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Preface

Pascal Auscher recently spent a year at ANU on leave from Université Paris-Sud, where
he is Professor of Mathematics. During this time he taught this graduate level course
covering fundamental topics in modern harmonic analysis.

Auscher has made substantial contributions to harmonic analysis and partial differential
equations, in a wide range of areas including functional calculi of operators, heat kernel
estimates, Hardy spaces, weighted norm estimates and boundary value problems.

In particular his contributions were essential to the recent solution of a long-standing
conjecture known as the Kato square root problem. This involved substantial new devel-
opments concerning the so-called Tb theorems and their application to singular integral
operators or more generally to the functional calculus of operators which satisfy Davies-
Gaffney estimates. These concepts were fundamental in the solution of the Kato problem
on square roots of elliptic operators by Auscher, Hofmann, Lacey, Tchamitchian and my-
self.

Auscher has two published books to his name: Square Root problem for divergence opera-
tors and related topics, (with Ph. Tchamitchian) Astérisque vol 249, Soc. Math. de France
1998; and On necessary and sufficient conditions for LP estimates of Riesz transforms as-
sociated to elliptic operators on R™ and related estimates, Memoirs of the American Math.
Society vol. 186, Am. Math. Soc. 2007.

In this lecture course, Auscher provides a basic grounding in the advanced mathematics
required for tackling problems in modern harmonic analysis and applying them, for exam-
ple to partial differential equations. He does this from the point of view of an expert who
fully understands the significance of the more basic material. Throughout the manuscript
the material is developed in novel ways including some original proofs, derived from the
advanced outlook of the author.

Thus the book is a mixture of expository material developed from a contemporary per-
spective and new work. It is likely to serve two audiences, both graduate students, and
established researchers wishing to familiarise themselves with modern techniques of har-
monic analysis. The lecture notes were taken and written up by an ANU PhD student,
Lashi Bandara, thus providing the final polished account of the course material.

Alan McIntosh, Professor of Mathematics, MSI, ANU



Introduction

This book presents the material covered in graduate lectures delivered at the Australian
National University in 2010. This material had also been partially presented at the Uni-
versity Paris-Sud before but never published.

Real Harmonic Analysis originates from the seminal works of Zygmund and Calderén,
pursued by Stein, Weiss, Fefferman, Coifman, Meyer and many others.

Moving from the classical periodic setting to the real line, then to higher dimensional
Euclidean spaces and finally to, nowadays, sets with minimal structures, the theory has
reached a high level of applicability. This is why it is called real harmonic analysis:
the usual exponential functions have disappeared from the picture. Set and function
decomposition prevail.

This development has serve to solve famous conjectures in the field. The first one is the
boundedness of the Cauchy integral operator on Lipschitz curves by Coifman, McIntosh
and Meyer thirthy years ago. In the last ten years, there has been the solution of the
Kato conjecture at the intersection of partial differential equations, functional analysis and
harmonic analysis, and of the Painlevé conjecture at the border of complex function theory
and geometric analysis. We mention also the breakthroughs on weighted norm inequalities
with sharp behavior on the weight constants that are occurring at the moment, many of
the articles being still in submitted form.

Nowadays all these developments bear on variations of boundedness criteria for singular
integral operators and quadratic functionals called Th theorems after the pionering work
of McIntosh and Meyer followed by David, Journé and Semmes. These are powerful and
versatile tools. However, they represent more advanced topics than such lectures could
cover: these would be a follow-up topic. We have chosen to prepare the grounds to more
advanced reading by presenting the basic material that is considered as “well-known”
by experts. Nevertheless, anyone who wants to explore this field or apply it to some
other problem must know the material we have chosen here. These lecture notes are
therefore introductory to the field and accessible to beginners. They do not pretend to
cover everything but a selection of important topics. Even if some lecture notes like this
one exist, there is a need for updates as they do not cover the same material or address
different points.

Let us present it in some more detail. We cover ten chapters: Measure theory, Coverings
and cubes, Maximal functions, Interpolation, Bounded Mean Oscillation, Hardy spaces,



Calderon-Zygmund Operators, Carleson measures and BMO, Littlewood-Paley estimates
and the T1 theorem for Singular Integrals.

The first chapter is to recall some notation and results from integration theory. The sec-
ond chapter presents the fundamental tools of modern real harmonic analysis: covering
lemmas of various sorts (Vitali, Besicovitch, Whitney). We have chosen to mostly restrict
our setting to the Euclidean space to emphasize the ideas rather than the technicalities,
Except for the Besicovitch covering lemma, of which we give a proof, they all extend to
very general settings and we have tried to give proofs that are not too different from the
ones in the extended settings. Maximal functions are treated in Chapter 3. These central
objects can be declined in several forms: centred, uncentred, dyadic. They all serve the
same goal: decompose the space into sets of controlled sizes according to a function. Chap-
ter 4 on interpolation is rather standard and we present a simple as possible treatment.
Chapter 5 on bounded mean oscillation restricts its attention to the main properties of
BMO functions, the John-Nirenberg inequality and the technique of good lambda inequal-
ities to prove the sharp function inequality of Fefferman-Stein. We also cover the recently
developed good lambda inequality with two parameters which is useful for proving in-
equalities in restricted ranges of the exponents of the Lebesgue spaces. Chapter 6 presents
atomic Hardy spaces: Coifman-Weiss’ equivalence of the atomic definitions with p-atoms
with 1 < p < oo as a consequence of Calderén-Zygmund decompositions on functions,
and applications to the Fefferman duality theorem. Chapter 7 is also an introduction to
the theory of Calderén-Zygmund operators and some applications to multipliers are given
towards Littlewood-Paley theorem. Again more advanced results can be obtained form
the references. Chapter 8 covers the notion of a Carleson measure and Carleson’s em-
bedding theorem is proved. Then the connection between Carleson measures and BMO
functions is studied in detail with care on the subtle convergence issues that are not often
treated in the literature. Applications to the Bony-Coifman-Meyer paraproducts are given.
Chapter 9 on Littlewood-Paley estimates could also be called T1 theorem for quadratic
functionals and is extracted with details from an important article of Christ-Journé. See
also my previous book with Philippe Tchamitchian were not all details are given. Almost
orthogonality arguments, in particular the Cotlar-Knapp-Stein lemma, are central here.
We finish in Chapter 1 with a proof of the T1 theorem of David-Journé. This proof is
not the original one but is the one given by Coifman-Meyer and deserves more publicity.
Again the strategy of this proof adapts to very general settings.

Special thanks go to Alan McIntosh and to the Mathematical Science Institute by inviting
me as a one year visiting fellow at the Australian National University and also to the
CNRS for giving me a “délégation” allowing a leave of absence from my home university.
A one year visit that all my family has enjoyed and will remember for years.

Alan McIntosh and I have had and still have a long standing collaboration and it is
a pleasure to thank him for sharing so many views on mathematics and life. That he
accepted to preface this manuscript is a great privilege.

Thanks also go to Lashi Bandara whose typesetting genius made scratch notes he took
from the lectures a readable manuscript. He also corrected some mistakes in the proofs
(the remaining ones are my responsibility). My former student Frédéric Bernicot read the
proofs entirely and found some more typos. I am grateful for that.



Addition to the second version: These lectures have been used again by myself at Université
Paris-Sud and also by Thierry Coulhon and Dorothee Frey at ANU. I want to thank them
for pointing out a number of remaining typos.



Chapter 1

Measure Theory

While we shall focus our attention primarily on R™, we note some facts about measures
in an abstract setting and in the absence of proofs.

Let X be a set. The reader will recall that in the literature, a measure p on X is usually
defined on a c-algebra .# C £?(X). This approach is limited in the direction we will
take. In the sequel, it will be convenient to forget about measurability and associate a size
to arbitrary subsets but still in a meaningful way. We present the Carathéodory’s notion
of measure and measurability. In the literature, what we call a measure is sometimes
distinguished as an outer measure.

Definition 1.0.1 (Measure/Outer measure). Let X be a set. Then, a map p: Z(X) —
[0, +00] is called a measure on X if it satisfies:

(1) (@) =0,
(ii) p(A) <372, u(A;) whenever A C | J2, A;.
Remark 1.0.2. Note that (ii) includes the statement: if A C B, then u(A) < u(B).

Certainly, the classical measures are additive on disjoint subsets. This is something we
lose in the definition above. However, we can recover both the measure o-algebra and a
notion of measurable set.

Definition 1.0.3 (Measurable). Let u be a measure on X (in the sense of Definition
1.0.1). We say A C X is p-measurable if for all Y C X,

u(A) = p(A\Y) + p(ANY).
Theorem 1.0.4. Let {A;};°, be a countable set of p-measurable sets. Then,

(i) N2y Ai and \J;2, A; are p-measurable,

(ii) If the sets {A;};2, are mutually disjoint, then

% <U Ai) = ZM(Az'),



(iii) If Ay C Agyq for all k > 1, then

hmuAk (UA)

(iv) If Ap D Agy1 for all k > 1, then

s (1)

(v) The set M ={A C X : A is up — measurable} is a o-algebra.

A proof of (i) - (iv) can can be found in [GCI1, p2]. Then, (v) is an easy consequence and
we leave it as an exercise.

The following result illustrates that we can indeed think about classical measures in this
framework. Recall that a measure space is a triple (X, .#,v) where # C Z(X) is a o-
algebra and v : .# — [0,+0o0] is a measure in the classical sense. Measure spaces are also
given as the tuple (X, ) by which we mean (X, .#,v) where .# is the largest o-algebra
containing v-measurable sets.

Theorem 1.0.5. Let (X,.#,v) be a measure space. Then, there exists a measure p in
the sense of Definition on X such that p=v on A .

See |[G.81, §5.2, Theorem 3].

Of particular importance is the following construction of the Lebesgue measure in our
sense.

Definition 1.0.6 (Lebesgue Measure). Let A C R". For a Euclidean ball B, denote the
volume of the ball by vol B. Define the Lebesque measure L :

Z(A) = inf {Zvol B;: AC U B; and each B; is an open ball} .
i=1 i=1

This definition is justified by the following proposition.

Proposition 1.0.7. Let (R",.Z',.¢") be the classical Lebesque measure defined on the
largest possible o-algebra A" and let M ={A C X : A is £ — measurable}. Then,

M =M and £ (A) = ZL'(A)

forall A e .a'.

For a more detailed treatment of abstract measure theory, see [GC91, §1] and [G.81, Ch.5].



Chapter 2

Coverings and cubes

We will consider the setting of R” with the usual Euclidean norm |- | inducing the standard
Euclidean metric dg(z,y) = |x —y|. We note, however, that some of the material that we
discuss here can be easily generalised to a more abstract setting.

To introduce some nomenclature, we denote the ball centred at = with radius r > 0 by
B(x,r). We are intentionally ambiguous as to whether the ball is open or closed. We will
specify when this becomes important.

For a ball B, let rad B denote its radius. For A > 0, we denote the ball with the same
centre but radius Arad B by AB.

This chapter is motivated by the following two questions.

(1) Suppose that Q = Jgcz B where # is a family of balls. We wish to extract a
subfamily 4’ of balls that do not overlap “too much” and still cover Q.

(2) Given a set  C R", how can we select a cover of ) with a given geometric structure.

2.1 Vitali and Besicovitch

Lemma 2.1.1 (Vitali Covering Lemma). Let {By},c; be a family of balls in R™ and
suppose that

suprad B, < oo.
acl

Then there exists a subset Iy C I such that

(i) {Ba}aeg, are mutually disjoint.

(1) Uaer Ba € Uaer, 5Ba-
Remark 2.1.2. (i) The balls {Ba},c; can be open or closed.



(i) This statement only relies on the metric structure of R™ with the euclidean metric
given by |-|. It can be replaced by a metric space (E,d). As an example, we can set
(E,d) = (R",dw), where do is the infinity distance given be by the infinity norm.
This is equivalent to replacing balls by cubes.

(11i) The condition sup,crrad By < 00 is necessary. A counterexample is {B; = B(0,1) : i € N}.

Proof. Let M = sup,c;rad B,. For j € N, define

I1(j)={a€l:2777'M <radB, <27/M}.

We inductively extract maximal subsets of each I(j). So, for j =0, let J(0) be a maximal
subset of 1(0) such that {Ba},e¢ (o) are mutually disjoint. The existence of such a collection
is guaranteed by Zorn’s Lemma. Now, for j = 1, we extract a maximal J(1) C I(1) such
that {Ba},e (1) mutually disjoint and also disjoint from {Ba},¢ (). Now, when j = £k,
we let J(k) C I(k) be maximal such that {Ba},c ;) mutually disjoint and disjoint from
{Ba}aeuﬂ;;loJ(m)' We then let

Io={J J(k).

keN

By construction, {Ba},¢j, are mutually disjoint. This proves (i).

To prove (ii), fix a ball B, € I. We show that there exists a 5 € Iy such that B, C 5Bg.
We have a k € N such that a € I(k). That is,

27 k=10 < rad B, < 27k .

If i € J(k), then we’re done. So suppose not. By construction, this must mean that B,
must intersect a ball Bg for 8 € J(I) where 0 <1 < k. But we know that

rad Bg > 27171 > 27F 1 > %rad B,
and by the triangle inequality
d(zq,zp) < rad B, + rad Bg.
Then, rad B + d(zq,x3) < 2rad B, + rad Bg < 5rad Bg and so it follows that
B, = B(xq,rad B,) C B(xg,rad By + d(xa,23)) C B(xg,5rad Bg) = 5B3.

O

Before we introduce our next covering theorem, we require a rigorous notion of a family of
balls to not intersect “too much.” First, we note that X x denotes the indicator function
of B.

Definition 2.1.3 (Bounded Overlap). A collection of balls % is said to have bounded
overlap if there exists a C' € N such that

Zngc.

Be#



Theorem 2.1.4 (Besicovitch Covering Theorem). Let E C R". For each x € E, let B(x)
be a ball centred at x. Assume that E is bounded or that sup,cprad B(z) < oo. Then,
there exists a countable set Ey C E and a constant C(n) € N such that

(i) E CUser, B(@).
(1) > rer, XB@) < C(n).

Remark 2.1.5. (i) Here, (ii) means that the set {B(x)},cp, forms a bounded covering
of E with constant C(n). This constant depends only on dimension. The bounded
covering property tells us that the balls are “almost disjoint.” In fact, we can organise
Ey = E1U...UEN such that each set {B(z)},cp, contain mutually disjoint balls.
We will not prove this.

(ii) We can substitute cubes for balls.
(1it) For E unbounded, the condition sup,cprad B(z) < oo is necessary.
(iv) This theorem is very special to R™. A counterexample is the Heisenberg group.

(v) The balls must be centred at each point in E. Otherwise, consider E = [0,1] and
B;=1[0,1-29,i>1.

Before we proceed to prove the theorem, we require the following Lemma.

Lemma 2.1.6. For y € R", let C:(y) be the sector with vertex y with aperture angle
e. Suppose that 0 < € < w/6. Then, for all R > 0, x,z € C:(y), if |z|,|z| < R then
|z — z| < R.

Proof of Besicovitch Covering Theorem. Let M = sup,cprad B(z) and suppose that E is
bounded and M = oco. Then, fix an xy € E and there exists a ball B(zg, R) such that
B(zo,R) D E. Then, we're done by setting Fy = {xo}.

So, we suppose now that E is bounded and M < co. Define:
E(k) = {l’ € E:27F 1M <rad B(z) < Z_kM} )

We select points z; inductively from each E(k) to construct a set E’(k). So, fix an initial
z0,0 € E(0) and select xp; € E(0) by requiring that zo; ¢ Uf;é B(xo,). Then, for arbitrary
k > 0, assume that E'(0),..., E'(k—1) have already been constructed and construct E’(k)
by selecting x, ; such that xj; & U;;é B(xyy) U Uz, e (m)B(Tm,i). Each E'(k) must
be finite since by the boundedness of F and the definition of E(k), this process must
stop after finitely many selections in E(k). Now, let Ey = (J,cn £'(k) equipped with the
natural ordering. That is, Ey = {x1,22,...} and if i < j then x; ¢ B(x;). This is the
same as saying that z; was selected before x;.

We prove (i). Suppose z € E but x € U,.cp, B(wi). In particular this means that
x € F'(k) for some k which is a contradiction.

10



Now, to show (ii), fix y € R", let ¢ = 7/6 and let C.(y) denote the sector with vertex y
and aperture €. Define

Ay ={z; € Ey:y € B(x;) and z; € C.(y)},
and let x; be the first element in A,. Take z; € A, with j7 > 7. Then,
zi, xj € Co(y)

|z; —y| < rad B(z;)
|z; —y| <rad B(z;)

and so |z; — x| < max {rad B(x;),rad B(x;)} by application of Lemma But by the
ordering on Ejy, x; was selected after z; and so x; ¢ B(xz;). Consequently rad B(z;) <
|z — x;| which implies rad B(z;) > rad B(z;).

Now, suppose that x; was selected at generation k, so 27" M < rad B(z;) < 27*M. Also,
27F1M < rad B(x;) < 27FM for otherwise, z; would be selected at a later generation
[ > k which implies that rad B(x;) > rad B(z;) which is a contradiction.

Also, note that {B(xj, 27k=201) € Ay} are mutually disjoint and are all contained in
B(z;,27 ¥ M). Tt follows that,

D Z(Blag,2 M) £ Z (Bl 27 M) = (202 (BO,27 )
jeAy

and

—k—2
_ B(z;,2 M)) 3n
card A, = E 1= E g (0,2 F-201)) <2
JEAy JEAy

and we are done.

We shall not give details for the case that £ is unbounded, but it can be obtained from
the previous case with some effort. We refer the reader to |[GC91l p35]. O

Corollary 2.1.7 (Sard’s Theorem). Let f : R™ — R"™ and let

_ nope oL (f(Blz,r))) _
A{xER .hfnn_)l(l)lfcg(B(WO}.

Then £ (f(A)) = 0. (Recall that by our definition of £, we can measure every subset of
R™).

Proof. Firstly, we note that for all z € A and € > 0, there exists an r, € (0, 1] such that

Z(f(B(x,12))) < eZ(B(x,72)).

Let Ay C A be the set of centres given by Besicovitch applied to the set of balls { B, = B(z,7,)}
for which the above measure condition holds. Then, f(A) C U, ca, f(B(xi)) and by the

11



subadditivity of .Z,

< eC(n)ZL(A+ B(0,1)).

Now, if A is bounded, then .Z(A + B(0,1)) < oo and we can obtain the conclusion by
letting ¢ — 0. Otherwise, we replace A by AN B(0, k) to obtain .Z(f(AN B(0,k))) =0
and then by taking k — oo we establish Z(f(A))) = 0. O

It is easy to show that A contains the singular points of f, that is points x at which f
is differentiable with vanishing differential df (z) = 0. That is for a differentiable map,
almost all points are regular (i.e., non-singular).

2.2 Dyadic Cubes

We begin with the construction of dyadic cubes on R™.

Definition 2.2.1 (Dyadic Cubes). Let [0,1)" be the reference cube and let j € Z and
k= (ki,...,kn) € Z". Then define the dyadic cube of generation j with lower left corner
277k

Qir={r€eR": 22 —ke[0,1)"},

the set of generation j dyadic cubes
Qj = {ij ke Zn},
and the set of all cubes

2=)2,={Qjr:j€Zand k€ Z"}.

JEZ
We define the length of a cube to be its side length ((Q;y) = 277.

Remark 2.2.2. If we were to replace [0,1)"™ with R =[]}, [a;,a; + ) as a reference cube,
then the dyadic cubes with respect to R are constructed via the homothety ¢ : R* — R"
where p(]0,1)") = R.

Theorem 2.2.3 (Properties of Dyadic Cubes). (i) Forj € Z, {(Q;x) =277, L(Qjx) =
279" and 2; forms a partition of R™ for each j € Z.

(ii) For all j € Z and k € Z", there exists a unique k' € Z" such that Qjr C Qj_1 -
We set Q= Qj_1 and it is called the parent of Q; .

12



(iii) For all j € Z and k € Z", the cubes Qjy1 1 for which Qjy is the parent are called
the children of Q; .

(iv) For all x € R", there exists a unique sequence of dyadic cubes (Qj;)jez C 2 such
that Qji1k;,, 18 a child of Qjk, Qjk, is the parent of Qji1x,, and v € Qjy; for
all j € 7.

(v) Let & C 2 such that Q = Ugee Q satisfies £ (2) < oo. Then, there exists a
collection F C 2 of mutually disjoint dyadic cubes such that Q = UQ’efi Q.

Proof. We leave it to the reader to verify (i) - (iv). We prove (v).

Define: .
ﬁ:{Q’eQ:Q’chm Q’gZQ}.
We prove that % # @. Let @ € &, and denote the kth parent by @k It follows that

Z(@k) = (2")*2(Q). Now, let kg = max {kz : @k C Q} and consequently, @ko € Z.

Now, note that UQeé” 0 C UQ’eﬁ Q' and by the construction of ., UQ,Ey Q' c Q. But
by hypothesis Q = (o Q@ and so it follows that Q@ = Jg 7 Q'

To complete the proof, we prove that the cubes in .%# are mutually disjoint. Let @', Q" € .F
and assume that Q" # Q”. This is exactly that @ ¢ Q" and Q" Q" so by (iii),
oanQ’' =o. O

Remark 2.2.4. (i) The way (v) is formulated does not ensure that # C &. Take for
example & = {[0,1/2),[1/2,1)} which gives F = {[0,1)}.

(ii) Suppose Q is an open set with £ () < oo and let & = {Q € 2:Q C Q}. Then,
F C & and we call F the maximal dyadic cubes in &. Mazimality here is with
respect to the property Q C €.

(i4i) The assumption £ (Q) < oo cannot be dropped. A counterexample is [0,2F) C R for
k€ N.

2.3 Whitney coverings

The Whitney covering theorems are an important tool in Harmonic Analysis. We initially
give a dyadic version of Whitney. But first, we recall some terminology from the theory of
metric spaces. Recall that the diameter of a set E C X for a metric space (X, d) is given
by
diam E = sup d(z,y),
z,yel

and the distance from E to another set F' C X is given by

dist(E, F) = xeg}yfeF d(x,y).
Then the distance from E to a point y € X is simply given by dist(x, F) = dist(E, F)
where F' = {z}.

13



Theorem 2.3.1 (Whitney Covering Theorem for Dyadic cubes). Let O ; R™ be open.
Then, there exists a collection of Dyadic cubes .F = {Q;};c; such that

(i)
1 . . : L.
20 dist(Q;, °0) < diam Q; < 10 dist(Qi, “0),

(ii)
o=J9,

el

(iii) The dyadic cubes in F are mutually disjoint.
Proof. We define & as the collection of dyadic cubes Q such that:

(a) QCQ,
(b) diam Q < Tl()dist(Q,CO),

and let . be the maximal subcollection of & as in Remark 2.2.4] This collection .Z is well
defined: let z € O and (Qj7kj )jez the dyadic sequence which contains x. So, there exists
a Qjk;, C  and since x is fixed, we can impose the condition (b). This proves (ii), and
(ili) and by construction diam Q < 55 dist(Q, ©O) for every Q € .Z. It remains to check
the lower bound.

So, take @ € #. Then, by maximality, either 0 Z Q or dist(@,CO) < 10diam O. Thus,
in either case,

dist(Q, °0) < 10 diam Q.
Combining this with the fact that diam @ = 2diam 9, we find
dist(Q,°0) < 10diam O + diam O < (20 + 2) diam Q < 30 diam Q,
and this completes the proof. O

Remark 2.3.2. In (i), the constant 1/10 could be replaced by 1/2 — ¢ for all € > 0.
However, this would change the constant 1/30 in the lower bound.

The Whitney dyadic cubes introduced in the preceding theorem satisfy some important
properties.

Proposition 2.3.3. The Whitney Dyadic cubes of O satisfy:

(i) Forallic I, 3Q; C O,

(i1) For alli,j €1, if 3Q;N3Q; # O, then
L diam@i
4~ diam Q; —
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(iii) There exists a constant only depending on dimension, C(n), such that

> Xso, < C(n).

el

Proof. (i) Suppose there exists an z € °O N 3Q;. So, there exists a y € Q; such that

(i)

(iii)

d(y, z) < diam Q;. But,

10diam Q; < dist(Q;,°0) < dist(y, ‘0O) < dist(y, z) < diam Q;
which is a contradiction.
By symmetry, it suffices to prove that

g, =
Let y € 3Q, N 3Q;. We note that dist(y, Q;) < diam Q; since y € 3Q;, and by the
triangle inequality,
10diam Q; < dist(Q;, “0) < dist(y, “O) + dist(y, Q;) < dist(y, “O) + diam Q;

which shows that dist(y,“O) > 9diam Q.

Also, there exists z € Q; such that d(y, z) < diam Q; and dist(y, “O) < dist(z,°O) +
diam Q;. We estimate dist(z,°0). Fix w € Q; and we find

dist(z, “0) < d(z,w) + dist(w, “0) < diam Q; + dist(w, “O).

By taking an infimum over all w € Q; and using the fact that dist(Q;,°O)
30diam Q;, we find that dist(z,°O) < 31diam Q; and consequently dist(y, ©O)
32 diam Q;.

Putting these estimates together, we get that

diam@; 32
diam Q; 9

ININ

Fixie I andlet A; = {j € [:39;N3Q; # &}. So, for any y € 3Q; N39;,

diSt(y, Qz) < diam Qi,

dist(y, Q;) < diam Qj;,

dist(Q;, Q;) < diam Q; + diam Q;.
Let K ={-2,-1,0,1,2}. Then, for any j € A;, diam Q; = 2F diam Q; where k € K.
Now for such a k € IC, define Ai-“ = {j € A; :diam Q; = 2k diam Qi}.
If j € AF, then dist(Q;, Q;) < (1+ 2F) diam Q; < 5diam Q;, and in particular,
this means that Q; C 10Q;. But all such {Q;}, 4+ are mutually disjoint and
so X (UjeA’? Qj) < (10)"2(Q;) = 40nZ(Q;) for any j € A¥ since diam Q; =
27k diam Q; < 4diam Q;. Then,

cardAf: Z 1< Z X(QZ) <40

jeAk jeAF

15



and this completes the proof.

O]

Theorem 2.3.4 (Whitney Covering Theorem for metric spaces). Let (E,d) be a metric
space, and let O ;Cé E be open. Then there exists a set of balls & = { By}, and a constant
c1 < oo independent of O such that

(i) The balls in & are mutually disjoint,

(ii) O = Upes ¢1Ba,
(iii) 4¢1By ¢ O.

Proof. Let 6(x) = dist(z,°0), and fix 0 < € < 1/2 to be chosen later. Define
B ={B(z,e0(x)) : x € O}

and let & = {Ba},c; C % maximal with mutually disjoint balls. The existence of & is
guaranteed by Zorn’s Lemma. Now we set ro = €d(zo) and ¢; = 1/2¢. Then,

4c1 By, = B, 4c170) = B(xo,4- (1/2)ed(x;)) = B(xa,20(x;)) ¢ O.
This proves (i) and (iii).

Now, suppose there exists © € O \ U,c; c1Bo. By maximality, there exists a § € I such
that @ # B(z,7:) N B(xg,74,). In particular, this implies that

d(z,25) < <(6(a) +(zg)) and d(z,5) > 56(w)

and so
6(xp) <

1
5 — 9
Now, trivially, B(xg,20(z)) C B(z,26(x) 4+ d(x,zg)) and by the inequalities above,

2

2
25(35)+d(x,:1:,3)§[ R
E T

1_
2

] d(x).

2—6

Let ¢(e) denote the quantity within the square brackets and by putting this together, we
find that B(zg,2d(xg)) C B(z,¢(e)d(z)). Now, note that ¢(e) — 0, so we can choose
0 < € < 1/2 such that p(e) < 1. For such a choice of €, we find B(zg,26(xg)) C
B(z,¢(e)d(x)) C O. But this is a contradiction since B(zg,20(zg)) ¢ O. O

Proposition 2.3.5. Assume that (E,d) = (R",dg), where dg(z,y) = |x —yl|, then
{c1Ba} o1 possesses the bounded covering property.

Proof. Fix o € I and let Ay = {f€l:c1ByNc1Bg # @}. Now, take § € A, and fix
z € c1 By Nec1Bg. Then,

1 1
d(z,xzg) <radciBg = cirad Bg = 2—655(1:5) = 55(1‘5).
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By the triangle inequality,
1
d(xg) = dist(xg, “0) < dist(z,°0) + d(xg, z) < dist(z, “O) + 56(1’5)

and we conclude

< dist(z, O).

N |

Furthermore,

dist(z, °0) < dist(za, °0) + d(2, 7a) < 8(za) + %5(%) _ ga(xa).

Combining these two estimates, and by symmetry we conclude that

< <3.

Let & = {B(zg,50(z4)) : B € Aq}. This collection of balls are mutually disjoint by the
previous inequality. Now,

1 1 1
d(l’mxﬁ) <d(za,2) + d(xg, z) < ié(xa) + 55(;%’) < 55(35&) + g5(a:a) < 25(q).
Now, set
€ + 2
c=3 =
3

and combining this with the estimate above, B(xg, §6(z4)) C B(za,C50(24)). So again,
the volumes of the balls can be compared since with constant C' since ¢ is fixed, and using
a volume argument as in the proof of Besicovitch (Theorem we attain a bound on
card A, depending only on dimension. O

Remark 2.3.6. We note that the preceding proposition can be proved for a metric space
having the following structural property: There exists a constant 0 < C' < oo such that for
all R > 0, the number of mutually disjoint balls of radius R contained in a ball of radius
2R is bounded by C.

17



Chapter 3

Maximal functions

3.1 Centred Maximal function on R"

We begin with the introduction of the classical Hardy-Littlewood maximal function.

Definition 3.1.1 (Hardy-Littlewood Maximal function). Let p be a reference measure,
Borel, positive, and locally finite. Let v be a second, positive, Borel measure. Define:

Cap— [ gy B
MM(V)(x) - r>Ié)) w(B(z,1)) /B(ac,r) ! T>%) Bz, ))

for each x € R™. If f € Ll (du), then set dv(z) = |f(z)|du(x) and define

1
M@ = Mu0)@) = swp s [ il

Remark 3.1.2. By convention, we take % =0.

The first and fundamental question is to ask the size of M (v) in terms of v.

Theorem 3.1.3 (Maximal Theorem). Suppose that v is a finite measure. Then there
exists a constant depending only on the dimension C = C(n) > 0 such that for all X > 0,

p{r € R" : M, (v)(z) > A} < %V(R").

Remark 3.1.4. (i) The function M, (v) may not be a Borel function but it is a Lebesgue
measurable function. This a reason we wanted our measures to be defined on arbitrary
sets. The proof however does illustrate that {x € R" : M, (v)(x) > A\} C B where B
is a Borel set with p(B) < %V(R”).

(ii) With some regularity assumptions on ,u, M, (v) becomes lower semi-continuous.
That is, for all A > 0, the set {x € R"™ : M, (v)(x) > A} is open.

For example, suppose the map (x,r) — p(B(z,r)) is continuous (or equivalently
w(S" Yz, r)) =0 (Ezercise)). Then, M, (v) is lower semi-continuous (Ezercise).

18



Proof of Mazimal Theorem. Let Oy = {x € R™ : M, (v)(x) > A}. So, for all z € Oy, there
exists B, = B(x,r;) such that v(B,) > Au(B;). Fix R > 0, and apply Besicovitch to the
set Oy N B(0, R). So, there is an £ C Oy N B(0, R) at most countable such that

O\NB(0,R)C | J B, and > Xp, <C(n)

el zel
Then,
HONNBO.R) < S u(B) < Y 3v(B) = 3 5 [ X, dv
z€E xEE el

1 Cmn) mn
= )\/RnéXBI dv < TV(R )

The sets Oy N B(0, R) are increasing as R — 00, so

1(Ox) = lim p(OxNB(0, R)) <
R—o0
which completes the proof. O
Corollary 3.1.5. For all f € L(du) and for all A > 0,
n. Cn)
ple € R - Mu(f)(2) > A} < — \fld

Theorem 3.1.6 (Lebesgue Differentiation Theorem). Let f € Ll (du). Then, there exists
an Ly C R™ such that u(°Ly) =0 and

1

liy s /B @) = 1) dn() =0

for all x € Ly. In particular,

forallx € Ly.

Remark 3.1.7. 1. This is a local statement, and so we can replace f by fXx where
K is any compact set. Consequently we can assume that f € L(dp).

2. If f is continuous, then we can take Ly = &. That is, the Theorem holds everywhere.

Proof. Define:

|f(z) — f(W)] du(y)

wy(x) = limsup

=
r—0  p(B(z,7)) B(a,r)

and we remark that the measurability of wy is the same as the measurability of M, (f).
Note that wy is subadditive, that is, wyig < wy + wy. Also, wp < |f| + M, (f).
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Let ¢ > 0, and since C¢(R") is dense in L!(du) (since yu is locally finite), there exists a

g € CYR") such that
/ |f—gl dp<e.
R’ﬂ

Now, observe that from the previous remark (ii), wy = 0 and so it follows that

wp Swp_g+wy < |f =gl + Mu(f—9).

Fix A > 0 and note that
{z €R™:wj(a) > A} C {xeR”:|(f—g)|(x) > ;\}U{xeanM#(f—g)(x)> ;}

From this, it follows that

A

ulo € R swp(o) > A < o RS- 9l (@) > 5 |+

u{o e R M7 - 0)0) > 3

1 C(n
<3 [r-dlan+ S ir—l an
5 JR™ b R~

2
14+ C(n)
— ¢

2

<

Now letting ¢ — 0, we find that p{z € R" : wg(z) > A} = 0and p{x € R" : wy(x) > 0} =
limy o0 0 {# € R : wy(z) > 1} = 0. To complete the proof, weset Ly = {x € R" : wy(z) > 0}.
O

Remark 3.1.8 (On the measurability of wy). Let

(#) = 1 !
We 1(T) = 1M Sup —_—
f,k 7"—)0, TS% /’L(B(x7 T))

/ (@) — )] duy)
B(z,r)

and

. B 1
M (f)(z) = T>§7uf§% p(B(z,r)) /B(”)

Then, note that as n oo, Wp.1 N wy. Now, for all p € Q +1Q,

|f] dp.

|f(@) = f)| < |f(x) —pl + |p— f(y)]

and so it follows that
wa(x) < [f() = pl + M (p = f)(2)

and also that

oy < nt {170 =l 4 Mo - ) |

By the density of Q 4+ 1Q, equality holds for x € F where F = {x € R" : f(x) € C}. Since
f € LY(du), we have u(°F) = 0.
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Then,
wy measurable <= Wy 1 measurable Yk
1
— M/ (p— f)(x) measurable Yk Vp
<= M, (f) measurable.

Exercise 3.1.9. Prove that if u(S™*(z,r)) = 0 for all z € R™,r > 0, then wy is Borel
measurable.

Remark 3.1.10. The use of Besicovitch means that this is specific to R™.

3.2 Maximal functions for doubling measures

Definition 3.2.1 (Doubling measure). Let p be a positive, locally finite, Borel measure.
We say it is doubling if there exists a C' > 0 such that for all x € R"™ and all r > 0,

pw(B(z,2r)) < Cu(B(z,r)).

Definition 3.2.2 (Uncentred maximal function). Let p be positive, locally finite, and
Borel and v positive and Borel. Define

My0)(e) = s

for all z € R™. As before, when f € Li, (du), M,,(f) = M), (v) where dv = |f| du. That

loc
18,

M ()@) = sup s [ 111 o

Cheap Trick 3.2.3. There exists a constant C = C(n) > 0 such that
M, () < My(v) < Cln) My (o)

Lemma 3.2.4. M, (v) is a lower semi-continuous (and hence Borel) function.

Proof. Fix A > 0 and fix z € {z € R": M, (v)(z) > A}. So, there exists a ball B with
2 € B such that

v(B)
> A
u(B)
But for any y € B, we have
v(B)
M (V)(y) > ——=% > A
L)) > 43
andso B C {z € R" : M/ (v)(x) > A}. This exactly means that {z € R" : M), (v)(x) > A}
is open. [

Theorem 3.2.5 (Maximal theorem for doubling measures). Let i be a doubling measure.
Then, there exists an constant C'(n, p) > 0 depending on dimension and the constant C' in
the doubling condition for u such that for all f € L' (du) and all X > 0,

plo e R M(NE) >} < 5 [ 1] dw
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Cheap proof. We use Cheap Trick coupled with the Maximal theorem for M, (f). O

The preceding proof has the disadvantage that it is inherently tied up with R™. The
following is a better proof.

Better proof. Define: Of = {x € R" : M/,(f)(z) > A},

<

m B
MM <V)(x) B BBz,SrL;(I:?BSm ,U*EB;?

and OY" = {z € R" : M™(f)(x) > A}. Then, O} = Up,_; O™

Fix m. Then, for all z € O;\m, there exists a ball B, with x € B, with rad B, < m such
that
1

1(By)

By a repetition of the argument in Lemma B C Oy" making M;,(f) Borel.

11 du
B

Let & = {Bz}xeogm and apply the Vitali Covering Lemma m So, there exists a
countable subset of centres C C O™ and mutually disjoint {ij }x ce C© P satisfying
J

" c | 5B,
l‘jEC
Therefore,
p(ON") <> u(5Ba;) < C* N~ p(Ba))
z;€C z;€C
C c3 c3
<AZ/ !f\du—/ s S [ s [
z;€C

Now, O™ is an increasing sequence of sets and so we obtain the desired conclusion letting
m — 0. O

Remark 3.2.6. This proof is not only better because it frees itself from Besicovitch to the

more general Vitali, but we get a better estimate since the integral is over O rather than
R™,

Corollary 3.2.7 (Lebesgue Differentiation Theorem for doubling measures). We have

fla) =t s | 1) duty)

for p-almost everywhere x € R™.
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3.3 The Dyadic Maximal function

Let p be a positive, locally finite Borel measure.

Definition 3.3.1 (Dyadic Maximal function). Let Qg € 2 and let Z(Qy) be the collection
of dyadic subcubes of Qpy. Define:

MIPE)= s o / £l d

Qe%(Qo),

for x € Qy and f € Ll _(Qo;dp).

Theorem 3.3.2 (Maximal theorem for the dyadic maximal function). Suppose f €
LY(Qo;dp) and X\ > 0. Then,

plreq i@ >ap <5 [ 1 i

Remark 3.3.3. Notice here that the bounding constant here is 1. It is independent of
dimension and (.

We give two proofs.

Proof 1. Let Qy = {z € Qp: ./\/l:?(f)(m) > A} If Q) # @ and € ), there exists a
Q € 9(Qp) such that z € Q and

o /Q IS )

Let & be the collection of all such cubes. Since 2 is countable, % is also countable. Then,
for every Q € %, we have that @ C Q) so therefore, ) = Uge%ﬂ Q. Let # ={Qi};c; CC
be the maximal subcollection. Then, .# is a partition of Qgy. So,

u(S2) ZMQZ_AZ/ 1 du< s [ 1 d
i€l i€l Qx

O]

Remark 3.3.4. (i) The uniqueness of .# is a consequence of the disjointness of the
dyadic cubes at each generation.

(ii) The proof gives us an even sharper inequality since we are only integrating on the set
Oy rather than Q.

Proof 2. 1f

1
i Jo, 11 =

then Q) = {Qo} and there’s nothing to do. So assume the converse. We construct a
mutually disjoint subset % by the following procedure Consider a dyadic child of Qj,
say, Q. If Q satisfies ({]), we stop and put Q in .%. Otherwise, we apply this procedure to
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Q in place of Qgy. That is, we consider whether a given dyadic child of Q to satisfies ().
The collection .Z is called the stopping cubes for the property . E|

We claim that:

m=J 2

QeF

Clearly, Q@ € .7 implies that @ C Q) (Proof 1). Suppose that there exists = € ) but
r ¢ Uger Q- But we know that Mf(f)(m) > ) so there exists a dyadic cube Q' € 2(Qy)
such that z € Q' satisfying the property (f)). The stopping time did not stop before Q' by
hypothesis x ¢ UQG,? Q. but Q' satisfies . By the construction of .%, we have Q' € .%
which is a contradiction.

The estimate then follows by the same calculation as in Proof 1. O

Remark 3.3.5. The collection ¥ is the maximal collection 4 from Proof 1.
Definition 3.3.6 (Dyadic maximal function on R"). Define:

2 _ b
M) = s o /Q fl dp

forx € R™ and f € Li (du).
Corollary 3.3.7. Suppose f € L1(R™;du) and A\ > 0. Then,

p{o e R MIN@ > 2 <5 [ 111 d

Proof. Since we are considering dyadic cubes, we begin by splitting R™ into quadrants,
and let g = fX@®,)». We note that it suffices to prove the statement for one quadrant
since the argument is unchanged for the others.

For each k € N, let Q% = [0,2%)". Then, note that:

MZ(f)(x) = sup gp()
keN
where

1
gr(z) = sup / || du.
Qe7(Q%), Qc ok, @sa ML) Jo

Now, let Qf = {z € QF : gi(x) > A}. We compute:

plre @ o) >N =p@< g [ dss [ i

(R+)

The desired conclusion is achieved by letting £ — oo and summing over all quadrants. [

Corollary 3.3.8. For f € L. (du), we have

loc

, 1
f(z) = 0co, fl(lrgr%o’gew(g)/gf(y) du(y)

for p-almost everywhere x € R™.

IThis is a stopping time argument, a typical technique in probability.
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Proof. Exercise. O

Remark 3.3.9. For a fized x, the set {Q € 2 : Z(Q) — 0,Q > x} is really a sequence.
Consequently, the limit is really the limit of a sequence.

We have the following important Application.

Proposition 3.3.10. For f € L} (du),

loc

for p-almost everywhere x € R™.

Remark 3.3.11. The centred maximal function uses Besicovitch and is confined to R™.
The others do not and can be generalised to spaces with appropriate structure. For instance,
in the case of the Dyadic maximal function, we must be able to at least perform a dyadic
decomposition of the space.

A consequence of the Lebesgue differentiation is:

M (f) S ML(f).

Exercise 3.3.12. Try to compare /\/lf:2 with M,, (and M;,). For simplicity, take p = &
(but note that this has nothing to do with the measure but rather the geometry).

3.4 Maximal Function on L? spaces

In this section, we let M denote either M;uM;L or Mf . We firstly note that for every
f € L=(dp),
Mf(@) < [|fll

for all z € R™. So, M f is a bounded operator on L*>°(du). We investigate the boundedness
on LP(du) for p < oc.

Lemma 3.4.1 (Cavalieri’s principle). Let 0 < p < oo and let g be a positive, measurable
function. Then,

/ g d,u,:p/ pl{z € R": g(z) > A} AP~ L d).
n 0

Proof. Assume that p finite (this is required for the application of Fubini’s theorem in the
following computation). In the case y is not finite, assuming that p {x € R" : g(x) > A} <
oo for all A > 0, we can restrict x4 to a o-algebra (depending on g) where it is the
case. Then this reduces to the assumption p is finite by approximating g via gy r =
9X{zeRm:g(x)<N}XB(0,R) and then applying the Monotone Convergence Theorem.
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We compute and apply Fubini:

p/ pi{r € R™: g(z) > AN~ dA
0
:p/ / 1 dp(z) APt dx
0 J{zeRmg(x)>A}

9@
:/ /0 PAPT dX du(x)
= / 9" du(z).

Theorem 3.4.2 (Boundedness of the Maximal function on LP). Let 1 < p < co. Then,
there exists a constant C = C(p,n) > 0 such that whenever f € LP(du) then M f € LP(du)
and

O]

M Fllr gy < ClF Lo aw-

For the case of M = ./\/l;“ we assume that p is doubling and C' may also depend on the
constants in the doubling condition.

Proof. Assume that f € L!(du) NLP(du). Let A > 0 and define

> A
) = [F@ 15123
0 f(2)] < 3
and
A
IR+ 5
By the subadditivity of the supremum,
A
Mf < Mf/\ + 5
and \
{z eR" : Mf(x) >} C {xe}R”:MfA(x)>2}.
Therefore,
A C
piz € R M(x) > A} SM{UCGRn!MfA(UC) > 2} <[ 1nl an
Rn
Then,

p/ ,u{xG]R":Mf(ar)>/\})\pld/\§p/ C [ |l NP~2 dud)
0 0 R

2f(x)
< Cp / / FAl P2 dAdp
nJ0

e /R 1P dp

Now, for a general f € LP(du) by the density of L!(du) N LP(dy) in LP(du), we can take
a sequence (for example simple functions) fr € L(du) N LP(du) satisfying |fe| 7 |f].
Then, M f, M f and the proof is complete by invoking the Monotone Convergence
Theorem. O
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Remark 3.4.3. (i) The constant C(n,p) satisfies:

B =

C(n,p) < <02p—1 pf1> (1)

So, if we let p — oo, then we find that

(021’—17’1) .
p J—

But asp — 1, C ~ % and blows up!

In fact it is true that if 0 # f € LY(d%), then M f & LY(dZ) (Exercise). Forp =1,
the best result is the Mazximal Theorem.

=

(ii) We remark on the optimality of C(n,p). Consider the inequality , and note that
the C is the Maximal Theorem constant. This depends on n and the measure p
(unless we consider ./\/lf’)

Suppose u = £. Then the best upper bound for C with respect to n is nlogn.
Consider the operator norm of M:

Mp,n = sup HMfHLP(df/)
fFeLr(dZ), | fllLpae)=1

If M = M, (ie, the centred maximal function), then M, , can be shown to be bounded
i n for any fired p > 1. This is important in stochastic analysis.

Now, suppose M = ./\/l;? Then,

To see this, first note that

.,2”{9361[{”:/\/lf(ac)>)\}§l

v | dz
{zeR™M f(z)>A}

and
1MW) = [ IMII 02

ZP/OO.Z{:UE]R”:Mf(x)>)\})\p1 dA
0

_p/ / If| dZX Pt d
0 {zeR™:M f(z)>A}

p/ooo (/Oval d)\> |f| d&

=5 | g az

< p—HanLw)nfuip(dg)

which shows that
IMFllpazy < 7 l@z)-

Optimality can be shown via martingale techmques. We will not prove this.
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We give the following important application of Maximal function theory.

Theorem 3.4.4 (Hardy-Littlewood Sobolev inequality). Let 0 < A <n, 1 <p < -2y and
q satisfying

1 A 1

S+ =14->.

p n q

Then, with vy = ﬁ,

(i) When p =1, there exists a constant C(\,n) such that for all a > 0,
n ST
Z{a €R iy ula)| > 0} € —fulld g,

(ii) When p > 1, there exists a constant C(p, A\, n) such that

[va * UHLp(dg) < CH“HLp(diﬂ)’

where

(v * u)(z) = /R L) dzw)

A
"z —yl
1s the convolution of u with vy.

Remark 3.4.5 (Motivation). Such a vy arises when trying to “integrate” functions in
R™. Such “potentials” are one way to “anti-derive.” Formally, in the case of A =n — 2,

(e * O =c i3

—2 2
|z €]

where " denotes the Fourier Transform. See [Ste71d].

Proof (Hedberg’s inequality). We prove (i). Let u € CX(R™), and set w = vy * u. We
take A > 0 to be chosen later. Then,

1 > 1
w(x) < / a2+ 2 /5 Ju(y)| dZ ().

le—y|>6 |2 — Y| 2-k-1<|g—y|<s2-F | — Y|

First, whenever |z — y| > 6,

1 1
— |u(y)| dZL(y) < —||u .
J s O A2 0) < sy

So, fix k£ > 0. Then,

/ Ju(y)| 42 (y)
52— k1< |z—y|<s2F |z — Y|

1y A Z(B(z,827)) u
<O GG | HOIEZ W)

< 0,22 (027" AIM gy (u) (2)
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where b, = Z(B(0,1)), the volume of the n ball. It follows then that

o0

3 /5 L ) d2w)

=0/ 02 k1< |—y| <2k [T — y|

< ibn?(érk)”‘AMz(U)(@

Now, let
by 2
1—2-(=3)
and solve for  such that 6" A(n, )M g (u)(z) = [[ull1(4e). Since if u # 0 then M pu(z) #

0 almost everywhere (which we leave as an exercise),

(Mg N
Aln, VM (u)(2)

Then, for almost everywhere x € R™,

A= Aln,\) =

w(z) <0 M ull gy + 070" A(n, )M gu(z)

= 072l gy

_y [ullLiag) o
A Mg (u)() v

(A M )@\
=2 ull 1 ag)

||UHL1(d$)

1

1 Loy
= A(n, )\)q/\/l,«;f(u)(x)qHuHLl(Zzz)'

From this, it follows that,

1-1 4
ZL{zeR" :wx)>a} <& {x eR™: () > a (Hu‘Ll(‘iig)) }
n 1
< o | u HLl ||UHL1(d.$)
( )
et (e

The density of C°(R") in L}(d.#) completes the proof.

We leave (ii) as an exercise. O

29



Chapter 4

Interpolation

4.1 Real interpolation

Suppose that (M, u) and (N, v) are measure spaces and the measures p and v are o-finite
measures.

Recall that when 0 < p < oo, LP(M,u) (or LP(M,du)) is the space of p-measurable
functions f for which |f|” is integrable. When 1 < p < oo, this space is a Banach space
(modulo the almost everywhere equality) and the norm is what we expect:

1/p
I, = ([ 177 aw)

For p = oo, f € L®°(M, p) if and only if there exists a A > 0 such that u{z € M : |f(z)| > A\} =
0. This is a Banach space and the norm is then given by

| fllo = esssup|f| =inf{A >0:pu{x e M :|f(z)| > A} =0}.

We define a generalisation of these spaces called the Weak L? spaces.

Definition 4.1.1 (Weak LP space). Let 0 < p < oco. Then, define LP>°(M, 1) to be the
space of pu-measurable functions f satisfying

sup NPp{x € M :|f(x)| > A} < oc.
A>0

For a function f € LP>°(M, ), we define a quasi-norm:

=

P

1l = (sup N e M : |f(2)] > A})
A>0

When p = oo, we let L (M, ) = L.

Remark 4.1.2. (i) The Weak LP spaces are really a special case of Lorentz spaces L9,
They truly generalise the 1P spaces for they are equal to LP when q = p. See [Ste71l|]
for a detailed treatment.
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1) We emphasise that for 0 < p < oo is not a norm, but it is a quasi-norm.
( ) p p ) p,00 b q
That is,

1+ 9l 00 < 201fllp 00 + 91l 00)-

This is a direct consequence of the following observation:
A A
{freM:|f+g]|>A}C xeM:]f\>§ U xeM:\g\>§ .

(iii) When 1 < p < oo, there exists a norm on LP°° (M, u) which is metric equivalent to

|| ||p,oo'

(iv) When p = 1, there is no such equivalent norm. In fact, LY°°(M, u) is not even
locally convex. For instance when u € LY(R™, d%) then Mgyu € LV©(R", d.Z) by
the Mazimal theorem.

Proposition 4.1.3. The Weak L spaces are complete with respect to the metric d,(f, g) =
1f = gll, 00 for 0 <p < oco.

Proposition 4.1.4 (Tchebitchev-Markov inequality). If f is positive, p-measurable and
0<p< oo, then

17 du(x) < — | £

1
pu{r e M : f(x) >} < — <

A /{IGM:f(z)>)\}

In particular, LP(M, p) C LP°(M, p).

Remark 4.1.5. The inclusion is strict in general. For instance,
1 n n

W € Ly>*(R",dZ)\Lx(R",d.Z),
x

when 0 < .

Remark 4.1.6 (o-finiteness of p). The above definitions do not require o-finiteness of .
We will, however, require this in the interpolation theorem to follow.

Definition 4.1.7 (Sublinear operator). Let K =R or K = C, and let %) denote the space
measurable functions f : M — K. Let Dy; be a subspace of Fa; and let T : Dy — Fy.
We say that T is sublinear if

T(f1r + f2)(@)| < [Tfi(2)] + T fa()|
for v-almost all x € N.

Example 4.1.8. (i) T: f +— Mg f where D =L (R",d.%).

loc

(i) Any linear T is sublinear.

Definition 4.1.9 (Weak/Strong type). Let T : Dyy — Fn be sublinear and let 1 < p,q <
oo. Then,

(i) T is of strong type (p,q) if T : DyyNLP(M, ) — LI(N, ) is a bounded map. That is,
there exists a C > 0 such that whenever f € Dy NLP(M, ) we have T'f € LY(N, p)
and

171, <l
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(ii) T is of weak type (p,q) (for q < oo) if T : Dpy NLP(M, ) — LY°(N, p) is a bounded
map. That is, there exists a C > 0 such that whenever f € Dy N LP(M, u) we have
TfeL?®(N,u) and

1T fllg00 < CIFI,-

(iii) T is of weak type (p,00) if it is of strong type (p,c0).
Remark 4.1.10. Note that if T is of strong type (p,q) then it is of weak type (p,q).

Example 4.1.11. (i) The maximal operator T : f — M, f is of weak type (1,1) and of
strong type (p,p) for 1 < p < co.

(ii) The operator u +— vy * u where vy is the potential in Theorem is of weak type
(1,%) if0 <A <non (R",.2).

Theorem 4.1.12 (Marcinkiewicz Interpolation Theorem). Given (M, p) and (N,v) let
Das be stable under multiplication by indicator functions. That is, if f € Dy then Xx f €
Dy Let 1 <pp <p2<o00,1<q1 <qo <oo, with p1 < q1 and pa < qo. Furthermore, let
T : Dy — Fn be a sublinear map that is of weak type (p1,q1) and (p2,q2). Then, for all
p € (p1,p2), T is of strong type (p,q) with q satisfying

1 1-6 0 1 1-06 0
= +— and - = +
b yal b2 q q1 q2

Proof. We prove the case when q; = p1,q2 = ps < oo and leave the general case as an
exercise.

First, by the weak type (p;, p;) hypothesis for i = 1,2 we have constants C; > 0 such that

1T ], 00 < Cill £l
for all f € Dyy NLPi(M, u). Fix such an f along with p € (p1,p2) and
/ ITFP dv :p/ v{z e N:|Tf(x)] > AP a
N 0

Fix A > 0 and define

0 otherwise

%m:{ﬂm|ﬂM>A

and

ha(z) = f(z) = ga(x).
So, g\ = fX{a:eM:|f(a:)\>>\} € Dyy and hy = fX{zGM:|f(m)|§)\} € Dys by the stability hypoth-
esis on Dyy.

Now,

I
)

prp £l
p
d'u < A\P—p1

/mwuwz/ mes/vm
M {zeM:|f(z)|>N} M

and by similar calculation,

/ IN& :/ | |72 duﬁ)\m_p/ |fIP dp < oo.
M {weM:|f(z)| <A} M
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Since T' is sublinear, for v-almost all x € N,

I Tf(2)] < [Tga(z)| + [Tha(x)]

and so
v{ze N:|Tf(z)| > A} < I/{x €N :|Tgx(z)| > ;} —i—V{xeN: |Thy(x)| > ;\}

We compute,

o A
/ I/{:UGN:|Tg,\( ) > = }Apld)\
0

o0 Cpl
< [T Sl i
0 (2

)

< (201)171/ )\p—m—l/ |FIPY dpd
0 {zeM:|f(z)[<A}

oo ([
BER [ 111w

By a similar calculation, but this time integrating from |f| to oo with A=¢ for £ > 0, we

get
/ V{xeN:ym( >|>A} < B 202 /m” dp.
0

Putting these estimates together,

fyimar < (G55 o o

which completes the proof. O

Remark 4.1.13. If the definition of gx was changed to gx = fX(zenr|f(x)|>an} With a €
Ry, then this leads to better bounds by optimising a. In fact, we can get a log convex
combination of C1,Cy. That is:

T, < Clp.pr,p2)CL " C3|I £l

For a function 0 — h(0), Log convex here means that 0 — log h(0) is convex.

4.2 Complex interpolation

We begin by considering a “baby” version of complex interpolation. Let a € CV. Then,

for 1 < p < o0,
N v
llall, = (Z |a¢!p>
i=1
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and for p = o0

lalloo = sup |ai
1<i<N

are norms. Let M be an N x N matrix, then

[ Mall,

1M oy gy = 1M, =
(£@),]11,) PP e jall, 20 lall,

is the associated operator norm. We leave it as an (easy) exercise to verify that

N
1Ml o0 = sUP Y _ |l
1 le

where M = (m;;). Then,

N
M1y = M| 00 = SUPZ 5
Ji=1

where we have used the fact that |- ||; and || ||, are dual norms on C. For 1 < p < oo,
there is no such characterisation of [|M],, but we have the following Schur’s Lemma.

Proposition 4.2.1 (Schur’s Lemma).
1 1—1
M, < IMIIT 3 [[M ][0 b0

Proof. For matrices, the result follows from the application of Holder’s inequality.

Let a € CV with [|al|, = 1. Then,

(Ma)i| = > mija;
j
< Imigl lay)
i
1—1 1
= Jma|" 7 [mig| v |ay]
J

P P

7
> Imi] > Imijl fag[”
i i

IN

and so it follows that
P P
D [(Ma)il” < [ MI5 00 > 0> Imis|ag|P < M1 % ol | M]] 4 [lal”
which finishes the proof. O
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This is really a special case of more general interpolation results of the form
1M, < 1M1, 012,

for 1 <p<g<r<ooand
1 1-6 0

q p r
A proof of this statement cannot be accessed easily via elementary techniques since there
is no explicit characterisation of ||M||, , and [[M]], .. This was the essential ingredient of
the preceding proof. This more general statement comes as a consequence of the powerful
complex interpolation method.

We prove this by employing the following 3 lines theorem of Hadamard. First note that
in the following statement, S denotes the topological interior of S and H(S ) denotes the
holomorphic functions on S.

Lemma 4.2.2 (3 lines Theorem of Hadamard). Let S = {(€C:0<Re ( <1}. Let
F € H(S) and F € C°%(S). Further suppose that |[F||, < oo on' S and let

Co =sup|F(«t)] and Ci=sup|F(1+t)|.
teR teR

Then for x € (0,1), and t € R,

|F(z +t)| < Cy~*CY.
Proof. Assume that Cy, C; > 0. If not, prove the theorem with Cy + d, C7 + d in place of
Co,Cy for 6 > 0 to conclude that |F(¢)| < (Co + 6)1 7R ¢(Cy + 6)Re ¢ and letting § — 0

conclude that
‘ ()|_0701 RGCCRGC

forCE‘SO’.

Fix e > 0 and set G.(¢) = F(C)CS'C; e for ¢ € S. Then, G. € H(S),G. € CO(S).
Now, fix R >0 and let Qg =S N{¢ € C:Im ¢ < R}. By the maximum principle,

sup |G:(¢)] = sup |G:(Q)].
CEQR CedQr

We consider each part of 0Qgr. For ¢ = it with |t| < R,
G=(O)] = ()| G5 e <1
and for ( = 1+« with [t| < R,
G(¢)] = |[F(1+1t)| Cf 1 Re e(1—t?+2ut) < €.
Then, for ( =z + 1R with |t| < R,

‘GE(C)’ < |F(IL’ + ZR)’ C Cmc Re e(z?2—R%2+21xR) < CeRe e(1-R?)

¢ = (supwor) (s ciicx)
ces 0<z<1
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and lastly, when ¢ =z — R with [t| < R,
’Ga(€)| < CeRe e(1-R?)

by the same calculation since Re e(z? — R? + 2w R) = (22 — R?). So, for ¢ fixed, there
exists an Ry such that whenever R > Ry,

Ce—cF? <1
Ge(z)] <€
V¢ €S, 3R > Ry such that ¢ € Qg and |G:(¢)] < €°

and so for all ( € S and all € > 0,
F(O)] < |CoCre=ef|.
The proof is then completed by fixing ¢ and letting ¢ — 0. O

Remark 4.2.3. This lemma can be proved assuming some growth on F for |Im (| — oo
(rather than F bounded). However, there needs to be some control on the growth.

Lemma 4.2.4 (Phragmen-Lindelof). Let X C C be the closed subset between the lines
R +17 (obtained from the conformal map ¢ — w({ — 3)). Suppose F € H(X),CO(X) and

assume that F is bounded on the lines x £1%. Suppose there exists an A > 0,3 € [0,1)
such that for oll ( € X,

[F(¢)] < exp(Aexp(8 [Re ().
Then, |F(¢)| <1 for ¢ € X.

Proof. The proof is the same as the proof of the preceding lemma, except ef(10)? = g==¢*
term needs to be replaced by something decreasing faster to 0 as |Re (| — co. We leave
the details as an exercise (or see [Boab4]). O

We are now in a position to state and prove the powerful complex interpolation theorem
of Riesz-Thorin.

Theorem 4.2.5 (Riesz-Thorin). Let 1 < p < r < oo and let (M, pn), (N,v) be o-finite
measure spaces. Let Dy; denote the space of simple, integrable functions on M, and
T : Dy — Fn be C-linear. Furthermore, assume that T is of strong type (p,p) and (r,r)
with bounds M, and M, respectively. Then, T is of strong type (q,q) for any q € (p,r)
with bound M, satisfying

My < MM,

where

with 0 < 6 < 1.

Before we prove the theorem, we illustrate the following immediate and important corol-
lary.
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Corollary 4.2.6. With the above assumptions, T' has a continuous extension to a bounded
operator LY(M,du) — LIY(N,dv) for each q € (p,r).

Proof. Fix ¢ € (p,r) and since ¢ < oo, Dy is dense in LY(M,du). Then, define the
extension by the usual density argument. O

Proof of Riesz-Thorin. Fix p < g < r and note that Dy is dense in LY(M,du), Dy is
dense in LY (N, dv) and by duality, LY(N, dv) = LY (N, dv). Thus, it suffices to show that

/NngdV

as this will imply that 7" is of strong type (q,q) on Dys and ||T|| < A.

< 00

A= sup
f€Dm, Ifll,=1, 9€Dn; llgll,=1

Fix f € Dys.g € Dy with 1], = lgll; = 1. So.
= Xy,
k
where o, € C, u(Ax) < oo and the sum is finite. Similarly,
9=">_BXs,
l
and it follows that
/ Tfg dl/:ZZakBl/ TXa, Xp, dv.
N = N
But p(Ag) < oo which implies that X4, € LP(M,dp) NL"(M,dp) and
/NTXA,c Xp, dv

is well defined. We will construct an F € H(S), C(S), | F|l,, < oo (where S is defined in
Lemma [4.2.2) with

F(Q):/NngdV.

Let ¢ € C and write

k
where q 7
a(@)==1-¢+-=¢
Similarly, P
_ a(€) £l
gc zz: 18 B
and , ,
_ 2 ¢
a(©) = L1 -0+ %



Note that a(f) = 1 if and only if b(f) = 1, and f = fyp and g = gg. Set

F(Q) :/NTfC gc dv

and note that it is well defined for each ( by the same reasoning as previously for f and
g in place of f and g¢. Furthermore,

a Q
F(O) =33 Jonl"@ 8MO 5 O [y X d
k [

el 2] v
so F € H(C) c H(S),C°(S) and
F(@):/ Tf g dv.
N
In order to apply Lemma we estimate supycg |F'(¢8)|,supser |F(1 4 1t)|. So, by the
strong type (p, p) property of T’
sup |F(1t)| = sup

/ szt Gat dv
teR teR |J N

< sup || T futl, [ gt
tcR wlipllgetlip’

< Mpsup || futll , | gat -
pteR wlipllFetlip

Using the fact that Ay are mutually disjoint, we can write

alv p
1l = 3 [lanl*®] (i)
k

and since a(ut) = g +at (g — %)’

1uellp = D ol p(Ar) = £
k

By a similar calculation, ||glt||§, = ||g\|g/ if p’ < oo and gl =1= ||g||g, if p’ = o0.

This shows that sup,, |F(«t)] < M,. An identical calculation, using the strong type (r,r)
property of T gives sup, |F(1+1t)| < M,. Then, set Co = M, and C; = M, and we
invoke Lemma to find

PO < My~ e e,

The proof is then complete by setting ¢ = 6. O

Exercise 4.2.7. Assume the hypothesis of the previous theorem, but here assume that T
is of strong type (p1,p2) and strong type (r1,7m2) where 1 < py,r1 < oo and 1 < pa,re < 0.
Then, T is of strong type (q1,q2) where

1 1-6 0 1 1—-0 6

— = — and — = + —
q1 b1 1 q2 b2 T2

where 0 < 0 < 1.

Remark 4.2.8. Notice that in the previous exercise, we do not require p1 < p2 andry < T
as we did in the case of Real interpolation (Theorem .
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Chapter 5

Bounded Mean Oscillation

In this chapter, the framework we work within is R” with the metric d = d, and Lebesgue
measure .Z. By Q(z,r), we always denote a ball with respect to d of radius r centred at
xz. That is, Q = Q(z,r) represents an arbitrary cube in R".

We remark that for the theory, there is nothing special about R™ and d.. It is just

convenient to work in this setting. The following material could be defined and studied
similarly on spaces of homogeneous type.

5.1 Construction and properties of BMO

We introduce some notation. Let myx f denote the mean of the function f on the set X.

That is )
me:m/de,,?.

Definition 5.1.1 (Bounded Mean Oscillation (BMO)). Let f € L{. (R"), real or complex
valued. We say that f has bounded mean oscillation if

1
fll, =supmg |f —mg| = sup
11 v Ql Ql W Za)

Here @ is an arbitrary cube in R™. We define

/yf_me\ 1 < .
Q

BMO = {f € Li:(R") : [|f], < oo}
Proposition 5.1.2 (Properties of BMO). (i) L™(R") € BMO and |||, < 2||f| -

(i) BMO is a linear space (over K), and |- ||, is a semi-norm. That is,

1+ gll. < IIfll +Tgll.

and

IAFIL = AT
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for f,g € BMO and A € K. Furthermore, | f||, = 0 if and only if f constant almost
everywhere x € R™.

(i1i) BMO/K is a normed space with norm

If+ K[ =111,

making BMO/K a Banach space. BMO convergence is often called convergence
modulo constant.

(iv) For f € L®*(R"), zg € R™ and t > 0 the function defined by

Tr — X0

franl) = £ ( > € TR,

Similarly, for f € BMO, f;., € BMO and || fi x|, = |-

Proof. We prove that || f||, = 0 if and only if f constant almost everywhere x € R™ (ii)
and leave the rest as an exercise.

Note that the “if” direction is trivial. To prove the “only if” direction, assume that
|| fll, = 0. Then, for every cube @ C R", f = mg f almost everywhere x € Q). Let Q); be

an exhaustion of R" by increasing cubes. That is, let Q; = [-27,27]" for j = 0,1,2,....
Then, f = mg; f almost everywhere on ); and hence mg, f = mq, f for all j. Letting
j — oo we establish that f is constant almost everywhere on R™. O

Exercise 5.1.3. 1. Let A € GL,(K) and o € R". Write fa 4,(x) = f(Ax—x0). Show
that if f € BMO then faz, € BMO and

1famoll, < 20 All% o det A7HIf],.

(Hint: Use the next Lemma). This exercise illustrates that we can indeed change the
shape of cubes.

2. Show that
IfI1% = supmp(|f —mp f]) < o0

where B are Fuclidean balls defines an equivalent semi-norm on BMO.

Lemma 5.1.4. Let f € L _(R™) and suppose there exists a C > 0 such that for all cubes

loc

Q, there exists a cg € K such that mq |f — cg| < C. Then, f € BMO and || f]|, <2C.

Proof. We write
f—me:f—CQ+CQ—me:f—CQ+mQ<CQ—f)
and it follows that

mq |f —mq f| <mq |f —co| + mq[cq — f| < 2mg |f —cq| < 2C.
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Example 5.1.5 (In|z| € BMO). In particular, this implies that L>°(R") & BMO.
We show that this is true for n = 1. Let f(xz) =1In|z|. Fort >0,

fulz) = mm —Injz| - Inft| = f(z) +c.
So, for I an interval of length t,

my |f —my f| =my|fi —my fi].

By change of variables, y = § € J where J is of unit length and

my |fy —my fi] = my |f —my f]

and so we are justified in assuming that I has unit length. So, let I = [z — %, o+ %] and
by symmetry, assume xg > 0.

Consider the case 0 < xy < 3. Then,

my | f| = /|f |daz</1|ln|x|\ dr < oo.

2

Now, suppose xo > 3. Then, for x € [xy — %,xo + %],

1 1 o1 r
In(z) —In{zog— = )| =In(z) —In({zy— = | = —dt <
2 2 zo—1 1 %
<2 +1 <2 + +1 2
—(z—20+ = — |z f—x -
=5 °T2) =5\ ° =5

and by setting Cr = In(xg — %), C = %’

2
—dt
5

1

ZO+% $0+§ )
£ -l az@ = [ e -l azw <2 =c.

xo 3 1075

Let C; = 0 whenever 0 < xg < 3 and let

C’ —max( /1|ln|x|| d¥ (x ))

2

Then, my |f — Cy| < C' and the proof is complete by applying Lemma|5.1./}.

The following proposition highlights an important feature of L° which is missing in BMO.

flz) = {ln(x) x> O.

0 <0

Proposition 5.1.6. Let

Then, f ¢ BMO and consequently, BMO is not stable under multiplication by indicator
functions.
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Proof. Let I = [—¢,¢] for € > 0 and small. We compute,

I 1 /O
m1|f—m1f|:26/0 IIn |z| — m; f| dL(x) + — 3 lm; f| dZ(x).

2e

Then,

1 [0 1 [O]1 (¢

d = — — | d d
5o | it a2 = o [ |5 [ il aze| az)
252—6|5ln5+5]
1

But this is not bounded as ¢ — 0. O

Proposition 5.1.7 (Further properties of BMO). (i) Whenever f € BMO, then |f| €
BMO and |[[f]1], < 2[/f],-

(ii) Suppose f,g € BMO are real valued. Then, fy, f—,max(f,g), min(f,g) € BMO.

Furthermore,

. 3

lmax(f, g)ll,.. [min(f, g) [l < 5 (ILFll + llgll.) -
(iii) Let f € BMO real valued. Then we have the following Approximation by truncation.

Let

N f(x) >N

In(@)=qfl@) —N<fl@)<N

-N f(zx) <N
for N € Ry. Then, fn € L2[R"), ||fall, < 2|fll, and fn — f almost everywhere
in R™.

(iv) Assume f is complex valued. Then f € BMO if and only if Im f,Re f € BMO and
Mo £, [IRe fll, < LFIL < [T £, 4+ [[Re L,

Proof. (i) Let Cg = |mg f|. Then, ||f| —Cq| < |f —mg f| and so mg||f| — Cg| <
mg |f —mgq f| < [|f]],. Then, apply Lemma[5.1.4]

(ii) Apply (i). Exercise.
(iii) Pick @ a cube, and let z,y € Q. Then, |fyn(z) — fn(y)| < |f(z) — f(y)| and

fn(@) —mg fiy = ]é (@) — fx(w) d2(y).

So,
f (@) — mg f sf f (@) — fn(y)] dZ(@)d2L ()
Q QRJQ
< ]é ]é F(@) —mo f+mg f — ()] 42 (@)dL(y)

< ]{2 ]é F() —mg f| + g f — f(y)| dL(x)dL(y)

< 2[| £,
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(iv) Exercise.

O
Exercise 5.1.8. Find a function f € LL_(R") with |f| € BMO, but f ¢ BMO.
Proposition 5.1.9. Let Q, R be cubes with Q C R. Let f € BMO. Then,
Ime—nmfIszgivm-
Proof. We compute,
mg f —mp f| < mg|f — ma f]
—¥f&DAJf—me
< 32@ /le—me
<%0 (zm) [, e
< S Il
O

Corollary 5.1.10. (i) Suppose that £ (R) < 2.2(Q) with@Q C R. Then |mpg f —mg f| <
211,

(11) Suppose that Q, R are arbitrary cubes (not necessarily Q@ C R). Then, |mpg f —mg f| <
Cullfll, p(Q, R) where

oy 2R 2@ ds@Q.R)
“Qm‘lefﬂ@+$mﬁ¢w@Agmm>'

Proof. We leave the proof as an exercise but note that the proof of (i) is easy. The proof
of (ii) requires a “telescoping argument.” O

5.2 John-Nirenberg inequality

BMO was invented by John-Nirenberg for use in partial differential equations.

Theorem 5.2.1 (John-Nirenberg inequality). There exist constants C = C(n) > 0 and
a = a(n) > 0 depending on dimension such that for all f € BMO with || f]|, # 0 and for
all cubes QQ and X > 0,

A

Z{xeQ:|f(z) —mg f| > A} < Ce "TI-.2(Q)
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Remark 5.2.2 (On the exponential decay). Note that by the definition of the BMO norm
combined with Tchebitchev-Markov inequality (Proposition , we get decay in % since

L{reQ:|f(x) —mq f| > A}

1
< =

1
- f—mg f| dZ < <||f],.Z£(Q).
A/{we@lﬂw)m@ﬂ»}' el )\” 12(@)

It is natural to ask the question why we get extra gain into exponential decay. The reason
s as follows. The expression above is for a single cube. But the exponential decay comes
from the fact that we have scale and translation invariant estimates. This is typical in
harmonic analysis.

Proof of the John-Nirenbeg inequality. First, note that it is enough to assume that @) =
Qo = [0,1)" by the scale and translation invariance of BMO. Furthermore, we can assume
that mg, f = 0 since ||f||, = ||f —mg f||,. By multiplying by a constant coupled with
the fact that ||- ||, is a semi-norm, we need to only consider | f||, = 1.

Let Fy = {z € Q:|f(x)| > A\}. We show that Z(Fy) < Ce™*). We prove this for fy
(the truncation of f) and let N — oo to establish the claim via the monotone convergence
theorem. So, without loss of generality, assume that f € L>°(R").

Consider the case when A > 1. As before, let 2(Q) denote the dyadic subcubes of
Q. Let & = {z€Q: M2 f(z) > A} and we have that Fy C &, up to a set of null
measure (since |f| < MZf almost everywhere). Hence, Z(Fy) < .Z(€)) and we show
that .2 (€\) < Ce™®*. Then, by definition

sup  mg |f| = M7 f(x)
0e2(Q), 9>z

and
mq [f| =mgq [f —mq f| < || f]l, = 1.

Coupled with this and the assumption that A > 1, we have that £y G Q. Let € = {Q; »}
be the maximal collection of subcubes Q € Z(Q) such that £, = UQ; 5. So,

mo, , [f| > A and mQTA\f\S)\
with é:)\ C Q.
For each i, we estimate \mo, , f — mg~ f|- Let {Ry},_, be a set of cubes such that

Qix=RyC Ry C--CRy=0Q,
and

L (Ry41)
2R

It is trivial that such a collection exists. By this we have that for all k,

‘mRkH - me, f‘ < QHfH* =2
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and summing over k,
‘mQM f- ma— f’ < 2n.
Therefore,

|mQM f‘ <2n+ ‘m@\A f‘ <2n+ A

Now, pick a 6 > 2n + 1 to be chosen later. Let ¢ = {Q; r15} be the maximal disjoint
covering for £y15. Then, £yy5 C &\ and for each j, there exists a unique ¢ such that
Qjx+s C Qi Fix 4, and estimate:

L(EsNQin) =2 (l—l{jzngéCQM}QMH)
= Z X(QJ,AM)

{7:Qjx+5CQin}
1
e B / Iz
{5:Qjx+5CQin} Qi+
1

A0 ExysNQin
1

[fl d&

1
< Cmo L, |
< A+6/Qm = mos| dZ + = o, £ 2 (Exis N Q)
1 2n + A
<9 Y
“A+6 ’Ql)\| Hf”* + A+0 $(5A+5ﬂ Qz,)\)

Therefore,

1
. < .
L(Exys N Qi) < 5 gn'g(Q%A)

and summing over ¢,
1

0 —2n

Z(Exts) < ZL(En).

Now, fix § such that 1 < § — 2n and observe that

1
60— 2n

L(Enpis) < ( )kiﬂ(&)

for k € N. If A > 2, then there exists a unique k¥ € N such that 2+ ké < A <24 (k+1)6
and so it follows that

g(g)\) < 3(524-2]«5) < efkln(672n)g(82) < efkln(572n)$(Q) < efkln(572n) < Cefa)\'

For the case 0 < A < 2,
ZL(F\) <Z2(Q) < e < Ce

and the proof is complete. ]
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Definition 5.2.3 (BMO,). For f € LI (R"), define

loc
1
1fllp = Sgp(mcz |f —mgq fI")»

and define

loc

BMO, = {f e 1L (RY : |If],, < oo}.
Remark 5.2.4. Note that BMO, C BMO and | f|l, < [Ifll. -

Corollary 5.2.5. For all 1 < p < oo, BMO, = BMO and ||f|., ~ [ f].-

Proof. Fix a cube @ and f € BMO. Then,

/\f—mQﬂp d.,i”:/oop)\p1${x€Q:|f(:1:)—me|>)\} dA
Q 0

< <p/ooo ANP—1Ce T d)\> 2(Q)

and noting that

[e's) oA
p [ wtoe TR av<
0
completes the proof. ]

Exercise 5.2.6. For f € BMO, there exists a 8 > 0 such that

sup][ exp(B|f —mg f]) d.Z < .
Q JQ

5.3 Good ) inequalities and sharp maximal functions

We introduce the following variants on centred and uncentred maximal function. They
are constructed using arbitrary cubes rather than balls.

Definition 5.3.1 (Cubic maximal functions). For f € Ll _(R"), define the centred cubic
mazximal function:

ME(z) = sup f FW)| d2(y)
Q(z,r)

r>0

and the uncentred cubic mazximal function:

M f(z) = sup ][ F)] dZL().
Q3 JQ

Proposition 5.3.2. There exist C1,Cy > 0 such that
CiMyf < MEf < CoaMyf

and

My f <MYV < CoMyf
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Proof. The proof follows easily noting that there exist constants A and B such that for
every cube @, there exist balls By, By with the same centre such that By C Q C By and
AY (B1) =2(Q) = BZ(Bs). O

Remark 5.3.3. In particular, this means that we can simply substitute M® and MY in
place of My and M’y in Theorems and obtain the same conclusions.

We now introduce a new type of maximal function which will be the primary tool of this
section.

Definition 5.3.4 (Sharp maximal function). For f € L (R") and z € R", define
MEf(z) = supmg |f —mgq f].
Q>3
Remark 5.3.5. (i) f € BMO if and only if MFf € L®(R™). Furthermore, ||f||, =
M £l
(ii) Mif <2M7'f.

In particular (ii) means that if f € LP(R™) with 1 < p < oo, then M!f € LP(R™).

It is natural to ask whether there is a converse to (ii) in the previous remark. There is no
pointwise inequality - consider f constant. This is also true for L? functions (see [Ste93]).
The only hope is to prove ||MD,f||p < ||Mﬁf”p for f € LP(R™).

Good X inequalities (originally from probability theory) help us to establish such a bound.
These are distributional inequalities of the following type:

Definition 5.3.6 (Good A inequality). A good X\ inequality is of the form
ZLA{z eR":|f(x)] > kA, [g(x)] S yA} <e(s,y) L{z e R" : [f(z)] > A} (Zx)
where f,g are measurable, A >0, k > 1, v € (0,1) and e(k,vy) > 0.

Proposition 5.3.7. Suppose there exists a py € (0,00) such that ||f|,, < oo and assume
holds for all A > 0. Then, for all p € [py,0) satisfying

1
— = sup (1—-rPe(k,v))>0
CP k>1, v€(0,1)

we have Lk
1£1l, < (Cp)E;HQHP

for some k > 1 and v < 1.

Proof. Let fn = fX{zern:|f(z)|<N}- Then note that

N
/|fN|p =p/0 NLZ (r R |f(0)] > A} dA

:p/@p/N MLy Ly e R |f(z)] > KA} d.
0
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Also,
{z eR": [f(2)] > kA} C{z e R": [f(z)] > kA, [g(z)] < yA}U{z € R": |g(x)[ > 7A}
and so it follows that
LAz eR": [f(2)] > rA} < Z{z eR" : [f(z)| > kA, |g(z)| < yA}
+Z{x eR":|g(x)| >y}
<e(r, )L {z e R": |f(z)] > A}
+ Z{x e R":|g(x)| > yA}
by invoking . Therefore, it follows that

N

p/ip/R Ny e e R |f(2)] > KA} dA
0

N
< pﬁps(/@,v)/k Nrele e R |f(z)] > A} dA
0
N

+p/@p/’“ NLP Lm e R ()| > A\ dA
0
N
< p/ﬁps(/@,’y)/ Nl le e R |f(z)] > A} dA
0

p (o)
+p<:> / Nl g le e R : |g(x)] > A} dA.
0

By the assumption that || f|[, < oo, we have that [|fx||, < oo for all p € [pg, 00) and so
N
(1-— Iipé‘(li,’)/))p/ MNLg e e R |f(2)] > A} dA
0

< (”)pp/oo ANLL [z e R ¢ |g(x)] > A} dA.

v 0

Then, apply the monotone convergence theorem to obtain the conclusion. O

The goal is to prove the following important inequality.

Theorem 5.3.8 (Fefferman-Stein inequality). Let pg € (0,00) and f € LL (R") such that

loc

||./\/l|:|,f||p0 < 00. Then, for all p € [py,00) there exists a Cp, > 0 (independent of f) such
/

Corollary 5.3.9. Let p € (1,00). Then, there exists a C(p,n) > 0 such that for all
f e PR,
/
M £l < Clp,n)[|MEF],

In particular, |||, ~ |MPfll, ~ |MEF] on LP(R™),
Proof. Apply the theorem with py = p since f € LP(R") if and only if./\/lD/f e LP(R"). O

To prove the Fefferman-Stein inequality, by Proposition it suffices to prove with
f replaced with MY f and g replaced with M?f. First, we need two key Lemmas.
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Lemma 5.3.10 (Localisation for maximal functions). There exists kg = rko(n) > 1 such
that for all f € LL _(R™), for all cubes Q, and all X\ > 0 if there exists C > 1 and ¥ € CQ

with MY f(&) < A, then for all k > ko

QN {x eR": MY f(z) > H)\} C {x e R : MY (fXuo)(z) > :)\}
0

with M = C + 2.

Proof. We know that MZ'f < kg MUf for some ko = ko(n) > 1. Let
re@nN {ZL’ eR": MD/f(x) > K)\}

and so

MIf(2) > Za> A
Ko

since k > Kg. S0, there exists an r > 0 such that

/ ()] dL(y) > A
1'7”" (z,r) Ko

First, £ ¢ Q(z,r) since ./\/lD/f(:U) < A. This implies that ||z — Z||,, > 7. Secondly, by
hypothesis, T € CQ and letting xg be the centre of Q,

lz — 2| < llz—2qll + llzg — 2|, Srad @+ Crad Q@ < (C +1)rad Q.
So, for any y € Q(z, )
ly — 2ol <lly— 2|l + llz — 20|l <7 +radQ < (CH1)rad Q +1ad Q < Mrad Q
Thus,
K
M@ = £ |l dz =F |1 az > 2

Q(z,r) Q(z,r) ko

and completes the proof. O

Lemma 5.3.11 (Proving ) Fiz g € (1,00] and > 1. Let F € L{ (R"), F >0 such
that for all cubes Q) there exists G, Hg : R" — Ry measurable with

(i) F <Gg+ Hg almost everywhere x € Q,
(i) For all z € R,

1

q\ 4
aMD/F(x) > ¢ %1PQse (fQ HQ) q <00
IHQl 0 (g q=00

Set
= sup][ Go.
Qo
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Then, there ezists C = C(gq,n) > 0 and k{ = Ky(a,n) > 1 such that for all X >0, k > Ky,
and v € (0,1], holds for MYF and G in place of f and g respectively. That is,

% {x cR": ‘MD/F(x)) > kA, |G@)] < fy)\} <e(r,y) & {:1: € R": ‘MDIF(JU)‘ > )\}
where

= ((2)'+2).

K K

Remark 5.3.12. When q = oo, (%) 1s replaced by 0.

Proof. Let A > 0and &\ = {CL’ € R": MD/F(:B) > )\} is open by the lower semi-continuity
of MY'F.

If £, = R"”, there’s nothing to do. So, suppose that £, # R™ and use a Whitney decompo-
sition with dyadic cubes (Theorem [2.3.1). So, £, = LQ;, mutually disjoint with diam Q;

comparable with dist(Q;,°€y). In particular, there exists a constant C' = C'(n) > 1 such
that for all 7, CQ; N°Ey # @. That is, for each 4, there exists a &; € CQ; such that

MD/f(aEi) <A\ Set D; =Q;N {x eR"™: MD/f(x) > kA, G < 7)\}, and so
S 2D =% {x eR": MY f(z) > K\, G < ’y)\}

since k > 1.

We estimate each D; for each i. Assume D; # &. So, there exists a y; € Q; such that
G(yi) < ~vA. So, by the Localisation Lemma [5.3.10

L(Di) < Z£(Qi N {a: eR": MY f(z) > m})

< <{:17 €R" : M(fXpo,)(z) > ”A})

Ko
<A+B
where
A=% {x eR": MD/(GMQZ.XMQZ.)(JC) > 2:)\}
0
and

B=Y {ZL‘ eR": MD/(HMQiXMQi)(IE) > 2:0)\}

We estimate A by invoking the Maximal theorem (weak type (1,1)):

A <200 GumoXmo, dZ < 200 Gumg, A&
KA R” KA MQ;

< 2C?$(MQ7;)G(A%) < 2C%$(MQ¢)’V-
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By the Maximal theorem (weak type (g, q)) for ¢ < oo,

q q
B<c (2 / (HrioXwo,)! 4 = C (250 / (Huo,)! d&
KA n ‘ ‘ KA MO, ‘

C <2:)?>q$(MQi (Mmlf(:i'i))q <C (2:)i)>q$(MQi)(a)\)q — P(MQ;)C (2:;0>q$(MQi)aq.

IN

If ¢ = oo, then
I
HHMQ@'HLOO(MQZ-) < aMF(%;) < al.

Thus, if £ > a2k, then

{1‘ e R": MD/(HMQiXMQi)(Z‘) > :0/\} = .

We are now in a position to prove the Fefferman-Stein inequality.

Proof of the Fefferman-Stein inequality. By hypothesis, f € L} (R") such that HMD/prO <
0o. Set F' =|f|. Pick a cube Q and let Gg = |f — mg f| and Hg = |mg f|. Then,

(i) F <Gg+ Hg, and

(i) [Holl(q) = Im f| < M™ f(z) = M'F(x) for all € Q.
Apply Lemma [5.3.11| to get the inequality with G = MEf and e(k,v) = CcL.
Then, apply Proposition with p > pg since 1 — kPe(k,~y) > 0 for fixed k£ and small ~.
Thus, we conclude that for some C, > 0,

!/
IMTfI, = IME), < CollGll, = CyllMPFI,

and the proof is complete. O

We have the following Corollary to the Fefferman-Stein inequality.

Corollary 5.3.13 (Stampacchia). Suppose that T is sublinear on Dgrn, a subspace of the
space of measurable functions stable under multiplication by indicator functions. Suppose
further that T' : LP(R™) — LP(R™) for some p € [1,00) and T : Dgn N L>*(R"™) — BMO
are bounded. Then for all ¢ € (p,o0), T is strong type (q,q) with log convex control of
operators “norms.”
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Chapter 6

Hardy Spaces

6.1 Atoms and H!

Hardy spaces are function spaces designed to be better suited to some applications than
L'. We consider atomic Hardy spaces.

Definition 6.1.1 (co-atom). Let Q be a cube in R™. A measurable function a : @Q — C is
called an co-atom on Q if

(i) spt a C Q,
.. 1
(i) llallo < 5.

(iii) [ya dZ =0.

We denote the collection of oo-atoms on Q by @5° and &> = Uga3°.
Remark 6.1.2. Note that (i) along with (ii) implies that ||all; < 1.

Definition 6.1.3 (p-atom). Let Q be a cube in R™. A measurable function a : Q@ — C is
called an p-atom on Q if

(i) spt a C Q,
.. < 1
(i) llall, <~

(iii) fQ a d¥ =0. We denote the collection of p-atoms on @Q by 42%5 and /P = UQﬂfg.

Definition 6.1.4 (H'P). Let 1 < p < 0o and f € L}(R™). We say that f € H'"P if there
exist p-atoms {a;},cny and (N;)ien € (Y(N) such that

f= i it
i=0

almost everywhere.
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Remark 6.1.5. The fact that ) |\;| < co combined with ||a;||; < 1 implies that Y Na;
converges in LY(R™). For f € LY(R"), then the equality f = > \a; is in LY(R"™). We
could certainly give a similar definition in the more general setting of f € .//(R™). Then,

we would ask the convergence of the series in the sense of %' (R™) in the definition. Then
as LL(R™) embeds in .#'(R™) it coincides with the L' function Y, Nia; after identification.

On noting that H'? is a K vector space, we define a norm.

Definition 6.1.6 (H!'” norm). We define

1l = imf {3711 £ =D N

where the infimum is taken over all possible representations of f.
Proposition 6.1.7. (i) (H"?, || |;1) is a Banach space,
(i) Whenever 1 < p < r < oo, we have

HY>* c g ¢ g ¢ LY(R"),

Proof. Exercise. O

Theorem 6.1.8 (Equivalence of H'? spaces). For 1 < p < co, H'">® = HYP with equiva-
lence of norms.

Proof. (i) We establish what is called the Calderdn-Zygmund decomposition of functions.
More precisely, we show given a p-atom a that there exists a decomposition a = b+g¢g
with b € H'? with [|bll;, < 3 and g € HY*® with [|g|ljjie < C(n,p) (Note that

lallgre < 1so [|b]lgre < 5 is better).

Let Q be a cube in R™ such that a € ,QZQP. As before, let 2(Q) denote the dyadic
subcubes of ). We have

m ap:; alP L
ol = gy [ 19 < gy

Fix a > 0 with o > mg |a|” to be chosen later and let

Ea = {x eQ:(M? |a]p)(a;)% > a}.

Note then that @ # &, and &, = U°, Q; where Q; € Z(Q) maximal for the property
that mg, |a|” > oP. Set
bi = ((I — Mg, a)XQi

and b= b;. Let g =a —b.
We note the properties of b;. First, spt b; C Q; and

/ b, d¥ = 0.
Qi
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Also,

P 1
Ity < ([, 16#)" + g, ol (@)

S
L(Q)' 7

3=

where \; = 2|mg;, ]a\p]%.i”(Qi). We note that A\; # 0. For otherwise, if \; = 0,

1
then a = 0 on Q; but we assume that (mg, |a|’)? > a > 0 which is a contradiction.
Therefore, a; = )%.bi is a p-atom.

Now, by Holder’s inequality and the Maximal Theorem,

i~ o0 1 oo % ) 1—%
i = appg 2'17%_ ap g i
> 2?2&)1 Q) <ﬂ(;N;H> (;;<QO

co( o) s sx(f) 52 (d)

Now, we choose « such that
1\t 1
2 ==
(af (Q)) 2

_ 5

- 2Q)

with ¢, = 4ﬁ. It then follows that ||b]|y1, < %

to find

Now, consider g,

g:{a on Q\ &,

mo, a on Q; for each i

Certainly, on Q\ &, |al’ < MZ(|al’) < P almost everywhere and so |g| < a almost
everywhere. On Q;, by maximality and Hoélder’s inequality,

Img, a| < mg, |a| < 2" mg |a| < 2"a.

Hence, |g| < 2™a. It then follows that

gl < 2"a =2"—2

Z(Q)

We also have ng = an =0, so ﬁg € o/§° which implies that g € HY>® with
19llg1.00 < 27

Fix fy € HYP with fy # 0. We show there exists a decomposition fy = f; + ¢° with

2 4
[fillos < Shollirn and [9%lne < 52"l follgnr

For every € > 0 there exists an atomic decomposition fo = Y o, A\ja; with

(e 9]

DIl < Mol + e

=1
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We apply (i) to each a; to find a decomposition a; = b; + g; with [|bj]|;1, < %

Certainly, f1 = Z;’;l Ajb; exists since HY? is a Banach space (Proposition ,
and

1 — 1
Wil < 5 D22 Wil < 5 (Mol +2) -
j=1

So, choose € = %||f0||H1,p. Setting ¢° = Z;io Ajgj (the sum converging in H*
because it is a Banach space and ||g; |1, < 2"¢p), we find

4
ol < 27y (I follies + ) = 32l follres

(iii) We iterate

fo=fi+g°
fi=fa+g'

fo=f3+g°

and so for each k,
fo=fr+d"+g" +--+4""

Certainly f — 0 in H'?, and ¢° + ¢' + - - - + ¢* converges to ¢ in HY*® with

4 =[2)
lgllgee < 52 Y 3 ) Ifolls-
=0

By Proposition convergence in H* implies convergence in H? and so fo = ¢
and fo € HV>,

This motivates the following definition.

Definition 6.1.9 (Hardy space H'). We define H' to be any H'P for 1 < p < oo with the
corresponding norm.

6.2 H!— BMO Duality

We show that the dual space of H' and BMO are isomorphic with equivalent norms. This
relationship was first established by C. Fefferman but using a different characterisation of
H'.

Theorem 6.2.1 (H' — BMO duality). The dual of H' is isomorphic to BMO with equiv-
alent norms.
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Not quite a correct “proof”. We work with H' = H? and BMO = BMO, with corre-
sponding norms || |12 and |- ||,. Let b € BMOy and a € /2. Set

Ly(a) = /n b(x)a(x) dZ (z).

Then, Ly(a) is well defined and since for all cubes @ we have spt a C @ and fQ a=0,

1
2
Ly(a)] < ( /Q b mg b|> lall, < 1.

By linearity, L is defined on Vect @72. Let f € Vect @72, Then, f = o Nia; and

Ly(f) < IIbll, D M-
=1

By density of Vect @72 in H2, L can be defined on all of H'2. O

Remark 6.2.2. This proof is correct if we know that for all f € Vect o/?, || f|lg2 =~
inf >~ e [Ail - Note that we automatically have || fllgi2 < inf > g0 [Ail. This subtlety
went unnoticed for some time, and it has only been recently that || f|lgi2 2 inf 3 450 [Nl

~

was proved by an intricate argument. Also this equivalence is not true for all atoms - there
exists a counter example for co-atoms.

We take a different approach in proving the theorem.

Proof of the H' — BMO duality. We work with H' = H"2? and BMO = BMO, with corre-
sponding norms ||- |12 and ||- ||,.

(i) Take b € L*®°(R") and f € H'2. Define,

Ly(a) = / b(w)a(r) dZ ()

and note that it is well defined since H? ¢ LY(R™). If f = 22, \a;, we can apply
Dominated Convergence since

[ 3 i@ a2 @) < bl Y- I
i=1 =1

Also,
[Ly(a)| =

/ (b(z) — mg b) ai(x) d.L(x)
Rn

if spt a; C Q. This implies that |Ly(f)| < [|b]], D oy [Xi] and taking an infimum over
all possible A;,

< [Ibll oo

(Lo ()] < 1011 Nl gz
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(i)

(iii)

Now take b € BMO, and f € Vect. @2 Let (by)?2, be the truncation of b. So,
|br| < |b| almost everywhere, by, b almost everywhere, and |[|bg|, < 2|8]l,. E| Now,
suppose f = Y it Na; and Ly, (f) = > AiLy, (a;). Since b € BMOg, we have
that b € L2 (R™) which implies b € L2(spt a;). So, certainly |bga;| < |ba;| € L*(R™)
almost everywhere. Thus,

bkai d¥f — bai df,
R™ R™

ie., Ly, (a;) = Ly(a). This implies that

[Lo(f)] < Sup | Lo ()] < 2[[0l] [ f 1.2

We now apply a density argument and extend Ly to the whole of HY2. Let L; denote
this extension.

So we have shown that whenever b € BMO2 we have Ly € (HY2). Let T : BMOg —
(H'2)" denote the map b — Ly,

We leave it as an exercise to show that T is linear.

We show that T is injective. Let b € BMOs such that Ly = 0. We show that b is
constant.

Fix a cube @ and let f € L?(Q) with fQ f d¥ =0. Then, there exists a A € K such
that { € Q/QQ which implies that f € Vect «/2. So,

0= Ly(f) = Lo(f) = /Q bf A

and since we assume |, 0 f =0, it follows that b|g is constant. By exhaustion of R”
by increasing ), we deduce that b is constant.

Lastly, we show that T is surjective. Let L € (H?)" and fix a cube Q. Let L3(Q) =
{f c L%(Q) : fo d¥ = 0} and note that L3(Q) C H“2. Take f € LZ(Q) and

A= |f12(Q)>. Then,

SO { is a 2-atom. Thus,

Flhne =ML < IF 2@

Hl

Furthermore, L|L3(Q) € (L3(Q))" and so by the Riesz Representation Theorem, there
exists a by € L3(Q) such that for all f € L3(Q),

L(f) = /Q bof dZ

1
and [[bglly < (I 1.2y -2 (Q)2.

'Here we assume b real valued. For complex valued b, separate real and imaginary parts.
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Let Q, Q' denote two cubes with @ C Q'. Then, whenever f € L3(Q),

L(f) —/ bo f d.i”—/ bo f dZ
Q Q'
and so bg — bg is constant almost everywhere in (). Define b as follows:

. b[_171]n ($) T € [—1, l]n
b(z) = o 1 it
bi_gigin(x) +¢j € [=27, 2]\ [-2772, 2070, 5> 1

where c; is the constant such that b_; 9ijn — b_1,1» = —¢; on [=1,1]™.

We show that b € BMOs, [[b]|, < [|L||g2y and L = Ly. Fix @, and let j € N
such that @ C [-27,27]". Let k be such that 2 < k < j. Then, ¢t — cx—1 =
bi_ok okn — b[_gk—1 9k—1n which is constant on [—2F=1 2F=1] and in particular on
[—2F—1 2k=1]\ [—2k=2 2K=2] Therefore, b(z) = b_2i 2in (¥) + ¢; on all of [—27, 27"
and in particular on Q. Also, there exists a constant ¢ such that bj_y;j 25n — bg = ¢
on the cube @ and so b = bg + ¢+ ¢; on (). Then,
b—mgb=>bg+c+c;—mgbg—c—cj=bg

since mq bg = 0. Therefore,

/Q\b—me|2 i :/Q\bQ\Q 0L < L2y 2 (Q).

The fact that L = L, follows from the fact that L(a) = Ly(a) for all a € .o/2.

O]

Remark 6.2.3. BMO and “atomic H'” can be defined on any space of homogeneous type.
The results of this section go through in such generality. See [CR77|.
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Chapter 7

Calderon-Zygmund Operators

7.1 Calderéon-Zygmund Kernels and Operators

We denote the diagonal of R” x R™ by A = {(z,z) : x € R"}.

Definition 7.1.1 (Calderén-Zygmund Kernel). Let 0 < a < 1. A Calderén-Zygmund
Kernel of order « is a continuous function K : °A — K such that there exist a C > 0 and
satisfies:

li 'I’ y <— n»

(ii) For all z,y,y € R™ satisfying |y —y'| < 3 |z — y| when z # y,

ly—y\* 1
K:E’y _K:an/ SC( no
Ky - K@l <C(T0y) w7y

(iti) For all z,2’,y' € R™ satisfying |z — 2’| < & | — y| when = # y,

oz — 2\ 1
Kx?@/ _levy SC( no
Ky Kl < C(T—=7) 7=y

We write K € CZK, and norm it via | K||, = inf {C : (i) to (iii) hold}.

Remark 7.1.2. (i) The constant 5 can be replaced by any 6 € (0,1). Then, the constant
C' changes.

(ii) The Euclidean norm |-| can be changed to any other norm. Again, C changes.

1) When a =1, V,K(x,y) exists almost everywhere and satisfies:
y

!

vV, K(z,y)] < ——
VoK ()] €

for all (x,y) € °A.
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(iv) When o =1, VoK (x,y) exists almost everywhere and satisfies:

!

|z -yl
for all (z,y) € °A.
(v) Define K*(x,y) = K(y,x). Then, K € CZK,, implies K* € CZK,,.

Definition 7.1.3 (Kernel associated to an operator). Let T' € L(L?(R")). We say that a
kernel K : ©°A — K is associated to T if for all f € L2(R"), with spt f compact,

Ti@) = | K@y)fy) dZ)
for almost every x € “(spt f).

Remark 7.1.4. This integral is a Lebesgue integral for all x € “(spt f). Moreover, this
says that T f can be represented by this integral away from the support of f.

Definition 7.1.5 (Calderén-Zygmund Operator). A Calderdn-Zygmund Operator of order
a is an operator T € L(L?(R™)) that is associated to a K € CZK,. We define CZO,
to be the collection of all Calderén-Zygmund operators of order a. Also, |T|cz0, =
1Tl z2@nyy + 1K -

Remark 7.1.6. (i) T € CZO,, if and only if T* € CZO,.
Also, let f,g € L2(R™) with spt f,spt g compact and spt f Nspt g = &. Then,

0.0 =1 = [ o[ Ko azw) ez
- [ 76 ( [ Ko az@) az)

and since [ was arbitrary, T*g( fRn (x) dZ(z) for almost every y €
“(spt g). That is, T* has assoczated kernel K*

(ii) T € CZOy if and only if T € CZO,, where T% is the real transpose of T. The
associated kernel to T is K™ (x,y) = K(y, z).

(i1i) The map T — K, where T' € CZO, and K € CZK, the associated kernel, is not
injective. Consequently, one cannot define a CZO, uniquely given a kernel K €
CZO,. The following is an important illustration.

Let m € L*®(R"™) and let T,, be the map f — mf. It is easy to check that this is
a bounded operator on L2(R"). Let K = 0 on °A and let f € L2(R"™) with spt f
compact. Then, whenever x & spt f, T, f(x) = m(x)f(x) = 0. Therefore,

Tnf(z)= [ K(z,y)f(y) dL(y)

R

whenever x € °(spt f), which shows the associated kernel to T, is 0.
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7.2 The Hilbert Transform, Riesz Transforms, and The Cauchy
Operator

We discuss three important examples that have motivated the theory.

7.2.1 The Hilbert Transform

Definition 7.2.1 (Hilbert Transform). We define a map H : ./ (R"™) — %' (R™) by

H(p) = p.v. <1> .

™

That s,
1 . 1
(p.v. (m) . s0> W=t [ ez

Proposition 7.2.2. H extends to a bounded operator on L%(R).

Proof. We can analyse this convolution via the Fourier Transform. For a function ¢ €
< (R™), the Fourier transform is given by

5O = [ ertazia),

~

We can extend this naturally to 7' € ./(R") by defining T via (T, @) = (T, $) for every
v € L(R™). So, when ¢ € .Y(R),

(p.v. (7;) @) =(p.v. %ﬁﬁ)
1

= lim —p(z) dZ (x
=0 {z:|z|>e} TX ( ) ( )

~ lim L (@) dz (@)

=0 {ze=1>|x|>e} TL

=lim [ (&) ( / L e dz(x)) dZ (€).
R" {

e—0 e~ 1>|z|>e} TL

Now, fix £ € R™. Then,

/{ Lo az@ = [ L sin(a-€) d(a)

e~ 1>|z|>e} TL {ze=1>|z|>e} TL

= —21/ sin(z-§) dZ(x)
{r:e=1>z>e}

_ _21/ sin(z [£]) sgn(§) dZ (x)
{z:e=1>z>e}

L

2 Ze] si
ZT:Sgn(ﬁ)/l €] sinu 4.2 (u).

e u
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The integral appearing on the right hand side is uniformly bounded on € and &£. Thus, by
Dominated Convergence,

(b.v. (1) o) = [ ismn(€ele) a2(6)

T

and so for all p € .7 (R), I/{To(g ) = —1sgn(&)p(§). Since the Fourier transform is bounded
on L2(R), we extend H to the whole of L2(R) by defining H f(£) = —usgn(€)f(€) almost
everywhere in R. Then, this extension agrees on .#(R) and by Plancherel Theorem,

1 fllz = 1l flla- O

Proposition 7.2.3. H € CZO;.

Proof. Let K € CZK; be defined by

1

K(x,y):m,

when = # y. Fix f € L?(R) with spt f compact. Then, fix € °(spt f) and choose
r such that B(z,r) Nspt f = @. So, there exists a sequence ¢, € C(R) such that
spt ¢, N B(x,7) = @ and ¢, — f in L2(R"). Then, for every z € B(x,r),

Hopn(z) = /R K (2, 9)pn(y) AL () /R K(z ) f(y) 42 (y)

and Hy,, — H f in L2(R"). Covering (spt f) with countably many such balls, we conclude
that

Hf(z) = - K(z,y)f(y) dZ(y)

almost everywhere = € “(spt f). Therefore H € CZO;. O

The Hilbert Transform comes from Complex Analysis. Let f € C(R) and take the
Cauchy extension f to C\ R. That is,

Fioy = — [ L0 4o

C2m Jga—t

where z = z + 1y, y # 0. It is an easy fact that F' is holomorphic on C\ R. But C\ R is
not connected. So,

1
lim F(x+wy) = Q(f(:p) +1H f(x))

y—0+

and COIlSunEIltly
F + — F Xr —

y—0t 4

and
f(z) = lim F(x+wy)+ F(z —w).

y—07t
We have the following Theorem of M.Riesz:
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Theorem 7.2.4 (Boundedness of the Hilbert Transform). H has a bounded extension to
LP(R) for 1 <p < 0.

Corollary 7.2.5. Let Fiy(z) = lim,_,o+ F(x & 1y). Then the decomposition f = Fy + F_
is topological in LP(R™). That is || f|l, = [|F4+ |, + [l F-][,-

Remark 7.2.6. When f is real valued, %Hf is the imaginary part of F. .

7.2.2 Riesz Transforms

Motivated by the symbol side of the Hilbert Transform, we define operators R; for j =
1,...,n on R™.

Definition 7.2.7 (Riesz Transform). Define R; : L2(R") — L2(R") by

(EQfﬂﬁ)—-ﬂﬁﬁA@)

forg=1,...,n.

We note that by Plancherel’s Theorem, R; is well defined and in particular || R; f[|, < || f]]5-

Proposition 7.2.8. R; € CZO;.
Proof. Consider
2
Kj(xz) =p.v. C”MTJH

for some ¢, > 0. Then K; € .&//(R"). If we can show that for appropriate ¢y,

in ./(R™), by the same argument as for the Hilbert Transform,

R;f = cn/R VI fy) dZ(y)

mlz—y
for all f € L2(R™) with spt f compact and for almost every = € ¢(spt f).

We compute the Fourier Transform of K;. Fix ¢ € .#(R"). Then,

—~ X . xj e
(o) = (8;,9) = i | e [ ete) a2l iz ).
€0 {ze<|z|<e~1} |~T| n
For £ # 0, let
I. = cn/ LL;LjH e T 1L (x).
{me<|z|<e~1} |l'|
As before, we show that |I.| is uniformly bounded in ¢ and € and that
I. — z§



as ¢ — 0.

As previously, write e ™€ = cos(z- ) — 1sin(z- £). We only need to regard the imaginary
part. By a change of variables, let w = % and x = |£|y. Then,

I. = —ep Yi sin(y-w) dZ (y)
{x:%<|x|<ﬁ} y|"

since the Jacobian factor of the change of variables is cancelled by the homogeneity of
zj

|x|n+1 .

We change variables again, this time to polar coordinates. Let y = 76, for » > 0 and
6 € S"~!. Then,

1

I. = —zcn/ 9, </65 sin(r6- w) dr) do(0)
Sn—1 = r

€l
where do is the surface measure on S"~!. So, |I.| is uniformly bounded since

1
‘/s&l sin(rf- w) dr
T

€

13

is uniformly bounded in ¢, |¢| and 6. Furthermore,

/s|1£ sin(r6- w)
r

€

dr — sgn(0-w)
1€

as € — 0 and so
I. — —zcnw/ 6 sgn(w-w) do ().
2 Jgn-1
Write
aj :/ 1 0 sgn(6-w) do(0)
gn—

and let

a=(ay,...,ap) = —zcnz /snl ((0 — (0-w)w) + (6- w)w) sgn(0-w) do(6)

2
= —zcnz (/ |6- w| da(@)) w.
2 Sn—1

because (0 — (6- w)w)sgn(f-w) is odd in the symmetry with respect to the hyperplane
{w}J‘ and S"! is invariant under this symmetry. By rotational invariance,

/Sn_l\a.w! da(e):/sn_l 61| do(6)

and so we define ¢, by
Then, it follows that

and the proof is complete. O
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Theorem 7.2.9. R; is bounded on LP(R™) whenever 1 < p < oo.

Corollary 7.2.10 (Application to PDEs). Let ¢ € .Z(R"™). Then, 0;0;0 = —R;R;jAp
and
10:9;¢ll, < C(n, p)|1A¢]],

whenever 1 < p < oo.

Proof. We note that for all £ € R™,

(0:0j0)(§) = (—2&i) (—1&5)£(E)

-(- %)( e )16 e
_< fé)( fa)

=

() ()

and by application of the theorem, the proof is complete. O

7.2.3 Cauchy Operator

The Cauchy Operator is an example of an operator that is not of convolution type.

Identify R? ~ C. Let ¢ : R — R be a Lipschitz map. That is, there exists an M > 0
such that |¢(t) — ¢(s)| < M |t — s|. By Rademacher’s Theorem [Fed96, Theorem 3.1.6],
¢ is differentiable almost everywhere and ¢’ € L*(R) with ||¢'||,, < M. Now, let I' =
{t+10(t) : t e R} C C.

If f is smooth in a neighbourhood of I" and has compact support, then whenever z & I,
define

F(z) = %m zf(—w; dw = A Zji(ijjf;z))) (1+120'(s)) ds

where z = Z(t) + 1 and Z(t) =t +1p(t). Fix t. Then,
lim = F(Z(t) + 1) = % F=() + CF(=(1))

a—07t

(which are the Plemelj formula’s - details in [Mey92], Volume 2]) where the Cauchy operator
is given by

f(w)

wel:|z—w|>e} £ — W

dw.

.1 f(z(s) .1
Cf(z = lim — — 7 _2(s)ds = lim —
JE) /s| (t)—2(s)[>e} 2(t) — ) 2 /{
Let f(s) = f(z(s))2'(s). Then,

CI=) = p.v. /{s:|z(t)—z(8)|>6} m
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Theorem 7.2.11 (Coifman, McIntosh, Meyer (1982)). T' € CZO; with kernel

v. ——— € CZK;.

SMEUEEC

The hard part of the theorem is to show ||T'f]l, < C||f|l,- As a consequence,

Corollary 7.2.12. (i) C is bounded on L*(T, |dw|) where |dw| is the arclength measure,
(i) The decomposition

f(z) = lim F(z(t) +wx) + lim F(z(t) + wx)

a—0t a—0—

is topological in LP (T, |dw|).

These results have important applications in boundary value problems, geometric measure
theory and partial differential equations.

Remark 7.2.13. We emphasise that this operator C is not of convolution type. Unlike in
the previous two examples, we cannot employ the Fourier transform or simple techniques.

7.3 L? boundedness of CZO, operators

The L2 boundedness of CZO,, operators comes for free by definition. It is an interesting
question to ask when T' € CZO,, is a bounded map from L4(R™) to LP(R™). But first, we
have the following proposition which shows that at least for the Hilbert transform, p = q.

Proposition 7.3.1. Suppose the Hilbert transform H : LY(R) — LP(R) for some p,q > 1
1s bounded. Then, p = q.

Proof. Let f € LI(R™) and consider the function g(x) = f(Ax) for A > 0. Then,
A NH S, < CAIIf,

and SOQ:—%,B:—% anda:ﬁwhich 1mphesp:q D

As a heuristic, we cannot hope to prove L? to LP boundedness unless p = gq.

Definition 7.3.2 (Hérmander kernel). Let K € LL (°A) and suppose there exists Cyg > 0
such that

esssup(yvy/)eRzn/ |K(5Uay) - K(x,y’)} d<Z(z) < Ch.
{z:|z—y|>2|y—y'[}

Then, K 1is called a Hormander kernel.

Remark 7.3.3. The number 2 appearing in the set of integration is irrelevant. This can
be replaced by any A > 1 at the cost of changing Cg.
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Lemma 7.3.4. (i) Every CZK, kernel is Hormander .

(ii) The adjoint of a CZK, kernel is Hormander .

Proof. The proof of (ii) follows easily from (i) observing that K € CZK, implies K* €
CZK,,.

We prove (i). Let K € CZK, and so we have that

ly-=v\* 1
K(z,y) — K(z,y §Ca< =
| K (2.y) = K(z,9)] P—

[z -yl
whenever |y —y/| < 3|z — y| and = # y. So,

— I\ 1
[ () —rr
{wle—yl>2y—y} \1T =yl /) |z —yl

o0

I\ O
— 1
—Z/ ('y y‘) 5 AL (2)
= N e2oy-yi<la—yi<wtr2-y \ T =yl /) lz =yl

< S e PP )

< A(a,n).

We now present the following important and main lemma.
Lemma 7.3.5 (Calderén-Zygmund decomposition). Let f € L*(R™) and A > 0. Then
there exists a C(n) > 0 and a decomposition of f = g+ b almost everywhere on R™ where
g € L®(R™) with ||g||,, < C(n)A, and b=> 72, b; where

(i) spt b; C B; with B; a ball,

(ii) fBi |b;| dF < C(n)AZ(B;),

(i11) [gn bi =0,

(iv) {B;} have the bounded overlap property

> Xp, < C(n)
1=1

(v) 7=, Z(Bi) < C)3If -
Remark 7.3.6. (i) The constant C'(n) depends only on the dimension n.

(ii) Note that 322, |bill;, < C(MAY2, L (B;) < C(n)?| f|l, which shows that Y 22, b;
converges in L'. Hence, b € L}(R™) with ||b]|, < C(n)?|f],-
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(iii) The fact that g € L>°(R™)NLY(R™) implies g € LP(R™) for all p € [1,00]. In the case

ofp=2,
gl < A/llgllillgllee < V(L4 C(n))2C(n)\/AllfI];-

Proof of the Calderén-Zygmund decomposition. Recall that M’f is the uncentred maxi-
mal function of f on balls of R”. We know that the set Q) = {z € R" : M'f(x) > A} is

open and of finite measure by the Maximal Theorem:

C
29 < Sl

Also, ) # R™. Let £ be a Whitney covering of Q. Set {Bi =cB;: B; € 5} where c; is
the constant in the Whitney Covering Lemma Then, (iv) is proved and

S 2= [Yow 4z < [ coa, az <Py,
=1 =1

which proves (v).
We can now take ¢ € (0,1) (say, ¢ = ¢; ') and so {¢B;} are mutually disjoint. Then,
construct a partition of unity ¢; so that ) . ¢; =1 on 2, and ¢; = 1 on ¢B;. Explicitly,
XB,
pi ==
Z Ej X,

Now, set

by — {f‘Pi_fBif% d¥ on B;

0 otherwise

Since we allow B; to be closed we (i) is proved and (iii) is apparent from the construction
of bz
Now, to prove (ii), we note that [, |b;i| d.Z <2 [5 |f] dZ and

4B; N°Qy = 40131' NN 75 .

Then, f4B¢ |f| d& < M'f(2)Z(4B;) for all z € 4B;. Choosing z € “§2) we observe that
M’ f(z) < X and so

/ bi| A& <2)\.Z(4B;) <2 4"\Z(B;)
B;
which establishes (ii).

Define:

B f ODCQA
ST\ f, fioi d2)Xp, on 0y

Then, on ¢Qy, f < M'f < X almost everywhere. On €, by invoking the bounded overlap
property,

> (][B o cw) X,

This completes the proof. O

< C(n)sup ][ fei d.Z‘ < C(n) sup][ |f| dZ < C(n)4"\.
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Theorem 7.3.7. Every T € CZO,, is of weak type (1,1).

We have the following immediate consequence.

Corollary 7.3.8. Let T € CZO,. Then, for allp € (1,00), T is strong type (p,p).

Proof. Since T is weak type (1,1) by the Theorem and strong type (2,2) by definition, we
have that T is strong type (p,p) for p € (1,2).

Now, note that T' € CZO,, implies that T* € CZO,, and so T* has a bounded extension
to LP(R")' = L¥ (R™) for 1 < p/ < 2. Therefore, T has a bounded extension to L?(R™) for
2 <p<oo. ]

Proof of Theorem[7.3.7. Let f € L}(R™") N L*(R") and fix A > 0. We show that
n C
Z({z €R":[Tf(2)] > A}) < LlIflly

with C' independent of f and \. Since we only know T'f(z) when = ¢ spt f, we use the
Calderon-Zygmund decomposition to localise. Let f = g + b this decomposition at level
A with the properties of g and b from Lemma [7.3.5] Since f,g € L2(R"), we also have
b € L2(R"). Since b = ooy bi, with by = (fypi — mp, fei)Xp, we have that this series
converges in L2(R"). So, T'f = T'g + Tb and we estimate by Markov’s inequality

. A 4 4
A=z ({eer o> 3} ) < 55 [ IT0F 42 < S50l sy Lol

and use ||g||§ < Cm)Af]l;-

(322, b)) = >°22, T(b;) with the series on the right converging in L2(R")

Now, T'(b) =T
| <>, 1T(b;)| almost everywhere. So, with ¢ > 1 to be chosen later,

and |T'(b)

B=Y¥% ({x € R"™: |Th(z)| > ;}) <Z ({x €R™: i‘Tbi(x)’ ” ;}>

=1

> A
< Z(UjeBj)+ £ | {w e R\ (UjeB;) : > _ [Thi()| > o)
j=1

o0 1 oo

< DZ”(CBJ)—I—/ Thi| d
; A Rn\(ujch);
C(n) 1 >

< |um+/’ Th| d2.
A A JRm\(UjeB;) ;

Consequently, it is enough to prove that

sup/ |Tb;| d < C(T)][bil,
R"\CBZ'

%
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since ||b;]|; < C(n)A\Z(B;) which gives

> Sl < € Zz <4

1=1

We note that for almost everywhere € R" \ ¢B;, Th;(z) = [5 K B (y) dZ (y). Let
y; be the centre of the ball B;. Since fRn b; dZ =0, for almost all T 6 R” \ cB;,

Th(o) = [ (K(.9) - K. p)hlo) 12 (0)

We choose ¢ = 2 since 2 |y — y;| < 2rad B; < |x — y| and

/ Th| 42 < / bi(y) ( / K (2,y) — K(z,3) df(x)) 12 (y)
R™\2B; yED; {z:|z—y|>2|y—vil}
< / 1b: ()] Crr(K) d.2(y) < Crr(K) |l
Rn

where Cp(K) is the Hérmander constant associated with K. Taking an infimum on the
right hand side, we have

/ 70 4.2 < 1K |l Ibily-
Rn\QBi

The sum A + B gives us the desired conclusion with constant C' < C(n)([|T| 7 2gny) +
1K ez, = C(M)Tlczo., -

For a general f € L'(R") let fi — f be a sequence which converges in L'(R") with each
fr € L2(R™). Without loss of generality, assume that f, — f almost everywhere (since
we can pass to a subsequence). The weak type (1,1) condition gives that T fy is Cauchy
in measure and call Tf the limit. This exists almost everywhere and Tf € LL(R").
Furthermore,

T(f)(=)= | K(z,y)f(y) dZ(y)

RTL
for almost every x € °(spt f) with spt f compact. O
Remark 7.3.9. It would also suffice to prove for general f in the previous Theorem by
noting L*(R™) N L%(R") is dense in L*(R™) and that T : L*(R™) QLQ(R”) — Lb%°(R") is
bounded. Since LL°°(R™) is complete, T extends to a bounded map T : LY(R™) — L1°°(R").

Example 7.3.10. We note that

H(Xp))(z) = ——1In

whenever z ¢ [0, 1].

This example is of importance because H is a CZO, X 1) € L'(R) but H(X[o 1)) & L' (R).
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7.4 (CZO and H!

A natural question to ask is: what subspace of L' should we choose so that a CZO, maps
that space back into L'?

Theorem 7.4.1. Let T € CZO,. Then, T induces a bounded operator H* — L1(R™).

Corollary 7.4.2. Let T € CZO,. Then, T extends to a bounded operator from L>°(R™)
to BMO.

Proof. Let f € L*(R") and g € H'. Then, Lg = (f,T%g) is a linear functional on H*
satisfying

(70 = | [ 1% 42| < 11T g0 g1y ol

By duality, there exists a 3 € BMO such that L = Lg. Define T'f = 3, with 3 identified
with Lg. O

Remark 7.4.3. (i) This was originally proved directly, without alluding to duality. See
Ste93).
/

(ii) We apply Tf to p-atoms. Let a € o/P. Then,
(T'f,a) = Lg(a) = /]R" fa d.ZL.
Let B = B(yp,rp) = spt a. Then,
(Tf,a)= [ fT%()d¥Z

R’ﬂ

:/ fT%(a) d.& +/ fT%(a) d.&
2B R™\2B

[ rremedz s [ go)( [ K iz@) azo)

n R™\2B Rn

:/ T(fXQB)CL d.L+

/ (/R 5 fW)(K(z,y) — K(yB,Yy)) d.i”(y)) a(z) dZL(z) dZ(y)
by the application of Fubini. So, on B there exists a constant Cp such that

B =T+ [ F)K )~ Klus,) d2(0) + Cs.

Proof of Theorem [7.4.1. We show that whenever a € &/°°, then Ta € L(R") with ||Tal|, <
C(n,T). We automatically have Ta € L*(R") since a € L°°(R") and spt @ C B a ball.

Th i <1
en, since |al|, < P

1 1 n
/ZB Ta| d < Z(2B)2 ||Ta||L2(2B) < Z(2B)? HTHL(L?(R’Z))HGHQ <2 /2HT||L(L2(R”))'
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As in the proof of Theorem [7.3.
[ 1ral 42 < C)|Kllego, lal
R"\2B

Since H' ¢ LY(R"), Tf € LY°(R") for every f € H!. So, fix f € H' and pick a
representation: f = 377 Aja; where 3327, [Aj| < 2[|f|n with a; € &*°. This series

converges almost everywhere in L' to f. Thus, T <Z]°i1 )\jaj> =T f almost everywhere.
Also,

Y INTall, < Y7100, T) < 2| f |l C(n,T).

J=1 J=1

Thus, Z;’il A\jTa; converges in L'and hence,

oo o0

Z)\jTaj =T Z)\ja]‘

j=1 J=1
holds almost everywhere (remark that the equality for finite sums is trivial). Hence T'f €
LY(R™) and [T f[l; < 2C(n, T)|| fllyy- -

Proposition 7.4.4. Let T' € CZO,. Then, T1 is defined as a BMO function.

Proof. Follows easily from the fact that 1 € L>°(R"), and 7" : L°°(R") — BMO is bounded.
O

Remark 7.4.5. To compute T1, use the formula for T f on each ball B for f = 1.

Corollary 7.4.6. Let T € CZO,. Then T maps H! to H' if and only if T™1 = 0 (in
BMO).

Before we prove this corollary, we need the following lemmas.

Lemma 7.4.7. Let T € CZO, with associated kernel K € CZK, and a € o/ with
spt a C B = B(yg,rg). For each j € N with j > 1, let Cj(B) = 27T1B\ 2/B. Then, for
all z € C4(B),

Ta(x)| < |IK |z, 277 g™

Proof. We compute and use the a regularity of K,

Ta(@)] < 1Koz /EB(’y_yB’) L)l 4z

|z —yBl/) |z —yBl

1
< ||IK 7’0“/ a A
<Kl gzk, B i) y€B| ()] ()

and the result follows since

/ a(y)| dL(y) < 1.
yeB
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Lemma 7.4.8. Let m : R" — C and B = B(yg,rp) a ball such that

1. foplml* 42 < 5%,

2. For every j €N, j > 1, and x € C;(B) = 27*1B\ 2/ B we have

m(@)] < 1Koz, 275"
Then, m € H! and |m||g: does not exceed a constant depending on n, | Kllczk,, and o> 0.
The proof is left as an exercise.

Proof of Corollary[7.4.0. Let a be an co-atom with spt a C B. By Lemma and
previously, we have shown that a satisfies the hypothesis of Lemma We conclude
that Ta € H' with a uniform norm (with respect to a) if and only if [, Ta d.Z = 0. But,
fRn Ta d.¥ = 0 for all atoms a € &/ if and only if T%1 = 0. O

7.5 Mikhlin multiplier Theorem

Definition 7.5.1 (Fourier multiplier operator). Let m € L*(R"™). Define the Fourier
multiplier operator operator Ty, : L2(R") — L2(R"™) associated to m by

~

(Tmf)A: mf.
Remark 7.5.2. By Plancherel theorem, Ty, € L(L*(R™)) and 1Tl 22 mny) = M-

We want to consider when such an operator is bounded on LP(R") for p # 2. Such
operators arise naturally - for instance when studying PDE with constant or smooth
coefficients. Also, we have the following important example.

Example 7.5.3 (The Riesz Transform). Consider the Fourier multiplier

_ 5
&) =g

Then, T,, = Rj, the j Riesz transform.

Theorem 7.5.4 (Mikhlin Multipler Theorem). Let m € L>°(R™). Assume that m €
C>®(R™\ {0}) and for all o € N"™ there exists a Co, < 00 such that

olal
aga""

Ca
S Tl
€|

d

when £ # 0, and where |a| = a1 + -+ -+ ay. Then, T, € CZO1, hence T,, has a bounded
extension to LP(R™) for all p € (1,00).

Remark 7.5.5. Note that Ty, (and T\F) is bounded on H'.
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Proof. 1t is enough to show that 7}, has an associated K &€ CZK1 We use the Littlewood-
Paley decomposition. The idea is to split up R™ such that ma is essentially constant on
each part.

Take w € C*°(R, [0, 1]) with spt w C [3,4] and w = 1 on [1,2]. Define:

w(t)
> jezw(277t)

for ¢ > 0. Observe that 1 < Zjezw(Q*jt) <4 forallt>0andt— Zjezw@*jt) €
C>(0,00). In fact W € C>°(0, 00) N L=(R"),

W(t) =

dk

ik < Ck

W(t)‘

for all t € (0,00). Define ¢ : R™ — [0,00] by ¢(§) = W([¢]). Then, ¢ € C®(R™\ {0}),
radial bounded and

1
SPtsocCoz{é“GR” 5= !§|§4}
for all & € N", and

[ (%awH < C(n,a)

The {¢;(§) = p(277€)} form a partition of unity: Yiezpi(§) =1, £ € R"\ {0}.

We want to compute k£ = 7 in ./(R™) and show that |k(x)| < r and |VE(x) < " |n+1

(x # 0). This implies the Schwartz kernel of T}, will be given by k(z —y) (in &' (R?"))
and its restriction to °A is CZKj.

Let ¢ € .(R™) then

where

i) = o [ ([ e om(@,(©)) wio) a2(9) az ).

2m)™ Jr
In fact, mp; € L>(R™) with compact support, so k; identifies with a bounded C'* function
and we write

b(@) = e [ m(Opi€e d2(€)
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for z € R". Also, k =} ;5 k; in &/(R").
We estimate k;. First,
()] < Hmlloo/Rn 05 (€)] dZ(€) = lImlllleslly = lImllolln |27

Then, for z large,

_1)lal ol o
1) f’<m%><g>m)ad

() =
J (2m)™ Jrn OEX

We cover R™ by conical sectors. Then, in the first section, |x| ~ |z1]. So, choose a such

that a; = 0 for 7 > 1 and

Z(8).

Hlel
o,

where C' depends on the sector. Now, we cover R™ by a finite number of sections to obtain

[kj ()| < C279027|

for all M € N. Then, for x # 0,
C
k()] <) [kj(2)] < E

JEZ.

A repetition of this argument with Vk in place of k yields the desired estimate for Vk. [

7.6 Littlewood-Paley Theory

We extend Calderén-Zygmund Operators to a Hilbert space valued functions. In this
section, we let J# be a separable complex Hilbert space and we denote its norm by |- |, =

We require the following notions.

Definition 7.6.1 (Strongly measurable). Let f : R™ — . Then, we say that f is strongly
measurable if given an orthonormal Schauder basis {e;} of H, the Fourier coefficients
(f,ei) : R® — C are measurable.

Definition 7.6.2 (LP(R";.%7)). For 1 < p < oo, we define the Hilbert valued LP space
denoted by LP(R™; 7)) to be the set of strongly measurable functions f : R™ — S such
that [gn |fI%y dZ < oco. Then, the LP norm is defined as || f[l,, = [ |f] - |,

Similarly, for p = oo, we say that f € L>(R"; ) if f is strongly measurable and |f|,, €
Le(R"). Then, ||fllo = Il /] -

A deeper discussion of these ideas can be found in [Yos95].

We also extend the notion of a CZK kernel and CZO operator to a Hilbert valued setting.
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Definition 7.6.3 (Hilbert CZK,,). Let 54, 7 be separable Hilbert spaces. Then, we say a
K is a Hilbert valued Calderén-Zygmund Kernel if K(x,y) € L(JA, 75) for all (z,y) € A
and satisfies (i) to (iit) in Definition[7.1.1] with the absolute value replaced by L(F, #5)
norm. We denote the set of all such K by CZK, (7, 753).

Definition 7.6.4 (Hilbert CZO,,). Let 54,5 be separable Hilbert spaces. We say that
aT € LL2R™4),L2(R"; 56)) is a Calderén-Zygmund operator of order o if it is
associated to a K € CZO, (74, 74) by:

Tf(x) = A K(z,y)f(y) d£(y)
almost everywhere x € (spt f) with f € L2(R™; J4) with spt f compact. We denote the
set of all such operators by CZO (74, 75).

Theorem 7.6.5. If T € CZO, (54, 75), then T induces a continuous extension to a
bounded operator from LP(R™; 74) to LP(R™; #53) for 1 < p < oo.

Proof. Same as the “scalar” case. O

Theorem 7.6.6. Let ¢ € 7 (R") such that spt ¢ C {£ € R": 1 <|¢| <4} and ¢(€) =1
if 1 <|£] <2. Let 1 < p < oo. Then, there exist constants C1,Co < oo depending only on
n, ¢ and p such that

Cillf1l, <1l (Z AjfZ) lp < Coll £, (LP)

JEZ
for all f € LP(R™) where Ajf = p; = f with p;(z) = 2"p(2z).

Remark 7.6.7. Note that (A, Y= 0;f, §i(€) = (/3(2%) and spt @; C {f 1< lE| < 4}.

The pieces Aj are “almost-orthogonal” for “good” f,g:

[ @B 02 = oo [ (AT d2(6) = 0

if |7 =1 > 3.

This theorem says how to “pack” the A;f pieces to recover the LP norm.
Proof. Define T : L*(R"; C) — L%(R™; ¢?(Z)) as the map f — (A;f)jez.

(i) T € L(L*(R™;C),L2(R"; ¢*(Z))) because:

| i@t 2@ = [ 3 s a2
1 . .2
-3 Gy | @er|fe] aze

- [ m©lfe| wz©
.
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(iii)

(iv)

for all £ # 0. Thus,
| i a2 <algll [ 1 az.

We have m(§) >

(%)n for all £ # 0 since ¢(§) =1 for 1 < |¢| < 2. However,

| i 4z =11

so (LP] holds for p = 2.

We apply Calderén-Zygmund theory to show that T € CZO,(C, (*(Z)).

Let Kj(z,y) = ¢j(x —y) for j € Z and z,y € R" and K(x, y) (Kj(x,y))jez for
z,y € CA We note that HK(x y)Hﬁ ce2(zy) = 2jez [Kj(, y)[2. We use the fact that
lp;(x)] = Cp2i™(1 + 27 |2|)™™ whenever M > n.

We split the above sum according to 2/ |z — y| > 1 or < 1 and this gives us

1
2n”
-yl

Y IKj(z,y) < Con
JEZL |

Also, VoK (2,y) = (Vo Kj(z,y))jez and
VoK (2,9)] < CPHV V| [2(2 —y)| < O™ D (14 2 )™M
where M > n + 1. This implies that
C
V.K(z, < —F
[ ( Z/)Hg(c,e?(z)) iz — y|"+1
and VK (z,y) = =V, K(z,y).

Let f € C°(R") and g € C(R"™, £%(Z)) with spt fNspt g = @. First, note that this
implies spt f Nspt |g| = @. Then,

[ s @ az@ = [ )5 )

_]_OO

_ :z [ / () ) dz<y>) 5@ d2()
=% [ ([ wvini) azw)) ) az

j=—00

-/ i ([ Bens@im izw) ez

—00
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by applying Fubini and by the disjoint supports of f and g. Since T'f(z) € L2(¢?)
and [p. K(x,y)f(y) is an /2 valued integral, we have that

Tf(x)= [ K(z,y)f(y) dZL(y)

RTL

2
in Lj

(°(spt f);£?) and hence almost everywhere = € ¢(spt f).

We conclude that T extends to an operator from LP(R™;C) to LP(R";(%(Z)) for
1 < p < oo. Hence, (Zj€Z|A]f| )2 = |Tf‘z2(z) € LP(R™; C) with || ’Tf‘ﬁ(Z) Hp <
C(p,n, CZOl)Hf”p

We prove the left hand side of the (LP|) estimate. We show that there exists a
¢ € (R™) such that for all £ € R™\ {0},

Y el )b =1
27 2
JEZ

Let

S jez| @)

0 £=0
and note that w € C*(R™), with spt w C spt ¢. Define 9 = w € #(R"). By
construction, .y @(%)@(2%) =1.
Let f € LP(R";C)NL2(R%C) and g € CSO(R"). Then,

— 28 cer"\ {0}
w(g) =

f(x)g(w) dZ (x) =

Rn

/ fe3E 2 ()

%
L
“Je

where Ajg = ¢; * g and this implies

JEZL

[ f5a2| <1Tfle oo,

A repetition of previous steps applied to T yields |||Tg| ©(z) Hp < C|gll,y- By duality
of L? and L”" and density of C°(R") in LP(R™),

I£ll, < € n9) < 1T flea |,

Then, we can remove the f € L2(R";C) again by density and boundedness of T
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Remark 7.6.8. One can prove a “continuous time” Littlewood Paley estimates with same
. Define fort >0

a@)=o(D)  and Q=g+ .

Then, for all p € (1,00), there exists constants C1,Cy < 0o such that for all f € LP(R™),

o dt
cdty <1 ([ 1as? E) 1 <ca,
0 P
That is, we sent 27 to 7 and (2(Z) to L2 (R, %). This is because

00 92— (+1) dt
/Oh(t)dt—Z/zj n(e) <.

JEZ

This perspective tells us that (2(Z) is really the discrete version of L2(R,, %)
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Chapter 8

Carleson measures and BMO

Definition 8.0.1 (Carleson measure). A Carleson measure is a positive locally finite Borel
measure (L on Rf_ﬂ such that there exists a constant C < oo for which

u(B x (0,r)) < C.2(B)
for all B = B(x,r). We call B x (0,r] the Carleson window and define the Carleson norm

B (B x (0,rad B]
Il = sup M2

The following measures are not Carleson measures.

Example 8.0.2. (i) du(x,t) = dZ (x)dt since no such constant C is possible for large
balls.

(ii) du(z,t) = dZL(x)% since p(B x (0,7]) = £ (B) Iy & = .

(i11) dp(z,t) = d"s’ﬂt(f)dt for a € R. Note that

11—«

u(Bx (0.0 =2(8) [ 3

rdt [Z(B)E=E 1-a>0
00 otherwise

So, we only need to consider the situation 1 — « > 0 but in this case, we cannot get
uniform control via a constant C.

Definition 8.0.3 (Cone). Let x € R". We define the cone over x:

I'(z) = {(y,t) € RZL_H e -yl < t}.

The following are examples of Carleson measures.

Example 8.0.4. (i) du(x,t) = X[a,b](t)dg(x)% where 0 < a < b < oco. Then, the

constant C = lng.
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(i) du(y,t) = Xr()(y)dL (y)F. Then,

u(B x (0,7]) < /OT,Z(B(x,t)) %: /Ort”,f(B(O, 1) d?:

Definition 8.0.5 (Tent). Let B = B(xp,rg) C R™ be an open ball. We define the Tent
over the ball:

B)=={(y,t) e R :0<t <d(y,“B)} = {(y.t) e R} : B(y,t) C B}.

(Balls are open in this definition) Similarly, using deo instead of d, and £(Q) instead of r,
we can define a Tent over a cube Q.

Remark 8.0.6. 1. B x (0,7] can be changed to B x (0, cr] for any fized ¢ > 0.

2. B x (0,7] can be changed to T'(B).

8.1 Geometry of Tents and Cones

We begin with the following observation.

Proposition 8.1.1. Let B be an open ball. Then, “T'(B) = U,¢pI'(2).

This lead to the following definition.

Definition 8.1.2 (Tent over open set). Let 2 C R™ be open. Then, define
T(Q) = {(y,t) eRT 10 <t < d(y,°Q)} = (Ul (2)) .
Remark 8.1.3. Observe that (y,t) € T'(2) implies that y € Q.

Definition 8.1.4 (Non-tangential maximal function). Let f : R?fl — C and define the
non-tangential maximal function of f:

M f(x) = sup |f(y,t)] € [0,00].
DENE

Remark 8.1.5. Given a Borel measure i on RK'H, we can define the non-tangential

mazimal function My, with respect to p by replacing the sup with an esssup. Note then
that Mj, is defined p almost everywhere.

Proposition 8.1.6. M*f is lower semicontinous and hence Borel.

Proof. Let a« > 0 and = € R" such that M*f(z) > «. Now, there exists a (y,t) € I'(x)
such that |f(y,t)| > «. Therefore, for all z € B(y,t) we have (y,t) € I'(¢) and hence
M*(z) > |f(y,t)| > . That is, x € B(y,t) C {x € R" : M*f(z) > a}. O

Proposition 8.1.7. Fix o > 0. Then,

{(y,)GR”'H |f(y,t \>O¢}CT{:U€]R" M f(z) > a}).
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Proof. Note that |f(y,t)| > « implies B(y,t) C {x € R" : M*f(z) > a} and hence t <
d(y, ). O

Definition 8.1.8. Define:

C()(e) = sup ’@? € [0.o0).

Theorem 8.1.9 (Carleson’s Lemma). Let i be a Carleson measure and f : Rt — C
be a p-measurable function. Let o > 0 such that £ {x € R" : M*f(z) > a} < co. Then
there exists a C'(n) such that

p o) € RE: f(0)] > 0} < Co) [ C()(@) 42 ().
{zeR™ M* f(z)>a}

Remark 8.1.10. (i) For all x € R™ C(p)(z) < ||p
Carleson windows).

w (with |-

¢ defined using tents or

(ii) For all x € R",

wT(B)) _ .
W < ;ggc(/‘)(x)

(ii3) C(p) is lower semicontinous and non negative.

Proof of Carleson’s Lemma. Set Q = {z € R" : M*f(x) > o} and note that  is open
with £ (2) < oo. Hence, ; R™ and so we can apply the Whitney Covering Lemma
(with balls) to obtain the existence of ¢ = ¢(n),C = C(n) with ¢(n) <1 < C(n) < oo and
{Bi = Bi(yi,7i)};c; where each B; is a ball, Q = U; B; and c¢B; are mutually disjoint and
CB;NQ # @.

We note that it is enough to estimate p(7°(Q2)). Let (y,t) € T(Q2). Then, y € 2 and there
exists an ¢ € I such that y € B;. Let z € CB; N Q. Then,

t<d(y, Q) <|y—z[ <|y—wil +yi — 2| <1+ C)r; <d(y,“(2+ C)By).
Thus, (y,t) € T((2+ C)B;). Then,
w(T(Q)) < wWT((2+ C)B;))
< Z wT((2+C)B;))

since the balls ¢B; are mutually disjoint in 2. O
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Corollary 8.1.11. For all open Q, u(T(2)) < C||u

+ZL(Q).

Proof. Note that in the previous proof, we only used the fact that Q@ = {x € R" : M*f(z) > a}
to obtain that 2 ; R™. So, the argument works when Q & R™. Certainly, the claim is
trivially true when Q = R™. O

Corollary 8.1.12. With the assumptions of Carleson’s Lemmoa,
p{(y,t) e RY | f(y, )] > a} < cllullyL({x € R : M*f(2) > a}).

Corollary 8.1.13. Assume f : R’};H — C is p-measurable and p is a Carleson measure.
Then,

I 18w 0] dntw ) <Clal; [ M F@) a2 (o)
R+ Rn

Proof. If ||M*f||; = oo, there’s nothing to prove. So, assume not. Then, |[M*f||; < oo
implies .Z{z € R" : M*f(x) > a} < oo for all @ > 0. Thus,

p{(y,t) eRY:|f(y,t)] > a} < C(n)L{x e R" : M*f(x) > a}|p

4

and integrating both sides from 0 to oo in « finishes the proof. O

Definition 8.1.14. Fizt > 0 and let p be a function on R™. We define

1 T
o) = e (7)-
We state the following technical Lemma.

Lemma 8.1.15. Let p(x) = (1 + |z|)7™ %, ¢ > 0, z € R". Then, there exists a ¢ =
c(n,e) < oo such that for all x € R™ and for all (y,t) € I'(x)

lpe * fy)l < eMf(x)
for all f € L (R") such that [g. o(y)|f(y)| dZ(y) < oc.

loc

We define the following operator family which will be of interest to us.

Definition 8.1.16 ((R:)t>0). Fort >0, let
Rif(x) = . Ki(z,y)f(y) dZ(y)

almost everywhere x € R™ whenever f € Li (R™) such that [z, ¢(y)|f(y)| dZ(y) < oo
and with

Kt (2, y)| < Copr(z — y)
for allt > 0 and almost everywhere x,y € R™.

Corollary 8.1.17 (Carleson Embedding). For all 1 < p < oo and f € LP(R"),

< fI5

//RW [Ref(y)" du(y,t) < Cn,e, C)|lp

whenever i is a Carleson measure.
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Proof. Let g(z,t) = |R.f(z)|P. By application of Corollary 8.1.13

[ RI@F dutet) < COnlal; [ Mgl d2(2).
R R®

Then, by Lemma [8.1.15] |R;f(y)| < C(n,e)M f(x) if |z — y| < t. Thus,

C(n)HMHsg/Rn Mg(x) dZ () < C(n)C(n, 5)7’/ (MfP dz < Clp,n)|fIl}.

n

8.2 BMO and Carleson measures

Theorem 8.2.1. Suppose that

(i) Ri(1)(x) = 0 almost everywhere x € R™ and for all t > 0 (note that this is saying
Jpn Kie(z,y) dZ(y) = 0 almost everywhere),

(i) For all f € L2(R"),

//}Rn+1 [Ref (z)]? W < Cl/n 1f(2)? dZ ().

Let b € BMO. Then R¢(b)(x) is defined almost everywhere x € R"™ and for all t > 0 and
there exists a Co < 0o such that |Ry(b)(2)|* < Co|b||? and

R EDE

is a Carleson measure.
Remark 8.2.2. The estimate in condition (ii) of the Theorem is one of Littlewood-Paley

type. It does not follow from the kernel bounds on Ry. That is, ||Rf|l, < C(n,e)||f|ly ts

not enough to integrate from 0 to oo in %.

Proof of Theorem [8.2.1. Fix x € R™. Pick a ball B centred at x. Write b = b; + by +mpb
where by = (b — mpb)Xp and by = (b — mp b)Xep. Let

L= [ Kyl 426

for 7 = 1,2. We estimate these two quantities.

First, assume that rad B = ¢. Then,

ns [ e (550) 1b0) - matl a2 ) < cll,
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and using the fact that when |z — y| ~ 2™¢,

1 r—Yy <i 1+x—y 7n7€<l2*i(n+€)
mP\ "¢ )= ¢ =

we have

t

]_ _
<Z / e ("” y) (1b — mags+15 b| + M1 b — mpbl) dZL(y)
2i+1B\2iB t t

Szﬂw
< 2 bl + O+ L

s [ e (55Y) ) - matl a2 )

- |:/ |b — moj+15 b dg—l—/ |mgj+1gb—mpb| dZ
2i+1B 27+1B

<Zl+3 277°C ()bl

Therefore, R;b1, Riby are well defined with uniform estimates and R;(mp b) = 0 since mp b
is constant by (i). Hence, R;b is well defined and |R;b| < Cs||b]|,. In fact, Rib(z) does not
depend on the choices of B 3 x. That is, it is independent of decomposition.

Now, we do the Carleson measure estimate. Fix By = By(zo,r) and B = B(xg,2r). We
use (ii),

d,i” d.i” dt
B() X (0 7’] n

e /R b 42 (@)
< C.2(B) b2

and £ (B) = 2".%(By).

For R;(b2), we do the same as before for I, but this time with x € By, y ¢ B and
rad B = 2rg. So, noting that when |z — y| > 27717 we have




we calculate

12s/';¢(x‘y>w@»—m3m¢$@>

SZ/ n (x_y> (’b(y>_m2]+le‘+’m23+1B—me’) d,,%(y)
2i+1B\2i B tn t
1 n
Z < ) U <2j+1 ) / (|6(y) — myj+15b| + |mgj+1g —mpd|) dZ(y)
j To 2i+1B

g(t) S0+ )27 TR o]

J

IN

Thus,

A% * 4% (x)dt
L reawr O <omeae [ (L) HEEE
Box(0,r] Box(0,/] \T0 3

1
< C(n,e)\lb!\*gg(Bo)

the proof is completed by adding up the two estimates. O

We define the following family of operators.

Definition 8.2.3 ((Q¢)i>0). Let ¢ € S (R") with [,, ¢ dZ = 0. Define Qif = i * f
when f € Li (R™).

Remark 8.2.4. We note that

@ = [ e (55Y) 10 az )

n L7 t

We have (i):
@)= [ alo—y) dz@) -

And for (ii):

L%memwdgfwkw;wéxlmmww>f

< Al fll3-

since p(0) =0 and

NS RS
W@n_{é o

with
< dt
A=swp [ (p)] T <o

£eRn

So, we can apply the Theorem with Ry = Q.
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Theorem 8.2.5. Let 3 € L®(R", W) and assume that

dye.1) = |Ba, 1) 2 SZ D

is a Carleson measure. Let 3;(x) = B(z,t). Then for all f € H'(R"),

(i) For alle >0 and R < oo,

R i
L= [ [ @@ 0

1
is well defined and |Ic r(f)| < C(n, @) || fllg 1l

(ii) We have that
lim Iz—:,R(f)

e—0,R—o00

1
exists and defines an element b € BMO with [|b||, < C(n,¢)||plls. We write,

o0 dt
b=/0 Qs

Proof. To prove (i), we note that |Q¢(8:)(z)| < ||B]lll¢ll; almost everywhere (z,t) €
R’ Now, f € HY(R") implies f € L'(R") and

d.Z (x)dt Rt

R
L) = [ [ @@ “=2% < Bl [ <.

Now for (ii), let f = a € &/* with spt a C B with B a ball. Then,

trt = [ ([ s azw) 4

t

where QI = 1y * where ¥(y) = p(—y). Let

B tr d.Z (x)dt
1= [ e @] S

Then clearly, |I. r| < 1.

We compute this integral by covering Riﬂ with square annuli. Let Az = 2/B x (0,277,
Co = Asp and Cj = Agj+1p\ Ayjp when j > 0 Also, define C’? = Ayi1gN2 B x (0,27 71y
when j > 0 and C’} = Cj\Cjz.
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For j = 0, by application of Cauchy-Schwarz,

.ﬂﬁmwmﬁ@@”§%ﬁﬁﬁ(ﬂQ@@V%aﬁﬂf(ﬂg@mmwf%ﬂﬁﬂf

1
< lulla2(2B)2C(n, ¢)llall,-

M=

But [lall, < C(n, )2 (B) %

Now, we consider j > 0. Let

1
A(x,t) = sup —
(z,t) = SUP 4

y—z\ (yp—=
e AT
so that we have |Q*(a)(z)| < A(x,t)|al|;. Consider (z,t) € Cj. Then, 2/ < |z —yp| <
27ty and 0 < ¢t < 27y, If y € B then |z —y| ~ 2/r and we have the mean value

inequality
i\ —M
r 1 27
Az, t)] < -—— |14+ —
A0 < O (1+7)

for all M > 0. Therefore,

//cl " dgi Dt 4 2+18\ 2iB) /02””0 <§tl” (1 * %)_

o0
< C(2j+1r)“i. .1 /1 (" (1 4 u)~M)?2 d

22 (@)
1 1
< C% Z2@iE)

since [ (u" (1 +u)~M)? € < 00 when M > n + 1.
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Now, if (z,t) € CJZ, we have |r —yg| < 297, and 2/r < t < 27y and the mean value

inequality takes the form
Az, 1) < rl v z—
x su
Sep\te VP T
r 1 v z—x < r Vel
ten [Vt = (2irynrt 1Y Pl

— -M
A(z,t) < C(n) (2].73”“ <1+ |sz]’7~ |> .

and when x € 2B,

and when x ¢ 2B,

Therefore,

4L (x)dt S 4.2 (z)dt
//Cz 2 t / /2 2 t
< m/m Az, D) d? ()
2 2
<In2 </2B |A(z,t)|” dL(z) + /2jB\QB |A(x, )] df(m))

1 r’ lyp — x|\
- - 1422 =
¢ <2J(n+2)g(3) * (297)2(n+1) /2].B < + Y dZ (x)

¢ <22j,21ﬂ(3) " 22131(2JB)>

=\ e 2
//02 A, )] t  — 2% Z(2H1D)

J

- //nﬂ ’Bt(x)‘ ‘Qltgr(axm)‘ W
RY

-3 I 1@ @] FPE

<Z(// PYRTRLAC: dt) (/ e gd.,iﬂi)dt>

i C 1
< (llulle2 (2 B))* <22] 3(2JHB)>

1
< CllpllZ-

IN

IN

Therefore,

and

This tells us that lim._,0, r—00 Ic,r exists and

dZ (x)dt

e—0, R—oo

im Le= [ A @E)
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Now, take a general f € H'. Then, we can find Aj and aj € &/*° such that f = Zj Aja;
in H! and in particular L!(R") and also such that > A1 <2 fllig:- Using the fact that
I. r < C. Rl fll{, we can write

Ia,R(f) = Z)‘jja,R(aj)'
J
Therefore,
1 1
1L r(H] <IN e r(ay)] < Cllul2 > X < Cllull22) fllm

J J

with C independent of € and R.

Let R
dt
bn= [ @n

3

and note that it is a measurable function. Also, (b g, f) = I r(f). Thus, b. g € BMO

with ||bs g, < C’||,u||§5 with C' independent of ¢, R. Now since BMO = H! there exists
a convergent subsequence (b, r;) and (b, r;, f) — (B, f) for some § € BMO. The
uniqueness of 3 then follows from the uniqueness of lim. 9, r—o0 I r(a) for atoms a € &7
and then by the density of Vect &> in H! so lim. 50, R—oo(be,r, f) = (B, f). O

Exercise 8.2.6. Replace Qi by Ry with kernel Ky satisfying:

o —Nn—e&
Ki(z,y) < tgn <1+ |2 - y|>

when € > 0 and

‘y_z‘ J 1 |$_y‘ —n—e—4§
|Ki(z,y) — Ki(z,2)] < C ; (1

for 6 >0 when |y —z| < 2(t+ |z —y]).

Theorem 8.2.7 (Paraproducts of J.M. Bony). Let 1, V0 € S (R") such that [, d.2 =
fRn ¥ d¥ = 0. Define,

Qi=1 %, Qi=1*, Pi=qx

and let b € BMO. Let . u
(/) = / QQuPAN L.

Then,

(i) We have T, € L(L?(R™)) and

170 (F)lly < C 0,90, )01, 1l
whenever f € L2(R"),
(’ii) m, € CZOy,
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(iii)
(iv)

mr(1) = 0 in BMO,
If [gnyp dZ =1 and ¥, are radial functions satisfying

/0 T deypie) =

then m,(1) = b in BMO.

Proof. (i) Let

L= / @R % g)

whenever g € L2(R"). Then, by noting that <Qt(Qt( VP(f)),9) = (Qe(b)Pe(f), ~%r(g)>
and applying Fubini,

/ /n Qt ) r(g)(m)‘ dggjx)dt
<IL I,
where
= //]Rn+l P (f)(2)Qu(b) ()] d«i”(t:r)dt
and
B[ Jarom[

We have the Littlewood-Paley estimate Iy < C(¢,n)|g|l, since ¢ € #(R") and
Jgn ¥ dZ = 0. Then, note that

t

|Q:(0) ()]

is a Carleson measure and so by application of Carleson Embedding Theorem with
Rt = Pt7
I < Cn, o, ) Fl2110l,-

Hence,
i fen= [ QOWRODEWE i

e—0, R—oo

is a bounded bilinear form on L?(R") and we conclude (i) by invoking the Riesz
Representation Theorem.

Let f,g € C°(R™). Then,

A< (x)dt
t

w(1).9) = || o QO DDA @ — (K,g® )

where g ® f(y,2) = g(y)f(z) and

/0 /n‘pt'z—x Qi (b) (@) (y — x) ngx)dt
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(iv)

where this equality is in . (R")".

Now by using the fact that |Q;(b)(x)| < C||b]|, and by the decay of ¢, using that
ne(z) < (L+ |z])"~* and . * 7 < C(n, ), we have

1 —z\ dt _ C(n,e
[7 L () e Gl
0 1" t t ly — |

The estimate for VK follows since under differentiation in y, Yy gives an extra %
factor and so we get

C(n,e)

’vyK’ < n+1"°

=2
So, K € CZK;.
We already have that

. = [ @O@RO@AH @@ L0

whenever f,g € L2(R"). First, we show this same equality when f € L>®(R") and

when g =a € &/*°.
Recall that when b € BMO and a € &/, we have

//Rn+1 Qu(b) (@) |QF (a) ()|

Also, [P(f)()| < |l¢ll, ||l for all (z,t) € R, Therefore,

A% (x)dt e
t - *

/RnJrl Qi (0)(x) P(f) () ~§r(a)(a¢) St )8

exists.

Note that 7f" : H! — LY(R") and so 7{"(a) € L'(R") and hence (f, 7 (a)) well
defined and by definition (f, 7" (a)) = (m(f),a). Let fr = fX[_ok otj» when k € N
and so f, € L2 N L>®(R"). So by Dominated convergence {fi, 7 (a)) — (f, 7' (a))
and Py(fi)(z) = Pi(f)(x) for all (z,t) € R

Now, set f =1, and since we assumed that fRn v d¥ =1, we have P;(1) =1 for all
(x,t) € RT‘I. Then,

(m(1), a) = /R"+1 Qt(b)(x) ~Er(a) W
m [ o AZ@dt
- <€—>OI,HII21—><>0/8 R Qt(b)(x) t (a) f = 8_}()]71%1_”0@’ Us,R>

where
R tr Atr dt
Uesr = Q7 Qy (a) I
g

It suffices to prove that U. g — a in H! since this gives (m,(1),a) = (b,a) for all
a € @/*° and hence (1) = b.
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We note that a € L2(R") since spt a C B for some ball B and |[lal|,, < Z(B)~L
Using the assumption that v, are radial, we have

Uop(a)(€) = | $t€)i(te)
and so U. g(a) — a in L2(R™).

Define a function ¢ on R” by

oo 2 L 2
o) = [ ougiee §=1- [ deeie T

whenever ¢ € R™ \ {0}. It is an easy fact that ¢ € C°(R™ \ {0}), with decay at co.
Then, ¢ extends to a C*°(R") function with ¢(0) = 1. This implies that ¢ € .(R")

—

and so ¢ € .Z(R"™). Then, U, r(a)(§) = (—e(RE) + ¢(£))a(§) so that
Us,R:SbR * 4+ P * a.

Then, it is enough to prove that pr * a — a in H! as R — oo and . * a — a in
H! as e — 0.

Now, using [p.a d.Z =0, spt a C B = B(zp,rp) and ||a]; < 1, we leave it as an
exercise to show that

— —n—1
jon + a(@) < P (; (1+”“° 2| ))

when R is large,

/ o+ ad?=| ondz | ad# =0
Rn Rn R~
and R

_t nsaeH

C(n, )

with uniform norm with respect to R (ie., [[pr * ally = O(%)).

Set h. = ¢. * a — a. Then, we know that h. — 0 in L?(R"). Define functions
hl = (he — mop ho)Xop and h2 by h. = hl + h2. Then, spt hl C 2B,

/ |nt|? d,,i”g/ he]? d.& =0
2B 2B

and [,p hl d¥ = 0. These facts then imply that hl — 0 in H! using the fact that
{f € L2(R") : spt f C ZB} continuously embeds into H'. Also,

/h?d.z: hed? — | hldZ =0-0=0.
n RTL

Rn

We leave it as an exercise to show that
|h2(2)] < C(n,)C(e)(1 + |z — 2p)) ™"
for all z € R™ and € < rp where
C(e) = sup(map he, €).
With this fact in hand, |||l < C(n,¢)C(e) — 0.
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(iii) We note that as before,

- | QO@P) @R (@) AL w)dt

for all f,g € L2(R™). We want to show that this holds when we have f € L>°(R")
and g € /. As before, let fi = f_gk oxpn, and so

(%" (f), 9) = (f,7%(9))
= kILH;OUk,TEb(Q»

- [ aW@r@@a @ T

Now, although QU (f)(z) — Q¥ (f)(z) for all (x,t) we cannot apply Dominated
convergence theorem since [, g d.Z # 0. Instead, cover RTFI by set C; as in the
proof of Theorem ?7.

For j > 0, we have the same estimates of P{*(g) as for for Q!*(g) in (iv). So,
‘Qgr(g)’ < C uniformly with respect to t,xz, k. Then, take the limit.

For the situation when j = 0,

‘/COQt(b)(fr)Pt(g)(fr)N?(f—fk)()d‘gxdt‘§<//00 “(f — fi)(@)

(/COQt(b)(x)Pt(g)( )2 dzi )dt>

If k£ is large, f — fr = 0 on a neighbourhood of 2B. The region Cj is above 2B, so
we can apply decay estimates to prove

.

The other term is dealt with by noting that |Q¢(b)(z)]

Now, put f = 1, Q*(1)(z) = 0 for all (z,t) € RT™ since [y, d.Z = 0.Thus,
(m*(1),g) =0 for all g € &/> and so 7j* (1) =0 in BMO

‘2 d.f(:@dt)i
t

2 dZ(x)dt
t

— 0.

(= fo)(@)|

d%(x)dt .
2 & is a Carleson measure.
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Chapter 9

Littlewood-Paley Estimates

Definition 9.0.1 (Littlewood-Paley Estimate). Let (R)i~0 be a family of operators on a
Hilbert space. Suppose there exists a C' > 0 such that

d
/0 IR A3 < < IR (LPE)

Such an estimate is called a Littlewood-Paley Estimate.

Example 9.0.2. Let Ry = 1y x where i € 7 (R™) with [p, 1 d.Z = 0. Then,

[T =c [ ([Tl )il az© < cwnrn

Remark 9.0.3. Unlike in the example, we will not have the luzury of the Fourier Trans-
form in the general theory. This is our goal.

Definition 9.0.4 (Operator e-family). Let € > 0 and (R¢)i>0 be a family of Operators
with kernels Ky(x,y) where the map (t,x,y) — Ki(x,y) is measurable satisfying:

(i) For all (t,z,y,z) € Ry x R3",

c [z —y[\ 7T

(i) For § >0,

— 0 —n—e—0
K 1 -
[ Ke(,y) Kt(x,Z)’<C<’ytZ|) m (1 Vﬂfty!> 7

where C < 0o. Such a family of operators is called an e-family.

Theorem 9.0.5 (Christ, Journé, Coifman, Meyer). Let (R¢)i>0 be an e-family. Then,

(i) holds,
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(ii) The measure

1s a Carleson measure,

are equivalent statements.

Remark 9.0.6. The condition in (ii) only involves one test function, namely the constant
function 1.

The following proof of is due to Fefferman-Stein.

Proof of[9.0.5 (i) = (ii). Fix a Carleson box R = B x (0,7] where r = rad B and let
fe Loo(Rn)' Let f1 = fXop and fo = fXcop so that f = f1 + fo. Then,

[ Rats@r DL < g < iz 28,

By noting that whenever (z,t) € R implies x € B, we have

Ri(f2)(2)| =

[ Klenr) a2

C ‘.’E _ y’ —n—e¢ t 3
< [fll R dZ(y) < Cllflloo { =
yE2B t t r
Therefore,

[ retzr O <oy [ (5) D <oz em L

€

Before we proceed to prove the converse, we require the following important Lemma.

Lemma 9.0.7. Let (V})i>0 be an e-family. Suppose that Vi(1) = 0. Then, there exist an
e’ € (0,¢) and a C > 0 such that for all (t,s) € (0,00)?,

¥ S
ViVl camny < CR(5)

where h(z) = inf {z, %}al.

Proof of[9.0.5 (ii) => (i). First, define V; = Ry—Ry(1)P; where P, = ¢y, p € CZ(R")
with [5, ¢ d.Z = 1. Then,

(Re()P) f(x) = Re(1)(z) P (f) () = Re(1)(z)pe(z — ) f(y) dL (y)

R
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which shows that (V;);>o is an e-family with the same ¢ as R;. Now, take f € LZ(R").

Then,
J[... Ra@r@@E I <l 112

where
n=R1)@)? LD

Hence, (i) implies that |R;(1)(z)P:(1)(z)|? w satisfies (i) and so proving (i) for R
reduces to proving (i) for V;.

Firstly, we note that V;(1)(x) = 0 for all (z,¢) € R""'. We use a technique developed for
a different purpose called the Cotlar-Knapp-Stein inequality or 7*T-argument. We have

//Rnﬂ Vi(f)(2)]? ‘w()_/ooo<%f7v;f> C?_/Ooo<m*%f,f>cit

and for each ¢, V;*V; is a bounded (from e-family hypothesis) self-adjoint operator on
L2(R™). We want the right hand side to be equal to (Sf, f) for some bounded operator S.

Fix r, R such that 0 < r < R < 00, and let

R
dt
S’I’,R = / ‘/t* ‘/t 7

and it is a bounded operator on L?(IR™) since by the e-family hypothesis ||[V;*V;|| L(L2(RMY)
is uniformly bounded in ¢ and so

R it R
))—/ 1V V%HngRn)) <Cln<7‘>

Also, S, g is self adjoint and therefore, operator theory tells us that

ISr,

||ST,RH7£TL(L2(R") HS RHC L2(Rn))’
We write out S™:

) Aty dty,
te= [ [ Ve v, T

tm

and on application of Lemma [9.0.7, we get

HSZ’LRHL(LQ(RTL))

R R
* tl tn—l dtl dtm
S/r /T IVl 22 gy CT <t2> ---Ch< = ) WVem | 22 mmy) T
R R
- . t t dt,  dt,,
<C /r /T Vil 2z gny P <t2 -h i Vel 22wy o,

Since the integral is a convolution, we have the technical estimate that

& ti_ t; dt;
for ) Es) e ()
0 tj tiv1) t; ti+1
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Combining this with the facts that ||V} H € L>®(R,) and h(&) € LY(R,, %), we

11
tm

(L2(R™))
have
R R
o . t dty dt,,
12y < 8 [ I oot (1) Whnleaqany 5 52
m— m— f dtm
<cmlon 20/ Vel 22my) .
R
<C"(CCH™In <r>
and
R\\ =
IES ) < lim inf (C’”(CCE)m In ()) < CCyu.
m—00 r
Then, we find that
dt
lim ’/ Vi < CC.
r—0, R—o0 ||/, t L(L2(R"))
which proves
2 dt R, dt 2
HthH lim ViV, ) — < CCe| £l
0 r—)O, R—oo /) t
for all f € L2(R™). O

Now, we return to the proof of the Lemma.

Proof of Lemmal[9.0.7. We study V;V;* and its kernel. Let Vi(z,y) and V}(x,y) denote
the kernels of V; and V" respectively and

W@ = [ Vi) [ Vi) 2wz = [ K a2)
where

Ketloy) = [ Vil )Valw.2) 42 (2)

We note that by Fubini, this expression holds for all f € Uj<p<cLP(R").

Now, assume that 0 < s < t. Then we have the estimates

|z — 2|

Wil < g (1) T aa mear< § (e B

S

We leave it as an exercise to prove

C |z —2|\""°C |z — 2]\ "¢
1 — |1
La(e ) S 12(2)

<cmapn (1+570) T o

for 0 < s <t
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Now, using oscillation of y — Vi(y, z), we can write

Keilwg) = [ ((a,2) = Vi) Vil 2) 422

and hence
\mﬂamsﬁme@—mmwmq%Mdzu»

We also have

tgn (decay)

c (lu=zl)° .
i (T) (regularity in y)

and this implies that for all ' € (0,4), and some C’ > 0,

Vi(z, 2) = Vi(z,y)| <

/ . &’
Vite. )~ Vit < 5 (1571

Therefore, by choosing 0 < ¢’ < ¢,

c’ ly — #| o ly—z|\"° dZL(2) Cs
Ksi(z,y)| < 1 S
| J(x y)’ m /R" ( t + S sn 46

The technical estimate gives us

Now, if X < A and X < B, then for all § € [0,1] the estimate X < A?B'~? holds. We
apply this to |K,(x,y)| with 6 such that (1 —6)(n+¢) =n+ v > n to obtain

C 6/9 _ —n—v
Kotz y)| < (§> (1 + M)

RN t

for all 0 < s <t. By symmetry, when t < s,
C t (5’9 ’x _ y| —n—v
K < — (- 1+ —= .
Kl = S (4) (1452

Using Young’s inequality that L? * L! c L2, we obtain

5’0
* . st
HWKhm®w§Cﬁ<f> .

S
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Chapter 10

T(1) Theorem for Singular
Integrals

This chapter concerns itself with the question of proving the boundedness of L2(R") op-
erators that are associated to Calderén-Zygmund kernels.

Definition 10.0.1 (Schwartz kernel). Let T : C°(R"™) — C°(R™)" be linear and contin-
uous. Then, the uniquely given K € CX°(R?™) defined by

(K,g@ [)=(Tf,9)
1s called the Schwartz kernel of T

We begin with the following definition.

Definition 10.0.2 (Singular integral operator). Let T : C°(R"™) — CX(R™) be linear
and continuous. Then T is said to be a Singular integral operator if its Schwartz kernel
when restricted to °A is a CZK, for some o > 0. We write T' € SIO.

We emphasise that while a Singular integral operator has CZK kernel, it is not a Calderén-
Zygmund operator. Recall that a Calderén-Zygmund operator is bounded on L?(R"™). The
following examples emphasise that a Singular integral operator need not be bounded on
L2(R™).

Example 10.0.3. (i) Tf(z) = |z|* f(z) when z € R" is not bounded. But T is an SIO
and the Schwartz kernel is given by K (z,y) = |@)* 8o(z —y) and K|ea = 0 € CZK,.

(ii) Tf = f' whenever f € CX(R™) is not bounded on L?(R™). The Schwartz kernel here
is given by K (z,y) = =8((x — y). Again, K|co =0 € CZK

(i) Tf(x) = In|z| f(x) when f is measurable. Then, T|ceomny € SIO but In|z| &
L®(R"). So, it is not bounded on L2(R™). It will be useful to emphasise for the
sequel that that T(1) = In|z| € BMO.

The previous examples illustrated that one of the problem for the boundedness of a T €
SIO on L2(R™) is the behaviour of the Schwartz kernel on the diagonal A. We will prove

100



a theorem that T' € SIO is bounded in L*(R") if and only if both T(1),T%(1) € BMO
and when T has the “weak boundedness property.” In the sequel, we will give a rigorous
formulation of this property. This is the key property that will give control on the diagonal
of the Schwartz kernel of T.

Definition 10.0.4 (Np,). For ¢ € N and B a ball in R™ and any ¢ € CP(R"™) with
spt ¢ C B, define

Niglp) = suwp  ([0%¢](rad B)).

a€N", |al<q

Remark 10.0.5. This is a scale invariant quantity. Let spt ¢ C B(0,1) and

v = (25)

for some 29 € R™ and r > 0. Then, spt ¥ C B(xo,7) and Np(zgr).¢(¥) = Np0,1),¢(®)-

Proposition 10.0.6. Let T' € SIO and fix xg € R", » > 0 and define T, by

(Togr, ) = (T ( ;x°> v ( _”3°>>-

r

Then, Ty, » € SIO and its kernel is given by Ky »(x,y) = r"K(rz + zo, 1y + x0).

Proof. Exercise. 0
Corollary 10.0.7. T € L(L*(R")) if and only if Ty, » € L(L2(R™)) and || Ty » <
T 1T 22 (mny) -

Definition 10.0.8 (Weak boundedness property). Let T' € SIO. We say that T has the
weak boundedness property (or WBP) if there exists a ¢ € N, ¢ > 0, and a C > 0 such
that for all balls B and all ¢, € C°(B),

(T, ¢)| < CL(B)NB4(¢)Npg(¥)-

Remark 10.0.9. We note that |¢|y < X(B)%H@HOO < X(B)%NBﬂ(np). Therefore, if
T € L(L2(R™)), then

(T, )| < HTHc(L2(Rn))H‘PHQWHQ < HTHﬂ(L?(Rn))f(B)NBg((P)NB,q(W-

L(L2(R))

We now deal with the issue of giving meaning to 1" acting on the constant function f =
1. Note that this is non trivial since T is an operator defined on compactly supported
functions.

Definition 10.0.10. Define

D(R") = {w € C2(R") : /R Vi = 0}.

Lemma 10.0.11. Let T € SIO and ¥ € Z9(R™). Let B be a ball such that spt ¥ C B.
Then, T+ € L1(°2B) and

TPl L1 e2m) < 1K lozk, C (s B) Y llLr sy
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Remark 10.0.12. In writing T+ € L' (°2B), we mean the distribution T1)|.55 € L'(°2B).

Proof. Fix p € C2°(R") and spt ¢ C °2B. Then,

(T, ) = (K, o @) = (Klea ,p @)

since spt p ® ¥ C “A. Certainly,

(Kles o) = | Koo azwizw = [ ([ K d2) o) iz (@)

and so T|.55 agrees with

- K(z,y)¢(y) dZ(y).

Now, since [p, ¥ d.Z =0,
K(z,y)d(y) dL(y) = / (K(2,y) — K (2.y5)) ¥(y) 2 (y)

n

R

where yp is the centre of B and

(jjl ()| dZ(y)

(rad B)®
T — yB’n-i-oz

R"

Ka)(s) 20)| < Klea, [ "

< HKHCZKQ| 1¥llL1m)-

The conclusion is achieved by integrating over = € °2B. O

Proposition 10.0.13. Let f € C*° NL>®(R") and ¢ € Zp(R™) and let B be a ball such
that spt ¢ C B. Then, whenever n € C°(R™) such that spt n C 4B and n =1 on 3B,

(T(fn), ) + /Rn(l =) (@) f(@)T" () (z) dZ ()

1s well defined and does not depend on the choice of 7.

Proof. We note that ¢ and fn € C(R™) and this implies that (T'(fn), ) exists. By the
application of Lemma [10.0.11} we have T%(¢)|.55 € L*(°2B). Also, (1 —n)f € L>(R")
and spt (1 —n)f C °2B.

To show the independence of 7, choose 71 and 72 with the desired properties. Then, we
note that

(T(fm), ) +/ (1= m)(@)f(@)T" () (x) d2Z ()

n

= (T(fn2),¥) +/ (1= m2) (@) f ()T () (x) dZ ()

n

is equivalent to
(T(f(m —m2)),¥) = /n(m —12)(2) f(2)T" (¥)(z) d.L ().
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Noting that spt ¢» C B and spt (m — n2)f C 4B\ 3B, we compute

TS =m) o) = | K@ rw)on = m)@via) d2@d2 )

= /n(m —n2)(z) f(z) < K(y,2)¥(y) d.i”(y)) d< (z)

Rn

by the application of Fubini. O

As a consequence, we are able to make the following definition.

Definition 10.0.14. Whenever f € C*° NL>®(R"), define T'f by

(Tf,9) = (T(fn),¥) + /n(l =) (@) f(@)T" () (z) d2L ()

whenever ¥ € Z5(R™) and n € CX(R™) such that spt ¢» C B, spt n C 4B andn =1 on
3B.

Remark 10.0.15. If f € C(R") and n = 1 on spt f, the right hand side agrees with
(T(fn),v) which is (T f,v). Hence, this definition is an extension of the original one.

Proposition 10.0.16. Whenever f € C*° NL>®(R"™), we have T f € Zy(R™)’.

Proof. We want to show that T'f € Zy(R™)" with bounds depending only on f. Let B be
a ball and ¢ € Zp(R"™) a such that spt v C B. Fix an n as in the definition of T'f.

As T € L(CE(R™),CP(R™)), there exists an integer M > 0 such that

(T'(fn), )] < C(M,4B) sup [[0%(fn)]l, sup [[0°¢],
jal<M ol <M

< C'(M,4B) sup [0°fllpee(m) sup 079l
la|<M la|<M

Now,

[ 0= @@ @] az@ < [ -l il T @)@ d2(@

2B
< =l [l € (ns ) [ K| ez, 1901l

< C(n, )1+ Il 1 o 1K Loz, 1902 (B)-

Altogether, we have shown

(Tf,4)| <C(M,B) sup [[0%||-
<M

This shows that ¢ — (T'f, ) is continuous on Zy(R"). O

We now present the crucial theorem of this chapter.
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Theorem 10.0.17 (7(1) Theorem of David-Journé (’84)). Let T € SIO. Then, T €
L(L2(R™)) if and only if T possesses the weak boundedness property, T(1),T* (1) € BMO.

Remark 10.0.18. When we write T € L(L?(R™)), we mean T extends to such an operator
stnce what we prove s that

(T, 9)1 < Clifllallglly
whenever f,g € C°(R").

The following Lemma is of use in the proof of the T'(1) Theorem. We leave its proof as an
exercise.

Lemma 10.0.19. Let ¢ € CX(R™) be a radial function such that [z, ¢ d.Z =1, and
spt ¢ C B(0,3). Let P, = ¢y * . Then for all f € C(R"),

lim P2(f) = f and Jim P(f)=0

t—0

in C2(R™).

Proof of the T(1) Theorem. We already have one direction: if T € L(L?(R")) we have
already seen that 7' has WBP and T'(1), 7% (1) € BMO. We prove the converse.

Let To = T — mp(p) — ngftr(l) where 7, is the paraproduct with b6 € BMO. We note

we can choose m, such that m, € CZO; C SIO, m(1) = b in BMO and 7 = 0 in
BMO. Therefore, Ty € SIO and possesses WBP. Also, Typ(1) = T(1) = T(1) —0 =0
and TF(1) = T%(1) — 0 — T%(1) = 0 in BMO. Since T € L(L*({R")) if and only if
Ty € L(L2(R™)), we can assume that T(1) = 0 and 7% (1) = 0 in BMO.

Take a ¢ and P, as in the hypothesis of Lemma [10.0.19] Fix f,¢g € C°(R") and by the

same Lemma,
(Tf.g) = lim(TP2f, P2g) — lim (TP}f. Phg) = lim ((TP2f, P2g) — (TP1f, Pg)) .

Also, the map t € (0,00) = P2f € C*(R") is C! and therefore,

1

. = d
<Tfag> = lim §(TPE,P39> dt.

e—=0 /.

Here,

dt att
and since (TP2f, 4 P2g) = (T* (£ P?g) , P2 f), it is enough to just treat (T (4 P2f) , P2g).

d d
TPt,Pt >d:<T<dtPtf>7Pt2.g> (TPtfa Pt9>

Now, we note that P2f € C°(R") C .(R") and we consider the spatial Fourier Trans-
form. On noting that ¢ is radial if and only if ¢ is radial, we have

d d —

T PL(©) = 2 PRf(€) = 2 o(t6)* ] —22& Opp(t€) P (t6)-
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So define ¢y (z) = —zpp(x) and Yp(z) = App(z) so thAat U, e € C2(B(0, 1)) with
Jan ¥ AL = [ tr d.ZL = 0. Also,y(€) = 10,$(€) and P (€) = —1€,(€) and therefore,

9P = 23t (6001 att6) f Zwk ()£ (€).

t
k=1

Letting Q¢+ = ¥rs * and ka,t = &k,t * we have

d 2 o -
—Pif== :
i e t;czk,t@k,tf

We consider Qk,t(:?k,tf for each k. So fix k and € > 0. We prove that there exists a C > 0
(independent of ¢) such that

1

dt

/ (TQusQuef. Pia) ©| < Ol gl
Let ) )
d R d
L= [0t Pt T = [TQuet QTP T

and Ry, = QF, T P?. Then, by Cauchy-Schwarz

|15!§</ I Birall dt) (/ Qe f Cff)

By an LPE estimate, we get that

( | 1wl ‘ff) < cwn)lfl,

and so it is enough to show that

> o di 2

o | Rkt9ll5 s < C(e,¥r: T)lgll3-
We examine the kernel of Ry;. Pick a h € CP(R™). First, we note that (Ry.g,h) =
(TQp.4h, P2g). For u,v € R", set

Vie(2) = Ypi(z —u) and  ¢p,(z) = oz —0)
so that

n

Quih = [ whlw az(w) and g [ o) a2 ()

Using the continuity of T : C2(R™) — C°(R™)’, we can write
TQuih P2y = [ [ )T ehgl) 42 (w0 )
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and so the kernel of Ry is Kyt (u,v) = (T}, ¢7).

We estimate Ky, .(u,v). First, suppose |u — v| < 3t. then, spt Yy, C B(u, %) and spt @] C
B(v,t) and by setting B = B(v,4t) we have that spt ¢y ,,spt ¢{ C B. By the fact that T
has WBP,
| K t(u,v)| < CL(B)Np (Vi1 )NBo(¢7)
and so
(Koo, v)] < 0E002)

Now, suppose |u — v| > 3t. As before, we have spt 9!, C B(u, %) and also [p,, Y, dZ =0
which gives
tOé

|\ Topjt ()| < C||KHCZKam||¢}§¢H1

where K is the kernel of 7" and when x ¢ B(u,t). Now, spt ¢y C B(v,t) C °B(u,t) and so

tOL
(T, b)) :/R Typ (2)p) (z) dZ (x) < C\|K||CZKamekllleolll
since [[Y Il = [¥relly = [1¥elly and floelly = llolls-

Now, we consider the regularity of K} ;(u,v) with respect to v. We note that v — ¢} €
C%°(R™) is a C! function and

1 1
8’01902‘} = _Z (al‘ﬂ)t and alek,t(ua U) = _E<T¢g,t7 (al(p):i}»

This gives

C lu—v|\ "¢
|alek-7t(u,’U)‘ S W (]. —|— t > .

So (R¢)ts0 is an &’-family for some &’ < e.

We compute Rj4(1). Choose n € C(R™) with n = 1 on B(u, %) and spt n C B(u, 2t).
Then,

Ry (1)(u) = o Kjt(u,v) dZ(v)

= [ @iieed a2 ()
= [ (Totened) d2)+ [ (Tot. (1= met) a2

= (o [ etz + [

First, we have

( / T () (1 = n)(2)e () déf(:c)) 4.2 (v).

n

/ ney dL(v) =n

in C°(R"™) so <Twl?,tvan ney dZ(v)) = (T¢y,,n). Also, Tyy, € Li(spt (1 —n)) in =,
(1—n) € L®(R") in z, ¢¥ € LY(R") in v and ¢ € L>°(R") in z. By Fubini coupled with
fR” %?,t dZ(v) =1

L (L rot@0-nwee dz@) aze = [ 1o@0 -6 iz e,
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By definition of 7% (1) and using 7% (1) = 0 in BMO,

R = [ ([ 7ot - @iz @) + @t =@ @) —o

n

Combining these facts, we have shown that Ry, is an ¢’-family with Ry (1) = 0 for all ¢

and k. In particular
dZ (x)dt
B (@) 2

is Carleson. Therefore, by Theorem [9.0.5

o dt
2 2
| IRl < Clal

and the proof is complete. ]

Remark 10.0.20 (Avoiding the reduction to T'(1) = T'*(1) = 0). We note that for all
t >0 and all u € R" the equality Ry 4(1)(u) = (T"(1),4¢,) holds when T*(1) € BMO.
Going back again to the definition of (Ttr(l),w}ég and comparing with the definition of

Qr.t(T™(1))(u) when T (1) € BMO (since Qp = &gt x ), we can see that

(T (1), k) = Qua(T (1)) (u).

Thus, Ry(1) = Q. (T™(1)). As the Littlewood-Paley estimates combined with the decay
of kaﬂg and T (1) € BMO imply that

2 d.L (x)dt

QT () ) =

is a Carleson measure we can conclude by applying Theorem [9.0.5]
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