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Prüfer sequence
In combinatorial mathematics, the Prüfer sequence (also Prüfer code or Prüfer numbers) of a labeled tree is a
unique sequence associated with the tree. The sequence for a tree on n vertices has length n − 2, and can be
generated by a simple iterative algorithm. Prüfer sequences were first used by Heinz Prüfer to prove Cayley's
formula in 1918.

Algorithm to convert a tree into a Prüfer sequence
One can generate a labeled tree's Prüfer sequence by iteratively removing vertices from the tree until only two
vertices remain. Specifically, consider a labeled tree T with vertices {1, 2, ..., n}. At step i, remove the leaf with the
smallest label and set the ith element of the Prüfer sequence to be the label of this leaf's neighbour.
The Prüfer sequence of a labeled tree is unique and has length n − 2.

Example

A labeled tree with Prüfer sequence {4,4,4,5}.

Consider the above algorithm run on the tree shown to the right.
Initially, vertex 1 is the leaf with the smallest label, so it is removed
first and 4 is put in the Prüfer sequence. Vertices 2 and 3 are removed
next, so 4 is added twice more. Vertex 4 is now a leaf and has the
smallest label, so it is removed and we append 5 to the sequence. We
are left with only two vertices, so we stop. The tree's sequence is
{4,4,4,5}.

Algorithm to convert a Prüfer sequence into a
tree

Let {a[1], a[2], ..., a[n]} be a Prüfer sequence:
The tree will have n+2 nodes, numbered from 1 to n+2. For each
node set its degree to the number of times it appears in the sequence
plus 1. For instance, in pseudo-code:

 Convert-Prüfer-to-Tree(a)

 1 n ← length[a]
 2 T ← a graph with n + 2 isolated nodes, numbered 1 to n + 2
 3 degree ← an array of integers
 4 for each node i in T

 5     do degree[i] ← 1
 6 for each value i in a

 7     do degree[i] ← degree[i] + 1

Next, for each number in the sequence a[i], find the first (lowest-numbered) node, j, with degree equal to 1, add
the edge (j, a[i]) to the tree, and decrement the degrees of j and a[i]. In pseudo-code:

 8 for each value i in a

 9     for each node j in T

10          if degree[j] = 1

11             then Insert edge[i, j] into T
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12                  degree[i] ← degree[i] - 1
13                  degree[j] ← degree[j] - 1
14                  break

At the end of this loop two nodes with degree 1 will remain (call them u, v). Lastly, add the edge (u,v) to the
tree.

14 u ← v ← 0
15 for each node i in T

16     if degree[i] = 1

17         then if u = 0

18             then u ← i
19             else v ← i
20                  break

21 Insert edge[u, v] into T

22 degree[u] ← degree[u] - 1
23 degree[v] ← degree[v] - 1
24 return T

Cayley's formula
The Prüfer sequence of a labeled tree on n vertices is a unique sequence of length n − 2 on the labels 1 to n — this
much is clear. Somewhat less obvious is the fact that for a given sequence S of length n–2 on the labels 1 to n, there
is a unique labeled tree whose Prüfer sequence is S.
The immediate consequence is that Prüfer sequences provide a bijection between the set of labeled trees on n
vertices and the set of sequences of length n–2 on the labels 1 to n. The latter set has size nn−2, so the existence of
this bijection proves Cayley's formula, i.e. that there are nn−2 labeled trees on n vertices.

Other applications
•• Cayley's formula can be strengthened to prove the following claim:

The number of spanning trees in a complete graph with degrees is equal to the
multinomial coefficient

The proof follows by observing that in the Prüfer sequence number appears exactly times.
• Cayley's formula can be generalized: a labeled tree is in fact a spanning tree of the labeled complete graph. By

placing restrictions on the enumerated Prüfer sequences, similar methods can give the number of spanning trees
of a complete bipartite graph. If G is the complete bipartite graph with vertices 1 to n1 in one partition and vertices
n1 + 1 to n in the other partition, the number of labeled spanning trees of G is , where n2 = n − n1.

•• Generating uniformly distributed random Prüfer sequences and converting them into the corresponding trees is a
straightforward method of generating uniformly distributed random labelled trees.
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• Prüfer code (http:/ / mathworld. wolfram. com/ PrueferCode. html) – from MathWorld
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