NS

=

oSN O
s e 2

T

s

4\4..‘

il ?%‘53:
¢4 A@xM
% e

TR
s




THE THEORY
OF GROUPS






THE THEORY OF

GROUPS

BY

A. G. KUROSH

TRANSLATED FROM THE RUSSIAN
AND EDITED BY

K. A. HIRSCH

VOLUME ONE

SecoNp ENcLISH EpITION

CHELSEA PUBLISHING COMPANY
NEW YORK, N. Y.



CopyrIGHT (© 1956, BY CHELSEA PUBLISHING COMPANY

CopyrIGHT (© 1960, BY CHELSEA PUBLISHING COMPANY

THE PRESENT WORK, PUBLISHED IN TWO VOLUMES, IS A TRANSLATION INTO

EncgLisH, BY K. A. HIRSCH, OF THE SECOND RUSSIAN EDITION OF THE BOOK

TEORIYA GRUPP Y A. G. KUROY, WITH SUPPLEMENTARY MATERIAL
BY THE TRANSLATOR

LiBrARY oF CoNGRESS CATALOG CARD NUMBER 60-8965

PrRINTED IN THE UNITED STATES OF A MERICA



TRANSLATOR’S PREFACE

The book Teoriya Grupp by Professor A. G. Kuro¥ has been widely
acclaimed as the first modern text on the general theory of groups, with the
major emphasis on infinite groups. An English translation of the work was,
therefore, highly desirable. When I got in touch with the author and learned
that the first Russian edition was out of print and that he was actively
engaged in the preparations for a completely rewritten second edition, I
decided to postpone my translation until the new book became available.
This explains the delay between the first announcement and the actual issue
of the present volume. (A German translation of the first Russian edition
was published in 1953 by the Akademie-Verlag, Berlin.)

In this translation I have followed the time-honoured maxim : “As literally
as possible and as freely as necessary.” Thus, while the book should read
like an English text-book, it has, I hope, retained some of the flavour of
the Russian original. A characteristic feature that the reader will notice is
the author’s sparing use of an elaborate symbolism and his reliance on a full
verbal exposition of the mathematical argument.

The changes I have made in the text can be described briefly as follows:

(1) Throughout the text I have distinguished between g€ G (“g is an ele-
ment of G”’) and H < G (“H is contained in G”’). This distinction is not
made in the Russian text, where the symbol < is used in both meanings.
Frequently I have changed the notation for certain subgroups, elements, sub-
scripts, indices, etc. to bring it into line with English usage.

(i1) T have slightly altered a few definitions (such as that of a free product
and that of an element of infinite height) in order to avoid cumbersome case
distinctions and to achieve more concise statements of some theorems.

(iii) I have eliminated a number of misprints of the Russian text and
have removed a few minor slips. Occasionally I have recast a proof where I
thought it would lead to greater clarity.

(iv) The appendix notes, which are marked in the text by sans-serif su-
perior letters, contain a few additional remarks and some references to recent
developments. This applies particularly to Parts Three and Four of the book,
which are concerned with topics where progress is most rapid at present.

(v) I have tried to keep the bibliography up to date by adding to Volume
IT a separate list of references to relevant group-theoretical literature of
the last few years.



6 TRANSLATOR’S PREFACE

I may mention that the recent monograph by I. Kaplansky, Infinite
Abelian Groups (University of Michigan Press, 1954), is an excellent sup-
plement to Part Two of this book, partly because the two books do not overlap
too much in the material they cover, and partly because where they do overlap
the two authors’ different techniques make an interesting comparison.

As the majority of the readers is likely to be in the United States, I have
at the Publisher’s request adopted American usage in spelling and termin-
ology. Thus, I talk of the center, of parentheses, and (somewhat reluctantly)
of solvable groups, where in England it would have been the centre, brackets,
and soluble groups.

In the advanced parts of the book there is, quite understandably, much
emphasis on the work of the very vigorous Russian group-theoretical school.
The author is aware of this ; in a recent letter to me he writes: ‘“The creation
of the contemporary theory of groups was, and is, the work of a large world-
wide community of scholars, but the task of preparing a book that reflects
the contemporary state of the theory of groups cannot be solved collectively.”
I hope that my translation will make English readers better acquainted with
the trends of research in Russia and that in this way it will make a contribu-
tion to establishing a closer contact with our Russian colleagues.

A final word about the use of the book as a text for graduate (or, in Eng-
land, advanced undergraduate) courses. I believe that in the hands of an
experienced instructor the book will serve admirably as a text for students
who have achieved a certain maturity of mathematical thinking. The instruc-
tor may have to make a few judicious omissions (of more difficult material)
and additions (of further examples and exercises). But in the theory of in-
finite groups good exercises of the right degree of difficulty are notoriously
scarce—they tend to be either too trivial or too hard. During the last academic
year, which I have spent as a Visiting Professor in the University of Colorado,
at Boulder, I have covered both Part One and Part Two, each in a one-
semester three-hour course.

I welcome this opportunity of expressing my thanks to the official agencies,
the institutions, and the many colleagues who have helped to make my stay
in the United States such a pleasant one.

August, 1955
Kurt A. HirscH



PREFACE TO THE SECOND EDITION

The author concluded his work on the first edition of this book in 1940,
the proofs were read in the following year, and only the military circum-
stances of the time delayed the appearance of the book until 1944, Thus,
nearly twelve years have passed since the book was completed. During these
years the general theory of groups has undergone a remarkable change—
many problems have been solved, a number of new problems have arisen,
and new directions of research have opened up, some of which now occupy
a very conspicuous place in the theory of groups. In this rapid development
of the theory of groups Soviet algebraists have played a prominent part.
Young research workers have been systematically recruited, and continue
to be recruited, into the Russian group-theoretical school, which was founded
by O. J. Schmidt. Their creative interests span almost all branches of the
theory of groups, and in many directions the papers of Soviet scientists are
among the leading ones. The first edition of the present book has also con-
tributed in some measure to the development of the group-theoretical studies
—it might be mentioned that a typewritten copy was deposited in 1940 at
the Institute for Mathematics and Mechanics of the University of Moscow
and was accessible for study.

When I began to prepare the second edition two years ago, I wanted
to bring the book again up to the level our science had then attained. For
this purpose T had to write virtually a new book. Not only does it differ
from the old one in the planning of the material-——many new sections have
been added and many that were taken over from the old book have been
completely revised—but hardly a single section has been transferred to the
new book without some alterations. On the other hand, the increase in the
volume of the book, which unfortunately could not be avoided, compelled
me to omit a number of points that were in the old book and occasionally
entire sections ; however, they were of such a nature that their inclusion in
the original book cannot be regarded as having been a mistake. I have
therefore found it appropriate in some cases, when referring the reader to
additional literature, to refer him also to the corresponding section of the
first edition of the book.

I must emphasize, however, that the new book has the old one as its basis
and is very close to it in conception. This justifies me, I think, in keeping
the old title for the book with the qualification “Second Edition, Revised.”

I do not intend to give a complete survey of the book, but I shall point
out the principal differences between its main parts and the corresponding

7



8 PREFACE To SECOND EDITION

parts of the first edition. Part One contains what one would naturally
refer to as the elements of group theory. A thorough acquaintance with this
material is assumed in all subsequent parts of the book. I mention one detail :
The concept of the factor group and the homomorphism theorem appear
in the book long before the concept of a normal subgroup is introduced.
This interchange is not due to the needs of group theory itself and has been
made only in order to expose the triviality of those all-too-numerous general-
izations of the group concept whose theory does not go much further than
the homomorphism theorem. As is well known, this theorem can, in fact,
be formulated and proved for sets with an arbitrary number of algebraic
operations.

The theory of abelian groups has been subjected to a drastic revision.
This refers to primary abelian groups, in particular, whose theory has been
considerably reorganized and enriched by the work of L. Y. Kulikov. As far
as torsion-free abelian groups are concerned, the method of presenting the
groups by systems of p-adic matrices has here been omitted, as it is of
little help in the study of these groups; instead, the theory of completely
decomposable groups has been included.

A considerable number of significant additions has been made in the
theory of free groups and free products. In particular, some results recently
obtained by B. H. Neumann and his collaborators have been incorporated
in the book.

In the theory of direct products of groups large re-dispositions have been
undertaken ; as a result of papers by the author and later by R. Baer, this
theory is drawing appreciably closer to its completion. Therefore it was
natural to deduce in the book the theorem of Schmidt (often also called
theorem of Remak-Schmidt or Krull-Schmidt) from one of the much more
general theorems obtained in recent years. This necessitated the develop-
ment of a large auxiliary apparatus and compelled me to combine the chapter
on direct products with the chapter on lattices.

In the first edition, only one section was devoted to group extensions.
In the second edition it has grown into a whole chapter: this is due to the
appearance of the cohomology theory in groups. Of course, even now the
classification of extensions is far from having reached that degree of perfec-
tion which would allow the solving of any problem on extensions by a
simple reference to this classification; but the whole position cannot be
compared to what it was twelve years ago.

Particularly deep changes have occurred in the theory of solvable and
nilpotent infinite groups. The first edition of the book reflected only the
first timid steps in this direction, and the relevant sections were included
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in the book more as a hint of subsequent developments than as an exposition
of the results achieved at the time. To-day this is, in fact, one of the largest
and richest branches of the theory of groups, a branch whose program can
be expressed in these words: the study of groups which are closely related
to abelian groups, under restrictions which in one sense or another are
close to finiteness of the number of elements of the group.

This new branch of the theory of groups has been created almost entirely
by Soviet scientists. A special place belongs to S. N. Cernikov whose initi-
ative and creative contributions have determined the development of the
researches in this domain to a remarkable degree. A number of results
concerning very deep theorems have also been obtained by A. I. Mal’cev.

Now a word about those parts of the theory of groups that have been
omitted from the framework of the book. Among them there is above all
the theory of finite groups. At the time when I worked on the first edition
I set myself the task of showing that the theory of groups is not merely
the theory of finite groups, and therefore the book contained almost nothing
about finite groups in particular. This task can be regarded today as accom-
plished. Indeed, just the other way around: it has now become necessary
to recall that the theory of finite groups is an important and integral part
of the general theory of groups. Although some material on finite groups is
now incorporated in this book, the above problem is by no means solved in it.

It would be useful if one of the Soviet specialists on finite groups would
write a small book devoted entirely to finite groups using the present book
as a basis (that is, without expounding the elements of group theory over
again).

Even more urgent, perhaps, would be the writing of a book whose title
could be given provisionally as the algebraic theory of groups of trans-
formations. It would have to contain the well-worked theory of permutation
groups, the theory of groups of matrices, and also the general theory of
representations of abstract groups. Isomorphic representations of groups by
matrices, monomial groups and representations, the classical groups over
an arbitrary field, and many other topics would also have to find a place
in it. In a certain sense this is applied theory of groups. A systematic
exposition of this entire branch of the theory of groups, using the results
and methods of the general theory of groups, would be very useful.

The prerequisite knowledge that the reader of the book is assumed to
possess has been indicated at the end of the Introduction to the First Edition.
In addition, I might add that he should be acquainted with the concept of
a ring and the simplest concepts connected with it.
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The bibliography has been revised, and supplemented by those papers
published in recent years that have a bearing on the contents of the book.

Before and during the work on the second edition I received many com-
ments and much advice—in letters, in personal talks, and in seminar meet-
ings—from many Soviet algebraists. To all these fellow-mathematicians who
have helped me with their advice I offer my sincere thanks.

Moscow, May 1952
A. Kuros



FROM THE INTRODUCTION TO THE FIRST EDITION

The theory of groups has a long and rich history. Arising from the needs
of Galois theory, it developed at first as the theory of finite substitution
groups (Cauchy, Jordan, Sylow). However, it was fairly soon discovered
that for the majority of problems that are of interest to the theory this
special material—namely substitutions—used in the construction of the
groups is not essential and that the actual topic is the study of properties
of a single algebraic operation defined in a set consisting of a finite number
of elements of an arbitrary nature. This discovery, which may appear trivial
to-day, turned out to be, in fact, very fruitful and led to the creation of the
general theory of finite groups. True, the transition from substitution groups
to arbitrary finite groups did not essentially extend the realm of the objects
to be studied; however, it put the theory on an axiomatic basis, gave it
order and clarity, and thus facilitated its further growth.

The golden age of the theory of finite groups came at the end of the last
century and the first decade of the present. During this period the funda-
mental results of the theory were obtained, the fundamental directions of
research were laid down, and the fundamental methods were created;
generally, through the work of its principal promoters (Frobenius, Holder,
Burnside, Schur, Miller) the theory of finite groups acquired at this time
all the essential features it has at the present day. But later it became clear
that the finiteness of a group is a restriction that is too strong and not
always natural. It was of particular importance that this restriction very
soon led to conflicts with the needs of neighboring hranches of mathematics:
in several parts of geometry, the theory of automorphic functions, topology,
in all of these one again and again came across algebraic formations similar
to groups, but infinite, and so demands were made upon the theory of groups
that the theory of finite groups was not in a position to satisfy. Moreover,
from the point of view of algebra itself—of which the theory of groups is a
part—a situation could hardly be regarded as normal in which such very
simple and important groups as, for example, the additive group of integers
remained outside the limits of the theory. The finite group must therefore
be a special case of the general concept of a group, and the theory of finite
groups must be a chapter in the general theory of “infinite” (that is, not
necessarily finite) groups.

An exposition of the elements of group theory without the assumption
that the groups under consideration were finite was, for the first time in
the whole literature, made in the book Abstract Theory of Groups [in

11
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Russian] by O. J. Schmidt (Kiev 1916), a book which even now remains
a reference work for all Soviet algebraists. But the broader development
of the general theory of groups began somewhat later and was linked with
that radical reorganization and transition to a set-theoretical foundation in
algebra which occurred in the twenties of the present century (Emmy
Noether). It was from here that the new concepts of operator systems and
chain conditions were introduced into the theory of groups.

Subsequently the work on the general theory of groups became very
vigorous and varied, and at the present time this part of mathematics has
become a wide and rich science occupying one of the foremost places in con-
temporary algebra. Clearly this development of the general theory of groups
could not ignore the achievements of the theory of finite groups. On the
contrary, many results sprang from the corresponding parts of the theory
of finite groups; the guiding principle was. the endeavour to replace the
finiteness of the group by other natural restrictions under which a given
theorem or a given theory remain valid but without which they cease to hold.
Furthermore, very often a problem that is simple and completely solved
in the case of finite groups changes to a broad theory, yet far from complete ;
this happens, for example, in the theory of abelian groups, one of the most
important parts of contemporary group theory. At the same time a number
of new branches arose, linked essentially with the study of infinite groups—
the theory of free groups and of free products. Finally, in some cases, above
all in the problem of giving a group by defining relations, the theory of
groups achieved for the first time a clarity and rigor that had been lacking
in the preceding stage of its development.

The theory of groups is far from complete. The variety of concrete prob-
lems confronting it and the fact that in some directions the research work
has only recently begun justify us in assuming that the general theory of
groups has not yet passed the climax of its growth. Nevertheless the time
has come to systematize the rich material already accumulated and thus to
present to a wide circle of mathematicians the basic trends of contemporary
group theory, its methods, its principal achievements, and finally, the im-
mediate problems facing it and the paths along which it will necessarily
develop in the near future.

The present book does not pretend, obviously, to range over the whole
theory of groups; but almost all the main branches of our science are pre-
sented in it, to an extent sufficient to show the reader the wealth of its
contents and the variety of its methods.

The reader is not required to have a preliminary acquaintance with the
elementary concepts of the theory of groups. A basic course of higher algebra
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is a prerequisite only for some initial examples of groups, such as matrices,
permutations, roots of unity. As to the theory of numbers, the reader need
only know the elements of the theory of congruences. On the other hand,
the reader should be thoroughly acquainted with the elements of the theory
of sets, as far as the first four chapters of the book Set Theory by Hausdorff
(Chelsea, 1956). In particular, in many constructions and proofs trans-
finite induction is an essential tool.

The bibliography contains, as far as possible, a complete list of papers
on the general theory of groups, including some that have come out recently
but have not influenced the book. Of the rich literature on finite groups the
bibliography includes only a few directly connected with the contents of
the book. References to the bibliography are given in the text by the name
of the author and (in brackets) the number of the paper quoted.

Moscow, October 1940
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PART ONE

THE ELEMENTS OF GROUP THEORY






CHAPTER I

DEFINITION OF A GROUP

§ 1. Algebraic operations

In any course on higher algebra the reader will have become acquainted
with sets in which algebraic operations are defined. Fields and rings—that
is, sets with two independent operations, called addition and multiplication—
play a fundamental rdle in such a course. Very often, however, one en-
counters sets in which only one algebraic operation is defined (or is studied
for the moment). We recall the definition of an algebraic operation.

Let a set M be given. We say that an algebraic operation is defined in M
if we have a rule by which we can assign to any two (distinct or equal)
elements of M, taken in a definite order, a third well-defined element of
the same set.

It is therefore part of the definition of an algebraic operation that it shall
be single-valued and that it shall be applicable to any pair of elements.
Furthermore, the definition indicates that the order in which the elements
are taken may be relevant when the operation is performed. In other words,
it is not excluded that the elements of M that correspond to the pair a, b and
to the pair b,a of M may be distinct, i.e., that the operation under con-
sideration is non-commutative.

Numerous examples can be given of sets with numbers as elements and
with an operation that satisfies the above definition. We leave the con-
struction of such examples to the reader and merely indicate some sets that
do not satisfy the definition: the set of negative integers under multiplica-
tion, the set of odd numbers under addition, and the set of real numbers with
division as the operation—the latter because division by zero is impossible.

Various algebraic operations performed on objects other than numbers
are also well known; some examples are: the addition of vectors in an
n-dimensional vector space, vector multiplication of vectors in a three-
dimensional euclidean space, multiplication of square matrices of order n,
addition of real functions of a real variable, multiplication of such functions,
etc. An example of an algebraic operation that will be of great importance in
the sequel is the multiplication of permutations. A permutation of degree »
is, of course, a one-to-one mapping of the set of the first # natural numbers
onto itself. The result of carrying out two permutations of degree # in

21



22 ' Part ONE. 1. DEFINITION OF A GROUP

succession is itself a permutation of degree n, which is called the product
of the first of the given permutations by the second. If, for example, we
consider the permutations

123 (123
2=\132/)7 "T\231)

where n =23, then their product is the permutation

123
ab=\g 1 3):

An algebraic operation in the set of permutations of degree # is thus defined.
It is easy to see that it is non-commutative ; the product of & by a for the
above two permutations has the form

123
ba=\3491)

We shall, as a rule, use multiplicative terminology and symbolism for study-
ing sets with one algebraic operation ; the operation will be called multiplica-
tion, and the result of performing the operation on the pair of elements a, b
will be called their product ab. In some cases, however, it will be convenient
to employ the additive notation, in other words, to call the operation addition
and to speak of the sum a + b of the elements ¢, b.

We have already mentioned that the commutativity of an operation, that
is, the validity of the equation

ab=ba

for arbitrary elements a, b of the set M, is not part of the definition. Examples
of non-commutative operations are: multiplication of square matrices of
order » for n = 2; multiplication of permutations of degree », not only for
n =3 as was illustrated above, but for all » = 3; and vector multiplication
of vectors of a three-dimensional euclidean space. Subtraction of numbers
can also be regarded as an example of a non-commutative operation.

Furthermore, the definition of an algebraic operation does not require that
the operation be associative, that is, that for arbitrary elements a, b, ¢ of
the set M the equation

(ab)c=ua(bc)
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shall hold. Vector multiplication of vectors of a three-dimensional space
serves as an example of a non-associative operation ; so does the subtraction
of integers. On the other hand, as is well known, the multiplication of
matrices is associative. Again, the multiplication of permutations is asso-
ciative ; this follows from the following more general result.

Let S be any finite or infinite set. We consider the totality of single-valued
mappings of the set S into itself, that is, mappings that associate with every
element of S a well-defined element of the same set, where various elements
of § may possibly be mapped onto one and the same element and where
there may be elements in S onto which nothing is mapped. If we understand
by the product of two such mappings the result of performing them in succes-
sion, then we obtain an associative algebraic operation in the set of mappings.

For let ¢, v, and y be three single-valued mappings of a set § into itself.
Further, let @ be an arbitrary element of S, and let it go over into the ele-
ment b under the mapping ¢, while b goes over into ¢ under the mapping v,
and finally ¢ into d under the mapping %. Then the mapping ¢y carries the
element g into ¢, so that under the mapping (¢ )y, ¢ goes over into d.
However, the mapping vy carries the element b into d, and therefore under
the mapping ¢ (yy) a also goes over into d. Thus it has been shown that

the mappings (¢y)y and @ (yy) coincide.

Let us see what deductions can be made from the validity of the asso-
ciative law for an operation given in a set M. From the definition of an
algebraic operation it follows that the product of any two elements of 3,
taken in a definite order, exists and is unique. But we cannot, in general,
speak of the product of three elements: for, the product of the elements
a, b, and ¢, taken in this order, may depend on whether the product of
a and b is multiplied by c, or a is multiplied by the product of b and ¢. The
associative law, however, permits us to refer without ambiguity to the product
of three elements of M ; the element (ab)c, being equal to a(bc), will simply
be denoted by abc. Clearly, the product of three elements may change, in
general, with a permutation of the factors.

Furthermore, the associativity of an operation permits us to speak without
ambiguity of the product of any finite number of elements of M, taken in a
definite order; in other words, it enables us to prove that the final result
is independent of the initial distribution of parentheses. Let us show this
for the case of n factors (n > 3), on the assumption that it has already been
proved for a smaller number of factors. Let

gy Ggy oo ey Gy,
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be an ordered system of # elements of M in which parentheses are distributed
in some way indicating the order in which the operations shall be carried out.
If we perform in succession the multiplications indicated by the parentheses,
then we must carry out in the last step the multiplication of the product of

the first s elements a1, a;, . . ., & (1 = ¢ = n — 1) by the product a4, ,.. .8,
Since these products consist of fewer than » factors and are therefore, by
assumption, determined uniquely, it only remains to show that we can go
over from (@;ay...a;) (@414 19.--0y) to (@,39. . - @) (a5,4. . .@,), Where i547.
It obviously suffices to perform this transition for the case j=1i 4 1, and
we achieve this by a simple application of the associative law: if

a,0y...844=0, a; o04.3...a,==C,
then
b (. 16)=(bay,,)c.

This does not give us the right, however, to speak of the product of an infinite
set of elements of M.

The set M in which an algebraic operation is given sometimes has a unit
element, that is, an element 1 for which

a-1=1-a=a

for all a in M. Only one element having this property can exist in M. if
there were another unit element 1’, then the product 1+ 1’ would be equal both
to 1 and to 1’; hence 1 = 1’. When the additive notation is used, the unit
element is called the null element (or zero) and is denoted by the symbol 0.

Examples of sets with an algebraic operation that do not have a unit
element (or a zero) are: the set of natural numbers with respect to addition,
the set of even numbers with respect to multiplication, and the set of vectors
of a three-dimensional euclidean space with respect to vector multiplication.
On the other hand, the multiplication of square matrices of order # has a
unit element, namely the unit matrix. A unit element also exists for the
multiplication of permutations of degree #; this is easily seen to be the

identity permutation
12...n
12...0)°

More generally, in the set of all single-valued mappings of a set S into itself
with multiplication defined as the result of performing the mappings in suc-
cession, there exists a unit element, the identity mapping of S onto itself.
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Finally, let us introduce the concept of an inverse operation. We know from
higher algebra that in a ring the operation inverse to addition is subtraction,
and in a field—if we restrict ourselves to elements different from zero—
the operation inverse to multiplication is division. In the light of these
examples, it is natural to ask the following question in the case of an arbitrary
set M with one (not necessarily commutative) operation: Do there exist
for given elements @ and b certain elements # and y for which

ax=2"b, ya=b (1)

holds? These equations may or may not be solvable in M. Moreover, they
may have distinct solutions. We shall say that an operation, given in M,
has an inverse operation if for every a and b each of the equations (1) has
one and only one solution ; in the non-commutative case the solutions x and y
of these two equations need not of course coincide.

An example of an operation for which equations (1) may have several
distinct solutions is multiplication in any ring having divisors of zero, in
particular in the ring of functions and in the ring of matrices. Very simple
examples of operations for which equations (1) are not always solvable are:
the operation of addition in the set of natural numbers and the operation of
multiplication in the ring of integers and in the field of real numbers as
well—the latter because division by zero is impossible.

§ 2. Isomorphism. Homomorphism

Let M and M’ be two given sets in each of which an algebraic operation
is defined; we shall assume that in both sets these operations are called
multiplication. The sets M and M’ are said to be isomorphic with respect
to these operations if a one-to-one correspondence between their elements
can be established for which the following holds: If the elements a and &
of M correspond to the elements a’ and b’ of M’, and if

ab=c, db =/,

then the element ¢ of M shall correspond to the element ¢’ and to no other
element of M’. Such a one-to-one correspondence is called an isomorphic
relation or isomorphism between M and M’. An isomorphism of the sets
M and M’ will be denoted by the symbol M =~M’,

Examples of isomorphic sets with one algebraic operation can readily be
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given. Thus, the set of even numbers can be put into one-to-one corres-
pondence with the set of all multiples of 3 by associating the even number 2%
of the first set with the number 3% of the second set. This mapping is
obviously an isomorphism with respect to addition, which is an operation
defined in each of the two sets.

Further, let us compare the operation of multiplication in the set of
positive real numbers with the operation of addition in the set of all real
numbers. We obtain a one-to-one mapping of the first of these sets onto
the second by associating with each positive real number its logarithm to
the base 10. The equation

log (ab) =1loga + log b

shows that this mapping is an isomorphism.

The reader is familiar with many examples of isomorphic sets in higher
algebra. Let us recall one of these; the set of linear transformations of an
n-dimensional vector space over a field F, with the product of linear trans-
formations defined as the result of their being performed in succession,
is isomorphic to the set of square matrices of order n over the field F with
matrix multiplication as the algebraic operation. This isomorphism depends,
of course, on the choice of basis in the vector space. Thus, when the sets
M and M’, each with one operation, are isomorphic, then the isomorphism
between them can be established, in general, in many different ways.

Each set with an operation is obviously isomorphic to itself: it is sufficient
to take the identity mapping of the set onto itself. The relation of isomor-
phism, moreover, is (i) symmetrical: from M, =M, follows My=~M,,
and (ii) transitive: from M; == M, and My == M, follows M, = M,.

From the definition of isomorphism it follows that isomorphic sets have
the same cardinal number; if in particular they are finite, they consist of
the same number of elements.

Isomorphic sets with operations may differ from one another in the nature
of their elements and, possibly, in the name of the operation and the sym-
bolism used to denote it. They are indistinguishable, however, as far as the
properties of the operations are concerned: given a set with an operation,
whatever can be proved about the basic properties of this operation without
reference to the individual properties of the elements of the set goes over
automatically to all sets isomorphic to the given one. In what follows we
shall, therefore, consider isomorphic sets to be merely distinct copies of a
set with one and the same operation and by so doing we shall single out the
algebraic operation itself as the true object of our study. Only in our con-
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struction of examples shall we speak, for convenience, of concrete sets and
of operations whose definitions depend on properties of the elements of
these sets. Besides, we shall later learn (in Chapter V) how to construct
concrete examples of operations without making any assumptions about
the nature of the elements on which the operations are performed.

The concept of isomorphism is not specifically an algebraic one. In fact,
every branch of mathematics identifies the objects of its study by certain
criteria and emphasizes in this way those properties of the objects that form
the true subject matter of that branch. To clarify this remark, the reader
need only reflect on the way one of the fundamental mathematical concepts
—that of a whole number—is formed.

We obtain a generalization of the concept of an isomorphic mapping by
omitting from the definition the postulate that the correspondence be one-
to-one. Let M and M’ be sets, each with one operation, say multiplication.
We consider a mapping ¢ of the set M onto the set 3" which associates
with every element of M a well-defined image a’=ag@ in M’, while each
element of M’ has at least one, but in general several distinct, originals, or
inverse images, in M. This mapping is called a homomorphism if for any
a and b in M it follows from

ap=a bp=1">
that
(eb)p=2a'b".

We shall then say that the set M’ is a homomorphic image of the set M.
It is not permissible, of course, to identify two sets one of which is mapped
homomorphically onto the other. In this respect the concept of homomor-
phism is less fundamental than the concept of isomorphism, but in the
subsequent development of the theory its role will, nevertheless, be very
important. Let us give a few examples of homomorphic mappings.

Let M be the set of all integers, with addition as the algebraic operation;
and let M’ be the set consisting of the numbers 1 and —1 with multiplication
as operation. By associating 1 with every even number and —1 with every
odd number we obtain a homomorphic mapping of M onto M’ ; indeed the
rule “even plus odd is odd” corresponds to the equation 1«(—1)=—1,
and similar equations correspond to the other rules.

Next let M be the set of all plane vectors whose initial point is the origin
of the coordinate system and M’ the set of those vectors of Af which lie
along the axis of abscissas, with vector addition in both cases as the algebraic
operation. We obtain a homomorphic mapping of M onto A’ if we associate
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with every vector of M its projection onto the axis of abscissas; for, the
projection of a sum is, of course, the sum of the projections of the summands.

If a set M with one operation is mapped homomorphically onto a set M,
in particular if these two sets are isomorphic, then the validity of the asso-
clative or of the commutative law in M entails the validity of the correspond-
ing law in M’. For example, let the operation in M be commutative. If
a’ and b’ are arbitrary elements of M’, if a is one of the originals of a’, and
if b is one of the originals of b’, then the element ab corresponds in the
homomorphism under consideration to a’b’, the element ba to b’a’; and
therefore the equation ab = ba and the uniqueness of the image under a
homomorphic mapping imply the equation o/b’=bd’a’. If the operation
in M is associative, the corresponding proof proceeds along the same lines.

Furthermore, if the set M has a unit element 1, then its image must be
the unit element in the set M’. For let us denote the image of the unit element
by ¢'; if @’ is an arbitrary element of M” and a one of its originals, then the
equations ¢*1=1.a=a and the homomorphic property of the mapping
imply the equations a’'¢=¢’a’=a’. Thus we have shown that ¢ is
indeed a unit element for the set M’.

We note that if a set M has an inverse operation, it cannot be inferred
that the same is true of a homomorphic image M’ of M ; for it is impossible
to prove the uniqueness of the solutions of each of the equations (1) of the
preceding paragraph. However, we can prove that those equations have solu-
tions. For if a’ and b’ are elements of M’, and if a is one of the originals of
a’ and b one of the originals of ’ in M, that is,

ap=da, bo="0,

and if the element ¢ in M satisfies the equation ax = b, then by the homo-
morphic property of the mapping the element

d=cep

satisfies ' = b" in M".

As regards the various converses: from the validity of the associative or
the commutative law in M’ or from the existence of a unit element or of an
inverse operation in M’ the corresponding statement for the set M does
not follow.

We shall now describe a method of obtaining all the possible homomorphic
images of a given set M with one operation. For this purpose we introduce
the following concept. Suppose that there is given a partition of the set M
into disjoint subsets, which we shall call classes and denote by the letters
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A, B,.... Such a partition of M into disjoint classes is called regular if from
the fact that the elements a; and a2 lie in one class A4, and the elements
b, and by lie in one class B, it follows that the elements @,b; and azb:
also lie in one and the same class C.

This definition implies that the class C is completely determined by the
classes 4 and B: the product of any element of 4 by any element of B is
contained in C. If we call the class C the product of the class 4 by the class B,
then an algebraic operation is defined in the set M of all classes of our regular
partition. We shall call the set M with this operation the factor set of M
with respect to the regular partition.

The set M can be mapped homomorphically onto the factor set M. For
it is sufficient to associate with each element of M the class in which the
element lies and to make use of the definition of multiplication in the set M.
This mapping of the set M onto the factor set M is called the natural or
canonical homomorphism.

The factor sets of M with respect to its regular partitions essentially
exhaust all the possible homomorphic images of M. More precisely, the
following theorem holds.

If M’ is an arbitrary homomorphic image of the set M, and @ a homo-
morphic mapping of M onto M’, then there exists a regular partition of M
wmto disjoint classes such that M’ is isomorphic to the factor set M con-
structed by means of this partition. Moreover, there exists an isomorphic
mapping y of the set M’ onto the set M such that the result of performing the

mappings @_and y in succession coincides with the natural homomorphism
of M onto M.

For the proof, we note that we obtain a partition of M into disjoint classes
if we collect into one class all the elements whose images under the mapping @
coincide. This partition is regular ; if the elements a; and a; lie in one class,

that is, if
a9 =agp=da,
and if the same applies to the elements b, and b, that is, if
byo =bo =",
then by the homomorphism of the mapping ¢
(a,01) p = (aghy) p = a'¥/,

so that the elements a1 b; and agb, belong to one and the same class. This
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enables us to define a multiplication, in the way described above, in the set M
of all classes of the partition that we have obtained, in other words, to turn
M into a factor set. Between all the elements of the set M’ and all the
classes (thatis, elements of the set M) there now exists a one-to-one corres-
pondence y: we need only associate each element of M’ with the class
consisting of all the originals of this element. The correspondence vy is
an isomorphism : if the elements @’ and b’ arelinked withthe classes 4 and B
respectively, and if elements are chosen in these classes, @ from A4 and
b from B, then AB is the class that contains the element ab. However,

(ad) 9 = (ap) (bp) = a'¥’,

so that the element a’b’ is associated under the mapping y with the class
AB. To conclude the proof, we choose an arbitrary element a of M. Let

ap=a’, dy=A.

Since the element a is one of the originals of @', a is contained in A; in other
words, the result of performing the mappings ¢ and v in succession does,
in fact, coincide with the natural homomorphic mapping of M onto M. This
completes the proof.

§ 3. Groups

A further investigation of sets with an arbitrary operation would not be a
very fruitful undertaking: the concept, being too general, is poor in content.
Historically, sets of a special type with one operation—called groups—were
first selected for detailed study, owing to their many applications both in
mathematics itself and beyond its boundaries. This is one of the most
fundamental concepts of contemporary mathematics: it combines an affinity
to familiar operations on numbers with an exceptionally wide domain of
applicability.

A non-empty set G with one algebraic operation is called a group if the
following conditions are satisfied:

(1) the operation in G is associative ;
(2) the inverse operation can be performed in G.

The operation in G need not be commutative. If it is commutative, then G
is called a commutative or abelian group, after N. H. Abel who studied a
type of equation whose theory is linked with the theory of commutative
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groups. It is clear that the operations in this class of groups are particularly
close to the ordinary operations on numbers ; a large part of the sequel will
be devoted to a detailed study of the properties of abelian groups.

If in an arbitrary group G the commutative law holds for two given ele-
ments a and b, then these elements are called permutable.

If a group G consists of a finite number of elements, then it is called a
finite group, and the number of its elements is called the order of the group.
The existence of groups of any finite order, and of groups of any infinite
cardinal number will be shown in the next section.

For finite groups the condition (2) in the definition of a group can be
weakened to the mere requirement that the solutions of the two equations

ax=2=, ya=b, (1)

be unique ; we can then deduce that solutions of these equations do exist.

For let G be a finite set, consisting of n elements, with one operation and
with unique solutions of the equations (1), provided these solutions exist at
all; let @ and b be elements of G. If we multiply the element a on the right
by the element x of G, in other words, if we form the product e~ and let
x run through all elements of G, then by our assumption we obtain » distinct
elements of G, that is, we obtain all the elements of G ; there exists, then,
an element x, for which ax, is equal to the given b. This proves the existence
of a solution for the first of the equations (1). The existence of a solution of
the second equation is proved in the same way.

A similar weakening of condition (2) is not possible in the infinite case,
as is shown by the example of the set of positive integers with the operation
of addition. In this example, the operation can always be performed and
it is single-valued and associative; however, the inverse operation—sub-
traction—although it is single-valued, cannot always be performed.

We now proceed to determine the simplest consequences of the definition
of a group.

Let us take an arbitrary element a in a group G. From condition (2)
there follows the existence and uniqueness in G of an element e, which
satisfies the condition ae, = a, that is, which plays the rdle of a unit element,
for the element a, under multiplication on the right. This element e, has,
moreover, the same property with respect to all the elements of the group;
if b is any other element of G and if v is an element of the group that satisfies
the equation ya = b—the existence of y follows from condition (2)-—then
on multiplying both sides of the equation ae¢,==a on the left by y and



32 Part ONE. 1. DEFINITION OF A GrOUP

applying the associative law to the left-hand side we obtain be,=5b. We
have thus proved the existence and uniqueness in G of a right unit element ¢’
having the property xe’= x for all the elements x of G.

In the same way we can prove the existence and uniqueness in G of a
left umit element ¢” that satisfies the condition ¢” x =« for all x in G.
The elements ¢’ and ¢” moreover coincide, as the equations ¢” ¢’=¢’ and

” 7’

e’ ¢’=¢" show. We have thus proved the existence and uniquemess in
every group G of an element e that satisfies the condition

re=exr—ux

for all elements x of G. This element is the unit element of the group G
(cf. § 1) and will be denoted by the symbol 1. As we have just seen, the
unit element is permutable with every element of the group.

From condition (2) there follows, further, for any given element ¢ the
existence and uniqueness of elements a’ and a” which satisfy the conditions

ad’=1, d'a=1.
The elements @’ and ¢” in fact coincide: from

a’ad=d"’(ad)=a"+1=a"
and
d’ad=(a"a)d=1-d=d

it follows that a’=a”. We shall denote this element by a—* and call it the
inverse of a. Every element a of G has, therefore, a uniquely determined
inverse a—! which satisfies the conditions

ga—'=a la=1.

From the last equation it follows that the inverse of a=* is a itself, ie.
(a—')~*=a, and that every element is permutable with its inverse. It is
easy to verify, moreover, that the inverse of a product of several elements
is the product of the inverses of the factors taken in the reverse order, i.e.

-1 -1 -1 -1 -1
(@8y...a, ,0,) =an an=y...a; a5 .

The unit element is its own inverse.
The concept of an inverse element enables us to write down explicitly



§ 3. Groups 33

the elements » and y which by condition (2) satisfy the equations
ax = b and ya = b for given g and b ; for, an immediate verification shows
that

x=a"1, y=ba"l.

Hence it follows that in the non-commutative case 4 and y may be distinct
elements of the group. In the case of abelian groups this is, of course,
impossible.

The existence and uniqueness of the inverse elements, which we have
deduced from condition (2), can actually replace that condition. We shall
show this below and shall not even assume uniqueness of the unit and the
inverse elements but shall limit ourselves to the assumption that one-sided
(right-hand, say) unit and inverse elements exist. Such a weakening of
condition (2) sometimes simplifies the task of verifying that a given set
with an operation is a group.

If G is a set with an associative operation, then condition (2) follows from
the conditions

(2') there exists in G at least one right unit element e with the property

ae=a for all @ in G,

(2”) among the right unit elements of G there is an element e, such that for
each a in G at least one right inverse element a—? exists satisfying

aa~! = ¢,.

Proof. Let a—* be one of the right inverse elements of . Multiplying
both sides of the equation aa—* = ¢, on the left by ¢, we obtain

-1 __ —
eqaa=—1 = ege, = e,
-and hence
eoaa~!=aa-1.

Multiplying both sides of this equation on the right by one of the right
inverses of a—! we obtain
eoaeo == aeo,

and hence ¢;a = a. The element e, turns out to be also a left unit element
for G. '



34 ParT ONE. 1. DEFINITION OF A GROUP

Now if e; is an arbitrary right unit element and e; an arbitrary left unit
element, then it follows from the equations

that ¢; = e,. Thus the uniqueness of the unit element ¢ is proved.
Multiplying both sides of the equation za—* = ¢ on the left by ¢~ we

obtain
a~laa~l1=a"1,

Multiplying both sides of this equation on the right by one of the right
inverse elements of a—! we obtain a—'a =e¢, so that the element a—?! is
also a left inverse of a. If now a,~! and a;™?! are arbitrary right and left
inverse elements respectively of a, then it follows from the equations
a;tae = (a;la) eyl =Y,
a;laa;t = a;l(aa;") =a;?,

that a-1=a;1, in other words, the inverse element is unique.
Condition (2) can now be easily deduced. In order to satisfy the equations

ax=2>b, ya=1b

it is sufficient to put ¥ =a-1b, y=>ba~' The uniqueness of this solution
for, say, the first equation follows from the fact that if axy, = ax», then by
multiplying on the left by a=* we obtain 4, = .

We note that the uniqueness of the solutions of the equations (1) allows
us to introduce a left and a right cancellation : if

ab, =ab, or ba=bya,
then by == b,.
If a group G is mapped homomorphically (in particular, isomorphically)
on a set G’ with one operation, then G’ is also a group.
For from what has been proved in the preceding section it follows that
the operation in G’ is associative, that the equations (1) have solutions in G’,

and that the image of the unit element of G is a unit element for the set G’.
Thus conditions (2} and (2”) are satisfied in G’, and therefore, as shown
above, G’ is a group.

In particular, the factor set of a group G with respect to any regular
partition is itself a group. We shall therefore speak in future of the
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factor group of a group G with respect to a regular partition.
The theorem proved at the end of the preceding section now goes over
into the following very important homomorphism theorem for groups :

HoMoMorpHISM THEOREM : If @ is @ homomorphic mapping of a group G
onto @ group G', then there exists a regular partition of G such that G’
can be mapped isomorphically onto the factor group G of G with respect
to this partition. Moreover, the isomorphism y of G’ onto G can be so
chosen that the result of performing the mappings @ and ¢ in succession
coincides with the natural homomorphism of G onto the factor group G.

We add another remark about homomorphic mappings.

If the homomorphism @ of a group G onto a group G’ carries the element
a of G into the element a’ of G’,

ap=2a,

then the tmage of the element a=* is the element o'~

For we know that 1o =1’. If we now put a—*¢p =1"’, then

lp=(aa"Y)9p=ap-alo=d't/,
that is,

a’b'=1", and hence ¥’'=a'"".

The axiomatic investigations of the present section on the definition of
a group could be extended considerably, but we shall not pursue the matter
further ; we merely mention that in the paper of Baer and Levi [1]? the
definition of a group is split into seven independently formulated axioms:
existence of a product and of a left and a right quotient, uniqueness of each
of these three, and associativity. The authors then determine all the minimal
subsystems of this system of axioms that suffice as a complete definition of
a group. Another approach to the problem can be found in the paper by
Lorenzen [1].

The orders of elements. The product of # equal elements a in a group G
is called the n-th power of a and is denoted by a®. Negative powers of a can
be defined either as elements of G that are inverse to positive powers of a,

*See also §4 of the first edition of this book (Moscow-Leningrad, 1944; German
translation : Berlin, 1953).
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or as products of equal factors a—!. As a matter of fact, these definitions

coincide :
(@~ =(a"1)"

To prove this it is sufficient to take the product of 2# factors of which the
first # are a and the rest a—?, and then to carry out all the cancellations. We
shall denote the negative powers of a by a—*. By a° we shall, of course,
mean the element 1.

It is easy to verify that for any exponents m and n, positive, negative, or
zero, the following equations hold :

ateat—q"eqm —gmt+»

(a’”)”= amn,

The first of these equations shows that powers of one and the same element

are permutable.
If all the powers of an element a are distinct elements of the group, then a is

called an element of infinite order. Suppose, however, that among the powers
of an element a there are equal elements, for example a*=af for & 4= [;
this will always occur, in particular, in the case of finite groups. If 2 > [
then a*—/ =1, so that there exist positive powers a equal to the unit element.
Let n be the smallest positive power among them.

(1) ar=1, n>0

(2) if a*=1, k>0, then k=n.
In that case we say that a is an element of finite order, specifically, of order n.

If the element a is of order », then all the elements

1,a,a%...,a"?

are easily seen to be distinct. Every other power of a, positive or negative,
is equal to ome of these elements. For if k=nq +r, 0=r < n, then

a*=(am?.a" =a’,

Hence it follows that if a is of order » and if ¢*=1, then 2 must be divisible
by n. '

Every group has one and only one element of order 1, namely the element 1.
The inverse of an element a of finite order » is obviously the element a*—2.
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All the elements of a finite group are of finite order; in the following
section we shall show that there exist also infinite groups with elements of
finite orders only. A group whose elements all have finite order is called
periodic. There exist, on the other hand, groups in which the orders of all
the elements, except the unit element, are infinite. Such groups are usually
called torsion-free groups.! Finally, it is natural to call a group mixed if it
contains elements of infinite order as well as elements, other than the unit
element, of finite order.

If the additive notation is chosen for a group G, then some corresponding
changes in terminology and notation are required. As we have already
pointed out in § 1, we speak in this case of the null element of the group
instead of the unit element, and denote it by 0. Further, the element inverse
to a is then called the opposite element and is denoted by — a; and we speak
of multiples of a instead of powers of a and write them as ka.

§ 4. Examples of groups

In this section we collect some very simple examples of groups, which we
shall often have occasion to refer to in the sequel. In most cases it will be
left to the reader to verify that all the postulates entering the definition of
a group are satisfied.

1. All the positive and negative integers form a group with respect to
addition—the additive group of integers. This group is abelian. The number
zero plays the role of the unit element, and all the elements of the group
except zero are of infinite order, that is, the group is torsion-free.

2. Similarly, we can obtain the additive groups of all rational numbers,
of all real numbers, and of all complex numbers.

3. All the even numbers also form a group under addition. This additive
group of evenm numbers is isomorphic to the additive group of integers
(Example 1), because the correspondence which associates the integer %
with an even number 2% is an isomorphism. All the multiples of a given
number 7 also form a group under addition. But the set of all the odd
numbers is not a group under the operation of addition, since this operation
leads outside the given set. Nor does the set of all non-negative integers
form a group under addition, because the inverse operation—subtraction—
cannot always be carried out.

* Another name for groups without elements of finite order except 1 is locally infinite.
This is in keeping with a systematic terminology (see also § 55). [Trans.]
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4. The integers do not form a group under multiplication, since the inverse
operation—division—cannot always be performed. Nor do all the rational
numbers form a group under multiplication, since division by zero is impos-
sible. But all the rational numbers different from zero form a group under
multiplication—the multiplicative group of rational numbers. The unit
element of this group is the number 1. The number — 1, which belongs to
the group, is of order 2, while all the other elements are of infinite order.

5. We can also speak of the multiplicative group of all positive rational
numbers. This group can be mapped homomorphically onto the additive
group of integers as follows: Every positive rational number a can be

written in the form

’

a=2"a,

where numerator and denominator of the number o are prime to 2 and # is
a positive or negative integer or zero. The mapping a— » is the required
homomorphism. Note that the negative rational numbers do not form a
group under multiplication.

6. All the non-zero (or all the positive) real numbers and all the non-
zero complex numbers also form groups under multiplication. We recall
that, as shown in § 2, the multiplicative group of positive real numbers is
isomorphic to the additive group of all real numbers.

7. The numbers 1 and —1 constitute a group under the operation of
multiplication—a finite group of order 2. As shown in § 2, this group is
a homomorphic image of the additive group of integers. It is also a homo-
morphic image of the multiplicative group of all real numbers—we need
only map every positive number onto 1 and every negative number onto —1.

8. All the complex n-th roots of unity form a finite group of order »
under multiplication. This proves the existence of finite groups of every
order. For n =— 2 we obtain the group of the preceding example. We recall
that all the n-th roots of unity are powers of one of them, a so-called primitive
n-th root of unity.

9. All the complex numbers which are roots of unity of any degree also
form a group, the group of all roots of unity. It is an infinite, periodic group,

10. All the complex numbers of absolute value 1 form a group under
multiplication. This group is isomorphic to the group of rotations of a circle.
Let us consider the set of all counter-clockwise rotations of a circle about
its center. We shall consider a rotation through the angle 2x to be the
same as a rotation through the angle 0, and we shall identify, in general,
any two rotations with angles differing by a multiple of 2x. In this set of
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rotations we define a group operation in the following way: The sum of
two rotations shall be the result of performing them in succession; the sum
of the rotations by angles a and f§ will obviously be the rotation by the
angle a + f if « + f < 2=x, and by the angle o + f —2x if a + f = 2a.
It is easy to verify that this yields a group. To obtain an isomorphic mapping
of this group onto the multiplicative group of complex numbers of absolute
value 1 it is sufficient to establish a correspondence between the rotation
through the angle a and the complex number with argument o.

All the groups considered so far are commutative. We now pass on to
examples of non-commutative groups.

11. All the permutations of n symbols, the group operation being the
multiplication defined in § 1, constitute a group S,—the symmetric group
of degree n. This is a finite group of order #! and for » = 3 is non-
commutative. For it was shown in § 1 that the multiplication of permuta-
tions is associative and that the identity permutation is the unit ; the permuta-

tion inverse to
(1 2...n )
@y Gg... By

(1 2...n )

12. The reader will have learned in higher algebra® that all permutations
of degree » fall into two classes, the odd and the even permutations, with
n!/2 in each class. One of the possible definitions is the following. A
permutation is called even if it is a product of an even number of transposi-
tions and odd otherwise. Hence it follows that the product of two cven
permutations is even. Since the identity permutation is obviously even and
the inverse of an even permutation is also even, we arrive at the group of
all even permutations of degree #n, denoted by A, ; it is called the alternating
group of degree n. It is a finite group of order #!/2 and is non-commutative
for n =4.

The odd permutations of degree » do not form a group, since the product
of two odd permutations is even.

It is now easy to verify that there exists a homomorphic mapping of the
symmetric group 5, onto the group of order 2 in Example 7: every even
permutation is to be associated with the number 1, every odd permutation
with the number —1.

is the permutation

13. We take an arbitrary set M and consider all the possible one-to-one
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mappings of the set onto itself. Since the result of performing two such
mappings in succession again yields a one-to-one mapping of M onto itself,
we have here an operation in the set of these mappings. Its associativity
has been proved in § 1, the identity mapping is the unit element, and every
mapping has an inverse; hence we obtain the group Sy of all one-to-one
mappings of the set M onmto itself. If the set M is finite and consists of n
elements, then this group turns out to be the symmetric group of degree n.
It is clear that if the sets M and M’ have the same cardinal number then
the groups Sx and Sy” are isomorphic.

This example is important, because in applications groups appear for
the most part as groups of transformations, that is, as groups of one-to-one
mappings of a set M onto itself with multiplication defined as the performing
of mappings in succession. Not all such mappings are usually considered,
it is true, but only those that have some additional property a or, briefly,
a-transformations. In order that all o-transformations of a set M constitute
a group it is obviously sufficient that the following conditions be satisfied =

(1) the product of two a-transformations must have the property a;

(2) t''» averse mapping of an a-transformation must have the property a.

These remarks may be used to construct further examples, where in each
case the group consists of all the a-transformations of some set M for some
property o. In particular, multiplication in these examples should always
be understood as the performing of the mappings in succession.

14. We take an infinite set of cardinal number m and consider those
one-to-one mappings of the set onto itself that affect only a finite, though
possibly an arbitrarily large, number of symbols. These mappings constitute
a periodic group of cardinal number m which is called the symmetric group
of cardinal number m. Since the above-defined concept of an even permuta-
tion can be adapted to the mappings with which we deal here—only the
symbols actually affected need be considered—we obtain in a similar way
the alternating group of cardinal number mb

15. We consider an n-dimensional vector space over the field of real
numbers (or, more generally, over an arbitrary field). The non-degenerate
linear transformations of this space constitute a group under multiplication,
which is non-commutative for n = 2; from higher algebra the reader will
recall that between the non-degenerate linear transformations and the non-
singular square matrices of order n there exists a one-to-one correspondence
that carries the product of transformations into the product of the corres-
ponding matrices. Our group is therefore isomorphic to the multiplicative
group of non-singular matrices of order n. We note that each of these
groups may be mapped homomorphically onto the multiplicative group of
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real numbers different from zero: We need only associate each matrix with
its determinant and use the fact that the determinant of a product of matrices
is equal to the product of the determinants of the factors.

16. The rigid motions of a three-dimensional euclidean space constitute
a group. This is also true for those motions that leave a given point fixed,
that is, the rotations about this point.

17. The rotations of a euclidean space under which a given cube with
its center at the fixed point is mapped into itself constitute a group. This
group of the rotations of the cube is finite, since its elements are in one-to-one
correspondence with certain permutations of the set of vertices of the cube
and, as is easily verified, it is non-commutative. The groups of rotations
of other regular polyhedra are defined similarly.



CHAPTER I1I
SUBGROUPS

§ 5. Subgroups

A subset H of a group G is called a subgroup of G if it is itself a group
with respect to the operation defined in G.

In order to establish that a (non-empty) subset H of a group G is a
subgroup it is sufficient to verify :

(1) that the product of any two elements of H is contained in H ;

(2) that the inverse of each element of H is also contained in H. For,
the associative law holds in H because it holds for all elements of G, and
since H is not empty it follows from properties (2) and (1) that the unit
element of G belongs to H.

In the case of finite or, more generally, periodic groups the verification of
property (2) is superfluous. For if an element a of order » belongs to H,
then H must, by property (1), contain all the positive powers of a and
must therefore contain a#—1, the inverse of a. The example of the additive
group of integers and the set of positive integers contained therein shows
that in the general case it is necessary to verify property (2).

We emphasize that it is not permissible to replace the above definition of
a subgroup by one which would make any subset of G into a subgroup
merely because it happens to be a group. Thus, the set of positive rational
numbers is a group with respect to multiplication and is contained as a
subset in the additive group of all rational numbers, but it is not a subgroup
of that additive group.

The relation “H is a subgroup of G” is transitive : If H is a subgroup of G
and G a subgroup of G, then H is also a subgroup of G.

The subset of a group G which consists of the single element 1 is obviously
a subgroup of G. This subgroup is called the unit subgroup or trivial sub-
group of G and is denoted by the symbol E. On the other hand, the group ¢
itself is one of its own subgroups. Every subgroup that is distinct from the
whole group is called a proper subgroup.

Many of the groups in § 4 are subgroups of other of the groups listed
there. Thus, the additive group of even numbers is a subgroup of the additive
group of all integers and the latter, in turn, is a subgroup of the additive

42
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group of rational numbers. All these groups and, more generally, all addi-
tive groups of numbers are subgroups of the additive group of complex
numbers. The multiplicative group of positive rational numbers and the
group consisting of the numbers 1 and — 1 are subgroups of the multi-
plicative group of all non-zero rational numbers. The alternating group of
degree n is a subgroup of the symmetric group of the same degree. All
groups of a-transformations of a set M, in particular Examples 14-17 in § 4,
are subgroups of the group Sy of all one-to-one mappings of the set M
onto itself.

The first example mentioned above shows that a group may well be iso-
morphic to one of its proper subgroups; an isomorphism between the addi-
tive group of integers and that of even numbers was established in § 4. Itis
clear, however, that no finite group can be isomorphic to one of its proper
subgroups.

Under a homomorphic (or, in particular, an isomorphic) mapping ¢ of a
group G onto a group G, a subgroup H of G is mapped onto a subset H of G.
The mapping ¢ is homomorphic (or, in particular, isomorphic) for H and
therefore, as was proved in § 3, the set H is a_group with respect to the
operation defined in G, i.e. it is a subgroup of G. We shall say that the
given homomorphic mapping in G induces homomorphic mappings in all
its subgroups.

If two groups G and G’ are given and if G’ is isomorphic to a subgroup H
of G, then we shall say that the group G’ can be mapped isomorphically
into the group G or that G’ can be embedded in G. If, in particular, H coin-
cides with G we shall speak of a mapping onto the group G. One must,
however, take into account here that G’ can in general be mapped iso-
morphically onto H in many different ways. Moreover, H need not be the
only subgroup of G isomorphic to G’: all the subgroups of G that are
isomorphic to G’ are isomorphic to each other, but they are different subsets
of G and must therefore be distinguished inside G. Every isomorphic map-
ping of G’ onto one of the subgroups of G that are isomorphic to G’ gives
only one of the possible ways of embedding G’ in G.

Let us consider, for example, the symmetric group S, of degree n. If ¢ is
one of the permuted symbols 1,2,...,n, then all the permutations of S,
that leave the symbol ¢ in place constitute a subgroup of S, that is iso-
morphic to S,—1. We can say, therefore, that the symmetric group of
degree n — 1 can be embedded in the symmetric group of degree n; we see,
moreover, that the group S, contains several distinct subgroups isomorphic
to S,._.l.

If two groups 4 and B are given and if each of them is isomorphic to a
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proper subgroup of the other, then it does not follow that the groups them-
selves are isomorphic, as one might at first think. It only follows that each
of these groups is isomorphic to one of its proper subgroups, and this is
not so very surprising ; for if

A~B'cB

and if under the given isomorphism of B into A4 the subgroup B’ is mapped
onto the subgroup 4", then A” is isomorphic to A4.

The following theorem shows that the subgroups of the finite symmetric
groups essentially exhaust all the finite groups.

THEOREM oF CAYLEY. Every finite group of order n is isomorphic to a
subgroup of the symmetric group of degree n.
For let G be a group of order #, and let the elements of G, written in a

definite order, be
Qqy Ggy ooy Ay, 6))

If b is an arbitrary element of G, then all the products @b = ag,
(1=1,2,...,n) are distinct, so that the system

agy, apy, --+5 ag 2

also contains all the elements of G and differs from (1) only in the order
of the elements. We now associate with the element b the permutation

1 2...n |
D)
By Ba- .. Bn
To every element of G there corresponds in this way a well-defined permuta-
tion of degree n. Two distinct elements of G give rise to distinct permuta-
tions, since from a;b = a,b’ it would follow that b =2>3’. Let us find the

permutation corresponding to the product bc, where ¢ is also an element
of G. If to ¢ there corresponds the permutation

Gl ®

so that

then from

a;(bc)=apc=a,,
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it follows that to the element bc¢ there corresponds the permutation

( 1 2...n >

T Tare Tn/

which is the product of the permutation (3) by the permutation (4). Thus
we have proved that G is mapped isomorphically into the group S,. The
subgroup of S, that corresponds to G obviously has the following properties:
The order of the subgroup is equal to the number of permuted symbols,
and each permutation in the subgroup with the exception of the'unit element
displaces each of the symbols. Such subgroups of the symmetric groups
are called regular.

From the theorem of Cayley and the obvious remark that a finite group
has only a finite number of subgroups it follows that there exist only a
finite number of non-isomorphic finite groups of a given order n. Therefore,
the set of all non-isomorphic finite groups is countable, since it is the sum
of a countable set of finite sets.

The theorem of Cayley can be extended to infinite groups: Every group
of cardinal number m is isomorphic to a subgroup of the group Sy of all
one-to-one mappings of the set m onto itself (cf. § 4, Example 13).* The
proof remains completely unaltered. We have only to justify the assertion
that after the multiplication of all group elements on the right by b we
again obtain all the elements of the group ; this, however, follows easily from
the axiom of the existence of a left quotient.

The concept of a subgroup is fundamental in the theory of groups. The
entire content of group theory is more or less linked up with questions about
the existence,in a group,of subgroups having one or another special property,
about groups that can be embedded in a given group, about properties that
characterise the mutual disposition of subgroups in a group, about methods
of constructing a group from its subgroups, etc. The classification of various
special types of groups also depends mainly on the concept of a subgroup.

§ 6. Systems of Generators. Cyclic Groups

The intersection of two subgroups H and K of a group G cannot be
empty, since every subgroup of G contains the element 1. The intersection
is, in fact, a subgroup of G: if D= HNK is the intersection of the sub-

* That is, the unrestricted symmetric group Sy,.b
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groups H and K, and if elements @, b belong to D, then their product and
their inverses belong to H as well as to K and hence to D.

If subgroups of a group G are given—not just two, but an arbitrary finite
or even infinite set—then the product of any two elements of the intersection
of all these subgroups lies in each of them and therefore in their intersection.
This holds also for the inverses. Hence the intersection of any set of sub-
groups of a group G is itself a subgroup of G. The intersection of all the
subgroups of a group G is obviously the unit subgroup E.

Let M be an arbitrary non-empty subset of a group G (such a subset is
sometimes called a complex). The intersection of all the subgroups of G
that contain all the elements of M—one of these subgroups is, of course,
the group G itself—is called the subgroup generated by the subset A and
is denoted by the symbol {M}. Clearly it is contained in every subgroup
of G that contains the whole subset M.

If the subset M consists of a single element a, then the subgroup {a}
generated by it is called the cyclic subgroup of a. All the powers of a
belong, of course, to the subgroup {a}; but these powers already constitute
a subgroup, since the product of a” and a” is equal to a” 7, and the inverse
of a* is a=* (cf. § 3). Hence it follows that the cyclic subgroup {a} con-
sists of all the powers of a. This shows that the cyclic subgroup {a} is
countable if @ is an element of infinite order and finite if a is of finite order;
in this case the order of {a} is equal to the order of a.

A group that coincides with one of its cyclic subgroups, i.e. that consists
of the powers of one of its elements, is called a cyclic group. An element
whose powers constitute the given cyclic group is called a generating element
or generator of the group. Every cyclic group is obviously commutative.
An example of an infinite cyclic group is the additive group of integers, and
one of its generators is the number 1; an example of a finite cyclic group
of order n is the multiplicative group of the n-th roots of unity for
n=1,2,.... The following theorem shows that these examples essentially
exhaust all cyclic groups. :

All infinite cyclic groups are isomorphic; all finite cyclic groups of a given
order n are isomorphic.

For, an infinite cyclic group with generator a can be mapped one to one
onto the additive group of integers if we associate with a* the number %;
the isomorphism of this mapping follows from the fact that in the multi-
plication of powers of a the exponents are added. Similarly, we may obtain
an isomorphic mapping of each cyclic group of order » onto the group of
the n-th roots of unity.
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This theorem allows us to speak in the sequel simply of the infinite cyclic
group or of the cyclic group of order n.

Every subgroup of a cyclic group is cyclic.

For if G = {a} is a cyclic group with generator a, of infinite order or of
finite order #, and if H is a subgroup of G different from E, and if, further,
the smallest positive power of a in H is a*, then { a*¥ } € H. Suppose that H
contains also an element o, where /<=0 and [ is not divisible by 2. Then
if (k,l)=d, d >0, is the greatest common divisor of # and [, there
exist integers # and v for which ku + /v =d; therefore H must contain

the element
(akye (@D = a4

but since d < k, this is in contradiction with the choice of the element a*.
Hence H = {a*}.

In the infinite cyclic group with generator a we can also choose a—* as
generator ; the cyclic subgroup generated by any other power of a is not the
whole group. In the cyclic group {a} of order n we can choose the element
a*, 0 =< k < n, as generator if and only if k and n are relatively prime.

For if (k,n)=1, then there exist a # and a v for which

ku+nv=1.

Hence
(ak)u a=—ql-" —g.q=-"" =4q.

If, on the other hand, we have (a*¥)* = a for some %, then the difference of
the exponents ks — 1 must be divisible by » (cf. § 3) :

ks—1=mnq
so that

ks—ng=1,
and (k,n)=1.

If M is now again an arbitrary subset of a group G then, just as in the
case of cyclic subgroups, it is easy to give a rule by which the elements of
the subgroup { M } are formed from the elements of M. The subgroup { M }
must contain the positive and negative powers of all the elements of M,
and hence also all the possible products of any finite number of these powers
taken in an arbitrary order. But all the elements of G that.can be repre-
sented, possibly in more than one way, as a product of a finite number of
powers of the elements of M, obviously form a subgroup of G that contains
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all the elements of M. Thus we have proved that the subgroup generated
by a subset M consists of all the group elements that can be written as
products of a finite number of powers of elements of M.

If, in particular, a set of subgroups of a group G is given and if M is the
set-theoretical union of these subgroups, that is, the set consisting of all the
elements of G that lie in at least one of the given subgroups, then { M } is the
smallest subgroup of G that contains all these subgroups. This subgroup
{M} is called the subgroup generated by, or join of, the given subgroups
and is denoted by the symbol {4z}, & € N, if the given subgroups are A4,
(where a ranges over some index set N) ; in particular, if only two sub-
groups A and B are given, then the subgroup { M } is denoted by the symbol
{A,B}, etc. From the above remarks we see that the subgroup generated
by a set of subgroups of G consists of all the elements that can be written
as products of a finite number of elements from the given subgroups.

If the subgroup { M} generated in a group G by one of its subsets M
coincides with the group G itself, then the subset M is called a system of
generating elements or simply a system of generators, or a generating set of
this group. Every group possesses systems of generators—it is sufficient
to take all the elements of the group, or the set of all elements other than 1.°
From the above remark on the subgroups generated by a subset it follows
that a subset M is a system of generators of a group G if and only if every
element of G can be written in at least one way as a product of a finite
number of powers of elements of M.

If

G={M)}

then we call M an irreducible system of generators if no proper subsystem
of M is a system of generators for G.

Examples: 1. Every cyclic group has a system of generators consisting
of a single element, namely a generating element of the group. Conversely,
every group with one generating element is cyclic. Note that in a cyclic
group one can in general® choose irreducible systems of generators which
consist of more than one element. Thus, for example, the numbers 2 and 3
form an irreducible system of generators for the additive group of integers.

2. Tt was mentioned in §4 that every permutation of degree = is a
product of transpositions. It follows that one system of generators of the
symmetric group of degree »n is the set of all transpositions contained in

! The exceptions are E and the cyclic groups of prime-power order; see § 17. [ Trans.]
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that group. The symmetric group of degree n can also be generated by
two elements:

a==(12),

b=(12...%).
For,
b=kabt=(k+ 1, k+2), k=n—2.

If, now, 1 < j—1, then

Uy J—1...(i+2, i+ D¢, i+ D@+, i42)...0—1, H=E),

so that the subgroup {a, b} contains all the transpositions and is therefore
the whole symmetric group.

3. The numbers

111 1
’2’ 6, 24,...’ n!’ L

1

form a system of generators for the additive group of rational numbers R.
It is easy to see that every infinite subset of this set is also a system of
generators for R, Moreover, we can show that the additive group of
rational numbers R has no irreducible system of gemerators. For let M be
any system of generators of R and let a be an arbitrary element of M. We
denote by H the subgroup generated by the set M’ consisting of all elements
of M except a; the set M’ cannot be empty, since otherwise all the rational
numbers would be multiples of @, which is not true. If b is an arbitrary
element of M’, then it follows from the properties of rational numbers that
there exists an integer k, different from zero, for which ka is a multiple
of b and hence is contained in H. The number (1/k)a, which belongs to R,
must be expressible as a sum of a finite number of rational numbers which
are multiples of numbers from M, that is,

(1/k)a=sa + h,
where s is an integer, possibly zero, and h is an element of H. Hence
a=s(ka)t+ kh,

so that @ is contained in H and hence H = R. The set M’ is, therefore, a
system of generators for R.

4. The multiplicative group of positive rational numbers has an irreduc-
ible system of generators consisting of all the prime numbers.
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If a group G has a system of generators consisting of a finite number of
elements, then G is called a group with a finite number of generators or a
finitely generated group. All finite and all cyclic groups are obviously of
this type. The example of the infinite cyclic group shows that the finiteness
of the group does not follow from the finiteness of the number of generators.

Every system of generators of a finitely generated group contains a finite
subsystem which is an irreducible system of gemerators of the group.

Since a finite system of generators can always be made irreducible by the
omission of superfluous elements we need only show that under our assump-
tions every infinite system of generators contains a finite subset which is
also a system of generators for the group in question. Let G be a group
with generators a,, as, ..., @,

G={a, ay ..., a,},

and let M be any other system of generators of G. Every element a;,
1=1,2,...,n, can be written in the form of a product of powers of a
finite number of elements of M. If for each i, 1=1,2,...,n, we choose
one of these representations and collect all the elements of M that occur in
these representations, we obtain a finite subset M’ of M for which the
subgroup {M’} contains all the elements a;,as,...,a, and therefore
coincides with G. _

Note that distinct irreducible systems of generators of a finitely gener-
ated group may, in general, contain different numbers of elements (cf.
Example 1).

Every homomorphic image of a finitely generated group is itself finitely
generated.

Indeed, if
G=/{ay ag, ..., a,}

and if the homomorphism ¢ maps G onto G, then the elements
@19y 839y « o0y QyP (1)

generate G. For if @ is an arbitrary element of G and a is one of its originals
in G, then @ can be expressed in terms of powers of the elements (1) in the
same way as a is expressed in terms of powers of a4, a2, ..., O Some of
the elements (1) may, of course, coincide, so that we obtain for G a system
of generators with repetitions. These repetitions could be excluded. How-
ever, we shall continue to admit such systems of generators.
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Every infinite group with a finite number of generators is countable.
For if a1, a2, . ., a, are the generators of G, then every element of G can
be written in the form of a product
1 98 ot
a; a; ... a‘:
(in general, in several different ways); each 4, is one of the numbers

1,2,...,n and we may have 4, =1, for k 5% . Let us define the length of
this product to be the sum of the absolute values of the exponents:

h=la,|+|ag|+ ...+ ]q,l

It is easy to see that for a given length & there exist only a finite number of
products of powers of the generators a;, az2,...,a,. The set of all power
products of these elements being, therefore, the sum of a countable set of
finite sets, is countable, so that G cannot be more than countable.

Examples 3 and 4 of the present section show that there exist countable
groups that have no finite system of generators. Finitely generated groups
are therefore a class of groups intermediate between the classes of finite
and countable groups.

Every subgroup of a finitely generated group is, of course, at most count-
able. In Chapter IX, however, we shall encounter examples of finitely
generated groups in which certain subgroups do not have finite systems of
generators. Finitely generated groups will be studied in greater detail in
Chapter X.

We remark that we can prove in the same manner as above that if a
group G has an infinite system of generators (without repetitions) of
cardinal number m, then the group has the cardinal number m.

§ 7. Ascending sequences of groups

Let
Al’ AQ’ o e 0y An, e sy

be subgroups of a group G which form an ascending sequence: every sub-
group A, is contained in A4,,,,, A, S A,y n=1,2,.... We show that
the set-theoretical union B of this ascending sequence of subgroups is itself
a subgroup of G and is therefore the group generated by the A,: Each ele-
ment b of the set B lies in some subgroup 4, (and so in all A, withk =n);
then b1 lies in A, also and hence in B ; and if two elements b; and b, of B
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are chosen, lying in A4, and A, respectively, where & = n say, then both
by and b, lie in Ay, and their product b, b, also lies in Ay and hence in B.
Thus we have shown that the set B is a subgroup of G.

Instead of a countable sequence of subgroups whose ordering is of the
type of the natural numbers, we could have taken an arbitrary set of sub-
groups with the property that for any two subgroups A, and A4g of this
set one is contained in the otherd The set-theoretical union of these sub-
groups is itself a subgroup of G ; this is proved by a literal repetition of the
argument given above.

In the sequel we shall frequently have occasion to use the following

THEOREM. Ifin a group G a subset M and a subgroup A are given, whose
intersection is a subset D, then G has at least one subgroup that contains A4,
has the intersection D with M, and is not contained in any larger subgroup
with these two properties.

For let the elements of G be well-ordered:

l=ao’ al’ .6 09 aa’ e 0y

We put 4y=—=A. Suppose now that for all B < a we have already chosen
subgroups Ag of G which form an ascending sequence and all of which have
the intersection D with M. If B, is the union of the ascending sequence of
subgroups Ag, B < @, then we choose as A, the subgroup { By, a,} if the
intersection of this subgroup with M is D, and the subgroup B, otherwise.
The union A of the ascending sequence of all the subgroups 4. is the required
subgroup : the intersection of A with M is obviously D ; but if an element a,
lies outside 4, then the intersection of (4, a (Y with M is different from D,
since we already have {By, ay} N M= D,

It follows, in particular, that if G has a subgroup which has an empty
intersection with the subset M, then among all such subgroups there is at
least one that is maximal.

It can happen that the set-theoretical union of an ascending sequence

of subgroups
Achce...g4,c...

of a group G coincides with G itself. Let us give a few examples of this.

1. The additive group of rational numbers R is the union of the following
ascending sequence of cyclic subgroups:

me(flelile e fi)e
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2. Let G be the multiplicative group of positive rational numbers and let

pl’ pﬁ’ o8y p”, e

be all the prime numbers in ascending order. If
An={P1s Pos ++ s Pn)

—this is the collection of all rational numbers for which the numerator and
denominator in reduced form contain only prime numbers from the system
P1s P2, ..., pn—then the group G is the union of the ascending sequence
of subgroups 4,, n=1, 2, ....

3. Let S, be the restricted symmetric group on a countable set of symbols
%1, &2,... (see §4, Example 14). The subgroups S, of this group con-
sisting of those mappings that leave each of the symbols

Xot1s Xnaor oo

unchanged is obviously isomorphic to the symmetric group of degree #,
and the group S is the union of the subgroups S,, n=1,2,3,....

On the other hand, the following theorem holds:

A finitely generated group cannot be the union of an ascending sequence
of proper subgroups.

Suppose the group G has a finite system of generators

G={a1, a2, co ey an},

and is the union of an ascending sequence of proper subgroups
HIEH2E ese nggooo.

Each element a;,1=1,2,...,n, belongs, as indeed every element of G
does, to some subgroup H,,{ and so belongs to all the subgroups H; with
E=k. If

| = max (k], kg, ey kn),

then the subgroup H, contains ay, az,...,a, and cannot therefore be a
proper subgroup of G.

This proof carries over to the case when we have in a finitely generated
group an arbitrarily ordered ascending sequence of proper subgroups.

The union of an ascending sequence of countable subgroups and, in
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particular, of finitely generated subgroups is clearly countable. Conversely,
every countable group is the union of an ascending sequence of finitely
generated subgroups.
For let the elements of a countable group G be numbered in an arbitrary
way
g1)g2) "')gﬂ) oo,
The subgroups

Hn={g1’ 8ar « o0y gn}’

are finitely generated. Each is contained in all the succeeding ones (though
H,=H,, is possible) and the group G is the union of this ascending
sequence of subgroups.

We now proceed to explain a construction that allows us to speak of an
ascending sequence of given groups which are not a priori subgroups of a
containing group.

Suppose we have the groups

G1,Gz, .’ G, ... (1)

and have for each n an isomorphic mapping ¢, of the group G, into
Ga+1 (ie. onto a subgroup of Gpi1).

Enon=8n+1» En€Un Lny1 € Cnyye @)

The groups (1) and the isomorphisms (2) enable us to construct a well-
defined group G in the following way.
We define a thread to be any sequence of elements

T=gk’ gk+1, es oy g”, e o o (3)
with the following properties:
1) k=1,
2) g.€Ga,

3) if & > 1, then g, is not the image of any element of Gy_; under the
isomorphism @,
4) gn+1 is the image of g, under ¢,

EnPn=_E8ne1r N=R, k+1, cee,

If two threads are given
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¥} (4 / U4

T =8k Bkitlr cocy ny ¢ oy
» n [ 4 n
T =81y Bl+ty covy 8ny ooy

and if # 5% [, then the sequence of elements
’ L4 4 L4 ;7 ”
Em8ms Bm+18m+ly ooy Enlny ooy 4)
where m = max (k, 1), is itself a thread. For

/7 ¥ . ’ [4 / 7
(gngn)?nr' EnPn * EnPn=— En+18n+1,
and the element g,’g,” is not the image of any element under the iso-
morphism @, _1, since one of the factors is such an image and the other
is not. We shall call the thread (4) the product of the given threads and
denote it by ¥’ y”. If k = [, then the element g,,’g,»” may have an original
in G,,—1 under the isomorphism @,_1. In that case we can make the
sequence (4) into a thread by adding suitable elements at the beginning;
moreover, this completion is uniquely determined. The thread so obtained
will be called the product y'y”.

That the multiplication of threads just defined is associative follows from
the associativity of the operations in the groups G,. The unit element is
the thread that consists of the unit elements of all the groups G,. The
inverse thread of (3) is

~1 -1 -1
B s Lk+1ly ooy Bn s oo,

The set of all threads is, therefore, a group with respect to multiplication.
We denote this group by G ; it is called the (direct) limit group for the
sequence (1) with the isomorphisms (2). We can also say that the groups
(1) form an ascending sequence in virtue of the isomorphisms (2) and
that G is the uniom of this ascending sequence. For, let us collect all
the threads that contain an element of G,, in other words, that begin
in the groups Gy, with # =< 5. These threads constitute a subgroup G, of G
which is isomorphic to G,. The subgroups

G1,Gzy...,Gpy ... (5)

are embedded in one another in the same way as the groups (1) by the
isomorphisms (2) the set-theoretical union of the ascending sequence of
subgroups (5) is the whole group G.e
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The group G is uniquely defined by the groups (1) and the isomorphisms
(2). We cannot restrict ourselves to the given groups (1) only. For, the
additive group of rational numbers R is the union of a countable ascending
sequence of infinite cyclic groups (see above, Example 1). But so is the
additive group of dyadic fractions Rj, since it is the sum of an ascending
sequence of proper subgroups

meflele  clle

The groups R and R, are not isomorphic since, for example, there is no
element x in R, that satisfies the equation

3r=1,

while this equation has a solution in R. This shows that the union of an
ascending sequence of groups depends not only on the groups themselves,
but also on the manner in which each is embedded in the following.

The above construction can easily be extended to the case of an arbitrarily
ordered set of groups of arbitrary cardinal number. We need only assume
that for each pair of groups of this set, say G, Gg, the first of which precedes
the second, an isomorphic mapping ges of G, into Gg is defined, and that
if the isomorphisms ¢ag and gy and hence @q, are defined, then gy coin-
cides with the result of performing the isomorphisms ¢,g and ¢gy in succes-
sion. The details of this construction are left to the reader.

Let us use our construction to form a group that will be rather important
in the sequel, especially in the theory of abelian groups. If a prime number p
is given, then every cyclic group of order p* has a unique cyclic subgroup
of order p#—*. Thus for each # an isomorphic mapping of a cyclic group of
order p*—1! into a cyclic group of order p* is defined; we can therefore
speak of the ascending sequence of cyclic groups of order p#,n=1,2,....
The union of this sequence is called a group of type p=.* It is easy to verify
that a group of type p= is isomorphic to the multiplicative group of roots
of unity whose degrees are powers of p.

Since a cyclic group {a} of order p* has, for every % less than », a unique
cyclic subgroup of order p*, namely {a””"" }, the group P of type p= also
has for each kb, k=1,2,..., a unique cyclic subgroup of order p* and
coincides with the union of the ascending sequence of these subgroups. Let
these be the subgroups {ax},k=1,2,...; we also put {ao} =1. Now

! Sometimes also called a quasi-cyclic group.
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if U is an arbitrary proper subgroup of P, then it cannot contain all the a;.
Let a4+, be the first generator that does not lie in U. Then U coincides with
the cyclic subgroup {a,}. For if an element a;, with 2 > n + 1, were
contained in U, then U would also contain the cyclic subgroup {a;} and
hence the element a,+;. And if U contained an element b not in {a,}, then
we could find a k, with & > #n, for which

bg{ax—1}, be{ay}.

However, we would then have
{b f = {ak} ’

so that a;, would lie in U after all. Thus we have proved that every proper
subgroup of a group of type p= is a finite cyclic group of order p*.

From results of Chap. VII it will follow that the groups of type p=
(for all prime numbers p) are the only infinite abelian groups whose proper
subgroups are all finite. The problem, raised by O. J. Schmidt, whether
there exist infinite non-commutative groups with this property, is still open.



CHAPTER III

NORMAL SUBGROUPS

§ 8. Decomposition of a group with respect to a subgroup

If two subsets M and N are given in a group G, then we define the product
MN to be the set of all elements of G that are equal to the product of an
element of M by an element of N.* If one of the subsets M, N consists of
a single element a, then we have the definition of the product aN of an
element by a subset or the product M a of a subset by an element.

Multiplication of subsets is associative,

(MN)P=M(NP),
but not, in general, commutative. If for two subsets M and N the equality
MN=NM

holds (that is, if for any two elements a and b, aeM, beN, there exist
elements @’ and ¢” in M, b’ and b” in N for which ab =1"0"d’, ba=a" b")
then the M and N are called permutable. Special cases are permutability
of an element and a subgroup, permutability of two subgroups, and so on.

We remark that if 4 and B are subgroups of G, then the subset 4B
need not be a subgroup, that is, the product AB 1is, in general, different
from the subgroup {A, B} defined in § 6. We can, however, assert that

ABc {4, B).

The subgroup { A, B} generated by two subgroups A and B of a group G
coincides with the product AB if and only if A and B are permutable.

For if
AB={A,B},

then for any a in 4 and b in B the element ba, which is contained in {4, B},

* An element may be equal to several distinct products of this form; such an element
shall not, however, be counted more than once in M N.

58
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must be equal to some element a’b’, a’eA, b’eB, so that

BA € AB.

We now show that the element ab is, in turn, contained in the product BA4.
Making use of the above inclusion we obtain

(ab)'=0b"ta"*=4d"b", a"’¢A, b"eB;

and hence ab =b"—1a” -1, so that AB&B A, and therefore AB=—=BA.

Conversely, if 4 and B are permutable, then every product of three
elements of the form a,bas or Dyab, can obviously be written in the form
a’'b’; in the first case, we need only replace bas by some product a,'d’ equal
to it (such a product exists, since 4 and B are permutable) and then
put a;a2’ = a’; in the second case, we replace bya by ¢’b," and then put
by'be=>’. Now if it has already been proved that every product of n
factors, n = 3, taken alternately from 4 and B, is contained in 4B, and if
a product of the same kind but with » + 1 factors is given, then we replace
the product of the first # factors by a product a’?’, equal to it, and again
arrive at the case of three factors. It follows that every element of the
subgroup {4, B} is contained in the subset 4B.

Subgroups of an abelian group are, of course, always permutable. So are
subgroups 4 and B of any (finite or infinite) symmetric group provided
that every symbol displaced by one of the subgroups 4, B remains unaltered
under all the permutations of the other group—indeed, in this case each
element of A4 is permutable with every element of B (that is, the subgroups
are element-wise permutable). We leave it to the reader to show that in
the symmetric group of degree 3 the cyclic subgroups generated by the
permutations

(123) and (12)
are permutable, but those generated by

(12) and (23)

are not.
We note for later use that if 4 is a subgroup of a group G, then

AA=A.
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For it is clear that A A& A4 ; but the product of 4 by 1 already yields the
whole of 4.

The multiplication of subsets of a group has an important application in
the decompositions of a group with respect to a subgroup; these play a
fundamental role in the whole theory.

Let H be a subgroup of a group G. If a is an arbitrary element of G, then
the product a H is called the left coset of H in G determined by a. Clearly,
a is contained in the coset a H, since H contains the unit element.

If b is an arbitrary element of a H, then the left cosets aHH and b H coin-
cide, that is, every left coset is determined by any of its elements. For if
b=ah,, hye H, then

bW =a(hoh’) and ah” = b(h,—*h"), W, h"eH.

We shall also say that an arbitrary element of a left coset is a representative
of that coset.

It follows that any two left cosets of H in G are cither equal or disjoint,
that is, their intersection is empty. We see that the whole group G is divided
into disjoint cosets with respect to a subgroup H. This is called the left
decomposition of G with respect to H. One of the cosets of this decomposition
is H itself: if the element @ is contained in H, then a H = H.

Note that two elements a and ? lie in the same coset of H in G if and
only if a='b is contained in H.

The concept of a left coset is illustrated by the following

Examples. 1. If G is the additive group of integers and H the subgroup
of numbers divisible by 4, then two numbers @ and b lie in the same left
coset of H in G if and only if they leave the same remainder on division by 4.
Thus the left decomposition of G with respect to H consists of four cosets:
H itself and the sets of numbers which on division by 4 give the remainders
1, 2, and 3, respectively.

2. If G is the symmetric group of degree 3 and H = {(12)}, then the left
decomposition of G with respect to H consists of three cosets ; the subgroup
H itself, consisting of the elements 1 and (12), the coset (13)+ H, con-
sisting of the elements (13) and (132), and the coset (23) - H, consisting
of the elements (23) and (123).

3. If G is the group of non-singular matrices of degree # with real elements,
and H the subgroup of matrices with determinant 1, then we obtain the left
decomposition of G with respect to H if we collect into one coset all the
matrices whose determinants are equal.
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If in an arbitrary group G we take G itself as the subgroup H, then the
decomposition consists of a single coset, and if H is the unit subgroup E,
then every element of the group constitutes a separate coset.

We could have obtained, instead of the left decomposition, the right
decomposition of a group G with respect to a subgroup H by calling every
subset Ha, a€ G a right coset of H in G. Everything that has been proved
above for left cosets carries over to right cosets. In particular, one of the
right cosets is H itself. Two elements a and b lie in the same right coset
with respect to H if and only if ba~'eH.

In the case of abelian groups it is, of course, unnecessary to distinguish
between the left and right decompositions, but in the non-commutative case
these decompositions may turn out to be distinct. For example, the right
decomposition of the symmetric group of degree 3 with respect to the sub-
group H = {(12)} differs from the left decomposition given in Example 2
above, and consists of the following three cosets: H itself, the coset H « (13),
containing the elements (13) and (123), and the coset H +(23), con-
sisting of the elements (23) and (132). We can assert, however, that
the two decompositions of a group G with respect to an arbitrary subgroup H
consist of the same number of cosets (in the infinite case this means that the
sets of left and right cosets with respect to a given subgroup have the same

cardinal number). For, the set of inverses of the elements of the left coset
aH is the right coset Ha—?

(eH)='= Ha—1;

thus there is a one-to-one correspondence between the left and right cosets.

The number of cosets in either decomposition of a group G with respect
to a subgroup H (in the infinite case, the cardinal number of the sets of
these cosets) is called the index of H in G. If the number of cosets is finite,
then H is called a subgroup of finite index.

All the subgroups of a group all have finite index if and only if the group
itself is finite; for the index of the unit subgroup of an arbitrary group is
the cardinal number of the group. All subgroups other than the unit sub-
group of the infinite cyclic group are subgroups of finite index, and the group
has for every natural number # one and only one subgroup of index n; the
proof of this statement follows from the theorem on subgroups of cyclic
groups proved in § 6.

On the other hand, there exist groups in whlch all the proper subgroups
are of infinite index. An example is the additive group of rational numbers R .
For if H is a proper subgroup of R, then we can find an element a not in H
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which is such that pa is contained in H, where p is a prime number. The
numbers
1

a, ;—d, -;,z—a,..., ;,';d, oo

all lie outside H and belong to different cosets of H in R. For if

1 1
?,—a=7,‘—a+h, he H, n> k,
then

a = p"-kq-} prh;

that is, a is itself contained in H, contrary to our assumption.

THEOREM OF PoINCARE. The intersection of a finite number of subgroups
of finite index has itself finite index.

It is obviously sufficient to prove the theorem for the case of two sub-
groups. Let H and K be subgroups of finite index in a group G and let D
be their intersection. Two elements a and b lie in the same left coset of D
if and only if a—'beD, so that a—*beH and a—*beK. We therefore obtain
all the left cosets of D in G if we take all non-empty intersections of the left
cosets of H with the left cosets of K. Since the indices of H and K are
finite, the number of these intersections, and hence the index of D in G, is
finite. We see, moreover, that the index of D in G is not greater than the
product of the indices of H and K.

In the case of finite groups the concept of the decomposition of a group
with respect to a subgroup leads to the following important theorem:

THEOREM OF LAGRANGE. The order and the index of a subgroup of a
finite group are divisors of the order of the group.

For if a finite group G is of order # and if H is a subgroup of order 4 and
index j, then each left coset of G with respect to H consists of 4 elements,
and therefore’

n=hj.

Since the order of an element is equal to the order of its cyclic subgroup,
it follows from the theorem of Lagrange that the order of each element of a
finite group is a divisor of the order of the group.

It also follows from the theorem of Lagrange that every group whose
order is a prime number is cyclic. For the group must be the cyclic subgroup
generated by any of its elements other than 1.
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TheTheorem of Lagrange is a special case of the following theorem, which
refers to arbitrary groups:

If H and K are subgroups of a group G, of finite index j and n respectively,
and if K is contained in H, then the index h of K in H is also finite and

n=hj.

For if two elements lie in the same left coset of K in G, then a fortiori
they lie in the same left coset of H. Every left coset of H in G therefore splits
into several complete left cosets of K in G. From this it already follows
that the index of K in H is finite. Now if K has h left cosets in H, then
every coset aH , aeG, also consists of & such cosets; we obtain them when
all the left cosets of K occurring in H are multiplied on the left by a. This
completes the proof of the theorem.

If G is a finite group and K = E, then we obtain the theorem of Lagrange.

In certain group-theoretical problems use is made of the decomposition
of a group with respect to a double module, which is a generalization of the
decomposition of a group into cosets. Let H and X be arbitrary subgroups
of a group G. If a is an element of G, then the product HaK obviously
contains a; we shall call this product the double coset modulo (H, K)
generated by a. If b is contained in HaK, so that b= hak, then
a=h~1bk—1, that is, ae Hb K. Finally, it follows from be HaK, ce HbK
that ce HaK. This shows that G is divided into disjoint double cosets
modulo (H,K). When K =E, the decomposition of G thus obtained
obviously becomes the right decomposition of G with respect to H, and
when H = E, the left decomposition of G with respect to K .

Clearly, the double coset HaK contains, with each one of its elements,
the entire right coset with respect to H generated by that element. We can
now establish a one-to-one correspondence between the right cosets of H
which are contained in HaK and the right cosets of the intersection
D=a"1HaN K in K as follows: With the coset Ha %k,, ko, € K we asso-
ciate the coset Dk,. For if Hako=Hak,, kieK, then by =a~*ha-k,,
heH and hence a—'haeD, so that kjeDk,. On the other hand, if
F'eK, then DE corresponds to the coset Hakl' in HaK. Further, if
DFE = DFE”, then there exists an element he H for which

k" =a"1ha-F,

so that ak” = hak’ and hence Hak” = Hak'. Therefore if the index of
the subgroup a—'Ha N K in K is finite, then the number of right cosets of H
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that are contained in the double coset HaK is also finite, and conversely.
Moreover these two numbers are equal.

§ 9. Normal subgroups

We know from the preceding section that non-commutative groups may
possess subgroups for which the left and right decompositions differ. But
in any group the two decompositions with respect to the unit subgroup
(and those with respect to the group itself) coincide. Example 3 of the
preceding section presents a less trivial case in which, as can easily be
verified, the two decompositions coincide.

A subgroup H of a group G is called a normal (or invariant or self-
conjugate) subgroup if the left and right decompositions of G with respect
to H coincide. In other words, H is a normal subgroup of G if for each
element ¢ of H its left and right cosets in G coincide:

aH=—Ha.

This shows that a subgroup H of a group G is normal if and only if it is
permutable with every element of the group, that is, if for every ¢ in G
and every h in H we can find elements 4’ and #” in H for which

eh="Wa, ha=ah”. (1)

The concept of a normal subgroup can also be defined in many other ways;
we shall each time use the definition most convenient in the context. We
have just given two; others will be given later.

Two elements @ and b of a group G are called conjugate in G if we can
find an element g for which

b=g"ag.
We shall also say that b is obtained from a by transformation by g.
Since the second equation (1) can be written in the form
a~tha=h",

and since a and h are arbitrary elements of G and H respectively, we
obtain the following property of normal subgroups:

If a normal subgroup H of a group G contains an element h,it also con-
tains all the elements that are conjugate to h in G.
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This property could be taken as the definition of a normal subgroup; it is
often convenient to use it in the following more general form:

Let G be a group with a system of generators M, and H a subgroup
generated by a set of elements N. If the process of transforming the elements
of N by the elements of M and their inverses does not lead outside of H,
then H is a normal subgroup of G.

For it is easy to verify that
g (b .. By g =(g k)" (g7h,8) . .. (g7 £)"n,
(81827 R (180 = &3 ' (&1 'hey) Lo
However, every element of G has the form
E= &8+ s

where gie M or g~ 'eM (1=1,2,...,k), and every element of H has
the form

h=h;1h2a’ .o h;”,
where ieN (i1=1,2,...,n). Therefore we always have g~ *hgeH, and
this is what we had to prove.

The reference to the inverses of the elements of M in this formulation of
the theorem is, of course, superfluous when all the elements of M are of
finite order.

Let U be any subgroup and g an arbitrary element of a group G. Then
the subset g—*Ug (which consists, obviously, of all the elements obtained
from the elements of U by transforming them with g) is itself a subgroup.
For if #; and u. belong to U, then

) (g7 u,8) (g ug0) = g1 (,85) g 2)
an
(€ 'ng) =g u'g.

The subgroup g—*Ug is said to be conjugate to U in G. We shall also say
that it is obtained from U by transformation by g. Since

g lug=g"lug
implies that #; = us, we see from (2) that the mapping
u—>g-ug, uelU

is an isomorphic mapping of U onto g~ Ug.
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From what we have proved above about the conjugates of the elements
of a normal subgroup it follows that all the subgroups of a group G that are
conjugate to a normal subgroup H of G must be entirely contained in H.
In fact, we can assert a little more. If the subgroup g=*Hyg is a proper
subgroup of the normal subgroup H, that is, if H contains an element &, not
contained in g~'H g, then ghog™? is conjugate to k, but is not in H ; and
this is a contradiction. On the other hand, since every subgroup of G that
coincides with its conjugate subgroups must obviously contain all the
conjugates of each of its elements,we arrive at the following result:

The normal subgroups of a group G are precisely those subgroups which
commcide with all their conjugates in G.

We now pass on to some simple consequences of the definition of a
normal subgroup.

Every subgroup of index 2 is a normal subgroup, since both decomposi-
tions of the group with respect to this subgroup coincide. Thus, the alter-
nating group of degree » is a normal subgroup of the symmetric group of
degree n, in which it has index 2.

The intersection of any set of normal subgroups of a group G 1is itself a
normal subgroup.

For if D is the intersection of the given normal subgroups, then every
conjugate of an element of D must be contained in all these normal sub-
groups and hence in their intersection.

This property of normal subgroups allows us, just as in § 6 in the case
of subgroups, to speak of the normal subgroup of a group G generated
by a given subset M ; it is the intersection of all the normal subgroups
containing M.

The normal subgroup generated by any set of normal subgroups of a
group G coincides with the subgroup generated by this set of subgroups.

For if normal subgroups H, are given (o ranging over some index set)
then every element of the subgroup { H,} can be written in the form

h]_ hz e hk,
where each /; is contained in some Ha;, i1 =1,2,..., k. If geG, then

g-1(hhy.. k) g = (g 1h,8) (g~ 1hg). . .(€" 1 1x8);
but since
g_lhs'ge Hap [= 1, 2, e oy k,

we find that every conjugate of an element of { H} is contained in this group.
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It follows that the union of an ascending sequence of normal subgroups
of a group G 1is itself a normal subgroup of G. The proof is immediate.

A normal subgroup, being permutable with every element of the group,
is @ fortiori permutable with every subgroup. Hence it follows, by § 8, that
the subgroup { H,K} generated by a normal subgroup H and an arbitrary
subgroup K of a group G coincides with the product HK. In other words,
every element of { H, K'} can be written as a product hk, where he H, ke K.
{H, K} then coincides also with K H.

If H is a normal subgroup of a group G and if it is contained in a sub-

group F of G,
HcFca,

then H is a normal subgroup of F. For, every element of the form f~1hf,
where heH, feF, belongs to H. We note, however, that if H is a normal
subgroup of G, and K a normal subgroup of H, then while K is certainly a
subgroup of G, it need not be normal in G; that is, the property of being
a normal subgroup is not transitive. Later on we shall meet several relevant
examples of this.

In an abelian group every subgroup is normal. But there also exist non-
commutative groups in which every subgroup is normal. Such non-
commutative groups are called hamiltonian (after W. R. Hamilton); a
complete description of them can be found in a paper by Baer [2]. It has
been proved, in particular, that every hamiltonian group contains a subgroup
isomorphic to the following group Q which is known as the quaternion
group and is itself hamiltonian. We denote by Q the subgroup of the
symmetric group of degree 8 that is generated by the permutations

a=(1234)(5678), b=—(1537)(2846).

The following relations are easily verified:

at =1, (3)
bt =1, (4)
@ =0? (5)
aba="b. (6)

Hence we have
bab =a*(aba)b=a*b*=0a*=a, (7)
a*b = b*ab=1ba, (8)
b*a =a*ba=ab.
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Since a*+a=—=a-a* and b%*+b=>+b? we can represent every product
of powers of a and b as an alternating product of first powers of these elements,
possibly multiplied on the left by a® or b*; this can be done by the use of (5)
and by means of re-arrangements (that is, without changing the number of
factors). However, by using (6), (7), (8), or (9) we can decrease the
number of factors in every such product until it coincides with one of the
following eight:

1, a, b, ab=(1836)(2745), ba = (1638)(2547),
%= b = (13)(24) (57) (68), a®=(1432)(5876), b8 = (1735)(2648);

and these products are all distinct. Thus Q is a non-commutative group
of order eight.

Every subgroup of Q, other than E and Q itself, must be of order 2 or 4.
Actually, Q has a single subgroup of order 2, namely {a?}, and three sub-
groups of order 4, namely {a}, {b}, and {ab}. Transforming the generators
of all these cyclic subgroups by a and by b we can verify by using (3)-(7)
that all these subgroups are normal in Q.

Simple Groups. Every group has two normal subgroups, the group
itself and the unit subgroup. A group that has no other normal subgroups
is called simple. Simple groups are in a certain sense the very opposite to
hamiltonian groups.

An abelian group is simple if and only if it is cyclic and every element
other than 1 is a generator. The remark in §6 on generators of cyclic
groups allow us, therefore, to state that an abelian group is simple if and
only if it is cyclic and its order is a prime number.

There also exist non-commutative simple groups, finite as well as infinite.
We have, for example, the following theorem, which plays an important
role in Galois theory:

The alternating group A, of degree n for n = 5 is simple.
First of all, we prove two lemmas.
LEMMA 1. Ifn = 3, then A, is generated by the cycles of length 3.

! The reader who is familiar with quaternions can verify that the mapping
a>1i, b>j

establishes an isomorphism between the group Q and the multiplicative group of the eight
quaternions += 1, &1, *4, & k. [Trans.]
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For, every even permutation is the product of an even number of trans-
positions ; but the product of two distinct transpositions is equal either to
a cycle of length 3 or to the product of two such cycles: if «, B, ¥, ...are
the permuted symbols, then

(@B) (a) = (),
(@B) (v8) = (aBy) (ad7).

Every cycle of length 3 is obviously an even permutation.

LeMmMA 2. If a normal subgroup of A,,n =5, contains a cycle of length 3,
then it is the whole group A,.

Suppose H is a normal subgroup of 4, and contains the cycle(afy) ; and
let (aBy) be any other cycle of length 3 in A4,. If the symbols d and € are
different from a, §, and y, then the permutation of degree n

~(IEETI)

(which we can make even by transposing, if necessary, the symbols §’ and ¢’
in the second row) is such that

a=1(afy)a=(afy).

The normal subgroup H therefore contains all the cycles of length 3 in 4,
and, by Lemma 1, coincides with 4,.!

We now proceed to the

Proof of the Theorem: Suppose A, has a normal subgroup H, different
from E, and suppose that among the elements of H there are some whose
decomposition into cycles contains one cycle of length at least 4. Let % be
one of these elements,

h=(afy8...)...,

where the dots outside the parenthesis represent all the remaining cycles.
Then H also contains the following element, which is conjugate to 4 in A4,:

¥ = (@B) h (afy) = Brabd. ... ..,

i Clearly, Lemma 2 holds for » < 5 as well.
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and hence H contains the element
h—1h" = (afd).

Therefore, by Lemma 2, H = 4,.

Now suppose that in the decomposition of an element 4 of H there occur
only cycles of length 3 and, possibly, 2. We can assume that there are at
least two cycles of length 3, since otherwise 42 would be simply one cycle of
length 3 and we could apply Lemma 2 immediately. If

b= () @FY). . -,

then H also contains the element

b = ('a’y) b (a’B’) = (2Ba’) (11'B"). . .,
and therefore also the element

kb’ = (aa’¢By).. .,

which contains a cycle of length 5, and we again have the previous case.

Suppose, finally, that the decomposition of an element & of H consists
only of cycles of length 2; obviously there is then an even number of them.
If A= (a,B,) (2,8,), then H also contains the element

H = (18,20) 5 (a,B1) = (Byr) (4o,

where ¥ is an arbitrary symbol, different from the symbols that are actually
affected by h. H must also contain the element

kb = (241By),
and hence H —= A4,,. Ii

h = (a,8,) (@58,) (@585) (2,80. - -»

then H also contains the element
R’ = (B,a9) (Ba%s) £ (Ba%g) (B1%a) = (2,%2) (Bs%s) (BaBy) (2:8Y)- - -,

and hence the element

hh' = (a,958,) (a5858,);
this brings us back to the case considered above. This completes the proof
of the theorem.?

! Some proofs of this theorem, essentially rather similar to the one given in the text,
begin by choosing an element of H, other than the unit element, that leaves the largest
possible number of symbols in place. The simplest proof of this kind can be found in a
paper by Bauer [1].
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The assumption n = 5 is essential. True, the alternating group of degree 3
is a cyclic group of order 3 and is therefore simple ; but the alternating group
of degree 4 is not simple : it is easy to verify that the permutations (12) (34),
(13)(24), and (14)(23) which are contained in it form, together with 1,
a normal subgroup V' of 4,. This group V' of order 4, which is also called
Klein’s four-group, is abelian but not cyclic.

The above theorem shows that there exist infinitely many simple non-
commutative finite groups. But the alternating groups are by no means the
only ones. In § 61 we shall give some results bearing on the problem of a
complete classification of all finite simple groups; this problem is still far
from a complete solution.

In the proof of the theorem we have nowhere made use of the finiteness
of the group A,. We see, therefore, that the countable alternating group
and, more generally, the alternating groups of any infinite cardinal number
(see § 4, Example 4) are simple. This shows that there exist simple groups
of any infinite cardinal number.

§ 10. The connection between normal subgroups, homomorphisms,
and factor groups

It follows from the definition of a normal subgroup that the left cosets
of a normal subgroup H in a group G are also right cosets and conversely.
We can therefore speak simply of the cosets of H in G and of the decomposi-
tion of G into cosets with respect to a normal subgroup.

The decomposition of a group G into cosets of a normal subgroup H is a
regular partition (see §2) of G.

For let two cosets of a normal subgroup H in G be given. If arbitrary
representatives a and b are chosen in these cosets, that is, if the cosets can
be written in the form aH and bH, then the associative law for multi-
plication of subsets and the basic equations Hb=>5bH and HH = H yield

aH+bH —abHH —abH.

The converse is also true.

If a regular partition of a group G is given, then the class that contains
the unit element is a normal subgroup of G, and all the other classes are
cosets of this normal subgroup in G.
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Let A4 be the class of the given regular partition that contains the element 1.
If @, and a, are two elements of 4, then the product a;a, must lie in the
same class as 1.1 =1 (by the definition of a regular partition), and

therefore
a1a:€4.

Furthermore, if a is an element of A, then the product aa=* =1 must lie
in the same class as 1+a=* =4a""; hence

a~'eAd.

We have thus shown that 4 is a subgroup. If @ is now an element of A4
and b an element of G, then the product b—'e¢b must lie in the same class
as b~1e1eb=1, so that

b—'abed.

The class A is therefore a normal subgroup of G.

Finally, let B be an arbitrary class of the given regular partition. If b is
an element of B, then for any element a of 4 the product ba must lie in the
same class as b+ 1 = b; that is, the whole coset b4 is contained in B. If ¢ is
any other element of B, then since b and c lie in the same class of the regular
partition, this must also be true for the products b—'¢ and b—*b =1, so that

—1ced;
and hence
cebAd,
so that
B=bA.

This completes the proof.

These results establish a one-to-one correspondence between the regular
partitions of a group G and the normal subgroups of G. Thus we may
abandon the distinction between regular partitions of a group and its decom-
positions into cosets with respect to a normal subgroup. In particular, if 4
is that class of a given regular partition of G which contains the unit element,
then we shall no longer speak of the factor groups of G with respect to this
regular partition, but of the factor group of the normal subgroup 4. We
shall denote it by the symbol G/A4.

We leave it to the reader to re-formulate the homomorphzsm theorem for
groups (§3) correspondingly. This theorem now establishes a close link
between the normal subgroups of a group and its homomorphic mappings.
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Indeed this link with the homomorphisms of a group makes the concept of
a normal subgroup one of the most fundamental in the theory of groups.
In particular, we have a new definition of a normal subgroup. Let us define
the kernel of a homomorphic mapping ¢ of a group G onto a group G’ as
the totality of all elements of G that are mapped by ¢ onto the unit element
of G'. From the homomorphism theorem and the results of the present
section we obtain the following result:

The normal subgroups of a group G, and they only, are the kernels of the
homomorphisms of G.

If a group G is mapped homomorphically onto a group G’, and if U is a
subgroup of G, then it also undergoes a homomorphic mapping, and there-
fore its image under this mapping is a subgroup of G’. Conversely, if U’ is
any subgroup of G’, then its complete inverse image U in G, that is, the set
of all the elements of G that are mapped under ¢ into the subgroup U’, is a
subgroup of G. For if a and b are elements of U, and

ap=delU’, bp="Vel,
then
(ad)p=d'?V’;

and since a’0’eU’, ab must lie in U. Further,

(aHp=a"",

but a’—"eU’, and hence a—'eU. Our statement is proved. We also note
that, because U’ contains the unit element of G’, its complete inverse image
contains the whole kernel of the homomorphism ¢. This correspondence
between the subgroups of G and G’ has a number of important additional
properties which are incorporated in the following theorem on the corres-
pondence between subgroups under homomorphic mappings; by virtue of
the homomorphism theorem we can use the terms factor group and natural
homomorphism of a group onto its factor group in the statement of the
theorem.

THEOREM : The relation that assigns to every subgroup of the factor group
G=G /H its complete inverse image in G under the natural homomorphism
of G onto G is a one-to-one correspondence between all the subgroups of G
and those subgroups of G that contain the normal subgroup H. Correspond-
ing subgroups have equal indices in their respective groups. Finally, if one
of the subgroups is normal, then the other one is also normal, and the factor
groups of G and G with respect to these normal subgroups are isomorphic.
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Proof. 1f U, and U, are distinct subgroups of G, then we can find in one
of them, say in U, an element @ that does not lie in the other. Under the
natural homomorphism some elements of G are mapped onto @, and hence
the complete inverse images of these two subgroups in G cannot coincide.
On the other hand, let U be an arbitrary subgroup of G containing H, U its
image in G, and U, the complete inverse image of U in G. It is clear that
U< U,. However, if a, is an element of Uy, then U contains an element a
which is such that g, and a lie in the same coset with respect to H, and
since HoU we have aoe U, so that U, = U. Thus we have proved that
the correspondence is one to one.

If U (containing H) and U are now arbitrary corresponding subgroups
of G, and G = G/H, then for a and b in G the element a—1b lies in U if and
only if the coset

a"'bH=a"'H-bH

belongs to U. This shows that the left cosets of U in G stand in one-to-one
correspondence with the left cosets of U in G, so that the subgroups U and U
have equal indices in G and G, respectively.

If U is now a normal subgroup of G, then the natural homomorphisms of
G onto G and of G onto G/U carried out in succession give a homomorphic
mapping of G onto the latter factor group. The kernel of this homomorphism
consists of those elements of G that are mapped into U under the mapping
of G onto G, that is, the elements of /. Hence it follows that U is a normal
subgroup of G and that

G/U = G/U.

If, conversely, U is a normal subgroup of G containing H, and U the
corresponding subgroup of G, then for any e U and geG the element (that
is, the coset of H) g —la g consists of elements of G belonging to U and is
therefore contamed in U. It follows that U is a normal subgroup of G. This
completes the proof of the theorem.

In § 4 we gave a number of examples of homomorphic mappings of groups.
The reader will easily find the kernels of these homomorphisms and con-
struct the corresponding factor groups. We shall now investigate the factor
groups of the finite and infinite cyclic groups.

Let ¢ be a homomorphic mapping of a cyclic group 4= {a} onto a
group B. If

ap=>,
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then obviously all the elements of B are powers of b, so that B={b0}.
In other words, all the factor groups of cyclic groups are themselves cyclic
groups.

In particular, let 4 be an infinite cyclic group represented as the additive
group of integers. We obtain a homomorphic mapping of 4 onto a cyclic
group B of order n with generator b if we assign to the integer # the element
b* as its image. The numbers % and ! are mapped onto the same element of
the cyclic group B if and only if # — [ is divisible by #, that is, if in the usual
terminology %k and ! are congruent modulo n (in symbols: k=1 (mod n)).
In the additive group of integers there corresponds to this homomorphic
mapping the decomposition into classes with respect to the subgroup consist-
ing of the multiples of # ; these are the residue classes modulo n.* Making use
of the result of § 6 on subgroups of cyclic groups and letting #» run through
all the natural numbers we find that all the cyclic groups and no other groups
occur as factor groups of the infinite cyclic group (that is, the additive group
of integers), and factor groups with respect to distinct subgroups of this
group are not isomorphic.?

If A ={a} is now a finite cyclic group of order s and if ¢ is a divisor of s,

§s=tgq,

then the subgroup {af} has order ¢, and therefore its factor group is
cyclic of order t. Conversely, since the order of a factor group of a finite
group is equal to the index of the corresponding normal subgroup and
therefore divides the order of the group, we find that the factor groups of a
finite cyclic group of order s are the cyclic groups whose order divides s,
and no others.

Let us now investigate the factor groups of a group P of type p=. We
have seen in § 7 that the proper subgroups of P form an ascending sequence

Ec{a}c{a)c...cla,)=. ..,

where these subgroups are of orders 1, p, p%, ..., p*, ... respectively. We
consider the factor group of {a,} in P. It is the union of the ascending
sequence of factor groups {ay}/{a.},k=mn+ 1,n + 2,..., which, from

the above, are cyclic groups of order p¥—* The factor group P/{a,} is
therefore itself a group of type p=. We see that a group of type p= is
isomorphic to all the factor groups of its proper subgroups.

! See § 8, Example 1, for the special case n—4.
*We speak of subgroups rather than normal subgroups because the group is abelian.
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Let two groups 4 and B be given. A group G is called an extension of A
by B if G contains a normal subgroup A4’, isomorphic to 4, whose factor
group is isomorphic to B,

Al~A, G/A'~B.

Note that the extension G is not uniquely determined by giving the groups
A and B, as the following examples show.

Examples. 1. In the cyclic group {a} of order 4, the subgroup {a?} is
cyclic of order 2, and its factor group is also cyclic of order 2. If we now
take the non-cyclic abelian group /' of order 4 that is contained in the
alternating group A, (as we have seen in the preceding section), then every
one of its cyclic subgroups is of order 2. We have, therefore, two non-
isomorphic extensions of a cyclic group of order 2 by another such group.

2. The cyclic group of order 6 has a unique cyclic subgroup of order 3,
and its factor group is cyclic of order 2; but S, the symmetric group of
degree 3, has the normal subgroup A; which is also a cyclic group of order 3,
and the factor group S;/4; is also cyclic of order 2.

Extensions of groups will be studied in detail in Chap. XII.

The following theorem plays an important rdle in the sequel:

THE IsoMorPrHISM THEOREM. If 4 and B are subgroups of a group G,
and A s a normal subgroup of { A, B}, then the intersection A\B is a
normal subgroup of B and

{4, B}/A=BJ(An B).

For {A,B}==AB, because 4 is normal in {4,B}. Every coset of
A in AB therefore contains elements of B, that is, has a non-empty
intersection with B. Hence it follows that in the natural homomorphic
mapping of {4, B} onto the factor group {4,B}/A4 the subgroup B is
mapped onto this whole factor group. Therefore, by the homomorphism
theorem the factor group {4, B}/4 is isomorphic to the factor group of B
with respect to the normal subgroup consisting of all the elements of B that
are mapped onto the unit element. However, these are precisely the elements
‘of AN B. This concludes the proof.

The isomorphism theorem contains the following result, which could
easily be proved independently:

T he intersection of a normal subgroup A and a subgroup B is normal in B.

We shall use this for the proof of the following theorem :
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The union of an ascending sequence of simple groups is itself a simple
group.
For if a group G is the union of an ascending sequence

UclUyge...clU,c...

of proper subgroups which are simple and if H is a proper normal subgroup
of G, different from E, then there exists an index k for which the inter-
section H (| Uy, differs from E as well as from U itself. By the above
remark this intersection is, however, a normal subgroup of Uy ; this contra-
dicts the assumption that Uy is simple.f

The isomorphism theorem is a special case of the following theorem which
is known as

ZassENHAUS' LEMMa [1]: If A, A', B, and B’ are subgroups of a
group G, and if A’ is normal in A, B’ normal in B, then A’ (AN B’) is
normal in A’ (AN B), and B’ (BN A’) is normal in B’ (BN A), and the
corresponding factor groups are isomorphic.

A’ (AN B)/A’ (AN B')=~B' (BN A)/B’ (BN A').

Proof. If we write
C=AN3B,
and
D=(ANB)BnNnA.

then clearly D < C. Moreover, since B’ is normal in B and since C is a
subgroup of B, we see that

CNnB'=ANBNB'=AnB’

is a normal subgroup of C. By the symmetry of the assumptions on A4
and B, this also holds for the intersection B 1 A’ and therefore also for D,
since the product of normal subgroups is itself a normal subgroup. We can
therefore speak of the factor group of D in C'; we denote it by H,

H=cC/D.

On the other hand, 4’ is a normal subgroup of 4, so that the product
A’ (ANB)=A’C is a subgroup. Every element of this product has the
form a’c, where a’e4, ceC. Let us associate it with the coset D¢ (that is,
with an element of H). If a’c has another representation in the same form
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I o
a'c=ap,
then

7r—1

a; '’ =cc™l € (A'NC)= (A’ N B)< D,

and hence -1,
¢,=(a1 a’)ceDe.

We obtain a single-valued mapping of the group 4’ C into the group H, and
in fact onto the whole group H, since every element ceC is mapped onto
its coset D¢. This mapping is homomorphic: since A4’ is normal in A’C,

we have
aic, » a;cz =d, (0169)’ where a, eA.

The kernel of this homomorphism clearly must contain the subgroup
A’ (AN B'); we know that ‘Af] B’ € D. On the other hand, if an element a’¢
is mapped by this homomorphism into D, then ceD, i.e.

c=uv, where ue(BNA"), ve(ANB’),

and then
dc= (@ u)v=0,"ved’" (AN B’).

The kernel of the homomorphism in question is therefore the subgroup
A’ (AN B’). By the homomorphism theorem this leads to the isomorphism

A’(ANB)/A’(ANB)~H.
By symmetry we also have the isomorphism
B’ (BN A)/B’ (BN A)~H.

Every statement in the theorem is now proved.

The isomorphism theorem arises from Zassenhaus’Lemma when A D B,
B’=—EE.

If A and B are subgroups of G, but neither is assumed to be normal in
{A, B}, then the isomorphism theorem can be replaced by a statement
regarding the indices of 4 in {4,B} and of ANBin B. In the general
case we can only assert that the first of these indices is not less than the
second. For by repeating the arguments that led to the proof of the iso-
morphism theorem we see that every right coset of AN1B in B is the inter-
section with B of a right coset of 4 in {4, B}, but it can happen that some
right cosets of 4 in {4, B} have an empty intersection with B. This is
illustrated by the example of the symmetric group of degree 3, if 4 and B
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are chosen as two of the cyclic subgroups of order 2. Bearing in mind the
result of § 8 to the effect that {4, B} = A4B if and only if 4 and B are
permutable, we can now prove at once that every coset of {4, B} with
respect to 4 has a non-empty intersection with B if and only if 4 and B
are permutable. In other words, assuming that the indices are finite, we
obtain the theorem:

The indices of A in {A,B} and of AN Bin B are equal if and only if A
and B are permutable.

§ 11. Classes of conjugate elements, and conjugate subgroups

If M is a subset of a group G, then the set of all elements of G that are
permutable with A constitutes a subgroup which is called the normalizer
of M in G. Forif aM =Ma and bM = M), then

(ab)M =aM b= M(ab);

multiplying both sides of the equation aM = Ma on the left and on the
right by a—! we obtain further

Ma'=a"*M.

This general definition allows us, in particular, to speak of the normalizer
of a subgroup or of a single element. From the fact that an element is per-
mutable with itself and a subgroup permutable with each of its elements
it follows that the normalizer of the element a (of the subgroup A) con-
tains the element a (the subgroup A). The normalizer of a subgroup A4 is
obviously the maximal subgroup of G in which A4 is normal. It follows that
the normalizer of a subgroup A is the whole group G if and only if A 1is
normal in G. By contrast, it can happen that a subgroup coincides with
its own normalizer ; this is true, for example, for the cyclic subgroup gen-
erated by the element (12) in the symmetric group of degree 3.

The normalizer of an element a of G is obviously contained in the normal-
izer of the cyclic subgroup {a}, but need not coincide with it. An example
is the element (123) in the symmetric group of degree 3. In either case,
the normalizer of a contains the subgroup {a} as a normal subgroup.

The concept of a normalizer will help to establish some very important
properties of conjugate elements and conjugate subgroups which form the
substance of the present section.
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If an element b of a group G is conjugate to an element a, that is b =
g ‘ag, then a==gbg—"; that is, a is obtained from b by transforming by
g~*. Each element a is conjugate to itself, since a=1"1¢1l. Finally, if
b=grlag,, c==g;1bg,, then

¢ = (82712 (2:£9);

that is, the property of conjugacy of elements is transitive. It follows that
the whole group G is partitioned into disjoint sets, the so-called classes of
conjugate elements. All the elements in one class of conjugates obviously
have the same order.

One of the definitions of a normal subgroup given in §9 can now be
expressed in the following form: A subgroup of a group G is normal if it
contains the whole class of conjugates of each of its elements, that is, consists
of complete classes of conjugate elements of G. We mention that every
subset of a group that consists of complete classes of conjugate elements is
called a normal (or invariant) subset of the group.

We shall now list a few basic properties of classes of conjugate elements.

The number of conjugates of an element a in a group G is equal to the
index of the normalizer N of the element a in G.

For if 6= g—lag, then for each n of N we have (ng)~'a (ng) = b. Con-
versely, if gy 'ag, = b, then (gg7!)'a(ger) = a, that is, ggr! = N, and
therefore the elements g and g; lie in the same right coset of N. There exists,
then, a one-to-one correspondence between the right cosets of N in G and
the conjugates of a.

It follows, in particular, that the class of conjugates of an element a in G
is finite if and only if the normalizer of a is of finite index in G. Since the
index of a subgroup of a finite group divides the order of the group (Theorem
of Lagrange, see § 8) it also follows from the above theorem that the number
of elements in a class of conjugates of a finite group divides the order of
the group.

The following statement is a special case of the theorem proved at the
beginning of § 9. '

The subgroup gemerated by some classes of comjugate elements of a
group G or, more generally, by some normal subset is a normal subgroup

of G.

Hence it follows easily that the normal subgroup generated in a group G
by a subset M is the subgroup generated in G by the subset A that consists
of all the elements conjugate to elements of M.



§ 11. CONJUGATE SUBGROUPS 81

The product K1 K, of two classes of conjugate elements K, and K, in a
group G consists of a number of classes of conjugate elements, that is, is a
normal subset. For if a1€K,, aseK,, then

g1 (a,a)) g = (g 1a,8) (g~ 1a9);

that is, every conjugate to an element of the product K; K is also contained
in this product.

We remark, finally, that if K is a class of conjugate elements of a group G,
then K—* (i.e. the totality of the inverses of elements of K) is also a class
of conjugate elements and that, more generally, the set of s-th powers, for
any s, of all elements of K is a class of conjugate elements in G. For if
a,= g~ 'a,g, then aj=g-lajg, and from b=gla2g, it follows that
b= (g 'a,g,)% that is, b is the s-th power of an element conjugate to a;.

In every group G the element 1 by itself forms a class of conjugate ele-
ments. A group may also have other elements that singly form classes of
conjugates ; these obviously will be the elements that are permutable with
all the elements of the group, the so-called central elements (or invariant
elements) of the group. A central element can also be defined as an ele-
ment whose normalizer coincides with the whole group.

The set Z of all central elements of a group G is easily seen to be a sub-
group of G. This subgroup, which is called the center of G, is normal in G,
since every one of its elements forms a separate class of conjugates in G.
Every subgroup of the center is also normal in G. A group coincides with
its center if and only if it is abelian. On the other hand, there are groups
whose center consists of 1 only. Such groups are called groups without
center, a name that, while not quite accurate, is very convenient. Examples
are: the symmetric groups S, for # =3 and, of course, all the non-
commutative simple groups.

A well-known theorem in higher algebra states that the center of the
group of non-singular matrices of order n with elements in a field consists
of all the scalar matrices of order #, that is, of matrices whose elements
outside the main diagonal are zero while those in the main diagonal are
all equal.

The factor group of a group G with respect to its center need not be a
group without center. Thus, the center of the quaternion group (see § 9)
is the cyclic group of order 2, and its factor group is abelian. We mention,
however, that the factor group of a non-commutative group with respect to
its center cannot be cyclic. For if the factor group G/Z were cyclic,
then we take an element a, from a coset of Z which generates that
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cyclic group. The subgroup generated by this element together with the
elements of Z is the whole group G. But since all the elements mentioned
are permutable, the group G is commutative,.

Just as we have partitioned a group into classes of conjugate elements,
so we can divide the set of all subgroups of a group G into disjoint classes
of conjugate subgroups.

If K is a class of conjugate elements of a group G, then the set of normal-
izers of the elements of K 1s a class of conjugate subgroups.?®

For if a and b are elements of K, and N, and N, are their normalizers
in G, then from b = g—'ag and xeN,, that is, xa = ax, it follows that

b(g-ixg)=g 1(ax) g = (g 'xg) b,
that is,
g~ *Ng = N,. (1)

But from a = gbg~* we obtain in the same way

ngg_l CNQ’
ie.
Nb Cg_lNag. (2)

From (1) and (2) it follows that
Ny=g~'N,g.

Now if any subgroup F is conjugate to Ny,
F=g""Nag,

then F is the normalizer of the element g lag,. This proves the theorem.

We proceed to establish some basic properties of classes of conjugate
subgroups.

The number of distinct subgroups that are conjugate to a subgroup A
of a group G (that is, the cardinal number of the set of these subgroups)
1s equal to the index of the normalizer N of A in G. For just as in the case
of conjugate elements, the transformation of 4 by two distinct elements of
G leads to the same conjugate subgroup of A if and only if these elements
lie in the same right coset of N.

It follows, in particular, that the normalizers of all the subgroups con-

* The normalizers of two distinct elements of K may, of course, turn out to be equal.
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jugate to A have the same index in G. Moreover, since for B—=g~'A4g
the normalizer of B is the subgroup g='*Ng, and since the mapping
x— g xg, xeN, is an isomorphism of N onto g—*Ng in which 4 is
mapped onto B, the indices of 4 in N and of B in g—*Ng are equal. These
two remarks allow us to state that the indices of 4 and B in G are equal;
that is, conjugate subgroups have equal indices in the whole group. If these
indices are finite, then no subgroup can contain properly another conjugate
to it. This may very well occur, however, in the general case: If g—'Ag
is distinct from A and contained in A4, then g—2Ag® is a proper subgroup
of g—*Ag, g3 Ag® a proper subgroup of g—*A4g?, and so on. On the other
hand, A is in that case a proper subgroup of gA4g—?, the latter a proper
subgroup of g2A4g—2, and so on.

Consider, for example, the group G of all one-to-one mappings of the set
of all (positive and negative) integers onto itself.

In this group we take the set M consisting of the transpositions

(12), (23), ..., (n,n+1), ..., n>0,

and we denote by A4 the subgroup generated by these transpositions. If g is
now the mapping that carries every integer & into £ + 1, that is, in cycle
notation,

g=(..,—k, ..., —2,—1,0,1,2, ..., k, ...),
then
g (n, n+ g=Mmn+1, n+2),

so that the subgroup A is conjugate in G to a proper subgroup generated
by all the elements of the set M except (12).

The intersection of all the subgroups in a complete class of conjugate
subgroups in a group G is a normal subgroup.

For by transforming all the subgroups of the given conjugate class by an
element g we also transform this intersection D. However, the transforma-
tion of a class of conjugate subgroups only permutes these subgroups
among themselves, that is, for every g of G the subgroup g—*D g coincides
with D, which proves the theorem. Note that the intersection D may, of
course, turn out to be the unit subgroup E.

The theorem just proved leads to the following important result:

If a group G has a subgroup of finite index, then it also has a normal
subgroup of finite index.

Proof. If the subgroup H has finite index in G, then as we have shown
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above, all the subgroups conjugate to H also have finite index. Now if the
index of H is finite, it follows that the index of its normalizer, and there-
fore the number of conjugates of that subgroup,is also finite. The inter-
section of all these subgroups is, as we have just shown, a normal subgroup
of G, and moreover has finite index in G, by the theorem of Poincaré
(see §8).

We end the present section by introducing a concept very similar to that
of the normalizer. If M is a subset of a group G, then the set of all elements
that are permutable with every element of M is a subgroup of G which is
called the centralizer of M in G. The centralizer of a single element coin-
cides with its normalizer, and—more generally—the centralizer of a subset M
is contained in the normalizer of M. The centralizer of a subgroup need not,
of course, contain that subgroup. The centralizer of the set of all elements
of a group is the center of the group.

The centralizer of a subset M obviously coincides with the intersection
of the normalizers of all the elements of M. Hence it follows easily that
the centralizer of @ normal subgroup and, more generally, of a normal subset
of a group is a normal subgroup. For the normalizers of all the elements of
a normal subgroup constitute some complete classes of conjugate subgroups,?
and therefore the intersection of these normalizers must itself be a normal
subgroup. Applying this fact to an arbitrary subgroup and its normalizer
we see that the centralizer of every subgroup is a normal subgroup of its
normalizer.

! See the theorem on the connection between classes of conjugate elements and con-
jugate subgroups that has been proved in this section.



CHAPTER IV

ENDOMORPHISMS AND AUTOMORPHISMS
GROUPS WITH OPERATORS

§ 12. Endomorphisms and automorphisms

A homomorphic mapping of a group G into itself, that is, onto one of its
subgroups, is called an endomorphism of G. Among the endomorphisms
of a group are its automorphisms, that is, the isomorphic mappings onto
itself. A trivial example of an automorphism is the identity mapping of a
group onto itself, the so-called identity automorphism, in which every ele-
ment of the group remains in place. The mapping of the additive group of
the integers onto itself which carries the number » into — #» is an example
of a non-identity automorphism.

Every group has a null endomorphism which maps each element onto
the unit element. Among the endomorphisms of a group there may be some
that map the group onto itself, although they are not automorphisms. This
will always occur in groups that are isomorphic to one of their proper factor
groups—the existence of such groups was shown in § 11. Of course, they
have to be infinite. Every isomorphism between a group and one of its
proper subgroups is also an endomorphism of the group; examples of such
endomorphisms which are not automorphisms can be found in the additive
group of integers.

If H is a subgroup of a group G, then an endomorphism of G induces a
homomorphic mapping in H ; if the endomorphism is an automorphism,
then the induced mapping is isomorphic. It follows that the image of H
under an endomorphism (and in particular, under an automorphism) y is
also a subgroup of G, which we shall denote by Hy. The image of G itself
under the endomorphism y is therefore the subgroup Gy.

If a group G is given by a system of generators M = {aq, }, then every
endomorphism y of G is completely determined by the images a,y of all the
generators. If, in particular, ¥ is an automorphism of G, then the set of
images of all the elements of M under the automorphism ¥ is also a set of
generators for G.

If an element g is chosen in a group G, then the mapping that carries
every element # of G into the element a—'xga, that is, the transformation
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of the whole group by a, is an automorphism of G. For a~'ra=a"'ya
implies # = y, i.e. the mapping is one to one. The equation

x=a~1(axa"Y)a

shows that every element of G appears in this mapping as the image of some
element. Finally, from

a~lxa-a " lya=a"1l(xy)a

it follows that this mapping is isomorphic. Such an automorphism of G is
called an imner automorphism. All other automorphisms of G are called
outer automorphisms. The identity automorphism belongs to the inner auto-
morphisms—one can consider it as obtained by the transformation of the
group by the unit element. In the case of an abelian group, this is the only
inner automorphism. In the general case, the inner automorphism induced
by the element a coincides with the identity automorphism if and only if
a belongs to the center of the group, since the equation

a~'xa=x

for all # in G is equivalent to the permutability of a with all the group
elements.

Under an inner automorphism of a group every class of conjugate ele-
ments is mapped onto itself. There exist, however, groups (and even finite
ones) that have outer automorphisms with the same property (for a simple
example, see Wall [1]).

The cyclic group of order 2 has only one automorphism, namely the
identity, This group is, however, the only one having no automorphism
other than the identity. For, every non-commutative group obviously has
non-identity inner automorphisms. If the group G is abelian and if its
elements, except the unit element,are not all of order 2, then the mapping that
carries every element a of G into its inverse element a—?! is a non-identity
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automorphism, since the commutative law implies the equation

(ab)~1 = a-1b-1,

Finally, the existence of non-identity automorphisms in non-cyclic abelian
groups with elements of order 2 only follows from the complete description
of the structure of such groups which will be given in § 24.

Groups of automorphisms

The endomorphisms of a group G are mappings of the group into itself.
We can therefore speak of the multiplication of endomorphisms in the sense
that they are performed in succession: If two endomorphisms y and 7 of
a group G are given, then their product yn is that mapping which yields
for every a in G

a(ym) = (@) .

The product of two endomorphisms is itself an endomorphism. For

(ab) (yn) == [(@d) x1n = (ay - by)n=(ay)n - (B m=a(ym) - b (M)

The product of two automorphisms is obviously itself an automorphism.

The associative law for the multiplication of endomorphisms follows from
results in § 1. The identity automorphism introduced above plays the rdle
of the unit element ; but it would be wrong to think that the endomorphisms
of a group G constitute a group with respect to the multiplication so defined.
For we cannot define the inverse of every endomorphism, because under a
homomorphic mapping the original need not be single-valued. The inverse
mapping exists only for automorphisms, and obviously it is then itself an
automorphism 9

We see then that the set ® of all automorphisms of a group G is itself
a group. This group of automorphisms of G is a subgroup of the group S(G)
of all one-to-one mappings of G onto itself.
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The inner automorphisms of a group G form a subgroup of the group of all
automorphisms, since the successive transformation of G by a and b is
equivalent to the transformation by ab. Moreover, we obtain a homomorphic
mapping of G onto the group @ of its inner automorphisms if we associate
with each element of G the inner automorphism induced by it. As we have
mentioned above, it is precisely the elements of the center Z of G that are
mapped onto the unit element of @', in other words, the group of inner
automorphisms of a group G is isomorphic to the factor group of its center,

&' ~G/2Z.

It follows, in particular, that two elements a and b of G induce the same
inner automorphism if and only if they belong to the same coset of the
center of G.

The group of inner automorphisms is normal in the group of all auto-
morphisms. For let @ be an automorphism of a group G and a the inner
automorphism induced by the element a. Then for every element 2 of G
we have

x(p-lag)=[a" (xp~Najop=(a"Y) ¢ - (x¢~1) 9 - ap=(ap)~! x (ap),

that is, @~'a¢p is itself an inner automorphism and is induced by the
element ag.

The investigation of the group of all automorphisms of a given group G
is usually very difficult. In most cases the properties of a group do not
carry over to its group of automorphisms. Thus, the group of automorphisms
of an abelian group may turn out to be non-commutative—for example, the
group of automorphisms of the non-cyclic group V' of order 4, which we
met in § 9, is the symmetric group of degree 3. On the other hand, there
. exist non-commutative groups whose groups of automorphisms are abelian
(C. Hopkins [1]). However, the group of automorphismms of a non-
commutative group G cannot be cyclic, since even the group of inner auto-
morphisms, which is isomorphic to the factor group of G with respect to its
center, cannot be cyclic (see § 11), whereas all subgroups of cyclic groups
are cyclic (see §6).

We can assert, of course, that the group of automorphisms of a finite
group of order n is itself finite. It is a subgroup of the symmetric group of
degree n and its order is therefore a divisor of #! and even of (n—1)!,
since the unit element of the group remains in place under all the auto-
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morphisms of the group. Narrower bounds for the order of the group of
automorphisms of a finite group may be found in papers by Birkhoff and
Hall [1] and Lyapin [1].

The group of automorphisms of an infinite group may be finite—in the
infinite cyclic group a generator can only be chosen in two ways, and since
the property of being a generator of a cyclic group is preserved under
automorphisms, it turns out that the group of automorphisms of the infinite
cyclic group is finite and of order 2. But the group of automorphisms
of the multiplicative group of positive rational numbers has the cardinal
number of the continuum—any one-to-one mapping of the set of all prime
numbers onto itself leads to an automorphism of this group.

~The groups of automorphisms of non-isomorphic groups may be iso-
morphic. Thus, we have shown above that the group of automorphisms of
the infinite cyclic group is cyclic and of order 2; but this also holds for the
group of automorphisms of the cyclic group of order 3, as one can easily
see. Other examples are the four-group V' and the symmetric group
of degree 3: both have S; as their groups of automorphisms (see § 13).
Furthermore, there exist groups that cannot be the groups of automorphisms
of any group. This is true, for example, of all finite cyclic groups of odd
order. As we have seen above, they cannot be the group of automorphisms
of non-commutative groups; but abelian groups, except the cyclic group
of order 2, must always have automorphisms of order 2, so that their
groups of automorphisms, if finite, are of even order.

Among the properties of a group that are preserved in its group of
automorphisms is the absence of a (non-trivial) center.

If G is a group without center, then its group of automorphisms ® also
has no center.

For let ¢ be an automorphism of G other than the identity and let a be
an element of G for which ap =a’ %2 a. If ¢ were in the center of @ then
it would be permutable with the inner automorphism induced in G by a,
that is, for any element g of G we would have

a~l(gp)a=(a"'ga)p=0a'"1(gy)a’.

Since the element gg ranges over the whole of G as g does, we see that
the elements ¢ and &' induce the same inner automorphism of G and this
contradicts the assumption that the center of G is trivial.
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§ 13. The Holomorph. Complete groups

The transformation of a group G by one of its elements a carries every
subgroup H of G into a conjugate subgroup a—*Ha (see § 9) and therefore
maps every normal subgroup onto itself. This invariance under all inner
automorphisms of the group could be used as yet another definition of a
normal subgroup. The mapping onto itself which the transformation of G
by an element @ induces in a normal subgroup H is an automorphism of H,
but in general is an outer automorphism, In other words, if one group is a
normal subgroup of another, then every inner automorphism of the larger
group induces some automorphism in the smaller one. The question arises
whether it is possible to embed an arbitrary group G as a normal subgroup
in another group such that all the automorphisms of G are induced by inner
automorphisms of the larger group. We now proceed to show that the
answer to this question is in the affirmative.

In § 5 we have shown that we obtain an isomorphic mapping of G into
S(G) (the unrestricted symmetric group) if we associate with every
element a of G the mapping that carries each element # of G into xa. The
subgroup G of S(G) onto which G is isomorphically mapped in this way
can be identified with G itself. We must distinguish, however, between the
elements of G gud symbols to be permuted and qua elements of S(G) ; we
shall therefore denote by @ the element of G that corresponds to the element
a of G.

The normalizer I" of the subgroup G in the group S(G) is called the
holomorph of the group G. From the definition of the normalizer it follows
that I contains G as a normal subgroup. We wish to prove now that all
the automorphisms of G are induced by inner automorphisms of T".

We know that @, the group of automorphisms of G, is a subgroup of
S(G). We now show that ® is contained in I, that is, every automorphism
¢, considered as an element of S(G), is permutable with G. Let @ be an
arbitrary element of G and consider the mapping of G obtained from the
product ¢—1g¢p. Under the automorphism ¢! an element » of G goes into
x¢~?*; the mapping @ now carries this element into the product xr¢—'-a;
and the automorphism ¢ yields

(o~ - @)= (xp~1) ¢ - ap=1x - a9.

So we see that the product ¢—!ap coincides with the element @@ of G;
this shows that the automorphism ¢ belongs to the holomorph I
At the same time we see, by letting @ range over all the elements of G,
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that the transformation of G by the element ¢ results in that mapping
of G which coincides with the automorphism ¢ of G : All the automorphisms
of G are induced by inner automorphisms of the holomorph T'2

We shall now find the centralizer Z of G in S(G). Suppose the mapping {
belongs to Z, that is, for every @ of G

at ="Ga. (1)

The image of the unit element of G under the mapping T is an element of G
which we shall denote by s~

o1
Since KL=s"1

1(a)=(:a)l=at,

1(Ca)=(s"Y)a=s"1a,

we have in virtue of (1)
al=s"1la 2)
for all a of G.
Conversely, for any s of G the mapping { of G onto itself defined by the
equation (2) belongs to Z. For it is obviously one-to-one. If b is any
element of G, then

a (b%) = (ab) L = s~1(ab),

a ((b) = (al) b = (s~ 1a) b,
that is, _ _
bt = (b.

Hence the elements of Z are of the form (2) for all elements s of G.
Different mappings C correspond here to different elements s; that is, the
correspondence between the groups G and Z is one to one. It is indeed an
isomorphism: If T and n are elements of Z, s and ¢ the corresponding
elements of G, i.e. if forallain G

al=s"la, an=tla,
then

! This gives us the solution of the problem raised above. The reader who would prefer
to deal with the original group G rather than with G can replace in the set I" the elements
of G by the corresponding elements of G and re-define the group operation of I" in the
newly obtained set.
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a (tn) = (@) n = (s-'a) = t-1s~ta = (st)1a.
The subgroup Z is contained in the holomorph I of G and is, in fact, a

normal subgroup of I'; this follows from the remark at the end of § 11.
But G is also normal in I'. Hence

{(Z,G}=2ZG.

The subgroup Z G of T" contains the whole group & of inner automor phismns
of G. For, the trivial equation

sTlas=(s"a)s (3)

shows that the transformation of G by s is equal, as an element of S(G),
to the product of the element of Z corresponding to s by the element § of G.
It also follows from equation (3) that the subgroup Z is contained in the
product of the subgroups ¥ and G, so that

ZG=7G. (4)

The holomorph T coincides with the product of the subgroups ® and G
of 5(G), _
I'=®¢G.

For let T be an arbitrary element of I". Since t is permutable with G, the
transformation of G by T induces an automorphism of G which could also
be obtained, as we have shown above, by the transformation by an ele-
ment ¢ of ®. The element T¢p~* is therefore permutable with every element
of G; that is, it belongs to Z and so, by (4),to ¥ G. The element T there-
fore lies in the product (@’ G)<I> 3G.

Complete groups. A group G is called complete if it has no center and
no outer automorphisms. A complete group is therefore isomorphic to its
group of automorphisms. The following theorem (Holder [2]) provides
important examples of complete groups.

The finite symmetric group Sy is complete when n = 3 and n=6.

Proof. 1t is clear that S, is for n = 3 a group without center. Let us
consider its automorphisms. We begin with the remark that the elements
of order 2 in S, are precisely those that decompose into the product of

disjoint cycles of length 2, i.e. into the product of independent transpositions.
Let

a=(a,05) (2%,) ... (Ggx_1%op), 2=2k=n,
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be one of these elements; all the oy, =1, 2, ..., 2k, are distinct. We
now show that the class of conjugates of a in S, consists of all permutations
that decompose into a product of k independent transpositions.

For if
b= (3132) (‘3834) s (321:-1321:)

is any such permutation (all the f,,i=1,2,...,2k, are also distinct),
then b is obtained by transforming a by an arbitrary permutation of the form

F18g oue Agg o0
(elee e B ) ©)
Conversely, any permutation of S, can be written in the form (5), and the
transformation of a by this permutation therefore leads to an element of
the form b.

We denote by Cj the class of conjugate elements of order 2 that are
products of & independent transpositions. In particular, the class C; con-
sists of all the transpositions (a;0z).

Every automorphism of a group preserves the orders of the elements
and maps a class of conjugate elements onto a complete class of conjugate
elements. Therefore, if @ is an arbitrary automorphism of S,, then it must
map the class Cy onto one of the classes Cy, 2 = 1. We shall now show
that when n 5% 6, then the class Cy can be mapped by the automorphism ¢
only onto itself.

This is obvious for n =3, because then the class C; contains all the
elements of order 2 in the group Ss;. Let n = 4. The class Cy consists of

n(n—1)
= ®

distinct elements. If now k = 2, then the class Cy, consisting of all the
elements of the form

(@,20) (@%y) - - . (Box_1%ga)s

contains exactly

n(n—1)...(n—2k+2)(n—2&41) (D
k1 2%

elements: The number 2* appears in the denominator because we can
permute the symbols in each transposition, and the number k! because we
can permute the transpositions arbitrarily. If the class C; is mapped by ¢
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onto the class Cy, = 2, then these classes must consist of the same number
of elements. Equating the numbers (6) and (7) we obtain the equation

(n—2)(n—3) ... (n—2&}2)(n—2k -} 1)=kI12*L,  (8)

Since # = 2k, this equation cannot hold for k=2 and any n. Fork=3
it is satisfied when n===6. But when & = 4, then the left-hand side of (8)
is always greater than the right-hand side; it is sufficient to verify this for
n = 2k, which gives the smallest value to the left-hand side.

We shall assume from now on that n £ 6. If a is one of the permuted
symbols, then there exists a symbol o/ which is such that all the transposi-
tions containing o are mapped by @ onto the set of all the transpositions
containing o,

For we have shown above that the image of a transposition under ¢ is
itself a transposition. If

(aB) o = (B'B"),
@e=K1"),

then the symbols B/, B”, 1/, 17 cannot all be distinct, because then the
product of the transpositions (af) and (ay) would be the element (afy)
of order 3, while the product of their images would be of order 2.

With any four symbols the following could happen:

(@B e=('"),

(@) ¢ =("v),

(@8) ¢ = (B'1).
However, the product

(aB) (@8) (a) = (ap?Y)

is then of order 4, while the product of the images

(@B E1) (@) =("T)

is of order 2. This shows that the images under @ of all the transpositions
of the form (af) for given a contain a common permuted symbol o’. These
images exhaust all the transpositions containing the symbol a’, since other-
wise the inverse automorphism ¢—* would lead to a contradiction to the
above result.

The mapping a — a’ is therefore a one-to-one mapping of the set of all
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permuted symbols onto itself, that is, it is an element of the group S,. We
denote it by s, so that

a’ =as.
If (af) is now an arbitrary transposition, then its image under ¢ must be
a transposition that contains both the symbols as and fs, so that

(ap) P= (as: Bs)'

However, on the right-hand side we have the image of the transposition
(af) under the transformation by the permutation s. Thus we have shown
that the automorphism @ coincides with the inner automorphism induced
by the element s; this is true for all transpositions and therefore for all the
elements of S, which are of course products of transpositions. This com-
pletes the proof of the theorem.

In the group of automorphisms of the symmetric group S, the outer auto-
morphisms form a single coset of the normal subgroup of inner automorph-
isms, so that the order of the group is 2.6 ! = 1440 (see Holder [2], p. 343).

In the paper by Schreier and Ulam [3] it is shown that for any infinite
set M the unrestricted symmetric group Sy is complete. Further examples
of complete groups can be found in the paper by Golfand [3] in which the
automorphisms of the holomorph of certain groups are studied.

The question whether non-isomorphic groups may have isomorphic holo-
morphs is studied by Mills [1], [2].

§ 14. Characteristic and fully invariant subgroups

Two elements @ and b of a group G are said to be of equal type if there
is an automorphism ¢ of G carrying a into b:

ap=>=.

Elements of equal type obviously have the same order. The whole group
splits into disjoint classes of elements of equal type, each of which is a
normal subset of G. A class of elements of equal type in G is a class of
conjugate elements in the holomorph of G. This enables us to carry over
to classes of elements of equal type many of the results that have been
ohtained in § 11 for classes of conjugate elements.

Subgroups and classes of subgroups of equal type in a group G are defined
similarly. Subgroups of equal type are clearly isomorphic and moreover
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have equal indices: If A and B are subgroups and if ¢ is an automorphism
for which 4@ = B, then for every element g of G the coset 4 g is mapped
by @ onto the coset B(gp). Since go is an arbitrary element of G, this
establishes a one-to-one correspondence between the right cosets of 4 and
those of B. Our result also follows easily from the remark that a class of
subgroups of equal type in G is a class of conjugate subgroups in the holo-
morph of G.

Just as we singled out normal subgroups as those that coincide with all
their conjugate subgroups, so we shall now select subgroups that coincide
with all their subgroups of equal type, i.e. that are mapped onto them~
selves under all the automorphisms of the group. Such subgroups are called
characteristic. They are obviously normal subgroups.

A characteristic subgroup H of a group G is normal in any group G in
which G is normal. For, every inner automorphism of G induces some
automorphism in G and therefore maps H onto itself. Conversely, it follows
immediately from the definition of the holomorph that a subgroup H of a
group G which is normal in the holomorph of G is a characteristic sub-
group of G.

The subgroups H of a group G that are mapped into themselves (that
is, onto themselves or onto a proper subgroup) under all the endomorphisms

y of G,
Hy<H,

are called fully invariant (or fully characteristic) ; they play the same role
with respect to endomorphism as characteristic subgroups do with respect to
automorphisms and normal subgroups with respect to inner automorphisms.

Every fully invariant subgroup is characteristic.

For if a subgroup A is fully invariant in G, then it is mapped into itself
by all the automorphisms of G. But if an automorphism ¢ maps 4 onto a
proper subgroup, then ¢—! maps this proper subgroup onto a subgroup
properly containing it, and this contradicts the assumption.

The property of being characteristic and that of being invariant are
transitive (in contrast to the property of being normal) : If A is character-
istic (fully invariant) in B, and B in C, then A is characteristic (fully
invariant) i C. For every automorphism (endomorphism) of the group C
maps B isomorphically onto itself (homomorphically into itself) and there-
fore maps A ®nto itself (into itself).

Note, however, that if

AcBc=C
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and if 4 is characteristic (fully invariant) in C, then it need not be char-
acteristic (fully invariant) in B.

The intersection of any set of characteristic (fully invariant) subgroups
of a group G and the subgroup gemerated by such a set are themselves
characteristic (fully invariant) subgroups of G.

The first of these statements is obvious, and the second is proved as
follows: If the subgroups A, are fully invariant (a runs through some
index set) and if they generate the subgroup B, then every element b of B
is of the form

b= Aa Qg o oQuyy oy eA,‘.

Now if y is an arbitrary endomorphism of G, then

bx = aalx 4 aa’X. . oaakx;

but since @ X € Aa,, byeB. If the A, are characteristic subgroups and y is
an automorphism, then we again obtain that By © B. This cannot be a
strict inclusion, for then x~! would map this proper subgroup onto a sub-
group properly containing it.

Every group has two fully invariant, and therefore characteristic, sub-
groups: the group itself and the unit subgroup. Groups that have no other
characteristic subgroups are called elementary. All simple groups, of course,
are of this kind. Another example of an elementary group is the four-group
V' of order 4.

All subgroups of a cyclic group are fully invariant. For if the endo-
morphism 7 maps the generator a of the cyclic group into a*, ay = a¥, then

(89 = (@0 =,

so that the cyclic group of the element a* is mapped into itself.

The center of a group is @ characteristic subgroup, because if an element
is permutable with all the group elements then so is its image under an
automorphism: If

ax = xa for all xeG,

then for every automorphism ¢ we have
ae - Xp = x9¢ - a9y,

but x¢@ ranges over the whole of G as # does.
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It should be noted, however, that the center of a group is not always
fully invariant. Let us consider, for example, the group G of all non-
singular matrices of order 2 with rational elements. If g is such a matrix,
then its determinant is a rational number different from zero and can
therefore be written in the form (s/¢) « 2#(®, where the numbers s and ¢ are
odd and » is an integer. Since the determinant of a product of matrices
is equal to the product of their determinants, we have

n (ab) == n(a) 4 n(d).

We now define a mapping ¢ of G into itself by associating with every

matrix a of G the matrix
1 n(a)
%¥=\o 1 )’

which also belongs to G. The equations

(ab)<p=<(1) n((lzb)>=((1) n(a)-l-l—n(b))__:((l) nl(a)).((l) nl(b)>=a?.b?

show that ¢ is an endomorphism of G. However,

(o 2)7=( 1)

so that a matrix belonging to the center of G goes over into one outside
the center.

As examples of fully invariant subgroups of an arbitrary group G we
can take the subgroup generated by the n-th powers of all the group elements
or the subgroup generated by all elements of finite order. For, the image
of the n-th power of an element a under any endomorphism is the n-th power
of the image of a, and every element of finite order is mapped into an element
of finite order.



§ 14. CHARACTERISTIC AND FULLY INVARIANT SUBGROUPS 99

Commutators. Important examples of fully invariant subgroups arise
from the following concept, which is also of great interest in its own right:
If @ and b are elements of an arbitrary group G, then the element

[a, b} =a"1b-1ab

is called the commutator of a and b. The commutator is equal to the unit
element if and only if a and b are permutable, and in a certain sense it is a
measure of the non-permutability of these elements, since

qb = ba + [a, D).

The following properties of commutators are verified by an immediate
calculation (a, b, ¢ are arbitrary group elements) :

[a, b]1b, al=1; hence [a, b]"1==[b, a]. (1)
[a, -1 =0b[d, alb~1, [a~1, bl=alb, ala~l. (2)
{ab, c}=0b"1]a, c]b[b, c]. 3)

[a, bc]l=la, c]c*!|a, b]c. 4)

We can regard the formation of the commutator as a new operation defined
in the set of group elements. This operation is not, in general, associative ;
that is, the equation

[[a, b]9 c]=[a, [b) C]] (5)

does not always hold. In order to give an answer to the question of when
equation (5) is satisfied in a group G, we define the following class of
groups, which is much wider than that of the abelian groups.

A group G is saidh to be nilpotent of class 2 if the commutator of any
pair of its elements lies in the center.

Nilpotent groups will be studied in Chapter XV. Their fundamental role
in connection with the operation of forming commutators is made clear by
the two following theorems (Levi [6]).

I. The operation of forming commutators is associative in wilpotent
groups of class 2, and in them only.
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Equation (5) is always satisfied in a nilpotent. group of class 2, since
both sides are equal to the unit element. Conversely, let G be a group in
which equation (5) holds for all elements a, b, c. Putting c = b we obtain

[[a’ b,], b] =1
hence by (2) and (1)
la, o]~ =]a, b~} (6)

Since @ and b are arbitrary elements, we replace them in (6) by b and
a~! respectively and then apply (1). We obtain

[a, ]~ =[a"1, b]. U
From equations (6) and (7) it follows, finally, that
[a, 0] = [a-lﬁ b-1). (8)

Now we again consider arbitrary elements a, b, ¢ and change the left-
hand and right-hand sides of equation (5), applying formulas (6), (7),
(8), and (1), where necessary:

[la, b}, c] =Ila, b)~1,¢~1] =|a,blc[a,b) e~ =[a"},b~]c[a"1,blc—1;

[a) [b’ cll = [a_l’ (b, c]—l] = a[b’ c] a-l[by c]_l =a [c_l: b] a1 [b’ c_l]°

We equate the results thus obtained and after some simple manipulations
arrive at the equation

ba=16-1cab—1a-1c—1bab—1cbc—1 = 1.
Hence
(6-1c, alb-1(a, b~ ic]b=1

or in view of (1),
[ta, -], b] =1.

However, a, b~1c, b are arbitrary elements of the group, since a, b, ¢ are.
We have thus proved that the commutator of any pair of elements of G is
permutable with all the elements of the group or, in other words, that G
is nilpotent of class 2.

I1. In nilpotent groups of class 2, and in them only, is the operation of
forming commutators linked with multiplication by distributive laws,



§ 14, CHARACTERISTIC AND FULLY INVARIANT SUBGROUPS 101

[ab, c]=[a, c][b, c], (3"
[a, bc) =[a, b] la, cl. (4')

For, the right-hand sides of the equations (3) and (3’) are equal to each
other if and only if
b-1la, c]b=]a, c]

for arbitrary a, b, c, that is, if the group G is nilpotent of class 2.

The derived group

The subgroup G’ of a group G generated by the set of commutators of
every pair of elements of G is called the derived group (or commutator
group) of G. The derived group is a fully invariant, and therefore a char-
acteristic, subgroup. For, any endomorphism y of G maps the commutator
a—1b~1ab of two elements a, b into the element

(a=1b~tab) y == (a)* - (by)~* ay - by,

which is also a commutator.
The significance of the derived group is brought out by the following
theorem.

The factor group of the derived group is abelian; conversely, the derived
group is contained in any normal subgroup whose factor group is abelian.

For if ¢ and b are arbitrary elements of G, then
a@ - b@F = abQ =bala, b) ¢’/ =ba@ = b@ . a,

since [a, b] is contained in G’. On the other hand, if the factor group G/N
is abelian, then the commutator of any pair of elements of G is contained
in N, that is, ¢’ C N.

By virtue of the connection between normal subgroups and factor groups
which was established in § 10, we deduce from the first part of this theorem
that every subgroup of a group G that contains the derived group G’ of G
is normal in G.

The definition of the derived group and the above theorem enable us to
re-formulate the definition of a nilpotent group of class 2 in two ways:

A group G is nilpotent of class 2 if and only if its derived group is contained
in its center.
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A group G is nilpotent of class 2 if and only if its center has an abelian
factor group.

The derived group of a group G coincides with E if and only if the group
is abelian, that is, if the group coincides with its center. This link between
the derived group and the center, however, does not hold the other way
round (as would appear natural at first sight) : if the center of a group is
the unit subgroup, then it does not follow that the derived group coincides
with the group itself. For example, the symmetric group S, with n =3
is a group without center ; but its derived group is the alternating group A,.
This can be verified immediately for n=23 and 4; and for n =5 we
argue as follows: The factor group S./4. is cyclic of order 2 and
hence is abelian. Therefore, by the theorem above, the derived group of S,
is contained in 4,. Now since S, is non-commutative and 4, is simple it
follows that the derived group coincides with A,. Similarly, if the derived
group is the whole group, it does not follow that the center is the unit sub-
group. As an illustrative example we mention, without going into details,
the multiplicative group of matrices of order » = 1 with complex elements
and with determinant + 1.

The following remark is an immediate consequence of the definition of
the derived group: The derived group of a subgroup is always contained
in the derived group of the group.

Let G’ be the derived group of a group G. The derived group G” of G’
is called the second derivéd group of G. Continuing further, we obtain a
descending sequence of subgroups, the so-called derived chain of G. This
chain can be continued transfinitely if we define the a-th derived group G
of a group G as the derived group of G®~1 when a is not a limit ordinal
number and as the intersection of all G( with § < a when a is a limit
ordinal number. There exists, then, an ordinal number T whose cardinal
number is not greater than that of the group G itself, for which

G(‘) = G(t*‘l)’

so that from this term onward the derived chain becomes stationary.
Mal’cev [7] has proved that for any given t there exist groups whose
derived chain becomes stationary exactly at t.

All the successive derived groups of a group G are fully invariant.
For a proof we need only use the fact that the property of being fully

invariant is transitive and is preserved in intersections.
Let A and B be any two subsets of a group G. We define the commutator-
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group [A, B] of these subsets as the subgroup generated by all commutators
of the form [a, b], where aeA, beB. Thus,

¢’ =[G, G).

With the help of this concept we now construct another descending sequence
of fully invariant subgroups of a group G, namely its lower central chain.
This is the sequence

G=0G,2G,2G,2...2G,2...,
where
Ga..,.1=[Ga’ G],

and when a is a limit ordinal number, G, is the intersection of all Gg with
p < a. Thus, G,= [G, G] coincides with the derived group G’ of G;
G, = [G,, G]; that is, G, is the commutator-group of G’ and G ; and so on.
This chain, too, becomes stationary at an ordinal number ¢, and for every ¢
there exist groups whose lower central chain becomes stationary exactly
at 6. (Mal'cev [7].)

All the terms of the lower central chain of @ group G are fully invarant.
Suppose this has already been proved for all Gg withf < a. If a is a limit
ordinal number, then we need only use the fact that the intersection of fully
invariant subgroups is fully invariant. But if a —1 exists, then G, is
generated by the commutators of the form [a, g] where a€ Go—1, g€ G.
However, if ¢ is an arbitrary endomorphism of G, then

[a, glo=lao, g9l;
but ap € G,_,, gpeG, and so

lag, g¢] € G,,

that is, G & G,.
The concept of the lower central chain gives us yet another variant of the
definition of a nilpotent group of class 2:

A group G is nilpotent of class 2 if and only if the second term G, of its
lower central chain is the unit subgroup.

For, the equation [G’, G] = E is equivalent to the derived group being
contained in the center. Various properties of the commutator-group of a
pair of subgroups and some generalizations of this concept can be found in
papers by P. Hall [2], Baer [29], and Golovin [3].
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§ 15. Groups with operators

Normal, characteristic, and fully invariant subgroups of a group G play
similar réles with respect to the group of inner automorphisms, of all auto-
morphisms and, finally, the set of all endomorphisms of G. A natural
generalization of this would be the selection of an arbitrary set V' of endo-
morphisms of G and the study of V-invariant subgroups, that is, subgroups
that are mapped into themselves under all endomorphisms in V. We shall
use this method occasionally ; but for various applications—in the theory of
rings, in linear algebra, etc.—of even greater value is a further generalization:
the study of groups with operators.

Let G be a group and X a set of symbols o,t,.... G is called a group
with operator domain X, and the symbols of Z are called operators of G if
with every symbol o of X there is associated a certain endomorphism of G
so that to each element a of G there corresponds an element ac of G, where

(ab)s=aos - beo.

Distinct operators of 2 may be associated with one and the same endo-
morphism, that is, for 6 == t we may have a6 =gt for all a of G. It is this
fact that makes the study of groups with operators more general than that
of ordinary groups in which certain sets of endomorphisms have been
selected for a special role.

Two groups G and G with one and the same operator domain X are called
operator isomorphic if they are isomorphic and if the isomorphism between
them can be established in such a way that for any two corresponding
elements a of G and @ of G and all ¢ of £ the elements a¢ and do also
correspond.

For the study of groups with operators, only operator-isomorphic groups
shall be considered identical. Every group in the ordinary sense of the word
can therefore give rise to several distinct operator groups. At first sight
this splitting up of the group concept is inconsistent with the uniformity we
achieved when we singled out the concept of group operation as the proper
object of our study. We shall see, however, that many important group-
theoretical theorems assert an isomorphism between certain groups (or
subgroups) and that in the case of operator groups this turns out to be an
operator isomorphism. It is clear that by formulating and proving these
theorems for operator groups we achieve a greater generality; in order to
obtain the corresponding theorems for groups without operators it then
suffices to assume that the operator domain is empty.
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Let G be a group with operator domain 2 and let }} be the set of endo-
morphisms of G that correspond to the operators of 2. A Vy-invariant sub-
group of G is called an admissible subgroup of G with respect to the operator
domain X. In other words, a subgroup H of G is admissible if for each of its
elements a it also contains the corresponding elements ao for all o of 3, or if

Hs € H.

Thus, each operator of £ induces an endomorphism in every admissible
subgroup. Admissible subgroups can therefore be regarded as operator
groups with the same operator domain. Subgroups that are admissible
subgroups for every operator domain are precisely the fully invariant sub-
groups, while the center, for example, is not always admissible, as we have
shown in the preceding section. '

ExampLE 1. If we take as operators of a group all the inner automorph-
isms, then the normal subgroups, and no others, are admissible. If all the
automorphisms of the group are chosen as its operators, then the admissible
subgroups are characteristic, and if the operator domain consists of the set
of all endomorphisms of the group, then only the fully invariant subgroups
are admissible.

ExampLE 2. Let R be a ring, not necessarily commutative. A subset R’
of R is called a subring if it is itself a ring with respect to the operations
that are given in R. The additive group of the subring R’ is obviously
a subgroup of the additive group of R. A subring A4 of R is called a. left
ideal in R if it permits multiplication on the left by elements of R, that is,
if for any @ in 4 and 7 in R the product ra lies in 4. Right ideals and two-
sided ideals are defined similarly. In commutative rings of course one simply
speaks of ideals. Every ring has two two-sided ideals: the ring itself and
the zero ideal consisting of the zero only.

It is easily verified that the additive group of a ring R undergoes an
endomorphism if all the elements of the ring are multiplied on the right by
a fixed element a of R. The ring R is therefore an operator domain for
its additive group and the admissible subgroups are the right ideals. Multi-
plication of all the ring elements on the left by an element a of R also induces
an endomorphism of the additive group of the ring. The elements of R
therefore constitute yet another operator domain for its additive group;
this time the left ideals are admissible. The union of these two operator
domains—every ring element must, of course, be taken in two copies—gives
an operator domain for which the two-sided ideals of the ring are admissible.
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ExaMpLE 3. Every vector space V' over a field F is an abelian operator
group with the field F as operator domain. For, the condition

(e + b)a=gaa + ba,

where a, bel, aeF, is part of the definition of a vector space. Admissible
subgroups are the linear subspaces.

ExaMpLE 4. Every abelian group can be regarded as an operator group
with the ring of integers as operator domain. The endomorphism corres-
ponding to the integer n is the mapping of the element a into a* (or, in
additive notation, na). For in abelian groups the equation

(ab)n = anbn,

always holds. For this set of operators every subgroup is admissible.

The introduction of operators leads to a selection of the admissible sub-
groups from all subgroups and of the operator isomorphisms from all iso-
morphic mappings of the group in question. If we consider a group G with
an operator domain X, and if J; is the set of endomorphisms of G that
correspond to the operators of 2, then we can consider the group G in a
natural manner as a group with operator domain /% , and from the defini-
tion of admissible subgroups it follows that the same subgroups of G are
admissible for 2 and for /5. This remark allows us to assume, if necessary,
that the set of operators is a subset of the set of all endomorphisms of the
group. However, only the general definition of an operator domain that we
have given above enables us to consider every ring as operator domain of its
additive group (Example 2). For the ring may contain elements, different
from the zero element, whose product with any ring element is the zero
element.

Many of the concepts that we have introduced and some of the theorems
that we have proved previously for groups without operators can be carried
over to the case of operator groups. We shall indicate here the concepts and
results that will be used later ; the details of the proofs are left to the reader.

Let G be a group with operator domain . About the admissible sub-
groups of G we can state the following:

The intersection of any set of admissible subgroups is itself an admissible
subgroup. The intersection of all admissible subgroups that contain a given
subset M of G is called the admissible subgroup generated by M. If M con-
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sists of a single element a, then we obtain the admissible cyclic subgroup
or monogenic subgroup of a which differs, in general, from the cyclic sub-
group {a}. The subgroup generated by any set of admissible subgroups and
the union of an ascending sequence of admissible subgroups are themselves
admissible subgroups.

If the admissible subgroup generated by a subset M coincides with the
whole group G, then M is a system of generators for G for the operator
domain 2. Note that a group may have a finite system of generators for a
given operator domain, although as a group in the ordinary sense of
the word it may not be finitely generated. For example, the n-dimensional
vector space V' over a field F has, qud operator group, a system of n gen-
erators—any basis of the space will do—while the group I/, for a non-
denumerable field F, is also non-denumerable, so that as a group without
operators it cannot be finitely generated.

If,
Gy Gy ..., Gy, ...

are groups with the same operator domain X and if for each » there exists
an operator-isomorphic mapping @, of G, into G,41, then the (direct)
limit group G of these groups (see § 7) is also an operator group with the
operator domain Z, and the groups G, (n=1,2,...) are operator-
isomorphic to certain admissible subgroups of G.

A normal subgroup of an operator group which is an admissible subgroup
of that group is called an adwmissible normal subgroup. The intersection of
any set of admissible normal subgroups and the subgroup generated by
such a set are themselves admissible normal subgroups. A group that has
no admissible normal subgroups except the group itself and the unit sub-
group is called simple (with respect to the given operator domain). Such
a group when considered without operators need not, of course, be simple.

If G and G’ are groups with the same operator domain, then in analogy
to the operator isomorphism we call a homomorphic mapping of G onto G’
an operator homomorphism. if for any a of G and its image &’ in G’ and for
every operator ¢ of ¥ the image of ao under this homomorphism is a’o.
The normal subgroup of G that is mapped onto the unit element 1’ of G’
under such a homomorphism is admissible, for as 1’0 ==1’ for all ¢ of X,it
follows that this normal subgroup when it contains an element @ also
contains all the elements ao.

Conversely, let an operator group G with operator domain X be mapped
homomorphically onto a group G’ and let the kernel H of this homomorphism



108 Part ONE. IV, ENDOMORPHISMS, AUTOMORPHISMS, GROUPS WITH OPERATORS

be admissible. Then the operators of 2 can be transferred to G’ in the
following way: If @ is an element of G’ and ¢ an operator of X, then we
take one of the originals @ of & in G and denote the image of ac by a’o.
It is easy to see that the element a’c is independent of the choice of a,
because the normal subgroup is admissible. We obtain, in particular, that
the factor group of an operator group with respect to an admissible normal
subgroup is also an operator group with the same operator domain, and
the natural homomorphic mapping of the group onto its factor group is an
operator homomorphism.

The reader can now prove without any difficulty that every group G’ onto
which a group G can be mapped operator homomorphically is operator
isomorphic to the factor group of G with respect to some admissible normal
subgroup; that is, he can prove the homomorphism theorem for operator
groups.

If H is an admissible normal subgroup of G, then in the relation that
exists between subgroups of G containing A and subgroups of the factor group
G/H admissible subgroups correspond to admissible subgroups. The proof
of this statement follows immediately from an application of the above
method of transferring operators to a factor group.

The isomorphism theorem also remains valid for operator groups:

If A and B are admissible subgroups of an operator group G and if A is
a normal subgroup of { A, B}, then the intersection ANB is an admissible
normal subgroup of B and the factor groups { A, B}/ A and B/(ANB) are
operator isomorphic.

The proof of this theorem is the same as without operators. The operator
isomorphism is obtained as a consequence of applying the homomorphism
theorem for operator groups.

Zassenhaus’ lemma can also be extended to groups with operators. In its
formulation we must again speak of admissible subgroups and of operator
isomorphisms.

An operator endomorphism of a group G with operator domain 2 is an
operator-homomorphic mapping of G onto or into itself. In other words,
% is an operator endomorphism if for every element @ of G and every
operator ¢ of 2 we have

(a0) x = (ax) o. )

A special case of the concept of an operator endomorphism is the concept
of an operator automorphism, that is, an operator-isomorphic mapping of G
onto itself.
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An immediate consequence of the definition of an operator endomorphism
is the following theorem (in which the term permutability must be under-
stood in the sense that the multiplication of endomorphisms is commutative) :

An endomorphism y of a group G is an operator endomorphism with
respect to an operator domain X if and omly if it is permutable with all
endomorphisms that correspond to the operators of 2, that is, with all
endomorphisms of the set 5.

For the proof, we replace the operator ¢ in (1) by the endomorphism corres-
ponding to it. As an example, we note that the operator endomorphisms
of a vector space I over a field F are precisely the linear transformations,
since the conditions

(@+0)p=a94-bp, (ax)p=/(ay)a,

where a, belV, aeF, constitute the definition both of a linear transforma-
tion and of an operator endomorphism.

All the properties of operator endomorphisms and automorphisms follow
easily from this theorem. For example, the product of two operator endo-
morphisms is itself an operator endomorphism. So is the null endomorph-
ism. We note, further, that the identity automorphism, being permutable
with all endomorphisms, is always an operator automorphism; the same
applies to the inverse automorphism of an operator automorphism. In con-
junction with the above remarks on the product of operator endomorphisms
and automorphisms this permits us to speak of the group of operator auto-
morphisms of an operator group. This is a subgroup of the group of all
automorphisms.

Finally, we remark that the image of an admissible subgroup of an operator
group G under an operator endomorphism is an admissible subgroup: 1f H
is an admissible subgroup, that is, if for every operator ¢

HecH,
then for an operator endomorphism y we have
(Hy) a=(Hs) xS Hy,

so that the subgroup Hy is admissible. This also follows from the homo-
morphism theorem.

In particular, the image of the group G itself under an operator endo-
morphism is an admissible subgroup.



CHAPTER V

SERIES OF SUBGROUPS. DIRECT PRODUCTS.
DEFINING RELATIONS

§ 16. Normal series and composition series

In the theory of groups and its applications certain ordered systems of
subgroups of a given group play an important réle: the subgroups are
embedded in one another and the systems are subject to various additional
conditions. In the present section we shall study properties of such ordered
systems or “series” of subgroups; the results to be obtained here will find
many applications later.

A finite system of subgroups of a group G

G=G0y>3,50;>...5G,=E (1)

beginning with G itself and ending with the unit subgroup, is called a normal
series of G if every subgroup G, is a proper normal subgroup of G;_,,
1=1,2,...,k. Inparticular, G, is a normal subgroup of G, G is a normal
subgroup of G, but not necessarily of G, and so on.

Every group, of course, has normal series: we need only take, for example,
the series GO E. If H is a normal subgroup of G, distinct from G and E, then

GoH>E

is a normal series. In other words, in every group G there exist normal
series that pass through a given normal subgroup of G.
The factor groups

0/01, 01/02, XY Gk-—l/E

are called the factors of the normal series (1). The number of factors is
called the length of the series ; the length of the series (1), for example, is k.

A normal series
G:H]_:Hz:...:Hz:E (2)

is called a refinement of the normal series (1) if every subgroup G; of (1)
coincides with one of the subgroups Hj, that is, if all the subgroups that
occur in (1) also occur in (2). In particular, every normal series is a

110
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refinement of itself. The lengths of the normal series (1) and its refine-
ment (2) of course satisfy the inequality 2 = I.

Two normal series of a group are called isomorphic if their lengths are
equal and their factors can be put into one-to-one correspondence in such
a way that corresponding factors are isomorphic groups. In this definition
it is not assumed that the correspondence should preserve the order of the
factors. For example, if we take a cyclic group of order six, G = {a},a* =1,
then the normal series GD{a*}DE and (D {a*}>E are isomorphic—
since their factors are one cyclic group of order two and one of order
three—although the factors are differently arranged in the two series.

All the definitions given above carry over to the case of groups with
operators. In the definition of a normal series we must, of course, speak
of admissible subgroups and admissible normal subgroups and, in the defini-
tion of isomorphic series, of operator-isomorphic factors. All further devel-
opments of the present section are presented on the understanding that all
the groups to be studied have a (possibly empty) set of operators.

The following theorem is fundamental in the theory of normal series:?

SCHREIER’'S THEOREM. Any two normal series of an arbitrary group have
isomorphic refinements.
Proof: Let
G=G2G:56G:D...25G,=E (3)
G=H,oH;DH,>...DH,=—E 4)

be two normal series of a group G. Put

Gy=Gi+ (G- H;);
Hy=H;-(H;—1N G));

here Gy and Hy are groups since, for example, G, is a normal subgroup,
and G;_, N H;a subgroup, of G;—,. Fori=1,2,...,k,andj=1,2,...,1,
we now have

Gi—1=Gu=2 Gi, j_1 264Gy =G,

Hj_l = Ho];. H4_1 , j.:_Hg..z_Hw — Hj.

By Zassenhaus’ lemma (§ 10 and § 15) G, is a normal subgroup of G;, ;_,,
and Hy; a normal subgroup of H;_,, 4, and the corresponding factor groups
are isomorphic,

Gt,i—l/G(szi—l,;‘/Htj- (5)

* O. Schreier [5]. The proof in the text is due to Zassenhaus [1].
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If we insert in (3) all the subgroups Gy, j=1, 2, ..., 1— 1, between
Gi—y and G;,i=1,2, ...k, then we obtain a refinement of (3) which is,
in general, a normal series with repetitions, because some subgroups Gy, j—1
and G, may be equal. Similarly, we construct a refinement of (4) by means
of the subgroups Hy;. These refinements are isomorphic, by (5). To
conclude the proof it now remains to eliminate the repetitions. How-
ever, if G, j—, = Gy, that is, if G;,;_1/Gy=E, then we have by (§)
H;_,, ;== Hy, and therefore we can elithinate simultaneously all the repe-
titions in these refinements of the series (3) and (4) without destroying
the isomorphism. This completes the proof of Schreier’s theorem.

A normal series that has no refinement (without repetitions) other than
itself is called a composition series. In other words,

G= 00301302:- . .:Gk——-:B

is a composition series of G if every G;,i=1,2, ..., k,is a proper maximal
normal subgroup of G;_;. All the factors of a composition series are obvi-
ously simple groups. Conversely, every normal series whose factors are
all simple groups cannot be further refined; that is, such a series is a
composition series. Therefore every normal series that is isomorphic to a
composition series is itself a composition series.

The following theorem is an immediate consequence of Schreiet’s
theorem:

JorpAN-HOLDER THEOREM. If @ group G has a composition series, then
any two composition series of G are isomorphic.

For, any isomorphic refinement of the given pair of composition series
must coincide with both these series.

If a group G has a composition series, then every normal series of G can
be refined to some composition series; its length, therefore, does not exceed
the length of the composition series of G.

For the proof it is sufficient to apply Schreier’s theorem to the given
normal series and to one of the composition series of the group.

For brevity, we shall in the sequel call the common length of the composi-
tion series of a group the composition length and the factors of any com-
position series the composition factors of the group.

It is by no means true that every group has a composition series. For
example, every normal series of the infinite cyclic group has proper refine-
ments. For, the last subgroup but one of such a series is itself an infinite
cyclic group, and therefore additional terms can be inserted between it and
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the unit subgroup. More generally, an abelian group without operators
must be finite if it has composition series, since the composition factors of
such a group can only be cyclic groups of prime order. Every finite group
has a composition series, of course. So does every simple group G—the
existence of infinite simple groups has been proved in § 9—the only com-
position series being G E. We shall prove below a simple necessary and
sufficient condition for the existence of a composition series in a group.
First we require some new definitions.

We shall say that a subgroup H of a group G is an accessible subgroup
if it occurs in a normal series of G. In other words, the accessible subgroups
of a group G are all the normal subgroups of G, all the normal subgroups
of these, and so on. It is clear that an accessible subgroup of an accessible
subgroup is itself an accessible subgroup.

A descending sequence of subgroups of a group G,

G=H,oHDH,>...oH,>..., (6)

is called a descending normal chain of G if every subgroup H,,n =1, 2, ...
is a proper normal subgroup of H,_;. A descending normal chain can be
either countable, with the order type of the natural numbers, or finite. In
the latter case we say that the chain breaks off. Every normal series is an
example of a normal chain that breaks off. The following sequence of sub-
groups of the infinite cyclic group G = {a} serves as an example of an
infinite descending normal chain:

G>o{a?)>{at}>...o{a?"}>....
An ascending sequence of subgroups of a group G,

EcF,cFyc...cF,c..., (7)

is called an ascending normal chain of G if every subgroup Fp.,n=1,2,...,
is a proper normal subgroup of F,4, and if all the subgroups F, are acces-
sible in G.! An ascending normal chain can be either infinite or finite;
examples of the former can be found in the additive group of rational
numbers or in a group of type p= (§7).

A group G has a composition series if and only if all ascending and all
descending normal chains break off.

! The last condition is automatically fulfilled in the case of descending normal chains.
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For let G be a group with a composition series and let # be its composition
length. If G had an infinite descending normal chain (6), then for n =k
the normal series

GoH,>H,>...oH,5E,

consisting of the first n terms of (6) and the unit subgroup, would have a
length exceeding 2. But this contradicts Schreier’s theorem. Assume now
that G has an infinite ascending normal chain (7). Then we take n =%
and construct any normal series of G containing F,:

Go@o...0G,_;DF,5...0E, s=1

Such a series exists since F, is, by assumption, an accessible subgroup.
But then the series

GoG/>...05G, oF,oF,_>...o0F;>F,oE

is normal and its length is greater than %, which again contradicts
Schreier’s theorem.

Conversely, let us assume that all ascending and descending normal chains
of a group G break off. From the fact that the ascending chains break off
it follows that every accessible subgroup H of G (other than E) must have
at least one proper maximal normal subgroup. For if every proper normal
subgroup of H were contained in a larger proper normal subgroup, then
we would obtain an infinite ascending chain of normal subgroups of H, and
this would be an ascending normal chain of G.

We now construct the required composition series of G as follows: We
take a proper maximal normal subgroup H; of G. If

H0=0, Hl’ Hg, veoy Hn,

have been chosen in such a way that each is a proper maximal normal sub-
group of the preceding one, then H, is obviously accessible in G. If H, 5 E
we take as H,,, one of the maximal normal subgroups of H,. Since a
descending normal chain breaks off, we must arrive at the unit subgroup E
after a finite number of steps, that is, we obtain a composition series of G.
This completes the proof.

If a group has a composition series, what can we say about its subgroups?
The example of the countable alternating group (see § 4) shows that a
group with a composition series may contain a subgroup that has no com-
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position series. For, the group is known to be simple (see § 9) and so has
a composition series, but its subgroup generated by the permutations

b”=(4n—3, 4”-2)(4n—1, 4")) n=l: 2’ L 4

is infinite and abelian—the latter because all the elements b, are clearly
permutable—and therefore cannot have a composition series.

However, every accessible subgroup H of a group G with a composition
series has itself a composition series. For H occurs in a normal series of G,
which by assumption can be refined to a composition series. The segment
of this series between H and the unit subgroup is a composition series for H.
It also follows that of H is a proper accessible subgroup of G, then the com-
position length of H is less than that of G and the composition factors of H
form part of the system of composition factors of G. Furthermore, if H is a
normal subgroup of G, then the segment between G and H of a composition
series containing H leads to a composition series of the factor group G/H.
Hence it follows that every factor group G /H of a group G with a composi-
tion series has itself a composition series ; its composition length is equal to
the difference between the composition lengths of G and H, and its com-
position factors together with the composition factors of H form the system
of composition factors of G.

Certain conclusions about arbitrary subgroups of a group with a com-
position series can be reached from the following theorem, which refers to
arbitrary groups:

If a normal series

G=Go:Gl:G2D.o-:Gk=E, (8)

is given in a group G, then every subgroup F of G has a normal series whose
factors are isomorphic to subgroups of distinct factors of (8).

Forif F;=FQN G, i=0, 1, 2, ..., k,then by applying Zassenhaus’
lemma to the case A=F, A/=E, B=G;_,, B'=_G, we find that
F; is a normal subgroup of F;_; and that

Fy_y/Fe= GiF;_,[Cy.

But G;_, 2 G,;F;_, 2 G, that is, the factor group F_,/F; is isomorphic
to a subgroup of the factor group G;_,/Gy The series
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after deletion of all repetitions, is therefore the required normal series of F.

The theorems of Schreier and Jordan-Holder and the deductions from
them have been obtained for groups with an arbitrary operator domain.
If all the inner automorphisms are adjoined to the operator domain, then
only the normal subgroups remain admissible. In this case the concept of
a composition series turns into that of a principal series : a series of subgroups

G=Hy>H,>H,>...oH,—E

is called a principal series of G if every H,,1=1,2,...,k, is a maximal
normal subgroup of G contained in H;_, as a proper subgroup. The con-
dition for the existence of a composition series that we have proved above
turns in the present case into the following theorem:

A group G has a principal series if and only if all its ascending and
descending chains of normal subgroups break off.

Such chains will in the Sequel be called ascending and descending principal
chains of G.
The Jordan-Holder theorem leads in this case to the following theorem :

If a group has a principal series, then any two of its principal series are
isomorphic.

The connection between the composition series of a group and of its
accessible subgroups does not carry over to the case of principal series.
For if a group G has a principal series and if we take one that passes through
a given normal subgroup H, then the segment between H and E need not
be a principal series of H, since there may exist, in general, normal sub-
groups of H that are not normal in G.

If the operator domain contains all the automorphisms (or all the endo-
morphisms) of a group G then the concept of a composition series turns
into that of a characteristic (or a fully invariant) series, that is, a series of
subgroups of G each of which is a maximal characteristic (fully invariant)
subgroup of G contained in the preceding group as proper subgroup.

In this case we obtain from the Jordan-Holder theorem the following
theorem :

If a group has a characteristic (fully invariant) series, then any two char-
acteristic (fully invariant) series of the group are isomorphic.

Further developments of the results of this section will be found in § 56.
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§ 17. Direct Products

One of the most important concepts in the whole of group theory is that
of the direct product or (when the group operation is written as addition)
the direct sum. It is fundamental, in particular, for one branch: the theory
of abelian groups. In the present section we shall define the concept and
derive some of its simplest properties, while the deeper theory will be treated
separately in Chapter XI.

A group G is called the direct product of its subgroups H,, Hs, ..., H,
if the following three conditions are satisfied:

1) The subgroups H,,H,,...,H, are normal in G.
2) G is generated by the subgroups Hy, H,, ..., H,.
3) The intersection of every H;,i=1,2,...,n, with the subgroup
generated by all Hy, j =1, is E.
This definition is equivalent to the following: G is the direct product of
its subgroups H,, Hs, ..., H, if
1’) the elements of any two subgroups H; and Hj, i 5% § are permutable,
2’) every element g of G has a unique representation as a product

g=hlh2 “.e h

where meH,i=1,2,...,n
Let us show that the second definition follows from the first. In order
to prove 1) we take elements a€eH,, be H;,i5<j. Then by 1) we have
ﬂb*"aeH b—labeH,; so that the commutator a—1b—1ab is contained
in Hy | H;, which by 3) is E. For the proof of 2’) we note that we can
write any element g of G in at least one way as a product g="h,hy ... A, ;
this follows from 2) and the condition 1’) which we have already established.
This representation is unique ; for if we had

g=hlh2 ¢ o h”=h;h;..- h:”
where h; = i’; say, then again from 1’) we would obtain
K e (hy .o B)(By ... b)) =(BhTY) ... (BhY),

and this contradicts 3).

Conversely, the first definition follows from the second. For 2) is part
of 2"). For the proof of 3) we assume that the intersection of H,, say, with
the subgroup generated by Ha,,..., H, contains an element ¢ other than
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the unit element. This element is contained in H,; and can also be written
as a product h; ... h, by 1’) ; but this contradicts 2’). For the proof of 1)
we take an element k; of H; and an arbitrary element g of G. By 2') we
have g=~hhy ... h; ... h,, and then by 1")

g_li‘g= h‘_r’;‘k‘ € H‘.

The task of verifying that a given group G is the direct product of its
subgroups H,, H,, ..., H, is simplified considerably by the remark that
in the first definition condition 3) can be replaced by the much weaker
condition

3o) The intersection of H;,1=1,2,...,n, with the subgroup gen-
erated by Hy, ..., H;_,is E.

For the proof it is sufficient to show that 1’) and 2") can be deduced from
1),2),and 3,). From 3,) we obtain easily that H; | ;= E, i - j so that
1’) follows as before. It remains to prove the uniqueness which is part of 2").
If we could find an element g with two distinct representations

g=hh, ..., =RHE ... K,

where hy, 5% Iy, while b, =Hh, ., ..., b, =k, k = n, then we would

k+1
get ,
B, = (R (BpTY ... (B _ gD,

but this contradicts 3,).

If a group G is decomposed into the direct product of its subgroups
H,, H,, ..., H,, then we call these subgroups the direct factors of the
given decomposition and we write

G=H, X HyX ... X Hy

So far we have defined the direct product for a finite number of direct
factors only; but this concept can also be used for an infinite set of direct
factors. The basic definition is then the following: A group G is called
the direct product of a certain set of subgroups f1, (a ranges over a given
index set) and is written in the form

if G is generated by these subgroups and if the subgroup of G that is gen-
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erated by any finite number of subgroups H, is their direct product. From
this definition we deduce easily that elements of distinct subgroups H, are
permutable and that every element of G has a unique representation as
a product of a finite number of elements of some of the subgroups H,
(unique, that is, apart from the order of the factors). Moreover, it is
easy to see that every subgroup H, is normal in G: if g is an arbitrary
element of G, then g=h, h,, ... By, and since by assumption the
subgroups H,, Hyyy ..oy He, form a direct product in G, we have
g 1H,g=H,. In the same way we can show that the intersection of any
subgroup H, with the group generated by all subgroups Hur, ¢’ £ &, is E.

Making use of these remarks we could formulate other definitions of the
direct product of an infinite set of subgroups, definitions that are equivalent
to the one given above but that do not require a preliminary consideration
of the case of a finite number of factors. For example, the reader will have
no difficulty in proving the following parallel to one of the definitions given
above for the case of a finite number of factors.

A group G is the direct product of its subgroups H, if and only if

1. the elements of any two distinct subgroups H, are permutable, and

2. every element of G has a unique representation (apart from the
order of the factors) as a product of a finite number of elements
chosen from the subgroups H,. '

We now indicate some very simple properties of direct products which
follow immediately from the definition.

I If
G=[H., (1)

and if the factors H, are again decomposed? into direct products,

m=gma

then G 1is the direct product of all subgroups H,g, taken over all a and .
This new direct decomposition of G is called a refinement of the decomposi-
tion (1).

II. If (1) is a direct decomposition of a group G, and if we split the set
of subgroups H, tn an arbitrary way into disjoint subsets and replace the

* Some of the A, may, of course, remain undecomposed.
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subgroups H, that enter into each of these subsets by their product, then
we obtain a new direct decomposition of G.

III. If we choose in each direct factor H, of the decomposition (1) a
subgroup H,, E S H, © H, then the subgroup generated in G by all sub-
groups Hy is their direct product.

If G=H, X Hy X ... X H,, then each element g of G can be written
in the form g="Mhh,...h,, where hhe H;,i=1,2,...n. The uniquely
defined element A, is called the component of g in the direct factor H,. We
must point out that the component of g in H; depends on the given direct
decomposition :} if there is another direct decomposition of G that also
contains H, as one of its direct factors, then the component of g in H; may
now differ from ;. The concept of a component of an element carries over
to direct products with an infinite number of factors; in this case each ele-
ment has for a given direct decomposition only a finite number of components
distinct from 1.

If G=]IH, and if F is an arbitrary subgroup of G, then the set F, of

componentsaof all the elements of F in the direct factor H, is itself a subgroup.
It is called the component of F in H,. If F is a normal subgroup of G, then
F, is a normal subgroup of H, and therefore also of G. The latter follows
from the following general property of direct products:

IV. If A s a direct factor of a group G, then every normal subgroup A’
of A is also normal in G.

For there exists a normal subgroup B of G for which G=4 X B. Ifgis
an arbitrary element of G and g =ab,aeA4, beB, then

g A g=a"1Aa=A".

From the permutability of elements belonging to distinct direct factors of
a given direct product it follows that the components of the product of two
elements are the products of the corresponding components. Therefore, in
particular, a component of the commutator of two elements of a direct product
is the commutator of the corresponding components of the elements. Hence
we have |

V. The derived group of a direct product is the direct product of the
derived groups of the factors.

From what we have just shown about the components of the commutator
of two elements it follows that the components of permutable elements of a
direct product are permutable, and therefore
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V1. The center of a direct product is the direct product of the centers
of the factors.

For if an element z belongs to the center of the group G=I[A,, then the

component z, of z in H, is permutable with the corresponding component
of every element of G, that is, with all the elements of H,.

If F is a subgroup of a direct product, then F is contained in the direct
product of its components, but it does not, in general, coincide with this
product.

F is the direct product of its components when they are all contained in F,
that is, when they coincide with the intersections of F and the corresponding
direct factors. We can even prove the following property:

VII. If G=A X B and if the component of F in A coincides with
FNA, then the component of F in B is FN\B and F is the direct product
of these two intersections.

For if feF and f=ab, then b = a~feF, since by assumption aeF.

Hence we have

VII'. If G =A X B and if the subgroup F contains the direct factor A,
then F= A X (FQB).

Finally, we mention the property

VIII. If G = A X B, then the direct factor B is isomorphic to the factor
group G/A.

For if Agis a coset of A in G and if g=ab, then beAg, that is, each
coset of A contains one, and obviously only one, element of B.

So far we have dealt with the decomposition of a given group into the
direct product of subgroups. In the sequel we shall often talk of the direct
product of certain given groups. Suppose, for example, that two groups A4
and B are given. The set of all pairs (@, b), where @ is an element of 4 and
b an element of B, becomes a group if the operation is defined as follows:

(a,b)+ (&, b)) =(ad’, bb').

It is easily verified that this group is the direct product of its subgroup 4’
consisting of the pairs of the form (a,1) and B’ consisting of the pairs of
the form (1,b).* These subgroups are isomorphic to the given groups 4

* The element 1 in the pair (a, 1) is, of course, the unit element of B, while in (1, b)
it is the unit element of A.
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and B, respectively, and therefore the group we have constructed can, and
from now on will, be called the direct product of 4 and B. This construction
carries over without difficulty to the case of an arbitrary finite number of
given groups. If an infinite set of groups Aq is given, then we can proceed
in the following way : the elements of the direct product of the groups 4,
are those systems of elements a,, one from each group 4,, in which all but
a finite number of these elements are the unit elements of the corresponding
groups. The definition of multiplication of such systems is the same as in
the case of a finite number of direct factors.

This method of forming a new group from given groups by the construc-
tion of their direct product will have many applications in the sequel.

In our construction of the direct product of an infinite set of groups we
could, of course, have omitted the condition that only a finite number of
components should differ from the unit element; we would then consider
arbitrary systems of elements, one from each of the given groups 4,. The
group so obtained is called the unrestricted direct product (or complete
direct product or Cartesian product) of the given groups ; interesting proper-
ties of this group are described in the paper by Graev [1]. We must men-
tion, however, that for the unrestricted direct product one cannot give an
“internal” definition similar to the one we have used above for the ordinary
or restricted direct product.

These two types of direct products are unified in the following construc-
tion of the direct product with prescribed subgroups: it is assumed that in
each of the given groups A, a subgroup B, is prescribed, and only such
systems of elements, one from each group A, are considered which have
not more than a finite number of elements outside the corresponding sub-
group B,; multiplication is component-wise as above. This construction,
which is due to Vilenkin [1], is used with advantage in the theory of topo-
logical abelian groups.

A group that cannot be decomposed into the direct product of proper
subgroups is called indecomposable, or, more accurately, indecomposable
into a direct product (since we shall later meet other forms of products).
Among the indecomposable groups are, obviously, all the simple groups.
The additive group of rational numbers and the additive group of integers,
that is, the infinite cyclic groups, are also indecomposable. This follows from
the fact that any two rational numbers have a common non-zero muitiple,
so that the intersection of any two non-zero subgroups is in both cases itself
a non-zero subgroup.

If a cyclic group {a} of order p™ is given, where p is a prime number,
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then all subgroups other than E are the cyclic subgroups of the elements
a, a?, av*, ..., a®™ 1, In other words, if any two subgroups of the group
are given, then one of them is completely contained in the other. Therefore
the cyclic groups of order p™ and the groups of type p= are indecomposable.

On the other hand every cyclic group of composite order is decomposable
into the direct product of cyclic groups whose orders are powers of distinct
prime numbers.

Let {a} be a cyclic group of order

n=prpy ... pxk%
where £ = 2 and p,, p2, ..., py are distinct prime numbers. We put

‘=P;"l e p:'j]—.-lp:':{_ft-...p:'/‘ (i=l,2,...,k).

The element a% has the order pg*. The intersection of the cyclic subgroup
{a%)} with the product of all cyclic subgroups {a%} with i 5< j is E, since the
orders of all elements of the latter product are co-prime to p;. The product
of the subgroups {a%},i=1,2,..., k in the group {a} is therefore direct
and coincides with the group {a} itself, since the order of a direct product
is equal to the product of the orders of the factors.

Other examples of decomposable groups are the additive group of complex
numbers, which splits into the direct sum of the additive group of real and
of pure imaginary numbers; also the multiplicative group of non-zero real
numbers, which splits into the direct product of the multiplicative group of
positive real numbers and the cyclic group of order 2 generated by — 1.
The multiplicative group of positive rational numbers splits into the direct
product of a countable set of infinite cyclic groups generated by the distinct
prime numbers. We have already mentioned that the non-cyclic abelian
group V' of order 4 is the direct product of two cyclic groups of order 2.

The concept of a direct product can also be applied to groups with oper-
ators. In this case we must, of course, restrict ourselves to decompositions
of the group into the direct product of factors which are all admissible for
the given operator domain. Conversely, if groups A with one and the
same operator domain X are given, then we can consider the direct product
G of these groups as an operator group with X as operator domain by
postulating that for

0oy, ... Qg 8E G, @y, € AC‘,
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we have
8O =0, ® * G0 ... G0,

where weX. From this equation it follows, in particular, that a component
of an admissible subgroup is itself an admissible subgroup.

We shall see later (in § 26) that there exist decomposable groups that
cannot be split into the direct product of indecomposable groups. The ques-
tion, therefore, arises under what conditions a group has such a decomposi-
tion. Moreover, a group may have many distinct decompositions. This
leads to the problem, Under what conditions is the decomposition of a group
into the direct product of indecomposable groups unique? Further, two
direct decompositions of a group are called isomorphic if a one-to-one
correspondence between the factors of these decompositions can be established
for which corresponding factors are isomorphic. The problem of finding
conditions under which any two direct decompositions of a given group
into decomposable factors are isomorphic or, more generally, any two
direct decompositions of a given group have isomorphic refinements is the
object of numerous investigations. All these problems will be considered in
Chapter XTI and, for various classes of abelian groups, in Chapters VI-VIII.

§ 18. Free groups. Defining relations

It is the aim of this section to establish a method of giving a group without
making use of individual properties of the elements of the set in which the
group operation is defined. In order to achieve this we must first construct
a special class of groups, the so-called free groups, which are in a certain
sense universal for all existing groups whatsoever.

Let M be a non-empty (finite or infinite) set of symbols x4, #5, 4, ---.2
We shall denote these symbols also by 231, x;'l, xH, . ..and we construct

1 ?
another set x;'1, x%, x,“l, .. . in one-to-one correspondence with the first
set: An expression
A A =*1, i=1,2 1
'w-—-—-x‘lxaz...xc” (4==*1, i=1,2,...,n), (1)

that is, an ordered system of a finite number of symbols of the form x}1
and x7! (where each symbol that enters into the expression (1) may occur

* To simplify the understanding of the following construction the reader may assume
at first that the set §#t consists of two symbols 2, and #: only.
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several times) is called a word. If in (1) no symbol x}1 stands next to its
associated symbol x71, then w is called a reduced word ¥ Examples of reduced
words are x,x71x x aXp and XX X Xgxg xp, but not x,xp xgx xT

The number n is called the length of the reduced word w and is denoted
by I(w). For any set I we can obviously construct words of arbitrary
length. Reduced words of length 1 are precisely the symbols x4 and .~
We also count as a word the empty word w,, which contains no symbols,
and we put /(w,)=0,

The set of all reduced words that can be written by means of our collec-
tion of symbols is now made into a group by the following definition of

the group operation: Suppose two reduced words are given,

wl=x:ix:22 x:: (=1, i=1,2,...,n, (2
3 3 3
W= xlal .. x G=x1, j=1,2,...,m) (3)

and suppose that
On-s+1=0; and e, 431+ 8 =0

foralli,1 =i¢=% (where £ is subject to the condition 0 < k¥ = min (n, m)),
but that either a,,_; 5B ., 0T @y 3 =Br,1s €p_x = x4 Then we set

°k+1 O x‘m
n—k k+1 Bk+2 Bm (4)

Wy Wy == x 1x 3 x>
1Ws a Xy c o
Put differently: in order to form the product w; w, we write w, immediately
following =, ; if the resulting expression

*

3
xlx? . x”x %2 cxg™ ()

U oy 4 8 B2 m

is a reduced word, that is, if the symbols X, % and Xy, are distinct, or if they
are equal and have the same exponents, theh we have obtained the product
wywe. Otherwise it is necessary first to carry out certain cancellations, that
is, to delete successively pairs of symbols with opposite exponents standing

*The notation for words that we are using should not suggest that we have here any
kind of “multiplication” of symbols. A word is merely an ordered system of symbols and
we could equally well separate the symbols constituting the word by placing commas
between them.
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next to one another. Clearly it can happen that in performing these cancel-
lations we delete all the symbols of one of the factors w,, ws, or of both.

The unit element for the multiplication of reduced words so defined is
obviously the empty word w,. The inverse of (2) is the word

-1 -8 -8,

In particular, the inverse of the symbol x4 is 4™

The proof of the associative law for the multiplication of words is a little
laborious. Let wy, w:, and w; be non-empty reduced words.! We shall
prove the equation

W, (wawg) == (W Wy) W (6)

by induction on the length of the middle factor w,.

Consider first the case /(wg) = 1, that is, wg==x3. If the last symbol
of w, and the first symbol of w; are both different from x;°, then no cancel-
lations have to be performed and (6) holds. It also holds when only one
of the two symbols in question is equal to x_*, since there are then no
cancellations in one of the products w,w,, wgwg. Finally, when both
symbols are equal to x_¢, let

8 3.t " "
1 x.8 —_ 1 t
w, = xp1 . p X, , = x x,‘1 x‘t.
Then the expression
3 -t
1 1’1 e
X, . x . X
Bl B 11 Te

is a reduced word, since there cannot be any cancellations in it, and this
word is equal both to the left-hand and to the right-hand side of (6).
Now let I{wa2) = 2. If

| ] | J
we=x'x? ... x, ""1x
1 72 %y—1 "n

we put
. [ ] | J

w, = x lx 2 [ N BN ] x ”—1.

2 4 0 *n—1

Then w,’ is a reduced word, I(w?) < I(w:), and w, = 'w; . x:” . Equation

n

1 The associative law is obvious for three factors one of which is .
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(6) in the case in question will now be verified by a repeated application
of the same equation in cases when the length of the middle factor is less
than #:

w, () = W[, wy) =B, [w, (¥ w )] = (@,w) (x,7w) =

= [(wywy) £ W, = [, (@) v, = (w0, ) w,,

Some of the parentheses that occur in the preceding equations may, of
course, contain products that become reduced words only after certain can-
cellations. That, however, does not affect the argument.

We can now speak of the group of reduced words consisting of the symbols
of the set M and their inverses. This group is called a free group. Clearly,
it is completely determined when the set I is given and does not depend
on any individual properties of the elements of this set. We define the rank
of the free group constructed from M as the cardinal number of M. Then
one can prove by elementary set-theoretical considerations that a free group
of finite rank is countable and that the cardinal number of a free group of
infinite rank is equal to its rank.

A free group of rank 1 is obviously an infinite cyclic group. Every free
group whose rank exceeds 1 is non-commutative: if o 5= f§, then x4 and
%px, are distinct elements of the group. All elements of a free group, except
the unit element, have infinite order: if in

[

'w—-xlx Lox?
% q_ n

 J [} 8,
the symbols x ' andx, x* and x ™%, ..., x* and o *n=k+1 are inverse
1 n % ®n-1 % ~k41

in pairs, and if this is not the case for x:"“ and x:”"‘ , then we put

k+1 n—k
o *%+1, %42 fn—k
w=x"Tlx . X .
sy k42 %o~k

Such a k& satisfying the inequality 0 = k = n/2 must exist, since w is not
the empty word. Now for s > 0 we have

s [ ]
w® — x% . xk G‘xn —-k+1 X",

“ “x Sp—k+1l  nm

The expression on the right-hand side of this equation does not admit any
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cancellations, that is, is a non-empty reduced word. Hence it follows that
w5 1.

Every word is equal to the product of the symbols that constitute it. The
set M is therefore a system of generators of the free group constructed by
means of M. Such a system of generators of a free group will be called a
system of free generators. In the sequel we shall retain the name “word” for
the elements! of a free group and we shall write them as products of powers
of free generators, for example, xﬁxé"x‘rxﬁ instead of x XX xg lxuxgxa.

In Chapter IX the reader will become acquainted with many deep and
important results in the theory of free groups. Here we shall prove just
one theorem which makes completely manifest the significance of the free
groups for the whole theory of groups.

Every group is isomorphic to a factor group of a free group. Let G be
an arbitrary group and M a system of generators of G; we denote the ele-
ments of M by a,, ag,.--. We now take a free group W with a free system
of generators of the same cardinal number as M. Between the elements of M
and the chosen system of free generators of /¥’ we set up a one-to-one cor-
respondence and denote by x, that element of /¥ which corresponds to the
element g, of M. The mapping that carries the element x, of W into its
corresponding element g, in G and, in general,

L Xk, eg,= 1, i=1,2,..., k&, (7

into the element

(8)

of G,is obviously a homomorphic mapping of W onto G. By the homo-
morphism theorem (§ 10) we have

G~ W/H,

and the theorem is proved. Note that the normal subgroup H of W consists
of precisely those words of the form (7) for which the product (8) is equal
to the unit element of G.

From this proof of the theorem it follows that every finitely generated
group is a factor group of a free group of finite rank. More explicitly, every
group with n generators is a factor group of a free group of rank n.

It is clear that this representation of a group G as a factor group of a
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free group is by no means unique, since it depends on the choice of the
generating set M.

Let G be an arbitrary group and let it be represented as a factor group
of a normal subgroup H of a free group W. If, as above, x4, x5, ... are
free generators of W/, we denote their images under the natural homo-
morphism by a,, ag, ..., and the set of all these elements of G (which
need not, of course, be all distinct) by 0. Let the word

xlx? x* (thee are integers)

“1“2.“ e

be an arbitrary element of H. In G there corresponds to this the equation

 J ]
ala?...a*=1,

ag ey T T

which will be called a relation between the elements of M in G.

We choose in H a subset i such that H is the normal subgroup generated
by M in W. The system of relations that correspond to the words in RN is
called a system o defining relations of G. All the relations that link the
elements of M in G can be considered as consequences of the defining rela-
tions, since every element of H can be written as a product of powers of
the elements of : and their conjugates.

A group G is completely determined by its defining relations, since the
set N completely determines the normal subgroup H of the free group W
and therefore the factor group W /H. Since we have shown above that
every group is a factor group of a free group, we now see that every group
can be given by a system of defining relations connecting a certain set of
symbols ; two groups given by defining relations between certain systems of
generators are isomorphic if a one-to-one correspondence between these
systems can be set up for which the defining relations of one group go over
into the defining relations of the other, and conversely.

On the other hand, if an arbitrary set of symbols M and an arbitrary set
of relations equating certain words in the symbols of M to the unit element
are given, then there is always a group for which these relations form a
system of defining relations. For the proof, it is sufficient to take the free group
over the set M and take the norma! subgroup generated by the left-hand
sides of the given relations and then go over to its factor group.
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voN Dyck’s THEorREM: If a group G is given by a system of defining
relations and if a group G’ is given by these relations and some further rela-
tions in the same symbols, then G’ is isomorphic to a factor group of G.

For if we represent G and G’ as factor groups of one and the same free
group W,
G=W/H, G'=W/H’,

then H is contained in H’.
This theorem is often useful if one wants to find defining relations of a
group given in some other way.

Examples 1. A finite cyclic group of order » is given by a generating
element ¢ and the defining relation

ar=—1.

2. The additive group of rational numbers R was represented in § 7 as
the union of an ascending sequence of infinite cyclic groups. On the basis
of that result we can now give R by the generators

al, aa, as, .o 0y a,f, D ]
and the defining relations

— a2 —_ — o n+l
a,=a}, a,=a3 ..., a =all} ...,

1 n+1?

3. The group of type p = can be given by the generators

Qyy Qgy oo vy Qpy oo
and the defining relations

a}l’=1, a?

”+1=a”, n=1, 2, oo

4. The symmetric group S of degree '3 is given by two generators ¢ and b
and the defining relations

ad=1, =1, abab=1. (9)

123 123 ,
a={g31)0 ?=\g13 &%

For, the elements
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generate the group S; and satisfy the relations (9), so that Sy is (by
von Dyck’s Theorem) a factor group of the group given by the defining
relations (9)—the group S is defined in terms of the generators (9’) by
the relations (9) and, possibly, others. But from the relations (9) it follows
that ba=a?b. Every product of powers of @ and b in the group defined
by the relations (9) can therefore be reduced by means of these relations
to the form a*6%, a==0,1,2, f=0, 1; that is, the group with the defining
relations (9) consists of not more than six elements and therefore co-
incides with 5.

5. In §9 we proved that the quaternion group Q has order 8 and is
generated by two elements a and b, subject to the relations

at=1, bt=1, a2=102 aba=0"0. (10)

In the course of the proof we also established that the group defined by the
relations (10) has not more than eight elements. Hence it follows (again
by von Dyck’s Theorem) that (10) is a system of defining relations for
the quaternion group Q. Note that two of the four relations (10) are not
written in the form required above. The transition from this notation to
the standard one, in the present case

a®h-2=1, abab® =1,

is obvious.

We shall now make a few additional remarks about groups given by
defining relations, but we refer the reader to the much deeper problems in
Chapter X. We know that a free group is given by a system of free generators
without any defining relations. Conversely, if in a group G a system of
generators M can be chosen which are not linked by any relations® then
every element of G is uniquely represented as a word in the elements of M,
that is, the group G is isomorphic to the free group over M as system of
free generators. In other words, G is in this case a free group, and M is a
system of free generators for G.

In order that a group with generators aq, ag, . . . be abelian it is sufficient
to have among the defining relations the equations of the form

! The trivial “relations” of the form ae—1 =1 do not satisfy the above definition of a
relation and therefore do not count as relations.
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[@a; as] =1 (11)

for all pairs of generators ; the left-hand side is the commutator of @, and as.
For if any two generating elements are permutable, then it follows easily
that any two products of powers of these elements are permutable. Examples
2 and 3 above show, however, that a group may turn out to be abelian
although no equations of the form (11) occur among the defining relations.

Every group can be given by generators and defining relations in many
distinct ways. Although defining relations represent a convenient method
of giving a group “abstractly,” that is, giving all the groups isomorphic to a
group as well as the group itself, nevertheless in the overwhelming majority
of cases we can say very little about a group given by relations. For example,
if a group is given by a system of generators and a system of defining rela-
tions then we cannot, as a rule, say whether the group is finite or infinite,
whether it is commutative or not, and so on. Moreover, the group may
turn out to consist of the unit element only—this will happen, of course, if
the normal subgroup that is generated by the left-hand sides of the defining
relations of the group coincides with the whole free group—but even this
cannot, in general, be established by considering the defining relations. Also
the following extreme case is possible: our group may actually be a free
group, but it may be given by a system of generators with non-trivial relations.

A finite group is sometimes given not by defining relations but by means
of Cayley’s group table. If a finite group G is of order n, then we number
its elements beginning with the unit element:

1, ag ag, ..., a,. (12)

We now construct a square table of #» rows and # columns and label its
rows downward and its columns from left to right with the symbols (12),
and at the intersection of the row labelled a; and the column labelled a; we
put the element that is equal to the product aya;. Thus, if we take the
symmetric group S of degree 3, i.e. the group with the generators a and &
and the relations a®*==1,b%>=1,abab=1 (see above, Example 4), and
introduce the notation:

aGy=a, ag=—ad, a,=b, ay=—ab, az=a’,

then the Cayley table is
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1 ag ag a, ag ag

1 |1 ayg a3 a, ag a4
ay | ag ag 1 ay a4 a,
@ | ag 1 ay a5 a, ag
a,| a, ag a5 1 a3 a,
ag | ag @, ag a3 1 ag
ag | ag ag @, ag ay 1

The non-cyclic group V of order 4, which is the direct product of two cyclic
groups of order 2 (this group is given by the generators a and b and the

defining relations
a?=1, b*=1, ab=ba),

can be given by the following Cayley table:

1 a, a3 a,

1|1 a ag a,
ag | ag 1 a, a4
ag | ag a, 1 a,

a, | a, ag a5 1

A group has a Cayley table that is symmetrical with respect to the main
diagonal if and only if it is abelian.
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CHAPTER VI
FOUNDATIONS OF THE THEORY OF ABELIAN GROUPS

§ 19. The rank of an abelian group. Free abelian groups

The theory of abelian groups, one of the most important classes of groups,
is well developed. In the present chapter we shall give an account of the
fundamental concepts and facts of the theory of abelian groups, particularly
of finitely generated abelian groups. These concepts and facts will be con-
stantly used in the following two chapters which go more deeply into
the theory.

We shall adopt the additive instead of the multiplicative notation in this
chapter and in the sequel whenever we deal with problems specially related
to abelian groups. The basic changes in terminology and notation that are
consequences of this convention have been indicated at the end of § 3.
In addition, we mention that instead of the unit subgroup we must now
speak of the null subgroup, which will be denoted by the symbol 0. Instead
of the product of subsets of a group we shall now speak of the sum of sub-
sets ; since all subgroups of an abelian group are normal and therefore per-
mutable among each other, the sum of two or any finite number of arbitrary
subgroups of an abelian group is itself a subgroup (see § 8). Finally, instead
of the direct product (see § 17) we have the direct sum of abelian groups.
This concept is quite fundamental for all abelian groups.

In accordance with the general terminology introduced in § 3, an abelian
group is called periodic if the orders of all its elements are finite, torsion-free
if all the elements, except the null element, have infinite order, and mixed if it
contains elements both of finite and of infinite order.

If G is a mixed abelian group and F the set of all its elements of finite order,
then F is obviously a subgroup of G. This uniquely defined subgroup is
called the maximal periodic subgroup, or briefly, the periodic part of G.
The factor group G/F is torsion-free. Thus every mixed abelian group is an
extension (in the sense of § 10) of a periodic group, namely its periodic part,
by means of a torsion-free group.

Among the periodic groups there are, in particular, the abelian groups in
which the orders of all elements are powers of a fixed prime number p.
These groups are called primary with respect to p or p-primary.

Every periodic abelian group can be decomposed in a unique way into
the direct sum of primary groups with respect to distinct prime numbers.

137
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For, the totality of all elements of a periodic abelian group G whose orders
are powers of the prime number p is a subgroup of G, which we denote
by Gy; it is characteristic, and even fully invariant, in G. All the sub-
groups G,, for distinct p, form a direct sum in G, since the sum of all these
subgroups with the exception of a particular G, consists of elements whose
orders are co-prime to g, so that the intersection of this sum with G, is the
null subgroup. On the other hand, every element of G is contained in the
sum of all subgroups G,; this follows from the fact, proved in § 17, that
every finite cyclic group is decomposable into the direct sum of primary
cyclic groups.

We now introduce the concept of the rank of an abelian group G. A finite
system of elements vy, va, ..., s of a group G is called linearly dependent

if there exist integers a,, ay, ..., d, not all zero, for which

00+ Gty + ... +&0=0,

where on the right-hand side we have, of course, the null element of G.
A system of elements that does not have this property is called linearly
independent. We shall call an element u of G linearly dependent on the
system of elements {#’, &”, ..., u'P}, of G if an integral multiple au of
the element, with a 540, is contained in {«’, 4”,...,u®}, that is to say,
if integers 8,, By, ..., B, exist for which

au =P’ +Bpu” + ... 4P,

Obviously a system of elements vy, vq, . .., vy is linearly dependent if and
only if at least one of its elements v, is linearly dependent on the remaining
elements of the system. The following properties of linear dependence are
also obvious. Every system that contains elements of finite order is linearly
dependent ; in particular, the null element is linearly dependent. Every sub-
system of a linearly independent system is itself linearly independent. Every
element that occurs in a finite system of elements is linearly dependent on
that system.

Two systems of elements of G, «/,u”,...,u® and ¢/,v”,...,v" are
called equivalent if every element of the first system is linearly dependent
on the second system, and vice versa. Every element « of G that is linearly
dependent on one of these systems is also linearly dependent on the other.
For if with a <0,

aue{u,u”, ..., u®},
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and with f;540, i=1,2, ..., k,
BiuWe{v, ", ..., vD},

then (aB,B,. . .By) ue{v/,v”,...,v®}. Hence the concept of equivalence
of systems of elements is transitive.

SteINITZ’ EXCHANGE THEOREM. Suppose that in a group G two finite
systems of elements are given

w,u”, . u® (1)
7,7, ., oW (1)

the first of which is a linearly independent system each of whose elements
is linearly dependent on the second system. Then k=1, and from (II)
k elements can be omitted such that the remaining elements, together with
the elements of (1), form a system equivalent to (II).

Proof. The theorem is vacuously true for k=0. We assume that it is
proved for £ —1.

The subsystem «’,u”,...,u%*=1 of (I) is itself linearly independent
and its elements are linearly dependent on (II). We therefore obtain a

system
PN 1t R TR TUN (1)

equivalent to (II) possibly after a change of the numbering of the elements
in (II). Now u®), being linearly dependent on (II), must also be linearly
dependent on (III), that is, there exist coefficients a, By, ..., f: for which
a=<0 and

00 = By 4 B - .. B 8D Bo® .. o0,
It follows that I = k and that at least one of the coefficients B, ..., B is

different from zero, since otherwise #®) would turn out to be linearly
dependent on the system «/, «”, ..., u*~, Let f; 0. Then

B = (—B,) i + ... < (—Bi_p) 2@ - aud |
- (—Brap) VE+HD ... 4 (—Bp) 0O,

that is, ¥® is linearly dependent on the system

u, d", ..., uk=1), g, ok+1) . = o), (Iv)
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Since (IIT) and (IV) are equivalent systems, (II) and (IV) are also
equivalent. This completes the proof.

From the exchange theorem it follows that two linearly independent
equivalent systems of elements of a group G consist of an equal number
of elements.

The concept of linear dependence can be extended to the case of infinite
systems of elements in the following way: an infinite system of elements
of an abelian group G is called linearly dependent if it contains at least one
finite linearly dependent subsystem, and linearly independent if all its finite
subsystems are linearly independent. Correspondingly, an element is linearly
dependent on an infinite system of elements if it is linearly dependent in the
previous sense on a finite subsystem. Since the union of an ascending
sequence of linearly independent systems of a group G is itself linearly
independent, every non-periodic group has maximal linearly independent
systems and every linearly independent system can be embedded in one
that is maximal. 1f a group G is periodic, then it contains no linearly
independent systems.

If a group G has finite maximal linearly independent systems, then all
these systems are equivalent and consist, as we have shown above, of the
same number of elements. This number is called the rank of the abelian
group G; and G itself is called a group of finite rank. It is convenient to
include among the groups of finite rank all periodic abelian groups, assigning
them the rank zero. A group that does not have finite rank is called a group
of infinite rank. In this case the rank of the group is the cardinal number
of a maximal linearly independent system of its elements; it is equal to the
cardinal number of the factor group of the given group with respect to its
periodic part and is therefore an invariant of the group.

Every subgroup A and every factor group G/A of an abelian group G
of finite rank is itself of finite rank, and the sum of the two ranks is equal to
the rank of G.

The first part follows from the fact that every linearly independent system
of elements of A is also linearly independent in G, the second from the fact
that by choosing in G/A any linearly independent system of elements (i.e.
cosets of 4) and one representative from each of these cosets we obtain a
linearly independent system of elements of G.

For the proof of the third part, we select a maximal linearly independent
system of elements of 4

Qyy Qo ...y @ R =0, (1)
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and a maximal linearly independent system of cosets of G/A4
b+ A, b+A, ..., b4A4, >0, 2)

where
by by ...y By

is an arbitrary system of representatives of these cosets. Then
Qs Qgy ooy gy byy bgy o0y By (3)
is a linearly independent system of elements of G. For from an equation
aya; +agay -t .. . g+ Biby +Babe .. +Biby =0 (%)
we obtain, by going over to the factor group of 4, the equation
pl(b1+A)+52(b2+A)+-- 4B (6 + 4)=0,

but since (2) is a linearly independent system, we have

Bi=Ba=...=B=0.
The equation (4) now reduces to
®3a; + dg3y + . .. 4 230, =0,

and from the linear independence of (1) it follows that

a1=a2=.oo=ak=0.

It remains to prove that (3) is a maximal linearly independent system of G.
If g is an arbitrary element of G, then the coset g + A is linearly dependent
on (2)

a(g+A)=1,0+ A+ 1302+ A+ ...+ G+ 4

hence

ag=a- 1,0y + Yba+ - - -+ Tibws
where a is an element of 4 and a 0. However, ¢ is linearly dependent
on (1)
Ba=28;a, | 8paqt-. .. 8pap,

where f 0, and therefore
(@B) g =818+ 883+ . ..+ Hax+ Pr) 01+ Bra) o+ - ..+ B &y,
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which is what we had to prove.

From this theorem it follows that the rank of a mixed group is equal to
the rank of the factor group of its periodic part and also that the direct sum
of a finite number of groups of finite rank is itself of finite rank and the
rank is equal to the sum of the ranks of the direct summands.

We shall now study abelian groups of a special type which play a very
significant réle in the general theory.

A free abelian group is a direct sum of a finite or infinite number of
infinite cyclic groups.? If

U= g {uv}

is a decomposition of a free abelian group U into the direct sum of infinite
cyclic groups, then the totality of generators u, of all these cyclic direct
summands (one from each summand) is called a basis of U. Every element
of U can be written in one and only one way as a sum, with integer coefficients,
of a finite number of elements of the basis.

A free abelian group U has, in general, many distinct decompositions into
a direct sum of infinite cyclic groups and therefore has many distinct bases.
Thus, if the elements u,, s, ... occur in a basis of U, we can change the
basis by replacing the element u; by u; + au,, where a is an arbitrary
integer. We shall in the following section frequently carry out without
further explanation such a transformation of a basis of U.

A free abelian group is torsion-free,and every basis of such a group is
one of its maximal linearly independent systems. It follows from results
previously obtained that if a free group U has finite rank n, then all its
bases consist of n elements, that is to say, every decomposition of U into
the direct sum of infinite cyclic groups consists of » summands. If the rank
of a group U is infinite, then the cardinal number of any of its bases obviously
coincides with the cardinal number of the group itself.

Note that by no means every maximal linearly independent system of a
free abelian group is a basis. For example, a free group of rank 1, that is,
an infinite cyclic group {#}, has two bases, ¥ and — u, but every element
of the group except the null element is a maximal linearly independent
system in the group.

11t is often convenient to include among the free abelian groups the null group,
generated by an empty set of infinite cyclic groups. Without this convention many
theorems require a cumbersome special consideration of the exceptional null subgroup.
[Trans.]
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Free abelian groups play the same réle in the theory of abelian groups
as free groups do in the general theory of groups:

Every abelian group G is isomorphic to a factor group of a free abelian
group, and an abelian group with n generators is isomorphic to a factor group
of a free abelian group of rank n.

For the proof, we choose in G a system of generators M == (a,), where a
ranges over an index set, and we take a free abelian group U with a basis
consisting of elements #, that stand in one-to-one correspondence with the
elements a, of M. The mapping

kitty 4 kotta ~=+ « . ~-Eptte, — Bida - Rotte 4. . . A-kpas

is obviously a homomorphic mapping of U onto G. By the homomorphism
theorem (§ 10) G is therefore isomorphic to the factor group of U with
respect to the subgroup V consisting of those elements of U that this homo-
morphism maps onto the null element of G,

G=U/V.

Every subgroup of a free abelian group is itself free
Let V' be a subgroup of the free abelian group U.We assume that we have
well-ordered a basis of U,

Ay Aoy o ey Qay ooy e,

Every element x of U, x 550, can be written uniquely in the form
X = kiaul'{— k2a¢2+- . + knag,‘,

where a; < as < ... < a, and all the %, are different from zero. We shall
call a, the last index and k,, the last coefficient of x. We now consider the
.elements of IV whose last index is smallest among the last indices of all the
elements of V/, and from these elements we choose an element b; with the
smallest positive last coefficient. It is easy to see that every element v of I/
that has the same last index as b, is contained in the cyclic subgroup {b.}.
For if we denote the last coefficient of b, by &, and that of v by /, and if
l=Fkq +r, 0= r < k, then the element v — gb,, which is contained in V,
has for r > 0 the same last index as b, but a smaller last coefficient and

! The special case of this theorem that refers to free abelian groups of finite rank will
be proved independently in the following section.
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has for r = 0 a smaller last index. In both cases, if v — gb; 5= 0 we obtain
a contradiction to the choice of b, ; therefore v = ¢b,.

We now assume that we have already chosen elements bg in V' for all B
less than y such that these elements are linearly independent, in other words,
that the subgroup 7’ they generate is the direct sum of the cyclic groups
{bg} and that every element of J/ whose last index does not exceed the
last index of one of the elements bg is contained in J’. Among the elements
of V' that lie outside 7’ we now choose those with the smallest last index
and select from them an element b, with the smallest positive last coefficient.
Every multiple of b, has the same last index as b, so that V'1{4,}=0
and hence

{V/, b)) =V'4{b,).

Moreover, if an element w of 7 has the same last index as b, and if the
last coefficients of b, and w are %, and %, respectively, then (by definition
of b,) k must be divisible by k,, =k, k’. Therefore the last index of
w-—k’b, is smaller than that of b,, and therefore w—k’b,el”’ and
welV’+ {b,}. This process of choosing elements bg may be continued as
long as not all the elements of 7 are exhausted. 7 is therefore a free
abelian group with the basis b,, b, ..., bg, . .., where § is less than a certain
ordinal number o.

Finally, we prove the following theorem:

If the factor group of an abelian group G with respect to a subgroup B
is a free group, then B is a direct summand of G.

For let _
G/B = 2 {au}

4

be a decomposition of G/B into the direct sum of infinite cyclic groups.
From each coset @, we choose a representative a,. The subgroup 4 of G
generated by all the elements a, is a direct sum of cyclic subgroups {a.},
and ANB = 0. Moreover, every coset of B in G contains some element of
A, so that '

G={B,4Ad}=B+ 4.

Note that among the subgroups of an abelian group G whose factor groups
are free there need not be a minimal one and therefore G need not be
decomposable into the direct sum of a free group and a group without
free factor groups; as an example we mention the unrestricted direct sum
of a countable number of infinite cyclic groups (see § 17).
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§ 20. Finitely generated abelian groups

Finitely generated abelian groups can be treated exhaustively. This class
of groups is of particular interest in view of its exceptionally important role
in various applications; finitely generated abelian groups are, for example,
a fundamental tool in combinatorial topology.

We know from the preceding section that every abelian group with =
generators is a factor group of a free abelian group of rank #, which we
shall denote by U, throughout the present section. We know, further, that
every subgroup of U, is itself free and that its rank does not exceed 7.
Without making reference to this latter result we shall now prove the follow-
ing more general theorem on the subgroups of U, ; the whole theory of finitely
generated abelian groups will be based essentially on this theorem.

Every subgroup V of U, is itself a free group and its rank k does not
exceed n. Moreover, we can choose bases U,, %z, ..., 4y in U,, and
V1, Vay ..., Ux in V for which

v=reu,, i=1, 2,..., k,

where e, &, ..., & are positive integers and ey ¢ is divisible by
e, 1=1,2,...,k—1.

Proof. For n=1 the truth of the theorem follows immediately from
the theorem on the subgroups of cyclic groups (§ 6). Let us suppose the
theorem proved for U,_;. If a subgroup V/, other than the null group, is
given in U, then to every choice of a basis for U, there corresponds uniquely
a certain positive integer, namely the smallest positive integer that occurs
as a coefficient in those linear forms with respect to this basis that constitute
the subgroup V. This minimal positive coefficient may change, in general,
with a change of basis of U,. We now select a basis

Uy, U2, ..., Uy (1)

of U, for which this minimal coefficient assumes its smallest possible value.
Let e, (2, = 1) be the minimal positive coefficient with respect to this basis

and let
'01 = elul + a2u2+' .. + anun

be one of the elements of }” for which the expression in terms of (1) contains
e; as one of the coefficients.!

! The assumption that ¢, is the coefficient of u; is legitimate since we do not regard
the basis of Ua as ordered.
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We divide each coefficient a,,..., a, by e;:
a‘=elq‘+f‘, 0§'}<31, i=2, 3,0.., ﬂ,

and transform the basis (1) of U, by replacing u, by

=ty -+ Qattg + . . . + Gty
In the new basis _
' al’ u2, ¢ ey a”

v, is expressed in the following way:
v, =elt;rotg}. .. rpu,.

Since all the »;,7=2, ..., n, are non-negative and less than s;, it follows
from the choice of ¢, that

ro=ry=...=r,=0,
so that o, = e,u,.

We now collect all those-elements of 7 for which the coefficient of #, in
their representation in the new basis is equal to zero. These elements form
a subgroup 7’ of IV whose intersection with the cyclic subgroup generated
by v; is 0. We shall show that the sum of {7;} and V"’ is V.

Let -
v =B, +Bala . . .+ Butts

be an arbitrary element of . If B, —=e,g+r, 0 <r <e,, then V con-
tains the element

v =0—qo; =ru;+Byuy+. . . Bty

which has as coefficient of #; a number less than e; ; hence by the definition
of e; we have r = 0. Therefore 7’ is contained in V’ and

v=quv, + 7

is in the sum of the subgroups {v;} and V.
If V=0, then it follows that V= {%;} and the theorem is proved.
But if 7’ 520, then we obtain a decomposition of /' into the direct sum

V = {7/1} + V'.

V" is contained in the subgroup U’= {ua,...,u,}, which is a free
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group of rank » —1 and is therefore, by the induction hypothesis, free.
Furthermore, there exist bases ug, ..., 4, of U’ and v,, ..., v, of I’ for
which k—1=#n—1 and v;=-eu,, where &, > 0 and ¢;,, is divisible
bye, 1=1,2, ..., k—1.

We now know that V' is a free group of rank k2,2 =n.! In order to
prove that the bases

Ugy Ugy oo, Uy (2)

‘01, "02, ¢ s ey vk (3)

of U, and

of V satisfy all requirements of the theorem it only remains to show that &,
is divisible by e;. Let eg=1¢,9o- 7, 0 = ry <'e,. We transform the basis
(2) of U,, replacing the element #; by

U =uy— qo;2'
With respect to this basis the element v, — 7; of V' is expressed in the form
- -
Vy— 0y = (—e;) ty - ryity,

from which it follows, again by the choice of ¢, that r,=0.
The theorem on the subgroups of U, is now completely proved. We
shall use it to obtain the following fundamental theorem.

Every finitely generated abelian group is the direct sum of cyclic groups.?

Proof. Let G be a finitely generated abelian group. We know that G is
isomorphic to a factor group of a free group U, with respect to a subgroup V.
In accordance with the above theorem we choose bases 1, #s, ..., u, in U,
and 71, %, ..., V% in }/ such that we have 9 =ce,uy, fori=1,2, ..., %,
where 8¢ > 0 and e, is divisible by e;. Owing to this choice of a basis,
the element

u=au - ogtte...{-a,u, “)
of U, is contained in V if and only if the coefficients a; are divisible by
&,i=1,2,...,k, and the coefficients a; are zero, j=k + 1,...,n.

For if the o’s satisfy these conditions, then # can be expressed in terms of
the basis vy, 7., ..., vx. Conversely, if

1 Note that the rank of a proper subgroup of a free group may be equal to the rank
of the group.

? This direct sum may, of course, consist of a single summand, if the group is itself
cyclic.
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u= 0,0, 4 B0+ ... 4 Brvs,

then we need only replace each 7; by &(u; and equate with (4), since the
expression of an element of U, in terms of a basis is unique. The element
uy + V of the factor group U,/V is of order e, for ¢ = k, and of infinite
order for ¢ > k. The cyclic subgroups generated by these elements have the
whole factor group as their sum, in fact as their direct sum, because every ele-
ment of U,/V is uniquely expressible as a sum of elements of the cyclic sub-
groups {u; + V'}. Of course, if the first few numbers e,, €, ... are equal
to 1, then the corresponding direct summands {u; + V'}, {us + V},...
may be excluded. Since G is isomorphic to U,/V, the theorem is proved
not only for U,/V but also for G.

From this theorem it follows, in particular, that every non-cyclic finitely
generated abelian group is decomposable. From § 17 we know that an
infinite cyclic group and also a primary cyclic group (that is, a cyclic group
of order p™, where p is a prime number), is indecomposable ; on the other
hand, a non-primary finite cyclic group is decomposable into the direct sum
of primary cyclic groups. This last result enables us to assert the following
stronger form of the fundamental theorem:

Every finitely generated abelian group G is the direct sum of a finite
number of indecomposable cyclic subgroups, some finite and primary, some
infinite.

The generating elements (one from each summand) of the cyclic direct
summands in the decomposition of G into the direct sum of indecomposable
subgroups form a so-called basis of G. In the case of a free group this
concept of a basis coincides with that defined in the preceding section.

From the fundamental theorem it follows, in particular, that every finite
abelian group is decomposable into the direct sum of finite cyclic groups,
which can even be taken as primary. This theorem marks the very beginning
of the theory of abelian groups. It was partially known to Gauss, the first
complete proof being due to Frobenius and Stickelberger [1]. A large num-
ber of other proofs have been given since then ; there are also several distinct
proofs of the fundamental theorem for infinite abelian groups with a finite
number of generators.

We therefore obtain all finitely generated abelian groups if we form all
the possible direct sums of finite systems of infinite, or finite and primary,
cyclic groups. But are all the abelian groups constructed in this way actually
distinct? The answer to this question is given in the affirmative by the
following theorem. '
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If a finitely generated abelian group is decomposed into the direct sum of
indecomposable summands, then the number of infinite cyclic summands and
the totality of the orders of the primary cyclic summands is independent of
the decomposition, that is, of the choice of a basis.

In other words, any two decompositions of a finitely generated abelian
group G into the direct sum of indecomposable cyclic groups are isomorphic.

We shall combine the proof of this theorem with the proof of a theorem
on the subgroups of G that will be formulated below. First we prove the
following statement:

Every subgroup H of a finitely generated abelian group G is itself finitely
generated. -

For G is isomorphic to the factor group of a free abelian group U with
respect to a subgroup V. The subgroup H corresponds in U to a subgroup U’
containing V,

H=U"/V.

But U’ is finitely generated, as we have proved above. Hence the same is
true for H.

The subgroup theorem for a finitely generated abelian group G is the
following :

Suppose a decomposition of G into the direct sum of indecomposable
cyclic groups contains r infinite cyclic summands r = 0; suppose, further,
that the number of p-primary cyclic summands for a given prime number p
is ky, where ky = 0, and that the orders of these summands are

where
Cp1 = %pa = -+ - = Opky

Suppose now that an arbitrary decomposition of a subgroup H of G into
the direct sum of indecomposable cyclic groups contains s infinite cyclic
summands and, for each prime number p, ly cyclic p-primary summands
and that the orders of the summands are

pspl, papz’ LS Pap”’,
where
p-pl:?-_-ppeé---éppl' (5)

Then
s=r, (6)
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and for each prime number p

l’ § klh (7)
p?‘éaph i=1, 2, ---’lp' (8)
Proof. This theorem will now be proved together with the isomorphism
theorem for the decompositions of G. First of all, the elements of infinite
order that occur in an arbitrary basis of G form a maximal linearly inde-
pendent system of G, as one can easily see. The number of such elements
is therefore equal to the rank of the group; that is, it does not depend on
the choice of a basis. This also proves relation (6), since the rank of the

subgroup H cannot exceed the rank of G.

We know, moreover, that the periodic part 4 of G is the direct sum of
p-primary subgroups for distinct prime numbers,

A=A,
r

while the periodic part of H is the direct sum of its intersections By with
the subgroups 4y, B, = H (1 A,. But it is easy to verify that 4, is generated
by those elements of an arbitrary basis of G whose orders are powers of 5.
Thus the proof of both theorems is reduced to the case of a finite primary
group A, and a subgroup B,.

We first conclude the proof of the subgroup theorem. The subgroup
consisting of the elements of order p in A, is a direct sum of %, cyclic sum-
mands of order p, so that its order is p*». The corresponding subgroup of B,

is of order p*. This proves that [, = k,. Suppose now that
Bot <%1> - -5 Bp, 51 <, g1 but Bpy > ;. 9

The set C of all elements of A4, that are divisible by p%%, that is, of those
elements ¢ for which the equation

pap’x =

has a solution in A,, is a subgroup gf Ady. If ay, @y .., 4, is the given
basis of 4, and if the order of a;is p #, 1=1,2, ..., ky, then it is easy to
verify that C is the direct sum of the cyclic subgroups generated by

pPia,, p¥lay, ..., pPa 15

so that C has a basis consisting of j — 1 elements. On the other hand, by
(9) and (5), the subgroup C’ of B, consisting of the elements that are
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divisible by p‘f’f in By, has a basis containing not fewer than ;§ elements.
However, C’ is a subgroup of C and we have already proved (7); that is,
we have proved that the number of elements in the basis of a subgroup of a
finite primary abelian group is not greater than the number of elements in
the basis of the group itself. The contradiction we have thus obtained
concludes the proof of the subgroup theorem.

The isomorphism theorem for the direct decompositions of 4, follows
immediately from the subgroup theorem; we put B, = A4, and take into
account the fact that for two given bases of A4, we have not only the
inequalities (7) and (8) but, by symmetry, also the opposite inequalities,
so that in fact we have

1, = ky,
Bu=p, i=1,2,...,10,.

The number of infinite cyclic summands—the rank of the group—and
the orders of the primary cyclic summands in any decomposition of a finitely
generated abelian group are called the invariants of the group. This is a
complete system of invariants, since any two groups for which these in-
variants coincide are isomorphic. The sequence of integers ¢,, €, ..., 2,
each divisible by the preceding one, which were the orders of the cyclic
summands in the decomposition we obtained for the proof of the funda-
mental theorem is also invariant, that is, independent of the choice of the
direct decomposition of the group; the reader will have no difficulty in
proving this with the help of the complete system of invariants. These
numbers are sometimes called the torsion coefficients of G ; the orders of
the primary cyclic summands will be called for brevity the finite invariants
of the group.

Through the subgroup theorem we have obtained a complete picture of
the invariants of the subgroups of a finitely generated abelian group. But
that does not exhaust all the possible questions that can be asked about
these subgroups. For example, many mathematicians have investigated
the total number of subgroups of a finite abelian group or the number of
subgroups of one special form or another. In this direction there is the
following problem: If a finite primary abelian group is given by its in-
variants and if a basis is chosen in the group, is it then possible to enumerate
all the subgroups of the group by assigning to each a certain “canonical”
basis? Such a basis ought to be uniquely determined by the choice of the
basis of the group and it ought to be “best possible” in a certain sense. A
solution of this problem was given by Birkhoff [3]."
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§ 21. The ring of endomorphisms of an abelian group

For the endomorphisms of an abelian group G we can introduce, apart
from the multiplication studied in § 12, an operation of addition. The sum
of two endomorphisms 7 and 7 is defined as the mapping that carries every
element ¢ of G into

ay - a,
a(y+m)=ax+an.

This mapping is also an endomorphism of G, since?

@+o)a+D=@E+d)x+@+dn=@x+o0+
+(an+-b)=a@+n)+ o+ .

The addition of endomorphisms is commutative and associative. The null
endomorphism plays the role of the zero. If y is an endomorphism of G,
then the mapping — % that carries every element ¢ of G into — ay,

a(—x)=—ay,

is also an endomorphism, for
(@) (—w=—@+x=—@x+ o) =a(—x)+bo(—y)

The sum of the endomorphisms y and — % is the null endomorphism. We
can, therefore, introduce the subtraction of endomorphisms:

X—n=x+(—n).

Sums and products of endomorphisms of an abelian group are linked by
the distributive laws:

Ot + Xo) 1 =X+ X 1

0 O+ Xa) = My + e @)

For we have for an arbitrary ae(G

al(x; + x M =1Ia (t; + x)l 1= (axy + ax) M=
= (ayy) 1+ (axe) m=a (M) + 2 (xgm) = @ (M + Xo)s

! Here we use, in an essential way, the commutative law of the group operation in G.
In the case of a non-abelian group G the sum of two endomorphisms X and % is an endo-
morphism if and only if GX and Gn—the images of G under these endomorphisms—are
element-wise permutable. Such endomorphisms X and 7 are then called summable.
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which proves (1). The proof of (2) is just as simple.
All these results, together with those of § 12 on the multiplication of
endomorphisms, are combined in the following theorem.

The set of all endomorphisms of an abelian group is a ring with respect
to the operations of addition and multiplication of endomorphisms.

The endomorphisms of a non-commutative group do not form a ring,
since it is not possible to perform additions and subtractions without restric-
tion. Properties of the systems of endomorphisms of a non-commutative
group are studied in papers by Fitting [1, 4].

We shall now consider some examples. First of all, let us find the ring of
endomorphisms of an infinite cyclic group. Let a be a generator of the group.
An endomorphism carries ¢ into an element na (where » is an integer)
and is completely determined when # is given. Thus there exists a one-to-
one correspondence between the endomorphisms of an infinite cyclic group
and the integers. If

ay=mnae, an=ma
then
a(xn) = (ra)n=(nm)a
a(y +n)=mna+ ma=(n+ m)a.

So we see that the ring of endomorphisms of an infinite cyclic group is
isomorphic to I, the ring of integers. By the same method one shows that
the ring of endomorphisms of a finite cyclic group of order n is isomorphic
to I,, the ring of residue classes of I (mod n).

Now let us find the ring of endomorphisms of R, the additive group of
rational numbers. Every endomorphism of R is completely determined by

the image of the number 1: if leyy==1r and if (;ll-))(:r’. then nY'—
(n . -;l—) x=r; hence r'= —':- , and therefore
m m

Conversely, by choosing an arbitrary rational number r and defining the
mapping y of R by the formula (3) we obtain an endomorphism of R. In
this way we establish a one-to-one correspondence between the endomorph-
isms of R and the rational numbers; but from

ley=r, len=s
it follows that

le(yn) =rn==rs,

le(q +m)=7r—+s.
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Hence the ring of endomorphisms of R is isomorphic to the field of rational
numbers. Thus every endomorphism of R, except the null endomorphism,
has an inverse and is therefore an automorphism.

Finally, let us find the ring of endomorphisms of a group of type p=.
This group is given by generators

Q1,02,¢..50ny... (4)
and the relations

pa;=0, pa,,,=a, n=1,2,.... (5)

An endomorphism y of this group is completely determined by giving the
images of all the elements (4) ; and since all the elements of our group whose
order does not. exceed p* lie in the subgroup {as}, we have

apy, =kpa, n=1, 2, ..., (6)
where
0=k, <p™ (7)

furthermore, since the relations (5) must hold for the images of the elements
(4), we have

P (@1 = Ans

so that
P(Bpii8ni1) = RBpp1@n==FRnay

Therefore
k

n

Hak”(modp", Il=1, 23 cee o (8)

Thus, to every endomorphism % of a group of type p= there corresponds
a sequence of natural numbers

(BiyBay ooy bm,...) (9)

subject to the conditions (7) and (8). To distinct endomorphisms there
correspond distinct sequences, since at least one a, has different images
under the endomorphisms. On the other hand, every sequence (9), subject
to the conditions (7) and (8), defines an endomorphism, namely that given
by the equations (6).

Suppose now that besides the endomorphism % defined by the sequence
(9) we have another endomorphism 1 of the group of type p= corres-
ponding to the sequence

(i lay ooy ). (10)
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Then
(XM= (kp4-L)a,  a, ()= (Ryly) an-

However, from the conditions (8) for the sequence (9) and similar condi-
tions for the sequence (10) we have:

kn+1 + ln+1 = kn + ln (mOd p”)’

kn+1’n+1 = knlu (mOd p”);

and these congruences remain valid if the left-hand sides are replaced by
their positive remainders modulo p#+?, the right-hand sides modulo p*. In
this way there correspond to the sum and product of the endomorphisms
% and m the sum and product of the sequences (9) and (10), obtained by
component-wise addition and multiplication and subsequent reduction
modulo p* at the n-th place.

The set of sequences of the form (9) subject to the conditions (7) and (8),
with addition and multiplication defined by the rules just described is there-
fore isomorphic to the ring of endomorphisms of a group of type p=; that
is to say, it is itself a commutative ring. This ring is called the ring of p-adic
integers and plays a very significant role in various branches of algebra,
mainly in the theory of fields and in topological algebra. Thus, the ring of
endomorphisms of a group of type p= is isomorphic to the ring of p-adic
integers.

The sequence (0,0,...,0,...), which corresponds to the null endo-
morphism, is the zero of the ring of p-adic integers, and the sequence
(1,1,...,1,...), which corresponds to the identity automorphism, is
the unit element. Further, since an endomorphism of a group of type ¢~
is an automorphism if and only if it does not carry the element a, into zero,
we find that the p-adic integer (9) has an inverse if and only if &y 54 0.

In the same way we could prove a number of other properties of the ring
of p-adic integers. We shall only show that this ring has no divisors of zero.
For, the image of a group of type p* under any non-null endomorphism is
the whole group and not a proper subgroup, and therefore the result of
performing two non-null endomorphisms in succession cannot be the null
endomorphism.

We now pass on to the problem of the ring of endomorphisms of a direct
sum. For this purpose it is convenient to introduce the concept of the
group of homomorphisms of one abelian group into another. We consider
the set of all homomorphic mappings of an abelian group A4 into an abelian
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group B and define the sum of any two homomorphisms %, n of this set
by the formula
' a(y +m)=ay +an, aeA.

The proof that the mapping % -+ m is a homomorphism and that the set of
homomorphisms of A into B is in this way turned into an abelian group
is a literal repetition of the one we gave at the beginning of this section for
the special case of the addition of endomorphisms.

We note that if three abelian groups 4, B, and C are given, then we can
also speak of the product of a homomorphism of 4 into B by a homomorphism
of B into C, defining it as the result of performing the homomorphic map-
pings in succession ; it is, of course, a homomorphism of 4 into C.

Now let G be an abelian group represented as a direct sum of a finite
number of groups H, n
G= D H,.

=1

We denote by Ry the ring of endomorphisms of H;, and by Ry, for ¢ 54 §,
the group of homomorphisms of H; into H;. Then the following theorem
holds (see Kiskina [1]).

n
The ring of endomorphisms of the group G= 3\ H; is isomorphic to the
=1
ring of square matrices () of order n, where yy€ Ry and where the oper-
tions of addition and multiplication of matrices are defined in the usual way.

For let us associate with every matrix (%) of this form a mapping y of G
into itself which is defined as follows: If geG and

M=

‘h‘, h; GHi,
1

o
>

-
n

then we put

n »n
= > 2 heYsje
§=15=1

It is easy to see that this mapping is an endomorphism of G. Conversely,
every endomorphism ¥ of G corresponds in this sense to a matrix ; for if A,
is an arbitrary element of H; and if

ud
h‘x =1§ h‘j, h‘j € H,,

! Note that with matrices of the given form not only addition but also multiplication
can always be performed and that the resulting matrices are obviously themselves of
the same form.
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then we put
by = hyy;

the mapping Y, is obviously a homomorphism of H, into H;. The proof
that this one-to-one correspondence between the endomorphisms of G and
the matrices of the form (y) preserves sums and products is not difficult
and is left to the reader. It follows, in particular, that the matrices of the
form (yy) actually form a ring.

From this theorem and results of § 12 it follows that the group of auto-

n
morphisms of G = ‘21 H, is isomorphic to the multiplicative group of those

matrices of the form () that have an inverse in the ring of all these
matrices. The identity automorphism of G corresponds to the matrix that
has the unit elements of the rings Ry down the main diagonal and zeros
elsewhere.

Let us apply these results to the case of finitely generated abelian groups
which, as we know, are direct sums of infinite and finite primary cyclic
groups. We have already studied the rings of endomorphisms of cyclic
groups. It is now easy to prove the following statement: If 4 and B are two
infinite or finite primary cyclic groups, then the group of homomorphisms
of A into B is 1) isomorphic to B if A4 is infinite, 2) cyclic of order p=in(*. 3
if A and B are primary with respect to the same prime number p and are
of order p* and p’, respectively, 3) null in all other cases. We observe,
further, that if {a}, {b}, and {c} are three cyclic groups and if ¢ is a
homomorphism of the first into the second and y a homomorphism of the
second into the third, where

ap="Fb, by=1c,
then
a(py) = (ki)c.

Therefore, if we regard these groups of homomorphisms of cyclic groups
as the additive groups of the ring of integers I and its residue-class ring I,,
then we find that the product of homomorphisms corresponds to the product
of the associated integers reduced, of course, modulo the order of {c}.

We leave it to the reader to supply the details of the proofs of the state-
ments in the preceding paragraph and to obtain the actual description of
the ring of endomorphisms of a finitely generated abelian group given by its
invariants, We note only the following results, which refer to the case of
free abelian groups.
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The ring of endomorphisms of a free abelian group of rank n is isomorphic
to the ring of all square matrices of order n with integer coefficients.

The group of automorphisms of a free abelian group of rank n is iso-
morphic to the group of those square matrices of order n with integer
elements whose determinants are %= 1.

The groups of automorphisms and rings of endomorphisms of various
classes of abelian groups are studied in a number of papers, particularly
those by Shoda [1], [3], Baer [14], [27], Derry [1], Shiffman [1],
Kiskina [1].

§ 22, Abelian groups with operators

In various applications of abelian groups with operators the domain of
operators turns out to be an associative ring R with elements a, 8, v, ...
where in addition to the conditions for operators

(a+ b)a=aa + ba

the following two conditions hold:

a(a+B)=aa+af, (1)
a(af) = (aa) B’ @)

They form a link between the group operation in G and the operations
defined in the ring R.

Only when conditions (1) and (2) are satisfied shall we say that the
group G has an operator ring R. We shall then also say that G is a module
over the ring R or, briefly, an R-module.

(1) and (2) are plausible conditions, because if we consider the ring of
endomorphisms of an abelian group G or any subring of it as operator
domain for the group, then (1) and (2) follow immediately from the defini-
tions of sum and product of endomorphisms. Further, if a ring is considered
as a right operator domain for its additive group, then (1) and (2) become
the distributive law for the ring operations and the associative law for the
multiplication. Finally, the vector spaces over a field F which are studied

! We must keep in mind that the sign 4 on the left-hand side of (1) is the sign of
addition in R, on the right-hand side it is the sign of the group operation in G. Similarly
in (2) we should distinguish between multiplication of elements of R and the effect of
an operator of R on an element of G.
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in higher algebra are obviously F-modules. Note that every abelian group
without operators can be regarded as a module over the ring of integers.
From (1) it follows that

aa=a(a+ 0)=qaa + -0,

so that ¢-0=0; that is, the zéro element of the ring R as an operator
corresponds to the null endomorphism of G.
Further,

ao=a(a—pB + B)=a(a—p) + af,
so that
a(a—p)=aca—af. (1)

If the ring R has a unit element &, then the operator & need not correspond
to the identity automorphisms of G. For example, conditions (1) and (2)
are satisfied if we put aa==0 for every a of G and every a of R; but in
this case the presence of an operator ring does not contribute anything
to the study of the group G. The general case can easily be reduced to this
extreme case and the case in which the operator & corresponds to the identity
automorphism.

For let G be an abelian group with an operator ring R that has a unit
element ¢. We denote by H the set of all the elements a of G for which
ae = a, and by K the set of all the elements of G for which ae=—0. H and
K are admissible subgroups of G and their intersection consists of the null
element only. Their direct sum is G, because we have for every a of G

a=a¢ +(a—ag),

where obviously ase H, a —aee K. Clearly we have the right to restrict
our investigations to the direct summand H as a group with operators for
which & corresponds to the identity automorphism. In what follows, if we
speak of an operator ring with unit element we shall always take this
restriction for granted, in other words, we shall assume that

ae=a (3)
for all a of G.
If G is a group with an operator ring R, then the set a of all elements

* The symbol 0 on the left-hand side is the zero element of R; that on the right-hand
side, the null element of G.
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a of R that annihilate a given element a of G, that is, for which aa=0,
is a right ideal of R, as equations (1’) and (2) indicate. This ideal a is
called the order of a. For ordinary abelian groups, that is, groups with the
ring of integers I as operator ring, this definition agrees essentially with
the usual one: if an element a has order # in the usual sense, then it is anni-
hilated by the multiples of # only, in other words, by the numbers of the
ideal n in I.

If the order of an element is the null ideal of R, then a is called an
element of infinite order. In the additive group of a ring R without divisors
of zero and with R itself as right operator domain, all the elements, except
zero, have infinite order. The order of the null element of G is, of course,
always the whole ring R, and it is the only element whose order is R, if we
consider an operator ring with unit element (see condition (3)).

If an operator ring R with unit element is studied, then the admissible
monogenic subgroup of an element a of G (see § 15) consists of all elements
of the form aa, aeR. For these elements form a subgroup of G by (1),
this subgroup is admissible by (2), a is contained in this subgroup by (3),
and finally the subgroup is monogenic since every admissible subgroup
containing @ must also contain all the elements ga.

The admissible monogenic subgroup of an element a is operator-
isomorphic to the factor groups R/a, where a is the order of a. In
particular, if a is a two-sided ideal of R, then the monogenic subgroup of a
is operator-isomorphic to the additive group of the residue-class ring R/a.
For by associating the element a of R with the element aa of G we obtain
by (1) and (2) an operator-homomorphic mapping of the additive group
of R onto the monogenic subgroup of a, and it is precisely the elements
of a that are mapped onto the null element.

Every result of the general theory of abelian groups gives rise to the
question: for which operator rings does this result remain valid? A revi-
sion of the contents of the theory of abelian groups from this point of view
is far from complete, although it would be of considerable interest for the
theory of rings as well. We restrict ourselves here to a few remarks con-
cerning results that have been proved in the preceding sections of this
chapter. In order to avoid needless complication we shall assume that the
operator ring R is a ring with a unit element and without divisors of zero.

The periodic part F of a group G, that is, the set of all elements whose
orders are not the null ideal, is a subgroup, provided that the intersection
of any two non-zero right ideals of R is itself not the zero ideal. This sub-
group is admissible if we assume in addition that the ring R is commutative.
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In that case, the factor group G/F is also an R-module and all its elements
other than the null element have infinite order.

The theorem on the decomposition of a periodic abelian group into the
direct sum of primary groups requires much stronger restrictions on the
operator ring K. In any case, it is sufficient to assume that R is a com-
mutative principal ideal ring.

The definition of linear dependence of elements preserves its meaning in
groups with any operator ring R. If we assume this ring to be commutative,
then the exchange theorem remains valid and the concept of the rank of a
group can therefore be introduced. Under the same assumption it remains
true that the rank of a group is equal to the sum of the rank of an arbitrary
(admissible) subgroup and the rank of its factor group.

In a group with operator ring R, the role of the infinite cyclic group is
taken over by the additive group of R, considered as a right R-module;
we can choose as generator the unit element of R or any divisor of the unit
element. The direct sum of an arbitrary set of such groups will be called a
free R-module. If R is a commutative ring, then the rank of a free R-module
is equal to the number of monogenic direct summands.

Every R-module is isomorphic to a factor group of a free R-module, and
if R is commutative, then an R-module with n generators is isomorphic to
a factor group of a free R-module of rank n.

This theorem is proved by means of an operator-homomorphic mapping
of a free R-module with a suitable system of generators onto the given
R-module, and an application of the homomorphism theorem for operator
groups.

If the right ideals of R are principal, then every admissible subgroup of a
free R-module, except the null subgroup is itself free.

In order to prove this theorem we have to repeat the proof of the corres-
ponding theorem of § 19, but with the following modifications: if we con-
sider in the given subgroup the elements with a given last index v, then we
cannot say that among them there is an element with smallest positive last
coefficient. However, it is easy to see that the last coefficients of all these
elements form a right ideal in R, which by assumption is principal, that is,
of the form aR. The element with last index v and last coefficient a will
now play the réle of the element with smallest positive last coefficient.

In the paper by Everett [1] it is proved that the conditions we have
imposed on R—existence of a unit element, absence of divisors of zero, all
right ideals are principal—are also necessary for the theorem on subgroups
of a free R-module to be valid.
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If we wish to extend to abelian operator groups the theorem on the con-
nection between the bases of a free abelian group of finite rank and the
bases of its subgroups or the fundamental theorem on finitely generated
abelian groups that follows from it, then we must impose much stronger
restrictions on the operator ring R. In the paper by Teichmiiller [1] it is
proved that these results remain valid provided that all left and all right
ideals of R are principal.r The special case of a Euclidean ring R is treated
in Chapter XV of the second edition of van der Waerden’s Modern Algebra®

! See § 24 of the first edition of this book.



CHAPTER VII

PRIMARY AND MIXED ABELIAN GROUPS

§ 23. Complete abelian groups

The theory of primary abelian groups is one of the richest and deepest
branches of the whole theory of groups; the theory of countable primary
groups, in particular, has attained its final form. A number of separate
theories—the theory of complete groups, the problem of serving subgroups,
and others—have gradually emerged from the framework of the general
theory of primary groups. It is expedient to treat the theory of primary
groups in close connection with the theory of mixed abelian groups, all the
more because this method leads to a natural approach to the main problem
in the theory of mixed abelian groups; namely, the problem of their decom-
position into the direct sum of a periodic group and a torsion-free group.

We begin with the study of an important class of abelian groups which
is, in a way, dual to the class of free abelian groups.

An abelian group G is called complete? if for every element a of G and

every natural number # the equation
nx=—a

has at least one solution in G, or if each element a is divisible in G by every
natural number. Obviously, for a group G to be complete it is sufficient
that each element of the group be divisible by every prime number.

It follows immediately from the definition that every factor group of a
complete group is complete and that the direct sum of an arbztrary set of
complete groups is itself a complete group.

If an abelian group G contains a complete subgroup A, then A is a direct
summand of G.

For let B be one of the maximal subgroups of G whose intersection with 4
is the null subgroup ; the existence of such a subgroup follows from a theorem
proved in § 7. A4 and B form a direct sum in G. Now if G contains an ele-
ment g not in 4 -+ B, then the intersection of the subgroups 4 + B and {g}
cannot be the null element, since otherwise the intersection of 4 and B + {g}
would also be the null element, in contradiction to the choice of B. A mul-

1 Note that the term complete group is also used (§ 13, p. 92) for a group without
center and without outer automorphisms. There is no danger of confusion between the
two concepts. Complete abelian groups are also called divisible groups. [Trans.]
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tiple of g therefore belongs to 4 + B that is,
pg=—a+ b,aeA, beB;

we can assume here that p is a prime number, for it is sufficient to replace g
by a multiple that is not contained in 4 + B, while a prime multiple of
the latter is contained in 4 + B.

Now there exists an element ¢’ in A such that pa’ =a. Hence

p(g—a)="beB,g—d'¢4+B.

We put g'=g—ad. Every element of {g’, B} has the form kg’ + b’,
where 0=k < p—1,b'eB. If the intersection of 4 and {g’, B} is not
the null element, then there exists an element @ in 4, a 5% 0, such that

G=rFkg + V.

Here k 540, since ANB =0; but pg’eB and p and % are co-prime. Hence
g'ed + B, which is impossible. On the other hand, the intersection of

A and {g’, B} cannot be the null element, because this contradicts the choice
of B. Thus G=4 + B.

The sum of an arbitrary set of complete subgroups of an abelian group
1s itself a complete subgroup.

For if complete subgroups A, of an abelian group G are given, then
every element of their sum has the form a,l—-}- a,,z—{- coo Fa, W’ where
@y, € A, - If gy, € A,,‘, Py, ==E¢‘ » 1=1,2,...,k, then the element

2¢1+Z¢2+ .. +Z°‘k lies in the sum of the subgroups A4 and
P+t ... ta)=a, ta +...Fa,

In particular, the sum A of all complete subgroups of an abelian group G
is the unique maximal complete subgroup of G. In the direct decomposition

G=A4A+ ¢,

which exists by the above theorem, the summand G’ contains no complete
subgroup. We shall call an abelian group reduced if none of its subgroups
is complete. We therefore have: Every abelian group can be decomposed
into the direct sum of two groups, one complete and the other reduced. An
abelian group G may have many direct decompositions of this kind, but the
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complete summand is always the same, and the reduced summands are
therefore isomorphic.

It is easy to give a survey of all complete abelian groups. Groups of type R,
that is, groups isomorphic to the additive group of all rational numbers, are
obviously complete, and so are groups of type p= for all prime numbers p
(see § 7). That every element of a group of type p= is divisible by p follows
from the definition of the group, and that it is divisible by every prime
number g, other than p, is true even within the cyclic subgroup of order p*
generated by that element. It now turns out that these groups and their
direct sums exhaust all complete groups.

Every complete abelian group is decomposable into the direct sum of a
set of groups of type R and of groups of type p= for various prime numbers p.

For, the periodic part F of a complete abelian group G is itself complete,
since every solution » of the equation nx=—g¢ has finite order if a has
finite order. We therefore have the direct decomposition

G—F +H,

where H is torsion-free and complete (because it is isomorphic to a factor
group of a complete group). In § 19 we proved that F is the direct sum of
primary groups F, for distinct prime numbers p. Furthermore, every F,
is complete: if aeF,, then a solution of the equation px =a has as its
order a power of p and is therefore contained in Fp, whereas every equation
gx =a with (p,q)=1is known to be solvable even in {a}.

It therefore remains to consider two special cases: a complete group
that is torsion-free and a complete group that is primary with respect to 2.

If G is a complete torsion-free group and a an element of G, a 5= 0, then
there exist elements a,,0az2,...,4dy,... in G such that

G=a, Noy,=—0ap—1, =2, 3, .-..

These elements generate in G a subgroup of type R (see Example 2, § 18).
Let M be a maximal linearly independent system of G. We embed each
element of M in a subgroup of type R in the way just described. It follows
from the linear independence of M that the sum G’ of all these subgroups
is direct. Now G’ must be equal to G. For, every element b of G is linearly
dependent on M, so that we have an equation

nb=k101+k202+ oot k,a,,
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where #5£0, a1,02,...,a,€ M. Since G’ is complete, we can find an
element ¢ in G’ that satisfies the same linear relation. Hence

n(b—c)=0, that is, b=—c and ¢’ =G.

We now turn to the case of a group that is p-primary and remark, first
of all, that every element of a complete primary group is contained in a
subgroup of type p=. For if ais an element of order p* in a complete group,
then we put

a,=pFk-la, ay=pk-%a, ..., a_,=pa, a,=ga.

Now we choose as ai4; one of the elements & for which pxr —=a; if the
element a,, » = k, has been chosen, then we choose as a,; a solution of
the equation px =—=a,. The elements a1, az,...,a,, ... obviously generate
a subgroup of type p* containing a.

Hence, by the usual transfinite process, we can construct a set of sub-
groups of type p* in the complete primary group G such that their sum G’
is direct and that no subgroup of G of type p= has the null element as its
intersection with G’. We now show that G’ is equal to G. If G contains an
element a outside G’, and if G’'1{a} =0, then we embed a in a subgroup
of type p* and obtain a contradiction to the definition of G’. If p*aeG’, but
p¥~la £ G/, then we can find an element ¢’ in G’ such that p*a’ = p*a,
because G’ is complete. Now a — ' is not null, but the intersection of its
cyclic subgroup with G’ is the null element, and we again have the previous
case. We have thus shown that G is a direct sum of groups of type p =.

This completes the proof of the theorem.

As a particular case of this theorem we see that the additive group of all
real numbers, which is a complete torsion-free group whose cardinal number
is that of the continuum, is decomposable into the direct sum, whose cardinal
number is that of the continuum, of a set of groups of type R.

Ewvery direct decomposition of a complete abelian group can be refined
to a decomposition into the direct sum of groups of type R and of type p=.
Any two decompositions of a complete group into the direct sum of groups
of type R and of type p* are isomorphic.

The first part of this theorem follows from the fact that every direct
summand of a complete group is itself complete—if G=A + B and
n(d’ + b’)=a, where a,d’€A, b’eB then na’ = a—and therefore, as we
have shown above, is a direct sum of groups of type R and of type p=.
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For the proof of the second part, we take an arbitrary decomposition of
the group G into the direct sum of groups of type R and of type p=. If we
select from every direct summand of type R of this decomposition one
element, other than the null element, then we obtain a maximal linearly
independent system of G. If now follows from results of § 19 that the
number of direct summands of type R (that is, the cardinal number of this
set) does not depend on the choice of the decomposition. On the other hand,
if we take for a fixed p the sum of the direct summands of type p* that
occur in the given decomposition, then we obtain a subgroup 4 of G con-
sisting of all those elements whose order is finite and a power of p; clearly,
this subgroup does not depend on the choice of the decomposition. The num-
ber of elements of 4 whose order is not greater than p is p* if there are n sum-
mands of type p* ; but if there are infinitely many such elements in 4 then
the cardinal number of this set is the same as the cardinal number of the
set of direct summands of type p* in the given direct decomposition of G.
This shows that the number of direct summands of type p= (that is, the
cdrdinal number of this set) again does not depend on the choice of the
decomposition.

Every abelian group can be embedded in a complete abelian group.

The following simple proof of this theorem is due to Kulikov [2]. We
know that an abelian group G can be represented as a factor group of a free
abelian group U

G=U/N.

We take any decomposition of U into the direct sum of infinite cyclic groups.
We now embed each cyclic direct summand in a group of type R—just as,
for example, the additive group of integers is embedded in the additive group
of rational numbers—and take the direct sum of all these groups of type R.
We obtain a complete group ¥ containing U. The factor group V' /N, which
is also complete, contains U/N as a subgroup, that is, contains G.

From this theorem we deduce the converse of the theorem that a com-
plete group is a direct summand of every abelian group containing it (see
Baer [26]).

If an abelian group G is a direct summand of every abelian group that
 contains it as a subgroup, then it is complete.

For G must be a direct summand of every complete group in which it is
contained. But we know that every direct summand of a complete group
is itself complete.
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The following result, partly contained in the paper by Baer [26] and
completely proved by Kulikov, supplements the theorem on the embedding
of every abelian group in a complete group.

In every complete abelian group containing a given group G there is at
least one complete subgroup that is minimal among those containing G.
Between any two minimal complete groups containing G there exists an
isomorphism extending the identity automorphism of G. [An isomorphism
@1 between two groups H; and K, is said to be an extension of an iso-
morphism @ between their subgroups H and K if hp = k implies hep, =k,
heH, keK.}

If G is complete there is nothing to prove. Assume that G is not complete
and let G be contained in a complete group G. Since the union of an ascend-
ing sequence of complete groups is complete, there exist maximal complete
subgroups of G whose intersection with G is the null element. Let H be
one of them. We have a direct decomposition

G=H +K,

where K can be chosen to contain G. K, as a direct summand of a complete
group, is complete and is the required minimal complete subgroup con-
taining G. For if there exists a complete group K’ between G and K

GCK'CK,
then
K=K+ K”,
that is,
G=K'+ (K” + H).

The subgroups K” and, therefore, K” + H are complete, and since
(K” + H)NG =0 we have a contradiction to the choice of H.

Now let K; and K be any two minimal complete groups containing G.
Since G is not complete, it contains an element a such that for some prime
number p the equation

pr=—a

has no solution in G. Let b; and b2 be solutions of this ‘equation in K; and
K., respectively. We obtain an isomorphism ¢’ between K, = {G, b,}
and Ky’ = {G, by} if we map the subgroup G identically onto itself and

put
bl?l = bﬁ.
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Suppose that for all ordinal numbers f less than a we have already found
subgroups K of K, forming an ascending sequence, and subgroups K®
of K, and isomorphisms ¢®, mapping K ® onto KP, such that these iso-
morphisms extend one another. If « is a limit number, then we denote the
union of the subgroups K{® by K{® i=1,2, and define ¢ as the union
of all isomorphisms ¢®, 8 < a, But if the number a — 1 exists, then let a,

be an element of K{*~? such that for a certain prime number p the equation
pr=m

has no solution in K {*~9 ; we denote a solution in K; by b;. If aipfe—D =a,
and if b, is a root of the equation

Px= asz
in K,, then we put

KP=KED, b, i=1, 2.

The mapping ¢ that coincides with g~ on K {*~V and carries b, into b,
is an isomorphism between K{® and K{.

This construction terminates when the subgroups K and K" are com-
plete, that is, when they coincide with K; and K respectively. This concludes
the proof of the theorem.

We note that a complete group may have several minimal complete sub-
groups containing a given subgroup G. For example, take the direct sum
of two groups of type p=, a group A with generators

a1,02,...,qn,...
and with relations

pa;=0, pa, ,—a, n=1,2,...,.
and a group B with generators

bl,bz,...,b,,,...
and with relations
pb,=0, pb, ,=b,, n=1,2, ...,

then {a;1} is contained in the subgroup A4 as well as in the subgroup of
type p* generated by the elements

ay, pt+by, ooy @ty gy ... .
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§ 24. Direct sums of cyclic groups

We have already studied two classes of abelian groups that are direct
sums of cyclic groups, namely free abelian groups—that is, direct sums of
an arbitrary set of infinite cyclic groups—and finitely generated abelian
groups—that is, direct sums of a finite number of arbitrary cyclic groups.
These groups turned out to have a number of properties in common; and
we now wish to show that these are, in fact, properties of the direct sums
of any set of arbitrary cyclic groups. Clearly we may assume that all the
finite cyclic summands of these direct sums are primary with respect to
various prime numbers.

There exist several criteria for an abelian group to be the direct sum
of cyclic groups. We shall only establish one such condition, which refers
to the case of primary groups. But we first have to introduce a few con-
cepts that are essential for the whole theory of primary abelian groups.

If G is a p-primary group, then the set G, of all elements of G of order
at most p is a fully invariant subgroup of G. We shall call this subgroup
the lowest layer of G. [In a group G the set of all elements of a given order
is said to form a layer of G. Infinite groups in which all layers are finite—
such groups are necessarily periodic—have been studied by Cernikov [12].]

An element a of a p-primary group G is said to be of infinite height if for
every k the equation

prr=—a

has at least one solution in G. But if this equation can be solved only for
k = h, then we say that a is an element of finite height, or more precisely,
of height h.

[It follows from this definition that in every primary abelian group G the
null element is an element of infinite height. If the null element is the only
element of infinite height in G, then G is called a group without elements of
infinite height (compare ‘“‘group without center”). This slightly inaccurate
but convenient terminology saves a lot of circumlocution later.] P

Note that it would be more accurate to speak of the height of a in G,
since the height of @ in a subgroup H of G may turn out to be less than in
G itself.

The following properties of the height of an element are immediate con-
sequences of the definition. If g; and a; are two elements of a group G, of
height %, and h; respectively, then a; + a; is of height Ak, if hy < ks, and
of height at least » if hy = ha=h. If a is an element of height %, then
pa is an element of height at least » + 1. If a and b generate the same
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cyclic subgroup of G, then they have the same height in G. If G is a direct
sum, then an element that is contained in a direct summand has the same
height in that summand as in G. The height of an arbitrary element of a
direct sum is equal to the least height of its components.

In complete primary groups, and in them only, every element has infinite
height. TFurthermore, if every element of the lowest layer of a primary
group G has infinite height in G, then G is complete. For suppose that it
has already been proved that all elements of G of order p” have infinite
height. If a is any such element and b,, b, are two solutions of the equation
pxr=na, then b, — b, is of order p and therefore of infinite height. It
follows from the first statement of the preceding paragraph that b, and b,
have the same height. However, since a is an element of infinite height,
the equation px==a must have solutions whose heights exceed any given
natural number. So we see that all the solutions of p 4 == a for any element
a of order p"—in other words, all elements of order p*+'—must have infinite
height in G.

We now prove the following criterion of Kulikov [2].

Kurikov’s CRITERION. A primary abelian group G is a direct sum of cyclic
groups if and only if it is the union of an ascending sequence of subgroups

AV A e ...cAm g ... (1)

such that the elements of each subgroup are of finite and bounded height in G.

Proof. If G is representable as a direct sum of cyclic groups, then we can
take as AM, n=1,2,..., the sum of those direct cyclic summands whose
order does not exceed p*.

‘Conversely, let G be represented as the union of the ascending sequence
(1) subject to the condition of the theorem. As x; we select one of the
elements of order p in A with the greatest possible height in G; such
elements exist, since the elements of 4™ are of bounded height in G.

Suppose now that for all ordinal numbers a less than a certain § we have
already chosen elements x, satisfying the following conditions:

1) all the elements x, have order p;

2) if x4 is contained in A™), then it is not in A(-1, and if H, is the
subgroup generated by all x, with o’ < @, then:

a) H, contains the lowest layer AP*™" of An-1),

b) #, is not contained in H, and has maximal height in G among all
elements of 4™ outside H,.
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If the subgroup Hp generated by all x,, a < f, does not coincide with
the lowest layer G, of G, then we choose x5 in the following way: It
follows from 2a) that there exists an # such that all x, are contained in 4™,
but not all are contained in A®-1), If Hg does not coincide with Aﬁ”’, then
we take as xg one of the elements of order p of 4™ lying outside Hg and
of maximal height in G. But if Hs and A{™ are equal, then we take an
analogous element from the smallest subgroup of the sequence (1) whose
lowest layer is greater than A{. In both cases we obviously appeal to
the conditions on the subgroups 4™ imposed by the theorem.

The selection of the elements x, can thus be continued as long as they
do not generate the lowest layer of G. Suppose this occurs when the z,
have been chosen for all a less than y. It follows from 1) and 2b) that the
lowest layer of G has the direct decomposition

G= 2 {x}. &)

alY

Let A, be the height of x4 in G and ¥, an element of G for which
P baya == Ko

By (2), the cyclic subgroups {4, } form a direct sum which we denote by F,

F= E {y a}' (3)
L2 {
Let us show that every element z of G of order p has the same height in F
as in G (z is an element of F, since G, & F). By (2), 2z can be written in
the form

z=x,+ x4 ... +x:”,

where the element x;‘,_i= 1,2,...,n, is a multiple of x,, and therefore
has the same height in F as in G. In view of the direct decomposition (3),
the height % of z in F is the smallest of the numbers hyp 1=1,2,...,n.
The height of this element in G cannot be less than 4 ; we show that it cannot
be greater. Let k be the index for which &, =#4 but ks, >k for i > k.
Then in the sum

z=(%,+ "'+x:‘k)+(x°,‘k+1+ %)

the second term either does not occur (if £ =) or its height in G is
greater than h. As for the first term, it is not contained in H,,; and its
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height in G cannot be greater than the height of Xap in G, so that he, = A,
otherwise we would have a contradiction to condition 2b) imposed on the
choice of xu;. Thus z is a sum of two elements with distinct height. Hence
its height is equal to the smaller of the two heights, that is, does not exceed A.
This proves that z has the same height in F as in G.

Suppose now that F is different from G. Let g be an element of G of
smallest order outside F, and let its order be p¢; clearly s = 2. The element
ps—'g is of order p and therefore belongs to F; we have proved that it has
the same height in F as in G. There exists, then, an element f of F such that

pPrif=plg.

The order of the element g — f does not exceed ps—?, that is, g — f is con-
tained in F. But then g must also be contained in F, contrary to our assump-
tion. This shows that F = G and completes the proof of the criterion.

From this criterion we deduce the following two theorems (Priifer [2]),
which are fundamental in the theory of primary abelian groups.

PrUFER’s First THEOREM. Ewery primary group in which the orders of
the group elements are bounded is a direct sum of cyclic groups.

For in this case the heights of all elements of the group are finite and also
bounded, so that we can apply Kulikov’s criterion, putting all the A4
equal to the group itself.

PRUFER’S SECOND THEOREM. Ewvery countable primary group without
~ elements of infinite height is a direct sum of cyclic groups.

For since the group is countable it can be represented as the union of an
ascending sequence of finitely generated subgroups, and these subgroups, as
periodic commutative groups, are all finite. The heights of the elements of
each of these subgroups are finite, and since there is only a finite number
of them, they are bounded.

Kulikov’s criterion also leads to a simple proof of the following result:

If a primary group G is a direct sum of cyclic groups, then every subgroup
H of G is also a direct sum of cyclic groups.

For by Kulikov’s criterion G is the union of an ascending sequence of
subgroups A™,n=1,2, ..., where all the elements of each subgroup AM™
have finite and bounded heights in G. If

Bm—=HnA™, n=1, 2, ...,

then all the elements of each subgroup B™ have finite order in G and a
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fortiori in H, and also bounded heights. H is, however, the union of the
subgroups B®), and we can therefore again apply Kulikov’s criterion.

We shall now leave the study of primary groups and return to the general
case. The preceding result and the theorem on subgroups of free abelian
groups at the end of § 19 lead to the following general result,

If an abelian group G is a direct sum of cyclic groups, then every sub-
group H of G is also a direct sum of cyclic groups.

For if G* is the periodic part of G, then G, as the direct sum of cyclic
groups, is the direct sum of G* and of a free subgroup K. The factor group
of our subgroup H with respect to its periodic part H* is, by the isomorphism
theorem, isomorphic to a subgroup of G/G*, that is, is isomorphic to a
subgroup of K. Therefore H/H* is itself free, as a subgroup of a free
group, and by the theorem at the end of § 19, H is the direct sum of H*
and a free subgroup. Furthermore G* is the direct sum of primary sub-
groups for distinct prime numbers p, and each of these primary subgroups
is a direct sum of cyclic groups. H* is the direct sum of its intersections
with these primary subgroups, and it now remains to apply the preceding
theorem on the subgroups of a direct sum of primary cyclic groups.

If an abelian group G is a direct sum of cyclic groups, then every direct
decomposition of G can be refined to a decomposition with cyclic direct
summands.

For by the preceding theorem every direct summand of G is a direct
sum of cyclic groups.

If an abelian group G is a direct sum of cyclic groups, then any two direct
decompositions of G with infinite and finite primary cyclic summands are
isomorphic.

For the number of infinite cyclic summands in any direct decomposition
is equal to the rank of G, that is to say, is independent of the choice of
decomposition. Moreover, the direct summands of one of the given decom-
positions whose orders are powers of a prime number p generate a primary
subgroup which does not depend on the choice of the decomposition. This
permits us to confine ourselves to the case in which G is itself primary.

We take one of the decompositions of G into the direct sum of cyclic
groups and denote by 4™ the sum of the direct summands whose orders
are p*; if there are no such summands, we put A® =0. Then

G=AD L AB L . . A ...,
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Similarly the lowest layer G, of G decomposes into the direct sum of the
lowest layers of the 4™,

G,=AP 4 AP ... 4 4P ...

Let
B®W= A"+ AP
then
B®) — Agﬂ)_l_ B('H'l),
and

Agﬁ)zB(n)/B(nJ.-l), n=1, 2,....

It is easy to see, however, that the subgroup B, n==1, 2, ..., can be
defined independently of the particular direct decomposition of G: B®
consists of precisely those elements of order p in G whose height is not less
than n — 1. The subgroup A" is therefore defined by G itself up to iso-
morphism, and since 4™, as the direct sum of cyclic groups of one and the
same order p*, is completely determined by its lowest layer and the number
n, we have established the isomorphism of any two decompositions of G
into the direct sum of cyclic groups.

The theorem on subgroups of direct sums of cyclic groups enables us,
finally, to prove the following theorem:

Every abelian group is the union of a countable ascending sequence of
direct sums of cyclic groups.

This is obvious for complete groups, since groups both of type R and of
type p© are unions of ascending sequences of cyclic groups. But in the pre-
ceding section we proved that an arbitrary abelian group G can be embedded
in a complete group G ; it is therefore the union of its intersections with those
direct sums of cyclic groups for which the union of their ascending sequence
is G. These intersections, however, are themselves direct sums of cyclic

groups.

§ 25. Serving subgroups

A subgroup H of an abelian group G is called a serving (or isolated or
pure) subgroup if for every element i of H and every natural number »
the equation

nx=nh
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can be solved in H provided that it can be solved in G. Examples of serving
subgroups are the null subgroup, the group G itself, and every direct sum-
mand of G or of its periodic part.

From the definition it follows that if H is a serving subgroup of G and K
a serving subgroup of H, then K is a serving subgroup of G. Moreover,
the union of an ascending sequence of serving subgroups is itself a serving
subgroup.

If H is a serving subgroup of G, then in the natural one-to-one corres-
pondence between the subgroups of G/H and the subgroups of G that
contain H, serving subgroups correspond to serving subgroups.

For let A be a subgroup of G containing H. If A4 is a serving subgroup
of G, and if there exists an element g in G such that

n(g+ H)y=a+ H, aed,
then
ng=—a+ hed;

as A is a serving subgroup, there exists an element a’eA4 such that
na'=a + h, that is,
n(d/ + Hy=a + H.

This proves that A/H is a serving subgroup of G/H, and we have not even
used the fact that H is a serving subgroup.

Conversely, suppose that A/H is a serving subgroup of G/H and that
there exists an element g in G such that ng=— a, where ae 4. Then

n(g+ H)=a+ H,
and therefore there exists an element ¢” in A such that

n(@”’ + H)=a+ H,
that is,
ne”=—a-+ h, heH.

From the equation ng = a it follows that
n(e”—g)=nh,

and as H is a serving subgroup, it contains an element 4’ such that nh’=nh.

Thus,
a=n(a"—W),
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and since a”— 4’ is an element of 4 we have proved that 4 is a serving
subgroup.

For primary groups the definition of a serving subgroup is equivalent to
the following: A subgroup H of a p-primary group G is a serving subgroup
of G if and only if every element of H has the same height in H as in G. For
the division by any integer co-prime to p can be carried out even within
every cyclic group of order p*.

The following more general result holds:

In order that H be a serving subgroup of a primary group G it is sufficient
that every element of the lowest layer of H has the same height in H as in G.

For suppose it has been proved that every element of H of order $* has
the same height in H as in G and let % be an element of H of order p»+1.
If there exists an element g in G satisfying the equation p¥g = h, then we
also have p¥+1g=—ph, and since ph is an element of H of order p*, we
can, by hypothesis, find an element 4’ such that p*+*h’ — ph. Hence

p(pkh’_ h) = 0’
that is, the element p*h’— h of H is of order . But
PPN —h = p*(W'—¢g),

and therefore we can find an element #” in H such that p*h'— h = p*K”.
Hence

h= pH(W—h"),

which shows that the height of % in H is the same as in G.

If a serving subgroup H of a primary group G contains the lowest layer
of G, then it is equal to G.

For if G is distinct from H, let p* be the smallest order of the elements
of G outside H, n > 1, and let g be one of these elements. Then pg is con-
tained in H, and since H is a serving subgroup, it contains an element 4 such
that pg = ph. Hence g— h is an element of order p and therefore belongs
to H, and so g must also belong to H.

We have mentioned above that every direct summand of an abelian group
is a serving subgroup. The converse does not always hold. Every primary
group G that is decomposable into the direct sum of cyclic groups with
unbounded orders contains a serving subgroup that is not a direct summand
of G. (See Priifer [2]).
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For the proof we can confine ourselves to the case in which G is the direct
sum of a countable set of cyclic groups whose generators a;,az2,..., 0y, ...

have the orders pkl, pk‘-’, coes pk", ..., and where
kl<k2< --.<k'l<“' .

We denote by H the subgroup of G that is generated by the elements
bl,bz,...,b“,..., where

b”=a”_pkn+1—kna“+l, n—=— 1, 2, ce e o

An arbitrary element 4 of H has the form

N N
-k Ayeq—k
k= n§1 Ibn =ty + ,z, (n— n—xpk” n=1) g, —Iyp N+1 NaN+1' 1)

The height of this element in G is equal to the greatest exponent of p that
divides all the coefficients of the generators a,,#=1,2,..., N 4+ 1, on the
right-hand side of (1). It is clear that then the same power of p also divides
all the coefficients l,,n=1, 2, ..., N, and therefore % has the same height
in H as in G. This proves that H is a serving subgroup of G.

The expression (1) of an arbitrary element & of H shows that H does
not contain any multiples of a; except the null element. Furthermore, the
factor group G/H is a group of type p= since it is generated by the elements
d, = a, + H, which are linked by the relations

p*a, =0, pknﬂ_k'lz,,ﬂ =a, n=1,2 ...,
It follows that H cannot be a direct summand of G, for otherwise G would
have a subgroup of type p ©, which contradicts the theorem of the preceding
section on the subgroups of direct sums of cyclic groups.

We shall now prove two theorems giving conditions under which a
serving subgroup is a direct summand. The first of these theorems can
be regarded as a generalization of the theorem of § 19, according to which
every subgroup with a free factor group is a direct summand; for every
subgroup with a torsion-free factor group is easily seen to be a serving
subgroup.

If H is a serving subgroup of the abelian group G and if the factor group
G = G/H is a direct sum of cyclic groups, then H is a direct summand of G.

For let

G= g {a,). (2
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In each coset @, we can select as representative an element a, whose order
is equal to the order of a, in G. This is clear if the order of @, is infinite.
But if it is finite and equal to # and if 4, is an arbitrary element of a,, then
na, belongs to H, and since H is a serving subgroup it contains an element A
satisfying the equation nh=—mna,’. As a, we can now choose a,/—h,
which is obviously an element of a,.

We denote by A4 the subgroup of G that is generated by all the elements a.
H and A4 together generate the whole group G, and their intersection is the
null element. For if & is contained in this intersection,

h = klaal"l" ‘e +k”a‘n,
then we have in G the equation
kg + ... tkua, =0,

from which it follows by (2) that k,&; . =0,1=1,2,...,n. This means,
however, that R, =0,i=1,2,...,n and therefore h == 0. This estab-
lishes the direct decomposition

G=A4+ H.

The following theorem (Priifer [2], Kulikov [1]) will be used frequently
in the sequel.

If H is a periodic serving subgroup of an abelian group G and if the orders
of the elements of H are bounded, then H is a direct summand of G.

Suppose that the orders of all the elements of H are divisors of n. We
denote by #G the set of all the elements of G that are divisible by #; this is
easily seen to be a subgroup of G. The intersection of H and # G is the null
element ; for every element of this intersection is divisible by # in G and
therefore also in the serving subgroup . But the n-fold multiple of every
element of H is the null element. Therefore H and nG form a direct sum
in G which we denote by L.

L=H + nG. (3)
We now consider the factor group G = G/nG and show that L=L/nG
is a serving subgroup of it. We note first of all that the order of every

element of G is a divisor of # and that every element of L can be written in
the form & + nG, he H. Let h + nG be divisible by m in G,

m(g +nG)=h+ nG,
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so that
mg=—=h-+ng.

We can restrict ourselves to the case in which m is a divisor of n, n =mm/,
and therefore
h=m(g—m'g").

Since H is a serving subgroup it contains an element 4’ such that mh'=h;
therefore
m(W +nG)=h+ nG,

which proves that L is a serving subgroup of G.

Since the orders of all elements of G/L are bounded, G/L is the direct
sum of a finite number of primary groups. By Prifer’s first theorem (see
the preceding section) each of these is, in turn, a direct sum of cyclic groups.
By what we have proved above L is therefore a direct summand of G :

G=L+K. (4)

We denote by K the complete inverse image of K in G, that is, K = K /n G
From (4) it follows that

{L,K}=G, LNK=nG
and therefore, by (3),

{H’K}=G, HnK:O,
that is,
G=H+K,

which is what we had to prove.

From this theorem we can deduce a number of interesting corollaries
(see Kulikov [1]) ; some of them will occur in § 29. Here we prove the
following lemma (Prifer [2]).

LEMMA. If an element a of a p-primary group G has order p and finite
height n, then it is contained in a cyclic direct summand of G of order pnt2.

For let b be an element such that p#b =a. The lowest layer of {b} is {a},
and every element of {a} has the same height in {b} as in G. Hence, by
what we have proved above, {b} is a serving subgroup of G, and since we
can apply the preceding theorem, {b} is a direct summand of G.

From this we obtain the following result.
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Every indecomposable primary group is either cyclic or of type p*. For
if all the elements of the lowest layer of a primary group G have infinite
height in G, then G is complete, as we proved in the preceding section ; and
since G is indecomposable, it is a group of type p=. But if the lowest layer
of G contains at least one element of finite height, then G has . <velic direct
summand, as we have just proved, and since G is indecomposable, it is itself
cyclic. Hence if a primary group is not a direct sum of cyclic groups and of
groups of type p=, then it cannot be the direct sum of indecomposable groups.

§ 26. Primary groups without elements of infinite height

A primary abelian group which is a direct sum of cyclic groups does not
contain elements of infinite height : for we know that the height of an element
of a direct sum is equal to the smallest height of its components, and the
height of each element of a cyclic group is finite. Priifer’s second theorem
(see § 24) shows that, as far as countable groups are concerned, the direct
sums of cyclic groups exhaust all primary groups without elements of in-
finite height. For non-countable groups the corresponding theorem does
not hold. This was shown first by Priifer [1] by means of a very complicated
example ; much simpler ones were later given by Ulm [2] and Kuro¥ [9].
Kulikov [1, 2] has shown, further, that for any non-countable cardinal
number m there exists a primary group G with the following properties:
G is of cardinal number m, has no elements of infinite height, and does
not admit direct decompositions in which the cardinal numbers of all the
direct summands do not exceed a certain ' less than m. Moreover, Kulikov
[2] has made a certain survey of primary groups without elements of infinite
height which, while not amounting to a complete classification, is nevertheless
sufficient to show that it is impossible to extend Priifer’s second theorem to
non-countable groups. The present section is devoted to an exposition of
this theory of Kulikov.

A subgroup B of a primary abelian group G is called a basic subgroup if
it is a serving subgroup of G and a direct sum of cyclic groups and if the
factor group G/B is a complete group. Thus in every complete primary
group the only basic subgroup is the null subgroup. On the other hand, if G
is a direct sum of p-primary cyclic groups, then G is a basic subgroup of
itself and, if the orders of the elements are bounded, is the only one.

Every primary abelian group G possesses basic subgroups.

By the above remark on basic subgroups of complete groups we can
assume that G is not complete. G has, therefore (see § 24), elements of
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order p and of finite height which by the lemma at the end of the preceding
section are contained in cyclic direct summands. Thus G has serving sub-
groups with elements of bounded orders. It follows from this and from
the result at the beginning of § 25 that we can find in G an ascending sequence -
of subgroups

B,eBcs...eB, ... (1)

with the following properties:
1) Every B,,n=1,2,..., is a serving subgroup of G.
2) The orders of the elements of B,, do not exceed p*.

3) B, cannot be embedded in a larger subgroup with the properties 1)
and 2).

We denote the union of the sequence (1) by B. This is a serving subgroup
of G, because it is the union of an ascending sequence of serving subgroups.
Moreover, by Kulikov’s criterion (§ 24) B is a direct sum of cyclic groups.
Since each B, is a serving subgroup, n=—1,2,..., and the orders of its
elements are bounded, the heights of all its elements are also bounded and
finite.

We show now that the factor group G/B is complete: We know from
§ 24 that it is sufficient to show that every coset # + B of order p has infinite
height in G/B. By assumption, we have preB. But since B is a serving
subgroup, it contains an element b such that pb=px or p(xr— b)=0.
We can therefore assume that x itself has order p in G, that is, px==0.

Now B,,n=1, 2, ..., is a serving subgroup of G, and the orders of its
elements do not exceed p». By what we have proved in the preceding section
there exists a direct decomposition

G=B,+ Cp, n=1,2,..-. (2)

Accordingly » decomposes into
r=y+ 2,

where y€B,,, 26 C,. 2 is not the null element, since x is not contained in B}
the order of z is therefore p. The height of 2 in G is not less than n. For
otherwise, by the lemma of the preceding section, z is contained in a cyclic
direct summand of C, whose order does not exceed p*; but by (2) this
contradicts property 3) of B,. The element z=x — y is, however, con-
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tained in the coset » + B. This coset therefore contains elements of arbi-
trarily large height, so that # + B has infinite height in G/B.

This proves that B is a basic subgroup of G.

Any two basic subgroups of a primary abelian group G are isomorphic.

Let B be an arbitrary basic subgroup of G. We know from § 24 that all
decompositions of B into a direct sum of cyclic groups are isomorphic. The
cardinal number of the summands of order p*, k=1,2,... in any such
decomposition is obviously equal to the number of cyclic direct summands
of the same order p* in a decomposition of the factor group B/p*B, where
n > k and p*B is the subgroup of B that consists of all the elements of B
whose height in B is greater than or equal to #». Therefore the theorem
follows if we can show that the factor group B/p*B does not depend, in
fact, on the choice of the basic subgroup B.

We denote by p*G the subgroup of G that consists of all elements whose
height in G is greater than or equal to n. Since B is a serving subgroup,

BNp"G = p*B. (3)
On the other hand
{B,p"G} =G, (4)

For if x is an arbitrary element of G, then since G/B is complete there
exists an element y in G such that x# and p*y lie in the same coset of B; that
is, x=p"y + b, where beB.

The isomorphism theorem now leads by (3) and (4) to the isomorphism

B/p"B~G /p*G.

Thus, in all basic subgroups B of G the factor groups B/p*B for given n
are isomorphic. This concludes the proof of the theorem.

Let us apply these results to primary groups without elements of infinite
height. We see that these groups can be split into disjoint classes such that
in one class we have all the groups with isomorphic basic subgroups. Every
primary group that is a direct sum of cyclic groups determines a certain
class, since it can be considered, for example, as a basic subgroup of itself.
The task of classifying all primary groups without elements of infinite height
is therefore reduced to a survey of the groups with a given basic subgroup B.

For this purpose we introduce a new concept. We take the decomposition
of B into the direct sum of cyclic groups and denote by B"®,n=1,2,...,
the direct sum of the summands of order p* in this decomposition ; if there
are no summands of that order, we put B( =0. We then take the un-
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restricted direct sum (in the sense of § 17, end) of all the groups B™ ;
we call the periodic part of this sum the closure of B and denote it by B.
In other words, the elements of B are sequences of elements, one from each
B® such that the orders of all the elements of every such sequence are
bounded ; addition of sequences is component-wise. .

Since all the decompositions of B into the direct sum of cyclic groups are
isomorphic, B is uniquely determined by B. It is easy to see that B is
primary and contains no elements of infinite height. B is the subgroup of B
consisting of those sequences that contain only a finite number of elements
different from the null element. Hence a group B is equal to its closure B
if and only if the orders of the elements of B are bounded, since it is pre-
cisely in this case that there are only finitely many groups B™ different
from the null group.

B is a basic subgroup of its closure.

The fact that B is a direct sum of cyclic groups is part of our assump-
tion, To show that B is a serving subgroup of B we note that the sum
=B +B"+ . -[—B‘”’, n=1,2,...1s a direct summand of B—
the complementary summand is the subgroup consisting of those sequences
whose first # components are null elements. Therefore B, as the union of
the ascending sequence of serving subgroups C™ of B, is itself a serving
subgroup of B. We show, finally, that the factor group B/B is complete.
If x=(x1,%2,...,%4,...) is an arbitrary element of B then, since the
orders of its components are bounded, for each k we can find an N such
that for all » = N the height of &, in B(" is not less than k2. Hence it follows
that the height of #/=(0,...,0, 2y, ¥y41,...) in B is also not less than k.
But 2’ belongs to the coset # + B. This coset therefore contains elements
of arbitrarily large height, arid so its height in the factor group B/B is infinite.

We can now prove that there exist primary groups without elements of
infinite height that are not direct sums of cyclic groups.

Let B be a countable primary group (and therefore the direct sum of
cyclic groups) having elements of arbitrarily large order. Its closure B
therefore has the cardinal number of the continuum. B cannot be the direct
sum of cyclic groups, since it would- then contain two non-isomorphic basic
subgroups—B itself and B—in contradiction to the above theorem on the
isomorphism of all basic subgroups of a given primary group.

All primary abelian groups without elements of infinite height whose basic
subgroups are isomorphic to B are certain subgroups of the closure B of B,
namely those that contain B and whose images in the factor group B/B are
complete subgroups.
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For let C/B be an arbitrary complete subgroup of B/B. As a subgroup
of B, C is primary and without elements of infinite height and B is con-
tained in C as a basic subgroup: for B is a serving subgroup of B, and
therefore of C, and C/B is by hypothesis complete. So we see that C belongs
to the class of groups we have to study.

Now let G be an arbitrary primary group without elements of infinite
height whose basic subgroups are isomorphic to B. We select one of these
basic subgroups and denote it by B,. We know that B has a direct

decomposition o
B=2 B™,

| me=}

where B™ is a direct sum of cyclic groups or order p*. Hence

B,= 3By,

n=1

with B ~ B™, We introduce the notation

D™ — By,
n>k
so that
; B,=B;+Be+ ... +BP 4 D™,
an

G(k) — {D(k), pko}’

where p* G, is, as before, the subgroup consisting of all those elements of G
whose height in G is not less than 2. We have shown above (see equa-
tion (4)) that for all k, k=1, 2, ... we have

G= {BO, pko};

therefore . 0 y .
G={By+Bs+ ... + B, V).

Let # be an element in the intersection of By -+ By + ...+ B and a™.
As an element of the second subgroup it has the form x ==y + 2, where
yeD® ze p*G. Since the elements # and y belong to B,, z— x — ¥y is also
an element of B,. The height of z in G is not less than k; so is its height
in B,, since B, is a serving subgroup of G. However, all the elements of B,
whose height in B, is not less than % belong to D®). Therefore x, as the
sum of two elements of D®), is also contained in D®), and since x belongs -

to 33 -+ 33 -+ ... -[—Bf;k), it is the null element.
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This shows that we have the direct decomposition

G=Bs+Bi+ ... BP0 r—1,2,...; (5)

moreover, since G® contains both BY¥*? and G**? as subgroups, we also

have
G® — Bgc+1)+ G(k“), k=1, 2, ...

in other words, the direct decompositions (5) are successive refinements
of one another by means of a decomposition of the last summand. It follows
that a given element x of G has one and the same component in the direct
summand BJ? of every decomposition (5) for k=mn,n 4+ 1,...; we de-
note this component by #,. _

By setting up a correspondence between each element x of G and the
sequence (&1, %2,...,%s,...) of its components we obviously obtain a
homomorphic mapping of G into the closure B of B—the orders of the
components z, do not exceed the order of x; that is, the sequence of com-
ponents is, in fact, contained in B. This mapping is even an isomorphism :
for an element x that is mapped into the null sequence must lie in G® for
k=1,2,..., so that it has infinite height in G. But since G has no such
elements other than the null element, we see that x = 0. In this isomorphic
mapping of G onto a subgroup C of B, B, is mapped onto B : it is precisely
the elements of B, that correspond to sequences of components with only
a finite number of elements other than the null element, and every such
sequence corresponds to some element of B,. Since G/B, is complete it
follows, finally, that C/B is complete. This concludes the proof of the
theorem.

It should be noted that in the course of the proof the construction of the
subgroup C of B onto which G is mapped isomorphically depends on the
choice of the basic subgroup B, of G. It is still an open question what the
conditions are to which we must subject the complete subgroups C/B and
C'/B of B/B to ensure that the corresponding subgroups C and C” of B
be isomorphic.

A number of further properties of primary groups that are closures of
direct sums of cyclic groups can be found in the paper by Kulikov [2].
See also a paper by Kaloujnine [8].
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§ 27. Ulm factors. The existence theorem

We now proceed to the study of primary abelian groups with elements of
nfinite height. One must not think that such a group necessarily contains
1 complete subgroup: if @ is an element of infinite height in a group G,
‘hen the elements b,,n=1,2,..., satisfying the equations p"b, == a by
no means have to lie in a single subgroup of type p* The main theorem
of the present section will show that the structure of reduced primary
groups is, even in the countable case, much more complicated than that of
primary groups without elements of infinite height. The restriction to re-
duced groups to which we shall adhere in the following is justified by the
results of § 23.

Since the sum and difference of two elements of infinite height in a
primary group G also have infinite height in G, the set of all elements of
infinite height in G is a subgroup which will be denoted by G*. We denote
hy G? the subgroup consisting of all the elements of infinite height in G.
More generally, if we have already defined subgroups G¢ of G for all ordinal
numbers a less than 3 (such that they form a descending sequence), then
we take as GP the subgroup consisting of all elements of infinite. height in
GB—1 if B is not a limit number, and the intersection of all subgroups
Gq, a < B, if B is a limit number.

We obtain a descending sequence of subgroups of G

G=G"oG'>...oG>...,

which must become stationary at a certain index y. More accurately, there
exists an ordinal number y whose cardinal number does not exceed the
cardinal number of G itself such that G'= G'*!, and therefore G' = G*,
for all 8 > y. The equation G"= G'*! shows, however, that all the ele-
ments of G' have infinite height in G', so that G' is complete. Since we

have assumed that G is reduced, G' must be the null group.

Let 1 be the first ordinal number for which G°=0. 1 is called the type
of the reduced group G. Groups that contain no elements of infinite height
have type 1.

If G is a reduced primary group of type t, then for all o less than T we
form the factor groups

G = G/ G**.
The sequence
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'1s called the sequence of Ulm factors of G From the . constructlon of thrs'
-sequence it is clear that it is completely determmed by G ltself and that the L
N sequence of Ulm factors of G « <= is S :

@, G““‘l v .-,5” ';a<p<z

. The sxgniﬁcance of the Ulm factors for the theory of prlmary groups wxll
* become apparent later, partlcularly in-the following ‘section. Ny L
. In establishing the simplest properties of the Ulm factors of 2 prlmary.”:
~ group we shall make use of the following remark Let the primary group.G .-~
" “be ‘mapped homomorphically onto a primary group H such’that the -

'-;*subgroup A4 of G ‘that ‘is mapped onto the null element of H- consrsts o

- entirely ‘of elements of infinite height in G.- ~“Then the .image of everyl_;_

element of infinite height in G is of infinite. hezght in H; conversely every
- inverse image of an element of infinite height in H is an element. of infinite .

| “height in G. “The ﬁrst statement follows 1mmed1ately from the definitioni”’of

a homomorphlc mapping ; we prove the second. ‘Let ‘be an-elemenit of

: _ -mﬁmte helght in H and g one. of 1ts inverse: 1mages in G.’ If p"h’ o 'h h’ € H :_
: _and if g 1s one of the mverse 1mages of h’ in G then T o

p"g —g + a, aeA

-By our assumptlon on A there emsts an element b in G such that p"b == a - .'
" Hence R e
B T
{ whtch shows that g has infinite height in G. SRR :
- It follows, in particular, that all Ulm factors’ of bt pmmory group G are_'l
f groups wzthout elements: of infinite hezght To see thls we need- only apply-;
" this' remark to the natural. homomorphxsm of Ga onto the factor group o
0‘/0‘*1-— G. - L : o .
- Weshall now prove that the group F G/G , O = ':, 1s a prlmary group
- of type c and that 1ts sequence of Ulm factors is- - g

00 G T-}a, 9a<°

We con51der the. natural homomorphlc mappmg ‘of G onto: F From thef",_:_-

| above remark it follows that in this homomorphlsm G'is mapped onto F*, . -

- and since @' 2 @°, the factor group G/G! =GP and. FIPl = FO dre iso-

. morphic by the theorem on the correspondence between subgroups in homo-
- _morphlc mappings. Suppose now that we have already proved for all a



§ 27. ULM Facrors. THE EXISTENCE T HEOREM 189

less than § that G¢ is mapped onto F¢ in this homomorphism. If f—1
exists, then, as above, we obtain that Gf is mapped onto F# and that
G~ F*~.If, however, B is a limit number, GBis again mapped onto
FB, because the former is the intersection of all subgroups G¢, a < f, the
latter the intersection of their images.

If a primary group G is the direct sum of groups H,, @ = 2 H,, then for
every a less than the type of G we have ’

G~ D H;.

Here we have of course put Hi= 0, if o exceeds the type of H,.

We shall prove that for every f the subgroup G# is the sum (and
clearly the direct sum) of all subgroups H.. This will be assumed to hold for’
all a less than B (it is true for f==0). If f — 1 exists, then G* ' = H!"’,

v
and therefore every element of H® has infinite height in G*%, so that
G* QZH{: ; on the other hand, if g is an arbitrary element of infinite
height in G*~! and g= 2 h, h, € H'™ then every A, must have infinite

height in 1-[5‘1, and hence G* c EHE Therefore Gf = 2 H*™ and as
an easy consequence of the definition of a direct sum Y

Fle Y = SH Y = S

If, however, f is a limit number, then the assertion follows from the fact
that G is the intersection of all G¢, a < f.

So far we have started from the definition of the type of a primary
group and of its Ulm factors, and we have not been interested in the question
whether every ordinal number can occur as the type of some primary
group or whether it happens, for instance, that the sequence of subgroups
@G> @ >...5G > ... always breaks off at a finite place. Also, we
do not know what the conditions are to which a sequence of primary groups
without elements of infinite height must be subjected if it is to be the
sequence of Ulm factors of some primary group. A complete answer to
these questions has been given by Kulikov. It is very complicated,however,
and we restrict ourselves from now on to the consideration of countable
primary groups.

If G is a reduced primary group, then we know that its type t has a finite
or countable cardinal number. The Ulm factors of the group are countable
primary groups without elements of infinite height and therefore, by Priifer’s
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Second Theorem, direct sums of cyclic groups. We can say, further, (and
the countability of the group does not play any role here) that the orders
of the elements in all Ulm factors G“ except possibly Gt if T— 1 exists,
are not bounded. For if a < t— 1, then G¢*+1 £ 0 and we can therefore
find an element that has finite height in G¢+?! but infinite height in G¢.

Now it turns out that this necessary property of the Ulm factors is also
sufficient in the countable case ; this is brought out by the following theorem
(see! Zippin [1]):

EXISTENCE THEOREM. Suppose that T is an ordinal number of an at most
countable cardinal number and that for each a, 0 = a < 1, a countable
primary group A, without elements of infinite height is given such that for
all a except, possibly, a =1 — 1 (if © is not a limit number) Aq contains
.elements of arbitrarily large order. Then there exists a countable reduced
primary group of type t for which the sequence

Ay Ay Agy ooy Agyenn, a<cw,

is the sequence of Ulm factors.

Proof. Every group A, is, by Priifer’s Second Theorem, a direct sum
of cyclic groups. Let the generators of these cyclic groups be

an, a¢2, ooy a.‘, e e vy

where @, has the order p"«, We define a group G in the following way :
its generators are elements Cq4, in one-to-one correspondence with the ele-
ments @y (o assumes all values less that ). With every ¢,y we associate
either the equation p"efc,; = 0, or an equation p™séc,, = cgy, Where f > a,
and the system of relations so obtained together with the relations of com-
mutatively shall form a system of defining relations for G. In addition we
require that the following conditions be satisfied :

1) Let an element ¢, be given; if the relation associated with it is
p"Hic, = o4, and that associated with cp4, is p"*ficgy, = €uy, and so on,
then after a finite number of steps we shall reach an element Caps whose
associated relation is of the form p k‘kc“k‘k = 0.

2) If there are given: an element cg;, § > 0, an ordinal number vy, less
than §, and a natural number N, then there shall exist an element ¢,; such
that 1 <& <B, n, > N and that the relation associated with it has the
form p"eic,y = cgy.

! The paper by Zippin contains only a sketch of a complete proof of the theorem.
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3) If v is a limit number, then for every ¥y less than t and every natural
number N there shall exist an element ¢,4 such that y < a, 7, >N and
that the relation associated with it has the form p™sic,, = 0.

We shall show that a system of equations satisfying these three conditions
actually exists and that the group G so defined satisfies the conditions of
the theorem. The proof is by induction over the ordinal number t. For
1=1, G is given by the generators ¢y, g9y - - -5 Coés - - - and the relations
p"¥ce, = 0; that is, conditions 1)-3) are satisfied and the group itself is
isomorphic to A,.

Let us suppose at first that Tt — 1 exists. Let G’ be the group of type
v — 1 having the sequence

Ay Ay Ap oo 4y ey alt—1,

as the sequence of its Ulm factors; this group is given by the generators
Cuty @ < t—1, and the relations of the above type associated with these
generators, and conditions 1)-3) as well, are satisfied. We now define
G as follows: If the relation associated with ¢y, ¢ <<t—1 in G’ is
p"“c,¢=05j , B <t—1, then the same relation shall be associated with
cw in G. But if the relation in G’ is p™@cg =0, then it is replaced in G
by a relation p"sc = c:—1,;. It is easy to see that we can arrange this
such that condition 2) is satisfied for the elements ¢:—3,¢; for the set of
elements c;—1, ¢ 1s at most countable, and if t— 1 is a limit number, we can
appeal to condition 3), but if T — 1 is not a limit number, then there exist
elements c.-2, ¢ with arbitrarily large exponent n._s, ¢, and for all elements
¢=—2,4 of G’ the associated relations have the form p™-2fc,_5 ;=0.
Finally, we associate with the elements ¢.—1, ¢ relations p™-1.%¢._, ;=0,
We obtain a system of defining relations satisfying conditions 1) and 2);
condition 3) does not come into play in this case.

The abelian group G we have just constructed is, by 1), primary. We
show that all elements ¢y @ < =, are different from the null element. We
take an element ¢4 and write down the relations

73 By &
p “CC‘ = cﬁx‘;’ p thcal‘l — Ca"’, .oy

o pn“kik

The

— . —l’ j —1 M
Cai, = Cx-1,5» P Jei1,5="0;

it follows from our construction that we must be led in this way to one of
the elements ¢;_;, 5, We introduce the notation

Ny + ”‘1‘1+ s + n“k‘k + ey, j= I(a, ).
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We take, further, a group P of type p© with generators d,, d,, ..., d,, ...
and relations
pd;=0, pd,=d,_,, n=2,3,....

If we now set up a correspondence between the element ¢, of G and the
element djq,¢) of P, then all the defining relations of G are satisfied in P
and all the elements ¢4 correspond in P to elements other than the null
element. This shows that from the defining relations of G it cannot be
deduced that any cq is the null element. Moreover, we see that the order
of cos in G is pP=9),

We are now in a position to state by induction on a and by applying 2)
that every element ¢ is contained in G4, the subgroup of G defined as at the
beginning of the present section. In particular, all elements ¢, _, 4 belong to
Gr-1_If F is the subgroup of G that is generated by all elements ¢,_, 4, then
the factor group G/F is isomorphic to G’. Since G’ is of type t—1, it
follows that there are no elements in G belonging to G*~! but outside F, so
that F= @ !, Therefore it follows that Gt~ Gle~A4, a<<t—1,
As to Gt—1, this is the direct sum of the cyclic groups {¢._y,¢} and is there-
fore isomorphic to A._;. This follows from the fact that the defining rela-
tions exhibit G itself as the direct sum of subgroups each of which is
generated by all those c¢,; whose cyclic subgroups contain a fixed element
1,4 G therefore satisfies all the requirements of the theorem.

Now let 7 be a limit number. Every group 4,, 0 < a < 1, is the direct
sum of cyclic groups with unbounded orders. This enables us to split 4,
into the direct sum of a countable set of subgroups each of which contains
elements of arbitrarily high orders. Let this decomposition be

Ae=Aut Aqas1t --- FApt+ - a=<o< et

By induction hypothesis there exists a group H, of type a + 1, with

Ay Ay Aoay - os Aw

as its sequence of Ulm factors, We know already that the direct sum of all
groups H,, 0 = a < t will satisfy all the requirements of the theorem.
The system of generators ¢, of this direct sum is obtained as the union of
the corresponding systems of generators of the groups H,, while the rela-
tions corresponding to them in these groups are preserved. Conditions 1)

1 This choice of indices is obviously at our disposal.
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and 2) are obviously satisfied. Condition 3) is also satisfied, since every
subgroup Aq., 0 = a < 7, contains elements of arbitrarily high orders.
This concludes the proof of the theorem.

§ 28. Ulm’s Theorem

The main theorem of the preceding section tells us what an enormous
variety of reduced primary groups exist, even in the countable case: an
arbitrary ordinal with a countable cardinal number can be chosen as the
type of such a group, and an arbitrary sequence of countable primary groups
without elements of infinite height (with only one quite natural restriction)
as the sequence of its Ulm factors. The type and the Ulm factors of a group
can be used, in fact, not only for the construction of the wide variety of
groups under consideration but also for their complete classification. This
is the content of the following theorem.

UrnM’s THEOREM, If two countable reduced primary groups A and B
have the same type t, and if for each o less than T their Ulm factors A, and B,
are isomorphic, then A and B are isomorphic.

This theorem was first proved by Ulm [1] by means of the theory of
infinite matrices and then by Zippin [1] by group-theoretical methods9
The theorem states that a countable reduced primary group is completely
determined by its type and the sequence of its Ulm factors; since, by
Priifer’s Second Theorem, every Ulm factor in the countable case is a direct
sum of cyclic groups and therefore completely determined by the number
of cyclic direct summands of order p* (for all #), we can give every count-
able primary group by a system of numerical invariants. Naturally these
systems of invariants turn out to be more complicated than those of finitely
generated abelian groups.

Let
A=A A1 A% ... DA*> ... D A*=0

be the sequence of subgroups of 4 defined as in the preceding section: if
a — 1 exists, then A% is the subgroup of all elements of infinite height in
A%, and if a is a limit number, then A4 is the intersection of all AP B<a.
Similarly we construct the sequence

B=B>B'>DB¥>...oB*>...>B=0,

An element a of A is said to be of type a if it is contained in A% but not in
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A+, Every element of 4 has a certain type: if a given element is contained .
in all A8, where  is less than a limit number a, then it is also contained in
their intersection, that is, in A¢.

Let X be a subgroup of 4 and @ < t. The intersection X N A4¢ is a sub-
group of A%. Suppose that in the natural homomorphism of A% onto the
Ulm factor A= A*/A**' this intersection is mapped onto the subgroup Ax
of 4. X is called a perfect subgroup of A4 if A% is for each a a serving
subgroup of 4. (For the definition of a serving subgroup see § 25.)

The definition of the type of an element and of a perfect subgroup carry
over to B, of course.

Finally we introduce the following definition: Let X4 and YCB be
isomorphic subgroups. An isomorphism @ between X and Y is called type
preserving if the elements of X and Y that correspond under ¢ have the
same type in 4 and B, respectively.

The main tool in the proof of Ulm’s theorem is the following lemma.

LEMMA. Let ¢ be a type-preserving isomorphism between two finite
perfect subgroups X of A and Y of B, and let a be an element of A, not
contained in X. Then we can find a finite perfect subgroup X of A, con-
taining X and a, and a finite perfect subgroup Y of B, containing Y, such
that X and ¥ are isomorphic and that the isomorphism § between them can
be chosen as type preserving and as an extension of @ b

We remark, first of all, that it is sufficient to consider the case when
paeX; if praeX, but p»—a¢X, n > 1, then we can adjoin the elements
pr-la, pr-3a, ..., pa, a in succession and so reduce it to the special case.

Let A be the highest type among the elements of the coset X + a; it exists,
because X + a has only a finite number of elements. Among all elements
of type A in X + a let & = 2, + a be one of greatest height in AX If the
height of @’ in A is n — 1 and if a’= p*—'a, where o€ A} then we put

X=1{X,a}.

Then X is a finite subgroup and contains X as well as the element
a=d —x,. We show that X is a perfect subgroup of A.

Since praed, every element of X has the form #=ux + k&, where
zeX, 0=k < pn. If ¥is an element of type a and of height & in A4¢

F=ux + kd=p"c, ceAds, (1)

then the element A%+ + ¥ of the factor group A%/A**'=2A" is also of
1 Cf. p. 168.
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height k4 (by the definition of 4%+*). We have to show that we can find
in X an element 7’ of type a such that

FA? 5 y=4a"" k.

For =0 and also for a < A we have kae A*t*. In these two cases the
assertion follows from the fact that X is a perfect subgroup of 4. If a =2
and k is divisible by p*, k= p*k’, then we have by (1) = p*(c — F’a).
Since ¢ — k’aeA*and X is perfect, it follows now that there exists an
element 2’ in A*(] X such that

Al L p = ph(Ar+1 —+ x');
hence

A1 x = ph (A | i | Ra),

where obviously #’ + ¥ 3e AAN X .
We now show that in all other cases (1) contradicts the choice of a’.
Let p/ be the highest power of p that divides &k, k= p/F¥’; since k < p*,
we have j=n—1. * and p are co-prime; therefore there exist integers
m and /, 0 <1< p, such that #l=1 + mp. Multiplying both sides of
(1) by lpn—4-1, we obtain

Ipn-i—1x - pr=la—+ prma = pr+i—i-1(lc),
and from praeX it follows that
Ipn=i-1x | prma = x' € Xy
hence with pr—lg =a’ and lc = e A®
&+ d=prtr-i-1id,

If now a > A, then it follows from 2’ 4+ a’¢A¢ that we can find in the coset
X + a’= X + a an element of type greater than A, which contradicts the
condition imposed on &. If a = A but k is not divisible by p*, then j = h — 1;
hence n + h— j— 1 =n. We have therefore found in X + a an elenient
of type A whose height in A* is greater than that of ¢’, namely n — 1, which
again contradicts the choice of /. This proves that X is a perfect subgroup.

We know that p*a is an element of X and that its type is not less than A.
Since X is a perfect subgroup, we can find in it an element x,, of type A or

equal to the null element, and an element x., of type not less than A + 1,
such that
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pra = phx, + x,.
If a=3a— x, then
pra=x, x5 € A1 Q)

and again X = {X,3). All elements k3,0 < k < p", lie outside X. We
know, further, that the types of all elements of X outside X do not exceed A,
because we have proved above that for k540 and for a > A equation (1)
cannot hold. It follows that 71}- is the direct sum of 71:’: and of the cxclic
subgroup of order p» that is generated in A by the element -aa-{—A 1
The finite subgroup Z} is a serving subgroup of the Ulm factor .74_1 ,
because X is perfect, and is, by a result of § 25, a direct summand of 4, .
Z} is also a direct summand of A' and we have shown, moreover, that A
contains a cyclic direct summand of order p* whose intersection with A is
the null element.

We now proceed to consider B. Z}x and E} are isomorphic subgroups,
because @ is a type-preserving isomorphism between X and V. BYy,as a
finite serving subgroup of B*, is a direct summand of it, and since by
Priifer’s Second Theorem B is a direct sum of cyclic groups and, by assump-
tion, isomorphic to A", we can find in B* a cyclic direct summand of
order p* whose intersection with By is the null element. Let &} BM1
be a generator of this cyclic subgroup. Then b is an element of type A in B,
and prbe BM1 If y, is the element corresponding to x, under ¢, then
y.€ BM1land B* contains an element b, such that pn+1h, = y, — pmb. Using
the notation b==>b + pb,, we have

P"B'—"yz (3)

and we put _
; Y ={Y, b}.

Note that pn=1p ¢ Y. For from pr=1b=1,, y, €Y, it would follow that
Yo— PP 16 = p"b,.

On transition to B* this would lead to the existence of an element in the
direct summand E}_}. {B"“-{-b} whose height in B* would be greater
than the height of its component in the direct summand {B*!-}-}, and
this is impossible. Hence it follows that ﬁy and {B“'l.{_-b"} form a
direct sum in B’

From p*»—1beY and from equations (2) and (3) and the fact that x,
and y, correspond under g it follows that X and ¥ are isomorphic: we



§28. ULm’s THEOREM 197

obtain an isomorphism @ between these subgroups if we map X onto ¥
according to @ and the element @ onto 5. The isomorphism & extends @.
Moreover, it is type preserving. For if two elements r=2x + kT and
y=y+ kb, 0=Fk < p*, correspond under @, then xp =1, so that x
and y have equal type; hence ¥ and j have equal type for /=0. But if
k50 and the type of x and y is not A, then ¥ and ¥ again have the same
type, since k& and kb have type A and the type of a sum of two elements of
different types is obviously equal to the smaller of the two types. Finally,
if & 7& 0 and x and y are of type A, then # and ¥ are also of type A, since
in A" the subgroup A) and {A“'l-[—a} form a direct sum (just as the
subgroups By and {B*1 —;b} do in B*).

It remains to show that Y is a perfect subgroup of B. This can be done
by repeating the reasoning that has been used above for proving that X is a
perfect subgroup of 4, provided that we now take instead of a the element b,
and instead of o the element p»—'b. For b is of height 0 in B* and the
types of all elements of the coset ¥ -} p#-1p are not higher than the type
of pn—15, namely A ; finally if we could find an element of type A in this coset
whose height in B’* would be greater than n — 1, then we would obtain a
contradiction, because By+ B§“+ b}is a direct summand of B

The proof of the lemma is now complete.

The proof of Ulm’s Theorem now follows without any further difficulty.
We enumerate all the elements of 4 and of B by means of the natural num-
bers. Then we take the subgroups X, = 0and Y, =0. Suppose that for all
k, 0 =<k = n, we have already found subgroups XzeA4, Y,eB, satisfying
all the conditions of the lemma, and that for each &, k=0,1,...,n—1,
the isomorphism ¢, between X, and Y extends the preceding ones. Then
we construct subgroups X, and Y, on the basis of the lemma, and for
odd 7 we choose a as that element of 4 outside X,_, which has the smallest
suffix, while for even #n we proceed similarly with an element of B. So we
see that A4 is the union of the ascending sequence of subgroups

XX, e...cX, c...
and B the union of the ascending sequence of subgroups
Yoc YJC- . .CY”C- “ ey

where X, and Y, are isomorphic, n=0,1,..., and the isomorphism
@n between them extends @,—,. Hence A and B are isomorphic. This
completes the proof of Ulm’s Theorem.
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By means of Ulm’s Theorem and the existence theorem of the preceding
section we can now prove the following theorem (see Baer [5]) which is
also of interest for the general theory of direct products.

If G is a countable reduced primary group, then any two direct decom-
positions of G have isomorphic refinements if and only if G is of type 1.

For if =1, then by Priifer’s Second Theorem G is the direct sum of
cyclic groups, so that we need only appeal to results of § 24. If on the other
hand t > 1, then let the Ulm factor G°. 0 = ¢ < 1, be decomposable into
the direct sum of cyclic groups of the following orders:

p”a,l, p”5|2,...,_ p”cvk,--.

where® flg, 1 < Ma,2 < ¢ < g k< ..., Let 6"=A,—j—B,, where 4, is
the direct sum of all cyclic direct summands of orders p%e,* for odd % in the
given decomposition of G¢ while B, is their direct sum for even k. Then
there exist groups 4 and B for which A, A44,..., A, ...and By, By,...,
B,,. .. are the sequences of Ulm factors. The Ulm factors of the direct sum
A + B coincide with the Ulm factors of G and therefore, by Ulm’s Theorem,

G=4 + B.

But there exist also groups A and B with By, Ay .o.ey A, ... and
Ay, By,..., B, ..., as sequences of Ulm factors, and again

Ge=A + B.

That these two direct decompositions of G cannot have isomorphic refine-
ments follows easily from the theorem of the preceding section, which states
that the Ulm factors of a direct sum are the direct sums of the corresponding
Ulm factors of the summands.

The problem of conditions under which any two direct decompositions
of a non-countable reduced primary group have isomorphic refinements is
still open: it is not even known whether here the condition T =1 is sufficient
or necessary. We mention, without proof, a relevant result of Kulikov [2]:
if a primary group G is the closure (in the sense of § 26) of a direct sum of
cyclic groups, then every pair of direct decompositions of G has isomorphic
refinements.

1 Of course, this does not mean that in the decomposition of G? there occurs only one
cyclic summand of a given order pf, & .
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In conclusion, we consider the problem of an extension of Ulm’s theorem
to the non-countable case. So far no theorem is known which reduces the
study of reduced primary groups of an arbitrary cardinal number to the
study of groups without elements of infinite height and which in the countable
case goes over into Ulm’s Theorem. The theorem that is obtained from Ulm’s
Theorem by simply omitting the word “countable” is certainly wrong:
counter-examples have been found by Kulikov [2]. The groups of these
examples have countable type. Below we present a counter-example of a
primary reduced group of type 2; this has been communicated to the author
by L. Y. Kulikov and is published here for the first time.

Kurikov’'s ExaMpLE. We denote by 2, 1 =1, 2, ..., a cyclic group
of order p%, and by A4 the closure of the direct sum of all these cyclic groups
(see § 26). Thus, A is the group of sequences of elements, one from each
group Z;, and in every such sequence the orders of all elements are bounded.
Let B be the subgroup of A4 that consists of all those elements of order p in 4
that have only a finite number of non-null components, and C the subgroup
that consists of all those elements of order p that have only a finite number
of non-null components with odd indices while the components with even
indices are not subject to any restrictions. It is clear that

Bc(Ccd4,,

where A4, is the lowest layer of 4.

We shall now prove that the groups H = A/B and G = A/C are non-
isomorphic reduced primary groups of type 2 with isomorphic Ulm factors.

We put H*= A4,/B and show that H* consists of elements of infinite
height in H. An arbitrary element h* of H* has the form h*—a + B,
where a is an element of 4 of order p; we denote the i-th component of
a by z. If n is a fixed number, then Z,, for every i > n, contains an ele-
ment 2z such that prz/=—2,. Weput 2/=0fori=mn. Then

Z=(2], 2p 0y Zp..)

is an element of 4 of order p**, and p*2'— ae B, that is, p*(2' + B)= h*.
This shows that #* has infinite height in A so that

H*< HY, (4)

where H* is the subgroup of elements of infinite height in H.
Further, from H = A/B, H*— A,/B there follows the isomorphism

H/H*=~ A4/ A,.
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However A/A,==p A, since the mapping a — pa, a€ A, is a homomorphism
of 4 onto p A with kernel 4,. Therefore

H/H*~pA. (5)

Since pA, like 4, contains no element of infinite height, we get from (4)
and (5)
H' = H¥, (6)

H/H'~pA. 7)

We have therefore found the Ulm factors of H and have shown, in particular,
that H is a reduced group of type 2.

Now let us find the Ulm factors of G. If we put D == C/B then, using
G=A/C, H=A/B, we have

G=H/D. (8)
From D H* and (6) follows D& H* and therefore from (8)
G=H'/D, %

where G? is the subgroup of elements of infinite height in G: if » + D has
infinite height in H/D, then for every n there exist elements h,e H and
d, € D such that p*h,=h + d,; d, has infinite height in H, however, and
therefore k4 also has infinite height.
From (8) and (9) follows
G/G'=~H/H. (10)

On the other hand H* has, by (6), the cardinal number of the continuum
and consists of elements of order p. This is also true for G*: from (9),
(6), and the definitions of H* and D it follows that

Gi=A4,/C;

but the factor group A,/C consists of elements of order p and has the car-
dinal number of the continuum. By Priifer’s First Theorem we now obtain

the isomorphism
G=H". (11)

This shows that G is a reduced group of type 2 and that the Ulm factors
of G are isomorphic to the corresponding Ulm factors of H.
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It remains to prove that the groups G and H are not isomorphic. Taking
into account that H*<H,, G*=G,, where H; and G, are the lowest layers
of H and G, respectively, it is sufficient for our purpose to show that the
factor groups H1/H* and G,1/G* have different cardinal numbers.

We know from (6) that H'= A4,/B. On the other hand, it is easy to
see that H;=L/B, where L is the subgroup of A that consists of all
elements of order p and those elements of order p? that have only a finite
number of non-null components of order p%. Hence it follows that

Hl/Hl:L/AI)

and the factor group L/A, is countable.
We now consider the factor group G1/G*. First of all,

G'= 4,/C. (12)

For since DC H?, the complete inverse image of G? in the natural homo-
morphism of H onto G==H /D is H*. However, it follows from (6) that 4,
is the complete inverse image of H* in the natural homomorphism of 4 onto
H = A/B. Hence the complete inverse image of G in the natural homo-
morphism of 4 onto G = A/C is A, ; this proves (12).

On the other hand G; = K /C, where K is the subgroup of A4 that consists
of all elements of order p and those elements of order p? that have only a
finite number of components of order p? with odd indices, while there can
be infinitely many components of order p? with even indices. Hence it
follows from (12) that

G1/G*=K/ A,

and the factor group K /A, has the cardinal number of the continuum.
We conclude that the groups H and G are not isomorphic.

§ 29. Mixed abelian groups

A mixed abelian group G is said to split if it is the direct sum of a
periodic group and a torsion-free group. The periodic summand is then,
of course, the periodic part F of G and the torsion-free summand is iso-
morphic to G/F.

Among the groups that can be split are all direct sums of cyclic groups,
in particular, all finitely generated abelian groups, and also all complete
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groups. Below we shall show, however, that not all mixed abelian groups
can be split.

In view of this result, the fundamental problem in the theory of mixed
abelian groups is to find splitting conditions, that is, conditions under which
the study of mixed groups reduces to the study of periodic and of torsion-
free groups.

In the course of the proof of the following theorem we shall construct
some examples of groups that cannot be split.

Let F be a given periodic abelian group. Every abelian group whose
periodic part is isomorphic to F can be split if and only if F is the direct
sum of a complete group and a group with elements of bounded orders.

The following simple proof of the sufficiency of this condition is due to
Kulikov [1].

Let F = F; + F,, where F; is a complete group -and F, a group witk
elements of bounded orders, and let F be the periodic part of an abelian
group G. We have shown in § 23 that the complete group F, is a direct
summand of G, :

G = F 1 + G’.

The periodic part F’ of G’ is isomorphic to F2, that is, its elements are of
bounded orders and, since F’ is a serving subgroup of G’, it is a direct
summand of G’ by what has been proved in § 25. This shows that G can
be split.

We now proceed to show the necessity of the condition and first prove
the following lemma.

LEMMA, If a periodic group F is the direct sum of two groups,
F=F'+ F” and if there exists a group G that has F” as its periodic
part and cannot be split, then the group H—=F’ 4+ G, whose periodic part
s F, cannot be split either.

For if there were a split
H=F+ H,=F'+ F’+ H,,

where H, is torsion-free, then the factor group H/F’, which is isomorphic
to G, could also be split.

This lemma permits us to confine ourselves to the case when F is reduced.
If we suppose further that the orders of the elements of F are not bounded,
then only two cases can arise: either in the decomposition of F into the
direct sum of primary groups there occur direct summands in which the
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orders of the elements are not bounded, or the number of direct summands
is infinite.

In the first case, we can assume by the lemma that F itself is primary.
Thus, let F be a p-primary group containing elements of arbitrarily high

orders. We denote by F,, k=1, 2, ..., the subgroup of F that consists
of all elements whose height is not less than 2. Further, we choose in F
two systems of elements a,, @2, ..., a, ... and by, b2, ..., b;, ... with

the following properties:

1) bypy="0;+ptasy, by =ay,

2) the orders of the elements b, increase unboundedly with 1,

3) b, has the smallest order among the elements of its coset with respect
to F‘.

We construct these systems of elements in the following way: In one of
the cosets of F; (but not in F;) we choose any element of smallest order,
say by, and put a; = b;. Suppose that we have already chosen the elements b,
and g; and that the order of b; is p/. Since F is a reduced group with elements
of unbounded order, we can find an element »+ whose height % is finite and
greater than ¢ + j. Let y be a solution of the equation p¥y —2x. We take
the element b; + pfy and denote by ;.1 one of the elements of smallest
order in the coset b; + p'y + Fyyqp. If

biwy=0bi+ply+p¥+if, feF,

then we put a;41 =7y + pf, so that ;. , =0, p*a;,,. It remains to
show that the order of b;,; is greater than the order of b;. Now from
pibiy1 =0 we would deduce p¥+jy | pi+j+1 f=0, but since i + j < %

3

pry = x = p*+1(—f),
which contradicts the fact that the height of x is %.

We now construct an abelian group G. Its system of generators consists
of all the elements of F and of a countable set of elements vy, vo, ..., 74, ...,
and its defining relations are the relations of commutativity, all the relations
that hold between the elements of F and, finally, the relations

PV =0t a, i=1,2,..., (1)

where the elements g¢; are defined as in the preceding paragraph. Every
consequence of the relations (1) can be written in the form

”
‘21 ki(pvgp1—0i—a) =0, (2)
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where n = 1, k, are integers, and &, 5= 0. However, the element v,,; has
in (2) a non-zero coefficient, and therefore it cannot follow from (1) that
some element of F is equal to the null element in G, but not in F. In other
words, F is a subgroup of G. We see, further, that from (1) there cannot
follow a relation kv, = @, where k %0, acF; that is, the order of v, is
infinite. G/F is, therefore, a torsion-free group! and therefore F is the
maximal periodic subgroup of G.

Assume now that F is a direct summand of G, so that G=F + H,
Then v, =f, + W, fieF, heH,i=1, 2, .... From (1) it follows, since
a€F, that

phin=rfi+as

In particular pf, = f, + a, = f, 4 6,. Suppose we have already proved that

pYi=1, + 04—y
Then
Plig=pYVi+rtay=f+ b+ ay=f, 4 by

and since p*f;11€F; we find that for i=1, 2, ..., the elements — f; and
b, lie in the same coset of F;. Hence by the definition of b, it follows that
the order of f; is not less than that of b;; but the orders of the elements b,
increase with ¢, and we obtain a contradiction because f; is of finite order.
This shows that F is not a direct summand in G.

We now come to the second case where we assume that F is the direct
sum of an infinite set of reduced primary groups, with respect to distinct
prime numbers p1, p2, ...y Pi, ...

F= 2‘ Fy, (3)

In each subgroup F, ; we take an element a; of zero height and construct
an abelian group G in the following way: Its generators are all elements
of F and in addition elements v,, 4, ..., %, ... ; the defining relations are
the relations of commutativity, all the relations that hold between the ele-
ments of F, and finally, the relations

p"U‘='Uo+a¢, t=1, 2,-... ‘ (4)

11t is easy to see that it is isomorphic to the group R, of p-ic fractions, that is,
fractions whose denominators are powers of p.
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As in the preceding case it is easy to see that F is the maximal periodic
subgroup of G.

Let us assume that F is a direct summand of G, so that G = F + H,
Then v, =, + h, fieF, heH,i=0,1, 2, .... From (4) it now follows,
since a;eF, that

pfi=fota, 1=1,2,.... 5)

Since f, is the sum of a finite number of components in the direct summands
of the decomposition (3) we can find an index j such that the component
of f, in Fy, is the null element. If we denote the component of f; in Fy y by

J{, then (5) for i = j leads to the equation

P;ﬂ = ay,

which contradicts the fact that g; has zero height in F
This completes the proof of the theorem.

Conditions for a mixed group G to split can also be studied in the form
of connections between properties of the periodic part F and of the factor
group G/F. This problem has been considered by Baer [13], but he imposes
certain restrictions on the torsion-free group G/F; these restrictions are
known to be satisfied when this group is countable. The theorem proved
above is, in fact, a corollary of the results of Baer. Another approdch to the
same problem, by way of the properties of the automorphisms of mixed
groups, is contained in a paper by Mi&ina [2]. A criterion for the splitting
of a group can be found in a paper by Lyapin [2]. We remark that so far no
conditions have been established which a torsion-free group H must satisfy
in order that every abelian group having H as the factor group with respect
to its periodic part should split.

The problem whether a mixed group can be split must not be confused
with the problem whether it can be decomposed. Here we have constructed
examples of mixed abelian groups that cannot be split. However every
mixed abelian group G is decomposable into a direct sum (Kulikov [1]).

For if the periodic part F of G is complete, then F is a direct summand
of G. But if F is not complete then we can find, by results of § 25, a cyclic
direct summand A of F. Then A is a serving subgroup of F and so is a
serving subgroup of G; and since it is a finite group (so that the orders
of its elements are bounded) it follows, again from § 25, that A4 is a direct
summand of G.



CHAPTER VIII
TORSION-FREE ABELIAN GROUPS

§ 30. Groups of rank 1. Types of elements of torsion-free groups

Torsion-free abelian groups have been investigated much less thoroughly
than primary abelian groups. The concept of the rank of a group (see § 19)
is of prime importance, and groups of finite rank emerge as one of the main
objects of study. The concept of a serving subgroup also plays a major réle
(see § 25). Other names used in the literature for serving subgroups in
torsion-free abelian groups are isolated, or inextensible, or closed, or divi-
ston subgroups.

In a torsion-free abelian group an equation
ny=—a, n>0, (1)

cannot have more than one solution, because the difference of two solutions
would be an element of finite order. Hence it follows that H is a serving
subgroup of a torsion-free abelian group G if and only if G/H is torsion-
free. From the uniqueness of the solution of (1) it follows that the inter-
section of an arbitrary set of serving subgroups of a torsion-free abelian
group G is itself a serving subgroup of G. We can therefore speak of the
serving subgroup of G that is generated by a given set M of elements of G,
namely the intersection of all serving subgroups of G containing M ; one
such subgroup is known to exist—G itself.

The serving subgroup gemerated by a set M of a torsion-free group G
consists of all elements of G that are linearly dependent (in the sense of
§ 19) on the set M.

For if an element g is linearly dependent on M, that is, if a multiple of a
is contained in {M}, then the serving subgroup generated by M, which
clearly contains { M}, also contains a. On the other hand, all the elements
of G that are linearly dependent on M form a subgroup: the sum and differ-
ence of any two elements whose multiples lie in M have the same property.
This subgroup contains M and is a serving subgroup of G: if nb=a and
kae (M}, then (kn)be{M}, that is, b is linearly dependent on M.

We know from § 23 that every abelian group can be embedded in a com-
plete abelian group. We can now state that every torsion-free abelian group

206
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can be embedded in a torsion-free complete group, in other words, in the
direct sum of a set of groups of type R. This follows easily from the proof
of the corresponding theorem of § 23, but can also be established directly:
if a torsion-free group G is contained in a mixed complete group H, then
the intersection of G with the periodic part of H is the null element, and
therefore G is isomorphically mapped into the factor group in H of its
periodic part, and this is a complete torsion-free group.

Every abelian torsion-free group G of finite rank n can be embedded in a
complete abelian torsion-free group of rank n, that is, in a direct sum of n
groups of type R.

For G can be embedded in some complete torsion-free group H. The
serving subgroup G of H generated by G is itself complete. Moreover it
has been proved above that every element of G is linearly dependent on G
and therefore linearly dependent on every maximal linearly independent
system of elements of G. Thus, the rank of G is n.

It follows, in particular, that every torsion-free group of rank 1 is
isomorphic to a subgroup of the additive group of rational numbers R.
Therefore, when we obtain a classification of all abelian torsion-free groups
of rank 1, which is our next aim, we shall also obtain a classification, to
within isomorphism, of all the subgroups of R.

We introduce an auxiliary concept. A characteristic is an arbitrary
sequence of the form

=0y, Ggy ¢ o0y Apye..)y
where each a, is zero, or a natural number, or the symbol . Two char-
acteristics a and |

B=GCu B .- Bnr -+ )

are equivalent if a, =, for all n except, possibly, a finite number for
which both a, and f, are distinct from . All characteristics therefore fall
into disjoint classes of equivalent characteristics; these classes are called
types! and are denoted by lower-case German letters a, b, ¢, ...

Into the set of types we introduce a partial order in the following way :
a = b if there exists a characteristic a of type a and a characteristic § of
type b such that for all n we have a, = f,; of course, here we regard the
symbol o as greater than every natural number. The reader will have no
difficulty in verifying the following statements:

! Other names are overtype and genus.
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1) a=a;
2) if as=bhand b=c, then a =c¢;
3) if a=Db and b =a, then a=D0, that is, the two types coincide.
Among all types the greatest is that which consists of the single char-
acteristic
(0, 0, ..., 0, ...);

we shall call it the type R for a reason that will become apparent below.
The smallest among all types is the type that contains the characteristic

0,0, ...,0, ...);

we shall call it the null type.
Let a and b be two types. We take characteristics a and f§ in them and put

Y”=min (a"’ ﬁn); n= 1, 2, cee o
The type ¢ defined by the characteristic

(Yl’ Yzl LR | Yn’ -..)

is easily seen to be independent of the choice of the characteristics a and f8
in a and b. It is the greatest type which is less than, or equal to, both
a and b; we call it the product of the types a and b, c=ab. In a similar
way we can speak of the product of any finite number of types.

We can now proceed to the classification of torsion-free abelian groups
of rank 1. Let p1, p2, ..., pn, - .. be the sequence of all prime numbers in
ascending order. Let G be a torsion-free abelian group of rank 1 and @
an element of G other than the null element. With G we now associate
a characteristic ¢: we put a,==0 if p,xr==a has no solution in G,

a, == k if p,Fx = a has a solution but pf,'“ = g has no solution in G, and
a, = oo if all equations p,'r =a,1=1, 2, ..., have solutions in G. Itis

easy to verify that when a is replaced by ma, where m is a non-zero integer,
then there is no change in a, if it is o, but if it is finite and equal to # =0
and m = pm’, (p,,m’)=1, then after the change it will be a,==Fk + [;
in other words, in this case a is replaced by an equivalent characteristic.
The same will happen if a is replaced by any other element b of G, except the
null element, since a and b have a common multiple. Conversely, if § is a

1'We could also show that among the types that are greater than, or equal to, the
given types a and b there is a smallest. In other words, the set of types is a lattice
(see §43).



§ 30. Groups oF RANK 1. Types oF ELEMENTS OF TorsION-Free Grours 209

characteristic equivalent to a, then we can replace a by an element b by means
of which G is associated with the characteristic . Forifa, —f,=p, > 0
for n="1,, %2, ..., % and fp— oy =v, > 0 for n =1y, fo, ..., Ji, and if
a, == f, for all other n then we can take b as the solution of the equation

P1p¥s Pax = pllps ‘ta;
PapR. . pEx=p)pj3.. .pjla;

and it is easy to see that the equation has a solution in G.

So we see that every abelian torsion-free group of rank 1 corresponds
uniquely to a well-defined type. Non-isomorphic groups correspond to
distinct types.

For if G is associated with a characteristic a by means of an element a,
then the equation mx=—a has a solution in G if and only if m is not
divisible by a higher power of p, than the a,-th for every n for which
a, < oo ; if b and ¢ satisfy the equations pb —=a, gc = a with co-prime
p and g, then the equation (pg)x =a is satisfied by tb + sc, where
ps + qt=1. Therefore the homomorphism of G into the additive group
of rational numbers R that carries the element @ into the number 1 maps G
onto the subgroup R, of R that consists of all rational numbers whose
denominators (in the reduced representation) are not divisible by a power
of p, higher than the a,-th, n=1,2, ..., if @, < o, and by an arbitrary
power of p, if a,=— . However, R, is the unique subgroup of R that
contains the integers and has the property that it is associated with the
characteristic a by means of the element 1. This shows that G is determined
by the characteristic o up to isomorphism. We also obtain that for every
type a we can find a subgroup of R associated with it.

Therefore there exists a one-to-one correspondence between all types and
all non-isomorphic torsion-free groups of rank 1. The group R itself corres-
ponds to the type R, which explains the name, the infinite cyclic group
corresponds to the null type, and the additive group of p.-ic fractions (that
is, the rational numbers whose denominators are powers of the prime num-
ber p,) to the type that contains the characteristic in which a, = o, and
an =0 for m%n. We also mention that the additive group of rational
numbers with square-free denominators corresponds to the type that con-
tains the characteristic

1,1, ....1,...).

If a torsion-free group G of rank 1 corresponds to the type a, then we
shall say that G is a group of type a.
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Our classification of groups of rank 1 is siccinct and convenient. For
example, the reader will easily prove that if G and H are two torsion-free
groups of rank 1, of type a and b respectively, then G is isomorphic to a
subgroup of H if and only if a = b. It follows that if each of the two groups
G and H is isomorphic to a subgroup of the other, then they are isomorphic.
Our classification also gives an indication of the very great diversity of
abelian torsion-free groups of rank 1; it shows, in particular, that the set
of all these groups has the cardinal number of the continuum.

We now return to the consideration of arbitrary abelian torsion-free
groups. Let G be such a group and let @ be one of its elements other than
the null element. The serving subgroup A of G that is generated by a is of
rank 1, because we have shown above that every one of its elements is
linearly dependent on a. This subgroup is, then, the largest subgroup of G
of rank 1 containing a. We shall call the type of the subgroup 4 the type of
the element a. In other words, the type of a is the type of that characteristic
which we obtain when we put a, =k if p,*2+ =a but not p,}t*=a can
be solved in G, and a, = « if the equations of the form p,*+ = a can be
solved in G for all k; here p,, n =1, 2, ..., is the set of all prime numbers
in ascending order. It is in this sense that we shall sometimes speak of the
characteristics of an element a of a group G.

- We are now in a position to distinguish between elements (other than
the null element) of a group G, by means of their types; this corresponds in
a certain sense to the division of the elements of a primary abelian group
into elements of finite and of infinite height. Torsion-free abelian groups
can therefore be classified according to the types of the elements they contain.
In particular, we could select as a special object of study the groups in which
all elements other than the null element have one and the same type a. How-
ever, a single such restriction is insufficient for the development of a deeper
theory. True, it is easy to see that groups in which all elements, other than
the null element, have the type R are complete and are therefore well known ;
but the set of groups in which all non-null elements are, for example, of
type null turn out to be difficult to classify.

We mention a few properties of types of elements of an abelian torsion-
free group G that will be used in the following section:

I. Two elements that are linearly dependent on one another have the
same type.

For these elements generate the same serving subgroup.

II. If a and b are two elements of type a and b respectively, then the type

of thetr sum a + b (if it is not the null element) is greater than, or equal to,
the product ab.
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For if the characteristics of @ and b are a and 8 respectively, then a + b
is in any case divisible by every power of the prime number p, whose
exponent does not exceed min (a,, $,). Simple examples show, however,
that this element may also be divisible by higher powers of p, provided that
a, and B, are finite and equal.

III. If G=A + B, acA, beB, and if a and b are the types of a and b
respectively, then the type of a + b is ab.

For in this case the characteristic ¥ of a + b is such that, for all #,
Yo =min (au, fs).

Let G be an abelian torsion-free group and a an arbitrary type. By G (a)
we denote the set that consists of the null element and of all elements of G
whose types are greater than or equal to a; if there are no such elements
in G, then G(a)==0. It follows from II. that G(a) is a subgroup of G,
and I. shows that it is a serving subgroup of G. We denote by G’(a) the
subgroup of G that is generated by all elements whose types are strictly
greater than a. This subgroup is contained in G'(a) and may be equal to
it; in general, however, it need not even be a serving subgroup of G(a).
The factor group

G*(a)=G(a)/G'(a)

may therefore have elements of finite order.
These subgroups G (a), G’(a), and the factor group G*(a) will be used
in the following section.

§ 31. Completely decomposable groups

After having dealt with torsion-free groups of rank 1 in the preceding
section it is now natural to proceed to the study of abelian torsion-free
groups that are decomposable into the direct sum of groups of rank 1; such
groups are called completely decomposable (or completely reducible). This
class of groups is rather wide: apart from all groups of rank 1 it comprises
all free abelian groups as well as a]l complete torsion-free abelian groups.
On the other hand, we shall show later that by no means are all abelian
torsion-free groups completely decomposable.

There exist several criteria for a torsion-free group to be completely
decomposable (see Baer [15], Lyapin [6]). However, all these criteria are
very cumbersome to formulate and do not lend themselves to a further
development of the theory of completely decomposable groups; we shall
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therefore not deal with them here. The problem of subgroups or factor
groups of fully decomposable groups is also outside our scope: every abelian
torsion-free group can be embedded in a complete torsion-free group and is
a factor group of a free abelian group. We shall rather be interested in
properties of direct decompositions of completely decomposable groups and
begin with the following theorem (Baer [15]).

If a torsion-free abelian group G is completely decomposable, then any two
decompositions of G into the direct sum of groups of rank 1 are isomorphic.

Suppose we have an arbitrary decomposition of G into the direct sum
of groups of rank 1,

G=2A¢. (1)

If G has elements of type a, then the subgroup G(a) (see the end of the
preceding section) is the direct sum of all summands in (1) whose type is
greater than or equal to a. For since direct summands are serving sub-
groups, the type of every non-null element of 4, is equal to the type of 4,
itself, so that it remains to apply properties I-III of the preceding section.
Similarly, G’ (a) is the sum of all direct summands in (1) whose types are
strietly greater than a. It follows that the sum of the direct summands in (1)
whose type is equal to a is isomorphic to the factor group G*(a), that is, does
not depend on the choice of the decomposition (1) : every decomposition of G
into the direct sum of groups of rank 1 contains as many summands of
type a as the rank of G*(a) (if it is finite) or the cardinal number of G*(a)
(if its rank is infinite). This completes the proof.

The problem arises whether every direct decomposition of a completely
decomposable group can be refined to a decomposition into the direct sum
of groups of rank 1. In other words, is every direct summand of a completely
decomposable group itself completely decomposable? A final answer to this
question has not yet been obtained. The paper by Baer [15] contains a
number of relevant partial results, some of which we shall now present.

We begin by considering a group that is the direct sum of isomorphic
groups of rank 1 and prove the following theorem.

If an abelian torsion-free group G has a direct decomposition
G =2 A, 2)

wn which all summands A, have rank 1 and one and the same type a, and if
B is a serving subgroup of G, then B is itself a direct sum of groups of rank 1
and of type a.
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Suppose the index a runs through all ordinal numbers less than ¢; we
introduce the following notation :
G(B)= 2 A,
«a<B
B® —Bn G®.
For every B we have

and either the equality sign holds or B(9+1)/B(3) has rank 1 and type a. For
this factor group is isomorphic to a subgroup of G*+? G® which is iso-
morphic to Ag, that is, it has rank 1 and type less than or equal to a. On the
other hand, if B8+ contains an element  outside B, then the type of x
in B and consequently in B®¥+Y is equal to a, because B is a serving sub-
group of G. The type of the image of » in B#+1)B B cannot, therefore, be
less than a. This proves our assertion,
If we can show that for B®) 5 B(B+1) we have a direct decomposition

BE+D — B® 4 G, @)

where Cp is a group of rank 1 and type a, then the theorem will follow
because B is then the direct sum of all non-null subgroups Cg, f < 6. We
go on, therefore, to prove that a decomposition (3) exists.

In BB+ we take an element x outside B® and we denote the coset
x + B® by ¥. If x is divisible by an integer » in B(#+1) then the same is
true for ¥ inB (ﬂ+1)/B(ﬂ). The convetse need not hold, but it follows from
the equality of the types of x and # that there exists only a finite number
of prime numbers

Pty Pys « - oy P (€))

such that the value a; of the characteristic of » forp; ,b=1,2, ..., m,
is different from the value a‘ of the characteristic of 7; both numbers are
then ﬁmte and

a‘k < a‘k .
T %, %, ag
Let h_p‘l p‘. ...p_m,
h— p::. —ag p:’" p“‘ b

m

In B&+1/B® there exists an element y =y -}B(p) such that

hy=7%, (5)
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so that # and Ay lie in the same coset #. Let i’ be defined for hy in the
same way as h was for . Since hy is divisible by £ it follows that 4’ cannot
be divisible by any prime number of (4), so that

(h, W)=1.
We can therefore find integers I, I’ such that

Ih+1UhW=1. (6)
The element
g=1lhx + Ul (hy) )

lies in #, by (5) and (6). If p; is an arbitrary prime number and if f; is
the value of the characteristic of z for p;, then clearly f; = &@;. However,
2 is in any case divisible by every power of p, that divides both summands
of the right-hand side of (7), so that from the definition of » and 4’ we
obtain f; = a;.

We can therefore find an element £ in  whose characteristic in B(+1)
is the same as that of ¥ in B@+1)/B®), If we denote by Cp the serving sub-
group of B®+1) generated by 2, then every coset of B® in BG+1) contains
precisely one element of Cg. This shows the existence of a direct decomposi-
tion (3) and concludes the proof of the theorem.

By applying this theorem to the case when B is a direct summand of G
we obtain the following result.

If G is the direct sum of groups of rank 1 and of one and the same type a,
then every direct summand of G is also a direct sum of groups of rank 1
and type a.

Now we prove the following more general theorem.!

Suppose that G is completely decomposable and that the set of types of
the summands in the decomposition

G= A, | (8)

into the direct sum of groups of rank 1 is finite. Then every direct summand
of G is completely decomposable.

For the proof we denote by
A1, A2y -+« a_;n (9)

! The proof has been communicated to the author by L. Y. Kulikov.
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the distinct types of summands that occur in (8),and by Dy, 1=1,2, ...,n,
the direct sum of summands of type a;. Then

G=D1+D2+..-+D”. (10)

The theorem will be proved if we can show that the decomposition (10)
and an arbitrary decomposition of G

G= 2By, (11)

have isomorphic refinements. For every Bg is then the direct sum of sub-
groups that are isomorphic to direct summands of D;, 1=1, 2, ..., #n,
and therefore, by the above result, completely decomposable.

We shall prove the existence of isomorphic refinements of (10) and (11)
by induction on #; for n =1 there is nothing to prove. Let a, be one of
the maximal types among (9) (in the sense of the partial order of types).
Then the component of D, in the direct summand Bp of the second decom-
position is equal to

Co=2Dy N By;

it cannot be greater than this intersection, since every subgroup is homo-
morphically mapped onto its component; however by the choice of the
type a, no element of D, can under any homomorphism go over into an
element of G outside D,. It follows that there exists a direct decomposition

Q=;%

that is to say, we obtain the following refinement of (10):

G=§q+ﬂﬁn“+ﬂw (12)

The subgroup By contains the direct summand Cp of G ; therefore we have,
for every B, a direct decomposition Bg= Cz + (' which leads to the fol-
lowing refinement of (11):

G=§q+§d. (13)
(12) and (13) now show that the subgroups

Dy+ ...+ D, gc; (14)
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are isomorphic; by the induction hypothesis they have isomorphic refine-
ments. Substituting these in (12) and (13) we obtain isomorphic refine-
ments of (10) and (11); this is what we had to show.

It follows from this theorem that every direct summand of a completely
decomposable group of finite rank is itself completely decomposable.

On this problem of direct summands of completely decomposable groups
some results have, in fact, been obtained that go further than what we have
proved here. For example, Baer [15] has shown that the direct summands
are completely decomposable even when the set of types of summands in
(8) is no longer finite but only satisfies the maximal condition (in the sense
of the partial ordering of types). Furthermore, Kulikov [3] has proved that
the direct summands of every countable completely decomposable group
are also completely decomposable.

§ 32. Other classes of abelian torsion-free groups

So far we have not yet come across any abelian torsion-free groups that
are not completely decomposable. Such groups, however, do exist.

The unrestricted direct sum (see § 17) of an infinite set of infinite cyclic
groups is not completely decomposable.

For let G be the unrestricted direct sum of infinitely many infinite cyclic
groups. We take a countable subset and denote by G’ the unrestricted direct
sum of the subgroups occurring in it. If G were completely decomposable
then, since all its elements are of type null in it, it would turn out to be a
free group, and since G’ is isomorphic to a subgroup of G, it would also
be free. We can therefore assume that G itself is the unrestricted direct
sum of a countable set of infinite cyclic groups.

If

A1y oy oeoy Ony oo

are generators of these cyclic groups, then every element g of G can be
written as an infinite sum of these generators with integer coefficients

g="ha, +ketot ... Fhpa,+ . ... (1)

We denote by H the set of elements of the form (1) that have the
following property: for every mnatural number s almost all coefficients
ki, kay ooy kn, ... (that is: all but, possibly, a finite number) are
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divisible by 2¢. The set H is a subgroup of G and has, just like G, the
cardinal number of the continuum. If G is free, then H is also free, in other
words, is the direct sum of a set of infinite cyclic groups; and then the
factor group H/2H (where 2H is the set of all elements of H that are
divisible by 2) must also have the cardinal number of the continuum.

However H/2H is, in fact, countable. For G contains a countable sub-
group H’ consisting of the elements of the form (1) that have only a finite
number of non-zero coefficients k,. If now & is an arbitrary element of H,
then we can subtract from it an element A’ of H’ such that the difference
h—k can be written in the form (1) with all coefficients divisible by 2.
Thus

h—h'=2h,,
and it is easy to see that h, belongs to H, so that
h—We2H.

This shows that every coset of ZH in H contains an element of H’, so that
H/2H is countable.

By the same method it can be proved more generally (see Baer [15])
that no unrestricted direct sum of an infinite set of groups of rank 1 and
of one and the same type, other than R, can be completely decomposable.
Moreover, in the paper by Mi8ina [1] it is shown that if a group G is the
unrestricted direct sum of groups 4, of rank 1 (a ranging over an index
set M) then G is completely decomposable if and only if among the groups 4,
there is only a finite number not of type R.

The groups we have constructed above are, although not completely
decomposable, at least decomposable into direct sums: from the unrestricted
direct sum of cyclic groups we can always split off a cyclic direct summand.
There exist, however, abelian torsion-free groups of rank greater than 1
which are not decomposable at all into a direct sum. This follows from a
theorem of Baer [15]:

Every serving subgroup H of the additive group J of p-adic integers
(see § 21) is indecomposable; in particular, J itself is indecomposable.

For consider the subgroup pJ consisting of the p-fold multiples of all
elements of J. This contains precisely those p-adic integers that have in the
representation (9) of § 21 a zero in the first place, that is, in which 2, =0.
1t follows that the index of pJ in J is p.
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Therefore the index of pH in H is also p, so that the factor group H/p H
is cyclic of order p. For
pPH=HNpJ,

since H is a serving subgroup of J, and
J=H+pJ,

since the index of pJ in J is a prime number ; it now remains to apply the
isomorphism theorem
H/pH=17/p]J.
If H is decomposable,
H=H,+H 2

then H, and H,, as serving subgroups of H, are also serving subgroups of J.
Hence the factor groups H,/pH, and H,/pH, are cyclic of order ». But

pH=pH1 +PH2,

so that H/p H appears as a direct sum of two cyclic groups or order p, and
this is a contradiction.

Since J has the cardinal number of the continuum we can find in it
serving subgroups of any finite or infinite rank not exceeding the cardinal
number of the continuum. It is still an open problem whether there exist
indecomposable abelian torsion-free groups of an arbitrary infinite cardinal
number.

Some other classes of abelian torsion-free groups, closely related to com-
pletely decomposable groups, are also studied in the paper by Baer [15].
For example, an abelian torsion-free group G is called separable if every
finite set of elements of G is contained in a completely decomposable direct
summand of G; obviously we can assume that this direct summand has
finite rank. Every completely decomposable group is, of course, separable.

Every countable separable group G is completely decomposable.

For let the elements of G be g, g2, ..., &, ---. We put 4,=0.
Suppose we have already found a completely decomposable direct sum-
mand A4, of G, of finite rank, containing g, gz, ..., gn. Then we take as

Ay a completely decomposable direct summand of G that has finite rank
and contains g,+1 as well as a maximal linearly independent set of elements
of A,. Since Any, is a serving subgroup of G and A4, is contained in
Ay+1, we must have a direct decomposition
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An-i-l = An+Bn+1-

B, ., as a direct summand of a completely decomposable group of finite
rank, is itself completely decomposable (see the preceding section). G is
the union of the ascending sequence of subgroups A, n==0,1,2,...,
and is therefore the direct sum of the completely decomposable groups
B,, n=1,2,...; that is, G is completely decomposable. |

In the non-countable case there exist separable groups that are not com-
pletely decomposable: the unrestricted direct sum of an infinite set of
infinite cyclic groups is separable but, as we have shown above, not com-
pletely decomposable.

For let G be the unrestricted direct sum of infinite cyclic groups with
generators a, (a ranges over a certain index set). We show, first of all,
that every element g of G is contained in a completely decomposable direct
summand of G.

The element g, g %0, has a representation
g =2 kuti, @)

where the %, are integers. We denote by k(g) the smallest absolute value
of the non-zero coefficients k,,

k(g)=min (|k.|, ka 54 0).
If 2(g)==1, then there is an index B such that

kp=il.
Then
G={g}+ ¢,

where G’ consists of all the elements of G for which the coefficient of a5 in
the representation (2) is equal to zero; G’ is itself the unrestricted direct
sum of infinite cyclic groups.

Now let £(g) be arbitrary. We divide every coefficient &, in (2) by £(g) :

k¢=k(g)q¢+ra’ Oé ra<k(g)'
Then

g=Fk(g) gt g,
where
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£y =§ Gl 2= D Tely

Since there exists a f§ such that k(g)= = kg, gg==* 1, and there-
fore £(g:)=1. We have, then, a direct decomposition

G={au}+,

where G’ consists of all the elements of G for which the coefficient of as
in (2) is equal to zero. To these elements there belongs g., g.€G’. But
k(g:) is strictly less than k(g), because all the coefficients 7, are strictly
less than k2(g). We can therefore assume by induction that there exists a
direct decomposition

G'=4 + B,

where A contains g,, is completely decomposable, and is a free group of
finite rank, while B consists of all the elements of G for which the co-
efficients of a finite humber of fixed @, in (2) are equal to zero. g is now
contained in the completely decomposable direct summand {g,} + 4 of G.

Finally, if g1, g2, ..., gx 1s a finite system of elements of G, then we
can assume that there exists a direct decomposition

G=U+V,

where U is a completely decomposable direct summand containing
g1, 825 -+, gn—1 and V is the unrestricted direct sum of infinite cyclic
groups. Then

gn=1u+ v, ueU, vel,

and since we have proved that there exists a direct decomposition
V=A4+ B

such that A4 is completely decomposable and contains v, the direct summand
U+ A of G is also completely decomposable and contains all the given
elements; the direct summand B is again the unrestricted direct sum of
infinite cyclic groups. This proves that G is separable.

Other classes of abelian torsion-free groups are also studied in the paper
by Baer [15], in particular direct sums of groups in which all non-null
elements have one and the same type. Kontorovi¢ [7] has shown that the
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theory of this class of groups can be extended to non-commutative torsion-
free groups in which, as in all abelian torsion-free groups, the equation

am=a, n>0,
has at most one solution.

The theory of abelian torsion-free groups has also been developed in
another direction; in § 30 we gave a classification of groups of rank 1;
several classes of abelian torsion-free groups can be classified in a similar
way. For example, Kuro8 [6] has indicated a method of classifying the
groups that are isomorphic to subgroups of the direct sum of a finite number
of groups of type R, (that is, groups isomorphic to the additive group of
p-ic fractions) ; simplifications of some of the proofs are contained in a
paper by Kaloujnine [1]. This classification by means of matrices with
p-adic elements provided the first example of indecomposable abelian
torsion-free groups of arbitrary finite rank—examples of this kind,
of rank 2, had been found previously by Levi [1] and Pontryagin [1].
This method of classification has been carried over to the case of arbitrary
abelian torsion-free groups of finite rank in papers by Derry [1] and
Mal’cev [1];* they use systems of matrices with p-adic elements for all
prime numbers p. An extension of this method to arbitrary countable
abelian torsion-free groups has been given in a paper by Szekeres [1],
and the assumption of countability of the groups can, in fact, easily be
removed. However, in all these cases the classification of the groups turns
out to be extremely complicated; it is hardly a help in the investigation of
the groups, but is rather a method of describing them.

On the whole, the theory of abelian torsion-free groups is still very far
from complete. For example, it is an open problem whether decompositions
of an abelian torsion-free group of finite rank into direct sums of inde-
composable groups are isomorphic—a counter-example in a relevant paper
by B. Jénsson (Bull. Amer. Math. Soc. vol. 51 (1945), p. 364) is incorrect.

1 See also § 40 and § 41 of the first edition of this book.
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Appendix A (page 39)

@ We consider permutations x on the set of » symbols {1, 2, ..., n} and
write them as right-hand operators. Positive and negative powers of & are
defined in the obvious way; x® is the identity permutation. If ix 5= 1, we say
that the symbol ¢ is affected by, or moved by, n; if ix=1, we say that i is
left invariant by x. A permutation x is called cyclic or a cycle if of any two
symbols moved by x each is carried into the other by a suitable power of .
In that case

n_(alaz...ak_lak...i...j...),
" \aza ..o &t g )

we write n=(a,, 0z, ..., ax) and call k the length of the cycle. A cycle
of length two is called a transposition: n = (b, c). Every cycle of length &
can be written as a product of 2 — 1 transpositions. In fact,

(01, ag, ..., ak) = (01, 02) (01, aa) ven (01, ak—l) (01, a’k)-

Every permutation © can be written as a product of disjoint cycles, unique
apart from order of the factors. For let a and b be symbols of the set
{1,2,...,n}. We say that a is equivalent to b if a power of = carries
ainto b, say e = b. This is an equivalence relation, because the transitive
and reflexive properties obviously hold and the symmetry follows from the
fact that bn—! =a. This equivalence relation splits the set {1,2, ..., n}
into disjoint classes ; each class is a cycle, and = is the product of these cycles.

We write t=1(aq, ..., a) (b1, ..., b1)(c1, - .., m) ... ; cycles of length
1 (thdt is, symbols left invariant by x) can be omitted. As an example:

1234567 8 91011
31014675119 8 2°) = (13)(210811)(567).

Hence every permutation & can be written as a product of transpositions.
If x has r cycles (cycles of length 1 being included in the count) then x can
be written as a product of # — r transpositions.

If a given permutation ™ on n symbols splits into r disjoint cycles, then
the number of transpositions in all possible representations of n as a product
of transpositions is always even or odd according as n— r is even or odd.

225
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We shall show first that, when = is multiplied by a transposition (b, ),
then r is increased or decreased by 1 (hence #n — r is decreased or increased
by 1), according as b and ¢ lie in the same or in distinct cycles of x. For if

n=(ba,...0:ca5...a,)...,
then
n(bc) = (bay...a:)(cas...a,),

and r has been increased by 1. If
n=(bay...a;)(cas...a,)...,
where one or both cycles may be of length 1, then
n(bc) = (bay...0:c0a5...05). ..

and r has been decreased by 1. Now the identity permutation has » =,
n—r=0; hence the parity of the number of transpositions' in all repre-
sentations of x is fixed and is the same as that of n — 7.

Appendix B (page 40)

b Example 14 falls under the type considered in 13 if the property a is
taken to be: the mappings affect only a finite number of symbols. In
current terminology, the group in 13 is also called the unrestricted, and the
group in 14, the restricted symmetric group. Note that if the cardinal number
of the set of symbols is m, then the restricted symmetric group is of
cardinal number m, the unrestricted of cardinal number 2™, The unrestricted
alternating group of infinite cardinal number cannot be defined.

Appendix C (page 48)

¢ It is often convenient to admit also an empty set of elements of a group G.
In this case the subgroup generated by an empty set of elements is taken to be
the trivial subgroup E.

Appendix D (page 52)

d The set of subgroups can, therefore, be ordered “by inclusion”: we
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agree to say that A, precedes Ag whenever A4, is contained in 4g. The con-
struction given in the text can be carried out under even more general
conditions. Suppose that a set of subgroups A4, of G is given (where a
ranges over an index set N') and that for any two subgroups 4,, Ag the set
includes at least one subgroup A, containing both A4, and Ag. The set can
then be partially ordered “by inclusion,” the index set N becomes a directed
set, and the union of the set of subgroups can be proved to be a subgroup
of G, as in the text. As to partial order, see also § 43.

Appendix E (pages5)

®There exists another construction of a limit group of a set of groups
{G.}, the so-called inverse limit. We begin by explaining the construction
in the case of a simple sequence of groups. Suppose that

Gy, G2y vvvy Gy ot (1)

are groups and that for every # a homomorphic mapping ¢, of G,4+1 onto
G, is given:
If go11€Gpy1, then g, :1¢,€G,, and for every g,€G, there is a gn4.
such that
En=Ent+1Pn. (2)

We again define a thread to be a sequence of elements

Y=— 815825+«

in which, for n=1, 2, ..., g,€ G, and go+1@n= gs. Then

'Yfl—-_- g7 g7 ..
is also a thread, and if
Y’ = gl” g'?-') ceey

is another thread, then vy = g: £./, g.¢2’, ... is also a thread. Under this
multiplication the threads are easily seen to form a group, the inverse limit
of the sequence (1) with the homomorphisms (2).

This construction can be extended to arbitrary partially ordered sets of
groups { G4}, where a ranges over an index set N. Let the index set N be
directed, that is, partially ordered with a transitive relation = such that for
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every pair o, f€N there exists a yeN such that a < vy, f = y. Now sup-
pose that for every pair G,, Gg with a = f§ a homomorphic mapping @g,
of Gg onto G, is given and that, whenever a = f§ = vy, we have for every
§v€Gy

EvPrya = gy PvBPBa-

We then define a thread as a set of elements { g} such that for every ae N
we have g,€ G, and for every pair a, fe N with a = f the elements g, and gg
are linked by the relation

§a = £BPBa-

The inverse of a thread and the product of two threads are defined in the
obvious way, and under this multiplication the set of threads becomes a
group, the tnverse limit of the set { G5} with the homomorphisms gg,.

For applications of the inverse limit see Haimo [1], G. Higman [4],
G. Higman and A. H. Stone [1].

Appendix F (page 77)
fThis result can be generalized as in §7. Instead of the sequence Uy,
k=1, 2, ... of subgroups we can take any collection of subgroups U,

(where the index a ranges over an ordered set A) which is ordered by inclu-
ston so that U, S Ug when a < f; it is even sufficient to assume that the
groups U, are partially ordered by inclusion, provided that for any two
a, Be A there exists a ye A such that U, contains both U, and Usg.
(The index set then forms a directed set.) Furthermore, the subgroups U,
need not all be simple, provided that for every a € A there exists a f € 4 with
o < P such that Ug is simple. The union of the collections U, of subgroups
is then a simple group.

Appendix G (page 87)

9 Even if the original is single-valued, the endomorphism need not have
an inverse, because it may be an isomorphic mapping of the group into itself.

Let & be a mapping of a set M into itself. A right inverse mapping x.~* of n
exists if and only if & is one-to-one; x,—?* is then a mapping of M, onto M.
A left inverse mapping m—? of n exists if and only if x is onto; m~'is then a
one-to-one mapping of M into itself. Hence an inverse mapping n~?* exists
if and only if x is a one-to-one mapping of M onto itself or a “permutation”
of M.
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Consider the group of sequences of integers (a1, @z, ..., Gy, ...) with
addition of components as the group operation. Then the mapping

(a1, a:, ...)'—)(ae,ag, ..-)

is a homomorphic many-to-one mapping of the group onto itself and has a
left inverse but no right inverse, whereas the mapping

(a'l, az, )_>(0, a:, G, )

is a homomorphic one-to-one mapping of the group into itself and has a
right inverse but no left inverse.

Appendix H (page 99)

h The author uses the term metabelian. But in current terminology a
metabelian group is one whose derived group (see the end of § 14) is abelian.
This class of groups is again much wider than that of nilpotent groups of
class 2. In terms of the derived chain and lower central chain metabelian
groups are characterized by the equation G” = E, nilpotent groups of
class 2 by Go=E.

Appendix I (page 119)

i Tt is more accurate to say that the representation of an element g of G is
unique only apart from a finite number of factors that are the unit elements
of subgroups H, whose elements do not otherwise occur in the representation
of g. In the applications of the direct product (see, for example, Chapter VI)
it is sometimes desirable to retain such arbitrary unit elements as factors in
order to avoid the need to distinguish various cases. Note that there is no
ambiguity in the case of the direct product of a finite number of factors
(p. 117), where the representation of each element g of G requires a factor
from every subgroup H,,1=1, 2, ..., n. The parallelism between the cases
of a finite and an infinite number of factors is restored in the synthetic defini-
tion of a direct product (p. 122), where again each element of the direct
product to be constructed involves a factor from every group A4,.
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Appendix J (page 120)

i The simplest illustration of these statements about components in a direct
product is provided by Klein’s Four-group V' (see § 9). Let a==(12)(34),
b= (13)(24), c= (14)(23)=ab. V is easily seen to be the direct
product of its cyclic subgroups {a} and {b}, V= {a} X {b}, and in this
decomposition the component of ¢ in {a} is @ and in {b} is b, so that the
direct product of the components of {c¢} is V. Furthermore, /” has another
decomposition V= {a} X {c}, and in this decomposition the component
of ¢ in {a} is the unit element.

Appendix K (page 125)

k The author uses the term “word” for what we have called “reduced word”
and has no name for our “words,” or strings of symbols x,, #4~*. Our
terminology is more in keeping with current usage.

Appendix L (page 128)

' The reader should bear in mind that “element of a free group” and
“word” (even “reduced word”) are conceptually two distinct objects. The
same group element can be represented by different reduced words, because
the set of generators of the free group can be altered without altering the
group.

Appendix M (page 130)

m The reader should convince himself that in the Examples 2 and 3 the
group R and the group of type p= are, in fact, isomorphic to the groups
defined by the relations of the text and not to factor groups of those groups.
It should also be noted for later use (p. 165) that every torsion-free homo-
morphic image of R is an isomorphic image (if R/N is torsion free, then
N =0) and that every homomorphic image of a group of type p= is itself

of type p= (p. 57).

Appendix N (page 151)

n The subgroup theorem can be supplemented by the following existence
theorem (the proof is simple and can be left to the reader): For every
choice of the numbers s, Iy, and By, subject to the conditions (6), (7),
and (8), G contains at least one subgroup H with the prescribed invariants.
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Appendix O (page 162)

° Detailed studies of modules over principal ideal rings, with many exer-
cises, are contained in the recent books by Bourbaki [1] and Kaplansky [3],
§ 12 1.

Appendix P (page 170)

P In his definition of height the author does not attribute a height to the
null element of a group. In this case the expression group without elements
of infinite height is to be taken literally. On the other hand, to give but one
example, the group G* of § 27 has to be described as consisting of all the
elements of infinite height in G, together with the null element.

Appendix Q (page 193)

a4 A new proof of Ulm’s Theorem (Kaplansky and Mackey [1]; see also
Bourbaki, Algébre, Chap. VII, § 2, Exercises, pp. 74-81 (1952)) extends
it to countably generated torsion modules over a principal ideal ring. The
authors also treat the case of countably generated modules over the p-adic
integers (or more generally, over a complete discrete valuation ring) pro-
vided the torsion-free rank does not exceed 1, and they find that for a
complete set of invariants the Ulm factors have to be supplemented by one
further invariant, a certain equivalence class of sequences of ordinals. The
new feature of this proof is that (in the language of group theory) the groups
to be classified are no longer primary, but mixed. Torsion-free abelian
groups have not yet been completely classified, even in the countable case.
See also p. 221,






BIBLIOGRAPHY






BIBLIOGRAPHY

This Bibliography is that of the second Russian edition supplemented with a few addi-
tional references (marked by a dagger (¥)) to the material of Vol. I. Vol. II will contain
a separate bibliography consisting of references to relevant group-theoretical papers of
recent years.

The transliteration of Russian names is that of the Mathematical Reviews, except in the
case of a few names (Dietzmann, Fuchs-Rabinovi¢, Schmidt) where a different form is in
more general use. Russian-language papers have been indicated by an asterisk (*), and
the titles of such papers are given in English translation.

ADELSBERGER, H.
3y Uber unendliche diskrete Gruppen, J. reine angew. Math, vol. 163 (1930),
pp. 103—124,
Apo, 1. D.
*[1] On nilpotent algebras and p-groups, Doklady Akad. Nauk SSSR., vol. 40
(1943), pp. 339—342.
*{2] On subgroups of the countable symmetric group, Doklady Akad. Nauk SSSR.,
vol. 50 (1945), pp. 15—18.
*{3] Locally finite p-groups with minimal condition for normal subgroups, Doklady
Akad. Nauk SSSR. vol. 54 (1946), pp. 475—478.
*[4] Proof of the countability of a locally finite p-group with minimal condition
for normal subgroups. Doklady Akad. Nauk SSSR. vol. 58 (1947), pp. 523—

524.
ArTIN, E.
[1] The free product of groups, Amer. J. Math., vol. 69 (1947), pp. 1—4.
BaAEr, R.
[1]1 Zur Esnfiihrung des Scharbegriffs, J. reine angew. Math,, vol. 160 (1929),
pp. 199—207.

[2] Sttuation der Untergruppen und Struktur der Gruppe, S.-B. Heidelberg. Akad.,
vol. 2 (1933), pp. 12—17.

[3] Der Kern, eine charakteristische Untergruppe, Comp. Math.,, vol. 1 (1934),
pp. 254—283.

[4] Erweiterung von Gruppen und ihren Isomorphismen, Math. Zeit.,, vol. 38
(1934), pp. 375—416.

151 The decomposition of enumerable, primary, abelian groups into direct sum-
mands, Quart. J. (Oxford), vol. 6 (1935), pp. 217—221.

[6] The decomposition of abelian groups into direct summands, Quart. J. (Oxford),
vol. 6 (1935), pp. 222—232.

[7] Types of elements and characteristic subgroups of abelian groups, Proc. London
Math. Soc., vol. 39 (1935), pp. 481-514,

[8] Gruppen mit hamiltonschem Kern, Comp. Math., vol. 2- (1935), pp. 241-—246.
235



236

BIBLIOGRAPHY

[9] Zentrum und Kern von Gruppen mit Elementen unendlicher Ordnung, Comp.

Math,, vol. 2 (1935), pp. 247—249.

[10} Automorphismen von Erweiterungsgruppen, Actualités Scient. et Industr.,
no. 205, Paris, 1935,

{11] Die Kompositionsreihe der Gruppe aller eineindeutigen Abbildungen einer
unendlichen Menge auf sich, Studia Math,, vol. 5 (1934), pp. 15—17.

[12] Gruppen mit vom Zentrum wesentlich verschiedenem Kern und abelschey
Faktorgruppe nach dem Kern, Comp. Math., vol. 4 (1936), pp. 1—77.

[13] The subgroup of the elements of finite order of an abelian group, Ann. of Math.,
vol. 37 (1936), pp. 766—781.

[14} Primary abelian groups and their automorphisms, Amer. J. Math,, vol. 59
(1937), pp. 99—117.

[15] Abelian groups without elements of finite order, Duke Math. J., vol. 3 (1937),
pp. 68—122,

[16] Dualism in abelian groups, Bull. Amer. Math. Soc., vol. 43 (1937), pp. 121—
124,

[17] Groups with abelian central quotient group, Trans. Amer. Math. Soc., vol. 44
(1938), pp. 357—2386.

[18) Groups with preassigned central and central gquotient group, Trans. Amer.
Math. Soc., vol. 44 (1938), pp. 387—412,

[19] The applicability of lattice theory to group theory, Bull. Amer. Math. Soc.,
vol. 44 (1938), pp. 817—820.

[20) The significance of the system of subgroups for the structure of the group,
Amer. J. Math,, vol. 61 (1939), pp. 1—44.

[21] Dauality and commutativity of groups, Duke Math. J., vol. 5 (1939), pp. 824—
838.

[22) Almost hamiltonian groups, Comp. Math., vol. 6 (1939), pp. 382—406.

[23] Groups with abelian norm guotient group, Amer. J. Math., vol. 61 (1939),
pp. 700—708,

[24] Nilpotent groups and their generalization, Trans. Amer. Math. Soc., vol. 47
(1940), pp. 393—434,

[25) Sylow theorems for infinite groups, Duke Math. J., vol. 6 (1940), pp. 598—614.

[26] Abelian groups that are direct summands of every containing abelian group,
Bull. Amer. Math. Soc., vol. 46 (1940), pp. 800—806.

[27) Automorphism rings of primary abelian operator groups, Ann. of Math,, vol.
44 (1943), pp. 192—227.

[28] A theory of crossed characters, Trans. Amer. Math. Soc., vol. 54 (1943),
pp. 103—170.

[29] The higher commutator subgroups of a group, Bull. Amer. Math. Soc., vol. 50
(1944), pp. 143—160.

[30) Groups without proper isomorphic quotient groups, Bull. Amer. Math. Soc.,
vol. 50 (1944), pp. 267—278.

[31] Crossed isomorphisms, Amer. J. Math., vol. 66 (1944), pp. 341—404.



BIBLIOGRAPHY 237

[32] Representations of groups as quotient groups, Trans. Amer. Math. Soc., vol.
58 (1945), pp. 295—419.

[33] Absolute retracts in group theory, Bull. Amer. Math. Soc., vol. 52 (1946),
pp. 501—506.

[34) The double chain condition in cyclic operator groups, Amer. J. Math., vol. 69
(1947}, pp. 37—45.

[35] Splitting endomorphisms, Trans. Amer. Math. Soc., vol. 61 (1947), pp. 508—
516.

[36] Endomorphism rings of operator loops, Trans. Amer. Math. Soc., vol. 61
(1947), pp. 517—529.
[37] Direct decompositions, Trans. Amer. Math. Soc., vol. 62 (1947), pp. 62—98.

[38] The role of the center in the theory of direct decompositions, Bull. Amer, Math,
Soc., vol..54 (1948), pp. 167—174,

{39] Direct decompositions into infinitely many summands, Trans. Amer. Math.
Soc., vol. 64 (1948), pp. 519—1551.

[40] Finiteness properties of groups, Duke Math. J.. vol. 15 (1948), pp. 1021—1032.

[41] Groups with descending chasn condition for normal subgroups, Duke Math. J.,
vol. 16 (1949), pp. 1—22.

[42] Extension types of abelian groups, Amer. J. Math., vol. 71 (1949), pp. 461—
490,

[43] Die Schar der Gruppenerweiterungen, Math. Nachr., vol. 2 (1949), pp. 317—
327.

[44] Free sums of groups and their generakizations, Amer. J. Math., vol. 71 (1949),
pp. 706—742; vol. 72 (1950), pp. 625—646, 647—670.

[45) Endlichkeitskriterien fir Kommutatorgruppen, Math. Ann., vol. 124 (1952),
pp. 161—177.

Baeg, R. and Levi, F.

[11 Volistindige irreduzible Systeme von Gruppenaziomen, S.-B. Heidelberger
Akad. Wiss., vol. 2 (1932), pp. 3—12 (Beitr. zur Algebra 18).

[2] Freie Produkte und shre Untergruppen, Comp. Math., vol. 3 (1936), pp. 391—
398.
BAER, R. and WiLLiAMS, C.
[1] Splitting criteria and extension types, Bull. Amer. Math. Soc., vol. 55 (1949),
pp. 729—743.
Bauer, M.
{1) Uber die alternierende Gruppe, Mat. fiz. Lapok, vol. 39 (1932), pp. 25—26.

BeaumonT, R. A.
{11 Projections of non-abelian groups upon abelian groups containing elements of
infinite order, Amer. J. Math., vol. 64 (1942), pp. 115—136.
[2) Projections of the prime-potver abelian group of order pm and type (m—1,1),
Bull. Amer. Math. Soc., vol. 48 (1942), pp. 866—870.



238 BIBLIOGRAPHY

[3] Groups with isomorphic proper subgroups, Bull. Amer. Math. Soc., vol. 51
(1945), pp. 381—387.
BerLINROV, M. L.
*[1] Groups with a compact subgroup lattice, Doklady Akad. Nauk SSSR., vol. 8
(1952), pp. 505—508.
BIrkHOFF, G.

[1] On the combination of subalgebras, Proc. Cambridge Phil. Soc., vol. 29 (1933),
pp. 441—464.

[2] Transfinite group series, Bull. Amer. Math. Soc., vol. 40 (1934), pp. 847—850.

[3) Subgroups of Abelian groups, Proc. London Math. Soc., vol. 38 (1934), pp.
385—401.

[4] Lattices and their applications, Bull. Amer. Math. Soc., vol. 44 (1938), pp.
793—800.

[5) Lattice Theory, Amer. Math. Soc., New York (1940), 2nd ed. (1948).

[6] The radical of a group with operators, Bull. Amer. Math. Soc., vol. 49 (1943),
pp. 751—753. '

BirkHOFF, G. and HaLL, P.

[1]1 On the order of groups of automorphisms, Trans. Amer. Math. Sac., vol. 39
(1936), pp. 496-—499.

Boursaki, N.

+[1]1 Aigébre, Chap. VII (Modules sur les anneaux principausr), Actualités Scient.
et Ind. no. 1179, § 2, Exercises.

Brown, A. B.
[1] Group invariants and torsion coefficients, Ann. of Math,, vol. 33 (1932), pp.
373—376.
BuNpGaArp, S. and NIELSEN, J.

[1] On normal subgroups with finite index in F-groups, Mat. Tidsskrift B, (1951),
pp. 5658,

Burnsipg, W.
[11 The Theory of Groups of Finite Order, Cambridge (1897), 2nd ed. (1911).

[2] On an unsettled question in the theory of discontinuous groups, Quart. J., vol.
38 (1902), pp. 230—238.

[3] On criteria for the finiteness of the order of a group of linear substitutions,
Proc. London Math. Soc., vol. 3 (1905), pp. 435—440.
CARIN, V.S.

*[1] Remark on the minimal condition for subgroups, Doklady Akad. Mauk SSSR.,
vol. 66 (1949), pp. 575—576.

X[2] On complete groups with a radical series of finite length, Doklady Akad.
Nauk SSSR., vol. 66 (1949), pp. 809—811.



BIBLIOGRAPHY ‘ 239

*(3] On the theory of locally nilpotent groups, Mat. Sbornik, vol. 29 (1951), pp.
433454,

Cmtmxov, S.N.

*[1] Eaxtension of a theorem of Frobenius to infinite groups, Mat. Shornik, vol. 3
(1938), pp. 413—416.

*[2] On a theorem of Frobenius, Mat. Sbhornik, vol. 4 (1938), pp. 531—539.

*[3] Infinite special groups, Mat. Sbornik, vol. 6 (1939), pp. 199—214,

*[4] Infinite locally solvable groups, Mat. Sbornik, vol. 7 (1940), pp. 35—64.

*[5] On the theory of infinite special groups, Mat, Sbornik, vol. 7 (1940), pp. 539—
548.

*[6] On groups with a Sylow set, Mat. Sbornik, vol. 8 (1940), pp. 377—394.

*[7] On the theory of locally solvable groups, Mat. Sbornik, vol. 13 (1943), pp.
317--333.

*[8] On infinite special groups with finite center, Mat. Sbornik, vol. 17 (1945),
pp. 105—130.

*[9] On the theory of infinite p-groups, Doklady Akad. Nauk SSSR., vol. 50
(1945), pp. 71—74.

*[10] Complete groups with an ascending cenitral series, Mat. Sbornik, vol. 18
(1946), pp. 397422,

*[11] On the theory of finite p-extensions of abelian p-groups, Doklady Akad. Nauk
SSSR., vol. 58 (1947), pp. 1287—1289.

V*[12] Infinite groups with finite layers, Mat. Sbornik, vol. 22 (1948), pp. 101—133,
v*[13] On the theory of complete groups, Mat. Sbornik, vol. 22 (1948), pp. 319—
348, 455-—456.
*[14] On the theory of special p-groups, Doklady Akad. Nauk SSSR., vol. 63 (1948),
pp. 11—14,
*[15] On the theory of locally solvable groups with minimal condition for subgroups,
Doklady Akad. Nauk SSSR., vol. 65 (1949), pp. 21—24.
*[16] On complete groups with ascending central series, Doklady Akad. Nauk
SSSR., vol. 70 (1950), pp. 965—968.
*[17] On the centralizer of a complete abelian normal subgroup of an infinite periodic
group, Doklady Akad. Nauk SSSR., vol. 72 (1950), pp. 243—246.
*[18] On the minimal condition for abelian subgroups, Doklady Akad. Nauk SSSR.,
vol. 75 (1950), pp. 345347,
*[19] Periodic Z A-extensions of complete groups, Mat. Sbornik, vol. 27 (1950),
pp. 117128,
*[20] On special p-groups, Mat. Sbornik, vol. 27 (1950), pp. 185—200.

*[21] On locally solvable groups with minimal condition for subgroups, Mat. Sbor-
nik, vol. 28 (1951), pp. 119—129.

CHATELET, A.
[1] Les groupes abéliens finis et les modules de points entiers Paris, Lille (1925).



240 BisLioGRAPHY

CLriFForp, A, H.

[1]1 Representations induced in an invariant subgroup, Ann. of Math., vol. 38
(1937), pp. 533—>550.

CL1FroRrD, A. H. and MAcCLANE, S.
[1] Factor-sets of a group in its abstract unit group, Trans. Amer. Math. Soc.,

vol. 50 (1941), pp. 385—406.

Cockcrort, W. H.

[1] The word problem in a group extension, Quart. J. Math. Oxford Ser. (2),
vol. 2 (1951), pp. 123-—134.

CoxETER, H. S. M.

[1] On simple isomorphism between abstract groups, J. London Math. Soc., vol. 9
(1934), pp. 211212,

[2] Abstract groups of the form Vk = V;’ = (V.V4s)*=1, J. London Math. Soc.,
vol. 9 (1934), pp. 213—219,

[3] The groups determined by the relations S'l=Tm= (S—'T—'ST)t=1,
Duke Math. J., vol. 2 (1936), p. 61—73,

[4] An abstract definition for the alternating group in terms of two gemerators,
J. London Math. Soc., vol. 11 (1936), pp. 150—156.

[5) The abstract groups Rm=Sm= (RiSi)t;=1, Sm=T'= (SiT)*,; =1,
and S =T*= (§—iTSiT)?;=1, Proc. London Math. Soc., vol. 41 (1936),
pp. 278—301.

[61 The abstract groups Gm,n»p, Trans. Amer, Math Soc., vol. 45 (1939), pp. 73—
150.

[7]1 A method for proving certain abstract groups to be infinite, Bull. Amer. Math.
Soc., vol. 46 (1940), pp. 246—251.

(fumnm, S. A,
*[1] On solvable groups, Izvestiya NIIMM Tomsk Univ., vol. 2 (1938), pp. 220—
223.
%[2] On p-properties of groups, Doklady Akad. Nauk SSSR., vol. 55 (1947), pp.
481484,
*[3] On the subgroups of relatively solvable groups, Doklady Akad. Nauk SSSR.,
vol. 58 (1947), pp. 1295—1296.
*[4) On I-separable groups, Doklady Akad. Nauk SSSR., vol. 59 (1948), pp.
443445,
“*[5] On Sylow regular groups, Doklady Akad. Nauk SSSR., vol. 60 (1948), pp.
773—774.
V'*[6] On I-properties of finite groups, Mat. Sbornik, vol. 25 (1949), pp. 321—346.
[6] English translation of above: T72, Russian Translation Project, Amer. Math.
Soc.

*[7] On theorems of Sylow’s type, Doklady Akad. Nauk SSSR., vol. 66 (1949),
pp. 165—168. '



BIBLIOGRAPHY 241

*[8] On conditions for theorems of Sylow’s type, Doklady Akad. Nauk SSSR.,
vol. 69 (1949), pp. 735—737.

*[9] On Sylow properties of finite groups, Doklady Akad. Nauk SSSR., vol. 73
(1950), pp. 29—32.

*[10] Sylow properties and semi-invariant subgroups, Doklady Akad. Nauk SSSR.,
vol. 77 (1951), pp. 973—975.

DepEKIND, R.
[1]1 Uber Gruppen, deren simmtliche Teiler Normalteiler sind, Math. Ann., vol. 48
(1897), pp. 548—7561.

(2] Uber die von drei Moduln erzeugte Dualgruppe, Math. Ann., vol. 53 (1900),
pp. 371—403.

Dt Groor, J.

[1]1 Exemple d’un groupe avec deux générateurs, contenant un sousgroupe com-
mutatif sans un systéme fini de générateurs, Nienw Arch. Wiskunde, vol. 23
(1950), pp. 128—130.

DErN, M.
1] Uber unendliche diskontinuierliche Gruppen, Math, Ann,, vol. 71 (1912), pp.
116—144.

DEerry, D.
1] Uber eine Klasse von Abelschen Gruppen, Proc. London Math. Soc., vol. 43
(1937), pp. 490—506.
[2) On finite abelian p-groups, Bull. Amer. Math. Soc., vol. 45 (1939), pp. 874—
881.

Dickson, L. E.
[1] Linear Groups, with an Exposition of the Galois Field theory, Leipzig (1901).

DierzmMANN (Dicman), A. P.
*[1] On p-groups, Doklady Akad. Nauk SSSR., vol. 15 (1937), pp. 71—76.
[2] Sur les groupes infinis, C. R. Acad. Sci. Paris, vol. 205 (1937), pp. 952—953.
*[3] On the centers of p-groups, Trudy Sem. Teor. Grupp, (1938), pp. 30—34.

*[4] Some theorems on infinite groups, Sbornik pamyati Akad. Gravé, (1940), pp.
63—67.

*[5] On multigroups of classes of conjugate elements of a group, Doklady Akad.
Nauk SSSR., vol. 49 (1945), pp. 323—326.

[6] On an extension of Sylow's Theorem, Ann. of Math., vol. 48 (1947), pp. 137—
146.

*[7] On Sylow’s Theorem, Doklady Akad. Nauk SSSR., vol. 59 (1948), pp. 1235—
1236. .
DrerzMANN, A. P, Kuro§, A. G, and Uzxkov, A. 1.

[1] Sylowsche Untergruppen von unendlichen Gruppen, Mat. Sbornik, vol, 3
(1938), pp. 179—185.



242 ' BIBLIOGRAPHY

Donvanl, H. A,
*[1] Linear representation of the free product of cyclic groups, Ucenye zapiski
Leningrad Univ,, vol. 55 (1940), pp. 158—165.
Dyck, W.

[1]1 Gruppentheoretische Studien, Math. Ann., vol. 20 (.1882), pp. 1-—45; vol. 22
(1883), pp. 70—108.

Dyusyuk, P. E,
*[1] On subgroups of finite index in infinite groups, Mat. Sbornik, vol. 10 (1942),
pp. 147—150.
Dyusyuk, P. E. and Turkin, V. K.

[1] Théorémes sur les groupes infinis, C. R. Acad. Sci. Paris, vol. 205 (1937),
pp. 435—437.

*[2] Theorems on infinite groups, Mat. Sbornik, vol. 3 (1938), pp. 425429,

EckMANN, B.

[1] Der Cohomologie-Ring einer beliebigen Gruppe, Comment. Math. Helv., vol.
18 (1946), pp. 232—282.

EILENBERG, S. and MACLANE, S.
[1] Group extensions and homology, Amn. of Math.,, vol. 43 (1942), pp. 757—831.

[2] Natural isomorphisms in group theory, Proc. Nat. Acad. Sci. U.S.A,, vol. 28
(1942), pp. 537—543.

[3] General theory of natural equivalences, Trans. Amer. Math. Soc, vol. 58
(1945), pp. 231—294,

[4) Cohomology theory in abstract groups, I, Ann. of Math., vol. 48 (1947), pp.
51—78.

[5] Cohomology theory in abstract groups, 11, Ann. of Math., vol. 48 (1947), pp.
326—341.

[6] Algebraic cohomology groups and loops, Duke Math. J., vol. 14 (1947), pp.
435—463.

Evererr, C. J.

[1] The basis theorem for vector spaces over rings, Bull. Amer. Math. Soc., vol. 51
(1945), pp. 531—532.

Fabpeev, D. K,

*[1] On factor systems in abelian operator groups, Doklady Akad. Nauk SSSR.,
vol. 58 (1947), pp. 361—364.

*[2] On the homology theory in groups, Izvestiya Akad. Nauk SSSR. Ser. Mat.,
vol. 16 (1952), pp. 17—22.

FEpERER, H. and JéNsson, B.

[1] Some properties of free groups, Trans. Amer. Math. Soc., vol. 68 (1950),
pp. 1--27.



BIBLIOGRAPHY 243

Feporov, Yu. G.
*[1] On infinite groups in which all non-trivial subgroups have finite index, Uspehi
Matem. Nauk, vol. 6: 1 (1951), pp. 187—189.

Frrming, H.

[1] Die Theorie der Automophismenringe Abelscher Gruppen und thr Analogen
bei nicht kommutativen Gruppen, Math. Ann., vol. 109 (1933), p. 616.

[2] Uber die direkten Produktzerlegungen einer Gruppe in direkt unterlegbare
Faktoren, Math. Zeit., vol. 39 (1934), pp. 16—30.

[3] ijber die Existenz gemeirisamer Verfeinerungen bei direkten Produkizer-
legungen einer Gruppe, Math. Zeit., vol. 41 (1936), pp. 380—395.

[4] Uber den Automorphismen bereich einer Gruppe, Math. Ann., vol. 114 (1937),
pp. 84—98.

[5] Die Gruppe der zentralenm Automorphismen einer Gruppe mit Hauptreihe,
Math. Ann,, vol. 114 (1937), pp. 355—372.

[6] Beitrdge zur Theorie der Gruppen endlicher Ordnung, Jahresber. Deutsch.
Math. Ver., vol. 48 (1938), pp. 77—141.

FoMmin, S. B.
[1] Uber periodische Untergruppen der unendlichen abelschen Gruppen, Mat.
Sbornik, vol. 2 (1937), pp. 1007—1009.

Frasch, H.

[1] Die Erzeugenden der Hauptkongruenzgruppen fiir Primzahlstufen, Math, Ann.,
vol. 108 (1933), pp. 220252,

FreupENTHAL, H.
[1]1 Teilweise geordnete Moduln, Proc. Akad. Wet. Amsterdam, vol. 39 (1936),
pp. 641—651.

FroBeEN1US, G.
[1] Uber die Kongruenz nach einem aus zwei endlichen Gruppen gebildeten Dop-
pelmodul, J. reine angew. Math,, vol. 101 (1887), pp. 273—299.

FroBentus, G. and STICKELBERGER, L.

[1] Uber Gruppen von vertauschbaren Elementen, J. reine angew. Math., vol. 86
(1879), pp. 217262,

Fucas (Fouxe, Fuks)-RapiNovic, D. 1.
*[1] On a representation of a free group, Ucenye zapiski Leningrad Univ., vol. 55
(1940), pp. 154—157.
*[2] On the non-simplicity of locally free groups, Mat. Sbornik, vol. 7 (1940),
pp. 327—328.
*[3] Example of a group with a finite number of generators and a finite number of

relations that does not admit an isomorphic representation by matrices of finite
. order, Doklady Akad. Nauk SSSR., vol. 27 (1940), pp. 425—426.



244 BIBLIOGRAPHY

*[4) Example of a discrete group with a ﬁn;'te numbey of generators and relations
that has no complete system of linear representations, Doklady Akad. Nauk
SSSR., vol. 29 (1940), pp. 549-—550.

[5] On the determinators of an operator of the free group, Mat. Sbornik, vol. 7
(1940), pp. 197—208.

*[6] On the groups of automorphisms of free products I, Mat. Sbornik, vol. 8
(1940), pp. 265—276.

*7] On the groups of automorphisms of free products 11, Mat. Shornik, vol. 9,
(1941), pp. 183—220.

GEoORG, E.
[1] Uber den Satz von Jordan-Holder-Schreier, J. reine angew. Math., vol. 180
(1939), pp. 110—120.

GLIvENKO, V. 1.
[1) Théorie générale des structures, Actualités Scient. et Ind. No. 652, Paris

(1938).

Gru3kov, V. M.

*[1] On the normalizers of complete subgroups in a complete group, Doklady Akad.
Nauk SSSR., vol. 71 (1950), pp. 421—424.

*[2] On the theory of Z A-groups, Doklady Akad. Nauk SSSR., voi. 74 (1950),
pp. 885—888.

*[3] On locally nilpotent torsion-free groups, Doklady Akad. Nauk SSSR., vol. 80
(1951), pp. 157—160. _

*[4] On some problems in the theory of nilpotent and locally nilpotent torsion-free
groups, Mat. Sbornik, vol. 30 (1952), pp. 79—104,

‘GoHEEN, H.
[1] Proof of a theorem of Hall, Bull. Amer. Math. Soc., vol. 47 (1941), pp. 143—
144,

Govr’BERG, P. A.
*[1] Infinite semi-simple groups, Mat. Sbornik, vol. 17 (1945), pp. 131—142.
*(2] Sylow II-subgroups of locally normal groups, Mat. Sbornik, vol. 19 (1946),
pp. 451—460.
*[3] Sylow bases of Il-separable groups, Doklady Akad. Nauk SSSR., vol. 64
(1949), pp. 615—618.

GoL’FAND, YU. A.
*[1]) On the isomorphism of gromp extensions, Doklady Akad. Nauk SSSR,, vol. 60
(1948), pp. 1123—1125.
*[2] Metaspecml groups, Mat. Shornik, vol. 27 (1950), pp. 229—248.
*[3] On the automorphism group of the holomorph of a group, Mat. Sbornik, vol.
27 (1950), pp. 333—350.



BIBLIOGRAPHY 245

GoLoviN, O. N.
*[1] Factors without centers in direct decompositions of groups, Mat. Sbornik,
vol. 6 (1939), pp. 423—426.
*[2] On associative operations in the set of groups, Doklady Akad. Nauk SSSR.,
vol. 58 (1947), pp. 1257—1260.
*[3] Nilpotent products of groups, Mat. Sbornik vol. 27 (1950), pp. 427—454,
*[4] Metabelian products of groups, Mat. Sbornik, vol. 28 (1951), pp. 431—444,
*[5] On the problem of an isomorphism of nilpotent decompositions of a group,
Mat. Sbornik, vol. 28 (1951), pp. 445—452.
[3]—[5]1 English transiation of above: Russian Translation Project, Amer. Math.
Soc.’
GoLovin, O. N. and Sapovskii, L. E.
*[1] On the automorphism groups of free products, Mat. Sbornik, wol. 4 (1938),
pp. 505—514.

Graev, M. 1.
*[1] On the theory of complete direct products of groups, Mat. Sbornik, vol 17
(1945), pp. 85—104.
*[2] Direct sums of cycles in modular lattices, Mat. Sbornik, vol 19 (1946), pp.
439—450,
*[3] Isomorphisms of direct decompositions in modular lattices, Izvestiya Akad.
Nauk SSSR. Ser. Mat., vol. 11 (1947), pp. 33—46.

GrUN, O.
[1} Beitrlige zur Gruppentheorie, I, J. reine angew. Math,, vol. 174 (1935), pp.
1—14.
(2] Uber eine Faktorgruppe freier Gruppen, 1, Deutsche Math., vol. 1 (1936), pp.
972782,

[3] Zusammenhang swischen Potensbildung und Kommutatorbildung, J. reine
angew. Math,, vol. 18 (1940), pp. 158—177.

[4] Beitrdge sur Gruppentheorie, 11, J. reine angew. Math., vol. 186 (1948), pp.
165—169,

[5] Beitrige sur Gruppentheorie, 111, Math. Nachr., vol. 1 (1948), pp. 1—24.

[6]) Beitrdge zur Gruppentheorie, IV, Math, Nachr., vol. 3 (1949), pp. 77—94,

Grulko, L. A.
*[1] Solution of the word problem in groups with certain relations of a special form,
Mat. Shornik, vol. 3 (1938), pp. 543—551.
*[2] On the bases of a free product of groups, Mat. Sbornik, vol. 8 (1940), pD.
169—182.

Guna, U.
[1] On the endomorphic mapping {m} of a group, Bull. Calcutta Math. Soc., vol.
38 (1946), pp. 101—107.



246 BIBLIOGRAPHY

Haar, A,

{13 Uber unendliche kommutative Gruppen, Math. Zeit., vol. 33 (1931), pp. 129—
159.

[2] Uber die Gruppencharaktere gewisser unendlicher Gruppen, Acta Litt. Sci.
Szeged, vol. 5 (1932), pp. 172—186.

HArmo, F.
+{1] Preservation of dwmbchty i quotient groups, Duke Math. J., vol. 15 (1948),
pp. 347—356.
HaLL, M..
[1] Group rings and extensions, I, Ann. of Math., vol. 39 (1938) pp. 220—234.

[2) Coset representations in free groups Trans. Amer. Math. Soc., vol. 67 (1949),
pp. 421—432.

[3] Subgroups of finite index in free groups, Canadian J. Math vol. 1 (1949),
pp. 187—-190.

[4] A topology for free groups and related groups, Ann. of Math., vol. 52 (1950),
pp. 127—139. ‘
Harr, M. and Rano, T.
[1] On Schreier systems in free groups, Trans. Amer. Math. Soc., vol. 64 (1948),
pp. 386—408. .
HaLL, P.
[1] A note on soluble groups, J. London Math Soc., vol. 3 (1928), pp. 98—105.

[2] A contribution to the theory of groups of pnme-power order, Proc. London
Math. Soc., vol. 36 (1933), pp. 29--95.

[3]1 On a theorem of Frobemius, Proc. London Math. Soc., vol. 40 (1935), pp.
468—501.

[4] A characteristic property of soluble groups, J. London Math, Soc., vol. 12
(1937), pp. 198—200.

[S] Complemented groups, J. London Math. Soc., vol. 12 (1937), pp. 201—204.

[6] On the Sylow systems of a soluble group, Proc. London Math. Soc., vol. 43
(1937), pp. 316—323. '

[7] The classification of prime-power groups, J. reine angew. Math vol. 182
-(1940), pp. 130—141.

[8] Verbal and marginal subgroups, J. reine angew Math., vol. 182 (1940), pp.
156—157.

[9] On groups of automorphisms, J. reine angew. Math vol. 182 (1940), PP-
194—204,

[10] The construction of soluble groups, J. reine angew. Math., vol. 182 (1940),
pp. 206—214.
HieMmAN, G.

[1} Note on a theorem of R. Baer, Proc. Cambr, Phll Soc., vol. 45 (1949), PD-
321327,



BIBLIOGRAPHY 247

[2] A finitely related group with an isomorphic proper factor group, J. London
Math. Soc., vol. 26 (1951), pp. 59—61.

[3] A finitely generated infinite simple group, J. London Math. Soc., vol. 26
(1951), pp. 61—64. .

t[4] Unrestricted free products, and varieties of topological groups, J. London
Math. Soc., vol. 27 (1952), pp. 73—81.

HieMAN, G, NEUMANN, B. H., and NEUMANN, H.

[1] Embedding theorems for groups, J. London Math. Soc., vol. 24 (1949), pp.
247254,

HicMAN, G. and STONE, A. H.

+[1] On inverse systems with trivial limits, J. London Math. Soc., vol. 29 (1954),
pp. 233—236.

HmscH, K. A.

[1] On infinite soluble groups, I, Proc. London Math. Soc., vol. 44 (1938), pp.
53—60

[2] On infinite soluble groups, I1, Proc. London Math. Soc., vol. 44 (1938), pp.
336—344.

[3] On skew-groups, Proc. London Math. Soc., vol. 45 (1939), pp. 357—368.

[4] On infinite soluble groups, 111, Proc. London Math. Soc., vol. 49 (1946), pp.
184—194.

[5) Eine kennzeichnende Eigenschaft nilpotenter Gruppen, Math. Nachr., vol. 4
(1951), pp. 47—49.

HOLDER, O.
[1) Die Gruppen der Ordnungen p*, pq*, pqr, p*, Math. Ann.. vol. 43 (1893), pp.
301—412.
[2) Bildung zusammengesetzter Gruppen, Math. Ann., vol. 46 (1895), pp. 321—
422,

Hopxins, C.

[1] Non-abelian groups whose groups of isomorphisms are abelian, Ann. of Math,,
vol. 29 (1928), pp. 508—520.

[2] An extension of a theorem of Remak, Ann. of Math., vol. 40 (1939), pp. 636—
638.

Hurewrcz, W.
[1] Zu einer Arbeit von O. Schreier, Hamburg. Abh,, vol. 8 (1930), pp. 307—314,

Iwasawa, K.
(1] Uber die endichen Gruppen und die Verbinde ihrer Untergruppen, J. Fac. Sci.
Imp. Univ. Tokyo, vol. 4 (1941), pp. 171—199.

[2] Einige Sdtge tiber freie Gruppen, Proc. Acad. Tokyo, vol. 19 (1943), pp. 272—
274,



248 BrsLioGRAPHY

[3] On the structure of infinite M-groups, Jap. J. Math., vol. 18 (1943), pp. 709—
728.

Jaseer, M. A,
[1] On S-groups, Bull. Calcutta Math. Soc., vol. 35 (1943), pp. 111—113.

JEnNINGS, S. A.

[1] A note on chain conditions in nilpotent rings and groups, Bull. Amer. Math.
Soc., vol. 50 (1944), pp. 759—763.

JonEes, A, W.

[1] The lattice isomorphisms of certain finite groups, Duke Math. J., vol. 12
(1945), pp. 541-—560.

KaLasnikov, V. A. and Kuro§, A. G.

*[1] Free products of groups with amalgamated subgroups of the centers, Doklady
Akad. Nauk SSSR. (1935), No. 5, pp. 285—286.

KALOUJNINE, L.
[1] Bemerkung zu einer Arbeit von Herrn A. Kurosch, Hamburg, Abh., vol. 12
(1938), pp. 247—255.
[2] Une méthode de construction de sous-groupes infra-invariants, C. R. Acad.
Sci. Paris, vol. 208 (1939), pp. 1869—1871.
[3]1 Sur les p-groupes de Sylow du groupe symétrique du degré pm, C. R. Acad.
Sci. Paris, vol, 221 (1945), pp. 222—224.
[4] La structure du p-gruope de Sylow du groupe syméirigue du degré p*, C. R.
Acad. Sci. Paris, vol. 222 (1946), 1424—1425.
[5] Swur les p-groupes de Sylow du groupe symétrique du degré pm, (Suite centrale
ascendante et descendante), C. R. Acad. Sci. Paris, vol. 223 (1946), pp. 703—
705.
[6] Sur les p-groupes de Sylow du groupe symétrigue de degré pm, (Sous-groupes
caractéristiques, sous-groupes parallelotopiques), C. R. Acad. Sci. Paris. vol.
224 (1947), pp. 253—255.
[71 Sur le groupe P o des tableaux infinis, C. R. Acad. Sci. Paris, vol. 224 (1947),
pp. 1097—1099,
[8] Sur les grovuipes abéliens primaires sans éléments de hauteur infinie, C. R. Acad.
Sci. Paris, vol. 225 (1947), pp. 713—715.
[9] Sur les sous-groupes centrauzx d’'un produit complet de groupes abéliens, C. R.
Acad. Sci. Paris, vol. 229 (1949), pp. 1289—1291.
[10] Caractérisation des certains sous-groupes centrauz d’un produit complet de
groupes abéliens, C. R. Acad. Sci. Paris, vol. 230 (1950), pp. 1633—1634.
[11] Swur quelques propriétés des growpes d’automorphisines d’'un groupe abstrait,
C.R. Acad. Sci. Paris, vol. 230 (1950), pp. 2067—2069.
[12] Sur quelques propriétés des groupes d'automorphismes d'un groupe abstrait
(Généralisation d’un théoréme de M. Ph. Hall), C. R. Acad. Sci. Paris, vol.
231 (1950), pp. 400---402.



BIBLIOGRAPHY 249

KarLougning, L. and KrasNer, M.

[1] Le produit complet des groupes de permutations et le probléme d’extension des
groupes, C. R. Acad. Sci. Paris, vol. 227 (1948), pp. 806—808.

[2] Produit complet des groupes de permutations et probléme d’extension des
groupes, Acta Sci. Math., Szeged, vol. 13 (1950), pp. 208—230; vol. 14 (1951),
Pp. 39—66, 69—82.

KarLANSKY, 1.

[1] A note on groups without isomorphic subgroups, Bull. Amer. Math. Soc.,
vol. 51 (1945), pp. 529—530.

[2] Elementary divisors and modules, Trans. Amer. Math, Soc., vol. 66 (1949),
pp. 464—491.

+[3) Infinite Abelian Groups, Univ. of Michigan Publ. in Math., No. 2 (1954).

KarLANSKY, I. and Mackey, G. W.

+t[1] A generalization of Ulm’s Theorem, Summa Brasil. Math., vol. 2 (1951), pp.
195—202.

Kasalkov, B. V.

*[1] On theorems of Sylow's type, Doklady Akad. Nauk SSSR., vol. 80 (1951),
pp. 5—7

*[2] On a local theorem in the theory of groups, Doklady Akad. Nauk SSSR,, vol.
83 (1952), pp. 525—528.

KeEMHADZE, S. S.

*[1] On the regularity of p-groups for p =2, Soob¥¥. Akad. Nauk Gruzim SSSR,,
vol. 11 (1950), pp. 607——611.

*[2] Uniqueness bases in infinite regular p-groups, Ukrain. Mat. 2., vol. 4 (1952),
pp. 57—64.

KI10KEMEISTER, F.

[1]1 A note on the Schmidt-Remak theorem, Bull. Amer. Math. Soc., vol. 53
(1947), pp. 957—958.

Krskina, Z. M.

*[1] Endomorphisms of torsion-free p-primitive abelian groups, Izvestiya Akad.
Nauk SSSR. Ser. Mat., vol. 9 (1945), pp. 201--232.

KoxnTorovid, P. G.

*[1] On some properties of semi-simple products, Doklady Akad. Nauk SSSR.,,
vol. 22 (1939), pp. 557—559.

*[2] Invariantly covered groups, Mat. Sbornik, vol. 8 (1940), pp. 423—430.

*[3] Groups with a separation basis, I, Mat. Sbornik, vol. 12 (1943), pp. 56—70.
*[4] Groups with a separation basis, I1, Mat. Sbornik, vol. 19 (1946), pp. 287—308.
*[5] Groups with a separation basis, II1, Mat. Sbornik, vol. 22 (1948), pp. 79—100.
*[6] Groups with a separation basis, IV, Mat. Sbornik, vol. 26 (1950), pp. 311—320.



250 BIBLIOGRAPHY

*[7] On the theory of noncommutative torsion-free groups, Doklady Akad. Nauk
SSSR., vol. 59 (1948), pp. 213—216.

*[8] Invariantly covered groups, II, Mat. Sbornik, vol. 28 (1951), pp. 79—S88.

Kokinek, V.

[1] Sur la décomposition d’un groupe en produit direct des sousgroupes, Cas. mat.
fys., vol. 66 (1937), pp. 261—286; vol. 67 (1938), pp. 209—210.

[2) Les groupes qui ne contiennent pas des sousgroupes caractéristiques propres,
Véstn. Kral Ceske Spol. Nauk (1938), pp. 1—20.

[3] Bemerkung iiber charakteristisch einfache Gruppen, VEstn. Kral, Ceske Spol.
(1940), pp. 1-8. '

[4] Der Schreiersche Satz und das Zassenhaussche Verfahren i Verbinden,
Véstn. Kral Ceske Spol Nauk (1941), pp. 1—29.
Korug, G.

[1] Verallgemeinerte Abelsche Gruppen mit hyperkomplexem Operatorenn;ng,
Math. Zeit., vol. 39 (1934), pp. 31—44,

KRASNER, M.
[1] Une généralisation de la notion de sous-groupe invariant, C. R. Acad. Sci.
Paris, vol. 208 (1939), pp. 1867—1869,
KruLr, W,

[1] Uber verallgemeinerte endliche Abelsche Gruppen, Math. Zeit., vol. 23 (1925),
pp. 161—196. '

[2] Theorie und Anwendung der verallgemeinerien Abelschen Gruppen, S.-B.
Heidelberger Akad. Wiss. Math. Nat. K1. (1926), pp. 1--32.

[3] Matrizen, Moduln und verallgemeinerte Abelsche Gruppen in Bereich der
ganzen algebraischen Zahlen, S.-B. Heidelberger Akad. Wiss. Math. Nat, Kl.
2. Abh. (Beitr. zur Algebra, 19), pp. 13-—-38.
KuLAxkov, A. A.

(1] ('J' ber die Anzahl der eigentlichen Untergruppen und der Elemente von gege-
bener Ordnung in p-Gruppen, Math. Ann., vol. 104 (1931), pp. 778—793.

Kurixov, L. YaA.

*[1] On the theory of abelian groups of arbitrary cardinal number, Mat. Sbornik,
vol. 9 (1941), pp. 165—182.

*[2] On the theory of abelian groups of arbitrary cardinal number, Mat. Sbornik,
vol. 16 (1945), pp. 129—162.

+*[3] On direct decompositions of groups, Ukrain. Mat. Z., vol. 4 (1952), pp. 230—
275, 347—372.

+[3] English translation of above: Russian Translation Project, Amer. Math. Soc.

Kurog, A. G.
[1] Zur Zerlegung unendlicher Gruppen, Math. Ann., vol. 106 (1932, pp. 107—113.
[2) Uber freie Produke von Gruppen, Math. Ann,, vol. 108 (1933), pp. 26—36.



BIBLIOGRAPHY 251

[3] Die Untergruppen der freien Produkte von beliebigen Gruppen, Math. Ann,,
vol. 109 (1934), pp. 647—660.

[4] Eine Verallgemeinerung des Jordan-Holderschen Satges, Math. Ann,, vol. 111
(1935), pp. 13—18.

[5] Uber absolute Eindeutigkeit der direkten Produktzerlegungen einer Gruppe,
Mat. Sbornik, vol. 1 (1936), pp. 345—350.

[6] Primitive torsionsfreie abelsche Gruppen vom endlichen Range, Ann. of Math.,
vol. 38 (1937), pp. 175—203.

*[7] Some recent trends and some outstanding problems in the theory of infinite
groups, Uspehi Mat. Nauk, vol. 3 (1937), pp. 5—15.

[8] Zum Zerlegungsproblem der Theorie der freien Produkte, Mat. Sbornik, vol. 2
(1937), pp. 995—1001.

*[9] Some remarks on the theory of infinite groups, Mat. Sbornik, vol. 5 (1939),
pp. 347354,

*[10] Locally free groups, Doklady Akad. Nauk SSSR., vol. 24 (1939), pp. 99—101.

*[11] The Jordan-Holder Theorem in arbitrary lattices, Sbornik pamyati akad.
Grave (1940), pp. 110—116.

*[12] On the theory of partially ordered systems of finite sets, Mat. Sbornik, vol. 5
(1939), pp. 343—346.

*[13] Isomorphisms of direct decompositions, Izvestiya Akad. Nauk SSSR. Ser.
Mat., vol. 7 (1943), pp. 185202,

*[14] Composition systems in infinite groups, Mat. Sbornik, vol. 16 (1945), pp. 59—
72.

*[15] Sylow subgroups of zero-dimensional topological groups, Izvestiya Akad.
Nauk SSSR. Ser. Mat., vol. 9 (1945), pp. 65—78.

*[16] Isomorphisms of direct decompositions, I1, Izvestiya Akad. Nauk SSSR. Ser.
Mat., vol. 10 (1946), pp. 47—72.

Kurot, A. G. and Cernikov, S. N,
v*[1] Solvable and nilpotent groups, Uspehi, Mat. Nauk, vol. 2: 3 (1947), pp. 18—59.

[1] English translation of above: T 94, Russian Translation Project, Amer. Math.
Soc.

LEevi, F.

[11 Abelsche Gruppen mit abzahlbaren Elementen, Dissertation, Leipzig (1917).

[2] Uber die Untergruppen freier Gruppen, Math. Zeit., vol. 32 (1930), pp. 315—
318.

[3] Uber die Untergruppen der freien Gruppen, 11, Math. Zeit., vol. 37 (1933),
pp. 90—97.

[4)] The commutatorgroup of a free product, J. Indian Math. Soc., vol. 4 (1940),
pp. 136—144,

‘[5] On the number of generators of a free product and a lemma of Alexander
Kurosch, J. Indian Math. Soc., vol. 5 (1941), pp. 149—155.



252 BIBLIOGRAPHY

[6] Groups in which the commutator operation satisfies certain algebraic condi-
tions, J. Indian Math. Soc., vol. 6 (1942), pp. 87—97.

[7] Notes on group theory, J. Indian Math. Soc., vol. 8 (1944), pp. 1—9, 44—56,
78—91; vol. 9 _(1945), pp. 37—42.

Levi, F. and vAN DER WAERDEN, B. L.

[t Uber eine besondere Klasse von Gruppen, Hamburg. Abh., vol. 9 (1932), pp.
154—158.

Lews, P. E.
[1] Characters of abelian groups, Amer. J. Math., vol. 64 (1942), pp. 81—105.

Livéic, A. H.
L*[1] On the Jordan-Hoilder Theorem in lattices, Mat. Sbornik, vol. 24 (1949), pp.
227-235.
*[2] On the theory of direct decompositions of groups, Doklady Akad. Nauk SSSR,,
vol. 64 (1949), pp. 289—292.

*[3] Direct decompositions of complete modular lattices, Mat. Sbornik, vol. 28
(1951), pp. 481—502.
LocHER, L.

[1} Dse Untergruppen des freien Gruppen, Comment, Math. Helv., vol 6 (1933),
pp. 76—82, '

LoreNZEN, P.
[1) Ein Beitrag zur Gruppenaxiomatik, Math. Zeit., vol. 49 (1944), pp. 313—327.

[2) Eine Bemerkung zum Schreierschen Verfeinerungssatz, Math. Zeit., vol. 49
(1944), pp. 647—653.

LuseLskr (Lyubel’skil), S.
[1} Zur Verschdrfung des Jordan-Holderschen Satzes, Mat. Sbornik, vol. 9
(1941), pp. 277—280.

Lyariy, E. S.

1] Uber die Ordnung der Automorphismengruppe einer endlichen Gruppe, Mat.
Sbornik, vol. 1 (1936), pp. 887—905.

*[2] On the decomposition of torsion-free abelian groups of finite rank into a
direct sum of groups of rank 1, Mat. Sbornik, vol. 3 (1938), pp. 167—177.

*[3] On the decomposition of abelian groups into direct sums of groups of rank 1,
Izvestiya Akad. Nauk SSSR. Ser. Mat. (1939), pp. 141—148,

*[4) Some properties of decompositions of torsion-free abelian groups into direct
sums, Doklady Akad. Nauk SSSR,, vol. 24 (1939), pp. 8—10.

*[5] Decomposstion of countable torsion-free abelian groups into direct sums of
groups of rank 1, Doklidy Akad. Nauk SSSR,, vol. 24 (1939), pp. 11—13.

*[6] On the decomposition of abelian groups into direct sums of rational groups,
Mat. Sbornik, vol. 8 (1940), pp. 205—237.

[6] English translation of above: Russian Translation Project, Amer. Math. Soc.



BIBLIOGRAPHY 253

*[7]1 Complete operations in classes of associative svstems and groups, Ucenye
Zapiski Ped. Inst. Herzen, Leningrad, vol. 86 (1949), pp. 93—106.

Lyxpon, R. C.

[1] The cohomology theory of group extensions, Duke Math. J., vol. 15 (1948),
pp. 271=292.

[2] New proof for a theorem of Eslenberg and MacLane, Ann. of Math.,, vol. 50
(1949), pp. 731—735.

[3]1 Cohomology theory of groups with a single defining relation, Ann, of Math.,
vol. 52 (1950), pp. 650—665.

MACLANE, S.
[1] Cohomology theory in abstract groups, III, Ann. of Math,, vol. 50 (1949),
pp. 736-761.
[2) Duality for groups, Bull. Amer. Math. Soc., vol. 56 (1950), pp. 485—516.

MaGNuUs, W.

1] Uber diskontinuierliche Gruppen mit einer definierenden Relation (Der Frei-
heitssatz), J. reine angew. Math,, vol. 163 (1930), pp. 141—165.

[2] Untersuchungen diber einige unendliche diskontinuierliche Gruppen, Math.
Ann,, vol. 105 (1931), pp. 52—74.

[3] Das IdentitBisproblem fiir Gruppen mit einer definierenden Relation, Math.
Ann., vol. 106 (1932), pp. 295~-307.

[4] Uber n-dimensionale Gittertransformationen, Acta Math., vol. 64 (1935), pp.
353—367.

[5] Uber den Beweis des H. auptidealsatses, J. reine angew. Math., vol. 170 (1934),
pp. 235—240.

[6] Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math.
Ann,, vol. 111 (1935), pp. 259—280.

[7] Uber Beziehungen zwischen hoheren Kommutatoren, J. reine angew. Math.,
vol. 177 (1937), pp. 105—115,

[8] Neuere Ergebnisse iiber auflosbare Gruppen, Jber. Deutsch. Math. Verein, vol,
47 (1937), pp. 69—78.

[9] Uber freie Faktorgruppen und freie Untergruppen gegebemer Gruppen,
Monatsh. Math, Phys., vol. 47 (1939), pp. 307—313.

[10] On a theorem of Marshall Hall, Ann. of Math., vol. 40 (1939), pp. 764—768.
[11) Allgemeine Gruppentheorie, Enzyklopadie der math. Wiss., 2. Aufl. (1939).

[12] Uber Gruppen und zugeordnete Liesche Ringe, J. reine angew. Math, vol. 182
(1940), pp. 142—149.

[13] A connection between the Baker-Hausdorff formula and a problem of Burn-
side, Ann of Math., vol. 52 (1950), pp. 111—126,

MAr'cev, A. 1.

*¥[1] Torsion-free abelian groups of finite rank, Mat. Sbornik, vol. 4 (1938), pp.
45—68.



254 BIBLIOGRAPHY

*[2] On isomorphic representations of infinite groups by matrices, Mat. Sbornik,
vol. 8 (1940), pp. 405—422.

*[3] On a general method of obtaining local theorems in the theory op groups,
Ulenye Zapiski Ivan. Ped. Inst. Phys. Mat. Fac, vol 1 (1941), pp. 3—9.

*[4] On groups of finite rank, Mat. Sbornik, vol. 22 (1948), pp. 351—352.

*[5] On a class of homogeneous spaces, Izvestiya Akad. Nauk SSSR. Ser. Mat.,
vol. 13 (1949), pp. 9—32.

*[6] Nilpotent torsion-free groups, Izvestiya Akad. Nauk SSSR. Ser. Mat., vol. 13
(1949), pp. 201—212.

*[7] Generalized nilpotent algebras and their adjoint groups, Mat. Sbornik, vol. 25
(1949), pp. 347—366.

*[8] On infinite solvable groups, Doklady Akad. Nauk SSSR., vol. 67 (1949),
pp. 23—25.

*[9] On algebras twith identical defining relations, Mat. Sbornik, vol. 26 (1950),
pp. 19=33.

*[10] On some classes of infinite solvable groups, Mat. Sbornik, vol. 28 (1951),
pp. 567—588.

MEIER-WUNDERLI, H.

(1] Uber endliche p-Gruppen, deren Elemente der Gleichung xp =1 gentigen,
Comment. Math. Helv,, vol. 24( 1950), pp. 18—45.

Mrs, W. H. |

[1] Multiple holomorphs of finitely generated abelian groups, Trans. Amer. Math.
Soc., vol. 71 (1951),; pp. 379—392.

+[2] On the non-isomorphism of certain holomorphs, Trans. Amer. Math Soc.,
vol. 74 (1953), pp. 428—443.
Mi¥ina, A. P.

*[1] On complete direct sums of torsion-free abelian groups of rank 1, Ukrain,
Mat. 2., vol. 2 (1950), pp. 64—70.

*[2] Some conditions for the splitting of mized abelian groups, Ukrain. Mat. Z.,
vol. 3 (1951), pp. 218—232.

MuraAMMEDZAN, H. H.

*[1] On the theory of infinite groups with ascending central series, Doklady Akad.
Nauk SSSR., vol. 65 (1949), pp. 269—272,

*[2] On groups with ascending central series, Mat. Shornik, vol. 28 (1951), pp.
185—196.

Myackova, N, N.
*[1] On groups of finite rank, Izvestiya Akad. Nauk SSSR. Ser. Mat., vol. 13
(1949), pp. 495—512.
Nacao, H.

[1] fiber die Beziehungen zwischen dem Erweiterungssatz von O. Schreier und
dem von K. Shoda, Proc. Japan Acad., vol. 21 (1945), pp. 359—362.



BIBLIOGRAPHY 255

NeuMANN, B. H.

[1] Die Automorphismengruppe der freien Gruppen, Math. Ann,, vol. 107 (1932),
pp. 367—386.

[2] Uber ein gruppentheoretisch-arithmetisches Problem, S.-B. Preuss Akad.
(1933), pp. 429—444.

[3] Decomposition of groups, J. London Math. Soc., vol. 10 (1935), pp. 3—6.
[4] Identical relations in groups, I, Math., Ann,, vol. 114 (1937), pp. 506—525.

[5] Some remarks on infinite groups, J. London Math. Soc., vol. 12 (1937), pp.
120—127.

[6] Groups whose elements have bounded orders, J. London Math. Soc., vol. 12
(1937), pp. 195—198.

[71 Adjunction of elements to groups, J. London Math. Soc., vol. 18 (1943), pp.
4—11,

[8] On the number of generators of a free product, J. London Math. Soc., vol. 18
(1943), pp. 12—20.

[9] A two-generator group isomorphic to a proper factor group, J. London Math.
Soc., vol. 25 (1950), pp. 247—248.

[10] On a special class of infinite groups, Nieuw Archief voor Wiskunde, vol. 23
(1950), pp. 117—127,

NEuMANN, B. H. and NEumaNN, H.

[1] A remark on generalized free products, J. London Math. Soc., vol. 25 (1950),
pp. 202—204.

[2] Zwet Klassen charakteristischer Untergruppen und thre Faktorgruppen, Math.
Nachr., vol. 4 (1951), pp. 106—125.

NeuMANN, H.

[1] Generalized free products with amalgamated subgroups, Amer. J. Math,,
vol. 70 (1948), pp. 590—625; vol. 71 (1949), pp. 491—540.

[2) Generalized free sums of cyclical groups, Amer. J. Math., vol. 72 (1950),
pp. 671—685.

[3]1 On an amalgam of abelian groups, J. London Math. Soc., vol. 26 (1951), pp.
228232,

NieLseN, J.

[1] Die Isomorphismen der allgemeinen, unendlichen Gruppe mit swei Erzeu-
genden, Math. Ann,, vol. 78 (1917), pp. 385—397.

(2] Uber die Isomorphismen unendlicher Gruppen ohme Relation, Math. Ann.,
vol. 79 (1918), pp. 269—272.

[3] Om Regning med tkke-kommutative Faktorer og dens Anvendelse i Gruppe-
teorien, Mat. Tidsskrift B, (1921), pp. 77—9%4.

[4]) Die Isomorphismengruppe der freien Gruppen, Math. Ann., vol. 91 (1924),
pp. 169—209.



256 BIBLIOGRAPHY

Nisnevid, V. L.

*[1] On groups that have an isomorphic representation by matrices over a com-
mutative field, Mat. Sbornik, vol. 8 (1940), pp. 395—404.

Novikov, P. S.
*[1] On the algorithmic insolvability of the identity problem, Doklady Akad. Nauk
SSSR,, vol. 85 (1952), pp. 709—712.

Org, O.

[1] On the foundation of abstract algebra, I, Ann. of Math., vol. 36 (1935), pp.
406—437.

[2] On the foundation of abstract algebra, 11, Ann. of Math., vol. 37 (1936), pp.
265292,

[3] Direct decompositions, Duke Math. J., vol. 2 (1936), pp. 581—596.

[4) Structures and group theory, I, Duke Math. J., vol. 3 (1937), pp. 149—174,

[51 On the theorem of Jordan-Holder, Trans. Amer. Math. Scc., vol. 41 (1937),
pp. 266—275.

[6) Structures and group theory, 11, Duke Math. J., vol. 4 (1938), pp. 247—269.

[7] On the application of structure theory to groups, Bull. Amer. Math. Soc., vol.
44 (1938), pp. 801—806.

[8] A remark on the normal decompositions of groups, Duke Math. J.,, vol. 5
(1939), pp. 172—173.

(91 Contributions to the theory of groups of finite order, Duke Math. J,, vol. 5
(1939), pp. 431—460.

[10] A remark on groups which are the direct product of their Sylow groups,
Monatsh. Math. Phys., vol. 48 (1939), pp. 41—42.

[11] Theory of monomial groups, Trans. Amer. Math. Soc.; vol. 51 (1942), pp.
15—64.

[12] Some remarks on commutators, Proc. Amer. Math. Soc., vol. 2 (1951), pp.
307314,

PEIFFER, R.
(1] Uber Identititen swischen Relationen, Math. Ann., vol. 121 (1949), pp. 67—99.

PETROPAVLOVSKAYA, P. V.,
*[1] On the determination of a group by the lattice of its subsystems, Mat. Sbornik,
vol. 29 (1951), pp. 63—78,

Pickerr, G.
[1] Remaksche Zerlegung fiir Gruppen mit Pasrungen, Math. Zeit., vol. 53 (1951),
pp. 456—462.

Prorkin, B. 1.
*[1] On the theory of non-commutative torsion-free groups, Doklady Akad. Nauk
SSSR., vol. 73 (1950), pp. 655—657.



BIBLIOGRAPHY 257

*[2] On the theory of locally nilpotent groups, Doklady Akad. Nauk SSSR.,, vol. 76
(1951), pp. 639—641.

*[3] On the theory of non-commutative torsion-free groups, Mat. Sbornik, vol. 30
(1952), pp. 197212,

PonTrYAGIN, L. S,

[1] The theory of topological commutative groups, Ann. of Math., vol. 35 (1934),
pp. 361—388.

PrRUFER, H.
[1] Unendliche Abelsche Gruppen von Elementen endlicher Ordnung, Dissertation
(1921).
[2) Untersuchungen iiber die Zerlegbarkest der absdhlbaren primaren Abelschen
Gruppen, Math, Zeit,, vol. 17 (1923), pp. 35—61.

[3] Theorie der Abelschen Gruppen, 1, Math. Zeit., vol. 20 (1924), pp. 165—187.
[4] Theorie der Abelschen Gruppen, II, Math. Zeit., vol. 22 (1925), pp. 222—249,

REIDEMEISTER, K.
[1] Knoten und Gruppen, Hamburg. Abh,, vol. 5 (1926), pp. 7—23.
[2] Uber unendliche diskrete Gruppen, Hamburg, Abh., vol. 5 (1926), pp. 33—39.

[3] Einfiibrung in die komkinatorische Topologie, Bramschweig (1932), New York
[Chelsea] (1953).

[4] Uber Identititen von Relationen, Hamburg, Abh., vol. 16 (1949), pp. 114—

118,
RELLA, T.
[1]1 Uber Abelsche Operatorgruppen, J. reine angew, Math,, vol. 167 (1932), pp.
235—247.
ReMAK, R.

1] Uber die Zerlegung der endlichen Gruppen in direkte ungerlegbare Faktoren,
J. reine angew. Math., vol. 139 (1911), pp. 293—308.

[2] Uber die Zerlegung der endlichen Gruppen in direkte unzerlegbare Faktoren,
J. reine angew. Math., vol. 153 (1923), pp. 131—140.

[31 Uber die Darstellung der endlichen Gruppen als Untergruppen direkter Prod-
ukte, J. reine angew. Math,, vol. 163 (1930), pp. 1—44.

[4] Uber die erzeugenden invarionten Untergruppen der subdirekten Darstel-
lungen endlicher Gruppen, J. reine angew. Math,, vol. 164 (1931) pp. 197—
242,

[5] Uber Untergruppen direkter Produkte von drei Faktoren, J. reine angew.
Math., vol. 166 (1931), pp. 65—100,

ROTTLAENDER, A.

[1} Nachweis der Existenz nicht-isomorpher Gruppen von gleicher Situation der
Untergrup pen, Math. Zeit., vol. 28 (1928), pp. 641—653.



258 BIBLIOGRAPHY

Sapovskil, L. E.
*[1] On lattice isomorphisms of free groups, Doklady Akad. Nauk SSSR,, vol. 32
(1941), pp. 171174,

*[2] Lattice isomorphisms of free groups and free products, Mat. Sbornik, vol. 14
(1944), pp. 155—173.

*[3] On lattice isomorphisms of free products of groups, Mat. Sbornik, vol. 21
(1947), pp. 63—82.

Sanov, I. N.
*[1] Solution of the Burnside problem for the exponent 4, Ucenye Zapiski Lenin-
grad Univ., vol. 55 (1940), pp. 166——170.
*[2] A property of a certain representation of a free group, Doklady Akad.
Nauk SSSR., vol. 57 (1947), pp. 657—659.
*[3] On the Burnside problem, Doklady Akad. Nauk SSSR., vol. 57 (1947), pp.
759—761.
*[4] On a system of relations in periodic groups with prime power periods, Izvestiya
Akad. Nauk SSSR. Ser. Mat., vol. 15 (1951), pp. 477—502.
*[5] A connection between periodic groups with prime power periods and Lie
rings, Izvestiya Akad. Nauk SSSR. Ser. Mat., vol. 16 (1952), pp. 23-58.
SATO, S.
[1] On groups and the lattices of subgroups, Osaka Math. J.,, vol. 1 (1949), pp.
135—149,
SCHMEIDLER, W.
[1] Bemerkungen zur Theorie der abzdhlbaren Abelschen Gruppen, Math. Zeit.,
vol. 6 (1920), pp. 274—280.
Scamr, O. J. (Smidt, O. Yu.)

1 Uber die Zerlegung endlicher Gruppen in direkte unzerlegbare Faktoren,
Izvestiya Kiev Univ. (1912), pp. 1—6.

[2] Sur l_es produits directs, Bull. Soc. Math. France, vol. 41 (1913), pp. 161—164.
*[3]) Abstract Theory of Groups, Kiev (1916), 2nd ed. Moscow (1933).

[4] Uber unendliche Gruppen mit endlicher Kette, Math. Zeit., vol. 29 (1928),
pp. 34—41.

*[5] New proof of a theorem by A. Kulakov in the theory of groups, Mat. Sbornik,
vol. 39 (1932), No. 1—2, pp. 66—71.

*[6] On infinite special groups, Mat. Sbornik, vol. 8 (1940), pp. 363—375.
*[7]1 Infinite solvable groups, Mat. Sbornik, vol. 17 (1945), pp. 145162,

ScaoLz, A.
[11 Die Behandlung der Zweistufigen Gruppe als Operatorengruppe, S.-B. Heidel-
berger Akad, Wiss. Math. Nat. K., vol. 2 (1933), pp. 17—22.
SCHREIER, J. and ULAM, S.

[1] Sur le groupe des permutations de la suite des nombres naturels, C. R. Acad.
Sci. Paris, vol. 197 (1933), pp. 737—738.



BIBLIOGRAPHY 259

(2] U ber die Permutationsgruppe der natiirlichen Zahlenfolge, Studia Math,,
vol. 4 (1933), pp. 134—141,

[3] Uber die Automorphismen der Permutationsgruppe der nattirlichen Zahlen-
folge, Fund. Math,, vol. 28 (1937), pp. 258—260.

SCHREIER, O.
[1] (:jber die Gruppen AsBb—=1, Hamburg. Abh., vol. 3 (1924), pp. 167—169.
[2] (jber die Erweiterung von Gruppen, I, Monatsh. Math. Phys., vol. 34 (1926),
pp. 165—180.
[3] Uber die Erweiterung von Gruppen, 11, Hamburg. Abh., vol. 4 (1926), pp.
321—-346.

[4) Die Untergruppen der freien Gruppen, Hamburg. Abh., vol. 5 (1927) pp.
161—183.

[5] Uber den Jordan-Hilderschen Satz, Hamburg. Abh.,, vol. 6 (1928), pp. 300—
302.

ScHUR, L.
[1] Uber Gruppen periodischer linearer Substitutionen, S.-B. Preuss. Akad.
(1911), pp. 619—627,

[2] Uber die Dayrstellungen der endlichen Gruppen durch gebrochene lineare Sub-
stitutionen, J. reine angew, Math., vol. 127 (1904), pp. 20—>50.

Scort, W. R.
[1] Algebraically closed groups, Proc. Amer, Math. Soc., vol. 2 (1951), pp. 118—
121. '

[2] Groups and cardinal numbers, Amer. J. Math., vol. 74 (1952), pp. 187—197.

Sex1, T.
(1] Uber die Existenz der Z erfdllungsgruppe in der Erweiterungstheorie der
Gruppen, Tohoku Math, J., vol. 48 (1941), pp. 235—238.
SERRE, J.-P.

[1] Cohomologie des extensions de groupes, C. R. Acad. Sci. Paris, vol. 231
(1950), pp. 643—646.

[2) Sur un théoréme de T. Szele, Acta. Sci. Math. Szeged, vol. 13 (1950), pp.
190—191.

SesexIN, N. F.

*[1] On the theory of torsion-free special groups, Doklady Akad. Nauk SSSR.,
vol. 70 (1950), pp. 185—188.

SHIFFMANN, M.
[1] The ring of automorphisms of an abelian group, Duke Math. J., vol. 6 (1940),
pp. 579—597.
SHobpA, K.

[1] Uber die Automorphismen einer endlichen Abelschen Gruppe, Math. Ann,,
vol. 100 (1928), pp. 674—686.



260 BIBLIOGRAPHY

(2] U ber die charakteristischen Untergruppen einer endlichen Abelschen Gruppe,
Math. Zeit., vol. 31 (1930), pp. 611—-624,

[31] (.J'ber den Automorphismenring bzw. die Automorphismengruppe einer end-
lichen Abelschen Gruppe, Proc. Acad. Tokyo, vol. 6 (1930), pp. 9—11.

[4] Gruppentheoretischer Beweis des Aquivalenz und Enthaltenseinsatzes in der
Theorie der Matrizen mit ganzen Koefficienten, Proc. Acad. Tokyo, vol. 6
(1930), pp. 217—219.

[5] Uber die Automorphismen einer endlichen zerlegbaren Gruppe, J. Fac. Sci.
Univ. Tokyo, vol. 2 (1930), pp. 25—50.

[6] Uber direkt zerlegbare Gruppen, J. Fac. Sci. Univ. Tokyo, vol. 2 (1930),
pp. 51—72,

[7] Bemerkungen tiber vollstindig reduzible Gruppen, J. Fac. Sci. Univ. Tokyo,
vol. 2 (1931), pp. 203—209.

8] Uber die Schreiersche Erweiterungstheorie, Proc. Acad. Tokyo, vol. 19 (1943),
pp. 518—519,

SaY, S.

[1] On the common representative system of residue classes of infinite groups,
J. London Math. Soc., vol. 16 (1941), pp. 101—104,

SINKOV, A,

[1] Families of groups generated by two operators of the same order, Trans.
Amer. Math. Soc., vol. 35 (1933), pp. 372—385.

[2] The groups determined by the relations SI=Tm=(S—T—'ST)r=1, 1I,
Duke Math. J., vol. 2 (1936), pp. 74—83.

[3] On the group-defining relations (2, 3, 7; p), Ann. of Math,, vol. 38 (1937),
pp. 577584,

SkorIN, A. 1.

*[1] Factor groups of an upper central series in a free group, Doklady Akad. Nauk
SSSR,, vol. 74 (1950), pp. 425—428.

SMirNov, D. M,

*{1] On the theory of locally nilpotent groups, Doklady Akad. Nauk SSSR., vol. 76
(1951), pp. 643—646.

SpecHT, W.

[11 Eine Verallgemeinerung der Permutationsgruppen, Math, Zeit., vol. 37 (1933),
pp. 321—341.

SPEISER, A.

[1) Die Theorie der Gruppen von endlicher Ordnung, 1923, 2 Aufl. (1927), 3 Aufl.
(1937).

SteiNttz, E.

[11 Rechteckige Systeme und Moduln in algebraischen Zahlkirpern, Math. Ann,,
vol. 71 (1912), pp. 297—345.



BIBLIOGRAPHY 261

SuLtaNov, R. M. .
"*[1] On the decomposition of torsion-free abelian groups into a direct sum of
cyclic groups, Naucn. Zapiski Univ. Lvov. Ser. Phys. Mat., vol. 2 (1947),
pp. 108—115,

Svzuki, M.
(1] On the lattice of subgroups of finite groups, Trans. Amer. Math. Soc., vol. 70
(1951), pp. 345—371.
[2] On the L-homomorphisms of finite groups, Trans. Amer. Math. Soc., vol. 70
(1951), pp. 372—386.

Syrow, L.
[1] Théorémes sur les groupes de substitutions, Math. Ann., vol. 5 (1872), pp.
584—594,

SzEKERES, G.
[1] Countable abelian groups without torsion, Duke Math. J., vol. 15 (1948), pp.
293—306.

SzeLe, T. _
[1] Sur la décomposition directe des groupes abéliens, C. R. Acad. Sci. Paris,
vol. 229 (1949), pp. 1052—1053.
[2] Die unendliche Quaternionengruppe, Acad. Repub. Pop. Romine Bul. Sti. Sect.
Sti. Mat. Fiz., vol. 1 (1949), pp. 799—802.
[3] Uber die Abelschen Gruppen mit nullteilerfreiem Endomorphismenring, Publ.
Math. Debrecen., vol. 1 (1949), pp. 80—91.

[4] Die Abelschen Gruppen ohne eigentliche Endomorphismen, Act. Sci. Math.
Math. Szeged, vol. 13 (1950), pp. 54—56.

SzeLE, T. and Szerpar, 1.
[1] Uber drei wichtige Gruppen, Acta. Sci. Math. Szeged, vol. 13 (1950), pp.
192—194,

TARAHASI, M,
[1] Bemerkungen tiber den Untergruppensatz im freien Produkte, Proc. Acad.
Tokyo, vol. 20 (1944), pp. 589—594.
[2] On partitions of free products of groups, Osaka Math. J., vol. 1 (1949), pp.
4951,
[3] Note on locally free groups, J. Osaka City Univ., vol. 1 (1950), pp. 65—70.

T ARTAROVSKII, V. A.
*71] On the extinction process, Doklady Akad. Nauk SSSR., vol. 58 (1947), pp.
1605—1608.
*[2) On the identity problem for certain types of groups, Doklady Akad. Nauk
SSSR., vol. 58 (1947), pp. 1909—1910.
V'%[3] The sieve method in the theory of groups, Mat. Sbornik, vol. 25 (1949), pp.
350,



262 BIBLIOGRAPHY

V'*[4] Application of the sieve method to the solution of the identity problem in
certain types of groups, Mat. Sbornik, vol. 25 (1949), pp, 251—274.

V*[5] Solution of the identity problem for groups with a K-reducible basis for K > 6,
Izvestiva Akad. Nauk SSSR. Ser. Mat., vol. 13 (1949), pp. 483—494.

[3]—I[5] English translation of above: Russian Translation Project, Amer. Math.
Soc.

*[6] On primitive composition, Mat. Sbornik, vol. 30 (1952), pp. 39—52.

TAussky, O.

[1] Uber isomorphe Abbildungen von Gruppen, Math. Ann., vol. 108 (1933), pp.
615—620.

TEICHMULLER, O.

[1] Der Elementarteilersatz fiir nichtkommutative Ringe, S.-B. Preuss.Akad.
(1937), pp. 169—177.

THrALL, R. M.

[1] A note on a theorem by Witt, Bull. Amer. Math. Soc., vol. 47 (1941), pp.
303—308.

THRELFALL, W,
[1] Gruppenbilder, Abh. math.-phys. klasse Sachs. Akad.; vol. 41, No. 6 (1932),
pp. 1-59.
Tierze, H.

[1] Uber die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten,
Monatsh. Math. Phys., vol. 19 (1908), pp. 1—118.

ToveIN, A. V.

*[1] On the existence of a center in infinite and finite groups, Doklady Akad. Nauk
SSSR,, vol. 31 (1941), p. 198.

TuriNG, A. M.
[1] The extensions of a group, Compositio Math., vol. 5 (1938), pp. 357—367.

ULy, H.

[11 Zur Theorie der abzdhlbar-unendlichen Abelscher Gruppen, Math. Ann., vol.
107 (1933), pp. 774—803.

[2) Zur Theorie der nicht-abzahlbaren primiren Abelschen Gruppen, Math. Zeit.,
vol. 40 (1935), pp. 205-207.

Uzkov, A. L.
*[1] On the Jordan-Holder Theorem, Mat. Sbornik, vol. 4 (1938), pp. 31—43.
[1] English translation of above: Russian Translation Project, Amer. Math. Soc.

VAN DER WAERDEN, B. L.

[1] Gruppen von linearen Transformationen, Ergebnisse der Mathematik (1935),
New York [Chelsea] (1949).



BIBLIOGRAPHY 263

[2] Free products of groups, Amer. J. Math,, vol. 70 (1948), pp. 527-—528.

vaN KaMmeen, E. R,

[1] On some lemmas in the theory of groups, Amer. J. Math,, vol. 55 (1933), pp.
268-—-273.

VILENKIN, N. YA.
v *[1] Direct decompositions of topological groups, I, Mat. Sbornik, vol. 19 (1946),
pp. 85—154,

WaL, G. E.
+{1] Finite groups with class-preserving outer automorphisms, J. London Math,
Soc., vol. 22 (1947), pp. 315—320.
WEVER, F.
[1] Uber Regeln in Gruppen, Math. Ann., vol. 122 (1950), pp. 334—339.

WHITEHEAD, ]J. H. C,
[1] On certain sets of elements in a free group, Proc. London Math. Soc., vol. 41

(1936), pp. 48—56.

[2] On equivalent sets of elements in a free group, Ann. of Math., vol. 37 (1936),
pp. 782—800.

[3] On group extensions with operators, Quart. J. Math. Oxford Ser. (2), vol. 1
(1950), pp. 219—228,

WHITMAN, P. M.
[1]1 Groups with a cyclic group as lattice-homomorph, Ann. of Math., vol. 49
(1948), pp. 347—-351.
WHIrNEY, H.
[1] Tensor products of abelian groups, Duke Math. J., vol. 4 (1938), pp. 495—528.

WieLanpT, H.

[1] Eine Kennzeichnung der direkten Produkte von p-Gruppen, Math, Zeit., vol. 41
(1936), pp. 281—282,

[2] Eine Verallgemeinerung der invarianten Untergruppen, Math. Zeit., vol. 45
(1939), pp. 209—244.

[31 p-Sylowgruppen und p-Faktorgruppen, J. reine angew. Math,, vol. 182 (1940),
pp. 180—183.

Wi, E.
[1] Treue Darstellung Liescher Ringe, J. reine angew. Math., vol. 177 (1937),
pp. 152—160.
Zarra, G,
[11 Remark on a recent paper of O. Ore, Duke Math. J., vol. 6 {1940), pp. 511—
512.
[2] Sut gruppi di Hirsch supersolubili, Rend. Sem. Mat. Univ. Padova, vol. 12
(1941), pp. 1—11, pp. 62—80.



264 BIBLIOGRAPHY

[3] Sul comportamente degli elementi periodici in un gruppo di Dedekind infinito,
Comment. Math. Helv.,, vol. 18 (1945), pp. 42—44.

[4} Sus sottogruppi finiti dei gruppi di Hirsch, Giorn. Mat. Battaglini, vol. 2
(1948), pp. 55—70.

[5] Sulla condicione perché un emitropismo inferiore tipico tra due gruppi sia un
omotropismo, Giorn. Mat. Battaglini, vol. 4 (1951), pp. 80—101.

ZASSENHAUS, H.
[1] Zum Satz von Jordan-Holder-Schreier, Hamburg. Abh., vol. 10 (1934), pp.
106—108.
[2] Lehrbuch der Gruppentheorie, vol. 1, (1937).
[2] The Theory of Groups, New York [Chelsea] (1949) ; 2nd ed. [in prep.]
[3] Beweis eines Satzes iiber diskrete Gruppen, Hamburg. Abh., vol. 12 (1938),
pp. 2890—312,

ZreriN, L.
[11 Countable torsion groups, Ann. of Math.,, vol. 36 (1935), pp. 86—99.



INDEX






AUTHOR INDEX

Abel, N. H,, 30

Baer, R, 8, 35, 67, 103, 158, 167, 168,
198, 2085, 211, 212, 216, 217, 218, 220

Bauer, M., 70

Birkhoff, G., 89, 151

Bourbaki, N., 231

Burnside, W., 11

Cauchy, A., 11

Cayley, A., 44, 45, 132, 133

Cernikov, S. N., 9, 170

Derry, D., 158, 221

von Dyck, W., 130, 131

Everett, C. J., 161

Fitting, H., 153

Frobenius, G., 11, 148

Galois, E,, 11, 68

Gauss, C. F., 148

Golfand, Yu. A., 95

Golovin, O. N., 103

Graev, M. I, 122

Haimo, F., 228

Hall, P., 89, 103

Hamilton, W. R,, 67

Hausdorff, F., 13

Higman, G., 228

Hélder, O., 11, 92, 95, 112, 116

Hopkins, C., 88

Jénsson, B., 221

Kaplansky, I., 231

Jordan, C,, 11, 112, 116

Kaloujnine, L., 186, 221

Kigkina, Z. M., 156, 158

Klein, F., 71, 230

Kontorovit, P. G., 220

Krull, W,, 8

Kulikov, L. Ya., 8, 167, 168, 171, 173, 174,
179, 180, 181, 182, 186, 189, 198, 199,
202, 205, 214, 216

267

Kuro¥, A. G, 181, 221

Lagrange, J. L., 62, 63, 80

Levi, F. W, 35, 99, 221

Lorenzen, P., 35

Lyapin, E. S., 89, 205, 211

Mackey, G., 231

Mal'cev, A. 1, 9, 102, 103, 221

Miller, G. A, 11

Mills, W. H., 95

Migina, A. P., 205, 217

Neumann, B. H., 8

Noether, Emmy, 12

Poincaré, H., 62, 84

Pontryagin, L .S., 221

Priifer, H., 173, 177, 179, 180, 181, 189,
190, 193, 196, 198, 200

Remak, R, 8

Schmidt, O. J., 7, 8, 12, §7

Schreier, J., 95

Schreier, O, 111, 112, 114, 116

Schur, I, 11

Shiffman, M., 158

Shoda, K., 158

Steinitz, E., 139

Stickelberger, L., 148

Stone, A. H., 228

Sylow, L., 11

Szekeres, G., 221

Teichmiiller, D., 162

Ulam, S., 95

Ulm, H., 181, 187, 188, 189, 190, 191, 192,
193, 194, 196, 197, 198, 199, 200

van der Waerden, B. L., 162

Vilenkin, N. Ya., 122

Wall,G.E., 86

Zassenhaus, H., 77, 78, 108, 111, 115

Zippin, L., 190, 193



A

abelian group, 30

complete, 163

completely decomposable, 211

divisible, 163

finitely generated, 145

of finiterrank, 140

free, 142

of infinite rank, 140

primary, 137

reduced, 164

separable, 218

of type p=, 56
additive group of integers, 38
additive notation, 37
automorphisms, 85

group of, 87

inner, 86

group of, 88

identity, 85

operator, 108

outer, 86

B

basic subgroup, 181
basis of abelian group, 142, 148

C

cancellation, 34

in words, 125
center, 81

group without, 81
centralizer, 84
chain, derived, 102

lower central, 103

normal, ascending, 113

descending, 113

characteristic, 207
class, of conjugate elements, 80

of conjugate subgroups, 82

of partition, 28

of residues, 75

INDEX

closure, 184
commutator, 99
commutator subgroup, 101
of subsets, 103

complete group, 92

abelian, 163
complex of elements, 46
component of direct decomposition, 120
composition factor, 112
composition length, 112
composition series, 112
consequences of defining relations, 129
correspondence, one-to-one, 72
coset, double, 63

left, 60

representative of, 60

right, 61

D

decomposition, into cosets, 71
direct, 117
isomorphic, 124
of group, left, 60
right, 61
double module, 63
derived group, 101
direct, decomposition, 117
isomorphic, 124
direct factor, 118
direct product, 117
cartesian, 122
complete, 122
with prescribed subgroups, 122
restricted, 122
unrestricted, 122
direct sum, 137
divisible abelian group, 163

E

element, central, 8)
divisible, 163



of finite order, 36
generating, 46
finite, height of, 170
infinite, height of, 170
of infinite order, 36
invariant, 81
inverse, 32
left (right), 33
normalizer, 79
null, 24
rational, 98
unit, 24
left (right), 33
elements, conjugate, 64
class of, 80
of equal type, 95
permutable, 31
elementwise permutable, 59
embedding of group into group, 43
endomorphisms, 85
addition, 152
multiplication of, 87
null, 85
operator, 108
subtraction of, 152
summable, 152
exchange theorem, Steinitz, 139
extension, of group by another, 76
of isomorphism, 168

F

factor, direct, 118
of normal series, 110
Ulm, 187
factor group, 35, 72
factor set, 29
four-group, Klein’s, 71
free group, 127
abelian, 142
free generators, 128
.free module, 161

generators, 46
system of, 48
free, 128
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genus, 207
group, 30

abelian, 30
additive, of integers, 37
of rationals, 37
alternating, 39
of automorphisms, 87
without center, 81
commutative, 30
commutator, 101
complete, 92
countable, 57
cyclic, 46
finite, 46
infinite, 46
decomposition of, 58
derived, 101
elementary, 97
extension, 76
finite, 31
finitely generated, 50
free, 127
hamiltonian, 67
of homomorphisms, 55
indecomposable, 122
locally infinite, 37
of matrices, 38
metabelian, 99
mixed, 37
multiplicative, of rationals, 38
nilpotent of class 2, 99
with operator domain, 104
of operator automorphisms, 109
periodic, 37
primary, 137
quasi-cyclic, 56
quaternion, 67
of roots of unity, 38
of rotations, of circle, 38
of cube, 41
simple, 68
symmetric, 39
torsion-free, 37
of transformations, 40
of type p=, 56

group table, Cayley’s, 132
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groups, ascending sequence of, 51 length, of normal series, 110
limit of sequence of, direct, 55 of product, 51
inverse, 227 of reduced word, 125
linearly dependent, 138, 140
H linearly independent, 138, 140

limit of sequence of groups, direct, 55

height of element, 170 inverse, 227

finite, 170

infinite, 170 M
holomorph, 90
homomorphisms, 27 mapping, homomorphic, 27

canonical, 29 induced, 43

group of, 155 inverse, 87

natural, 29 left (right), 87

operator, 107 isomorphic, 25
homomorphism theorem, 155 of set, into itself, 23

for operators, 128 onto itself, 40

' single-valued, 23
| matrices, group of, 40

ideal, 105 module, double, 63
image, 27 free, 161

inverse, 27 over ring, 158

complete, 73 monogenic subgroup, 107

index, 61
indecomposable group, 122 N
intersection of subgroups, 45 normalizer, 79
invariants of finitely generated abelian

group, 151 o

isomorphism, 25
of direct decompositions, 124
extension of, 168
of normal series, 111
type preserving, 194
isomorphism theorem, 76
for operator groups, 108

operation, algebraic, 21
associative, 22
commutative, 22
inverse, 25

operator, 104

operator automorphism, 108

operator domain, 107

operator endomorphism, 108

J operator homomorphism, 104

td

join of subgroups, 48 order, of element, 35
in operator group, 160

K of group, 31

kernel, 73 overtype, 207
P

L

layer, 170 p-adic integers, group of, 155
lowest, 170 =, group of type, 56

lemma, Zassenhaus’, 77 partition, regular, 29

for operator groups, 108 perfect subgroup, 194



periodic group, 37
periodic part, 137
periodic subgroup, maximal, 137
permutation, 21, 228
even, 39
identity, 39
inverse, 39
multiplication of, 21
odd, 39
primary group, 137
product, of automorphisms, 87
cartesian, 122
direct, 117
complete, 122
with prescribed subgroups, 122
restricted, 122
unrestricted, 122
of endomorphisms, 87
of homomorphisms, 156
of subsets, 58
of threads, 55

Q

quaternion group, 67

R

rank, of abelian group, 138, 140
of free group, 127
reduced abelian group, 164
refinement of normal series, 110
relations in group, 129
defining, 129
representative of coset, 60
ring, 105
of endomorphisms, 153
of operators, 158
of p-adic integers, 155
roots of unity, group of, 38

S

sequence, ascending, of groups, 54
of subgroups, 51
series, characteristic, 116
composition, 112
fully invariant, 116
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normal, 110
principal, 116
splitting of mixed abelian group, 201
subgroup, 42
accessible, 113
admissible, 105
normal, 107
basic, 181
characteristic, 96
closed, 206
cyclic, 46
division, 206
of finite index, 61
finitely generated, 54
fully invariant, 96
generated by subset, 46
generated by subgroups, 48
invariant, 64
inextensible, 206
isolated, 175
maximal periodic, 137
monogenic, 107
normal, 64
normalizer of, 79
null, 137
perfect, 194
. proper, 42
pure, 175
regular, of symmetric group, 45
self-conjugate, 64
serving, 175
unit, 42
trivial, 42
subgroups, conjugate, 65
of equal type, 95
permutable, 58
subsets, 46
subgroup generated by, 46
invariant, 80
normal, 80
permutable, 58
product of, 58
sum, direct, 137
of endomorphisms, 152
symmetric group, 39
regular subgroup of, 45
restricted, 226
unrestricted, 226
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systems, equivalent, of elements, 138
of defining relations, 129
of generators, 48
free, 128
irreducible, 48
linearly dependent, 138
linearly independent, 138

T

Theorem, Cayley’s, 44
von Dyck's, 130
Existence, 190
Homomorphism, 35
Isomorphism, 76
Jordan-Hélder, 112
Lagrange’s, 62
Poincaré’s, 62
Priifer’s First, 173
Prifer’s Second, 173
Schreier’s, 111
Steinitz’ Exchange, 139
Ulm’s, 193

INDEX

threads, 54

product of, 55
torsion coefficient, 151
transformations, group of, 40

of elements, 64

of subgroups, 65
type, of element, 193

of torsion-free group, 210

of equivalent characteristics, 207

of reduced group, 187

of torsion-free group of rank 1, 209
type-preserving'isomorphism, 194

U
Ulm factors, 188
unit element, 24, 32
unit subgroup, 42

word,.125
empty, 125
reduced, 125
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