,'° the population survival function can be
expressed as

Spop(t: 1,0, A) = P(T > 1) = [1 + gmpF(t; )] ™" . ©)

For the sake of simplicity, we will use F(-) instead of F(-; A). Similarly, we will use S(-) instead of S(-; 1), where S(-; 1) =
1 — F(-; A). Note that S,op(-) is an improper survival function since lim,_,, Spop > 0. From Equation (3), the long-term
survival probability or the cure fraction is given by

Do = Spop(oo; ¢7 n,p, )v) = [1 + (l)}’]p] _¢_1. (4)

We note that the parameters in the negative binomial cure rate model in Equation (1) possess biological interpretations.
Parameter # is related to the mean number of initial competing risks, while ¢ accounts for the inter-individual variance
in the quantity of initial competing risks. To capture heterogeneity in the population, we bring in the effects of covariates.
For this purpose, we propose to use two sets of covariates, z; and zz, where z; is related to the initial number of competing
risks through the parameter # and z; is related to activation probability for each risk, with corresponding link functions

b

=¢%P1 and p = ,
1 P 1 + e%f:

where f; and B, represent vectors of regression coefficients. We note that the destructive negative binomial cure rate
model is not identifiable.!®* To circumvent this problem, we make sure that z; and z, share no common elements, and
an intercept term is excluded either from g; or from B,. Let y = (B;, B, 4, ¢, ) denote the vector of unknown parameters.
Depending on the specific needs of an application, it is straightforward to also relate another set of covariates to a suitable
component of 4.

2.1 | Form ofdata

We consider the scenario where true lifetimes are not exactly observed and are subject to interval censoring. Let T; denote
the ith subject’s true failure time (unobserved), fori = 1,2, ... , n, with n denoting the number of subjects in the study. To
develop an interval censoring scheme, let us assume the ith subject is observed at times Y; = (Yo, Y1) -+ » Yj-10)> Yjy)s
with 0 < Yo < Y1y < - - - < Yj) < 0. In practice, observation occurs only until either the event of interest has occurred
or the lifetime is right-censored. In the case that the lifetime is observed, the interval (Y;_,), Yj) is known to contain
T;, and we consider the lifetime to be interval-censored. If the ith subject’s failure time did not occur prior to the last
observation time, we consider the lifetime right-censored and may only conclude the lifetime is contained in the interval
(Yj(i), 00). We denote the observed data as Dgys = (I, 7, 6), where l = (I, L, ... , 1) such that

] {Yj_l(i), if lifetime is interval-censored,
i=

Yj(i)’ otherwise,

r= (1,7, ... ,Iy) such that

ri =

Y;y, iflifetime is interval-censored,
0, otherwise,
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6 = (61,62, ... ,6,) such that

5 {1, if lifetime is interval-censored,
=

0, otherwise.

2.2 | Observed and complete likelihood functions

Based on the observed data (I, r, 8), the observed likelihood function under non-informative censoring is given by

n
Lo |Daps) [ [(Spop(Yi-19) = Spop (Y)Y {Spop(Yjeo) } 7%,
i=1
while the observed log-likelihood function is given by
n
LW Dobs) & D [6:108 { Spop(Yj-1) = Spop(¥jn) } + (1 = 81108 Spop(Yji»)] - (5)
i=1
The complete data are denoted by Deomp = (I, 1, 6, M, D) which includes the observed data and the missing data, where
M= (M,M,, ... M) and D = (Dy,D,, ... ,D,) are the missing data. Following Yakovlev and Tsodikov,>' the joint
distribution of the complete data can be expressed as
S, i, 65, my, di) = f(Li, 11, 61| Dy = di)P(D; = di|M = m))P(M; = my). (6)
The second and third terms in the product above are well defined, and by the results of Treszoks and Pal,?® we have that

[l 1, 81Dy = dy) = [di{ S(Yj-109) — S(Yj(i))}]éi{S(l/j(i))}di_éi~ @)

Using (6) and (7), the complete data likelihood function may be defined as
n
Le(W|Deomp) = [ [£ i 7is 61 mi, i)
i=1
n
= Hf(Yj—l(i), Y, 61, my, d;)
i=1

= [[5i0) " P 1di{ S(Yj-1) — S(Y) 1P < Zl_i >P?"(1 —p)"

i=1 i

(L (o
F(@Hm! \1+¢n

) A+ )

The complete data log-likelihood function can then be written as

lc(Wchomp) =1(&) +(By) + L.(A) + K, ©))
where
(&) = Z{log[r(qu )] = 7" log(1+ ) + mlog } — nlogT (¢,
i=1 i

L(By) = Y {dilogpi + (m; - di) log(1 - py)},

i=1

L(A) = ) {(di = 8)1og S(Yj») + 6; 10g[S(Vj109) — S(¥jp)1}

i=1
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E= ( B d)), and K is a constant independent of model parameters, given by

‘ mi!
K= 2 {5,» log d; +log<m> - log(mi!)}. 9)

i=1

3 | EMALGORITHM

In this section, we present the construction of the EM algorithm to produce estimates of the parameters for the destructive
negative binomial cure rate model under interval censoring. The first step in implementing the EM algorithm3? requires
taking the conditional expectation of a complete data log-likelihood function, such as (8), given some proposed param-
eter values and the observed data. In the second step, the conditional expected complete data log-likelihood function is
maximized. While the traditional approach involves maximizing a complicated function consisting of numerous model
parameters, this approach can lack both computational efficiency and robustness with respect to initial values. The imple-
mentation of the EM algorithm proposed here is motivated by the works of Gallardo et al?* By using the conditional
distributions of the missing data to decompose the conditional expectation of I.(y|Dcomp) into three simpler functions
that can each be maximized independently, this formulation of the EM algorithm offers much greater efficiency.

Because taking the conditional expectation of the complete log-likelihood function in Equation (8) requires computing
E [log {F(Mi + qﬁ‘l)} | Dobs; y/] which has no closed form, simultaneous maximization of all parameters in Equation (8) is
challenging. A commonly used method to overcome this difficulty in computation is to use a profile likelihood approach,
in which the EM algorithm is performed and the observed data log-likelihood function value is calculated for a fixed set
of distinct admissible values of ¢p. The MLE of ¢ is the value for which the maximized log-likelihood function value is the
maximum. We present the necessary expressions for the EM algorithm using this profile likelihood approach.

Lety® = (£, g, 1%) be the estimate of y at the kth iteration, and let Q(y |y®) denote the conditional expectation
of l.(y|Dcomp) given the observed data and w®. Then by (8),

Qy ly™) = E[l.(&)|Dobs; w ™1 + Ell(B)|Dobs: w1 + Ello(1)| Dops; w®] + K*
= QY™ + QB Iy ™) + Qs (Al ™) + K7, (10)

with
n

7 ;. log(1+ ¢
Q™) = {Mgknoglf’;n _ log( ;dm)}

n
QBaly™) = Y {59 logp + W1 - B logt ~ p }
1

s

Q™) = ¥ { B - )10g S(¥j0) + 61 oglS(¥jo10) = S¥jo)] |

i—1

where ﬁgk) = E(D;|Dgps, ™), 1\7Il.(k) = E(M;|Dobs, w®), and K* is a constant independent of y. The following results will
be needed to compute the required conditional expectations.

Proposition 1. For the cure rate model with the pmf of the number of initial competing risks as in Equation (1),
the conditional distribution of M; — 6; given the observed data under interval censoring is given by

(11

{1 = piF(Yp)]
M; — 6i|Dops; @ ~ NB((,{)_1 + 6;, il P (¥ja) >

1+ ¢n;
A proof of Proposition 1 is provided in Section A2.1 of the Supplemental Material.

Proposition 2. For the cure rate model with the pmf of the number of active risks as in Equation (2), the
conditional distribution of D; — 6; given the observed data under interval censoring is given by

(12)

D; - 5i|Dobs;W ~ NB<¢_1 + 6, —d)rhpl ( J(l)) >

1+ ¢nip;
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A proof of Proposition 2 is provided in Section A2.2 of the Supplemental Material.
Applying the results of propositions 1 and 2, we can compute ng) and Ml.(k) as

1 pS(Yja)(A + i)
1+ ¢'1i(k)P§k)F (Yja)
{1= POF0) P+ ps)

ok
1+ ¢’1i( )PE "F(Yjq))

~k
D§)=5i+

WY = 5+

ez;iﬂz
1+ez;iﬂ2 )

The next step is to maximize Q1 (&|y™®), Q,(B,|w™®), and Q3(4|y™®) independently with respect to £, B,, and 4, respec-
tively. This can be done using readily available optimization routines in R such as the “optim()” function. In this regard,
interested readers may also look at new optimization techniques studied by Pal and Roy.3*3> The expectation and max-
imization steps are then repeated until a specified convergence criterion is satisfied. The steps of the EM algorithm can
be summarized as follows:

Step 1 (Expectation step or E-step):

Fori=1, ... ,n, compute ng) and J\N/Ilfk) given parameter estimates y® with a fixed value of ¢.

Step 2 (Maximization step or M-step):

Given D" = (5(11‘), ,55:‘)) and M"Y = (I\N/Iik), ,A7I,(1k)), find y that maximizes Equation (10) in relation to f;, f,,
and 4, respectively, to obtain an improved estimate y*+D,

Step 3 (Iterative step):

The E-step and M-step are repeated until a suitable convergence criterion is met. For this purpose, we use the relative
W ’ as stopping criterion with a tolerance value of 1074,

To apply the profile likelihood approach in the EM algorithm, we first select an initial grid of distinct admissable
values of ¢p. We then employ the EM algorithm for each fixed value of ¢ and compute the observed log-likelihood for each
estimate. If the log-likelihood is monotone decreasing (increasing), we decrease (increase) the grid and apply the EM
algorithm to all prospective values until a maximum log-likelihood value is achieved. The value of ¢ which attains the

maximized log-likelihood function value and corresponding estimates of other model parameters are taken as the MLEs.

where 7; = %P1 and p; =

difference in successive values of the estimates, |

3.1 | On the convergence of the EM algorithm

Following the approach of Wu,*¢ for parameters y ¢ W, we assume the following conditions hold:

(i) W is a subset in d-dimensional Euclidean space R
(i) Yyo = {y e ¥ : Ly(y) > Lo(y?)} is compact for any L,(y?) > —co.
(iii) L,(y) is continuous in ¥ and differentiable in the interior of W.

By consequence of conditions (i)-(iii), we have {L,(yP)} 50 is bounded above for any y® e W. Taking this conse-
quence in conjunction with the observation that any EM sequence {y®} increases the likelihood, we conclude that
{LO(q/(P))} converges monotonically to some L}. Further, we cite that the objective function Q(y’|y), as in Equation (10),
is continuous in both y and y’ for the case of a curved exponential family. Because the negative binomial distribution is
a curved exponential family for fixed r = ¢p~1, we use the results of the following theorem developed by Wu,*® which we
state without further proof.

Proposition 3. Suppose Q(y’'|y) is continuous in both y and y’'. Then all the limit points of any instance
{wP} of the EM algorithm are stationary points of L, and L,(y®P’) converges monotonically to L} = Lo(y*) for
some stationary point y*.

4 | SEM ALGORITHM

While the EM algorithm as formulated will converge to a stationary point by proposition 3, a well-known drawback to the
EM algorithm is that convergence to a global or even a local maximum is not guaranteed. As with other Newton-based
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methods, such as the Newton Raphson method, the resulting point of convergence may be a saddle point close to the
starting value rather than a maximum. Due to the stochastic nature of the SEM algorithm, it is free of this saddle point
problem.” Because the pmf of the missing data given Dgops and y (provided in Section A2.1 of the Supplemental Material)
is positive for all y ¢ W, a random sequence {y®} produced by the SEM is an irreducible, homogeneous Markov chain.
Further, if {y®} is ergodic, then it converges to the unique stationary probability distribution of this Markov chain.?
To verify convergence, it is suggested to inspect a trace plot of the sequence of estimates versus the iterations for ran-
dom fluctuations.*® SEM estimators are demonstrated to be efficient under some suitable regularity conditions. The SEM
algorithm is also known to be insensitive to starting values and performs well for small sample sizes. Further, unlike the
EM, the SEM does not require computation of complicated conditional expectations and hence allows simultaneous max-
imization of all parameters.?>*° These benefits lead us to consider the SEM algorithm as the proposed estimation method
for the destructive negative binomial cure model under interval censoring.

In the SEM algorithm, the expectation step (E-step) of the EM algorithm is replaced by a stochastic step (S-step), in
which each missing datum in the complete log-likelihood function is replaced by a value randomly generated from the
conditional distribution of the missing data given the observed data and current estimates of the parameters.3®* The
S-step synthesizes a pseudo-complete data set, comprised of the observed data and randomly generated substitutes for the
missing data, then the maximization step (M-step) involves maximizing the complete log-likelihood function based on
the complete sample. Considering the complete data to be Deomp = (I, 1, 6, M, D), the development of the SEM algorithm
makes use of Propositions 1 and 2 to randomly generate the missing data, M and D, given the observed data and current
parameter estimates.

4.1 | Steps of the SEM algorithm

Step 1 (Initial guess): Start with an initial guess of the parameter y© = (cf(o), /3;0), 1(0)) and the observed data Dygps.
Step 2: Stochastic step or S-step: Replace each missing datum, m; and d;,i=1,2, ... ,n, in the complete data
log-likelihood function I.(y|Dcomp) by a value randomly generated using the conditional distributions in Equations

(11) and (12). Namely, generate m; — &; from a negative binomial distribution with parameters r = ¢! +6; and p =
on;[1-piF(Yj;))]

Tean , where the parameters are evaluated at y = w(©. Similarly, generate d; — 6; from a negative binomial dis-

. . . 1.S(Y . .

tribution with parameters r = ¢! 4+ 6; and p = %, with parameters taking value y = y©. Denote the generated
_ ~0 . o .

values of m; and d; by mi(o) andd; ,respectively, foralli =1,2, ... ,n. Replace each unobserved m; and d; in l.(y/| Dcomp)

~ ~(0) . . .
by m® and d; | respectively, and denote the resulting function as

Ly m®,d") = L(&m®) + 1(B m®,d") +1(1:d") + RO,
where
L(&m”) = ;{log [ (#71+ )] = 97 g1+ by + " tog P } — nlog(T(¢™).
L(Bpm®.d") = 3 {d" 10gpi+ (A - 4" ) tog1 - po }.
i=1
N NG
le(A;d O)) = { <di - 5i> log S(Yj) + &; log [S(Yj—10)) — S(Yj@)| },
i=1
and
o = ~(0) PRI R
K© = Z silogd;  + log - o |~ log(m!)
i=1 dro (m® - ")

s A ~(0) . ~ ~(0) .
with m® and d denoting the vectors of m® and d;  values, respectively.
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.. ~ (0) O . . . . .
Step 3 (Maximization or M-Step): Maximize lc(y/; m®,d ) with respect to y to find an improved estimate of y. This

. c N . ~(0) 50 . ~(0) .
is a matter of maximizing I (&; m(o)) with respect to &, I.(B,; m,d ) with respect to B,, and I.(4;d ) with respect to
1, independently. Denote the improved estimates of £, B, and 4 by €7, ﬁgl), AW, respectively, where

EW = arg max I.(&; r?l(o)), ﬂ(zl) = arg max l.(B,; ﬁz“”,&“”) and A% = arg max lc(z;&(‘”).
£ ) )
Since the missing data was replaced in the S-step, the M-step may be implemented by maximizing the complete data
log-likelihood using standard optimization techniques such as the “Nelder-Mead” method readily available in R software.

Step 4 (Iterative step): Using the updated estimate y® = (&, ,B(ZD, AD) from Step 3, repeat steps 2 and 3 R times to
obtain sequence y®,k = 1,2, ... , R. While this sequence of estimates does not converge to a single point, the resulting
Markov chain rapidly converges to a stationary distribution, given some regularity conditions are satisfied.*?

Step 5 (Burn-in and MLE): The stationary distribution of estimates is achieved after a sufficiently long burn-in period
of length r, and the MLE of y can be obtained by discarding the first r iterations. With the remaining R — r iterations, the
MLE may be obtained by averaging over the estimates (a method we will denote as “MLE (mean)”) or by calculating the
observed data log-likelihood function in Equation (5) for each w®,k =r,2, ... , R, and taking y® as the MLE for which
the observed log-likelihood function is maximized (a method we will denote as “MLE (max)”). The length of the burn-in
period is dependent on the form of the data, and as pointed out by Nielsen,* greater amounts of missing data can lead
to longer necessary burn-in periods. However, with moderate missing data rates, a burn-in period of 100 iterations and
an additional 1000 estimates are sufficient to estimate the parameters.*** It is recommended to inspect a trace plot to
validate the sufficiency of the burn-in period and adjust the length of the burn-in period as needed.

5 | SIMULATION STUDY

In this section, we evaluate the performance of the proposed EM and SEM algorithms. We first compare the efficacy of
the proposed algorithms to direct maximization of the log-likelihood function (DM) with regards to parameter recovery.
Demonstrating the proposed algorithms produce estimates with greater accuracy and efficiency than direct maximization,
we further discriminate between the performance of the EM and SEM algorithms by comparing the resulting maximized
log-likelihood values after the same generated datasets and initial values were used with both estimation methods. Finally,
we consider the performance of the EM and SEM algorithms under model mis-specification. This empirical study par-
tially mimics the real melanoma dataset which was used for illustrative purposes by Rodrigues et al'® using covariates of
treatment group (0: treatment, 1: placebo) and tumor thickness (in mm).

5.1 | Datageneration

To simulate covariate data we first generated treatment group, denoted by z;, from a Bernoulli distribution with probability
of success 0.5. Noting that tumor thickness values in the melanoma data set range from 0.1 to 17.42 mm, we generated

tumor thickness values, denoted by z,, from a uniform U(0.1, 20) distribution. Parameter # is linked to treatment group
exp(Bg+B22)

1+eXP(ﬂ20+ﬂ21zz) ’

corresponds to parameter # in order to avoid problems with identifiability in the sense of Li et al*® Because a higher

cure rate, and consequently a smaller value of #, is expected for the treatment group than the placebo group, a positive
value of fy; is chosen, f1; = 1, to be consistent with this expectation. To select regression parameters for p, we propose
a proportional increase in activation probability as tumor thickness increases and select values f,y = —2, f; = 0.1 in
accordance with this observation. We assume the waiting time W to follow a Weibull distribution with shape parameter

% and scale parameter % and density function given by
1 2

only, using # = en%, and parameter p to tumor thickness only, using p = Only one regression parameter

fO=ft;1) = %(Ezt)ﬂe‘wﬁ, t>0,A >0,4, > 0. 13)
1

Note that one can also use any other parametric distribution for W or choose to use a semi-parametric or a completely
non-parametric model for W. Random censoring was introduced through censoring time C following exponential
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distribution with rate a, where a can be chosen to achieve a desired censoring proportion. We chose « to be 0.05
which resulted in approximately 60% cured observations and 70% censored observations. To generate the observed data
(i, 1, 6:),i=1,2, ... ,n, we execute the following steps:

Step 1: Generate censoring time C;, competing risks M; ~ NB(d)‘l, % > and damaged cells D;|M; = m; ~ Bin(m;, p;);
Step 2: If D; = 0, then (I, 1, 6;) = (C;, 0, 0) and data generation is complete.
Step 3: If D; > 0, generate times to event due to each non-eliminated risk, W;,j = 1,2, ... ,D;, from the considered

Weibull distribution with parameter 4;
Step 4: SetY; = min{W1, W, ... ,Wp,};
(a) IfY; > Cy, then (I, 11, 6;) = (Cj, 0, 0) and data generation is complete.
(b) IfY; < G, set 6; = 1 and generate l; from U(0, 1) distribution and l; from U(0.2, 0.7) distribution. Construct
intervals (0, I1;], (I, Lii + L], ... , (lii + k X I, 0],k = 1,2, - -, and select (I;, ;) that satisfies [; < Y; < r;.

The choice of the lifetime parameter 1 was obtained by equating the mean and variance of the underlying Weibull
distribution to fixed values. For this purpose, we considered two different choices for the variance as 1.5 and 3 with a
fixed mean value of 5, which yields two suitable choices for 1. We also choose two different true values of ¢ as 0.5 and 0.8.
These specifications for A and ¢ give way to four parameter settings which we denote as y; = (1,-2,0.1,0.215,0.183,0.5),
v, =(1,-2,0.1,0.215,0.183,0.8), y; = (1,-2,0.1,0.316,0.179,0.5), and y, = (1,-2,0.1,0.316,0.179, 0.8). Sample sizes
of both n = 200 and n = 300 are used in order to observe the performance of the algorithms under small and moderate
sample sizes. This study applies the algorithms proposed in Sections 3 and 4 to interval-censored data from the destructive
negative binomial cure rate model, simulated using the parameters and data generation methods outlined above. The
standard errors of the estimates are obtained by inverting the observed information matrix. All simulations are done using
the R statistical software (version 4.2.1) and all results are based on M = 250 Monte Carlo runs. Computational codes for
both EM and SEM algorithms are available in Section A1l of the Supplemental Material.

5.2 | Parameter estimation

To find an initial guess for the model parameters, we employ the following selection method: for a given parameter I,
initial guess Iy is generated such that I'y; = T' + U(0, 0.2)|T7|. To employ the profile likelihood approach to estimate ¢
in the EM algorithm, we select the initial grid for ¢ as {0.05,0.1, ... ,2.05}. To implement the SEM algorithm, we first
inspect trace plots for each parameter setting and identify the number of SEM iterations R of 1100 and burn-in period
of r = 100 iterations to be sufficient. We also check both methods, MLE (mean) and MLE (max), for estimating model
parameters. However, the MLE (mean) method is seen to produce large bias in the estimates for ¢, irrespective of sample
size. Consequently, we use the MLE (max) method to select parameter estimates for all SEM results. Now, the way the
SEM algorithm is developed and the SEM estimates are obtained, that is, through the use of the MLE (max) method,
it is ensured that the SEM estimates results in the highest log-likelihood value. Direct maximization of the observed
log-likelihood function (DM) is used to produce parameter estimates as follows: we select initial guess for parameters as
outlined above, then maximize (5) using the “optim()” function in R. We repeat this process 50 times to produce 50 sets
of estimates, then choose as the MLE the set which yields the largest observed log-likelihood function value.

Tables 1-4 present the simulation results when the true value of y is taken as y;, y,, w3, and y 4, respectively. We first
note that for all parameter settings, SEM produces smaller biases and root mean square errors (RMSEs) of the parameters
associated with the cure probability, that is, p11, f20, f21, and ¢. We also note that regardless of the true value of ¢, the DM
and EM approaches overestimate ¢. Though the RMSEs of DM- and EM-produced ¢ estimates are high in all settings, this
may be attributed to the relative flatness of the log-likelihood function with respect to ¢, as shown in Figure 1 for sample
size 200 and setting y = y;. As compared to the SEM approach, larger biases and RMSEs of both DM- and EM-produced
¢, b1, and B, estimates indicate that the SEM algorithm performs better than both the EM algorithm and direct maximiza-
tion of the observed log-likelihood with regard to both accuracy and precision. Further, the profile likelihood method used
in the EM algorithm precludes the computation of standard error for ¢ estimates through the inversion of the observed
information matrix, and the treatment of ¢ as fixed leads to underestimation of the standard error for other parameters.
This underestimation is seen in the coverage probabilities of the asymptotic confidence intervals, where undercoverage
is most prominent for the lifetime parameters 4; and 4,. In all settings, the SEM approach produces empirical coverage
probabilities that are close to the nominal level for the regression and lifetime parameters, with only slight undercoverage
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TABLE 1 Estimates, standard errors (SE), bias, root mean square error (RMSE), and 95% coverage probabilities (95% CP) under setting

V=Y
Approach

DM

EM

SEM

200

300

200

300

200

300

Parameter

pun=1
Pao =2
oy = 0.1
4y = 0215
4, =0.183
=05
pu=1
Pao =2
b =01
A = 0215
A, =0.183
=05
=1
Pao =2
B =01
A = 0215
A, = 0.183
b =05
pn=1

ho = —2
p1 =01
A = 0215
4, = 0.183
$=05
pun=1
Pao =2
f =01
4y = 0215
4, =0.183
=05
pu=1
Pao =2
b =01
A = 0215
Jy = 0.183

=05

Estimate (SE)

1.150 (0.505)
—2.397 (0.840)
0.254 (0.230)
0.202 (0.029)
0.181 (0.011)
1.224 (1.797)
1.126 (0.404)
—2.122(0.504)
0.137 (0.075)
0.207 (0.025)
0.181 (0.010)
1.018 (1.484)
1.086 (0.342)
—2.150 (0.593)
0.150 (0.081)
0.211 (0.022)
0.181 (0.006)
1.039 (-)
1.032 (0.272)
—2.060 (0.439)
0.120 (0.042)
0.209 (0.018)
0.182 (0.005)
0.866 (-)
1.061 (0.471)
—2.132(0.572)
0.112 (0.069)
0.211 (0.031)
0.182 (0.012)
0.582 (1.581)
1.009 (0.351)
—2.053 (0.421)
0.104 (0.049)
0.213 (0.024)
0.184 (0.009)

0.431 (1.207)

Bias
0.150
—0.397
0.154
—0.013
—0.002
0.724
0.126
-0.122
0.037
—0.008
—0.002
0.518
0.086
—0.150
0.050
—0.004
—-0.002
0.539
0.032
—0.060
0.020
—0.006
—0.001
0.366
0.061
—0.132
0.012
—0.004
—0.001
0.082
0.009
—0.053
0.004
—0.002
0.001

—0.069

RMSE 95% CP
0.542 0.960
1.610 0.968
1.025 0.940
0.033 0.872
0.011 0.884
1.988 0.896
0.440 0.936
0.572 0.976
0.122 0.960
0.026 0.908
0.009 0.924
1.619 0.932
0.412 0.944
0.752 0.956
0.249 0.948
0.026 0.880
0.010 0.784
1.473 =
0.325 0.920
0.409 0.976
0.073 0.944
0.023 0.860
0.008 0.824
1.214 =
0.370 0.944
0.587 0.948
0.062 0.964
0.023 0.964
0.008 0.968
0.680 0.824
0.237 0.968
0.409 0.944
0.036 0.932
0.021 0.928
0.006 0.960
0.432 0.876
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TABLE 2 Estimates, standard errors (SE), bias, root mean square error (RMSE), and 95% coverage probabilities (95% CP) under setting

V=Y,
Approach

DM

EM

SEM

200

300

200

300

200

300

Parameter

pun=1
P =-2
fn =0.1
A = 0.215
J, = 0.183
=038
pu=1
Bao =2
pn =01
Jy = 0215
A, =0.183
$=08
pu=1
Bao =2
p =01
A = 0215
4, = 0.183
=08
pu=1

o = —2
p1 =01
A = 0215
J, = 0.183
=08
pun=1
Pro=-2
f1=0.1
A = 0.215
J, = 0.183
=038
pu=1
B =-2
pn =01
Jy = 0215
2, = 0.183

$=08

Estimate (SE)

1.106 (0.515)
—2.178 (0.728)
0.160 (0.112)
0.209 (0.031)
0.182 (0.012)
1.338 (1.984)
1.113 (0.419)
—2.166 (0.536)
0.155 (0.088)
0.207 (0.026)
0.182 (0.010)
1.309 (1.673)
1.052 (0.363)
—2.260 (0.637)
0.156 (0.074)
0.208 (0.023)
0.182 (0.007)
1.408 (-)
1.041 (0.292)
—2.093 (0.491)
0.129 (0.054)
0.212 (0.018)
0.182 (0.005)
1241 (-)
1.031 (0.473)
—2.120 (0.590)
0.115 (0.070)
0.210 (0.031)
0.184 (0.012)
0.779 (1.743)
1.027 (0.386)
—2.092 (0.462)
0.110 (0.058)
0.214 (0.026)
0.184 (0.010)

0.773 (1.447)

Bias
0.106
-0.178
0.060
—0.006
—0.001
0.538
0.113
—0.166
0.055
—0.008
—0.001
0.509
0.052
—0.260
0.056
—0.007
—0.001
0.608
0.041
—0.093
0.029
—0.003
—0.001
0.441
0.031
-0.120
0.015
—0.005
0.001
—0.021
0.027
—0.092
0.010
—0.001
0.001

—0.027

RMSE

0.500
0.843
0.196
0.033
0.010
2.094
0.472
0.662
0.201
0.028
0.010
1.966
0.467
0.929
0.219
0.027
0.010
2.061
0.371
0.691
0.175
0.024
0.008
1.494
0.372
0.636
0.092
0.025
0.008
0.954
0.299
0.523
0.080
0.021
0.007

0.871

95% CP

0.972
0.992
0.964
0.892
0.916
0.912
0.932
0.972
0.960
0.884
0.876
0.912
0.884
0.936
0.912
0.884

0.816

0.904
0.948
0.900
0.860

0.816

0.944
0.980
0.956
0.936
0.956
0.840
0.976
0.952
0.964
0.968
0.956

0.864
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TABLE 3 Estimates, standard errors (SE), bias, root mean square error (RMSE), and 95% coverage probabilities (95% CP) under setting

V=y3.
Approach

DM

EM

SEM

200

300

200

300

200

300

Parameter

pu=1
Bao =2
pn =01
A1 =0.316
4y = 0.179
¢$=0.5
pun=1
Bao =2
p1 =01
4 = 0316
4y = 0.179
$=0.5
pu=1
fo =2
B =01
4, = 0316
4y = 0.179
$=05
=1
P =-2
B =01
A = 0316
Jy = 0.179
$=05
pu=1
Bao =2
f1 =0.1
A1 =0.316
4y = 0.179
=05
pu=1
Bao =2
pr1 =0.1
4 = 0316
4y = 0.179
$=05

Estimate (SE)

1.154 (0.507)
—2.220 (0.658)
0.161 (0.103)
0.299 (0.043)
0.177 (0.017)
1.104 (1.854)
1.150 (0.397)
—2.133(0.487)
0.133 (0.070)
0.302 (0.036)
0.177 (0.014)
0.993 (1.459)
1.083 (0.342)
—2.126 (0.627)
0.158 (0.076)
0.304 (0.032)
0.176 (0.009)
1.125 (-)
1.093 (0.279)
—2.116 (0.459)
0.130 (0.047)
0.305 (0.026)
0.176 (0.008)
1.058 (-)
1.094 (0.472)
—2.186 (0.603)
0.132 (0.077)
0.301 (0.043)
0.178 (0.016)
0.878 (1.603)
1.061 (0.359)
—2.111 (0.439)
0.117 (0.054)
0.307 (0.034)
0.179 (0.013)
0.688 (1.246)

Bias
0.154
—0.220
0.061
—-0.017
—0.002
0.604
0.150
-0.133
0.033
-0.014
—0.002
0.493
0.083
—0.126
0.058
—0.012
—0.003
0.625
0.093
—0.116
0.030
—0.011
—0.003
0.558
0.094
—0.186
0.032
—-0.015
—0.001
0.378
0.061
-0.111
0.017
—0.009
—0.000

0.188

RMSE 95% CP
0.595 0.944
0.836 0.988
0.212 0.940
0.050 0.860
0.016 0.888
2.009 0.916
0.441 0.936
0.513 0.960
0.103 0.960
0.037 0.916
0.013 0.924
1.563 0.936
0.475 0.872
0.846 0.952
0.213 0.944
0.042 0.848
0.014 0.808
1.689 =
0.360 0.904
0.526 0.956
0.093 0.928
0.036 0.832
0.012 0.804
1.403 =
0.395 0.980
0.651 0.960
0.100 0.960
0.040 0.916
0.013 0.936
1.195 0.816
0.279 0.956
0.512 0.924
0.069 0.936
0.031 0.912
0.009 0.944
0.871 0.832

85U01 SUOWWOD AR 8|l jdde ay) Aq peusenob a1 sejoie YO ‘85N JO S9N I0) ARIqIT 8UIUQ A8]1M UO (SUONIPUOD-PUe-SULBYWOD A8 |1 ARe.d1jpulU0//:SANY) SUONIPUOD pue swWie | 8y} 89S *[Z0z/TT/Tz] uo Akeidiauljuo A8|IM ‘Stelpy JO AISIBAIUN AQ 1066"WIS/Z00T OT/I0p/Wod A8 imAreiq1jul|uoy//sdny woiy pepeojumod ‘8z ‘€202 ‘8520260T



5126 WI LEY_Statistics

TRESZOKS and PAL

TABLE 4 Estimates, standard errors (SE), bias, root mean square error (RMSE), and 95% coverage probabilities (95% CP) under setting

V=Y
Approach

DM

EM

SEM

200

300

200

300

200

300

Parameter

pun=1
P =-2
fn =0.1
A = 0316
4y = 0.179
=038
pu=1
Bao =2
pn =01
Jy = 0.316
A, =0.179
$=08
pu=1
Bao =2
p =01
4, = 0316
4y = 0.179
=08
pu=1

o = —2
p1 =01
4, = 0316
Jy = 0.179
=08
pun=1
Pro=-2
p1 =01
A = 0316
Jy = 0.179
=038
p=1
B =-2
pn =01
Jy = 0.316
4y = 0.179

$=08

Estimate (SE)

1.167 (0.525)
—2.351(0.867)
0.221 (0.154)
0.298 (0.044)
0.177 (0.017)
1.537 (1.954)
1.117 (0.426)
—2.160 (0.532)
0.147 (0.084)
0.305 (0.039)
0.176 (0.015)
1.349 (1.795)
1.127 (0.368)
—2.222(0.679)
0.175 (0.098)
0.301 (0.032)
0.176 (0.010)
1.554 ()
1.074 (0.293)
—2.091 (0.488)
0.131 (0.053)
0.308 (0.027)
0.177 (0.008)
1.334 ()
1.092 (0.500)
—2.222(0.681)
0.165 (0.119)
0.305 (0.045)
0.178 (0.017)
1.242 (1.829)
1.090 (0.401)
—2.091 (0.504)
0.114 (0.062)
0.311 (0.038)
0.179 (0.015)

1.041 (1.561)

Bias
0.167
-0.351
0.121
—0.018
—0.002
0.737
0.117
—0.160
0.047
—0.011
—0.003
0.549
0.127
—0.222
0.075
—0.015
—0.003
0.754
0.074
—0.091
0.031
—0.008
—0.002
0.534
0.092
—0.221
0.065
—0.011
—0.001
0.442
0.090
—0.091
0.014
—0.005
0.000

0.241

RMSE

0.544
1.477
0.457
0.048
0.016
2.131
0.440
0.623
0.165
0.039
0.014
1.753
0.502
1.010
0.304
0.048
0.014
2.025
0.392
0.576
0.127
0.035
0.012
1.575
0.379
0.720
0.269
0.040
0.014
1.544
0.363
0.566
0.075
0.033
0.011

1.197

95% CP

0.972
0.972
0.956
0.872
0.916
0.920
0.960
0.984
0.952
0.912
0.924
0.944
0.900
0.964
0.948
0.796

0.792

0.904
0.960
0.944
0.864

0.800

0.980
0.965
0.950
0.920
0.910
0.825
0.976
0.976
0.976
0.968
0.948

0.888
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FIGURE 1 Profile likelihood plot for the parameter ¢.

observed for ¢. The standard errors and RMSEs decrease with an increase in sample size for all settings and estimation
approaches, which is consistent with the large sample properties. Because of the advantages the SEM algorithm presents
with respect to bias, standard error, and coverage probabilities, we consider the proposed SEM algorithm as the preferred
algorithm.

5.3 | Estimation of cure rate

To illustrate the impact of accurate parameter estimation on the estimated cure rate, in Figure 2 we compare the esti-
mated cure rates to the true cure rates for parameter setting y, and n = 200. While estimated cure rates are relatively
close to true cure rates for smaller values of tumor thickness, we see that both the DM- and EM-produced estimates,
Do(EM) and py(DM), respectively, lose accuracy for larger values of tumor thickness while the SEM-produced estimates
(Po(SEM)) remain closer to the true cure probabilities. In a clinical setting, tumor thickness is a prognostic factor of inter-
est that may be expected to be associated with severity of illness. Significant underestimation of cure for patients with
large tumor thickness may lead a practitioner to proceed with a more aggressive and potentially dangerous treatment
than the patient’s condition dictates. The values of po(EM) and po(DM) are consistently lower than po(SEM) for tumor
thicknesses larger than 5 mm, with lowest accuracy observed in estimates for treatment group and larger tumor thickness
values. The DM approach significantly underestimates cure, with relative error of po(DM) as much as 18.8% larger than
the corresponding relative error of po(SEM). While differences in relative error of po(SEM) and po(EM) as large as 6.6%,
as observed for a treatment patient with tumor thickness of 15 mm, may not constitute a drastic underestimation, neither
can this underestimation be dismissed as negligible when considering potentially dangerous adjuvant therapy. Because
the DM approach is seen to produce estimates with comparatively larger biases, SEs, and RMSEs than the SEM approach
which consequently significantly underestimate cure probabilities, we focus the remaining analyses on comparison of
the proposed EM and SEM algorithms.

5.4 | Comparison of maximized log-likelihood values

We further compare the performance of the EM and SEM algorithms by comparing the resulting maximized log-likelihood
values after the same 250 datasets and initial values were used with both estimation methods. For each parameter setting,
Table 5 presents the average maximized observed log-likelihood values (70) and the proportion of runs in which a given
estimation method produced the greater maximized observed log-likelihood value (P,), as well as the average maximized
complete log-likelihood values (?C) and the proportion of runs in which a given estimation method produced the greater
maximized complete log-likelihood value (P.).
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FIGURE 2 Plot of cure rate estimates against tumor thickness (z).

TABLE 5 Comparison of maximized log-likelihood values.

EM SEM EM SEM
Parameter 70 P, 7., P, Tc P, 7c P,
Y=y, —248.53 0.90 —248.69 0.10 —361.55 0.30 —336.73 0.70
Y=y, —239.18 0.83 —239.41 0.17 —378.13 0.40 —345.07 0.60
Vv =y; —268.03 0.92 —268.15 0.08 —389.52 0.39 —389.15 0.61
Y=y, —258.37 0.93 —258.51 0.07 —394.67 0.36 —390.42 0.64

While the EM algorithm both produced greater values of 70 and P, in all considered settings, the difference in 70
produced by the two methods is relatively minor, being less than 0.3 in all cases. Although the complete log-likelihood
function, I.(-), would be a preferred measure of model fit, in practical applications l.(-) cannot be computed due to the
missing data in Dc¢omp. Consequently, we discriminate between estimation methods in real data applications by com-
paring values of the observed log-likelihood function at the MLEs produced by each method. When simulating data,
however, explicit values of the missing data (variables M and D) are generated and then used to generate the observed
data. Hence, for this comparison we were able to retain the missing data values for the sole purpose of calculating
I.(-) using the complete data and MLEs. In all considered settings, the SEM algorithm produced greater values of 70
and P., with more pronounced differences between ?C produced by the two methods in several of the considered set-
tings. Because I;(-) is a function of the complete data, we conclude that the method which consistently maximizes
this function, the SEM algorithm, is the preferred estimation method with regard to maximizing the log-likelihood
function.

5.5 | Performance under model mis-specification
The proposed model utilizes a parametric framework for the lifetime distribution, where waiting time W is assumed to fol-

low a Weibull distribution with density function given by (13). While the versatility afforded by the two-parameter Weibull
distribution motivates its frequent usage to model lifetime data, it is of interest to consider the impact that mis-specifying
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the lifetime distribution as Weibull may have on estimation. To this end, we assume the waiting time to follow a gamma
distribution with shape parameter A,, scale parameter 4,, and density function given by

O =t A, Ja) = —— a7 150,40 > 0,2, > 0, 14)
()

Considering the same variance and mean values as in Section 5.1 with the same specification for remaining parameters
yields four parameter settings which we denote as y; = (1,-2,0.1,16.667,0.3,0.5), y, = (1,-2,0.1,16.667,0.3,0.8), 5 =
(1,-2,0.1,8.333,0.6,0.5), and y, = (1,—2,0.1, 8.333, 0.6, 0.8). For each parameter setting, and for sample sizes n = 200
and n = 300, we follow data generation steps as in Section 5.1, using a gamma distribution with parameters (41, 4,)
in Step 3. Both proposed algorithms (with Weibull lifetimes) are applied to M = 250 simulated data sets, with initial
values generated as described in Section 5.2. Table A3.1 of the Supplemental Material reports the estimated survival
probabilities, biases, and RMSEs at Q;, Q,, and Qs, the first, second, and third quartile of the corresponding gamma
distribution, respectively.

The proposed algorithm performs reasonably well under the described mis-specification, with slight overestimation of
survival probabilities observed to decrease with increasing sample size for all considered parameter settings. The RMSEs
also decrease with an increase in sample size for all settings and both estimation approaches, which is consistent with
the large sample properties. The larger biases and RMSEs of EM-produced survival estimates support the continued
preference of the SEM algorithm in the case of model mis-specification.

6 | ILLUSTRATIVE EXAMPLE

In this section, we demonstrate the performance of the proposed SEM algorithm using a real data on children’s mortality
obtained from the 2018 Nigeria Demographic and Health Survey (DHS), which examines the health of women of repro-
ductive age (13-49 years) and their children. Because under-5 mortality rate is a leading indicator of the level of child
health and socioeconomic development of a country, the analysis of child mortality data can inform both assessments of
quality of life and the development of strategies to reduce risk of death.

The data set considered consists of 13 255 children under age 5 whose survival information is available along with
covariate information. While the survival times of the children, reported by the mothers in retrospective interviews, are
recorded as age at death in unit of days (for age less than 30 days), months (for age greater than 30 days but less than
24 months), or years (for age greater than 2 years), these stated ages are implicitly interval-censored due to age being
recorded in integer values. The data contains numerous covariates of potential interest, however for this application we
consider the mother’s BMI and whether the child was delivered in the hospital (Hospital Delivery, 1 indicates child was
delivered in a hospital and 0 otherwise) as covariates that are linked to model parameters # and p. A full description of
the survey methodology can be obtained from the DHS program.*® Denoting Hospital Delivery by z; and BMI by z,, we
consider five potential regression models:

EXP(ﬁzl Zz)
1+exp(f2,)’

expfaot+5122)
1+eXP(ﬂ20 +ﬂ2132) ’

« Model 1: y = etz p = where p contains no intercept term.

« Model 2: # = efn2, p = where # contains no intercept term.

o Model 3: 9y = eﬂzo“'ﬁnzz,p = %, where p contains no intercept term.
1%

eXP(ﬂ10+ﬁllz1 )
1+exp(ﬂ10+ﬂ1111) ’
« Model 5: = efothzthz p =1,

« Model 4: = efn%, p = where 7 contains no intercept term.

We note that the first four models accommodate a destructive element, while the fifth model takes the activation
probability of initial risks as p = 1, indicating that no destruction of initial risks may take place. In the context of infant
mortality, it is hoped by a practitioner that increased access to healthcare and adequate nutrition for the mother will
reduce a child’s risk of death. Model 5 is included in this comparison to assess whether the inclusion of a destructive ele-
ment facilitates greater maximization of the observed log-likelihood value, which may indicate that a preventive measure
reduced the risk of mortality to the child. In order to identify the model best fitting the data, we compare AIC and BIC for
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TABLE 6 Modeldiscrimination.
EM SEM

Model Obs log-lik AIC BIC Obs log-lik AIC BIC

1 —7740.3 15490.6 15528.0 —7735.0 15479.9 15517.4

2 —7735.0 15479.9 15517.4 —7734.8 15479.6 15517.1

3 —7766.7 15543.3 15 580.8 —7741.5 15493.1 15 530.5

4 —7789.1 15 588.1 15 625.6 —7741.9 15493.8 15531.3

5 —7985.0 15979.9 16 017.4 —7802.9 15615.8 15653.3

== Not Hospital Delivery == Hospital Delivery

e ’\\1

o °
133 ~
=} a

Survival probability

o
N
a

0.00

Time

FIGURE 3 Kaplan-Meier plot of survival curves stratified by Hospital Delivery.

the above models by applying the proposed SEM algorithm and computing the observed log-likelihood function evaluated
at MLEs. AIC and BIC values are reported in Table 6. For comparison purposes, the EM algorithm is applied to the above
models and values of observed log-likelihood function, AIC, and BIC through using the EM algorithm are also reported
in Table 6. We observe first that for each model, the SEM-produced estimates yield larger observed log-likelihood func-
tion values, and consequently smaller AIC and BIC values, than the EM-produced estimates. Further, the SEM-produced
estimates for Model 2, which accommodates a destructive mechanism, produce the lowest AIC and BIC values, indicat-
ing that the effect of intervention may be captured through the destructive process. Consequently, we choose Model 2
as our working model. Kaplan-Meier curves stratified by Hospital Delivery, as shown in Figure 3, level off to non-zero
proportions which supports the presence of a cure component in the data, and the shapes of the curves convey a similar
relationship between Hospital Delivery and long term survival.

Table 7 presents the estimates and standard errors of the parameters of the working model using both the EM and SEM
algorithms, as well as p-values of regression coefficients. To obtain the estimates using the SEM algorithm, we first conduct
a preliminary study and decide to use 2000 iterations and consider the first 1000 iterations as burn-in. The standard errors
of the estimates are obtained by inverting the observed information matrix. We note that while the sign of each regression
coefficient estimate is the same regardless of approach, indicating the direction of covariate effect is consistent across
approaches, the standard errors of SEM-produced estimates are smaller. Noting the consistency of sign across methods
and the superior precision of SEM-produced estimates, we identify the SEM algorithm as the preferred estimation method
and proceed with analysis of the results using only the SEM-produced estimates. The negative sign of the estimate for f;
is highly statistically significant, agreeing with both the stratified Kaplan-Meier plot in Figure 3 and previous findings
observing a reduced risk of child mortality associated with hospital delivery.*’” While the previous analysis by Li et al,*’
which considered the 2003 Nigeria DHS child mortality data, failed to establish statistical significance of BMI, the estimate
of f>1 < 0 indicates that a mother’s BMI is positively associated with a child’s survival and is statistically significant at a
10% level of significance.

85U01 SUOWWOD AR 8|l jdde ay) Aq peusenob a1 sejoie YO ‘85N JO S9N I0) ARIqIT 8UIUQ A8]1M UO (SUONIPUOD-PUe-SULBYWOD A8 |1 ARe.d1jpulU0//:SANY) SUONIPUOD pue swWie | 8y} 89S *[Z0z/TT/Tz] uo Akeidiauljuo A8|IM ‘Stelpy JO AISIBAIUN AQ 1066"WIS/Z00T OT/I0p/Wod A8 imAreiq1jul|uoy//sdny woiy pepeojumod ‘8z ‘€202 ‘8520260T



TRESZOKS and PAL Statistics “WILEY 5131
TABLE 7 Comparison of estimation results for the children’s mortality data.
EM SEM

Parameter Estimate Standard error p—value Estimate Standard error p—value

P —0.432 0.064 < 0.001 —0.440 0.063 < 0.001

B0 4.665 1.908 0.015 3.626 1.264 0.004

Pn —-0.095 0.049 0.054 —-0.070 0.036 0.054

M 3.382 0.244 - 3.375 0.163 -

A 0.001 0.001 - 0.001 0.001 -

1) 0.010 = = 0.039 1.546 =

BMI =17.7 BMI =223
S S

e Not Hospital Delivery e Not Hospital Delivery

e Hospital Delivery e®  Hospital Delivery

Survival function
0.7 0.8
| |
Survival function
0.7 0.8
| |
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FIGURE 4 Predicted survival probabilities stratified by Hospital Delivery for children with different mother’s BMI values.

Figure 4 shows the predicted survival probabilities for children whose mother’s BMI is 17.7, 22.3, 25.3, and 32.5, which
correspond to the 5th, 50th, 75th, and 95th percentiles, stratified by Hospital Delivery. Note that the survival probability
for hospital-delivered children is higher across all values of BMI. It may be observed that the survival probability increases
with higher BMI values by comparing the plots fixing BMI at 17.7 and 32.5. The effect of mother’s BMI on survival is
further conveyed in Figure 5 where the estimated cure rate is shown to increase in a nearly linear fashion as mother’s
BMI increases. Figure A4.1 of the Supplemental Material shows the evolution paths of parameter estimates in the SEM
algorithm. After the burn-in period of 1000 iterations, the estimates are observed to oscillate without a discernible upward
or downward trend.

We check the adequacy of the destructive negative binomial model by using the calculated normalized randomized
quantile residuals*®. Figure A4.2 of the Supplemental Material presents the quantile-quantile plot, where each point
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FIGURE 5 Cure rate against mother’s BMI stratified by Hospital Delivery.

corresponds to the median of five sets of ordered residuals. The linearity in this plot suggests that the destructive neg-
ative binomial cure rate model with Weibull lifetimes provides a good fit to the children’s mortality data. Finally, the
Kolmogorov-Smirnov test for normality of residuals provides strong evidence for the normality of residuals, with a p-value
of 0.996.

For interested readers, another application of the model and the estimation method to a data on smoking cessation is
provided in Section A5 of the Supplemental Material.

7 | CONCLUSION AND FUTURE WORK

In this paper, we generalize the destructive negative binomial cure rate model to accommodate interval censoring. Moti-
vated by the work of Gallardo et al,?* we develop likelihood inference based on an implementation of the EM algorithm
which splits the complete log-likelihood function into simpler functions to be maximized independently, as well as a novel
implementation of the SEM algorithm. Through a Monte Carlo simulation study, we demonstrate that the proposed SEM
method performs favorably when compared to the EM algorithm with respect to parameter recovery. In estimating param-
eters that are related to the cure probability (ie, ¢, ;, f2), the SEM algorithm provides greater accuracy and precision,
yielding estimates with smaller biases and smaller RMSEs than the EM approach. This in turn results in more accurate
estimates of the cured probabilities. While standard errors for other parameter estimates are comparable between the
SEM and EM approaches, the coverage probabilities of the asymptotic confidence intervals produced with the SEM are
consistently closer to the nominal level. For the EM and SEM estimation methods, both the standard error and RMSE of
the estimators of the model parameters decrease with an increase in sample size. In the real data analysis, we first show
through model discrimination that both the inclusion of a destructive process and the use of the SEM algorithm facili-
tate the greatest maximization of the observed log-likelihood function. Further, the proposed SEM algorithm produces
parameter estimates that are consistent both with prior findings and with estimates produced by the EM algorithm.

While the objective of this study was to develop an efficient estimation algorithm for the destructive negative binomial
cure rate model under interval censoring and perform a detailed analysis of its performance, a valuable future work will
be to generalize this application to families of cure rate models; see Koutras and Milienos* and Milienos.>® Considering
a generalized family of lifetime distributions, for instance, the generalized gamma distribution, would allow us to per-
form model discrimination for the lifetime distribution under a fully parametric setup; see Wang and Pal.>! Exploring the
performance of the proposed SEM algorithm under semiparametric or nonparametric modeling for the lifetimes of sus-
ceptibles will provide greater insight as to the versatility of this estimation method. We hope to report on these problems
in future manuscripts.
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