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Hamilton's Discovery of Quaternions 

Contemporary sources describe Hamilton's trail 
from repeated failures at multiplying triplets 
to the intuitive leap into the fourth dimension. 

B. L. VAN DER WAERDEN 

University of Zurich 

Introduction 

The ordinary complex numbers (a + ib) (or, as they were formerly written, a + b\ - 1) are added 
and multiplied according to definite rules. The rule for multiplication reads as follows: 

First multiply according to the rules of high school algebra: 

(a + ib)(c + id) = ac + adi + bci + bdi2 

and then replace i' by (-1): 

(a + ib)(c + id) = (ac - bd) + (ad + bc)i. 

Complex numbers can also be defined as couples (a, b). The product of two couples (a, b) and (c, d) is 
defined as the couple (ac - bd, ad + bc). The couple (1, 0) is called 1, the couple (0, 1) is called i. Then 
we also have the result 

P =(0,1)(0,1)=(-1,0)= -1. 
By means of this definition the "imaginary unit" i =/--I loses all of its mystery: i is simply the 
couple (0, 1). 

The quaternions a + bi + cj + dk which William Rowan Hamilton discovered on the 16th of 
October, 1843, are multiplied according to fixed rules, in analogy to the complex numbers; that is to 
say: 

i2 = j2 = k2 

ij = k, jk =i, ki = j, 

ji = - k, kj= - i, ik = -j. 

They can also be defined as quadruples (a, b, c, d). Quaternions form a division algebra; that is, they 
cannot only be added, subtracted, and multiplied, but also divided (excluding division by zero). All 
rules of calculation of high school school algebra hold; only the commutative law AB = BA does not 
hold since ij is not the same as ji. 

Originally published in German as "Hamilton's Entdeckung der Quaternionen" in Veroffentlichungen der 
Joachim Jungius-Gesellschaft Hamburg by Vandenhoeck & Ruprecht, Gottingen, 1974. Translated into English 
by F. V. Pohle, Adelphi University, and published here by permission of the original publisher Vandenhoeck & 
Ruprecht. 
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How did Hamilton arrive at these multiplication rules? What was his problem and how did he find 
the solution? We are accurately informed about these matters in documents and papers which appear 
in the third volume of Hamilton's collected Mathematical Papers [3]: 

First, through an entry in Hamilton's Note Book dated 16 October 1843 [3, pp. 
103-105]; 

Second, through a letter to John Graves of the 17th of October 1843 [3, pp. 
106-110]; 

Third, through a paper in the Proceedings of the Royal Irish Academy (2 (1844) 
424-434) presented on the 13th of November 1843 [3, pp. 111-116]; 

Fourth, through the detailed Preface to Hamilton's "Lectures on Quaternions", 
dated June 1853 [3, pp. 117-155, in particular pp. 142-144]; 

Fifth, through a letter to his son Archibald which Hamilton wrote shortly before his 
death, that is shortly before the 2nd of September 1865 [3, pp. xv-xvi]. 

We can follow exactly each of Hamilton's steps of thought through all of these documents. This is a 
rare occurrence in which we can observe what flashed across the mind of a mathematician as he posed 
the problem, as he approached the solution step by step and then through a lightning stroke so 
modified the problem that it became solvable. 

A brief history of complex numbers 

Expressions of the form A + -B had already been encountered in the middle ages in the 
solution of quadratic equations. They were called "impossible solutions" or numeri surdi: absurd 
numbers. The negative numbers too were called "impossible." Cardan used numbers A + -B in 
the solution of equations of the third degree in the casus irreducibilis in which all three roots are real. 
Bombelli showed that it was possible to calculate with expressions such as A + -B without 
contradiction, but he did not like them: he called them "sophistical" and apparently without value. 
The expression "imaginary number" stems from Descartes. 

Euler had no scruples about operating altogether freely with complex numbers. He proposed 
formulas such as cos a = (1/2)(e" + eC). The geometric representation of complex numbers as 
vectors or as points in a plane stems from Argand (1813), Warren (1828) and Gauss (1832). 

The first named, Argand, defined the complex numbers as directed segments in the plane. He took 
the basis vectors 1 and i as mutually perpendicular unit vectors. Addition is the usual vector addition, 
with which Newton made us familiar (the parallelogram law of velocities or of forces). The length of a 
vector was denoted at that time by the term "modulus", the angle of the vector with the positive 
x-axis as the "argument" of the complex number. Multiplication of complex numbers, according to 
Argand, then takes place so that the moduli are multiplied and the arguments are added. 
Independently of Argand, Warren and Gauss also represented complex numbers geometrically and 
interpreted their addition and multiplication geometrically. 

"Papa, can you multiply triplets?" 

Hamilton knew and used the geometric representation of complex numbers. In his published 
papers, however, he emphasized the definition of complex numbers as the couple (a, b) which 
followed definite rules for addition and multiplication. Related to that, Hamilton posed this problem 
to himself: To find how number-triplets (a, b, c) are to be multiplied in analogy to couples (a, b). 

For a long time Hamilton had hoped to discover the multiplication rule for triplets, as he himself 
stated. But in October 1843 this hope became much stronger and more serious. He put it this way in a 
letter to his son Archibald [3, p. xv]: 
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SIR WILLIAM ROWAN HAMILTON, a child prodigy whose maturity 
was all that his childhood promised, was born in Dublin, Ireland, in 
1805. He was literate in seven languages and knowledgeable in half a 
dozen more. In 1827 while still an undergraduate Hamilton was 
appointed Andrews Professor of Astronomy and Superintendent of the 
Observatory, and soon afterwards Astronomer Royal, a position he 
held for the rest of his extraordinarily productive life. His work in 
dynamics is probably most well-known today. "The Hamiltonian 
principle has become the cornerstone of modern physics", said Erwin 
Schrbdinger, "the thing with which a physicist expects every physical 
phenomenon to be in conformity." Hamilton's other major discovery is 
the system of quaternions. The flash of insight which produced this 
discovery occurred in 1843 and is described in the accompanying 
article. A century later the Irish government commemorated this * & 

achievement with the stamp pictured at the right. 

"... the desire to discover the law of multiplication of triplets regained with me a certain 
strength and earnestness, ..." 

In analogy to the complex numbers (a + ib) Hamilton wrote his triplets as (a + bi + cj). He 
represented his unit vectors 1, i, j as mutually perpendicular "directed segments" of unit length in 
space. Later Hamilton himself used the word vector, which I also shall use in the following. Hamilton 
then sought to represent products such as (a + bi + cj)(x + yi + zj) again as vectors in the same space. 
He required, first, that it be possible to multiply out term by term; and second, that the length of the 
product of the vectors be equal to the product of the lengths. This latter rule was called the "law of the 
moduli" by Hamilton. 

Today we know that the two requirements of Hamilton can be fulfilled only in spaces of 
dimensions 1, 2, 4 and 8. This was proved by Hurwitz [5]. Therefore Hamilton's attempt in three 
dimensions had to fail. His profound idea was to continue to 4 dimensions since all of his attempts in 3 
dimensions failed to reach the goal. 

In the previously mentioned letter to his son, Hamilton wrote about his first attempt: 

"Every morning in the early part of the above-cited month [October 1843], on my coming 
down to breakfast, your brother William Edwin and yourself used to ask me, 'Well, Papa, can 
you multiply triplets?' Whereto I was always obliged to reply, with a sad shake of the head, 
'No, I can only add and subtract them.'" 

From the other documents we learn more precisely about Hamilton's first attempts. To fulfill the "law 
of the moduli" at least for the complex numbers (a + ib), Hamilton set ii = - 1, as for ordinary 
complex numbers, and similarly so that the law would also hold for the numbers (a + cj), jj = - 1. But 
what was ij and what was ji? At first Hamilton assumed ij = ji and calculated as follows: 

(a + ib + jc)(x + iy + jz) = (ax - by - cz) + i(ay + bx) + j(az + cx) + ij(bz + cy). 

Now, he asked, what is one to do with ij? Will it have the form a + pi + yj? 
First attempt. The square of ij had to be 1, since i2 = _ 1 and j2 = - 1. Therefore, wrote Hamilton, 

in this attempt one would have to choose ij = 1 or ij = -1. But in neither of these two cases will the 
law of the moduli be fulfilled, as calculation shows. 

Second attempt. Hamilton considered the simplest case 

(a + ib + jC)2 = as - b2 _ c2 + 2iab + 2jac + 2ijbc. 

Then he calculated the sum of the squares of the coefficients of 1, i, and j on the right hand side and 
found 

(a 2- b2 _ C2)2 +(2ab)2 +(2ac)2 = (a2 + b2+ c2)2. 
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Therefore, he said, the product rule is fulfilled if we set ij = 0. And further: if we pass a plane through 
the points 0, 1, and a + ib + jc, then the construction of the product according to Argand and Warren 
will hold in this plane: the vector (a + bi + cj)2 lies in the same plane and the angle which this vector 
makes with the vector 1 is twice as large as the angle between the vectors (a + bi + cj) and 1. Hamilton 
verified this by computing the tangents of the two angles. 

Third attempt. Hamilton reports that the assumption ij = 0, which he made in the second attempt, 
subsequently did not appear to be quite right to him. He writes in the letter to Graves [3, p. 107]: 

"Behold me therefore tempted for a moment to fancy that ij = 0. But this seemed odd and 
uncomfortable, and I perceived that the same suppression of the term which was de trop might 
be attained by assuming what seemed to me less harsh, namely that ji = - ij. I made therefore 
ij = k, ji = - k, reserving to myself to inquire whether k was 0 or not." 

Hamilton was entirely right in giving up the assumption ij = 0 and taking instead ij = - ji. For 
example, if ij = 0 then the modulus of the product ij would be zero, which would contradict the law of 
the moduli. 

Fourth attempt. Somewhat more generally, Hamilton multiplied (a + ib + jc) and (x + ib + jc). In 
this case the two segments which are to be multiplied also lie in one plane, that is, in the plane spanned 
by the points 0, 1, and ib + jc. The result of the multiplication was ax - - c2 + i(a + x)b + 
j(a + x)c + k(bc - bc). Hamilton concluded from this calculation [3, p. 107] that: 

.. . the coefficient of k still vanishes; and ax - b2- c2, (a + x)b, (a + x)c are easily found to 
be the correct coordinates of the product-point in the sense that the rotation from the unit line 
to the radius vector of a, b, c being added in its own plane to the rotation from the same 
unit-line to the radius vector of the other factor-point x, b, c conducts to the radius vector of 
the lately mentioned product-point; and that this latter radius vector is in length the product 
of the two former. Confirmation of ij = - ji; but no information yet of the value of k." 

The leap into the fourth dimension 

After this encouraging result Hamilton ventured to attack the general case. ("Try boldly then the 
general product of two triplets, ..." [3, p. 107].) He calculated 

(a + ib +jc)(x + iy+ jz)= (ax - by - cz)+ i(ay + bx)+j(az + cx)+ k(bz - cy). 

In an exploratory attempt he set k = 0 and asked: Is the law of the moduli satisfied? In other words, 
does the identity 

(a 2+ b2+ c2)(x2+ y2+ Z2) = (ax - by - CZ)2+ (ay + bx)2+ (az + cx)2 

hold? 

"No, the first member exceeds the second by (bz - cy)2. But this is just the square of the 
coefficient of k, in the development of the product (a + ib + ic)(x + iy + jz), if we grant that 
ij = k, ji = - k, as before." 

And now comes the insight which gave the entire problem a new direction. In the letter to Graves 
[3, p. 108], Hamilton emphasized the insight: 

"And here there dawned on me the notion that we must admit, in some sense, a fourth 
dimension of space for the purpose of calculating with triplets;" 

This fourth dimension appeared as a "paradox" to Hamilton himself and he hastened to transfer the 
paradox to algebra [3, p. 108]: 

"...;or transferring the paradox to algebra, [we] must admit a third distinct imaginary symbol 
k, not to be confounded with either i or j, but equal to the product of the first as multiplier, 
and the second as multiplicand; and therefore [I] was led to introduce quaternions such as 
a + ib + jc + kd, or (a, b, c, d)." 

Hamilton was not the first to think about a multi-dimensional geometry. In a footnote to the letter 
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to Graves he wrote: 

"The writer has this moment been informed (in a letter from a friend) that in the Cambridge 
Mathematical Journal for May last [18431 a paper on Analytical Geometry of n dimensions 
has been published by Mr. Cayley, but regrets he does not yet know how far Mr. Cayley's 
views and his own may resemble or differ from each other." 

"This moment" can in this connection only mean the same day in which he wrote the letter to Graves. 
In the Note Book of the 16th of October 1843 there is no mention of the paper by Cayley. Hamilton 
therefore appears to have arrived at the concept of a 4-dimensional space independently of Cayley. 

After Hamilton had introduced ij = -ji = k as a fourth independent basis vector, he continued 
the calculation [3, p. 108]- 

"I saw that we had probably ik = -j, because ik = iij, and i2= -1; and that in like manner 
we might expect to find kj = ijj = - 

From the use of the word "probably" it can be seen how cautiously Hamilton continued. He scarcely 
trusted himself to apply the associative law i(ij) = (ii)j because he was not yet certain if the associative 
law held for quaternions. Likewise Hamilton could have used the associative law to determine ki: 

ki = - (i)i = - j(ii) = (- j)(- i) = j. 

Instead he applied a conclusion by analogy. He wrote [3, p. 108] 

"... ; from which I thought it likely that ki = j, jk = i, because it seemed likely that if ji = - ij, 
we should have also kj = - jk, ik = -ki." 

Finally k2 had to be determined. Hamilton again proceeded cautiously: 

"And since the order of multiplication of these imaginaries is not indifferent, we cannot infer 
that k2, or ijij, is = + 1, because i2Xj2= (- 1)(- 1) = + 1. It is more likely that k2 = ijij = 
- iijj = - 1." 

This last assumption k2= _ 1, asserts Hamilton, is also necessary if we wish to fulfill the "law of the 
moduli." He carried this out and concluded [3, p. 108]: 

"My assumptions were now completed, namely, 

i2 = j2 = k 2 = _ 1 

ij = - ji = k 

jk = - kj =i 

ki = - ik = 

And now Hamilton tested if the law of the moduli was actually satisfied. 

"But I considered it essential to try whether these equations were consistent with the law of 
moduli ...., without which consistence being verified, I should have regarded the whole 
speculation as a failure." 

He therefore multiplied two arbitrary quaternions according to the rules just formulated 

(a, b, c, d)(a', b', c', d') = (a", b",cd 

calculated (a", b", c", d") and formed the sum of the squares 

(a ')2 + (b")2 + (c,')2+ (dtt)2 

and found to his great joy that this sum of squares actually was equal to the product 

(a2+ b2+ c2+ d2)(at2+ bt2+ ct2+ dQ2). 

In Hamilton's letter to his son we learn even more about the external circumstances which befell 
him at this flash of insight. Immediately after the previously cited words, "No, I can only add and 
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subtract them." Hamilton continued [3, p. xx-xvi]: 

"But on the 16th day of the same month [October 1843]-which happened to be a Monday 
and a Council day of the Royal Irish Academy-I was walking in to attend and preside, and 
your mother was walking with me, along the Royal Canal, to which she had perhaps been 
driven; and although she talked with me now and then, yet an under-current of thought was 
going on in my mind, which gave at last a result, whereof it is not too much to say that I felt at 
once the importance. An electric circuit seemed to close; and a spark flashed forth, the herald 
(as I foresaw immediately) of many long years to come of definitely directed thought and 
work, by myself if spared, and at all events on the part of others, if I should ever be allowed to 
live long enough distinctly to communicate the discovery. I pulled out on the spot a 
pocket-book, which still exists, and made an entry there and then. Nor could I resist the 
impulse-unphilosophical as it may have been-to cut with a knife on a stone of Brougham 
Bridge, as we passed it, the fundamental formula with the symbols i, j, k; 

i2 = j2 = k2= ijk = - 1, 

which contains the solution of the Problem, but of course as an inscription, has long since 
mouldered away." 

The entry in the pocket book is reproduced on the title page of [3]: it contains the formulas 

i2= j2 
* 2 

ij=k, jk=i, ki=j 

ji=-k, kj=-i, ik=-j. 

I assume as likely that before his walk Hamilton had already written on a piece of paper the result 
of the somewhat tiresome calculation which showed that the sum of squares 

(ax - by - cz)2 + (ay + bx)2 + (az + cx)2 

still lacked (bz - cy)2 compared with the product 

(a2+ +c2 )(x2 + y2 + ). 

What then happened immediately before and during that remarkable walk along the Royal Canal, he 
described again on the same day in his Note Book, as follows: 

"I believe that I now remember the order of my thought. The equation ij = 0 was 
recommended by the circumstances that 

(ax _ y2_ Z2)2+ (a + X)2(y2+ Z2) = (a2+ y2+ z2)(X2+ y2+ Z2) 

I therefore tried whether it might not turn out to be true that 

(a 2+ b 2+ C2)(X2 + y2 + Z2)= (ax - by - Cz)2 + (ay + bx)2 +(az + cx)2, 

but found that this equation required, in order to make it true, the addition of (bz - cy)2 to 
the second member. This forced on me the non-neglect of ij, and suggested that it might be 
equal to k, a new imaginary." 

By underscoring the italicized words forced and suggested Hamilton emphasized that he was 
concerned with two entirely different facts. The first was a compelling logical conclusion, which came 
immediately out of the calculation: it was not possible to set ij equal to zero, since then the law of the 
moduli would not hold. The second fact was an insight which came over him in a flash at the canal ("an 
electric circuit seemed to close, and a spark flashed forth"), that is, that ij could be taken to be a new 
imaginary unit. 

After the insight was once there, everything else was very simple. The calculations ik = iij = - j 
and kj = ijj= ' i could be made easily enough by Hamilton in his head. The assumptions 
ki = - ik = j and jk = - kj = i were immediate. And k2 could be easily calculated too: k2= j= 
-iii] = -1. 

232 MATHEMATICS MAGAZINE 

This content downloaded from 75.157.141.2 on Thu, 10 Jul 2014 21:26:19 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp
user
Highlight



And so during his walk Hamilton also discovered the rules of calculation which he entered into the 
pocket book. The pocket book also contains the formulas for the coefficients of the product 

(a + bi + cj + dk)(a + 3i + yj + 8k), 

that is, 
aa - bl3 - cy - d8 

al3 + ba + c8 - dy 

ay - b8 + ca + do3 

a8 + by - co3 + da 

as well as the sketch for the verification of the fact that in the sum of the squares of these coefficients 
all mixed terms (such as ada8) cancel and only (a2+ b2 + c2 + d2)(a2? 32? y2? 82) remains. in the 
Note Book of the same day everything was again completely restated. 

Octonions 

The letter to Graves in which Hamilton announced the discovery of quaternions was written on the 
17th of October 1843, one day after the discovery. The seeds, which Hamilton sowed, fell upon fertile 
soil, since in December 1843 the recipient John T. Graves already found a linear algebra with 8 unit 
elements 1, i, j, k, l, m, n, o, the algebra of octaves or octonions. Graves defined their multiplication as 
follows [3, p. 648]: 

i2 = i2 =k2 =12 = m 2 = n 2 0 2=_1 

i = jk = Im = on = - kj = - ml = - no 

j = ki = In = mo = - ik = - nl = - om 

k = ij =lo =nm =-ji = -ol = -mn 

I = mi = nj = ok =-im= - jn= - ko 

m = il = oj = kn = - li = -jo = - nk 

n = jl = io = mk = - Ij = - oi = - km 

o = ni = jm = kl = - in = - mj = - lk. 

In this system the "law of the moduli" also holds: 

(1) (a2 2* 2 + 2) = (C2 + + c2 

Hamilton answered on the 8th of July 1844 [3, p. 650]. He noted to Graves that the associative law 
A BC = AB * C clearly held for quaternions but not for octaves. 

Octaves were rediscovered by Cayley in 1845; because of this they are also known as Cayley 
numbers. Graves also made an attempt with 16 unit elements but it was unsuccessful. It could not 
succeed since we know today that identities of the form (1) are only possible for sums of 1, 2, 4 and 8 
squares. I should like to close with a brief comment about the history of these identities. 

Product formulas for the sums of squares 

It is likely that the "law of the moduli" for complex numbers was already known to Euler: 

(a 2+ b2)(c2 + d2)= (ac - bd)2 + (ad + bc )2. 

A similar formula for the sum of 4 squares 

2 + L , N2 + M) = (C2M + ' + 2) 
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was discovered by Euler; the formula is stated in a letter from Euler to Goldbach on May 4th, 1748 [4]. 
The formula (1) for 8 squares, which Graves and Cayley proved by means of octonions, was previously 
found by Degen (1818) [6]. Degen erroneously thought that he could generalize the theorem to 2" 
squares. 

The problem, which started with Hamilton, reads: can two triplets (a, b, c) and (x, y, z) be so 
multiplied that the law of the moduli holds? In other words: is it possible so to define (u, v, w) as 
bilinear functions of (a, b, c) and (x, y, z) that the identity 

(2) (a2+ b2+ c2)(x2 + y2+ z2) = (u2 + v2+ w2) 

results? 
The first to show the impossibility for this identity was Legendre. In his great work Theorie des 

nombres he remarked on page 198 that the numbers 3 and 21 can easily be represented rationally as 
sums of three squares: 

3 =1 + 1 + 1, 

21 = 16+4+ 1, 

but the product 3 x 21 = 63 cannot be so represented, since 63 is an integer of the form (8n + 7). It 
follows from this that an identity of the form (2) is impossible, to the extent that it is assumed that 
(u, v, w) are bilinear forms in (a, b, c) and (x, y, z) with rational coefficients. If Hamilton had known of 
this remark by Legendre he would probably have quickly given up the search to multiply triplets. 
Fortunately he did not read Legendre: he was self-taught. 

The question for which values of n a formula of the kind 

(a2 + * 2n)(21 + + 2) = (C2l + ...+ C2n 

is possible, was finally decided by Hurwitz in 1898. With the help of matrix multiplication he proved 
(in [5]) that n = 1, 2,4 and 8 are the only possibilities. For further historical accounts the reader may 
refer to [I] or [2]. 
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The sun never sets on mathematics 

The discoveries of Newton have done more for England and for the race, than 
has been done by whole dynasties of British monarchs; and we doubt not that in the 
great mathematical birth of 1843, the Quaternions of Hamilton, there is as much 
real promise of benefit to mankind as in any event of Victoria's reign. 

- THOMAS HILL 
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