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Chapter 1

The Fourier Transform and Tempered
Distributions

In this chapter, we introduce the Fourier transform and study its more elementary
properties, and extend the definition to the space of tempered distributions. We also give
some characterizations of operators commuting with translations.

1.1 The L' theory of the Fourier transform

We begin by introducing some notation that will be used throughout this work. R™
denotes n-dimensional real Euclidean space. We consistently write = (z1, 22, ,Zn),
& = (&,&, -+ ,&), -+~ for the elements of R™. The inner product of z, & € R™ is the
number z - § = Z?:l z;¢&;, the norm of x € R™ is the nonnegative number |z| = /z - z.
Furthermore, dr = dx1dzs - - - dz,, denotes the element of ordinary Lebesgue measure.

We will deal with various spaces of functions defined on R™. The simplest of these are

the LP = LP(R™) spaces, 1 < p < o0, of all measurable functions f such that |f]|, =

(Jgn | f(2)|Pdx) P < . The number | fllp is called the LP norm of f. The space L>°(R™)
consists of all essentially bounded functions on R™ and, for f € L>®(R"™), we let || f] oo
be the essential supremum of |f(z)|, € R™. Often, the space Co(R™) of all continuous

functions vanishing at infinity, with the L° norm just described, arises more naturally
than L = L°°(R™). Unless otherwise specified, all functions are assumed to be complex
valued; it will be assumed, throughout the note, that all functions are (Borel) measurable.

In addition to the vector-space operations, L'(R") is endowed with a “multiplication”
making this space a Banach algebra. This operation, called convolution, is defined in the
following way: If both f and g belong to L!(R™), then their convolution h = f * g is the
function whose value at x € R™ is

h(z) = /R flz —y)g(y)dy.

One can show by an elementary argument that f(z — y)g(y) is a measurable function of
the two variables  and y. It then follows immediately from Fibini’s theorem on the inter-
change of the order of integration that h € L*(R™) and ||h||1 < ||f]l1]lg|/1. Furthermore,
this operation is commutative and associative. More generally, we have, with the help of
Minkowski’s integral inequality || [ F(z,y)dy||r» < [||F(x,y)| rzdy, the following result:

Theorem 1.1. If f € LP(R"), p € [1,00], and g € L*(R™) then h = f x g is well defined
and belongs to LP(R™). Moreover,

1Pllp < 1 £ 1o llglls-
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Now, we first consider the Fourier' transform of L! functions.

Definition 1.2. Let w € R\ {0} be a constant. If f € L'(R"), then its Fourier transform
Z for f:R" — C defined by
FHE = [ e (1)

n

for all £ € R™.

We now continue with some properties of the Fourier transform. Before doing this, we
shall introduce some notations. For a measurable function f on R", x € R™ and a # 0 we
define the translation and dilation of f by

Ty f (@) =f(z—y), (1.2)
daf(x) =f(ax). (1.3)

Proposition 1.3. Given f,g € L'(R"), x,y,£ € R", a multiindez, a,b € C, e € R and
€ # 0, we have

(i) Linearity: F(af +bg) = aF f +bFg.

(ii) Translation: ﬂ'ryf(f) = ef‘*”'y'éf({);

(ili) Modulation: F (e“**"¥ f(x))(§) = 7, f(£).

(v) Sealing: #6.1(€) = || "0, f(©).

() Difeetiation: Z0°5(6) = (6" 16), 0% = (i) S )

(vi) Convolution: F(f x g)(&) = (g)ggg)

(vii) Transformation: Z(f o A)(§) = f(A
a column vector. o

(viii) Conjugation: f(z) = f(—=£).

€), where A is an orthogonal matriz and & is

Proof. These results are easy to be verified. We only prove (vii). In fact,

FFoM© = [ e ande= [ ey
= [ ey = [ e gy = fag),

where we used the change of variables y = Az and the fact that A~ = AT and |det A| = 1.
0

Corollary 1.4. The Fourier transform of a radial function is radial.
Proof. Let &, € R™ with |£| = |n|. Then there exists some orthogonal matrix A such
that A¢ = n. Since f is radial, we have f = f o A. Then, it holds
Ffn) = F f(AS) = F(f o A)(§) = F f(§),
by (vi) in Proposition 1.3. O
It is easy to establish the following results:

Theorem 1.5 (Uniform continuity). (i) The mapping F is a bounded linear transforma-
tion from L'(R™) into L>®(R™). In fact, ||.Z f|loo < ||f]l1-
(i) If f € LY(R™), then Z f is uniformly continuous.

1 Jean Baptiste Joseph Fourier (21 March 1768 — 16 May 1830) was a French mathematician and physicist
best known for initiating the investigation of Fourier series and their applications to problems of heat
transfer and vibrations. The Fourier transform and Fourier’s Law are also named in his honor. Fourier is
also generally credited with the discovery of the greenhouse effect.
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Proof. (i) is obvious. We now prove (ii). By

fern) = 5O = [ et 1) @,

n

we have

fleh) = HOI< [ e =t~ 1] f(w)lda

n

< /| i 1| f(a) | + 2 / f (@) |de

|z|>r
<[ bl 2 [ (f@)ds
|z|<r |z|>r
::Il + 127
since for any 6 > 0
e — 1] = \/(C089 —1)2 4sin?0 = V2 — 2cos 6 = 2[sin(6/2)| < |4].
Given any € > 0, we can take r so large that Is < /2. Then, we fix this r and take |h|

small enough such that I1 < £/2. In other words, for given € > 0, there exists a sufficiently
small 0 > 0 such that |f(§ + h) — f(§)| < € when |h| < §, where ¢ is independent of £. O

Ezxample 1.6. Suppose that a signal consists of a single rectangular pulse of width 1 and
height 1. Let’s say that it gets turned on at x = —% and turned off at = = % The standard
name for this “normalized” rectangular pulse is

. 1
1.if — 1 << 1 ——
II(x) = rect(x) =< .’ 2 2’
() = rect(z) {0, otherwise. I -
-3 3 T

It is also called, variously, the normalized boxcar function, the top hat function, the
indicator function, or the characteristic function for the interval (—1/2,1/2). The Fourier
transform of this signal is

1/2

. ) 1/2 ) —wizé 2
e = / e T (x)da = / e~wiz€ gy — © - = —sin we
R —1/2 —wif —1/2 wé 2
when € # 0. When ¢ = 0, 11(0) = ff{iz dz = 1. By 'Hopital’s rule,
s wé w wé
s oSN Seos
f}lg(lJ 1) = %li% 2 wé %12(1) 2 w 1 =10,

so 1T (€) is continuous at & = 0. There is a standard function called “sinc”? that is defined
by sinc(§) = % In this notation I7(§) = sinc%g. Here is the graph of IT(§).

1

T | &

w

Remark 1.7. The above definition of the Fourier transform in (1.1) extends immediately
to finite Borel measures: if p is such a measure on R”, we define .% i by letting

Fule) = / (),

2 The term “sinc” (English pronunciation:['sigk]) is a contraction, first introduced by Phillip M. Woodward
in 1953, of the function’s full Latin name, the sinus cardinalis (cardinal sine).
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Theorem 1.5 is valid for these Fourier transform if we replace the L' norm by the total
variation of p.

The following theorem plays a central role in Fourier Analysis. It takes its name from
the fact that it holds even for functions that are integrable according to the definition of
Lebesgue. We prove it for functions that are absolutely integrable in the Riemann sense.?

Theorem 1.8 (Riemann-Lebesgue lemma). If f € LY(R"™) then Zf — 0 as |[¢| — oo;
thus, in view of the last result, we can conclude that F f € Co(R™).

| /.\,W\Mf

v

left is small. The integral will approach zero as the number of oscillations

\ \ The Riemann-Lebesgue lemma states that the integral of a function like the
/\ I increases.

/\M( I /\ N

it U

Proof. First, for n = 1, suppose that f(z) = Xx(a4,5)(¢), the characteristic function of an
interval. Then

. b ‘ o—wibE _ p—wib€
f & :/ ey =~ 0, as|¢|—0.
a wig

Similarly, the result holds when f is the characteristic function of the n-dimensional rect-
angle I ={z € R" : a1 < o1 < by, -+ ,a, <z, < by} since we can calculate 7 f explicitly
as an iterated integral. The same is therefore true for a finite linear combination of such
characteristic functions (i.e., simple functions). Since all such simple functions are dense
in L', the result for a general f € L!(R") follows easily by approximating f in the L!
norm by such a simple function g, then f = g + (f — g), where .Z f — % ¢ is uniformly
small by Theorem 1.5, while .#¢g(¢) — 0 as || — oo. O

Theorem 1.8 gives a necessary condition for a function to be a Fourier transform.
However, that belonging to Cy is not a sufficient condition for being the Fourier transform
of an integrable function. See the following example.

Ezxample 1.9. Suppose, for simplicity, that n = 1. Let
1

1~ £> 67
1
g(§) = nd
§ os<e<e

9(§) = —9(=¢), £<0.
It is clear that g(§) is uniformly continuous on R and g(§) — 0 as [§| — .
Assume that there exists an f € L*(R) such that f(¢) = g(&), i.e.,

mozjmeﬂ“%@Mm

— 00

Since g(§) is an odd function, we have

9O = [ epantn =i [ sintrt)f)dn = [ sintwat) Fla)ds

— 00 — 00

where F(z) = i[f(x) — f(—z)] € L'(R). Integrating % over (e, N) yields

/j g~ [~ rin ( /j Mgwdf) &

3 Let us very briefly recall what this means. A bounded function f on a finite interval [a, b] is integrable
if it can be approximated by Riemann sums from above and below in such a way that the difference of the

integrals of these sums can be made as small as we wish. This definition is then extended to unbounded
functions and infinite intervals by taking limits; these cases are often called improper integrals. If I is any
interval and f is a function on I such that the (possibly improper) integral [} | f(z)|dx has a finite value,
then f is said to be absolutely integrable on I.
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b .
sint
/ il dt
.

and by Lebesgue dominated convergence theorem,we get that the integral of r.h.s. is con-
vergent as N — oco. However,
N N
d
lim / @dgz lim 3 =00
N—oo /. € N—oo /. fln§
This contradiction indicates that the assumption was invalid.

Noticing that

N .
sint
<C, lim Ml =T,

N—oo 0 t 2

We now turn to the problem of inverting the Fourier transform. That is, we shall
consider the question: Given the Fourier transform f of an integrable function f, how do
we obtain f back again from f ? The reader, who is familiar with the elementary theory
of Fourier series and integrals, would expect f(z) to be equal to the integral

C | e mEfe)de. (1.4)

RTI,
Unfortunately, f need not be integrable (for example, let n = 1 and f be the characteristic
function of a finite interval). In order to get around this difficulty, we shall use certain
summability methods for integrals. We first introduce the Abel method of summability,

whose analog for series is very well-known. For each € > 0, we define the Abel mean
A = A (f) to be the integral

A(f) = AL :/ el f(x)da. (1.5)

It is clear that if f € L'(R") then lirr(l) A.(f) = [gn f(x)dz. On the other hand, these
e—

Abel means are well-defined even when f is not integrable (e.g., if we only assume that f
is bounded, then A.(f) is defined for all € > 0). Moreover, their limit
lim A.(f) = lim [ e Il f(z)da (1.6)
e—0 e—0 Rn
may exist even when f is not integrable. A classical example of such a case is obtained by
letting f(x) = sinc(z) when n = 1. Whenever the limit in (1.6) exists and is finite we say
that [, fdz is Abel summable to this limit.
A somewhat similar method of summability is Gauss summability. This method is
defined by the Gauss (sometimes called Gauss-Weierstrass) means

G.(f) = / el f(2)da. (1.7)
We say that [, fdz is Gauss summable (to ) if

1 =1 _E‘$‘2 ’
lim Ge(f) = lim e fx)dx (1.67)
exists and equals the number .

We see that both (1.6) and (1.6’) can be put in the form
Mealf) = M) = [ #en)f(a)ds, (1.9
R'n,

where @ € Cp and #(0) = 1. Then [;, f(z)dz is summable to £ if lim._,o M.(f) = £. We
shall call M.(f) the @ means of this integral.

We shall need the Fourier transforms of the functions e<1*I” and e~<lz|. The first one
is easy to calculate.
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Theorem 1.10. For all a > 0, we have

Feloal’ () = (|;T|) B (4ma)~"/2e~ 5 (1.9)

Proof. The integral in question is

— LT — 2
/ e wiz 56 alwz| dr.
n

Notice that this factors as a product of one variable integrals. Thus it sufficient to prove
2

the case n = 1. For this we use the formula for the integral of a Gaussian: fR e ™ dx = 1.

It follows that

oo S 2
/ e—wixfe—andex :/ e—a(Wx-i-if/(Qa))ze—%ldx
—o0

— 00
o [ootie/a)
:|w|_1e_ﬂ/ e~ dx
oo+ig/(2a)

ol te” ﬁ/ - dy

_ (Il 1/2 42
_(271- (4ma)™ =€

where we used contour integration at the next to last one. O

The second one is somewhat harder to obtain:

Theorem 1.11. For all a > 0, we have

—a|wx ‘ l n F(( +1)/2)
F(emlorl) = (;) (a2+|§|2c)l(n+1)/2’ Cn = 71-7(?[n+1)/2 : (1.10)

Proof. By a change of variables, i.e.,

y(efah,ur\) — / efwi:cfefa\wﬂdx _ (a|w\)7"/ efinn{/aef\as|dx7

we see that it suffices to show this result when ¢ = 1. In order to show this, we need to
express the decaying exponential as a superposition of Gaussians, i.e.,

1 oo
6_7:—/
VT Jo

Then, using (1.9) to establish the third equality,

efzzt 7|a:|d1, 7/ efimt < / 7|a:| /477d,,7> dx
/ n " v f
L o)
_ e WlteTI® dr | d
VT Jo v \Ugrn !

:% /000 e\;%’ ((47777)"/26_"“‘2) dn

oo

e~ nHI) " g

—n
€ e gy 4> 0. (1.11)
n

:277,7_‘,(7171)/2

s—

0

_ntl n
:2"77("_1)/2 (1 + |t|2) 2 / _CC +1 1dC
0

—on_(n-1)2p(nt1 1
=2"r F( 9 (1+|t|2)(n+1)/2'

Thus,



1.1 The L' theory of the Fourier transform 7

T (p—0lwz|y (a‘w|)_n(27r)"cn _ M - Cna@
e = W e o) s g

Consequently, the theorem will be established once we show (1.11). In fact, by changes
of variables, we have

76“// e /4ndn

f
2

f/ e de (by n =07

27 ooy 1 1
/ 25) Q—da (by o — %)
\/» / e V(e=25)* < ) (by averaging the last two formula)

1
:ﬁ/_ooe’wdu (byu-a—%)

=1, (by /e””ﬂdx =1)
R
which yields the desired identity (1.11). O

We shall denote the Fourier transform of (%) e~alwzl® and (%) e~@wrl g >0, by
W and P, respectively. That is,
_ —n/2 7¥ _ Cn@
W(f,a) - (477(1) e da P(gva) - (a2 + |§|2)(n+1)/2'
The first of these two functions is called the Weierstrass (or Gauss- Weierstrass) kernel
while the second is called the Poisson kernel.

(1.12)

Theorem 1.12 (The multiplication formula). If f,g € L'(R"), then

f©g)de = | f(x)§(z)da
Rn R”

Proof. Using Fubini’s theorem to interchange the order of the integration on R2", we
obtain the identity. a

Theorem 1.13. If f and ® belong to Ll(R" 0 =& and p.(x) = e "p(x /), then

| et feyde - /% ) )y

for all e > 0. In particular,
w " wix-€ —e|wé]| §
() [ emsedfas = [ plu-aerfoa
T n Rn
and
w " it —elwel? P
(1) [ et fioae = [ wi-aeswa
s n R
Proof. From (iii) and (iv) in Proposition 1.3, it implies (Fe“¢®(c€))(y) = ¢:(y — ).
The first result holds immediately with the help of Theorem 1.12. The last two follow from
(1.9), (1.10) and (1.12). O

Lemma 1.14. fR" (z,e)dz =1 for all e > 0.
(ii) [gn P(z,e)dz =1 for all e > 0.
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Proof. By a change of variable, we first note that

z|2
W (z,e)dx = / (471'6)7“/267%(&13 = W(z,1)dz,

R” n Rn

and
Cné

. P(z,e)dx = /Rn EFuPRICEE dx = /n P(z,1)dx.

Thus, it suffices to prove the lemma when ¢ = 1. For the first one, we use a change of
variables and the formula for the integral of a Gaussian: fR e~ dx = 1 to get

W(z,1)dz = /
R‘VL

For the second one, we have

1

. P(z,1)dz = ¢, /]R" (1 + |z2) (D72
Letting r = |z|, 2’ = z/r (when z # 0), S"~! = {z € R" : |2| = 1}, d2’ the element of
surface area on S”~! whose surface area? is denoted by w,,_1 and, finally, putting » = tan 6,

o2
(477)_"/26_%d$ = / (47r)_"/26_”|y|22"77”'/2dy =1.

n

dz.

we have

/ r 1
| T / /s 1+ <n+1>/2d ar

But w,,_; sin” ! 6 is clearly the surface area of the sphere
of radius sin # obtained by intersecting S™ with the hyper-
plane z1 = cosf. Thus, the area of the upper half of S™ is
obtained by summing these (n — 1) dimensional areas as
0 ranges from 0 to 7/2, that is,

/2
wn,l/ sin” "1 0do = w—n,
O 2

which is the desired result by noting that 1/¢,, = w, /2. O

Theorem 1.15. Suppose p € L'(R"™) with [;, p(z)dz = 1 and let p.(x) = e "p(z/e)
fore>0.If f € LP(R™), 1 < p < oo, or f € Co(R™) C L>®(R™), then for 1 < p < oo

Ilf * e — fllp =0, ase — 0.

In particular, the Poisson integral of f:

uee) = [ Plo-yo) )y

and the Gauss-Weierstrass integral of f:

sw.2) = | Wia—p.2)f()dy

converge to f in the LP norm as € — 0.

Proof. By a change of variables, we have

/n e (y)dy = /Rn e Mo(y/e)dy = /Rn o(y)dy = 1.

(Fxela) = 1) = [ (e =)~ F@lleaw)dy.

Hence,

Y 1 =202/ (n)2).
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Therefore, by Minkowski’s inequality for integrals and a change of variables, we get

1= £l < [ 15 =) = F@)lelolu/e)ldy

= [ s = 20) = F@)pletwldy.

We point out that if f € LP(R"), 1 < p < oo, and denote || f(z —t) — f(z)|, = Af(t),
then Af(t) — 0, as t — 0.5 In fact, if f1 € Z(R") := C§°(R") of all C* functions with
compact support, the assertion in that case is an immediate consequence of the uniform
convergence f1(x—t) — fi1(z), ast — 0. In general, for any o > 0, we can write f = f1+ fo,
such that f; is as described and || f2||, < o, since Z(R™) is dense in LP(R™) for 1 < p < oc.
Then, Af(t) < Ap (t) + Ay, (t), with Ay, (t) - 0 as t — 0, and Ay, (t) < 20. This shows
that Af(t) = 0 as t — 0 for general f € LP(R™), 1 < p < o0.

For the case p = oo and f € Co(R™), the same argument gives us the result since Z(R™)
is dense in Cy(R™) (cf. [Rud87, p.70, Proof of Theorem 3.17]).

Thus, by the Lebesgue dominated convergence theorem (due to ¢ € L' and the fact
Ar(ey)le)] < 2[|fllple(y)]) and the fact Ag(ey) — 0 as € — 0, we have

iy 1+ 0. — Sl <ty [ As(en)lotly = [T AgCey)lielu)ldy = o
e—0 e—0 Rn Rn e—0
This completes the proof. a
With the same argument, we have
Corollary 1.16. Let 1 < p < oo. Suppose ¢ € L*(R™) and fRﬂ x)dx = 0, then ||f *
@ellp = 0 as € = 0 whenever f € LP(R™), 1 < p < o0, or f € Co(R™) C L=(R™).

Proof. Once we observe that

(f*@)(@) =(f*@)(x) = flx)- 0= (f*¢)(x) — f(z) / @< (y)dy
= /n[f(w —y) — f(@)]p:(y)dy,

the rest of the argument is precisely that used in the last proof. a

In particular, we also have

Corollary 1.17. Suppose ¢ € L*(R™) with [;, p(z)dz = 1 and let o.(x) = e "p(z/e)
fore>0. Let f(x) € L*°(R™) be continuous at {0}. Then,

lim | f(a)pe(w)dz = £(0)

e—0

Proof. Since [, f(x)pe(x)dz — = [an(f f(0))pe(z)dz, then we may assume
without loss of generality that f(0 ) = 0 Since f is continuous at {0}, then for any n > 0,
there exists a § > 0 such that

whenever |z| < §. Noticing that |fRn x)dz| < ||gp||1, we have

[ f@)oula)dn| < ”90”1 L@l [ et

<ol + e / Jelay

ly|=6/e

=1+ [ flloo e

5 This statement is the continuity of the mapping t — f(z — t) of R™ to LP(R™).
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But I. — 0 as € — 0. This proves the result. a

From Theorems 1.13 and 1.15, we obtain the following solution to the Fourier inversion
problem:

Theorem 1.18. If both & and its Fourier transform ¢ = & are integrable and
Jon o(x)dz = 1, then the & means of the integral (|w|/2m)" [n. €€ f(€)dE converges
to f(x) in the L' norm. In particular, the Abel and Gauss means of this integral converge
to f(x) in the L* norm.

We have singled out the Gauss-Weierstrass and the Abel methods of summability. The
former is probably the simplest and is connected with the solution of the heat equation; the
latter is intimately connected with harmonic functions and provides us with very powerful
tools in Fourier analysis.

Since s(z,e) = (%)n Jrn e“’i“"fe_5|“’f‘2f(§)df converges in L! to f(x) as e > 0 tends to
0, we can find a sequence e — 0 such that s(z,e;) — f(x) for a.e. . If we further assume
that f € L'(R™), the Lebesgue dominated convergence theorem gives us the following
pointwise equality:

Theorem 1.19 (Fourier inversion theorem). If both f and f are integrable, then

s = ()" [ et

27
for almost every x.
Remark 1.20. We know from Theorem 1.5 that f is continuous. If f is integrable, the

integral [, e~ f(€)de also defines a continuous function (in fact, it equals f(—z)).
Thus, by changing f on a set of measure 0, we can obtain equality in Theorem 1.19 for all
T.

It is clear from Theorem 1.18 that if f(£) = 0 for all £ then f(z) = 0 for almost every
x. Applying this to f = f1 — f2, we obtain the following uniqueness result for the Fourier
transform:

Corollary 1.21 (Uniqueness). If fi and fs belong to L*(R™) and f1(€) = f2(€) for & € R™,
then fi(z) = fa(x) for almost every x € R™.

We will denote the inverse operation to the Fourier transform by .# ! or *. If f € L*,
then we have

fa) = (81) [ em<riepae (113)
We give a very useful result.

Theorem 1.22. Suppose f € L*(R™) and f > 0. If f is continuous at 0, then

o= () [ feae

Moreover, we have f € L*(R™) and

o) = (B0)" [ em<fierae

Proof. By Theorem 1.13, we have

(M)n [ i@ = [ Pw.asw

2T R™

for almost every x.
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From Lemma 1.14, we get, for any § > 0,

[ Py - f(o)‘ _

/n P(y,e)lf(y) - f(O)]dy‘

< +

/ P(y, ) (v) — F(0))dy / P(y, &)[f(y) - 1(0)]dy
ly|<d B

:Il + 12.
Since f is continuous at 0, for any given ¢ > 0, we can choose ¢ small enough such that
|f(y) — f(0)] < o when |y| < d. Thus, I < ¢ by Lemma 1.14. For the second term, we
have, by a change of variables, that

I <||f]l1 sup P(y,e) + |f(0)] P(y,e)dy
ly|=d ly|>6
o [ — )] Py, 1)dy — 0
= 1 (52 + 62)(n+1)/2 |y|>5/5 ya y Y

ase — 0. Thus, (%)n Jan e_5|‘”5|f(§)df — f(0) ase — 0. On the other hand, by Lebesgue

dominated convergence theorem, we obtain

() [ e~ (1) [ efigpae - o)

which implies f € L'(R"™) due to f > 0. Therefore, from Theorem 1.19, it follows the
desired result. O

An immediate consequence is

Corollary 1.23. i) fRn eVITEW (€, e)dE = e—clwzl®
11) f]Rn ewia:'ﬁp(é" €)d€ — efe\wa:| .

Proof. Noticing that

W e)=F ((;)neelwﬂﬂF) ,and P(¢,e) =.F ((';T')n eml> ,

we have the desired results by Theorem 1.22. ad

We also have the semigroup properties of the Weierstrass and Poisson kernels.

Corollary 1.24. If a; and oo are positive real numbers, then
i) W(& a1+ a) = [pn W(E—n,00)W(n, az)dn.
11) P(Ea oy + 042) = fRn P(€ -1 al)P(na a2)d77-

Proof. It follows, from Corollary 1.23, that

W(g,al + ag) = (|;;_|> (ﬂg*(a1+a2)|wm\2)(€)
)n y(e—a1|wz\ze—a2\wz\2)(§)
)" (ot [ e o) 6

n

e—wiz-fe—a1|wgﬂ|2 / ewiz-nW(n7 a2)d’l7dl‘

= [ ([ e (L) i) win s
R™ \JRn 2m

- /R W& — 1, 00)W (1, a2)dr.

n

e
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A similar argument can give the other equality. a
Finally, we give an example of the semigroup about the heat equation.
Ezample 1.25. Consider the Cauchy problem to the heat equation
up— Au =0, u(0)=up(z), t>0, ze€R".
Taking the Fourier transform, we have
@y + |wé*a =0, a(0) = 1o(€).
Thus, it follows, from Theorem 1.10, that
u=F te Wt Fyy = (5‘\7164“’5'%) * Uy = (471'25)7”/2(57'%'2/4’S * Ug
=W (x,t) % ugp =: H(t)uo.
Then, we obtain
H(ty + to)ug =W (z,t1 + to) * ug = Wz, t1) * W(w,t2) * ug
=W (x,t1) * (W(x,t2) *ug) = W(x,t1) * H(tz2)ug
=H(t1)H (t2)uo,
ie, H(ty +t2) = H(t1)H (t2).

1.2 The L? theory and the Plancherel theorem

The integral defining the Fourier transform is not defined in the Lebesgue sense for the
general function in L?(R"); nevertheless, the Fourier transform has a natural definition on
this space and a particularly elegant theory.

If, in addition to being integrable, we assume f to be square-integrable then f will also
be square-integrable. In fact, we have the following basic result:

Theorem 1.26 (Plancherel theorem). If f € LY(R") N L2(R"), then |flla =
w —n/2
() ™ 11

Proof. Let g(x) = f(:ac) Then, by Theorem 1.1, h = fxg € L*(R™) and, by Proposition
1.3, h = fg. But § = f, thus h = | f|* > 0. Applying Theorem 1.22, we have h € L'(R")
and h(0) = (%) Jan h(€)d¢. Thus, we get

[ i@ = [ e = (';’T') h(0) = (M) =

Rn 2T
~() [ swiwie= () [ r@pe.
which completes the proof. a

Since L'NL? is dense in L2, there exists a unique bounded extension, .%, of this operator
to all of L2. .# will be called the Fourier transform on L?; we shall also use the notation
f = .Zf whenever f € L2(R™).

A linear operator on L?(R™) that is an isometry and maps onto L?(R") is called a

n/2
unitary operator. It is an immediate consequence of Theorem 1.26 that (%) Z is an

||

n/2
isometry. Moreover, we have the additional property that (ﬁ) Z is onto:

n/2
Theorem 1.27. (%) F is a unitary operator on L?(R™).
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n/2
Proof. Since (%) Z is an isometry, its range is a closed subspace of L?(R™). If this

subspace were not all of L?(R"), we could find a function g such that fRn f gdz = 0 for all
f € L? and ||g||2 # 0. Theorem 1.12 obviously extends to L?; consequently, [, fgdz =

f]R" fgdx = 0forall f € L2. But this implies that g(x) = 0 for almost every x, contradicting
—n/2
the fact that ||g|l2 = (M) llgll2 # 0. =

27

Theorem 1.27 is a major part of the basic theorem in the L? theory of the Fourier
transform:

Theorem 1.28. The inverse of the Fourier transform, # 1, can be obtained by letting

lwl

e = (5) #n-o)
for all f € L?>(R™).

We can also extend the definition of the Fourier transform to other spaces, such as
Schwartz space, tempered distributions and so on.

1.3 Schwartz spaces

Distributions (generalized functions) aroused mostly due to Paul Dirac and his delta
function 0. The Dirac delta gives a description of a point of unit mass (placed at the
origin). The mass density function is such that if its integrated on a set not containing
the origin it vanishes, but if the set does contain the origin it is 1. No function (in the
traditional sense) can have this property because we know that the value of a function at
a particular point does not change the value of the integral.

In mathematical analysis, distributions are objects which generalize functions and prob-
ability distributions. They extend the concept of derivative to all integrable functions and
beyond, and are used to formulate generalized solutions of partial differential equations.
They are important in physics and engineering where many non-continuous problems nat-
urally lead to differential equations whose solutions are distributions, such as the Dirac
delta distribution.

“Generalized functions” were introduced by Sergei Sobolev in 1935. They were inde-
pendently introduced in late 1940s by Laurent Schwartz, who developed a comprehensive
theory of distributions.

The basic idea in the theory of distributions is to consider them as linear functionals on
some space of “regular” functions — the so-called “testing functions”. The space of testing
functions is assumed to be well-behaved with respect to the operations (differentiation,
Fourier transform, convolution, translation, etc.) we have been studying, and this is then
reflected in the properties of distributions.

We are naturally led to the definition of such a space of testing functions by the following
considerations. Suppose we want these operations to be defined on a function space, .7,
and to preserve it. Then, it would certainly have to consist of functions that are indefinitely
differentiable; this, in view of part (v) in Proposition 1.3, indicates that each function in
<, after being multiplied by a polynomial, must still be in .. We therefore make the
following definition:

Definition 1.29. The Schwartz space . (R™) of rapidly decaying functions is defined as
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L (R") = {gp € C°(R™) : |@lap = sup |z*(0%¢)(x)| < o0, Yo, B € N(’}} , (1.14)
TER™
where Ny = N U {0}.
If o € .7, then |p(x)] < Chp(l + |z|)~™ for any m € Ny. The second part of next
example shows that the converse is not true.
Ezample 1.30. ¢(z) = e~¢l" £ > 0, belongs to .%; on the other hand, o(x) = e~¢1l fails
to be differential at the origin and, therefore, does not belong to .&.
Ezample 1.31. p(z) = e—(1+121))” helongs to . for any e,y > 0.
Ezample 1.32. . contains the space Z(R™).

But it is not immediately clear that 2 is nonempty. To find a function in &, consider

the function
e Mt t>0,
1) = {0, t <0.
Then, f € C, is bounded and so are all its derivatives. Let ¢(t) = f(1+¢t)f(1 —t), then
p(t) = e~2/(=17) jf t| < 1, is zero otherwise. It clearly belongs to 2 = Z(R!). We can
easily obtain n-dimensional variants from ¢. For examples,
(i) For z € R™, define ¢ (z) = o(z1)¢(x2) - - - (xy), then ¥ € Z(R™);
(i) For # € R", define ¢(z) = e~2/(1=121") for || < 1 and 0 otherwise, then 1) € Z(R™);
(iii) If n € C* and 9 is the function in (ii), then 1 (ex)n(z) defines a function in Z(R");
moreover, e2¢(ex)n(x) — n(x) as e — 1.
Example 1.33. We observe that the order of multiplication by powers of z1,--- ,x, and
differentiation, in (1.14), could have been reversed. That is, ¢ € . if and only if ¢ € C°
and sup,cgn |0° (2%¢(x))| < oo for all multi-indices o and 3 of nonnegative integers. This
shows that if P is a polynomial in n variables and ¢ € . then P(x)p(z) and P(9)p(x)
are again in ., where P(0) is the associated differential operator (i.e., we replace ® by
0% in P(x)).
Ezample 1.34. Sometimes . (R™) is called the space of rapidly decaying functions. But
observe that the function p(z) = e~ " is not in Z(R). Hence, rapid decay of the value
of the function alone does not assure the membership in . (R).

Theorem 1.35. The spaces Co(R™) and LP(R™), 1 < p < 00, contain .7 (R™). Moreover,
both & and 2 are dense in Co(R™) and LP(R™) for 1 < p < cc.

Proof. . C Cy C L™ is obvious by (1.14). The L? norm of ¢ € . is bounded by a finite
linear combination of L>° norms of terms of the form x®y(z). In fact, by (1.14), we have

([ etara) v
< ( /M@ Iw(x)l”dw> " ( /|| Iw(x)lpdl") "
<ol ( /| dx> R ( /| |x-2”de> "

_ Wn—1 1/p Wn—1 Y/ 2n
—( " ) ||<p||°°+<(2p—1)n> H|=’13| |80‘HDO

<00.
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For the proof of the density, we only need to prove the case of 2 since Z C .. We
will use the fact that the set of finite linear combinations of characteristic functions of
bounded measurable sets in R™ is dense in LP(R™), 1 < p < co. This is a well-known fact
from functional analysis.

Now, let E C R™ be a bounded measurable set and let € > 0. Then, there exists a closed
set F and an open set @ such that F C £ C Q and m(Q \ F) < €P (or only m(Q) < &?
if there is no closed set F' C E). Here m is the Lebesgue measure in R™. Next, let ¢ be a
function from 2 such that suppp C Q, ¢|r =1 and 0 < ¢ < 1. Then,

lo—xely = [ 16 ~xe@Par< [ de=m(@\F) <

or

e —xely, <e,
where x g denotes the characteristic function of E. Thus, we may conclude that Z(R") =
LP(R™) with respect to LP measure for 1 < p < co.
For the case of Cy, we leave it to the interested reader. a

Remark 1.36. The density is not valid for p = co. Indeed, for a nonzero constant function
f =co # 0 and for any function ¢ € 2(R™), we have

If = @lloe = lcol > 0.
Hence we cannot approximate any function from L (R™) by functions from Z(R"™). This

example also indicates that . is not dense in L*° since | l‘im lo(x)] =0 for all p € 7.
xT|— 00

From part (v) in Proposition 1.3, we immediately have
Theorem 1.37. If p € ., then ¢ € 7.

If p,¢ € &, then Theorem 1.37 implies that @,1& € .. Therefore, @& € .¥. By part
(vi) in Proposition 1.3, i.e., % (px*1) = @1, an application of the inverse Fourier transform
shows that

Theorem 1.38. If p,v € .7, then px¢ € 7.
The space .#’(R™) is not a normed space because |¢|q,g is only a semi-norm for multi-
indices e and 3, i.e., the condition
|¢la,s =0 if and only if p =0

fails to hold, for example, for constant function . But the space (., p) is a metric space
if the metric p is defined by

Z g-lal-18_1P = Ylap lp — Ylas
OtﬁEN" 1+|90 w|aﬁ

Theorem 1.39 (Completeness). The space (%, p) is a complete metric space, i.e., every
Cauchy sequence converges.

Proof. Let {¢;}72, C . be a Cauchy sequence. For any ¢ > 0 and any v € Nf, let
2=l

€ = 557, then there exists No(¢) € N such that p(px, pm) < & when k,m > No(e) since
{er}72, is a Cauchy sequence. Thus, we have
“Pk - Som|0,’Y o
L+ [pr = omloy 140’
and then

sup |97 (k. — pm)| < o
reK
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for any compact set K C R™. It means that {¢x}7°, is a Cauchy sequence in the Banach
space CI"(K). Hence, there exists a function ¢ € CI"I(K) such that

lim ¢ = ¢, in CPI(K).
k—o0

Thus, we can conclude that ¢ € C°°(R™). It only remains to prove that ¢ € .%. It is clear
that for any a, 8 € N

sup 2707 ¢| < sup [¢70° (pr — )| + sup |77 gy
zeK reK reK
<Co(K) sup |0° (1, — )| + sup [“07 px .
zeK zeK
Taking k — oo, we obtain
sup |2°0% | < limsup |pg|a,s < 00.
reEK k— o0

The last inequality is valid since {5}, is a Cauchy sequence, so that |px|q,s is bounded.
The last inequality doesn’t depend on K either. Thus, |¢|s,g < 0o and then p € 7. O

Moreover, some easily established properties of . and its topology, are the following:

Proposition 1.40. i) The mapping p(z) — x%0%p(z) is continuous.

i) If p € 7, then limy,_o Thip = @.

iil) Suppose ¢ € . and h = (0,--- ,h;,---,0) lies on the i-th coordinate azxis of R™,
then the difference quotient [p — Th]/hi tends to dp/0x; as |h| — 0.

iv) The Fourier transform is a homeomorphism of 7 onto itself.

v) 7 is separable.

Finally, we describe and prove a fundamental result of Fourier analysis that is known
as the uncertainty principle. In fact this theorem was "discovered" by W. Heisenberg in
the context of quantum mechanics. Expressed colloquially, the uncertainty principle says
that it is not possible to know both the position and the momentum of a particle at the
same time. Expressed more precisely, the uncertainty principle says that the position and
the momentum cannot be simultaneously localized.

In the context of harmonic analysis, the uncertainty principle implies that one cannot
at the same time localize the value of a function and its Fourier transform. The exact
statement is as follows.

Theorem 1.41 (The Heisenberg uncertainty principle). Suppose ¢ is a function in .7 (R).
Then

i s () B
levlialil > (5r) Bl

and equality holds if and only if ¥ (x) = Ae=B2* where B> 0 and A € R.

Moreover, we have

—1/2
|12
2/w]

jwl

mUx@wm@@mm><)

2

for every xq, & € R.

Proof. The last inequality actually follows from the first by replacing 1 (z) by e~ (z+
20) (whose Fourier transform is e*i0(6+80)¢)(¢ + &) by parts (i) and (iii) in Proposition
1.3) and changing variables. To prove the first inequality, we argue as follows.

Since 1 € .7, we know that ¥ and ¢’ are rapidly decreasing. Thus, an integration by
parts gives

o0 o0 d
Wit = [ WP =~ [ 2l ivt)Pds

— 00 —
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__ / h (a0 @)(@) + e @i(a) ) de

— 00

The last identity follows because |)|? = v1). Therefore,

I3 < 2/ |zl (@)][¢ (2)]da < 2lzl2]1¢" ]2,

where we have used the Cauchy-Schwarz inequality. By part (v) in Proposition 1.3, we
have .7 (¢')(§) = wil(€). Tt follows, from the Plancherel theorem, that

o] 1/2 o] 1/2 )
150 = (5) 1@l = (5) elledla

Thus, we conclude the proof of the inequality in the theorem.

If equality holds, then we must also have equality where we applied the Cauchy-Schwarz
inequality, and as a result, we find that ¢’ (z) = Sa(z) for some constant 8. The solutions
to this equation are ¥ (z) = AeP*/2 where A is a constant. Since we want 1 to be a
Schwartz function, we must take g = —2B < 0. a

1.4 The class of tempered distributions

The collection .’ of all continuous linear functionals on . is called the space of tem-
pered distributions. That is

Definition 1.42. The functional T :.¥ — C is a tempered distribution if
i) T is linear, i.e., (T, ap + B¢) = (T, ) + B(T, ) for all o, 8 € C and ¢, ¥ € 7.
ii) T is continuous on .7, i.e., there exist ny € Ny and a constant ¢y > 0 such that

(Tl <co Y |¢las
lal,|Bl<n0

for any ¢ € .7.

In addition, for Ty, T € ./, the convergence T, — T in .’ means that (Tj, ¢) — (T, ¢)
in C for all p € .7.

Remark 1.43. Since 2 C .¥, the space of tempered distributions .’ is more narrow than
the space of distributions 2, i.e., ¥/ C %’. Another more narrow distribution space
&’ which consists of continuous linear functionals on the (widest test function) space
& = C*>°(R"). In short, 2 C . C & implies that

& cs'cg.
Ezxample 1.44. Let f € LP(R™), 1 < p < 0o, and define T' = Ty by letting
(Top) = (Tp0) = | F@)p(z)d

for ¢ € 7. It is clear that T is a linear functional on .. To show that it is continuous,
therefore, it suffices to show that it is continuous at the origin. Then, suppose ¢ — 0 in
& as k — oo. From the proof of Theorem 1.35, we have seen that for any ¢ > 1, ||¢kllq
is dominated by a finite linear combination of L* norms of terms of the form z®¢y(z).
That is, ||¢k||q is dominated by a finite linear combination of semi-norms |pg|q,0. Thus,
lloklly — 0 as k — oo. Choosing ¢ = p/, i.e., 1/p+1/q = 1, Holder’s inequality shows that
KT, o) < | fllpllerllpy — 0 as k — oo. Thus, T € ..
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Ezample 1.45. We consider the case n = 1. Let f(z) = >_;-, arz" be a polynomial, then
f e since

(T, )] = ‘ / S it (z)de
k=0

<Y laxl /]R(l + )T+ Jal) o 2o (@) | da

k=0

m

<Y larllelisieo [ (1+]a) s,
k=0 R

so that the condition ii) of the definition is satisfied for e = 1 and ng = m + 2.

Example 1.46. Fix o € R™ and a multi-index 5 € Njj. By the continuity of the semi-norm

| lap in .7, we have that (T, p) = 0°p(x0), for p € .7, defines a tempered distribution.

A special case is the Dirac d-function: (T, ¢) = ¢(0).

The tempered distributions of Examples 1.44-1.46 are called functions or measures. We
shall write, in these cases, f and 0 instead of Ty and Ts. These functions and measures
may be considered as embedded in .’. If we put on .’ the weakest topology such that
the linear functionals T' — (T, ¢) (¢ € .%) are continuous, it is easy to see that the spaces
LP(R™), 1 < p < oo, are continuously embedded in .. The same is true for the space of
all finite Borel measures on R", i.e., Z(R").

There exists a simple and important characterization of tempered distributions:

Theorem 1.47. A linear functional T on .7 is a tempered distribution if and only if there
exists a constant C' > 0 and integers £ and m such that
(T <C > [plas
la <L, |Bl<m

forall p € 7.

Proof. It is clear that the existence of C, ¢, m implies the continuity of 7'

Suppose T is continuous. It follows from the definition of the metric that a ba-
sis for the neighborhoods of the origin in .# is the collection of sets Neynm = {¢ :
2 jal<e,|8l<m [Plas < €}, where € > 0 and ¢ and m are integers, because ¢r — ¢ as
k — oo if and only if |pr — ¢la,sg — 0 for all (o, ) in the topology induced by this sys-
tem of neighborhoods and their translates. Thus, there exists such a set N, ¢, satisfying
(T, ¢)| <1 whenever ¢ € N¢ g .

Let ||| = Z\aKMBKm |pla,p for all p € 7. If 0 € (0,¢), then ¥ = op/||¢|| € Netm
if ¢ # 0. From the linearity of T', we obtain

WKT,@)I = KT, 9) < 1.

But this is the desired inequality with C' = 1/0. a

Ezample 1.48. Let T € ./ and ¢ € 2(R") with ¢(0) = 1. Then the product ¢(z/k)T is
well-defined in . by

(p(x/R)T,¢) == (T, p(z/k)Y),
for all ¢ € .. If we consider the sequence T}, := ¢(z/k)T , then
as k — oo since ¢(z/k)Y — ¢ in .. Thus, T, — T in " as k — oco. Moreover, T}, has
compact support as a tempered distribution in view of the compactness of ¢ = p(z/k).

Now we are ready to prove more serious and more useful fact.
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Theorem 1.49. Let T' € .7/, then there exists a sequence {T}}72, C & such that

M) = [ T@@hde  (Tp). esk—cx.

where ¢ € .. In short, . is dense in ' with respect to the topology on .#'.

Proof. If h and g are integrable functions and ¢ € ., then it follows, from Fubini’s
theorem, that

teg.)= [ ota) [ wle—wwuds = [ o) [ e yyele)dady

= /n 9(y) /n Rh(y — x)p(z)dzdy = (g, Rh * @),

where Rh(x) := h(—x) is the reflection of h.

Let now ¢ € Z(R") with [, ¢¥(z)dz = 1 and ¥(—z) = ¥(v). Let ( € Z(R") with
¢(0) = 1. Denote ¢y (z) := k™p(kx). For any T € ', denote T}, := vy * T}, where
Ty = ¢(x/k)T. From above considerations, we know that (¢ * Tk, @) = (Tk, Ry * ©).

Let us prove that these T} meet the requirements of the theorem. In fact, we have

(Tie, 0) =(ti * The, 0) = (Tie, Rpi % ) = (C(/ k)T, i+ )
=(T,((x/k)(Yr * ¢)) = (T,p), ask — oo,
by the fact ¢ * ¢ — ¢ in . as k — oo in view of Theorem 1.15, and the fact {(x/k) — 1

pointwise as k — oo since ((0) = 1 and {(x/k)p — ¢ in .¥ as k — oo. Finally, since 9y,
¢ € 2(R"), it follows that T}, € Z(R™) C L (R"™). O

Definition 1.50. Let L : ¥ — . be a linear continuous mapping. Then, the du-
al/conjugate mapping L' : " — %’ is defined by
(L'T, o) :=(T,Lp), TeS, pes.

Clearly, L' is also a linear continuous mapping.

Corollary 1.51. Any linear continuous mapping (or operator) L : ¥ — % admils a
linear continuous extension L : ' — .

Proof. If T € ./, then by Theorem 1.49, there exists a sequence {T}}72, C . such that
T, — T in .’ as k — oo. Hence,

(LTy, ) = (T, L'p) — (T, L'p) := (LT, ), ask — oo,
for any ¢ € .7. O

Now, we can list the properties of tempered distributions about the multiplication,
differentiation, translation, dilation and Fourier transform.

Theorem 1.52. The following linear continuous operators from & into . admit unique
linear continuous extensions as maps from .’ into .#': For T € ' and ¢ € .#,

) (WT,¢):=(T,vp), ¥ € 7.

i) (09T, @) := (T, (—1)l*l9*p), a € Np.

iil) AT, @) = (T, T_pp), h € R™.

iv) (6T, ) = (T, |A[7"d1/x9), 0 F A ER.

V) (FT, ) = (T, Fp).

Proof. See the previous definition, Theorem 1.49 and its corollary. a

Remark 1.53. Since (FYFT,p) = (FT,F o) = (T, Z7F1p) = (T,p), we get
FYF=FF ' =Iin9.



20 1 The Fourier Transform and Tempered Distributions

Example 1.54. Since for any ¢ € .7,
Fro=0sd = [ Fooe= () (5) [ e

- <;r|) B F 1 FZp(0) = ('2“;') B ©(0) = (I;;) h (0,9),

we have

Moreover, § = (M> - 1.

2m

Ezxample 1.55. For ¢ € ., we have
(6,0) = (6, Fp) = (0) =/ e 0p(x)dz = (1, ).

Thus, 6 = 1 in .%".
Example 1.56. Since
(020, 0) =(0°0,8) = (=1)*1(3,0°¢) = (5, F[(wi€)¢])
=(0, (wi§)%p) = ((wi&)*, ¢),

we have 075 = (wi&)™.

Now, we shall show that the convolution can be defined on the class .%’. We first recall
a notation we have used: If g is any function on R™, we define its reflection, Rg, by letting
Rg(x) = g(—x). A direct application of Fubini’s theorem shows that if u, ¢ and ¢ are all
in ./, then

| s = [ u@(res )

The mappings ¢ — [p, (u* ¢)(2)¢(x)dz and 6 — [, u(x)0(x)dx are linear functionals

on .. If we denote these functionals by w * ¢ and wu, the last equality can be written in
the form:

(u* @, ) = (u, Rp *x ). (1.15)
If u e & and ¢, ¥ € ., the right side of (1.15) is well-defined since Ry * ¢ € 7.
Furthermore, the mapping ¥ — (u, Ry * 1), being the composition of two continuous
functions, is continuous. Thus, we can define the convolution of the distribution u with
the testing function ¢, u * , by means of equality (1.15).
It is easy to show that this convolution is associative in the sense that (u x ¢) x ¢ =
u * (@ * 1) whenever u € .9’ and ¢, ¢ € .. The following result is a characterization of
the convolution we have just described.

Theorem 1.57. If u € %' and ¢ € 7, then the convolution u * ¢ is the function
f, whose value at x € R™ is f(x) = (u, 7, Rp), where 7, denotes the translation by x
operator. Moreover, f belongs to the class C*° and it, as well as all its derivatives, are
slowly increasing.

Proof. We first show that f is C* slowly increasing. Let h = (0,--- , hj,---,0), then by
part iii) in Proposition 1.40,

TornBo(y) — TaRoly) 8R<p(y)

h; " oy,
as |h| — 0, in the topology of .. Thus, since u is continuous, we have




1.5 Characterization of operators commuting with translations 21

f(l‘ + h) — f(.’l?) _ < Tw+hR‘p<y) - TzRSD(y) MJ
.~ u, . e (¥))
J J j
as h; — 0. This, together with ii) in Proposition 1.40, shows that f has continuous first
partial derivatives. Since ORy/dy; € ., we can iterate this argument and show that
O f exists and is continuous for all multi-index B € Nj. We observe that 9°f(z) =
(u, (—1)18l7,0° Rp). Consequently, since 0° Ry € .7, if f were slowly increasing, then the
same would hold for all the derivatives of f. In fact, that f is slowly increasing is an easy
consequence of Theorem 1.47: There exist C' > 0 and integers £ and m such that
|f(@)] = [{u, s Rp)| < C Z |7e Repla,p-

lal<L,|Bl<m

) = (u, — Ty

But |7, R¢la,s = supycgn [y*0° Ro(y — x)| = sup,cpn [(y + 2)*0° Rp(y)| and the latter is
clearly bounded by a polynomial in z.
In order to show that w * ¢ is the function f, we must show that (u * p,¢) =

Jon F(@)0(x)dz. But,
(s, v) =(u, Rox ) = (u, | Roly —a)u(a)dz) = (u, / 7o Rp(y)(x)dx)

- [ trnRet)via)da = [ fa)uie)ds,

since u is continuous and linear and the fact that the integral [5,, 7, Rp(y)1(x)da converges
in ./, which is the desired equality. a

1.5 Characterization of operators commuting with translations

Having set down these facts of distribution theory, we shall now apply them to the study
of the basic class of linear operators that occur in Fourier analysis: the class of operators
that commute with translations.

Definition 1.58. A vector space X of measurable functions on R™ is called closed under
translations if for f € X we have 7, f € X for all y € R". Let X and Y be vector spaces of
measurable functions on R" that are closed under translations. Let also T" be an operator
from X to Y. We say that T' commutes with translations or is translation invariant if

T(ryf) =1y(Tf)
for all f € X and all y € R™.
It is automatic to see that convolution operators commute with translations. One of

the main goals of this section is to prove the converse, i.e., every bounded linear operator
that commutes with translations is of convolution type. We have the following:

Theorem 1.59. Let 1 < p,q < oo. Suppose T is a bounded linear operator from LP(R™)
into L1(R™) that commutes with translations. Then there exists a unique tempered distri-
bution u such that

Tf=uxf, Vfe..
The theorem will be a consequence of the following lemma.

Lemma 1.60. Let 1 < p < co. If f € LP(R™) has derivatives in the LP norm of all orders
<n+1, then f equals almost everywhere a continuous function g satisfying
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gOI<C D7 107,

la|<n+1

where C' depends only on the dimension n and the exponent p.

Proof. Let £ € R™. Then there exists a C}, such that
L+ A2 <A+ ]+ + D" <O D0 6
la|<n+1

Let us first suppose p = 1, we shall show f € L'. By part (v) in Proposition 1.3 and
part (i) in Theorem 1.5, we have

£ <CLA+[E2) =D N i)

Ja|<n+1
=Cp(1+[¢[*) 023" w72 (0% )(©)]
Ja|<n+1
SCM(+ )T 07 f

la|<n+1

Since (1 + |€[2)~("t1)/2 defines an integrable function on R™, it follows that f € L'(R™)
and, letting C" = C” [ (1 +[£]?)~("T1/2d¢, we get
Iflle<c™ > 1%l
|a|<n+1

Thus, by Theorem 1.19, f equals almost everywhere a continuous function g and by The-
orem 1.5,

g1 <l < (52) Ui <C X 07l

Ja|<n+1
Suppose now that p > 1. Choose ¢ € Z(R™) such that p(r) =1if |z| < 1 and p(z) =0
if x| > 2. Then, it is clear that fo € L'(R"™). Thus, f¢ equals almost everywhere a
continuous function h such that

hO)<C Y l0*(fe)lh-
la|<n+1

By Leibniz’ rule for differentiation, we have 9%(fy) = ZM_V o M,y, O* fO" p, and then

10%(fo)lh < > 7|5”f||5”@|d$

lz|<2 ptrv=a

< Y Cswp () [ 0" f(e)lde

H’+V le% |I|<2 ‘Z \

Ay / 0" f(x)ldz < AB 37 [0 f]y,

<
ul<lal 7 121S2 ul<al

where A > [|0Y¢|l0o, V| < |a|, and B depends only on p and n. Thus, we can find a

constant K such that
RO <K > [10°fl,.

Ja|<n+1
Since ¢(x) = 1 if |x| < 1, we see that f is equal almost everywhere to a continuous
function g in the sphere of radius 1 centered at 0, moreover,

9O = RO <K Y 10l

|a|<n+1
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But, by choosing ¢ appropriately, the argument clearly shows that f equals almost every-
where a continuous function on any sphere centered at 0. This proves the lemma. a

Now, we turn to the proof of the previous theorem.
Proof of Theorem 1.59. We first prove that

PTfF=Tf, Vfe S R"). (1.16)
In fact, if h = (0,--- ,hj,---,0) lies on the j-th coordinate axis, we have
(T -Tf _ Tnf)=Tf _ (™=
h; h; hi )’

since T is linear and commuting with translations. By part iii) in Proposition 1.40,
T’L;Zi,_f — —9L in .7 as |h| — 0 and also in L? norm due to the density of .7 in LP.

J O
Since T is bounded operator from LP to L9, it follows that T"(T,J:J — —% in L7 as
J J

J
|h| — 0. By induction, we get (1.16). By Lemma 1.60, T f equals almost everywhere a
continuous function gy satisfying

g <C Y 10T hlla=C Y IT@ Pl <ITIC DY 107 Flp-

[Bl<n+1 [Bl<n+1 |Bl<n+1
From the proof of Theorem 1.35, we know that the LP norm of f € .% is bounded by a
finite linear combination of L® norms of terms of the form x® f(z). Thus, there exists a
m € N such that [g7(0)| < C 3|4 is1<ns1 12797 flloo = C X aj<mipicnt |f
by Theorem 1.47, the mapping f — g;(0) is a continuous linear functional on .#, denoted
by u1. We claim that v = Ruq is the linear functional we are seeking. Indeed, if f € .,
using Theorem 1.57, we obtain

(us f)(@) =(u, 2 Rf) = (u, R(T—2 f)) = (Ru, 7o f) = (u1, 72 f)
=(T(7-21))(0) = (-2 T)(0) = T f(x).

We note that it follows from this construction that u is unique. The theorem is therefore
proved. a

Combining this result with Theorem 1.57, we obtain the fact that Tf, for f € ., is
almost everywhere equal to a C* function which, together with all its derivatives, is slowly
increasing.

Now, we give a characterization of operators commuting with translations in L*(R™).

o,5- Then,

Theorem 1.61. Let T be a bounded linear operator mapping L*(R™) to itself. Then a
necessary and sufficient condition that T commutes with translations is that there exists a
measure p in B(R™) such that Tf = ux f, for all f € L*(R™). One has then ||T|| = ||pl|.

Proof. We first prove the sufficiency. Suppose that T'f = u * f for a measure u € Z(R")
and all f € LY(R™). Since # C ., by Theorem 1.57, we have

(T f)(@) =(Tf)(x = h) = (b, Te-nRf) = (u(y), f(=y = + 1))
=, T R f) = e f = TTnf,
i.e., 7T = T'r,. On the other hand, we have [|Tf||1 = || * fll1 < ||pl/l|f|lx which implies

171l = Il
Now, we prove the necessariness. Suppose that T commutes with translations and
ITflle < [ITIfllx for all f € L*(R™). Then, by Theorem 1.59, there exists a unique
tempered distribution u such that T'f = p* f for all f € .. The remainder is to prove
e BR).
We consider the family of L! functions p. = p* W(-,e) = TW(-,&), € > 0. Then by
assumption and Lemma 1.14, we get
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[pelly < ITIWC )l = 1T

That is, the family {x.} is uniformly bounded in the L! norm. Let us consider L'(R") as
embedded in the Banach space Z(R"). Z(R") can be identified with the dual of Co(R™)
by making each v € £ corresponding to the linear functional assigning to ¢ € Cy the
value [p, ¢(x)dv(z). Thus, the unit sphere of # is compact in the weak* topology. In
particular, we can find a v € # and a null sequence {e;} such that p., — v as k — oo in
this topology. That is, for each ¢ € Cy,

lim o(x) e, (x)dx :/ p(x)dv(z). (1.17)

k—o00 R R™
We now claim that v, consider as a distribution, equals p.

Therefore, we must show that (i, ¢) = [, ¥(z)dv(z) for all ¢ € 7. Let ¢ = W(-,¢) *
1. Then, for all & € N}, we have 0%, = W (-,¢) * 0%. It follows from Theorem 1.15
that 0%, (x) converges to 0“9 (x) uniformly in x. Thus, ¢. — ¢ in . as € — 0 and this
implies that (u,¥e) — (u, ). But, since W(-,e) = RW (-, ¢),

(1:62) = u. W (2) 20) = Qs W0)0) = [l

Thus, putting ¢ = ek, letting k — 0 and applying (1.17) with ¢ = 1, we obtain the
desired equality (u fRn . Hence, p € #. This completes the proof. a

For L?, we can also give a very 51mple characterization of these operators.

Theorem 1.62. Let T be a bounded linear transformation mapping L*(R™) to itself. Then
a necessary and sufficient condition that T commutes with translation is that there exists
an m € L®(R"™) such that Tf = ux f with & = m, for all f € L*(R™). One has then
1T = llmloo-

Proof. If v € %/ and ¢ € ., we define their product, v, to be the element of .’ such
that (v, ) = (v, ) for all p € . With the product of a distribution with a testing
function so defined we first observe that whenever u € . and ¢ € ., then

F(u* @) = ap. (1.18)
To see this, we must show that (% (u * ¢),v) = (u@,) for all p € 7. It follows im-

mediately, from (1.15), part (vi) in Proposition 1.3 and the Fourier inversion formula,
that

(F (u* @), ) =(uxp,0) = (u, Rp x ) = (4, F ' (R * 1))

(i (52) e s>
(= ()

s

Thus, (1.18) is established.

Now, we prove the necessariness. Suppose that T commutes with translations and
ITfllz2 < [ITNIfllz for all f € L*(R™). Then, by Theorem 1.59, there exists a unique
tempered distribution u such that Tf = u * f for all f € .. The remainder is to prove
@ € L= (R"™).

w . —n/2

Let g = e*umz then, we have ¢y € . and ¢y = (%) wo by Theorem 1.10

with a = 1/2|w|. Thus, Ty = u * @y € L* and therefore Dy = F(ux* o) = upy € L? by

(1.18) and the Plancherel theorem. Let m(§) = (%) e Do(&) = Do(&)/po(8).
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We claim that
F(uxp)=me (1.19)
for all ¢ € .. By (1.18), it suffices to show that (4, v) = (mp, ) for all ¥ € P since
is dense in .. But, if ¢ € 2, then (/o) (&) = (M)n/2 @b(&)e‘%l'f'z € Z; thus,

2m

(0, ) =(tt, pv) = (i, Potp/ o) = (Upo, Pt/ o)

= /R B()$(€) (';“jj)"/2¢<g>e~;gzd§

_ /]R m(€)@(€)(E)dE = (mp, ).

It follows immediately that & = m: We have just shown that (4, ) = (mp, ) =
(m, o) for all p € & and ¥ € Z. Selecting ¢ such that ¢(§) = 1 for £ € supp), this
shows that (@, 1) = (m, ) for all ¢» € Z. Thus, 4 = m.

Due to

: [\ ™ ]\ ™ .
Imélle = 17 wxolla = (52)  huxole < (51)  Tllell = 171101
T T
for all p € ., it follows that
| = i) e > 0

for all p € .. This implies that ||T||?>—|m|?> > 0 for almost all z € R"™. Hence, m € L>(R")
and [[m]loo < 7).

Finally, we can show the sufficiency easily. If & = m € L>(R"), the Plancherel theorem
and (1.18) immediately imply that

|w| n/2 R
ITfll2 = llux fll2 = <27T [mflle < [lmllooll fll2
which yields | T < ||m||oo-
Thus, if m =4 € L™, then ||T|| = [|m||co- O

For further results, one can see [SW71, p.30] and [Gra04, p.137-140|.






Chapter 2
Interpolation of Operators

2.1 Riesz-Thorin’s and Stein’s interpolation theorems

We first present a notion that is central to complex analysis, that is, the holomorphic
or analytic function.

Let {2 be an open set in C and f a complex-valued function on 2. The function f is
holomorphic at the point zg € {2 if the quotient

f(z0 + h})L — f(20) 2.1)

converges to a limit when h — 0. Here h € C and h # 0 with zo + h € §2, so that the
quotient is well defined. The limit of the quotient, when it exists, is denoted by f(zo),
and is called the derivative of f at zg:

f(z0 +h) — f(20)
Y .

It should be emphasized that in the above limit, & is a complex number that may approach
0 from any directions.

The function f is said to be holomorphic on (2 if f is holomorphic at every point of 2.
If C is a closed subset of C, we say that f is holomorphic on C if f is holomorphic in some
open set containing C. Finally, if f is holomorphic in all of C we say that f is entire.

Every holomorphic function is analytic, in the sense that it has a power series expansion
near every point, and for this reason we also use the term analytic as a synonym for
holomorphic. For more details, one can see [SS03, pp.8-10].

e = i

Ezample 2.1. The function f(z) = z is holomorphic on any open set in C, and f'(z) = 1.

Ezample 2.2. The function 1/z is holomorphic on any open set in C that does not contain
the origin, and f’(z) = —1/22.
Ezample 2.3. The function f(z) = Z is not holomorphic. Indeed, we have

f(zo+h) — f(20) _ﬁ

h h
which has no limit as h — 0, as one can see by first taking h real and then h purely

imaginary.

The next result pertains to the size of a holomorphic function.

Theorem 2.4 (Maximum modulus principle). Suppose that {2 is a region with compact
closure 2. If f is holomorphic on 2 and continuous on 2, then

sup [f(2)] < sup |f(2)[-
zE€Q2 zE\ N2

27
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Proof. See [SS03, p.92]. O

For convenience, let S = {z € C: 0 < Rz < 1} be the closed strip, S° ={z € C:0 <
Rz < 1} be the open strip, and 95 = {z € C: Rz € {0,1}}.

Theorem 2.5 (Phragmen-Lindelof theorem/Maximum principle). Assume that f(z) is
analytic on S° and bounded and continuous on S. Then

sup | (2)] < max (sup (@b, sup (1L + it>|) .
z€S teR teR

Proof. Assume that f(z) — 0 as |3%z| — oo. Consider the mapping h : S — C defined by
e
h(z) = gy 2 €s. (2.2)
Then h is a bijective mapping from S onto U = {z € C: |z| < 1} \ {£1}, that is analytic
in S° and maps 95 onto {|z| = 1} \ {£1}. Therefore, g(z) := f(h~1(2)) is bounded and
continuous on U and analytic in the interior U°. Moreover, because of lim|g |0 f(2) = 0,
lim,_, 11 g(2) = 0 and we can extend ¢ to a continuous function on {z € C : |z| < 1}.
Hence, by the maximum modulus principle (Theorem 2.4), we have
96611 € ()] = mase (supl £ sup 7 (1-+ ) )
|w|=1 tER teR
which implies the statement in this case.
Next, if f is a general function as in the assumption, then we consider

f5,20 (Z) - 66(2720)2]0(2), o> 0, 20 € S°.

Since |66(Z—20)2‘ < @ =) with » — zo =xz+1iy, -1 <z <1 and y € R, we have
f5.20(2) = 0 as |Sz| — oo. Therefore

[F(20)] =1 fs.20(20)] < max (sup Fsims (i), sp |5 (1 + z‘t>|)
teR teR

<e’ max (sup |f@it)], sup |f(1+ zt)|> .
teR teR
Passing to the limit § — 0, we obtain the desired result since zy € S is arbitrary. a

As a corollary we obtain the following three lines theorem, which is the basis for the
proof of the Riesz-Thorin interpolation theorem and the complex interpolation method.

Theorem 2.6 (Hadamard three lines theorem). Assume that f(z) is analytic on S° and

bounded and continuous on S. Then
0

1—60
sup |F(0 + i) < (suplf(it)l> (sup sa +z’t>|) ,
teR teER

teR
for every 6 € [0,1].

Proof. Denote

Ag :=sup|f(it)], Ai:=sup|f(1l+it)|.
teR teR

Let A € R and define
F(z) = e f(2).
Then by Theorem 2.5, it follows that
|F\(2)] < max(Ag, e Ay).
Hence,
|f(0 +it)] < e *? max(Ag, e A,)
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for all ¢ € R. Choosing A = In ‘2—(1’ such that e*A4; = Ay, we complete the proof. O

In order to state the Riesz-Thorin theorem in a general version, we will state and prove
it in measurable spaces instead of R™ only.

Let (X, 1) be a measure space, u always being a positive measure. We adopt the usual
convention that two functions are considered equal if they agree except on a set of u-
measure zero. Then we denote by LP(X,du) (or simply LP(du), LP(X) or even LP) the
Lebesgue-space of (all equivalence classes of) scalar-valued p-measurable functions f on

X, such that
1/p
= Pd
11 = ([ 1roran)

is finite. Here we have 1 < p < oco. In the limiting case, p = oo, LP consists of all pu-
measurable and bounded functions. Then we write

[flloo = sup [f(x)]-
X

In this section, scalars are supposed to be complex numbers.
Let T be a linear mapping from LP = LP(X, du) to L4(Y, dv). This means that T(af +
Bg) = oT(f) + BT(g). We shall write
T:LP — L9
if in addition T is bounded, i.e., if
A= sup 171
r#0 |1 fllp

is finite. The number A is called the norm of the mapping 7.
It will also be necessary to treat operators 1" defined on several LP spaces simultaneously.

Definition 2.7. We define LP* 4+ LP? to be the space of all functions f, such that f =
f1+ f2, with f; € LP* and fo € LP2.

Suppose now p; < p2. Then we observe that
LP C LPr 4+ LP2 Vp € [p1,p2].
In fact, let f € L? and let v be a fixed positive constant. Set

@), @) >
fl(x)‘{o, F@)] <,
and fo(x) = /() — f1(x). Then
/ (@) Prde = / @) P fa ()P Pdz < AP / \f (@) Pde,

since p; — p < 0. Similarly,

[15@Prde= [1n@PIf@prde < [ 5@,
so f1 € LP* and fo € LP2, with f = f1 + f5.
Now, we have the following well-known theorem.

Theorem 2.8 (The Riesz-Thorin interpolation theorem). Let T' be a linear operator with
domain (LP° + LP')(X, dp), po,p1,qo, q1 € [1,00]. Assume that

1Tl Lo (v,av) < Aol flloeo (x,apy, i [ € LP(X, du),
and

ITfll Lo (viav) < ALl flle (x,apy, o f € LPH(X, du),
for some po # p1 and qo # q1. Suppose that for a certain 0 < 0 < 1
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1 1-6 0 1 1-6 0
- = +—, -= +—. (2.3)
p Po P q q0 q1

Then
ITfllLacv,any < Aol fllLe(x,any, i f € LP(X,dp),
with
Ag < ATOAY. (2.4)

Remark 2.9. 1) (2.4) means that Ap is logarithmically convex, éﬂ
i.e., In Ay is convex.

2) The geometrical meaning of (2.3) is that the points
(1/p,1/q) are the points on the line segment between

1 1
(Ev %)

(1/po,1/q0) and (1/p1,1/q1). (5 g)
3) The original proof of this theorem, published in 1926 by
Marcel Riesz, was a long and difficult calculation. Riesz’ s- (101

tudent G. Olof Thorin subsequently discovered a far more
elegant proof and published it in 1939, which contains the ©
idea behind the complex interpolation method.

==Y

Proof. Denote

mgwaéh@mwmww

and 1/¢’ =1 —1/q. Then we have, by Holder inequality,
[hllq = sup [(h,g)|, and Ag = sup  [{T'f,g)l
lgllyr=1 I £1lo=llgllqr=1

Noticing that C.(X) is dense in LP(X, u) for 1 < p < oo, we can assume that f and
g are bounded with compact supports since p, ¢’ < oo.1 Thus, we have |f(z)] < M < o
for all x € X, and supp f = {z € X : f(z) # 0} is compact, i.e., u(supp f) < oo which
implies [ |f(z)[*du(z) = fsuppf |f(z)|¢dp(z) < M*u(supp f) < oo for any £ > 0. So g
does.

For 0 < Rz < 1, we put

L_l—z_{_i 1 _1—z+i
piz)  po i d(z) 4 4
and
=n(z,2) = |f(z)|7 1 (@) T ;
_ 5 9W)
C(2) =C(y,2) = lg(y)| 7t |g ik yey.

Now, we prove 1(z), n'(z) € LPi for j = 0, 1. Indeed, we have

) = [17@)177 | = |I£@) P50 = || R DGR
@) = | ()
Thus,
) = [ e P dute) = [ 7@ due) <
We have

1—1/q¢

Tai/q 2 1ifd = oo

L Otherwise, it will be pg = p1 = oo if p = o0, or § =
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o o 2] LD i = (£ - LY ot L
7@ =i || Tl =» DIt B (o).
On one hand, we have limfe,) o, [f(2)|* In|f(z)| = O for any a > 0, that is, Ve >
0, 36 > 0 s.t. ||f(z)|*In]|f(x)|]| < e if |f(z)] < §. On the other hand, if |f(z)| > §,
then we have ||f(z)|*In|f(z)|| < M*|ln|f(z)|] < M*max(|InM|,|Ind]) < oo. Thus,
[1f(@)[*In[f(2)]] < C. Hence,

|—p‘—“|f

(@) [l | f ()]

= O|f(x)|77 ,

<C|lif@)ta e

which yields
oG < € [ 17(a)| T du(a) < o0

Therefore, 1(z), 1/(z) € LP7 for j = 0,1. So ((2), ¢'(z) € L% for j = 0,1 in the same way.
It follows that Tn(z) € L%, and (T'n)'(z) € LY with 0 < Rz < 1, for j = 0, 1. This implies
the existence of

F(z) = (Tn(2),{(2)), 0< Rz <1

Since
‘“; iz) :dilz@n(z),g(z» = d% /Y (Tn)(y, 2)C(y, 2)dv(y)

- /Y ()2, 2)C(y, 2)do(y) + /Y (T0) (4, 2)C (3, 2)dv ()
—(Tn)(2), C() + (Tn(2), ()} < oo,

F(z) is analytic on the open strip 0 < Rz < 1. Moreover it is easy to see that F'(z) is
bounded and continuous on the closed strip 0 < Rz < 1
Next, we note that for j = 0,1
G+ it)llp, = 1/l =1.
Similarly, we also have [[((j + it)||q; = 1 for j = 0,1. Thus, for j = 0,1
[F(G + i) =[(Tn(G +it), ¢ +it)| < [T +it)llg, €+ it)llg;

SA;lIn(G +it)llp,; ICG + it)llq; = Ay
Using Hadamard three line theorem, reproduced as Theorem 2.6, we get the conclusion

|F(0+it)| < AFAY, vteR.

Taking t = 0, we have |F(0)] < A~ AY. We also note that 5(d) = f and ¢(f) = g, thus
F(0) = (Tf,g). That is, [(T'f, g)| < Ay~? A{. Therefore, Ay < A)~%AY. O

Now, we shall give two rather simple applications of the Riesz-Thorin interpolation

theorem.

Theorem 2.10 (Hausdorff-Young inequality). Let 1 < p <2 and 1/p+ 1/p’ = 1. Then
the Fourier transform defined as in (1.1) satisfies

wl\ ™
1770 < (52) 15l

Proof. It follows by interpolation between the L'-L result |.% f||o < || f|l1 (cf. Theorem
—n/2
1.5) and Plancherel’s theorem ||.% f||2 = (‘2“—‘) I fll2 (cf. Theorem 1.26). O

T
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Theorem 2.11 (Young’s inequality for convolutions). If f € LP(R™) and g € L(R"™),
1<p,qr<oo and%:%—i—%—l, then

1 gllr < [1fllsllgllq-

Proof. We fix f € LP, p € [1,00] and then will apply the Riesz-Thorin interpolation
theorem to the mapping g — f * g. Our endpoints are Holder’s inequality which gives

[fxg(@)| < £ lIpllglly
and thus g — f*g maps L?’ (R™) to L>°(R"™) and the simpler version of Young’s inequality
(proved by Minkowski’s inequality) which tells us that if g € L!, then

1 gllp < 1F1pllgllr-

Thus g — f * g also maps L' to LP. Thus, this map also takes L? to L" where

1 1-6 0 1 1-6 0

="+ 2 and - = —~ + =,

q 1 P r p 00
Eliminating 6, we have % = % + % -1

The condition ¢ > 1 is equivalent with 6 > 0 and r > 1 is equivalent with the condition

0 < 1. Thus, we obtain the stated inequality for precisely the exponents p, ¢ and r in the

hypothesis. a

Remark 2.12. The sharp form of Young’s inequality for convolutions can be found in
[Bec75, Theorem 3], we just state it as follows. Under the assumption of Theorem 2.11,
we have

I1F * gllr < (ApAqgAr )" (| fllpll9lla,
where A,, = (mY™/mY/™")1/2 for m € (1,00), A; = Aso = 1 and primes always denote
dual exponents, 1/m + 1/m’ = 1.

The Riesz-Thorin interpolation theorem can be extended to the case where the interpo-
lated operators allowed to vary. In particular, if a family of operators depends analytically
on a parameter z, then the proof of this theorem can be adapted to work in this setting.

We now describe the setup for this theorem. Suppose that for every z in the closed strip
S there is an associated linear operator 7, defined on the space of simple functions on X
and taking values in the space of measurable functions on Y such that

[ 125l < o0 (2.5)
Y

whenever f and g are simple functions on X and Y, respectively. The family {7}, is said
to be analytic if the function

z%/yTz(f)gdu (2.6)

is analytic in the open strip S° and continuous on its closure S. Finally, the analytic family
is of admissible growth if there is a constant 0 < @ < 7 and a constant Cy 4 such that

/Y T.(f)gdv

for all z € S. The extension of the Riesz-Thorin interpolation theorem is now stated.

e~ < Cfg <00 (2.7)

Theorem 2.13 (Stein interpolation theorem). Let T, be an analytic family of linear
operators of admissible growth. Let 1 < pg,p1,qo,q1 < 0o and suppose that My and M,
are real-valued functions such that
sup e In M (1) < oo (2.8)
teR
for 7=0,1 and some 0 < b < 7. Let 0 < 0 < 1 satisfy
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1 1-6 ¢ 1 1-6 4

- +—, and -= +—. (2.9)
p Po b1 q q0 a1
Suppose that
T3t (g0 < Mo fllpor 1 Tr4ie (F)llqr < Ma()]f]p, (2.10)
for all simple functions f on X. Then
1To(f)llg < MO)||fllp, when 0 <8 <1 (2.11)

for all simple functions f on X, where

M(e)exp{sinwﬂ/R[ nMo(t) () }dt}'

2 coshnt —cosmf  coshnt + cosmd
By density, Ty has a unique extension as a bounded operator from LP(X,u) into L1(Y,v)
for all p and q as in (2.9).

The proof of the Stein interpolation theorem can be obtained from that of the Riesz-
Thorin theorem simply “by adding a single letter of the alphabet”. Indeed, the way the
Riesz-Thorin theorem is proven is to study an expression of the form

F(z) = (Tn(z2),¢(2)),

the Stein interpolation theorem proceeds by instead studying the expression

F(z) = (Tn(z),((2)).
One can then repeat the proof of the Riesz-Thorin theorem more or less verbatim to
obtain the Stein interpolation theorem. Of course, the explicit expression of M (6) need an
extension of the three lines theorem. For the detailed proof, one can see [SW71, p. 205-209]
or [Gra04, p.38-42].

2.2 The distribution function and weak LP spaces

We shall now be interested in giving a concise expression for the relative size of a
function. Thus we give the following concept.

Definition 2.14. Let f(z) be a measurable function on R™. Then the function f, :
[0,00) — [0, 00] defined by

fule) =m({z: [f(z)] > a})

is called to be the distribution function of f.

The distribution function f, provides information about the size of f but not about the
behavior of f itself near any given point. For instance, a function on Rn and each of its
translates have the same distribution function.

In particular, the decrease of f.(«) as « grows describes the relative largeness of the
function; this is the main concern locally. The increase of f,(«) as « tends to zero describes
the relative smallness of the function “at infinity”; this is its importance globally, and is of
no interest if, for example, the function is supported on a bounded set.

Now, we give some properties of distribution functions.

Proposition 2.15. For the distribution function, we have following fundamental proper-
ties.
(1) f«(@) is decreasing and continuous on the right.

(i) I [f(2)] < lg(@)]; then fo(a) < go(e).



34 2 Interpolation of Operators

(iil) If | f(z)| < iminfr_ oo |fx(z)] for a.e. x, then fi(a) <liminfy_ o (fi)«(@) for any
a > 0.

() I £(@)] < lg(@)] + [h(@)], then fu(as +az) < gu(ar) + ha(as) for any ar,az > 0.

(v) (f9)«(raz) < fulan) + g (az2) for any ay,as > 0.

(vi) For any p € (0,00) and a > 0, it holds f.(a) < « pf{x () >0} |f(z)Pdx.

(V ) If fe LP, p e [l,00), then limy 400 P fi(a) = 0 = limg 0 & fo(@).

(vii) If [;° a7 fu(a)do < 0o, p € [1,00), then oP f (o) = 0 as o = +oo and a — 0,
respectively.

Proof. For simplicity, denote E¢(a) = {x : | f(z)| > a} for a > 0.

(1) Let {as} is a decreasing positive sequence which tends to «, then we have E;(a) =
U E (o). Since {Ey (o)} is a increasing sequence of sets, it follows limy_ oo fi (o) =
f«(c). This implies the continuity of f.(«) on the right.

(iii) Let E =A{z : |f(x)| > o} and Ey = {z : |fu(z)] > a}, k € N. By the assumption
and the definition of inferior limit, i.e.,

i o
|f(z)] < liminf |fi(z) %ngﬂfk(m)l’

for € E, there exists an integer M such that for all k¥ > M, |fx(z)] > a. Thus, F C
Usi=1 Nizas Bk, and for any £ > 1,

m <ID£ Ek) < mf m(FEy) < sup llcgf m(Eg) = hkm inf m(Ey).
Since {Nre s Ex}37—1 is an increasing sequence of sets, we obtain

fi(a) =m(E) <m ( U ﬂ Ek> = hm m ( ﬂ Ek> < hkrggolf(fk)*(a)

M=1k=M
(v) Noticing that {z : |f(z)g(x)| > anaz} C {z : |f(x)] > ar} U{x : |g(x)] > as}, we
have the desired result.
vi) fl@) = m({e @] > ah) = Jupmpa @ < Jpiwisa D
=" Jiapw)>ay (@) P
(vii) From (vi), it follows o f,(« f{w F@)say @Az < Jan |f(2)[Pdz. Thus,
m({z: |f(z)| > a}) > 0as a = +0 and

lim |f(z)|Pdz = 0.
A+ Jia f(a)|>a}

Hence, o® f,(a) — 0 as o = 400 since o® f,(a) = 0.
For any 0 < o < 3, we have, by noticing that 1 < p < oo, that

lim a?f. (o) = lim a?(f.(a) = £.(8)) = lim a”m({z : a < |f(@)| < 5}

< / \f(@)Pda.
{z:| f(x)|<B}

By the arbitrariness of 3, it follows a” f.(a) — 0 as a — 0.
(viii) Since fs/Q(t”)’dt =aP — (a/2)P and f.(a) < fi(t) for t < a, we have

e}

fel@)aP (1 —=27P) < p/ tP=Lf, (t)dt

a/2
which implies the desired result.
For other ones, they are easy to verify. a

From this proposition, we can prove the following equivalent norm of LP spaces.
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Theorem 2.16 (The equivalent norm of LP). Let f(z) be a measurable function in R™,
then

D) Il = (0 fy7 0 L fu(@)da)?, if1<p < o,

i) [[fllec = inf {a: fi(a) = 0}.
Proof. In order to prove i), we first prove the following conclusion: If f(z) is finite and
f«(@) < oo for any o > 0, then

/n |f(2)|Pde = — /OOO aPdfy (). (2.12)

Indeed, the r.h.s. of the equality is well-defined from the conditions. For the integral in the
Lh.s., we can split it into Lebesgue integral summation. Let 0 < e <2e < --- < ke < -+
and

E {xER”(]71)5<|f(x)|<]5}, j:1’27"’7
then, m(Ej) = f.((j — 1)e )*f*(je) and

| <>|pdxfhmzyspm :hmzﬁ £Ge) = £o((G — Do)

- /0 T ardr. (o).

Now we return to prove i). If the values of both sides are infinite, then it is clearly true.
If one of the integral is finite, then it is clear that f.(a) < 400 and f(x) is finite almost
everywhere. Thus (2.12) is valid.

If either f € LP(R™) or fooo aP~ . (a)da < oo for 1 < p < oo , then we always have
a?f(a) = 0 as @ — +oo and a — 0 from the property (vii) and (viii) in Proposition
2.15.

Therefore, integrating by part, we have

B /ooo aPdf.(a) =p /Ooo o f.(a)da — o £ ()| § = p /OOO a1 £, (a)da

Thus, i) is true.
For ii), we have

inf{a: fi(a) =0} =inf {a: m({x: |f(z)| > a}) =0}
=inf{a:|f(z)| < @, a.e.} = esssup,cpn|f(2)] = || f]|z-
We complete the proofs. ]

Notice that the same argument yields the more general fact that for any increasing
continuously differentiable function ¢ on [0, 00) with ¢(0) = 0 we have

[ elihin= [ ¢@)s.(@ya. (2.13)
X 0

Using the distribution function f., we now introduce the weak LP-spaces denoted by
L.
Definition 2.17. The space L, 1 < p < oo, consists of all f such that

» =supafi/’(a) < cc.
o
In the limiting case p = oo, we put L = L.

By the part (iv) in Proposition 2.15 and the triangle inequality of L? norms, we have

I +gllee < 2YP(11Fl e ).

Thus, one can verify that LY is a quasi-normed vector space. The weak L spaces are larger
than the usual LP spaces. We have the following:
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Theorem 2.18. For any 1 < p < oo, and any f € LP, we have || f|r < || fllp, hence
Lr c If.

Proof. From the part (vi) in Proposition 2.15, we have

1/p
af?(a) < ( / If(m)l”d:c>
{z:|f(z)|>a}

which yields the desired result. a

The inclusion LP C L% is strict for 1 < p < oc. For example, let h(z) = |z|~"/7.
Obviously, h is not in LP(R™) but A is in LQ (R™) and we may check easily that

| e =sup ahi/P (@) = sup a(m({z : [x| /7 > a}))/P
=supa(m({z : |z| < a ?/"INYP = sup a(a PV, )P

:an/p7

where V,, = 7"/2/I'(1 +n/2) is the volume of the unit ball in R” and I'-function I'(z) =
Jo = te7tdt for Rz > 0.

It is not immediate from their definition that the weak LP spaces are complete with
respect to the quasi-norm || - [|z». For the completeness, we will state it later as a special
case of Lorentz spaces.

2.3 The decreasing rearrangement and Lorentz spaces

The spaces L% are special cases of the more general Lorentz spaces LP'9. In their defi-
nition, we use yet another concept, i.e., the decreasing rearrangement of functions.

Definition 2.19. If f is a measurable function on R", the decreasing rearrangement of f
is the function f* : [0, 00) — [0, 00] defined by
[r@) =inf{a>0: fi(a) <t},
where we use the convention that inf @ = oc.
Now, we first give some examples of distribution function and decreasing rearrange-

ment. The first example establish some important relations between a simple function, its
distribution function and decreasing rearrangement.

Ezample 2.20 (Decreasing rearrangement of a simple function). Let f be a simple function
of the following form

k
T) = Z%‘XA]- ()

where a1 > ag > --- > a, >0, 4; = {x € R: f(z) = a;} and x4 is the characteristic
function of the set A (see Figure (a)). Then

k
fela) =m({z : |f(z)| > a}) = m({z : Z%XA )>a}) = bixn, (@),
j=1
where b; = 25:1 m(4;), Bj = [aj+1,a4) for j = 1,2,--- ,k and ag+1 = 0 which shows

that the distribution function of a simple function is a simple function (see Figure (b)).
We can also find the decreasing rearrangement
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k k
F(1) = inffa >0 fu(0) <t} = inf{a > 0: 3 byxs, (@) < th = 3 a5, 1) (1)
j=1

j=1
which is also a simple function (see Figure (c)).

f(z) fe(a)f fr(@)
aif ™ ai [—]
(| |
asf (| ] a2 h
asf M [ | bs as |
I A
I T ) i — al 1 11 h
N T Y
IR IE I T A J—| L
| i | | s L A ~ | L
As Ay, AL As Ay z as a4 G3a2 Q1 o b1 bo bs babs t
(a) (b) (c)

Ezample 2.21. Let f : [0,00) — [0, 00) be
Cfl1-(z-1)? 0<z<2,
flw) = {0, x> 2.
It is clear that f.(a) =0 for a > 1 since |f(z)| < 1. For a € [0, 1], we have
fel@) =m({z € [0,00) : 1 — (z —1)* > a})
=m({z €[0,00):1-Vl-a<z<l+Vl-a})=2V1l—-a.
That is,

2WIi—a, 0<a<l,
felo) = {0, a>1.

The decreasing rearrangement f*(¢) = 0 for ¢ > 2 since f,(a) < 2 for any o > 0. For
t < 2, we have

f @) =inf{a>0:2v1 - a <t}
=infla>0:a>1-t*/4} =1—t*/4.
Thus,
e [1—1%/4, 0<t<2,

7= {O, t> 2.
fA; f*A; f*A;
2“ 2_ 2__
1 1 1-\

1 2 1 5 a 1 2t

(a) (b) (c)
Observe that the integral over f, f. and f* are all the same, i.e.,

/Ooof(x)dxz/j[l—(x—l)Q]dx:/12mafa:/02(1_t2/4)dt:4/3.

0
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Ezample 2.22. We define an extended function f : [0, 00) — [0, 0] as

0, =0,
ln(ﬁ)7 0<z<l,

f(z) =< oo, 1<z<2,
In(15), 2<z<3,
0, x> 3.

Even if f is infinite over some interval the distribution function and the decreasing rear-
rangement are still defined and can be calculated, for any o > 0

1
fola) =m({x €[1,2]: c0o > a}U{x € (0,1): ln(1 — m) > alt
1
U 2,3):1
o€ (2.3) :In(—) > a))
=l+m((1—e 1) +m((2,e”*+2))
=1+2e 9,
and
o0, 0<t <1,
) =4 In(:%), 1<t<3,
0, t>3.
1 % 2
i 4 +t
-+ 3 3t
ot 2 ot
ni 1 11
+ : —> 1 2 3 a 1 2 3t

(a) (b) (c)

Ezample 2.23. Consider the function f(x) = z for all z € [0,00). Then f.(a) = €
[0,00) : © > a}) = oo for all @ > 0, which implies that f*(¢) = inf{a > 0: 00 <t} = 0
forall t > 0.

Ezample 2.24. Consider f(z) = {7 for x > 0. It is

clear that f.(a) = 0 for a > 1 since |f(x)| < 1. For

a € [0,1), we have
f«(a) =m({z € [0,00) : Hix > a}) £
=m({z € [0,00) : & > %}) = !
That is, !
o ={oe 0Seh | e

Thus, f*(t) = inf{a > 0: f.(a) <t} =1.

Proposition 2.25. The decreasing rearrangement f* of the measurable function f on R™
has the following properties:
(i) f*(t) is a non-negative and non-increasing function on [0,00).
ii) f*(t) is right continuous on [0,00).
ii) (kf)* = |k|f* for k e C.
iv) |f] < |g| a.e. implies that f* < g*.

=R

(
(i
(



2.3 The decreasing rearrangement and Lorentz spaces 39

v) (f+9)*(t1 +t2) < f*(t1) + g (t2)-
vi) (fg)*(t1 +t2) < f*(t1)g*(t2).

vil) | f] < iminfr_,o |fx| a.e. implies that f* < liminf,_, f}.

viii) |fi| T |f] a.e. implies that f; T f*.
ix) f*(f«(@)) < a whenever fi(a) < oo.

(

(

(vi

iy

x) fo(f* ) =m({[f| > O} <t <m({[f] = f*O)}) if f*(t) < o0
(xi) f*(t) > « if and only if f.(a) > t.

(xii) f* is equimeasurable with f, that is, (f*)«(a) = fi(@) for any o = 0.
(xiil) ([f[P)*(t) = (f*(t))? for 1 <p < oc.

(xiv) [[f*[l, = ||f|\p for 1 <p <oo.

EXV) [ flloo = £*(0).

xVi) SUD; £ f*(£) = SuPasg a(fi ()" for 0 < 5 < oo,

Proof. (v) Assume that f*(t1) + g*(t2) < 0o, otherwise, there is nothing to prove. Then
for a; = f*(t1) and as = g*(t2), by (x), we have f.(a1) < t1 and g.(a2) < t2. From (iv)
in Proposition 2.15, it holds
(f + 9)x(a1 + az) < fular) + g«(a2) < t1 + 2o,
Using the definition of the decreasing rearrangement, we have
(f+9)"(t1 +t2) =inf{a: (f + g)(a) <t1 +t2} <ou +as = f7(t1) + g (t2).

(vi) Similar to (v), by (v) in Proposition 2.15, it holds that (fg).(c1az) < fi(a1) +

g«(a2) <ty + ta. Then, we have
(f9)"(t1 +t2) = inf{a: (fg)u(@) St +t2} < aran = f7(t1)g" (t2).

(xi) If fi(a) > t, then by the decreasing of f., we have a < inf{8 : f.(B8) <t} = f*(¥).
Conversely, if f*(t) > a, i.e., inf{8 : f.(8) < t} > a, we get f.(a) > ¢ by the decreasing
of f, again.

(xii) By the definition and (xi), we have

(f)e(@) =m{{t 2 0: f*(t) > a}) =m{t = 0: fu(a) > t}) = fu().
(xiii) For a € [0, 00), we have
(LF17)* () =inf{a = 0 : m({z : |f(2)]" > a}) <t}
=inf{o? > 0: m({z : [f(z)| > o}) <t} = (" (2))",
where o = o!/P.
(xiv) From Theorem 2.16, we have

o0 o0 o]
1@l = [ 1 @Pde=p [ )ada =p [T 0 (@)da = £
0 0 0
We remain the proofs of others to interested readers. a
Having disposed of the basic properties of the decreasing rearrangement of functions,

we proceed with the definition of the Lorentz spaces.

Definition 2.26. Given f a measurable function on R” and 1 < p, ¢ < 00, define

[l = ([ (= f<>)q‘ff) , g<oo,

suptv f*(1), q=00
t>0

The set of all f with || f||zr.« < oo is denoted by LP*?(R™) and is called the Lorentz space
with indices p and gq.
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Asin L? and in weak LP, two functions in LP¢ will be considered equal if they are equal
almost everywhere. Observe that the previous definition implies that LP>*° = L% in view of
(xvi) in Proposition 2.25 and LP? = LP in view of (xiv) in Proposition 2.25 for 1 < p < oc.
By (i) and (xv) in Proposition 2.25, we have || f| <. = sup,~q f*(t) = f*(0) = || fll
which implies that L°>° = L*>° = L°. Thus, we have
Theorem 2.27. Let 1 < p < oo. Then it holds, with equality of norms, that

PP =pLp [P =[P
Remark 2.28. For the Lorentz space LP'?, the case when p = oo and 1 < ¢ < oo is not
of any interest. The reason is that ||f||L~.« < oo implies that f = 0 a.e. on R". In fact,
assume that L°? is a non-trivial space, there exists a nonzero function f € L% on a

nonzero measurable set, that is, there exists a constant ¢ > 0 and a set E of positive
measure such that |f(z)| > ¢ for all x € E. Then, by (iv) in Proposition 2.25, we have

> d s d m(E) g
lten = [ GO0 [Crwrorg s [ af -

since (fxg)*(t) = 0 for ¢ > m(F). Hence, we have a contradiction. Thus, f = 0 a.e. on
R™.

The next result shows that for any fixed p, the Lorentz spaces LP'? increase as the
exponent ¢ increases.

Theorem 2.29. Let 1 < p< oo and 1 < q <1 < o0o. Then, there exists some constant
Cp.qr such that

[fllzer < Cp,q,erHL"’% (2.14)
where Cp 4. = (q/p)*/97Y/". In other words, LP? C LP.

Proof. We may assume p < oo since the case p = oo is trivial. Since f* is non-creasing,

we have
t 1/q t 1/q
Up sy — | 4 q/pld} * :{q 1/p px qu}
crpi =2 [ o= {2 [

p p s

t 1/q 1/q
q 1p px ()12 %S q
A2 [umrers < (2) 1.

Hence, taking the supremum over all ¢ > 0, we obtain

1/q
1l < (;) 1l (2.15)

This establishes (2.14) in the case r = co. Finally, when r < 0o, we have by (2.15)

e} 1r
e ={ [Tt o]

<sup[t/P £ ()] /T {/Oo[tl/pf*(t)]qcit } a
0

>0
=
A2 0 < (2) 7 1L
This completes the proof. O
In general, LP? is a quasi-normed space, since the functional || - ||pe.« satisfies the

conditions of normed spaces except the triangle inequality. In fact, by (v) in Proposition
2.25, it holds

1 + gllzea < 2YPHS( oo + llgl|zoa). (2.16)
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However, is this space complete with respect to its quasi-norm? The next theorem answers
this question.

Theorem 2.30. Let 1 < p,q < co. Then the spaces LP1(R™) are complete with respect to
their quasi-norms and they are therefore quasi-Banach spaces.

Proof. See [Gra04, p. 50, Theorem 1.4.11]. O
For the duals of Lorentz spaces, we have
Theorem 2.31. Let 1 <p,q<oo, 1/p+1/p'=1and 1/qg+1/¢ = 1. Then we have
(L) = (L) =%, (L) = {0}, (Lra) = L7

Proof. See [Gra04, p. 52-55, Theorem 1.4.17|. O

For more results, one can see [Gra04, Kri02].

2.4 Marcinkiewicz’ interpolation theorem

We first introduce the definition of quasi-linear operators.

Definition 2.32. An operator 7' mapping functions on a measure space into functions on
another measure space is called quasi-linear if T'(f + g) is defined whenever T'f and Tg
are defined and if |[T(A\f)(z)| < &|A||Tf(x)] and |T(f 4+ g)(x)| < K(|Tf(z)| + |Tg(x)|) for
a.e. x, where k and K is a positive constant independent of f and g.

The idea we have used, in Definition 2.7, of splitting f into two parts according to
their respective size, is the main idea of the proof of the theorem that follows. There, we
will also use two easily proved inequalities, which are well-known results of Hardy’s (see
[HLP8S8, p. 245-246]):

Lemma 2.33 (Hardy inequalities). If ¢ > 1, r > 0 and g is a measurable, non-negative
function on (0,00), then
1/q

</O°° (/otg(y)dy)qtrcf> S% (/Ooo(yg(y))qyrdjy/q, (2.17)
(/OOO (/toog(y)dy)qt"cit)l/q <g (/Ooc(yg(y))qy"csj>l/q. (2.18)

Proof. To prove (2.17), we use Jensen’s inequality? with the convex function ¢(z) = z¢

on (0,00). Then
¢ q
([
0

t q t
1
g(y dy) = 7/ g(y)y* /1y dy
</0 ) (fg y/a=1dy Jo )
t qg—1 .t q
<</ yr/qldy) / (g(y)yl”/q) y"/1 " dy
0 0

2 Jensen’s inequality: If f is any real-valued measurable function on a set £2 and ¢ is convex over the

q

range of f, then
o (4 | 10s@a) < & [ etanges,

where g(z) > 0 satisfies G = [, g(x)dz > 0.
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@\ [ rfa1-r
=(*t”q) /(yg(y))qy/q =rdy.
r 0

By integrating both sides over (0, 00) and use the Fubini theorem, we get that

[ ([ atwar) e=rar< (2 [T ([ sty ) a
= (%)H /OOO (yg(y) 'y a1 " (/:O t‘l_T/th) dy

= (g)q /ODO (yg(y)y~ " dy,

r
which yields (2.17) immediately.

To prove (2.18), we denote f(x) = g(1/x)/x2. Then by taking t = 1/s and y = 1/,
and then applying (2.17) and changing variable again by z = 1/y, we obtain

([ (o))" ([ () )
(L (f oo v "= (7 ([ ) )
([ (x))qx_r_ld‘”y/q - (/ooo(g(l/x)/x)qx_r_ldx>1/q

=g (/Ooo(g(y)y)qy’“‘ldy>l/q~

Thus, we complete the proofs. a

N
=R

Now, we give the Marcinkiewicz? interpolation theorem?® and its proof due to Hunt and
Weiss in [HW64].
Theorem 2.34 (Marcinkiewicz interpolation theorem). Assume that 1 < p; < ¢ <
00, po < p1, Qo # 1 and T is a quasi-linear mapping, defined on LP° + LP1  which is
simultaneously of weak types (po,qo) and (p1,q1), i.€.,
ITf|ra0ee < Aol fllpes  NTfllLares < Al fllp, - (2.19)
If0<60<1, and

1 1-6 6 1 _1-6 6
= =—+

b b

p Po p1 q qo0 Q1
then T is of type (p,q), namely

ITfllg < Alfllp, f € LP.
Here A = A(A;, pi,q,0), but it does not otherwise depend on either T or f.

Proof. Let o be the slope of the line segment in R? joining (1/pg, 1/qo) with (1/p1,1/q1).
Since (1/p,1/q) lies on this segment, we can denote the slope of this segment by

g Yao—1a _la—1la
l/po—1/p  1/p—1/p1’

3 Jozef Marcinkiewicz (1910-1940) was a Polish mathematician. He was a student of Antoni Zygmund;

and later worked with Juliusz Schauder, and Stefan Kaczmarz.

4 The theorem was first announced by Marcinkiewicz (1939), who showed this result to Antoni Zygmund
shortly before he died in World War II. The theorem was almost forgotten by Zygmund, and was absent
from his original works on the theory of singular integral operators. Later Zygmund (1956) realized that
Marcinkiewicz’s result could greatly simplify his work, at which time he published his former student’s
theorem together with a generalization of his own.
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which may be positive or negative, but is not either 0 or oo since gy # ¢; and py < p1.
For any ¢ > 0, we split an arbitrary function f € L? as follows:

f=r+h
where
vy [ @), [f(@)] > fr(@7),
fla) = {O, otherwise,
and fi = f — f".

Then we can verify that
(2.20)

In fact, by (iv) in Proposition 2.25, | f*| < |f| implies (f*)*(y) < f*(y) for all y > 0. More-
over, by the definition of f* and (x) in Proposition 2.25, we have (f).(a) < (f%).(f*(t7)) =
F(f*(t7)) < t9 for any a > 0. Thus, for y > t7, we get (f*)*(y) = 0. Similarly, by (iv)
in Proposition 2.25, we have (f:)*(y) < f*(y) for any y > 0 since |f| < |f]. On the other
hand, for y > 0, we have (f;)*(y) < (f:)*(0) = || ftlloo < f*(¢7) with the help of the non-
increasing of (f:)*(y) and (xv) in Proposition 2.25. Thus, (f;)*(y) < min(f*(y), f*(t7))
for any y > 0 which implies (2.20).

Suppose p; < oo. Notice that p < ¢, because p; < ;- By [Tf| < K(|TfY + |Tf]),
Theorems 2.27 and 2.29, (2.19), and then by a change of variables and Hardy’s inequalities
(2.17) and (2.18), we get

ITflq < KT Mg + 1T Fellg) = KNTF Lo + 1T fell o)
<SK@p/9)"Y? VT f | pow + 1T fell ar)

e (2) T e ) ([ el
(3 ([ B4
v ([T e it) }

1/p—1/q 00 1\ =1/ P 1/p
<K (p) Ay </ [tl/Q—l/qo () ||ft||LPov1] dt)
q 0 Do t
1/p
] 1 1*1/:01 P dt
+A, (/ [tl/q—l/QI () ft”LmJ] -
0 P1 t
1/p_1/q 1 1-1/1)0 (e%e] t7 d p dt 1/])
—-K (p) Ao () / /a=1/a0 / yt/po () Y a@
q Po 0 0 Yy 13
1-1/p1 00 P 1/p
) (L () )
Y4 0 to Yy t
1/p
1-1/p1 ) to
+ A <1> ' / t/a=1/a / 1/p1f (ta)d dt
p1 0 0 Yy t
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— (;;)1/?—1|;qi {Ao (plo)l‘l/f"(/ooo §—P(1/po—1/p) (/O Y170 5y )CZJ)I) ?)1@
+ A <1>11/p1 </O°° $P(1/p=1/p1) (/S I ey )C;y)p CiS)l/p
+ A ( 1 >1 1/ </O°° $p(1/p=1/p1) </O I £ )dyy>pis)1/p}
gK(51M1€r{%<;lwm]nmiym(/m(f”F@D“?ym
<2911>1 - l/p—l/pl) (/ (yl/pf*(y))p(zy)l/p
o

1>1 1/p1< ol- p/pl(p 51/p1f ( )) ds)l/p

S

1-1/po 1 1-1/p1
4 (%)
_|_

+ A S S

L
p
L
Po

1/p— 1/q
=K (p) o|~1/P
q

:AHf”p-

In case p; = oo the proof is the same except for the use of the estimate || f¢|loo < f*(¢7),
we can get

1 1_ 1
p P P

/—/h«

1-1/po
p\ P/ B (pi)
AK(> o| 7P —
¢ o b
Thus, we complete the proof. a

From the proof given above it is easy to see that the theorem can be extended to the
following situation: The underlying measure space R™ of the L?(R™) can be replaced by a
general measurable space (and the measurable space occurring in the domain of T need not
be the same as the one entering in the range of T'). A less superficial generalization of the
theorem can be given in terms of the notation of Lorentz spaces, which unify and generalize
the usual LP spaces and the weak-type spaces. For a discussion of this more general form
of the Marcinkiewicz interpolation theorem see [SW71, Chapter V] and [BL76, Chapter
5].

As an application of this powerful tool, we present a generalization of the Hausdorfi-
Young inequality due to Paley. The main difference between the theorems being that
Payley introduced a weight function into his inequality and resorted to the theorem of
Marcinkiewicz. In what follows, we consider the measure space (R", u) where p denotes
the Lebesgue measure. Let w be a weihgt function on R™, i.e., a positive and measurable
function on R™. Then we denote by LP(w) the LP-space with respect to wdz. The norm

on LP(w) is 1
o = ([ @)

With this notation we have the following theorem.

Theorem 2.35 (Hardy-Littlewood-Paley theorem on R™). Assume that 1 < p < 2. Then
I fll Lo (jg)-n2-») < Cpll fllp-
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Proof. We counsidering the mapping (T'f)(§) = |§|”f(f) By Plancherel theorem, we have

ITfllzzqe)-20) < NTfllz2qg)-2m) = [[fll2 < Cl 2,
which implies that T is of weak type (2,2). We now work towards showing that T is of
weak type (1,1). Thus, the Marcinkiewicz interpolation theorem implies the theorem.
Now, consider the set E, = {¢ : |§|”f(§) > a}. For simplicity, we let v denote the
measure |€]~2"d¢ and assume that || f||; = 1. Then, |f(¢)| < 1. For € € E,, we therefore
have a < [€|". Consequently,

(Tf)u(0) = v(Bs) = [E €[~2nde < /W> €[~2nde < Ca

Thus, we proves that

a- (Tf)(a) < Clfll,
which implies T is of weak type (1,1). Therefore, we complete the proof. O






Chapter 3

The Maximal Function and Calder6n-Zygmund
Decomposition

3.1 Two covering lemmas

Lemma 3.1 (Finite version of Vitali covering lemma). Suppose B = {By,Ba, -+ ,Bn}
is a finite collection of open balls in R™. Then, there exists a disjoint sub-collection Bj,,
B; -, Bj, of B such that

N k
m (U Bz> < 3" Zlm(Bji).
(=1

=1

0y

Proof. The argument we give is constructive and relies on the following simple observation:
Suppose B and B’ are a pair of balls that intersect, with the radius of B’ being not greater
than that of B. Then B’ is contained in the ball B that is concentric with B but with 3
times its radius. (See Fig 3.1.)

As a first step, we pick a ball B;, in B with maximal (i.e., largest)
radius, and then delete from B the ball Bj, as well as any balls that
intersect Bj,. Thus all the balls that are deleted are contained in
the ball le concentric with Bj,, but with 3 times its radius.

The remaining balls yield a new collection B’, for which we re-
peat the procedure. We pick Bj, and any ball that intersects Bj,.
Continuing this way, we find, after at most N steps, a collection of
disjoint balls B;,, Bj,, -+, Bj,.

Finally, to prove that this disjoint collection of balls satisfies the F¥ig- B&l The balls B
and

inequality in the lemma, we use the observation made at the begin-
ning of the proof. Let BJ denote the ball concentric with B;,, but
with 3 times its radius. Since any ball B in B must intersect a ball B;, and have equal or
smaller radius than B;,, we must have UBmB_ji;ﬁgB C Bjm thus

N k B k ~ k
m <U Be) <m (U Bﬁ) <) m(Bj,)=3"> m(B,,).
=1 =1 i=1 =1

In the last step, we have used the fact that in R™ a dilation of a set by ¢ > 0 results in
the multiplication by §™ of the Lebesgue measure of this set. O
For the infinite version of Vitali covering lemma, one can see the textbook [Ste70, the
lemma on p.9].
The decomposition of a given set into a disjoint union of cubes (or balls) is a fundamental
tool in the theory described in this chapter. By cubes we mean closed cubes; by disjoint

47
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we mean that their interiors are disjoint. We have in mind the idea first introduced by
Whitney and formulated as follows.

Theorem 3.2 (Whitney covering lemma). Let F' be a non-empty closed set in R™ and
2 be its complement. Then there exists a collection of cubes F = {Qy} whose sides are
parallel to the azes, such that

() Uiy Qe = 2= F°,

(i) @ NQy = 2 if j # k, where Q° denotes the interior of Q,

(iil) there exist two constants c1,ca > 0 independent of F (In fact we may take ¢; = 1
and co = 4.), such that

c1 diam (Qy) < dist (Qg, F) < ¢ diam (Qg).

Proof. Consider the lattice of points in R™ whose coordinates are integral. This lattice
determines a mesh .#, which is a collection of cubes: namely all cubes of unit length,
whose vertices are points of the above lattice. The mesh . leads to a two-way infinite
chain of such meshes {7}, with %}, = 27%. 4.

Thus each cube in the mesh .}, gives rise
to 2" cubes in the mesh .#)1 by bisecting
the sides. The cubes in the mesh .#}; each -+
have sides of length 27% and are thus of di-
ameter /n27F. -+

I

I
I
]
T
T
I
!
i
+ —Eq-i=t

i

|

|

In addition to the meshes .#}, we consider 1

the layers (2, defined by —r-rq-

|

|

i

L

Q= {z: 27" < dist (2, F) < 27511}
where c is a positive constant which we shall
fix momentarily. Obviously, 2 = Uy~ 2.

Now we make an initial choice of cubes,

+
1

|
I
1
N
‘
1
!
I
S
I
|
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_
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!
1
S
|
!

— 00

Fig. 3.2 Meshes and layers: .#p with dashed

. . P (green) lines; .#1 with dotted lines; .#Z_ 1 with sol-
and denote the resulting collection by #y. 4 (blue) lines

Our choice is made as follows. We consider

the cubes of the mesh .#}, (each such cube is of size approximately 27%), and include a
cube of this mesh in % if it intersects {2, (the points of the latter are all approximately
at a distance 27% from F). Namely,

Fo=J{Q e QN+ 2}

k
We then have
U e=x
QeF,
For appropriate choice of ¢, we claim that
diam (Q) < dist (@, F) < 4diam (Q), Q € F. (3.1)

Let us prove (3.1) first. Suppose Q € .#j; then diam (Q) = /n27%. Since Q € Fy,
there exists an # € Q N 2. Thus dist (Q, F) < dist (z, F) < 2771 and dist (Q, F) >
dist (z, F) — diam (Q) > ¢27% — \/n27%. If we choose ¢ = 2y/n we get (3.1).

Then by (3.1) the cubes Q € %, are disjoint from F' and clearly cover (2. Therefore, (i)
is also proved.

Notice that the collection %y has all our required properties, except that the cubes in
it are not necessarily disjoint. To finish the proof of the theorem, we need to refine our
choice leading to %, eliminating those cubes which were really unnecessary.
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We require the following simple observation. Suppose ()1 and @2 are two cubes (taken
respectively from the mesh .#}, and .#},). Then if Q1 and Q2 are not disjoint, one of the
two must be contained in the other. (In particular, Q1 C Qo, if k1 > ko.)

Start now with any cube @ € %, and consider the maximal cube in .%, which contains
it. In view of the inequality (3.1), for any cube Q' € F#y which contains @ € %,, we have
diam (Q') < dist (@', F) < dist (Q, F) < 4diam (Q). Moreover, any two cubes Q' and Q"
which contain @) have obviously a non-trivial intersection. Thus by the observation made
above each cube Q) € %y has a unique maximal cube in .%; which contains it. By the same
taken these maximal cubes are also disjoint. We let .# denote the collection of maximal
cubes of .%#y. Then obviously

(i) UQegz Q=0

(ii) The cubes of .Z are disjoint,

(ii) diam (Q) < dist (Q, F) < 4diam (Q), Q € Z#.

Therefore, we complete the proof. a

3.2 Hardy-Littlewood maximal function

Maximal functions appear in many forms in harmonic analysis. One of the most im-
portant of these is the Hardy-Littlewood maximal function. They play an important role
in understanding, for example, the differentiability properties of functions, singular inte-
grals and partial differential equations. They often provide a deeper and more simplified
approach to understanding problems in these areas than other methods.

First, we consider the differentiation of the integral for one-dimensional functions. If f
is given on [a, b] and integrable on that interval, we let

r) = [ w)dy, e o).

To deal with F'(z), we recall the definition of the derivative as the limit of the quotient
w when h tends to 0, i.e.,
F(z+h) — F(x)
N .
We note that this quotient takes the form (say in the case h > 0)

1 z+h 1
ﬁ/z fly)dy = m/lf(y)d%

where we use the notation I = (x,z + h) and |I| for the length of this interval.

At this point, we pause to observe that the above expression in the “average” value of f
over I, and that in the limit as |I| — 0, we might expect that these averages tend to f(x).
Reformulating the question slightly, we may ask whether

. 1
i g S =1

holds for suitable points x. In higher dimensions we can pose a similar question, where the
averages of f are taken over appropriate sets that generalize the intervals in one dimension.
In particular, we can take the sets involved as the ball B(z,r) of radius r, centered at
z, and denote its measure by m(B(z,r)). It follows
1

}ii%m(B(%T))/B(I,T) f(y)dy = f(z), for a.e. x? (3.2)

/ I H
=
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Let us first consider a simple case, when f is continuous at x, the limit does converge
to f(x). Indeed, given & > 0, there exists a § > 0 such that |f(z) — f(y)| < € whenever
|z —y| < 4. Since

1 1

f(@) = m /B(m) f(y)dy = m /B(x’r)(f(gﬂ) - f(y))dy,

we find that whenever B(x,r) is a ball of radius r < 4, then

1 1
_ m /B(I’T) f(y)dy m /B(w,r) [f(x) — f(y)|dy < e,

In general, for this “averaging problem” (3.2), we shall have an affirmative answer. In

f(x)

<

as desired.

order to study the limit (3.2), we consider its quantitative analogue, where “lim,_,o" is
replaced by “sup,”, this is the (centered) mazimal function. Since the properties of this
maximal function are expressed in term of relative size and do not involve any cancelation
of positive and negative values, we replace f by |f|.

Definition 3.3. If f is locally integrable! on R", we define its mazimal function Mf :
R™ — [0, 00] by

1 n
M (@) = sup s /B Wy, wew (3.3)

Moreover, M is also called as the Hardy-Littlewood mazximal operator.

The maximal function that we consider arose first in the one-dimensional situation
treated by Hardy and Littlewood.? It is to be noticed that nothing excludes the possibility
that M f(x) is infinite for any given x.

It is immediate from the definition that
Theorem 3.4. If f € L>°(R"™), then M f € L>*(R"™) and

M flloo < N1 flloo-
By the previous statements, if f is continuous at x, then we have

. 1
@) =t ey [ 1Sl

;
1
) o, T = M)

Thus, we have proved
Theorem 3.5. If f € C(R"), then

[f(2)] < Mf(2)
for all x € R™.

Sometimes, we will define the maximal function with cubes in place of balls. If Q(x, )
is the cubes [z — r,z + 7]™, define

L A measurable function f on R”™ is called to be locally integrable, if for every ball B the function
f(z)x B (z) is integrable. We shall denote by L}__(R™) the space of all locally integrable functions. Loosely
speaking, the behavior at infinity does not affact the local integrability of a function. For example, the
functions e!®! and |z|~1/2 are both locally integrable, but not integrable on R".

2 The Hardy-Littlewood maximal operator appears in many places but some of its most notable uses are
in the proofs of the Lebesgue differentiation theorem and Fatou’s theorem and in the theory of singular

integral operators.
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'F(x) = sup —— n
M =sp o [ G, e B (3.4)

When n = 1, M and M’ coincide. If n > 1, then there exist constants c¢,, and C,,, depending
only on n, such that

enM' f(x) < Mf(z) < C, M f(x). (3.5)
Thus, the two operators M and M’ are essentially interchangeable, and we will use
whichever is more appropriate, depending on the circumstances. In addition, we can define
a more general maximal function

1" 1

M) = s oo [ 15wl (3:6)
where the supremum is taken over all cubes containing x. Again, M" is pointwise equivalent
to M. One sometimes distinguishes between M’ and M” by referring to the former as the
centered and the latter as the non-centered maximal operator. Alternatively, we could
define the non-centered maximal function with balls instead of cubes:

- 1
(@) = swp — /B o

at each x € R™. Here, the supremum is taken over balls B in R™ which contain the point
z and m(B) denotes the measure of B (in this case a multiple of the radius of the ball
raised to the power n).

Mf(z) =M"[(z) =

%, z>1,
Mf(z)=M'f(z) =< 1, 0<z<1,

In fact, for z > 1, we get

1 x+h
Mf(z) = M’f(l‘) =8Sup o X(0,1)(y)dy
h>0 2h x—
B 1-z+h 1) 1
LIS T 2n o) T

~ 1 x+ho
Mf(z)=M"f(x) = su / d
f(@) f(x) hl)th>0 hi+ hs ), X(o,l)(y) Y

( 1—x+ My 1)
=max sup ——, sup — | =

1
0<z—hi<1 hy z—h1<0 P1 x

For 0 < z < 1, it follows
x+h

MfG) = M) =sw o [ xon)dy
h>0 x—h
_ 2h l—x+h
ST ST T
. T+ h ) 1
w—hgzg€+h<1 2h 7w—h<31i11)<w+h 2h>

=max (1,1,1,1min (1,1)> =1,
2 z 1—=x
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~ 1 z+ho
Mf(x) = M"f(x) = Sup ﬁ/ X(o,l)(y)dy
hi,ha>0 1+ N2 Jo_p,
—max( sup i + ho sup z + ho
O<z—hy1<ot+ha<1 M1+ P2 4 py<o<atha<t P14 ho

sup - sup
O<z—hi<l<a+hs P1+he " oon <cocicetn, M1+ ho
=1.

For z < 0, we have

Mf(x)zM'f(x)zmax( sup zth su 1) 1

T P Y
O<a+h<i,h>0 2R pyp>12h 2(1 —x)
- x + hg 1
Mf(z) = M" f(x) =max sup , sup
@) (@) hi,he>0,0<z+ho<l N1+ N2 pi>0.0the>1 b1+ hao
_ 1
T1—za

Observe that f € L'(R), but M f,M'f,M" f,Mf ¢ L'(R).
Remark 3.7. (i) M f is defined at every point € R™ and if f = g a.e., then M f(z) =
Mg(x) at every x € R™.

(ii) It may be well that M f = oo for every x € R™. For example, let n = 1 and
fz) =22

(iii) There are several definitions in the literature which are often equivalent.

Next, we state some immediate properties of the maximal function. The proofs are left
to interested readers.

Proposition 3.8. Let f,g € L}, .(R™). Then
(1) Positivity: M f(x) = 0 for all x € R™.
(i) Sub-linearity: M(f + g)(x) < M f(z) + Mg(x).
(iii) Homogeneity: M(af)(x) = |a|M f(z), o € R.
(iv) Translation invariance: M (1, f) = (r,M f)(z) = M f(x — y).

With the Vitali covering lemma, we can state and prove the main results for the maximal
function.

Theorem 3.9 (The maximal function theorem). Let f be a given function defined on R™.

(i) If f € LP(R™), p € [1,00], then the function M f is finite almost everywhere.

(ii) If f € LY(R™), then for every a > 0, M is of weak type (1,1), i.e.,

3n
m({a: Mf() > o)) < 2],
(iii) If f € LP(R™), p € (1,0¢], then M f € LP(R™) and
IMfllp < Apllfllp,

where A, =3"p/(p—1)+1 forp e (1,00) and A = 1.

Proof. We first prove the second one, i.e., (ii). Denote

Fo=1{r: Mf(z) > a},
then from the definitions of M f and the supremum, for each z € F, and 0 < ¢ <
M f(z) — «, there exists a r > 0 such that

1
B s )y > MFw) e >
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We denote that ball B(z,r) by B, that contains . Therefore, for each B,, we have

m(B) <+ [ Il (37)

x

Fix a compact subset K of E,. Since K is covered by U,cg. B, by Heine-Borel theorem,?

we may select a finite subcover of K, say K C Uévzl By. Lemma 3.1 guarantees the existence

of a sub-collection Bj,, ---, Bj, of disjoint balls with
N k
m(| B <3") m(By,). (3.8)
=1 i=1
Since the balls Bj,, -- -, Bj, are disjoint and satisfy (3.7) as well as (3.8), we find that
N
]ITI(U By) 3”Zm i) Z/ y)|dy
=1
3" 3"
=— dy < — dy.
T, < / 7o)y

Since this inequality is true for all compact subsets K of F,, the proof of the weak type
inequality (ii) for the maximal operator is complete.

The above proof also gives the proof of (i) for the case when p = 1. For the case p = oo,
by Theorem 3.4, (i) and (iii) is true with A, =

Now, by using the Marcinkiewicz interpolation theorem between L' — LV'> and L>® —
L*°, we can obtain simultaneously (i) and (iii) for the case p € (1, 0). O

Now, we make some clarifying comments.

Remark 3.10. (1) The weak type estimate (ii) is the best possible for the distribution
function of M f, where f is an arbitrary function in L!(R").

Indeed, we replace | f(y)|dy in the definition of (3.3) by a Dirac measure dy whose total
measure of one is concentrated at the origin. The integral [ Blar) dp = 1 only if the ball
B(x,r) contains the origin; otherwise, it will be zeros. Thus,

1
M(dp)(z) = sup o = (Vyfa[") 7
>0, 0€B(z,r) m(B(xz,7))
i.e., it reaches the supremum when r = |z|. Hence, the distribution function of M(du) is
(M(dp))+(e) =m({z : [M(dp)(2)| > a}) = m({z : (Valz|") ™" > a})
=m({z: Volz|" < a™'}) = m(B(0, (Vaa) /™))
=V, (Vpa) ™t =1/a.
But we can always find a sequence {f,,(z)} of positive integrable functions, whose L!
norm is each 1, and which converges weakly to the measure du. So we cannot expect an
estimate essentially stronger than the estimate (i) in Theorem 3.9, since, in the limit, a

similar stronger version would have to hold for M (du)(x).
(2) Tt is useful, for certain applications, to observe that

Ap —O< L ), as p — 1.
p—1

In contrast with the case p > 1, when p = 1 the mapping f — M f is not bounded on
LY(R™). So the proof of the weak bound (ii) for M f requires a less elementary arguments
of geometric measure theory, like the Vitali covering lemma. In fact, we have

3 The Heine-Borel theorem reads as follows: A set K C R™ is closed and bounded if and only if
K is a compact set (i.e., every open cover of K has a finite subcover). In words, any covering of a
compact set by a collection of open sets contains a finite sub-covering. For the proof, one can see the wiki:
http://en.wikipedia.org/wiki/Heine’E2%80%93Borel_theorem.
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Theorem 3.11. If f € L*(R"™) is not identically zero, then M f is never integrable on the
whole of R™, i.e., M f ¢ L*(R™).

Proof. We can choose an N large enough such that

[ 1r@lde > 51l
B(0,N)

Then, we take an z € R™ such that |z| > N. Let r = 2(|x| + N), we have

1 1
Mf(x) >m /B(I’T) |f(y)ldy = AR /B(gw) |f(y)|dy
1 1
SR Jyom 19> 57
> sl

It follows that for sufficiently large |x|, we have
Mf(x) = clz[™, c=2Vad") " flh-
This implies that M f ¢ L!(R"). O
Moreover, even if we limit our consideration to any bounded subset of R™, then the

integrability of M f holds only if stronger conditions than the integrability of f are required.
In fact, we have

Theorem 3.12. Let E be a bounded subset of R™. If fIn™ |f| € L*(R") and supp f C E,
then

[ Mi@dn <2m(B)+ € [ [7@)]0* |f@)]ds,
E E

where In* ¢ = max(Int, 0).

Proof. By Theorem 2.16, it follows that

/EMf(x)dx =2 /OO m({z € E: Mf(z) > 2a})da

_2</ /) ({z € B: Mf(z) > 2a})da

<L2m(F) + 2/ m({x € E: Mf(z)> 2a})do.
1
Decompose f as f1 + f2, where f1 = fXx{(z:f(x)|>a} and fo = f — fi. Then, by Theorem

3.4, it follows that

Mfa(x) < |M follso < [[f2lloe < @
which yields

{reE:Mf(x)>2a} C{z e E: Mfi(z) > a}.

Hence, by Theorem 3.9, we have

/loom({er:Mf(x)>2a}) /00 m({x € E: Mfi(x) > a})da

% 1 max(L|f(2)])
<C/ —/ x)|dzda < C/ |f(z |/ adw
1« {xEE:|f(x>|>a}

—c [ 1f@)/w* |7z
E
This completes the proof. a
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As a corollary of Theorem 3.9, we have the differentiability almost everywhere of the
integral, expressed in (3.2).

Theorem 3.13 (Lebesgue differentiation theorem). If f € LP(R™), p € [1, 0], or more

generally if f is locally integrable (i.e., f € L}, .(R™)), then
1

}%HII(.B(I’,T))/B(LT) fy)dy = f(x), for a.e. x. (3.9)

Proof. We first consider the case p = 1. It suffices to show that for each « > 0, the set

1
/B Ty 1) > 2a}

m(B(z,7))
has measure zero, because this assertion then guarantees that the set F = Uiozl E, ) has
measure zero, and the limit in (3.9) holds at all points of E°.
Fix a, since the continuous functions of compact support are dense in L*(R"), for each

FE, = {x : lim sup

r—0

€ > 0 we may select a continuous function g of compact support with ||f —g|l1 < e. As we
remarked earlier, the continuity of g implies that
1
lim 7/ g(y)dy = g(x), for all .
r—0 I[n(B(l‘, T)) B(z,r)
Since we may write the difference m fB(w)T) fly)dy — f(x) as
1 / 1
— () —9W)dy + ——=——= / 9(y)dy — g(x) + g(x) — f (),
H'H(B(J},’I“)) B(z,r) B'H(B(QT,T)) B(z,r)
we find that
el
— fy)dy — f(x)
]IIl(B(I, T)) B(z,r)

Consequently, if
Fo=A{z:M(f -g)(z) >a} and Go={z:[f(z)-g(x)|>a},
then F, C F, UG, because if u; and us are positive, then u; + us > 2« only if u; > «
for at least one u;.
On the one hand, Tchebychev’s inequality® yields
1
m(Ga) < <If — glh.

and on the other hand, the weak type estimate for the maximal function gives
37’7.
m(F,) < EHJC_QHI-
Since the function g was selected so that || f — g||1 < &, we get

3" 1 3" +1

< M(f = g)(x) + [g(z) — f(z)].

lim sup
r—0

E.
(07

Since € is arbitrary, we must have m(E,) = 0, and the proof for p = 1 is completed.

Indeed, the limit in the theorem is taken over balls that shrink to the point z, so the
behavior of f far from =z is irrelevant. Thus, we expect the result to remain valid if we
simply assume integrability of f on every ball. Clearly, the conclusion holds under the
weaker assumption that f is locally integrable.

4 Tchebychev inequality (also spelled as Chebyshev’s inequality): Suppose f > 0, and f is integrable. If
o> 0and Eq = {x € R™ : f(x) > a}, then

1
m(Eq) < = fdzx.
Rn
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For the remained cases p € (1, o0], we have by Holder inequality, for any ball B,

/Blf(fv)|dfv < IS ler@ It 5y < mB)PIIf],.
Thus, f € L},.(R") and then the conclusion is valid for p € (1, oc]. Therefore, we complete
the proof of the theorem. O
By the Lebesgue differentiation theorem, we have
Theorem 3.14. Let f € L}, (R"). Then
|f(x)] < Mf(z), ae xzeR"

Combining with the maximal function theorem (i.e., Theorem 3.9), we get
Corollary 3.15. If f € LP(R™), p € (1,00], then we have
1l < IMFllp < Apll£llp-

As an application, we prove the (Gagliardo-Nirenberg-) Sobolev inequality by using the
maximal function theorem for the case 1 < p < n. We note that the inequality also holds
for the case p = 1 and one can see [Eva98, p.263-264] for the proof.

Theorem 3.16 ((Gagliardo-Nirenberg-) Sobolev inequality). Letp € (1,n) and its Sobolev
conjugate p* = np/(n — p). Then for f € 2(R"™), we have

£l < ClIV£llp,
where C' depends only on n and p.

Proof. Since f € Z(R"), we have

/ (z + rz)dr,

where z € S”~!. Integrating this over the whole unit sphere surface S™~! yields

wnafe) = [ rao == [ D S+ r2)drdo2)

- / / Vi(x+rz)- zdrdo(z)
STL 1

= _ /OO Vf(z+rz)-zdo(z)dr.
0 Sn—l

Changing variables y = z + 72, do(z) = r~ " Vdo(y), 2 = (y —z) /|y — x| and r = |y — 2],
we get

— X — X
o / / Y= o(y)dr = — / Vi) L ay,
BB:c'r |y—$| n |y—$‘

which implies that
1 V()
sl <o [
Wn—1 Jre |y — 7
We split this integral into two parts as fRn = fB(I n Tt «[]R”\B(a: - For the first part, we
have

1 / Vil 4, _ 1§ / Vi)l
Wn—1 JBar T =yt Wn—1 =0 J B(z,2-#r)\ B(a,2-*~1r) |z —y|"—t
! V()

Wn—1 k=0 »/13(13,2kr)\B(:1:,2k1'r) (Q—k—l,,«)n—l



3.3 Calderon-Zygmund decomposition 57

— 27Fr 1 VW)
;)nVnZ—kr /B(I’Q;%) (2=kp)n—1 4

I pm 1
gﬁkz:oQ kot 1Tm /B(m,zkr)|Vf(y)|dy
n—1 0 n
<MW 32 = L))

For the second part, by Holder inequality, we get for 1 <p <n

v
/ VW,
R\ B(x,r) “T - y|

1/p
< </ IVf(y)Ipdy> (/ |z —y|P dy>
R™\ B(z,1) R\ B(z,r)

0o , 1/p’
- (w / S p“dp) V71,

1/p’
p— Lwn— —n
= ((n_)pl> r TPV

(p—1)®= D/ [V Flp NP e
(n—p)(P—1/n /™ op (V7 (@) satisfying

1/p’

Choosing r =

B 1
2 (V1) () = ((p ”w“) " v,

Wn—1 n—p
then we get
@) < CIV AL ™MV ()"
Thus, by part (iii) in Theorem 3.9, we obtain for 1 <p <n

1fllpe < CIVAB UMV )by = CIUV B IMV L2 < CV ],

This completes the proof. a

3.3 Calder6on-Zygmund decomposition

Applying Lebesgue differentiation theorem, we give a decomposition of R"™, called
Calderon-Zygmund decomposition, which is extremely useful in harmonic analysis.

Theorem 3.17 (Calderén-Zygmund decomposition of R™). Let f € L'(R") and a > 0.
Then there exists a decomposition of R™ such that

HR"=FUN, FNNR=g2.

(ii) |f(x)| < o« for a.e. x € F.

(iii) 2 is the union of cubes, 2 =, Qr, whose interiors are disjoint and edges parallel
to the coordinate axes, and such that for each Qy

& |
a < |f(x)|dx < 2"a. (3.10)
m(Qr) Qr
Proof. We decompose R" into a mesh of equal cubes Q,(CO) (k=1,2, ---), whose interiors

are disjoint and edges parallel to the coordinate axes, and whose common diameter is so
large that
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1
m(Q,(cO))/fo) |f(2)]|dx < «a, (3.11)

since f € L!.
Split each Q,(CO) into 2" congruent cubes. These we denote by Q,(Cl), k=1,2,---. There
are two possibilities:

. 1
either m /Q“’ |f(z)|dz < o, or (Q(l)) /Q“) |f(z)|dx > o

In the first case, we split Qk again into 2™ congruent cubes to get Q(Z) (k=1,2,---). In
the second case, we have
1

1
m(Q") PSS ON dr < 2"
<m<@$’>/@y> Sl 2”1111(@;(;0))/625;“) f@)de < 2"

in view of (3.11) where Q,(Cl) is split from ngo), and then we take Q,(fl) as one of the cubes
Q- ‘

A repetition of this argument shows that if z ¢ 2 =: J;, Qk then z € Q,(j]) (j =
0,1,2,---) for which

1

(Q(j))—>0a53—>oo andﬁ/‘ |f(z)|de < (j=0,1,---).
m(QY)) QY

Thus |f(z)] S c ae. z € F = 2°Dby a varlatlon of the Lebesgue differentiation theorem.

Thus, we complete the proof. a

We now state an immediate corollary.

Corollary 3.18. Suppose f, a, F, 2 and Q. have the same meaning as in Theorem 3.17.
Then there exists two constants A and B (depending only on the dimension n), such that

(i) and (i) of Theorem 3.17 hold and
A
(a) m(2) < 2111,

1
) g [ Iflde< Ba
m(Qr) Jq,
Proof. In fact, by (3.10) we can take B = 2", and also because of (3.10)

1 1
) = — dr < — :
() = S m(@) < 3 [ 1r@lds < il
This proves the corollary with A =1 and B = 2". a

It is possible however to give another proof of this corollary without using Theorem
3.17 from which it was deduced, but by using the maximal function theorem (Theorem
3.9) and also the theorem about the decomposition of an arbitrary open set as a union
of disjoint cubes. This more indirect method of proof has the advantage of clarifying the
roles of the sets F' and {2 into which R™ was divided.

Another proof of the corollary. We know that in F, |f(x)| < «, but this fact does
not determine F'. The set F' is however determined, in effect, by the fact that the maximal
function satisfies M f(x) < « on it. So we choose F' = {z: M f(z) < a} and 2 = E, =
{z : M f(x) > a}. Then by Theorem 3.9, part (b) we know that m(£2) < 3En||f||1 Thus,
we can take A = 3".

Since by definition F' is closed, we can choose cubes @) according to Theorem 3.2, such
that 2 = (J,, Qk, and whose diameters are approximately proportional to their distances
from F. Let Qi then be one of these cubes, and p; a point of F' such that

dist (F, Q) = dist (pg, Q)
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Let By be the smallest ball whose center is pp and which contains the interior of Q.
Let us set

We have, because py, € {z : M f(z) < o}, that

1 1
02 M) > g [ 1@ > s | e

Thus, we can take a upper bound of 4 as the value of B.
The elementary geometry and the inequality (iii) of Theorem 3.2 then show that

radius(By) < dist (pg, Q) + diam (Qx) = dist (F, Qx) + diam (Qy)
<(e2 + 1) diam (Qy),
and so
m(By) =V, (radius(By))™ < Vi (c2 + 1)™(diam (Qx))"™ = Vi (c2 + 1)"n™?m(Qp),

since m(Qy,) = (diam (Qy)/v/n)". Thus, v < Vi (ca+1)"n™/? for all k. Thus, we complete
the proof with A = 3" and B = V,,(co + 1)"n"/2. O

Remark 3.19. (1) Notice that this second proof of the lemma also rewarded us with an
unexpected benefit: the cubes @y are at a distance from F' comparable to their diameters.

(2) Theorem 3.17 may be used to give another proof of the fundamental inequality for
the maximal function in part (ii) of Theorem 3.9. (See [Ste70, §5.1, p.22-23| for more
details.)

The Calderén-Zygmund decomposition is a key step in the real-variable analysis of
singular integrals. The idea behind this decomposition is that it is often useful to split
an arbitrary integrable function into its “small” and “large” parts, and then use different
techniques to analyze each part.

The scheme is roughly as follows. Given a function f and an altitude a, we write
f = g+ b, where g is called the good function of the decomposition since it is both
integrable and bounded; hence the letter g. The function b is called the bad function since
it contains the singular part of f (hence the letter b), but it is carefully chosen to have
mean value zero. To obtain the decomposition f = g 4 b, one might be tempted to “cut”
f at the height «; however, this is not what works. Instead, one bases the decomposition
on the set where the maximal function of f has height a.

Indeed, the Calderon-Zygmund decomposition on R™ may be used to deduce the
Calderon-Zygmund decomposition on functions. The later is a very important tool in
harmonic analysis.

Theorem 3.20 (Calderén-Zygmund decomposition for functions). Let f € L*(R™) and
a > 0. Then there exist functions g and b on R™ such that f = g+ b and

() gl < [[fll and [lgllec < 27cx.

(ii) b = Zj b;, where each b is supported in a dyadic cube Q; satisfying fQ]- bj(z)dr =0
and ||b;|l1 < 2""ram(Q;). Furthermore, the cubes Q; and Qy, have disjoint interiors when
J# k.

(iif) 32, m(Q;) < a7 HIf]1-

Proof. Applying Corollary 3.18 (with A =1 and B = 2"), we have
HDR"=FUN, FNQ =g,
2) |f(2)] € a, ae. x € F}
3) 2= U;)i1 Qj, with the interiors of the (); mutually disjoint;
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4) m(2) < a™t [p. |f(2)]dz, and o < ﬁ%) fQj |[f(z)]dx < 2™

Now define
1
= (f‘ =@ e, fd"”) xer

b= Ej b; and g = f — b. Consequently,

1
e < [ 1@ m@p) | | s
< [ |f@lde <2 am(Q)),
Qj

which proves ||b;]l; < 2" am(Q;).

Next, we need to obtain the estimates on g. Write R" = U;Q; U I, where F' is the
closed set obtained by Corollary 3.18. Since b =0 on F and f —b; = ﬁ% fQ]» f(x)dex,
we have

1, on F,
g= 1 (3.12)

r(Qj) 0, f(z)dz, on Q;.

On the cube Q);, g is equal to the constant m fQj f(z)dz, and this is bounded by 2"«

by 4). Then by 2), we can get ||g||c < 2™«. Finally, it follows from (3.12) that ||g||1 < [|f]]1-
This completes the proof. a

As an application of Calderén-Zygmund decomposition and Marcinkiewicz interpolation
theorem, we now prove the Fefferman-Stein inequality on the Hardy-Littlewood maximal
operator M.

Theorem 3.21 (Fefferman-Stein inequality). For p € (1,00), there exists a constant
C = Cy,p such that, for any measurable function on R", ¢(z) > 0 and f, we have the
imequality

[ atr@yewis <c [ 1@rips, (313)
Proof. Except when Mp(x) = oo a.e., in which case (3.13) holds trivially, M¢ is the
density of a positive measure p. Thus, we may assume that My(z) < oo a.e. x € R"™ and
Mo(z) > 0. If we denote

du(x) = My(x)de and  dv(z) = p(z)dz,

then by the Marcinkiewicz interpolation theorem in order to get (3.13), it suffices to prove
that M is both of type (L®°(u), L°°(v)) and of weak type (L'(u), L*(v)).

Let us first show that M is of type (L*>°(u), L*°(v)). In fact, if || f|| o (4) < @, then

/ M(a)ds = u({e € " 5 |f(@)] > a}) = 0.
{z€R™:|f(2)|>a}

Since Mp(z) > 0 for any = € R™, we have m({x € R" : |f(z)| > a}) = 0, equivalently,
|f(z)| < aae x € R Thus, M f(r) < o a.e. z € R” and this follows || M f| @) < a.
Therefore, || M f||zew) < |fllLee(u)-

Before proving that M is also of weak type (L' (), L*(v)), we give the following lemma.

Lemma 3.22. Let f € LY(R") and a > 0. If the sequence {Qy} of cubes is chosen from
the Calderén-Zygmund decomposition of R™ for f and o > 0, then

{z eR": M'f(z) > T"a} c | Qs
k
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where QF = 2Qy. Then we have
m({z € R" : M'f(x) > 7"a}) <2" > m(Q).
k

Proof. Suppose that ¢ |, Q. Then there are two cases for any cube @ with the center
z. If Q C F:=R"\ U, Qk, then

1
el /Q f(@)lda < o

If QN Qy # D for some k, then it is easy to check that Q) C 3Q, and
@ QN @ # 2} C 3Q.
k

[is@ies [ e 3 [ s

QrNQ#Y

<am(Q)+ D 2"am(Qy)
QrNQ#LD

<am(Q) + 2"am(3Q)
<7T"am(Q).
Thus we know that M’ f(z) < 7"« for any = ¢ |J, Qf, and it yields that

m({z € R": M'f(x) > 7"a}) <m (U QZ) =2" Z]m(Qk).
k k

We complete the proof of the lemma. O

Let us return to the proof of weak type (L'(u), L*(v)). We need to prove that there
exists a constant C' such that for any a > 0 and f € L(u)

Hence, we have

p@)der =v({z € R" : M f(x) > a})

c
<< [ 1r@iMete)s

We may assume that f € L'(R™). In fact, if we take fy = |f|x5(0,k), then fi € L'(R"),
0 < fu(z) < frog1(z) for z € R™ and k = 1,2, --. Moreover, limy_,o fr(z) = |f(z)].

By the pointwise equivalence of M and M’, there exists ¢, > 0 such that M f(z) <
enM' f(x) for all z € R™. Applying the Calderén-Zygmund decomposition on R™ for f and
o = a/(e,T), we get a sequence {Qy} of cubes satisfying

o < m /Q,c |f(x)|dz < 2™d.

By Lemma 3.22 and the pointwise equivalence of M and M”, we have that
o(x)dx

AweR":Mf(m)>a} (314)

/{mGR" M f(z)>a}

N

/ o(x)dz
{zeR™: M’ f(z)>7"a’}

/u 2)dx < Z/

k

;Zm n w(x)dfv> (; / kf(y)ldy>

N

N
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— Z / ( 75 / (x)dm)dy

n14
<& > / IM” o(y)dy

< /R |f ()M p(y)dy

Thus, M is of weak type (L' (u), L (1)), and the Fefferman-Stein inequality can be obtained
by applying the Marcinkiewicz interpolation theorem. a




Chapter 4
Singular Integrals

4.1 Harmonic functions and Poisson equation

Among the most important of all PDEs are undoubtedly Laplace equation
Au=10 (4.1)
and Poisson equation
—Au=f. (4.2)
In both (4.1) and (4.2), z € £2 and the unknown is u : 2 — R, u = u(z), where 2 C R"

is a given open set. In (4.2), the function f : 2 — R is also given. Remember that the
Laplacian of u is Au =Y, 07 u.

Definition 4.1. A C? function u satisfying (4.1) is called a harmonic function.

Now, we derive a fundamental solution of Laplace’s equation. One good strategy for
investigating any PDEs is first to identify some explicit solutions and then, provided the
PDE is linear, to assemble more complicated solutions out of the specific ones previously
noted. Furthermore, in looking for explicit solutions it is often wise to restrict attention to
classes of functions with certain symmetry properties. Since Laplace equation is invariant
under rotations, it consequently seems advisable to search first for radial solutions, that
is, functions of = |z|. Let us therefore attempt to find a solution u of Laplace equation
(4.1) in 2 = R™, having the form

u(z) = v(r),
where r = |z| and v is to be selected (if possible) so that Au = 0 holds. First note for
k=1,---,n that

or Tk
_— = 0.
Oz, e v 7
We thus have
2 2
_ Lk 2 L 1z
Oz, u = UI(T)?’ 0y u= v”(r)ﬁ + ' (r) (7" - 703)
for k=1,--- ,n, and so
-1
Au="(r) + ——'(r)
r
Hence Au = 0 if and only if
—1
v+ S =0, (4.3)
r

If v' # 0, we deduce

63
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v 1—n
(lnv’)/ = ? = r )

and hence v'(r) = % for some constant a. Consequently, if » > 0, we have

blnr+c¢, n=2,

u(r) =

+c n =3,

rn—2
where b and c are constants.
These considerations motivate the following

Definition 4.2. The function
1
~or In |z|, n=2,
T
&(x) = 1 1 (4.4)

> 3,
n(n—2)Vy Jafr—2" "

defined for x € R™, x # 0, is the fundamental solution of Laplace equation.

The reason for the particular choices of the constants in (4.4) will be apparent in a
moment.

We will sometimes slightly abuse notation and write ¢(z) = @(|x|) to emphasize that
the fundamental solution is radial. Observe also that we have the estimates

Vo) < o [406)| < o (@£ 0 (45)
for some constant C' > 0.

By construction, the function x +— @(z) is harmonic for « # 0. If we shift the origin
to a new point y, the PDE (4.1) is unchanged; and so x — &(z — y) is also harmonic
as a function of z for x # y. Let us now take f : R™ — R and note that the mapping
x = &(x—y)f(y) (x # y) is harmonic for each point y € R™, and thus so is the sum
of finitely many such expression built for different points y. This reasoning might suggest
that the convolution

_ )T %/W(ln\x -y fy)dy, n=2,
ww)= [ oa-piwa=3 7 o

n(n —2)V, Jgn |z —y|" 2 v
would solve Laplace equation (4.1). However, this is wrong: we cannot just compute
Auw) = [ A~ y)f(y)dy = o. (4.7)
R"
Indeed, as intimated by estimate (4.5), A®(x — y) is not summable near the singularity
at y = x, and so the differentiation under the integral sign above is unjustified (and

(4.6)
n>=3

incorrect). We must proceed more carefully in calculating Auw.
Let us for simplicity now assume f € C2(R"), that is, f is twice continuously differen-
tiable, with compact support.

Theorem 4.3 (Solving Poisson equation). Let f € C?(R"), define u by (4.6). Then
u € C?*(R") and —Au = f in R™.

We consequently see that (4.6) provides us with a formula for a solution of Poisson’s
equation (4.2) in R™.
Proof. Step 1: To show u € C?(R™). We have
u(z) = / bz —y)f(y)dy = / P(y)f(x = y)dy,

hence
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u($+h6}]z) —U(l‘) — / @(y) |:f(aj+hek:_;j) _f(x_y> dy,
where h # 0 and e, = (0,---,1,---,0), the 1 in the k'"-slot. But
flether—y)—fle—y)  Of
W = e Y

uniformly on R™ as h — 0, and thus

%(:p)—/ ®( )ﬁ(x_ Yy, k=1,---.n

axk - " Yy 6$k y)ay, - 9 10
Similarly,

0%u 0% f
Gepr @ = [ W@y k=1 (1.9

As the expression on the r.h.s. of (4.8) is continuous in the variable z, we see that u €
C?(R™).

Step 2: To prove the second part. Since @ blows up at 0, we will need for subsequent
calculations to isolate this singularity inside a small ball. So fix € > 0. Then

Auw) = [ Aty [ S@Afe -y =L T (49
B(0,¢) R"\B(0,¢)
Now
Ll <Clafl [ ey < O (e, =2, (4.10)
s < B(0,e) Yoy = 062, n >3, .
since
€ €
/ |1n|y||dy:—27r/ rinrdr = —m (rglnr|6—/ rdr)
B(0,e) 0 0
= —m(c?Ine —£%/2)
=7e?|Ine| + 252,
for € € (0,1] and n = 2 by an integration by parts.
An integration by parts yields
L= [ ew)Aa -y
R\ B(0,¢)
of 4.11
[ oG a-wdet)- [ VoWV fa-pay O
8B(0,¢) v R™\B(0,¢)
=K.+ L,
where v denotes the inward pointing unit normal along 9B(0, ). We readily check
K| <||Vf||oo/ 2)ldo(s) < CI0E) [ doty) = Clo)
9B(0,e)
Cellne|, n=2, (4.12)
Ce, n =3,

since P(y) = P(|y[) = &(¢) on 9B(0,¢) = {y € R": [y| =€}
We continue by integrating by parts once again in the term L., to discover

0P
L. =— /83(0,5) a(y)f(x —y)do(y) + /W\B(ms) Ad(y) f(x — y)dy
__ /8 92 ) f(a — y)doly),

B(0,¢) v
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since @ is harmonic away from the origin. Now, V®(y) = *ﬁﬁ for y # 0 and v =
|_,7"|’ = —% on 0B(0,¢). Consequently, g—f(y) =v-VP(y) = W on 0B(0,¢). Since
nV,e" ! is the surface area of the sphere 9B(0,¢), we have
1
Lo | fa=yioty)
nVne™ ! Jop(0,e)
. (4.13)

=— m /GB(z,s) f(y)do(y) = —f(x) ase—0.

by Lebesgue differentiation theorem.
Combining now (4.9)-(4.13) and letting ¢ — 0, we find that —Au(z) = f(x), as asserted.
O

Remark 4.4. () We sometimes write

—AP =4y in R,
where Jy denotes the Dirac measure on R™ giving unit mass to the point 0. Adopting this
notation, we may formally compute

~tus) = [ Ay = [ 85wy = @), @ eR,

in accordance with Theorem 4.3. This corrects the erroneous calculation (4.7).
(ii) Theorem 4.3 is in fact valid under far less stringent smoothness requirements for f:
see [GTO1].

Consider now an open set 2 C R™ and suppose u is a harmonic function within 2. We
next derive the important mean-value formulas, which declare that u(z) equals both the
average of u over the sphere 0B(x,r) and the average of u over the entire ball B(z,r),
provided B(z,r) C {2.

Theorem 4.5 (Mean-value formula for harmonic functions). If u € C?(2) is harmonic,
then for each ball B(x,r) C (2,
1 1

) = @B ) /BBW) ww)do W) = B @) /BW) uly)dy.

Proof. Denote
1 1

0= w565 ), o M) = [ et r2yiota).
Obviously,

iy — L - , _ 1 Ou
fir) = /5an j;arju(x +rz)z;do(z) = /5an £y (x 4+ rz)do(z),

Wn—1 Wn—1

where % denotes the differentiation w.r.t. the outward normal. Thus, by changes of vari-
able

iy =1 / 04 o (y).

Wn—1 JoB(x,r) ov
By Stokes theorem, we get

1
F = [ Auwdy=o.
n—1 JB(z,r)

Thus f(r) = const. Since lim, o f(r) = u(z), hence, f(r) = u(x).
Next, observe that our employing polar coordinates gives

/B(“-) u(y)dy :/O’" </63(z,s) u(@/)da(y)) ds = /Or m(dB(z, s))u(x)ds
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zu(x)/ V8" tds = Vyr™u(x).
0
This completes the proof. a

Theorem 4.6 (Converse to mean-value property). If u € C?(§2) satisfies
1
u@) = mope—s [ uly)daty)
m(9B(z,r)) 9B(z,r)

for each ball B(x,r) C (2, then u is harmonic.

Proof. If Au # 0, then there exists some ball B(x,r) C {2 such that, say, Au > 0 within
B(xz,r). But then for f as above,
1
0= = s [ Aulwdy >0,
B(z,r)

r"*lwn,l

is a contradiction. O

4.2 Poisson kernel and Hilbert transform

We shall now introduce a notation that will be indispensable in much of our further
work. Indeed, we have shown some properties of Poisson kernel in Chapter 1. The setting
for the application of this theory will be as follows. We shall think of R™ as the boundary
hyperplane of the (n + 1) dimensional upper-half space R"*1. In coordinate notation,

R = {(z,y) : 2 € R",y > 0}.
We shall consider the Poisson integral of a function f given on R™. This Poisson integral
is effectively the solution to the Dirichlet Problem for ]RT'l: find a harmonic function

u(x,y) on R:’_“, whose boundary values on R™ (in the appropriate sense) are f(z), that
is

{Az,yu(x,y) =0, (z,y) Ry, (4.14)

u(z,0) = f, xe€R™
The formal solution of this problem can be given neatly in the context of the L? theory.
In fact, let f € L?(R™), and consider
w]

u(z,y) = <27r>”/n evis Tt f()dg,  y > 0. (4.15)

This integral converges absolutely (cf. Theorem 1.15), because f € L2(R™), and e~ |«¢lv
is rapidly decreasing in || for y > 0. For the same reason, the integral above may be
differentiated w.r.t.  and y any number of times by carrying out the operation under the
sign of integration. This gives
2 no 92
Apyu = g—yZ—FZ@:O,

because the factor e*%#e~|“¢l¥ satisfies this property for each fixed ¢. Thus, u(z,y) is a
harmonic function on Rﬁ“.

By Theorem 1.15, we get that u(z,y) — f(x) in L?(R™) norm, as y — 0. That is,
u(x,y) satisfies the boundary condition and so u(z,y) structured above is a solution for
the above Dirichlet problem.

This solution of the problem can also be written without explicit use of the Fourier
transform. For this purpose, we define the Poisson kernel Py(z) := P(z,y) by
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P,(z) = (';J)n/ ewitTemlwtlyge — (Flem WY (2), > 0. (4.16)

Then the function u(z,y) obtained above can be written as a convolution

u(z,y) = /]Rn Py(2)f(x — z)dz, (4.17)

as the same as in Theorem 1.15. We shall say that w is the Poisson integral of f.
For convenience, we recall (1.12) and (1.10) as follows.

Proposition 4.7. The Poisson kernel has the following explicit expression:

Py(z) = %, Cn = F((ij (4.18)
(lz* +y2) = T
Remark 4.8. We list the properties of the Poisson kernel that are now more or less evident:

(i) Py(xz) >0 for y > 0.

(ii) [zn Py(x)de = E(O) =1, y > 0; more generally, E(f) = e~ |“¢lW by Lemma 1.14
and Corollary 1.23, respectively.

(iii) P,(z) is homogeneous of degree —n: Py(z) =y~ "Pi(z/y), y > 0.

(iv) Py(x) is a decreasing function of |z|, and P,(z) € LP(R"), 1 < p < oo. Indeed, by
changes of variables, we have for 1 < p < o0

p
p_.p Yy
”Py(x)Hp =Cp /R" ((|x|2+y2)("+1)/2> dzx
— 1
T=Y= p,—n(p—1)
=y |

—— 0 1
e —n(p—1) o ¢ S §
Ry Wn—1 /0 (L4 r2)piD/2 r " dr

1 o0
gcﬁyfn(pfl)wn_l (/ dr +/ rnlp(n+1)d,r)
0 1
1

<y P Nw, (1 +

p(n+1)— n) '
For p = o0, it is clear that ||Py(x)|lec < cny™™.

(v) Suppose f € LP(R™), 1 < p < oo, then its Poisson integral u, given by (4.17), is
harmonic in R}, This is a simple consequence of the fact that P,(z) is harmonic in
R’}™; the latter is immediately derived from (4.16).

(vi) We have the “semi-group property” P,, % Py, = Py 1y, if y1,y2 > 0 in view of
Corollary 1.24.

The boundary behavior of Poisson integrals is already described to a significant extent
by the following theorem.

Theorem 4.9. Suppose f € LP(R™), 1 < p < 0o, and let u(z,y) be its Poisson integral.
Then

(a) supy~o |u(x,y)| < M f(x), where M f is the mazimal function.

(b) limy_,o u(z,y) = f(x), for almost every x.

(c) If p < o0, u(x,y) converges to f(x) in LP(R™) norm, as y — 0.

The theorem will now be proved in a more general setting, valid for a large class of
approximations to the identity.
Let ¢ be an integrable function on R™, and set . (z) = ¢ "p(x/e), € > 0.

Theorem 4.10. Suppose that the least decreasing radial majorant of  is integrable; i.e.,
let Y(x) = sup|, s, [9(Y)], and we suppose [5, ¢(x)dx = A < oo. Then with the same A,
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(a) sup.so [(f * we)(@)] < AM f(z), f € LP(R"), 1 <p < oo,
(b) If in addition [, ¢(x)dr =1, then lim._o(f * ¢c)(x) = f(x) almost everywhere.
(c) If p < o0, then || f x v — fll, = 0, as e — 0.

Proof. For the part (c), we have shown in Theorem 1.15.

Next, we prove assertion (a). We have already considered a special case of (a) in Chapter
3, with p(z) = ﬁxg. The point of the theorem is to reduce matters to this fundamental
special case.

With a slight abuse of notation, let us write ¢(r) = (), if |z| = r; it should cause no
confusion since ¢ (x) is anyway radial. Now observe that ¢(r) is decreasing and then
fr/zgmgr Y(x)dx = P(r) fr/Klmlér dr = cip(r)r™. Therefore the assumption @ € L*
proves that 7™ (r) — 0 as r — 0 or r — oo. To prove (a), we need to show that

(f *e)(2x) < AM f(z), (4.19)
where f >0, f € LP(R"), e > 0 and A = [, ¢(x)dz.

Since (4.19) is clearly translation invariant w.r.t f and also dilation invariant w.r.t. ¢,
it suffices to show that

(f *4)(0) < AM f(0). (4.20)
In proving (4.20), we may clearly assume that M f(0) < oco. Let us write A(r) =
Jsn-1 f(ra)do(a’), and A(r) = [, f(z)dz, so

r) = ' 2 Vdo (2 )" dt = ' n—1 e, A(r) = Ar)r™ L.
Ay = [ et = [Caortn e, 40) = x0)
We have
(0 = [ @@= [ [ peayuedots!ar
N

Rn

:/0Oo " IN(r)Y(r)dr = lim () (r)r™tdr

e—0

N e N
—lim [ A()e(r)dr = lim {[A<r>w<r>1£¥ - / A(r)dwr)}.

Since A(r) = |,

lz<r

f(z)dx < Vpr™M f(0), and the fact r™(r) — 0 as r — 0 or r — oo,

we have
0< lim A(N)Y(N) L V,Mf(0) lim N")(N)=0,
N—o00 N—o0

which implies limpy_, oo A(N)tp(N) = 0 and similarly lim._,¢ A(¢)t(e) = 0. Thus, by inte-
gration by parts, we have

s - [ " AW)A(—p(r)) < VM (0) / (- ()

VM FO) [t = 21£(0) [ v,

Rn
since 9 (r) is decreasing which implies ¥’ (r) < 0, and nV;, = w,,—1. This proves (4.20) and
then (4.19).

Finally, we prove (b) in a familiar way as follows. First, we can verify that if f; € C?,
then (f1 * ¢c)(x) — fi(x) uniformly as e — 0 (cf. Theorem 1.15). Next we can deal with
the case f € LP(R™), 1 < p < oo, by writing f = fi1 + fo with f; as described and
with || f2]|, small. The argument then follows closely that given in the proof of Corollary
3.13 (the Lebesgue differentiation theorem). Thus we get that lim._,o f-(z) exists almost
everywhere and equals f(z).
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To deal with the remaining case, that of bounded f, we fix any ball B, and set ourselves
the task of showing that

lirré(f *@.)(x) = f(z), for almost every x € B.
E—r
Let By be any other ball which strictly contains B, and let § = dist (B, Bf) be the

f(x)v S Bla . _
O7 .’I,'¢B],7f(x)_f1(l‘>+
fo(x). Then, f; € L*(R"), and so the appropriate conclusion holds for it. However, for

r € B,

distance from B to the complement of B;. Let fi(z) = {

o+ =| [ pta=noetiin| < [ 5= nllewliy

|>6>0

<l / lo(y)ldy — 0, as & — 0.
ly|=8/e

Thus, we complete the proof. a

Proof of Theorem 4.9. Theorem 4.10 then applies directly to prove Theorem 4.9,
because of properties (i)—(iv) of the Poisson kernel in the case ¢(x) = ¢(z) = Pi(x). O

There are also some variants of the result of Theorem 4.10, which apply equally well
to Poisson integrals. The first is an easy adaptation of the argument already given, and is
stated without proof.

Corollary 4.11. Suppose f is continuous and bounded on R™. Then (f * vc)(x) — f(z)
uniformly on compact subsets of R™.

The second variant is somewhat more difficult. It is the analogue for finite Borel mea-
sures in place of integrable functions, and is outlined in further result of [Ste70, §4.1,
p.77-78].

Now, we give the definition of harmonic conjugate functions as follows.

Definition 4.12. The harmonic conjugate to a given function u(z,y) is a function v(z, y)
such that

f@,y) = u(z,y) +iv(z,y)
is analytic, i.e., satisfies the Cauchy-Riemann equations
Up = Vy, Uy = —Ugy,

where u, = 0u/0x, u, = Ou/0y. It is given by

(z,y)
v(z,y) = /( Ugpdy — uydx + C,

Z0,Y0)
along any path connecting (xo,y0) and (z,y) in the domain, where C is a constant of
integration.

Given a function f in .(R), its harmonic extension to the upper half-plane is given by

u(x,y) = Py * f(z), where P, is the Poisson kernel. We can also write, in view of (4.15),
||

u(z) =u(ey) = 5 [ ST (E)dg

9] ~ 0 ; ¢
{/ emé-xe—lw\fyf(g)dg +/ em{"“ewgyf(f)df]
0

— 00

_lwl
2
_lwl

0o 0
_L { /0 it (e+isen @) F(£)de + /_ etteiom f(g)dg],
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where z = x + iy. If we now define

o) 0
isgn (w)v(z) = % [/0 Wik (z+isgn (w)y)f(g)dg _/ i€ (z—isgn (w)y)f(g)dg ,

then v is also harmonic in ]Ri and both v and v are real if f is. Furthermore, u + iv is
analytic since it satisfies the Cauchy-Riemann equations u, = v, = wifu(z) and u, =
—v; = —wifv(z), so v is the harmonic conjugate of u.

Clearly, v can also be written as, by Theorem 1.12, Proposition 1.3 and Theorem 1.28,

v(2) =|2iﬂ| A —isgn (w) sgn (&) €T~ 1w (&) de
:¥ —isgn (w) Fe[sgn (£)e s e W] () f(n)dn
T JrR
:%l —isgn (w) Fe[sgn (§)e™ W) (n — 2) f (n)dn
R

= [ isgn )7 [sgn (€)e €] — n) ),
R
which is equivalent to

v(z,y) = Qy * f(x), (4.21)

where

Qy () = —isgn (w) sgn (§)e” 5. (4.22)
Now we invert the Fourier transform, we get, by a change of variables and integration by
parts,

Qy(z) = —isgn (w |/ e € sgn (€)e Vg

= — isgn (w)% |:/ wzw 3 7‘w‘€yd£ / wzw § |w|£"/d£:|
0

= —isgn (w)‘;ﬂ |:/ ewiz-§ *\w\fydg / Wiz §ew|§yd£:|
0

_ ngn |/ wzwf 7wm: §) 856 ‘w|5yd£
—ley

:|UJ|(E /OO (ewiw-E + e—wixf) 6—|W|§yd£
0

2y
:|w|x / e—wim'fe—lwﬁlyd€ — fy Me—\wﬂy
21y Jr Y 27
T T cy cax
:7P = — frd
y U(x) yy2+$2 y2+$2’
where ¢; = I'(1)/m = 1/7. That is,
1 T
Qy(w) = ;yg +1172.

One can immediately verify that Q(z,y) = Qy(z) is a harmonic function in the upper
half-plane and the conjugate of the Poisson kernel P,(z) = P(x,y). More precisely, they

satisfy Cauchy-Riemann equations

1 22y 1 2% —y?

0,P=0,QQ=——7"—"—~=, O,P=-0,0Q=——7"7-"°-.
z Y@ (2 +a2)2 Y 1) T (42 + 22)2
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In Theorem 4.9, we studied the limit of u(x,t) as y — 0 using the fact that {P,} is an
approximation of the identity. We would like to do the same for v(z, y), but we immediately
run into an obstacle: {Q),} is not an approximation of the identity and, in fact, @, is not

integrable for any y > 0. Formally,

lim Q,(z) = N

y—0 wx’
this is not even locally integrable, so we cannot define its convolution with smooth func-
tions.
We define a tempered distribution called the principal value of 1/x, abbreviated

p.v.1/z, by
<p.V.17q§>:lim/ Mdm, peS.
€T =0 lz|>e L

To see that this expression defines a tempered distribution, we rewrite it as

<p.v.i,¢> - /W A2 =00y /M A gy,

this holds since the integral of 1/x on e < |z| < 1 is zero. It is now immediate that
1
(b 2.6 )| < CU N + 6]0)

Proposition 4.13. In .'(R), we have lin%) Qy(z) =Lipv. i
Yy—

Proof. For each € > 0, the functions 9. (z) = :17*1X|,¢.‘>E are bounded and define tempered

distributions. It follows at once from the definition that in .,

, 1
lim () = p.v. .

Therefore, it will suffice to prove that in .’
. 1
e (Qy B My) =0
Fix ¢ € .7, then by a change of variables, we have

(Q, — o) = [ 20 /ﬂ;y @) 4

y2 + 22 B T

- z¢(z) I
_/|x<y gt /|x>y <y2 + 22 x) de)ds

_ zp(yz) _olyx)
_/|x<1 1422 e /z|>1 z(1+ ffz)dx'

If we take the limit as y — 0 and apply the dominated convergence theorem, we get two
integrals of odd functions on symmetric domains. Hence, the limit equals 0. a

As a consequence of this proposition, we get that

lir% Qy* flx) = 1 lim Mdt
Yy—

)
Ten0  yse t

and by the continuity of the Fourier transform on .’ and by (4.22), we get
1 1
F | —pv.— =—q .
(3p3-2)© = ~isen @) sen (9
Given a function f € ./, we can define its Hilbert transform by any one of the following
equivalent expressions:

Hf =lim Q, « f.
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Hf :%p.v.é*f,
Hf =F " (—isgn () sgn () f(£)).

The third expression also allows us to define the Hilbert transform of functions in L?(R),
which satisfies, with the help of Theorem 1.26,

w2 W\,
sl = (50 ) 1N = (52) 1l =1l (423)
that is, H is an isometry on L?(R). Moreover, H satisfies
Hf = H(Hf) =F " ((—isgn (w) sgn (€))*(€)) = £, (4.24)

By Theorem 1.28, we have
(Hf.0) = [ Hf-gdn = [ 77 (=isgn ) sen @) - gda

_ / —isgn (w) sgn () f(€) - §(¢)de

= [ #a) Floisen ) sen (©3(€))(@)da

— [ 1) Flisgn )50 O g6 o)
= [ @) # s () sgn )] o)
—/Rf~Hgdx: (f,—Hg), (4.25)

namely, the dual/conjugate operator of H is H' = —H. Similarly, the adjoint operator H*
of H is uniquely defined via the identity

(f.Hg) = /R f - Hgde = /R Hfgde = (~Hf.q) = (H'f.g).

that is, H* = —H.
Note that for given z € R, H f(z) is defined for all integrable functions f on R that
satisfy a Holder condition near the point z, that is,

(@) = f(y)| < Colz —y|*

for some C, > 0 and €, > 0 whenever |y — x| < d,. Indeed, suppose that this is the case,

then
§ 1 @) 41 @) ,
Qy* f(x) = / Y+ /l Yy

<|z—y|<b, T Y z—y|>6., L Y

1 fy) — fx) 1 f)
== A A AT dy.
Q0 /s<zy|<51 r—y vt ™ /|xy>61 r—y Y

Both integrals converge absolutely, and hence the limit of @, * f(z) exists as ¢ — 0.
Therefore, the Hilbert transform of a piecewise smooth integrable function is well defined

at all points of Holder-Lipschitz continuity of the function. On the other hand, observe
that @y * f is well defined for all f € L?, 1 < p < oo, as it follows from the Hélder
inequality, since 1/z is in L*’ on the set |z| >

Ezample 4.14. Consider the characteristic function x[, 4 of an interval [a, b]. It is a simple
calculation to show that
1. |z—aq
H(Xa =1 .
(X[a))(z) = ~In =

Let us verify this identity. By the definition, we have

(4.26)
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1 a — 1 1
H(X[a,p)(z) = = lim wdy = — lim —dy.
! T e—0 ly|>e Y T e—0 ly|>e Y

e—b<y<z—a
Thus, we only need to consider three cases: t — b >0,z —a<O0andz—-b<0<x—a.
For the first two cases, we have

| 1. |z—a

H(X[a,5)(z) = %/ —dy = —1In

o=t Y T |z =0l

For the third case we get (without loss of generality, we can assume ¢ < min(|z—al, |z—0|))

1. 1 el 1. |z — al €
F N (TINY S N

1. |z —d

T e -t
where it is crucial to observe how the cancellation of the odd kernel 1/x is manifested.
Note that H(X[q,p))(x) blows up logarithmically for z near the points a and b and decays
like 271 as 2 — Fo00. See the following graph with @ = 1 and b = 3:

4
¥

The following is a graph of the function H (X[—10,0jup1,2u[4,7))"

It is obvious, for the dilation operator d. with € > 0, by changes of variables (ey — y),
that
(o) f@) =tim = [ LE W gy [ LE W) gy 5 pa),
70T Jly|zo Y 720 30 Y
so Hé. = 6.H; and it is equally obvious that Hé. = —0.H, if € < 0.
These simple considerations of dilation “invariance” and the obvious translation invari-
ance in fact characterize the Hilbert transform.

Proposition 4.15 (Characterization of Hilbert transform). Suppose T is a bounded linear
operator on L?(R) which satisfies the following properties:

(a) T commutes with translations;

(b) T commutes with positive dilations;

(¢) T anticommutes with the reflection f(x) — f(—x).
Then, T is a constant multiple of the Hilbert transform.
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Proof. Since T commutes with translations and maps L?(R) to itself, according to Theo-
rem 1.62, there is a bounded function m(§) such that f}(f) = m(€)f(€). The assumptions
(b) and (c) may be written as T6.f = sgn (). Tf for all f € L?(R). By part (iv) in
Proposition 1.3, we have

F(T6-£)(&) =m(&) F (8- 1)(€) = m(&)|e| ' f(¢/e),

sgn () (0 Tf)(€) =sen (2)[e| ' TF(¢/e) = sgn (e)|e| " 'mi(&/e)f(&/e),
which means m(c§) = sgn (e)m(§), if € # 0. This shows that m(§) = csgn (), and the
proposition is proved. a

The next theorem shows that the Hilbert transform, now defined for functions in . or
L2, can be extended to functions in L?, 1 < p < oo.

Theorem 4.16. For f € .7(R), the following assertions are true:
(i) (Kolmogorov) H is of weak type (1,1):

C
m({z € R: |Hf(2)| > a}) < —Iflls-
(ii) (M. Riesz) H is of type (p,p), 1 < p < 00:
IHfNlp < Cpll flp-

Proof. (i) Fix a > 0. From the Calderén-Zygmund decomposition of f at height o (The-
orem 3.20), there exist two functions g and b such that f =g+ b and

(1) llglly < 111l and [lgllee <
(2)b= Z bj, where each b; is supported in a dyadic interval I; satisfying [, b I x)dx =

0 and ||b;||1 < 4am(I;). Furthermore, the intervals I; and I, have disjoint mterlors when
J# k.

(3) 3, m(L;) < a1 flh.

Let 21; be the interval with the same center as I; and twice the length, and let 2 = U;I;
and 2% = U;2[;. Then m(2*) < 2m(2) < 2a7 Y| f|1-

Since Hf = Hg + Hb, from parts (iv) and (vi) of Proposition 2.15, (4.23) and (1), we
have

(Hf)+(a) <(Hg)«(a/2) + (Hb)+(a/2)
<(0¢/2)_2/R|H9(33)|2dw+ m(2%) + m({z ¢ Q" : [Hb(z)| > a/2})

4
< [lot@)Pdz 207l +207 [ |HbG@)ldo
a” Jr R\ £2*
< Jlo@iae Qe 2 [ Sl
<5 ng v+ —lflh+ - i
8 2 2
<= d d Hb, .
NS+ 207+ = Z/\ [Hby ()

For z ¢ 2I;, we have
b, 1 b;
LTy ) x—y

J J

Hbj(x) =

1
™
since suppb; C I; and |z —y| > m(I;)/2 for y € I;. Denote the center of I; by c;, then,

since b; is mean zero, we have
1 b;
T -y

/ |Hbj;(z)|dx :/ dx
R\21; R\21; :




76 4 Singular Integrals

o o0 (- 55)
== bi(y - dy
T JR\2I; |/ I; i) rT—Yy TG

1 —c.

< [l [ )y
m™JI; R\21; |z —yllz — ¢

1 m(I;)

<= b; ——dz | dy.
W/fj ) </R\21 |z — ¢;]? x) Y

The last inequality follows from the fact that |y — ¢;| < m(J;)/2 and |z —y| > |z — ¢;|/2.
Since |z — ¢;| > m(I;), the inner integral equals

dx

<1 1
21m(I-)/ —dr = 2m(l;) =2.
! m(I;) 2 ! m(/;)

Thus, by (2) and (3),
(H f)afo) <27l + —Z/ by )y < =Nl + mem

16 1 10+16/7r
*||f|\1+f7\|f||1— [ralie

(ii) Since H is of weak type (1, 1) and of type (27 2), by the Marcinkiewicz interpolation
theorem, we have the strong (p, p) inequality for 1 < p < 2. If p > 2, we apply the dual
estimate with the help of (4.25) and the result for p < 2:

IHfllp = sup [(Hf,g9)l = sup [(f,Hg)| <I[fllp sup [Hgly < Cplfllp-
llgll,r <1 lgll,r <1 lgll,r <1

This completes the proof. a

Remark 4.17. i) Recall from the proof of the Marcinkiewicz interpolation theorem that
the coefficient

10+16/7  (1/2)'/? g1/ l<p<?
o - 1-1/p 1/p—1/2 ’ ’
’ (1/2)2 1

(10 4 16/7)p + —2—~— + 212, p>2.

1/2—1/p
So the constant C, tends to infinity as p tends to 1 or co. More precisely,
Cp,=0(p)asp— o0, and C, =O((p—1)"") as p — 1.
ii) The strong (p, p) inequality is false if p = 1 or p = oo, this can easily be seen from

ﬁ ZI‘ which is neither integrable nor bounded. See

the previous example Hx[, ) = = In
the following figure.

The integra
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iii) By using the inequalities in Theorem 4.16, we can extend the Hilbert transform to
functions in LP, 1 < p < oo. If f € L' and {f,} is a sequence of functions in .# that
converges to f in Ll, then by the weak (1,1) inequality the sequence {H f,} is a Cauchy
sequence in measure: for any ¢ > 0,

lim m({zeR: [(Hf, — Hfwn)(z)| >e}) =0.

m, n—oo
Therefore, it converges in measure to a measurable function which we define to be the
Hilbert transform of f.

If fe L, 1<p<oo,and {f,} is a sequence of functions in . that converges to f in
L?, by the strong (p,p) inequality, {H f,,} is a Cauchy sequence in LP, so it converges to
a function in LP which we call the Hilbert transform of f.

In either case, a subsequence of {H f,}, depending on f, converges pointwise almost
everywhere to H f as defined.

4.3 The Calder6n-Zygmund theorem

From this section on, we are going to consider singular integrals whose kernels have
the same essential properties as the kernel of the Hilbert transform. We can generalize
Theorem 4.16 to get the following result.

Theorem 4.18 (Calderén-Zygmund Theorem). Let K be a tempered distribution in R™
which coincides with a locally integrable function on R™\ {0} and satisfies

K(€)| < B, (4.27)
/ |K(z—y) — K(z)|de < B, yeR" (4.28)
|z|>2]y|

Then we have the strong (p,p) estimate for 1 < p < 0o

1K * fllp < Cpll fllp (4.29)
and the weak (1,1) estimate
C

(K f)u(e) < —lIfll- (4.30)

We will show that these inequalities are true for f € ., but they can be extended to
arbitrary f € LP as we did for the Hilbert transform. Condition (4.28) is usually referred
to as the Hérmander condition; in practice it is often deduced from another stronger
condition called the gradient condition (i.e., (4.31) as below).

Proposition 4.19. The Hérmander condition (4.28) holds if for every x # 0

VK@) < —C

W. (4.31)

Proof. By the integral mean value theorem and (4.31), we have
1
[ ey K@< [ v oyl
|z >2]y] lz[=2]y]

_ Clyl / / Cly|
——dzdf
/ /|x|>2|y| |z — 9?/|"Jrl \z|>2\y| (Jo|/2)"+1

<2 Clylwns / ~pdr = 0" Clylon 1o

=2"Cw 1-
2ly| T 2Iyl "
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This completes the proof. a

Proof of Theorem 4.18. Since the proof is (essentially) a repetition of the proof of
Theorem 4.16, we will omit the details.
Let f €. and Tf = K « f. From (4.27), it follows that

n/2 n/2
w — w ~ A
il =(50) 1Tl = (52) 1R 7L

W% - . W \"?, . (4.32)
<[ — <
< <27T Kool fll2 < B o | f1l2

=B|[fl2,

by the Plancherel theorem (Theorem 1.26) and part (vi) in Proposition 1.3.

It will suffice to prove that T' is of weak type (1, 1) since the strong (p,p) inequality,
1 < p < 2, follows from the interpolation, and for p > 2 it follows from the duality since
the conjugate operator 7" has kernel K'(z) = K (—x) which also satisfies (4.27) and (4.28).
In fact,

(Tf,¢) = /R Tra)p)n = [ [ Kla=pra)dseis

= L K= epewroa = [ [ 0o

=(f,T'¢).
To show that f is of weak type (1,1), fix & > 0 and form the Calderén-Zygmund
decomposition of f at height a. T hen as in Theorem 4.16, we can write f = g + b, where

(1) llglly < [If[lr and [lgllec < 2"cv.
(i) b= Z b;, where each b; is supported in a dyadic cube @); satisfying fQ x)dx =0

and [|b;][1 < 2"+1a1m(Q]) Furthermore, the cubes Q; and Q) have disjoint interiors when
J# k.
(iif) 3°; m(Q;) < oM f]1-

The argument now proceeds as before, and the proof reduces to showing that

/ |Th;(x)|dx < C/ |b;(x)|dx, (4.33)
R™\Q% Qj

where ()7 is the cube with the same center as (); and whose sides are 2+/n times longer.
Denote their common center by ¢;. Inequality (4.33) follows from the Hérmander condition
(4.28): since each b; has zero average, if © ¢ Q]

0= [ Koy = [ KG9~ Kb

Qj

fo < ] (/Rn\Q; K )~ Ko - q)dx) oo

However, by changing variables  —¢; = &’ and y —¢; = ¢/, and the fact that |z —¢;| >
2ly —¢j| for all z ¢ QF and y € @; as an obvious geometric consideration shows, and
(4.28), we get

[ K@y - Ke-ede< [ K@ y) - K@)l < B
R™\Q* [z >2]y’|

This completes the proof. a

hence,
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4.4 Truncated integrals

There is still an element which may be considered unsatisfactory in our formulation,
and this is because of the following related points:

1) The L? boundedness of the operator has been assumed via the hypothesis that
K € L™ and not obtained as a consequence of some condition on the kernel K;

2) An extraneous condition such as K € L? subsists in the hypothesis; and for this
reason our results do not directly treat the “principal-value” singular integrals, those which
exist because of the cancelation of positive and negative values. However, from what we
have done, it is now a relatively simple matter to obtain a theorem which covers the cases
of interest.

Definition 4.20. Suppose that K(z) € L{ (R™\ {0}) and satisfies the following condi-
tions:
|K(x)] < Blz|™™, V& #0,

/ |K(z —y) — K(x)|de < B, Vy#0, (4.34)
|z|>2]y|

and

/ K(z)dr =0, V0<R; < Rz < o0. (4.35)
Ri<|z|<R2

Then K is called the Calderon-Zygmund kernel, where B is a constant independent of x
and y.

Theorem 4.21. Suppose that K is a Calderén-Zygmund kernel. For ¢ > 0 and f €
LP(R™), 1 <p < oo, let

T.f(z) = / @Ky (4.36)

Then the following conclusions hold.
(i) We have

IT=fllp < Apll £l (4.37)
where A, is independent of f and €.
(ii) For any f € LP(R™), lime_,0 T:(f) exists in the sense of LP norm. That is, there
exists an operator T such that
Tf(x)=rpv. | K(y)flz—y)dy.

Rn
(i) [Tflly < Apllfllp for f € LP(R™).

Remark 4.22. 1) The linear operator T' defined by (ii) of Theorem 4.21 is called the
Calderon-Zygmund singular integral operator. T, is also called the truncated operator of
T.

2) The cancelation property alluded to is contained in condition (4.35). This hypoth-
esis, together with (4.34), allows us to prove the L? boundedness and from this the L?
convergence of the truncated integrals (4.37).

3) We should point out that the kernel K(z) = L, z € R!, clearly satisfies the hy-
potheses of Theorem 4.21. Therefore, we have the existence of the Hilbert transform in
the sense that if f € LP(R), 1 < p < oo, then

lim ~ =y,

L Y
0T Jly|ze Y
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exists in the LP norm and the resulting operator is bounded in LP, as has shown in Theorem
4.16.

For L? boundedness, we have the following lemma.

Lemma 4.23. Suppose K satisfies the conditions (4.34) and (4.35) of the above theorem
with bound B. Let

_ [ K@), |z[=e,
Ke(w) = {o, o] < e.
Then, we have the estimate
sup |K.(€)] < CB, £>0, (4.38)
13

where C' depends only on the dimension n.

Proof. First, we prove the inequality (4.38) for the special case ¢ = 1. Since K;(0) = 0,
thus we can assume & # 0 and have

Ki(¢) = lim e TSR (2)da

:/ e TSR (2)de + lim e TSR (2)de
lz|<2m/(|w]1€]) R=00 Jor /(Jwllg)<lel<R
:le—i-lg

By the condition (4.35) f1<\x|<27r/(|wH§\) K (x)dz = 0 which implies

/ Ki(z)dz = 0.
lz]<2m/(|w]l€])

Thus, flw\<27f/(\w||€|) e~ WK (2)dr = flx\<27r/(|w||§|)[e_ —1]K; (z)dz. Hence, from the

fact [’ — 1| < |0] (see Section 1.1) and the first condition in (4.34), we get

|11 </ jwllz[[€][ Ky (2)|dz < |w|BE| | =" d
jal<2m/(fwll€]) el <2r/(lwllE))

2m/(|wll€])
zwn_1B|wH§|/ dr = 27w, _1B.
0

To estimate Iy, choose z = z(£) such that e“%# = —1. This choice can be realized if
z = n€/(w|¢|?), with |z| = 7/(|w|[€]). Since, by changing variables z + 2z = y, we get

/ e*Wiw'le(x)dx = — / e*wi(erz){Kl (’l}')de = */ eiuﬂy{Kl (y - Z)dy

=— / e VK (1 — 2)dx,
which implies [;, e 4Ky (z)dz = § [5. e "¢ [K;(x) — Ki(z — 2)]dz, then we have

(hm / / ) e VLK (x)dx
B=oo Jig|<R  Jja|<2n/(Jwll€])

=— lim e K (2) — Ky (v — 2)]de — / e WK (x)dx
|e|<2m/ (|l €])

1 ‘
=— lim e VLK (2) — Ky (z — 2)]dz

2 R=o0 Jor /(|wll€) <zl <R

1 ‘ 1 A

— 7/ e VTS K (2)dx — f/ e VK (2 — 2)d.

2 Jjzl<2m/(lwll€l) 2 Jjzl<2m/(lwlll)

The last two integrals are equal to, in view of the integration by parts,
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1 . 1 .
- / efwz:c-gK - / 7w7,(y+z)~§K1 (y)dy
2 Jjzi<2n/(wligl) 2 yrsi<ansulie)
1 . 1 .
[ 67‘*’”'51(1 Ydx + = 7‘*’”'§K1(:1:)d3:
2 2
|z|<2m/(|wll€]) la+2<2m/(Jwl[€])
1 ,
=_ = e Wiz EKl Ydx + = / ewITE R, (z)dz.
2 |zl <27/ (Jw|l€]) |z4z| <27/ (|w]l€])
lz+z|>27/(|w||€]) lz|>27/(|w||€])

For the first integral, we have 27 /(|w]|[¢]|) = |z| = |v+2|—]|z| >
2/ (|wll€]) — m/(|w][€]) = 7/(Jwl[€]), and for the second one,
2r/(|wllé]) < |z| < lz+ 2] + [2] < 37/(Jwl[¢]). These two
integrals are taken over a region contained in the spherical
shell, 7/(Jw|l€]) < |z| < 37/(Jw||&]) (see the figure), and is
bounded by %Bwn_llni’) since |Ki(x)| < Bl|z|~™. By |z|] =
7m/(Jw||€]) and the condition (4.34), the first integral of I is
majorized by

1 1 1
5/ Ko=)~ Koo =3 [ | 2) - Ka(o)lde < 5B

[z =227/ (Jwll€]) |z >2]2]

Thus, we have obtained

= 1 1
|K1(£)| < 2mwp_1B + §B + §Bwn_1 n3<CB

where C' depends only on n. We finish the proof for Kj.

To pass to the case of general K., we use a simple observation (dilation argument)
whose significance carries over to the whole theory presented in this chapter.

Let 6. be the dilation by the factor e > 0, ie., (6.f)(x) = f(ex). Thus if T is a

convolution operator

Tf(a) = £o) = [ ola 1))y,
then
S T5.(@) = [ ple o pflendy == [ ol o - 2) )z = oo

n

where ¢ (z) = e "p(c'z). In our case, if T' corresponds to the kernel K (z), then 6,176,
corresponds to the kernel e ™K (¢~ 'x). Notice that if K satisfies the assumptions of our
theorem, then e ="K (e~1x) also satisfies these assumptions with the same bounds. (A sim-
ilar remark holds for the assumptions of all the theorems in this chapter.) Now, with our
K given, let K’ = ™K (ex). Then K’ satisfies the conditions of our lemma with the same

bound B, and so if we denote
K'(z), |z|>1
/ _ ) = 1,
Ko={o > LIy
then we know that |K/(£)] < CB. The Fourier transform of e ™K/ (s 'z) is K (&€)

which is again bounded by CB; however e "K/|(¢~'z) = K.(z), therefore the lemma is
completely proved. a
We can now prove Theorem 4.21.
Proof of Theorem 4.21. Since K satisfies the conditions (4.34) and (4.35), then K, (z)
satisfies the same conditions with bounds not greater than C'B. By Lemma 4.23 and
Theorem 4.18, we have that the LP boundedness of the operators { K. }.~, are uniformly
bounded.
Next, we prove that {T%f1}c~0 is a Cauchy sequence in LP provided f; € C}(R"). In
fact, we have
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T fi(z) = T fi(z) = K(y) fr(z — y)dy — K(y) fi(zr — y)dy

ly|=e ly|=n
—sgn(n—e) / K@) (e —y) — fr(o)ldy,
min(e,m) <yl <max(e,n)

because of the cancelation condition (4.35). For p € (1,00), we get, by the mean value
theorem with some 6 € [0, 1], Minkowski’s inequality and (4.34), that

ITefr = Ty fully < [KW)IIV f1(z = 0y)llyldy

/min<s,n><y<max<s,n> )

<

X

/ KWV fr(@ — 09),lyldy
min(e,n)<|y|<max(e,n)

<c / K (4)]yldy
min(e,n)<|y|<max(e,n)

<CB ly| 7"y
min(e,n)<|y|<max(e,n)

max(e,n)
=CBw,_1 / dr

min(z,7)
:C’Bwn_l |’I7 — 6‘

which tends to 0 as €,7 — 0. Thus, we obtain T, f1 converges in LP as ¢ — 0 by the
completeness of LP.

Finally, an arbitrary f € LP can be written as f = fi1 + fo where f; is of the type
described above and | fz||, is small. We apply the basic inequality (4.37) for fo to get
ITefollp < CJlfallp, then we see that lim. 0T, f exists in LP norm; that the limiting
operator T also satisfies the inequality (4.37) is then obvious. Thus, we complete the proof
of the theorem. 0

4.5 Singular integral operators commuted with dilations

In this section, we shall consider those operators which not only commute with trans-
lations but also with dilations. Among these we shall study the class of singular integral
operators, falling under the scope of Theorem 4.21.

If T' corresponds to the kernel K (z), then as we have already pointed out, §.-1T9.
corresponds to the kernel e " K (e 1z). So if §,-1Td. = T we are back to the requirement
K(z) = e "K(s 1), ie., K(ex) = e "K(x), € > 0; that is K is homogeneous of degree
—n. Put another way

()

K(z) = W, (4.39)
with {2 homogeneous of degree 0, i.e., 2(cx) = 2(z), ¢ > 0. This condition on {2 is
equivalent with the fact that it is constant on rays emanating from the origin; in particular,
12 is completely determined by its restriction to the unit sphere S™~!.

Let us try to reinterpret the conditions of Theorem 4.21 in terms of 2.

1) By (4.34), 2(x) must be bounded and consequently integrable on S™~1; and another
Q@—y)  2xz)

x| 22yl | lz—y|" EI
of 2. However, what is evident is that it requires a certain continuity of {2. Here we shall

condition f‘

‘dz < C which is not easily restated precisely in terms
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content ourselves in treating the case where {2 satisfies the following “ Dini-type” condition
suggested by (4.34):

1
ifw(n):= sup [2(x)— 2], then / wf:)dn < 00. (4.40)
Jz—a’|<n 0
o |=]a’|=1

Of course, any (2 which is of class C!, or even merely Lipschitz continuous, satisfies the
condition (4.40).
2) The cancelation condition (4.35) is then the same as the condition

/ 2(z)do(z) =0 (4.41)
Sn—l

where do () is the induced Euclidean measure on S™~1. In fact, this equation implies that

R2 A
/ K(x)dx :/ / L(Tf )do(a:’)rnfldr
R1<|I|<R2 Rq Sn—1 r

=In (ﬁj) 2o (),

Theorem 4.24. Let 2 € L>®(S"1) be homogeneous of degree 0, and suppose that (2
satisfies the smoothness property (4.40), and the cancelation property (4.41) above. For
l1<p<oo, and f € LP(R"), let

T.f(x) = / 2(s) [z —y)dy.

|>e |y|n
(a) Then there exists a bound A, (independent of f and ) such that

1Te fllp < Apllfllp-
b)lim._oT.f =Tf exists in LP norm, and
(

ITfllp < Apllfllp-

(c) If f € L?>(R™), then the Fourier transforms of f and Tf are related by ﬂ(f) =
m(&)f(£), where m is a homogeneous function of degree 0. Explicitly,

m(¢) = / [—ngnwgn(m)+1n<1/s~x|> Qe)o(@), |d=1.  (442)

Proof. The conclusions (a) and (b) are immediately consequences of Theorem 4.21, once
we have shown that any K (x) of the form ) satisfies

EE
[ Ky~ K@i < B (4.43)
|z >2]y]
if {2 is as in condition (4.40). Indeed,

The second group of terms is bounded since {2 is bounded and

Lo l7=a7 ~ =
|z|>2]y] [z >2]y|

1 e ,
7/ 2] = | = yll 2550 e |z — gyl
2| >2]y]

2" — [z —y|"

|z —y[" |z

dz

=yl Jaf?
|z —y[" |

n—1

<[ Y el e g
|z|>2]y] §j=0
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n—1

S/ Yl > el 7 (|2]/2) " de (since |z —y| > |z| —|y| = |«/2)

|z|>2]y] §j=0
n—1

- / 1y 3 27~ = 227 — 1)y 2|~ d
|z|>2]y|

j=0 |z >2]y|

=2(2" — 1)|y|wn—1 (2" — Dwp—1.

1 j—
2[y|

To estimate the first group of terms, we notice that if |z| > 2|y|, the distance |PQ|
between the projections of x — y and z on the unit sphere as in the following picture.

Case 1: [a > [z —yl, sinf < {4 Case 2: |2] < |z —y|, sinf < < Il

2=yl = Tzl
. sin T=6
By the sine theorem, we have % = bl‘noip"’l where |OP| = 1. Since |y| < |z]/2, we
have 6 < Z and so cos@ > 0. Thus, cos § = /2258 > 1//2. Then, we have
x—y_£_| = sin _sin9< M<2M
- - . - X ~X
lz—yl |z sin(§ — g) cosg || ||

since sinf < % for both cases. So the integral corresponding to the first group of terms

is dominated by

d d o d
2"/ w <2|y> —xn = 2"/ w(2/|z|)—i = 2”wn,1/ w(2/r)—r
|z|>2|y| lz| ) |zl |z|>2 2] 2 r

S [
0 n
in view of changes of variables « = |y|z and the Dini-type condition (4.40).

Now, we prove (c). Since T is a bounded linear operator on L? which commutes with
translations, we know, by Theorem 1.62 and Proposition 1.3, that T' can be realized in
terms of a multiplier m such that f}" (&) = m(€) f(€). For such operators, the fact that they
commute with dilations is equivalent with the property that the multiplier is homogeneous
of degree 0.

For our particular operators we have not only the existence of m but also an explicit
expression of the multiplier in terms of the kernel. This formula is deduced as follows.

Since K () is not integrable, we first consider its truncated function. Let 0 < £ < n < o0,
and

2(x)
Kep(a) = q |zl
0, otherwise.
Clearly, K., € L'(R"). If f € L*(R") then Ko, = (&) = K., () f(&).
We shall prove two facts about K., (¢).
(i) supg |Ke 5 (§)] < A, with A independent of € and #;

e< |zl <,
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(if) if € # 0, im c—o K., (€) = m(€), see (4.42).
n—00
For this purpose, it is convenient to introduce polar coordinates. Let x = ra’, r = ||,
¥ =x/|lz] € "1, and £ = R¢, R=¢|, & = ¢/|€] € S" L. Then we have

_ _ 5
K&n(g) :/ eiwm.ng,n(fﬂ)dl’ = / ef‘*’“”'ﬁ ({E) dx
" NER

|.T‘"

n . ’ ’
2(x) (/ e wiltrz'- r"r"ldr) do(z")
gn—1 €

n . /7 4
:/ .Q(.Z‘/) (/ efszTfD -£ dT‘) d(f(l‘/),
Sn—1 5 r

2(2")do(2") = 0,
S'n,—l
we can introduce the factor cos(Jw|Rr) (which does not depend on z’) in the integral

defining I?;,({ ). We shall also need the auxiliary integral

Since

n Y dr
o (6a)) = / e cos((wlRA] T, B> 0.
£
Thus, it follows
Rol€) = [ Laléa) 2o,
S’!Lf

Now, we first consider I, ,(§, ). For its imaginary part, we have, by changing variable
wRr(a’ - &) =t, that
|w|Rn(a’-¢")

7 &i i -
ST (& 2") = —/ Mdr = —sgn (w)sgn (2 - g’)/ ﬂdt,
) " |w|Re(ar-¢') T
converges to
—sen@)smna’€) [ = Do) s ),
0

as e — 0 and n — oo.
For its real part, since cosr is an even function, we have

n d
NI, (& 2") = / [cos(lw|Rr|z" - £|) — cos(|w|Rr)]7T.
€
If ' - ¢ = =£1, then RI.,({,2') = 0. Now we assume 0 < ¢ < 1 < 7. For the case
2’ - & # +1, we get the absolute value of its real part

vl vl dr

1
REy(6 )| <| [ ~2sin S Rr(a’ €]+ Dsin 5 R’ €~ )

2 2

K d K d
+ ‘/ cos |w|Rr|z’ ~§’|—T —/ cos |err‘
1 r 1 r

Wl RNl '] oot WIRY ogt
/ sty / oSt
wRl¢" 2] ¢ wr 1

|W|2 2 2 !
<Rl ¢ ) [ rdre

€

If n|¢’ - 2’| > 1, then we have

|l cost |w| Fin cost
[y,
|w|Rle"-a| T lw|Rnler x|t

<2In(1/[¢" - 2')).
If0 < nlg -2'| <1, then

lw|R dt |w|Rn dt
h= </ —+/ =
lwiRlg 2| b JiwlRnlerar) T
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IR/l dt _
n< | T <o/ o)),
w|R|E" 2]

Thus,
2
RIo 60 < R 21/ 1),

and so the real part converges as ¢ — 0 and n — co. By the fundamental theorem of
calculus, we can write

; B n
/ COS()\T) cos :“T //sm (tr) dtdr——/ / sin(tr)drdt
/ /’78 cos(tr) , _/“m»(m)—w@f)dt

- t

_//\7’ cos(s / cos( t5 _ sins ‘*’7 n //\7’ smsd /)‘ cos(te) dt
7 n s i Sy n t

n

—0 —/ —dt = —In(A/p) =In(p/N), asn — o0, € = 0.
m
Take A = |w|R|z" - &'|, and p = |w|R. So
lim R(I.,, (& ")) :/ [cos |w|Rr(z’ - &) — cos |w|Rr]d In(1/|z" - €'|).
e—0 0

n— 00
By the properties of I. , just proved, we have
— w 2
Ko< [ |5+ s amie o) 10w o)
2

For n = 1, we have S° = {-1,1} and then [, ,In(1/|¢" - 2/|)do(2') = 2In1 = 0. For
n > 2, we can pick an orthogonal matrix A such that Ae; = £, and so by changes of
variables and using the notation § = (y2,¥3, .-, Un ),

/ In(1/|¢" - 2'|)do(z') = / In(1/|Ae; - 2'|)do(x')

Sn—l STL—

= [ w1/l A7 Ddo(@) S [ wn1/fer - yl)doty)
Sn—1 Sn—1

= n o) = [ {1/ o)
= [ m/mbdot) = [ mG/nl) [ e
5_:_5/__1:y_% ! )/ (1_y%)(n73)/2dg(z)dyl
Sn72

1
- / In(1/lya (1 - 12)92dy,
—1

gC(z + %RQ)wn_l + 20/ In(1/]¢" - 2'|)do ().
Sn—1

|

|

|

|

|

|

—

=
=N

—_
>~
<
=

1
—2, / 1/l ) (1 — 52)9 2dy,
0

/2
=S Lh W / In(1/ cos 0)(sin 6)"~2df = 2w,,_o1I5.
0
For n > 3, we have, by integration by parts,
/2 /2
I < / In(1/ cos @) sin 6df = / sin 0df = 1.
0 0

For n = 2, we have, by the formula foﬂ/Q In(cos#)df = —F In2 (see [GR, 4.225.3, p.531]),
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w/2 /2
I = / In(1/ cos)dl = —/ In(cos 6)do = %ln 2.
0 0
Hence, g, In(1/]¢" - 2'|)do(z") < C for any £ € S"~ 1.
Thus, we have proved the uniform boundedness of @(5 ), i.e., (i). In view of the limit
of I, n(&,2") as € = 0, n — oo just proved, and the dominated convergence theorem, we

get
lim K., (¢) = m(€),

e—0
n—roo

if £ # 0, that is (ii).

By the Plancherel theorem, if f € L?(R"), K., * f converges in L? norm as € — 0 and
1 — 00, and the Fourier transform of this limit is m(&)f(€).

However, if we keep ¢ fixed and let n — oo, then clearly [ K. ,(y)f(x — y)dy converges
everywhere to f‘y|>E K(y)f(z — y)dy, which is T. f.

Letting now ¢ — 0, we obtain the conclusion (c¢) and our theorem is completely proved.
O

Remark 4.25. 1) In the theorem, the condition that 2 is mean zero on S™~! is necessary

and cannot be neglected. Since in the estimate
2(y
W) ¢@ — yyay.

/n i/(fi)f(x —ydy = [/|y|<1 " /y|>1 ly

the main difficulty lies in the first integral. For instance, if we assume 2(z) = 1, f is a

nonzero constant, then this integral is divergent.

2) From the formula of the symbol m(€), it is homogeneous of degree 0 in view of the
mean zero property of 2.

3) The proof of part (c) holds under very general conditions on (2. Write 2 = 2, + (2,
where (2. is the even part of 2, 2.(z) = Q2.(—x), and 2,(x) is the odd part, 2,(—z) =
—£2,(x). Then, because of the uniform boundedness of the sine integral, i.e., 31 , (&, 2'),
we required only [g,_, [2,(2")|do(z") < oo, i.e., the integrability of the odd part. For the
even part, the proof requires the uniform boundedness of

1@ e o o)

This observation is suggestive of certain generalizations of Theorem 4.21, see [Ste70,
§6.5, p.49-50].

4.6 The maximal singular integral operator

Theorem 4.24 guaranteed the existence of the singular integral transformation
lim M (x —y)dy (4.44)
=0 Jjyze Iyl
in the sense of convergence in the LP norm. The natural counterpart of this result is
that of convergence almost everywhere. For the questions involving almost everywhere
convergence, it is best to consider also the corresponding maximal function.

Theorem 4.26. Suppose that {2 satisfies the conditions of the previous theorem. For
ferLPR™), 1< p< oo, consider

5@ = [ Wiy, >0

|>e |y|n
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(The integral converges absolutely for every x.)

(a) im0 T. f (x) exists for almost every x.

(b) Let T* f(x) = sup.~o |T=f(x)|. If f € L' (R™), then the mapping f — T* f is of weak
type (1,1).

(¢) If 1 <p < oo, then [|[T* fll, < Apl| f|[»-

Proof. The argument for the theorem presents itself in three stages.

The first one is the proof of inequality (c) which can be obtained as a relatively easy
consequence of the LP norm existence of lim,._,o T, already proved, and certain general
properties of “approximations to the identity”.

Let Tf(z) = lim.—,0 T f(z), where the limit is taken in the LP norm. Its existence is
guaranteed by Theorem 4.24. We shall prove this part by showing the following Cotlar
inequality

T f(z) < M(Tf)(z) + CM f ().

Let ¢ be a smooth non-negative function on R™, which is supported in the unit ball,

has integral equal to one, and which is also radial and decreasing in |z|. Consider

T lel>e
Ke(@) = {Ol7 lz] < e.
This leads us to another function @ defined by
b =9px K — K, (4.45)
where ¢ # K = lim. 0 ¢ * Ko = lim.yo [, o K(z —y)o(y)dy.
We shall need to prove that the smallest decreasing radial majorant of @ is integrable
(so as to apply Theorem 4.10). In fact, if |z| < 1, then

ol =l &l =| [ Kpole = nias| =| [ K)o = 1) = plonay

<[ K@l - vy <c [ HEZDZEDl, <o

since (4.41) implies [, K(y)dy = 0 and by the smoothness of ¢.

If 1 < |2| < 2, then & = px K — K is again bounded by the same reason and K is
bounded in this case.

Finally if |z| > 2,

P(z) = A K(z —y)e(y)dy — K(z) = /l < [K(z —y) — K(z)]e(y)dy.
" yI<1
Similar to (4.43), we can get the bound for |y| <1
/ K(z —y) — K(2)|de < / K(z —y) — K(2)|de < C.
|| >2 lz|>2[y|

Thus we obtain
[ wwi<c [ ew<c
|z|>2 ly|<1

Therefore, we have proved that ® € L'(R") from three cases discussed above.
From (4.45), it follows, because the singular integral operator ¢ — ¢ * K commutes
with dilations, that

e x K — K. =®., with ¢.(x) = "P(z/e). (4.46)
Now, we claim that for any f € LP(R"), 1 < p < o0,
(pe * K) x f(x) =Tf (), (4.47)
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where the identity holds for every z. In fact, we notice first that
(e x K5) * f(x) =Tsf x pe(x), forevery § >0 (4.48)
because both sides of (4.48) are equal for each x to the absolutely convergent double
integral [ _p. f\y|>5 K(y)f(z —y)p:(x — 2)dydz. Moreover, ¢. € L1(R™), with 1 < ¢ < 0o
and 1/p+1/g =1, 80 . * K5 — ¢ % K in LY norm, and T5f — T f in L? norm, as § — 0,
by Theorem 4.24. This proves (4.47), and so by (4.46)
T.f=K.xf=pc.« Kxf—®.xf=Tfxp.— f*D..

Passing to the supremum over ¢ and applying Theorem 4.10, part (a), Theorem 3.9 for

maximal funtions and Theorem 4.24, we get

1T fllp <I[sup T f * pclllp + [ sup | f * Dc ][],
e>0 e>0

SOIM(THllp + ClIM flly < CITfllp + Clifllp < Cllfllp-

Thus, we have proved (c).

The second and most difficult stage of the proof is the conclusion (b). Here the argument
proceeds in the main as in the proof of the weak type (1,1) result for singular integrals in
Theorem 4.18. We review it with deliberate brevity so as to avoid a repetition of details
already examined.

For a given o > 0, we split f = g+ b as in the proof
of Theorem 4.18. We also consider for each cube Q; its
mate ()7, which has the same center ¢; but whose side
length is expanded 2y/n times. The following geomet-
ric remarks concerning these cubes are nearly obvious
(The first one has given in the proof of Theorem 4.18).

(i) If » ¢ Q7, then |z —c;| > 2|y —¢;| for all y € Qy,
as an obvious geometric consideration shows.

(ii) Suppose x € R™ \ @} and assume that for some

*

y € Qj, |z —y| = e. Then the closed ball centered R"\U;0;
at x, of radius 7,¢, contains Q;, i.e., B(x,r) D Qj, if

T = YnE.

(iii) Under the same hypotheses as (ii), we have that
|z —y| > v,¢e, for every y € Q;.

Here v, and ~/, depend only on the dimension n,

Fig. 4.1 Observation for (ii) and (iii)

and not the particular cube @Q;.
With these observations, and following the development in the proof of Theorem 4.18,
we shall prove that if x € R \ U;Q7,

sup [ T2b(z)| < Z/ K (2 —y) = Kz —¢;)llb(y)ldy
e>0 — JQ;
J (4.49)

+ C'sup

1
r>0 m(B(a:,r)) /B(Iﬂ‘) |b(y)|dy7

with K(z) = ﬁ(‘?.
The addition of the maximal function to the r.h.s of (4.49) is the main new element of
the proof.
To prove (4.49), fix z € R"\ U;Q7, and € > 0. Now the cubes @; fall into three classes:
1) for all y € Qj, |z —y| < &;
2) forall y € Q;, |z —y| > ¢
3) there is a y € Q;, such that |z —y| =e.
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We now examine

T.b(z) = Z 5 K.(z — y)b(y)dy. (4.50)

Case 1). K.(x —y) =0 if |z — y| < ¢, and so the integral over the cube @); in (4.50) is
Z€r0.

Case 2). K.(v —y) = K(x—vy), if |[x —y| > €, and therefore this integral over @Q; equals

Ko~ )by = [ [K(a=y) = K@ - e)blu)d
Qj Qj
This term is majorized in absolute value by
| K@=y~ Ko - )by,

which expression appears in the r.h.s. of (4.49).

Case 8). We write simply

K. (z —y)b(y)dy

<[ K- olbwids= [ el

Q; Qj Q;NB(x,r)
by (ii), with r = y,e. However, by (iii) and the fact that {2 is bounded, we have
Qz—vy) C
Ke(z =yl = | T——7| < oo
|z -yl (7€)
Thus, in this case,
Koo =y < —o— [ joty)lay
Q = m(B(x,71) Jo,nBa.n '

If we add over all cubes (), we finally obtain, for 7 = e,
1
|Teb(x)| < / |K($—y)—K(ﬂc—c')Hb(y)lderCi/ b(y)|dy.
; Qj ! m(B(ac,r)) B(z,r)

Taking the supremum over € gives (4.49).
This inequality can be written in the form
[T*b(z)| < ¥+ CMb(z), x € F*,
and so
m({r € R" \ U;Qj : [T"b(x)| > a/2})
<m({z € R"\U;Q} : ¥ > a/4}) + m({z € R"\ U;Q} : CMb(x) > a/4}).

The first term in the r.h.s. is similar to (4.33), and we can get [5,, Y(z)dz < Cb||1
which implies m({z € R" \ U;Q} : £ > a/4}) < 25jb]|;.

For the second one, by Theorem 3.9, i.e., the weak type estimate for the maximal
function M, we get m({z € R™ \ U;Q} : CMb(z) > a/4}) < C1o]ls-

The weak type (1,1) property of T then follows as in the proof of the same property
for T, in Theorem 4.18 for more details.

The final stage of the proof, the passage from the inequalities of T* to the existence
of the limits almost everywhere, follows the familiar pattern described in the proof of the
Lebesgue differential theorem (i.e., Theorem3.13).

More precisely, for any f € LP(R™), 1 < p < oo, let

\U; QF

Af(z) = |limsup Tt f (x) — lim iélf T.f(2)].
e—0 e

Clearly, Af(x) < 2T* f(x). Now write f = f1 + fo where f1 € C1, and || f2||, < 6.
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We have already proved in the proof of Theorem 4.21 that 7. f; converges uniformly as
e — 0, s0 Afi(z) = 0. By (4.37), we have || Afz|l, < 24, f2]lp < 24,0 if 1 < p < co. This
shows Afs = 0, almost everywhere, thus by Af(z) < Afi(x) + Afa(x), we have Af =0
almost everywhere. So lim._,o 7. f exists almost everywhere if 1 < p < co.

In the case p = 1, we get similarly

m({z  Af() > a}) < 2l < 2,

and so again Af(z) = 0 almost everywhere, which implies that lim._,q T¢ f () exists almost
everywhere. O

4.7 Vector-valued analogues

It is interesting to point out that the results of this chapter, where our functions were
assumes to take real or complex values, can be extended to the case of functions taking
their values in a Hilbert space. We present this generalization because it can be put to good
use in several problems. An indication of this usefulness is given in the Littlewood-Paley
theory.

We begin by reviewing quickly certain aspects of integration theory in this context.

Let S be a separable Hilbert space. Then a function f(x), from R™ to ¢ is measur-
able if the scalar valued functions (f(x),¢) are measurable, where (-,-) denotes the inner
product of S, and ¢ denotes an arbitrary vector of 7.

If f(x) is such a measurable function, then |f(x)| is also measurable (as a function with
non-negative values), where | - | denotes the norm of .72.

Thus, LP(R", €) is defined as the equivalent classes of measurable functions f(z) from
R" to ', with the property that the norm |f|, = ([g. |f(2)[Pdz)'/? is finite, when
p < 00; when p = oo there is a similar definition, except || f]loco = esssup |f(x)].

Next, let A and 5% be two separable Hilbert spaces, and let L(5#], %) denote the
Banach space of bounded linear operators from 54 to /%%, with the usual operator norm.

We say that a function f(z), from R™ to L(J4,.74) is measurable if f(z)¢ is an J%%-
valued measurable function for every ¢ € J#. In this case |f(z)| is also measurable and
we can define the space LP(R", L(J¢, 5¢)), as before; here again | - | denotes the norm,
this time in L(J4,.76).

The usual facts about convolution hold in this setting. For example, suppose K(z) €
LY(R™, L(5A, #5)) and f(z) € LP(R™, 54), then g(z) = [, K(z —y)[f(y)dy converges in
the norm of 75 for almost every x, and

o)) < [ 1K@ =prwlay< [ K@=l
Also [lg|l» < | Kllgllfllp, if 1/r=1/p+1/qg—1, with 1 < r < co.

Suppose that f(z) € LY(R", ). Then we can define its Fourier transform f(¢) =

Jgn €79 C f(x)dx which is an element of L>(R", ). If f € L'(R",¢) N L*(R", ),

~ N —n/2
then f(&) € L*(R", ) with || f]|2 = (M) I f|l2- The Fourier transform can then be

o
extended by continuity to a unitary mapping of the Hilbert space L?(R", 7#) to itself, up
to a constant multiplication.

These facts can be obtained easily from the scalar-valued case by introducing an arbi-
trary orthonormal basis in 7.



92 4 Singular Integrals

Now suppose that 7 and 5% are two given Hilbert spaces. Assume that f(z) takes
values in 74, and K (x) takes values in L(J4, #%). Then
Tf(x)= | K(y)f(z—y)dy,
R"L
whenever defined, takes values in 773.

Theorem 4.27. The results in this chapter, in particular Theorem 4.18, Proposition 4.19,
Theorems 4.21, 4.24 and 4.26 are valid in the more general context where f takes its value
in /4, K takes its values in L(56, 5%) and T f and T, f take their value in 5%, and where
throughout the absolute value | - | is replaced by the appropriate norm in J4, L(J4, 7)
or % respectively.

This theorem is not a corollary of the scalar-valued case treated in any obvious way.
However, its proof consists of nothing but a identical repetition of the arguments given for
the scalar-valued case, if we take into account the remarks made in the above paragraphs.
So, we leave the proof to the interested reader.

Remark 4.28. 1) The final bounds obtained do not depend on the Hilbert spaces J# or
6, but only on B, p, and n, as in the scalar-valued case.

2) Most of the argument goes through in the even greater generality of Banach space-
valued functions, appropriately defined. The Hilbert space structure is used only in the
L? theory when applying the variant of Plancherel’s formula.

The Hilbert space structure also enters in the following corollary.

Corollary 4.29. With the same assumptions as in Theorem 4.27, if in addition
ITflla=cllfll2 >0, feL*R" ),
then || fll, < AT flp, if f € LP(R™, 54), if 1 <p < co.

Proof. We remark that the L?(R"™, %) are Hilbert spaces. In fact, let (-,-); denote the
inner product of 4%, j = 1,2, and let (-,-); denote the corresponding inner product in
L*(R", #;); that is

)= [ (F@).g();de

Now T is a bounded linear transformation from the Hilbert space L?(R",54) to the
Hilbert space L?(R",.43), and so by the general theory of inner products there exists
a unique adjoint transformation T, from L2(R™, %) to L*(R™, 4 ), which satisfies the
characterizing property

(Tf1, fa)o = (f.Tfa)1, with f; € L*(R", ).
But our assumption is equivalent with the identity (see the theory of Hilbert spaces, e.g.
[Din07, Chapter 6])

(Tf,Tg)s = c*(f,gh, forall f,ge L*(R", 7).
Thus using the definition of the adjoint, (T'Tf,g)1 = ¢*(f,g)1, and so the assumption can
be restated as

TTf =cf, feL*R".4). (4.51)

T is again an operator of the same kind as 7" but it takes function with values in % to
functions with values in 7, and its kernel K(z) = K*(—x), where * denotes the adjoint

of an element in L(J4, 54).
This is obvious on the formal level since
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(Tf1, f2)2 :/n /n(K(x —y)f1(y), fa(x))2dydz
[ [ (@K (g = o) falardody = (1, T

The rigorous justification of this identity is achieved by a simple limiting argument. We
will not tire the reader with the routine details.

This being said we have only to add the remark that K*(—x) satisfies the same condi-
tions as K (z), and so we have, for it, similar conclusions as for K (with the same bounds).
Thus by (4.51),

ENfllp = ITTFllp < AT f -
This proves the corollary with A} = A, /c*. 0

Remark 4.30. This corollary applies in particular to the singular integrals commuted with
dilations, then the condition required is that the multiplier m(£) have constant absolute
value. This is the case, for example, when T is the Hilbert transform, K(z) = L and

m(&) = —isgn (CU) sgn (g) Tx?






Chapter 5
Riesz Transforms and Spherical Harmonics

5.1 The Riesz transforms

We look for the operators in R™ which have the analogous structural characterization
as the Hilbert transform. We begin by making a few remarks about the interaction of
rotations with the n-dimensional Fourier transform. We shall need the following elementary
observation.

Let p denote any rotation about the origin in R™. Denote also by p its induced action
on functions, p(f)(xz) = f(pz). Then

(Ff© = [ e spyin = [
=7 f(p€) = pF f(£),

e‘”"pfly'ff(y)dy=/ e WP f(y)dy

n n

that is,
Fp=pF.
Let £(z) = (£1(x),l2(x), ..., Ly (x)) be an n-tuple of functions defined on R™. For any

rotation p about the origin, write p = (p;i) for its matrix realization. Suppose that ¢
transforms like a vector. Symbolically this can be written as

U(pz) = p(£(x)),

or more explicitly

li(px) = ijkfk(m), for every rotation p. (5.1)
)

Lemma 5.1. Suppose ¢ is homogeneous of degree 0, i.e., {(ex) = £(zx), for e > 0. If ¢
transforms according to (5.1) then £(x) = Cray for some constant c; that is
Py
li(z) = . 5.2
J (.13) c |1'| ( )
Proof. It suffices to consider z € S™~! due to the homogeneousness of degree 0 for ¢.
Now, let ey, e, ..., e, denote the usual unit vectors along the axes. Set ¢ = ¢1(e1). We can
see that £;(e;) =0, if j # 1.
In fact, we take a rotation arbitrarily such that e; fixed under the acting of p, i.e.,
per = ej. Thus, we also have e; = plper = pleg = pTel. From pe; = pTel = eq,

1
O) . Because

wegetp11zlandplk:pﬂ=0f0rk7$1andj7é1.Sop:<0A

-1
<(1) 1(4)1) = <(1) Ao_l) and p=' = pT, we obtain A”! = AT and detA = 1, ie., A

95
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is a rotation in R"~'. On the other hand, by (5.1), we get {;(e1) = > p_s pjrli(er)
for j = 2,...,n. That is, the n — 1 dimensional vector (¢2(ey),¥l3(e1), - ,ln(e1)) is left
fixed by all the rotations on this n — 1 dimensional vector space. Thus, we have to take

la(e1) = L3(er) = --- = Lp(e1) = 0.
Inserting again in (5.1) gives ¢;(pe1) = pj1fi(e1) = cpji1. If we take a rotation such that
pe1 = x, then we have pj; = z;, so £;(x) = cz;, (Jz| = 1), which proves the lemma. O

We now define the n Riesz transforms. For f € LP(R"), 1 < p < 00, we set

R;f(z) = lim ¢, / r—y)dy, j=1,..,n, 5.3
with ¢, = % where 1/c,, = % is half the surface area of the unit sphere

S™ of R™™1. Thus, R; is defined by the kernel K;(z) = (lz ‘( ,and 2;(z) = cn%‘.
Next, we derive the multipliers which correspond to the Riesz transforms, and which in
fact justify their definition. Denote

Q) = (21(2), 22(2), ... 2n(2)), and m(§) = (m1(£), m2(§), -, ma(§))-
Let us recall the formula (4.42), i.e

m©) = [ s 0o, Ig=1 (5.4

with @(t) = — % sgn (w) sgn () + In|1/¢t|. For any rotation p, since £2 commutes with any
rotations, i.e., 2(pzx) = p(£2(zx)), we have, by changes of variables,

pm©) = [ al-ap(@a)iote) = [ #le-0)2(pw)in(z)
= [ #e o o) = [ 8o n)2()doty)
Sn—1 Sn—1

=m(p§).
Thus, m commutes with rotations and so m satisfies (5.1). However the m; are each
homogeneous of degree 0, so Lemma 5.1 shows that m;(§) = ?J with

c=my(e1) :/STH1 P(ey - ) (z)do(x)

:/ [—% sgn (w) sgn (x1) + In |1/21|]cpz1do ()
Sn*l

= — sgn (w)%cn/ ) |z1|do(x) (the 2nd is O since it is odd w.r.t. x7)
S’IL*

B i D((n+1)/2) 2x(n=1/2
= — sgn(w) 3 2 T((n+ )/2) —sgn (w)i.
Here we have used the fact [g, , |z1|do(z) = 27("=1/2/'((n+1)/2). Therefore, we obtain

R 1(€) = — sgn (w)i fg| €, j=1..n. (5.5)

This identity and Plancherel’s theorem also imply the following “unitary” character of the
Riesz transforms

SR 12 = I3
j=1
By m(p€) = p( (€)) proved above, we have m;(p§) = >, pjxmi(§) for any rotation p
and then m;(p€) f(€) = Zk pirmi(§) f(£). Taking the inverse Fourier transform, it follows

F " m; (0€) f(€) 1ZP]kmk ZPJI«/ (€ Zngka
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But by changes of variables, we have

lwl

7m0 = (1) [ ey o00fe1de

= (';T') /n e my; () f(p ™ n)dn
=(FH(myi () f(p ) (pw) = pF M (my () f(p~1€)) ()

=pR;p~ " f,
since the Fourier transform commutes with rotations. Therefore, it reaches
pRip™ =) pinRif, (5.6)
k

which is the statement that under rotations in R™, the Riesz operators transform in the
same manner as the components of a vector.
We have the following characterization of Riesz transforms.

Proposition 5.2. Let T = (T1,Ts,...,T},) be an n-tuple of bounded linear transforms on
L?(R™). Suppose

(a) Each T; commutes with translations of R™;

(b) Each T; commutes with dilations of R™;

(¢) For every rotation p = (pjr) of R™, pTjp~ ' f = >, pjxTkf.
Then the T} is a constant multiple of the Riesz transforms, i.e., there exists a constant c
such that T; = cR;, j =1,...,n.

Proof. All the elements of the proof have already been discussed. We bring them together.

(i) Since the 7T} is bounded linear on L?*(R™) and commutes with translations, by The-
orem 1.62 they can be each realized by bounded multipliers m;, i.e., Z(T;f) = mjf.

(ii) Since the T; commutes with dilations, i.e., T;é.f = 6.1} f, in view of Proposition
1.3, we see that ZT;0.f = mi()Fo.f = mj(€)e 5.1 f(€) = m;(€)e " f(¢/e) and
FOTf = e 0.1 FT;f = e 01 (myf) = e "m;(€/e)f(£/e), which imply m;(€) =
m;(&/e) or equivalently m;(ef) = m;(§), € > 0; that is, each m; is homogeneous of degree
0.

(iii) Finally, assumption (c) has a consequence by taking the Fourier transform, i.e., the
relation (5.1), and so by Lemma 5.1, we can obtain the desired conclusion. O

One of the important applications of the Riesz transforms is that they can be used to
mediate between various combinations of partial derivatives of a function.

Proposition 5.3. Suppose f € C*(R"™). Let Af =5 ?:1 %{' Then we have the a prior:
J
bound

Proof. Since .7 (0, f)(§) = wi&;F f(§), we have
2
F (op) (O = - 66 1(6)

92,07
- (~ @) (- @) g 1o

=—FR;R,Af.
Thus, -2 = —R;RpAf. By the LP boundedness of the Riesz transforms, we have the

? B:rjﬁzk
desired result. O

0*f
Ox;0xy,

<Al 1<p <o (5.7)

‘ p
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Proposition 5.4. Suppose f € C}(R?). Then we have the a priori bound

0
8331 8;52 P

H@xl P Haxg

p

Proof. The proof is similar to the previous one. Indeed, we have

] & +8

ng (&1 —1i&2) (& -Hfz)y
“Te € /)
_ —Sgn (w)’ng —sgn (W)Z(gl - Zg?)ﬁ(a f + ) f)
€] [3 o -

== ﬁR](Rl - lRQ)(allf + Zalzf)
That is, 0,, f = —Rj(R1 — iR2)(0p, f + 0., f). Also by the LP boundedness of the Riesz
transforms, we can obtain the result. a
We shall now tie together the Riesz transforms and the theory of harmonic functions,
more particularly Poisson integrals. Since we are interested here mainly in the formal

aspects we shall restrict ourselves to the L? case. For L? case, one can see the further
results in [Ste70, §4.3 and §4.4, p.78§].

Theorem 5.5. Let f and fi, ..., fn all belong to L?(R™), and let their respective Poisson
integrals be uo(x,y) = Py * f, u1(x,y) = Py * f1, ..., un(z,y) = Py * fn. Then a necessary
and sufficient condition of
is that the following genemlized Cauchy-Riemann equations hold:
0
> 5u -
896]
8u] Ouy, ‘ .
= — k th xg = y.
8.’13k 8$j’ J 7é ) with To Yy

Remark 5.6. At least locally, the system (5.9) is equivalent with the existence of a harmonic
function g of the n + 1 variables, such that u; = %, 7=0,1,2,...,n.
J

(5.9)

Proof. Suppose f; = R; f, then f] (§) = —sgn (w)%f(ﬁ) and so by (4.15)
uj(z,y) = —sgn (w) <|2°jT> f(f) |§| e remlvtlyge =1, .. n,
and

wl\" £ wi-x  —|w

w@m:<gv f(@eerlutlvae.
™ Rn

The equation (5.9) can then be immediately verified by differentiation under the integral

sign, which is justified by the rapid Convergence of the integrals in question.

Conversely, let u;(x,y) ('“') fRn E)ewi&re=lwtlyge j = 0,1,...,n with fo = f.
Then the fact that % = g—zg = 8uJ , 7 = 1,...,n, and Fourier inversion theorem, show
J
that

L o()e™ W = gl eV,
therefore ﬁ({) = —sgn (W) H fo(ﬁ), and so
fi=Rijfo=R;f, j=1,..,n
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5.2 Spherical harmonics and higher Riesz transforms

We return to the consideration of special transforms of the form
. 2(y)
Tf(x) = lim e Tl [z —y)dy, (5.10)
where {2 is homogeneous of degree 0 and its integral over S”~! vanishes.
We have already considered the example, i.e., the case of Riesz transforms, £2;(y) = cl%j,
j=1,..,n. For n =1, 2(y) = csgny, and this is the only possible case, i.e., the Hilbert
transform. To study the matter further for n > 1, we recall the expression

m© = [ M- 02wir). =1

where m is the multiplier arising from the transform (5.10).

We have already remarked that the mapping {2 — m commutes with rotations. We
shall therefore consider the functions on the sphere S™~! (more particularly the space
L?(S"~1)) from the point of view of its decomposition under the action of rotations. As
is well known, this decomposition is in terms of the spherical harmonics, and it is with a
brief review of their properties that we begin.

We fix our attention, as always, on R™, and we shall consider polynomials in R™ which
are also harmonic.

Definition 5.7. Denote a = (o, ..., ), |a| = Z?=1 aj and 2% = 27" - 20", Let &

denote the linear space of all homogeneous polynomials of degree k, i.e.,
Py 1= {P(x) = Zaaxo‘ el = k‘}

Each such polynomial corresponds its dual object, the differential operator P(9,) =
> aa 0y, where 9y = 991 ---09m. On P, we define a positive inner product (P, Q) =
P(9,)Q. Note that two distinct monomials 2 and z® in P, are orthogonal w.r.t. it,

’

since there exists at least one i such that o; > o}, then 9% x;" = 0. (P, P) = }_ |aq|*a!
where a! = (a1!) -+ (ap!).

Definition 5.8. We define 4 to be the linear space of homogeneous polynomials of
degree k which are harmonic: the solid spherical harmonics of degree k. That is,

G, = {P(x) € P : AP(z) = 0}.

It will be convenient to restrict these polynomials to S®~!, and there to define the
standard inner product,

(P.Q)= [ P@Q@w).
For a function f on S™"~!, we define the spherical LaplaceanAg by

Asflz) = Af(x/]z)),

where f(x/|z]) is the degree zero homogeneous extension of the function f to R™\ {0},
and A is the Laplacian of the Euclidean space.!

1 This is implied by the well-known formula for the Euclidean Laplacian in spherical polar coordinates:

0 0
Af = 7“17”5 (r"ila—f) +r 2Agf.
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Proposition 5.9. We have the following properties.

(1) The finite dimensional spaces {4}, are mutually orthogonal.

(2) Every homogeneous polynomial P € 9, can be written in the form P = P, +|z|*Ps,
where Py, € 76, and Py € Py_o.

(3) Let Hy, denote the linear space of restrictions of 7 to the unit sphere.? The elements
of Hy are the surface spherical harmonics of degree k, i.e.,

Hy ={P(z) € G, : |z| =1}.
Then L*(S™™ 1) = Y37, Hk. Here the L? space is taken w.r.t. usual measure, and the

infinite direct sum is taken in the sense of Hilbert space theory. That is, if f € L*(S"~1),
then f has the development

= Yi(z), Yi€ Hy, (5.11)

where the convergence is in the LQ(S"_l) norm, and

[ rrase =3 [ pipase)

(4) [fYk(LE) € Hk, then ASYk( ) = —k(k +n— Q)Yk( )

(5) Suppose f has the development (5.11). Then f (after correction on a set of measure
zero, if necessary) is indefinitely differentiable on S"~1 (ie., f € C(S"1)) if and only
if

/ [Vi(z)|do(z) = O(k™Y), ask — oo, for each fived N. (5.12)
Snfl

Proof. (1) If P € &, ie., P(x) =) agx® with |a| = k, then

n n

a-fl
E 10, P = E x; E aaajsc‘f‘lnmj'] cepom = E a; E Aox® =
; ; =

On S™ 1 it follows kP 2P where a denotes differentiation w.r.t. the outward normal
vector. Thus for P € 74, and Q € s, then by Green’s theorem

t-3) [ Padst = [ (@50 - P52) dota

= / [QAP — PAQ)dx =
|z|<1

where A is the Laplacean on R™.

(2) Indeed, let |z _s be the subspace of & of all polynomials of the form |z|?P,
where Py € &j;_5. Then its orthogonal complement w.r.t. (-, -) is exactly J4,. In fact, P; is
in this orthogonal complement if and only if (|z|? Py, P1) = 0 for all P,. But (|z|*P, Py) =
(P2(0,)A)Py = (Py, APy), so AP, = 0 and thus &), = 74 & |v|> P}, _o, which proves the
conclusion. In addition, we have for P € &7

|z|*Py(z), Kk even,

P(x) = Py(z) + |2[*Pra(z) + - + { |z|*=1 Py (z), k odd,

where P; € J¢; by noticing that &; = J¢; for j =0, 1.
(3) In fact, by the further result in (2 ), if |z| = 1, then we have

P(z) = Pu(z) + Pyola) +--- . + {]fjl)g; Z izzn

2 Sometimes, in order to emphasize the distribution between %4, and Hj,, the members of H}, are referred
to as the surface spherical harmonics.
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with P; € 4. That is, the restriction of any polynomial on the unit sphere is a finite
linear combination of spherical harmonics. Since the restriction of polynomials is dense in
L?(S™7 1) in the norm (see [SW71, Corollary 2.3, p.141|) by the Weierstrass approximation
theorem,® the conclusion is then established.
(4) In fact, for |z| = 1, we have
AgYi(z) =A(|z| V(@) = |2["*AYy + A(J2| )Yy + 2V (2| 7F) - VY3
=(k* + (2 — n)k)|z| "2y, — 2k2|z| 7R 2,
= —k(k+n—2)z|" 2V, = —k(k +n — 2)Y,
since Z?:l 20, Yy = kYy, for Yy, € Py,
(5) To prove this, we write (5.11) as f(z) = > po ax Y, (x), where the Y, are normalized
such that [g, , |Y;2(z)|?do(z) = 1. Our assertion is then equivalent with aj, = O(k=7/2),
as k — oo. If f is of class C?, then an application of Green’s theorem shows that

/ AsfYdo = / fAsYdo.
S’nyfl Sn—l
Thus, if f € C°, then by (4)

ALfY2do = /

fALY do = [~k(k +n —2)]" / > 0¥ Y0do
Sn—l =0

n—1 n—1 7
s sn=1 T

=[—k(k+n—2)]ax /Sn_l Y2 2do = a[—k(k +n — 2)]".

So a = O(k™?") for every r and therefore (5.12) holds.
To prove the converse, from (5.12), we have for any r € N

|AGFI3 =(A%f, Asf) = (O AGYj(x), Y | AgYi(x))
§=0 k=0

=D _[=ili +n=2)]"Yj(x), ) _[k(k +n —2)]"Yi(z))
3=0 k=0

[~k(k +n = 2)]* (Yi(x), Yi(z))

M

~
Il
=}

[~k(k+n—2)O(™Y) < C,

M

x>

=0
if we take IV large enough. Thus, f € C°°(S"~1). O
Theorem 5.10 (Hecke’s identity). It holds

[

—n/2
27) (—isgn(w))kPk(f)e_%lm?, VP, € 74, (R™). (5.13)

F(Py(x)e 5 11%) = (
Proof. That is to prove

—n/2
/ Py(w)emm =5 g = (57?) (—isgn (w))*Py(&)e™ F1E. (5.14)

Applying the differential operator Py(0¢) to both sides of the identity (cf. Theorem

1.10)
—-n/2
/e“”f'?ml?dﬁ('w') e 51,
n 2

3 If g is continuous on S™ !, we can approximate it uniformly by polynomials restricted to S™~ 1.
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we obtain
]Rn

Since Py (x) is polynomial, it is obvious analytic continuation Py (z) to all of C™. Thus, by
a change of variable

n/2
Q&) =(-wi)" (;') / Py(a)ewiv e el el g

—n/2
(—wi)* Pk(a:>em'f°5'f'2dx:<|“') Q(€)e51e”,

m n
i [ ] "2 — 19l (z4isgn (w)€)?
=(—wi) o Py(x)e” 2 & dx
iy n
n/2
—t (B) [ Pty - s ge F o ay
T n

So,

QUisgn ()¢) =(—wi)* ('“")W / Py e 7y

(., \k M "/ * n—1 _—lel.2 / /
=(—wi) r" e 2 P (€ + ry")do(y')dr.
27T 0 Sn—1

Since Py is harmonic, it satisfies the mean value property, i.e., Theorem 4.5, thus

/ Pi(§+ 1y )do(y') = wn—1Pr(€) =Pk(£)/ do(y').
STL*l

Sn —1
Hence

Qlisgn (w)€) =(~wi)* ( I R

n—1

)
=(—wi)* (‘”')W Pi(9) / ) = 1o dr = (—wi)*Py(€).

(—wi)*(—isgn (w))* Py (&), which proves the theo-
rem. O

The theorem implies the following generalization of itself, whose interest is that it links
the various components of the decomposition of L?(R™), for different n.
If f is a radial function, we write f = f(r), where r = |z|.

Corollary 5.11. Let P.(z) € 54.(R™). Suppose that f is radial and Py(z)f(r) € L?(R™).
Then the Fourier transform of Py(x)f(r) is also of the form Py(x)g(r), with g a radial
function. Moreover, the induced transform f — g, T,, . f = g, depends essentially only on
n + 2k. More precisely, we have Bochner’s relation

k
w .
Tor = <|2W|> (—isgn (W) T 2k,0- (5.15)

Proof. Consider the Hilbert space of radial functions
2= {50011 = [T 1O <o
with the indicated norm. Fix now Py (x), Smd assume that Py is normalized, i.e.,
/ |P(2)|?do(z) = 1.
gn-1

Our goal is to show that

wl*
Tushe) = (52 (isn (@) Tusanad)0) (5.16)



5.2 Spherical harmonics and higher Riesz transforms 103

for each f € Z.
First, if f(r) =e~

5 w —n/2 o
(T"akei%r )(R) = (|277|) (—isgn (w))ke 5'R

%’"2, then (5.16) is an immediate consequence of Theorem 5.10, i.e.,

_(M)k<—' @) (Tusaroe™ 77N (R
=5 78gn (w n+2k,0€ )( )
||

k
which implies T}, . f = (%) (—isgn (w))* Ty ranof for f = e 5,

Next, we consider e~ 15" for a fixed ¢ > 0. By the homogeneity of Py and the interplay
of dilations with the Fourier transform (cf. Proposition 1.3), i.e., %6, = e "§.-1.%#, and
Hecke’s identity, we get

_ el

F(Pu(z)e™ 7e17) = ch2.F (Py(eV2a)e 5 ool

_lwl

=ek/2n/25 L F(Py(z)e 7 o)

~—

—n/2
—k/2—n w . _lelie2
=tz (W) s (@) s (P

—n/2
:@) (—isan (w))Fe /22 py (=1 /2g e 5 61/
e

—n/2
- (';i') (—isgn (w))keF/2 Py (¢)e 7 7z,

w —n/2 w
This shows that kae_%”? = (%) (—isgn (w))ke_k_"/%_%rz/e, and so

2w

|w| —k)—’I’L/Q lwl 2
— (2> E—k—n/Qe—Tr /a.
v

—k—n/2
Tpionoe™ 557 = (""') (—isgn (w)) e~ 0= (n+2R)/2=l5lr?/e

[w]

" k
Thus, T7L7ke_%“’2 = (IQ%‘) (—isgn (cu))’“TnJer,Oe_T”2 for e > 0.

w]

. . . . . | .
To finish the proof, it suffices to see that the linear combination of {e~ 2 E7’2}0<E<o<> is
dense in Z. Suppose the contrary, then there exists a (almost everywhere) non-zero g € %,
such that g is orthogonal to every e='5=* in the sense of Z, i.e.,

|w|

/ e_TETQg(r)rszr”_ldr =0, (5.17)
0

for all € > 0. Let ¢(s) = fos e’TQQ(r)r”“k’ldr for s > 0. Then, putting ¢ = 2(m+1)/|w|,
where m is a positive integer, and by integration by parts, we have

0 :/0 e (r)dr = 2m/O e (r)rdr.

T

By the change of variable z = e~ 2, this equality is equivalent to

1
0= / 2 hp(/Inl/z2)dz, m=1,2,...
0
Since the polynomials are uniformly dense in the space of continuous functions on the
closed interval [0, 1], this can only be the case when ¢(4/In1/z) = 0 for all z in [0, 1]. Thus,
W'(r) = e " g(r)rt2*=1 = 0 for almost every r € (0,00), contradicting the hypothesis
that g(r) is not equal to 0 almost everywhere.
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k
Since the operators T}, , and (%) (—isgn (w))* T, 42k,0 are bounded and agree on the

dense subspace, they must be equal. Thus, we have shown the desired result. a

We come now to what has been our main goal in our discussion of spherical harmonics.
Theorem 5.12. Let Py(x) € 54, k > 1. Then the multiplier corresponding to the trans-
form (5.10) with the kernel ;T,ffl is

Py(§)
Yk |§|k s

e LR/2)
I'(k/24n/2)
Remark 5.13. 1) If k > 1, then Py (z) is orthogonal to the constants on the sphere, and so
its mean value over any sphere centered at the origin is zero.
2) The statement of the theorem can be interpreted as

F (Pk($)) _ DO (5.18)

Tk
||kt €]

with v, = 7% (—isgn (w))

3) As such it will be derived from the following closely related fact,

7 (Pk<>> B (5.19)

[afFn=a ) = T fglktar

—«
n w . k «
where vy o =7 /2 (%) (—isgn (w))k%

Lemma 5.14. The identity (5.19) holds in the sense that

P.(x) . Pr(§
/R ﬂw(x)dxzw,a /]R N J,&Q(g)d@ Vo €7 (5.20)

" |m|k+n7a

It is valid for all non-negative integer k and for 0 < a < n.

Remark 5.15. For the complex number o with R € (0,7n), the lemma and (5.19) are also
valid, see [SW71, Theorem 4.1, p.160-163].

Proof. From the proof of Corollary 5.11, we have already known that

—n/2
F(rua)e 2 = (1) (s )R e TIPS

so we have by the multiplication formula,

D BT p(adn = [ F (P T € p(e)e
—n/2
:<;> (—isgn (@) e 2 [ Py(e)em T 6)de,
Y Rn

for e > 0.
We now integrate both sides of the above w.r.t. €, after having multiplied the equation
by a suitable power of ¢, (¢°~!, 8 = (k +n — a)/2, to be precise). That is

/ 56_1/ Pk(x)e_%slwﬁgé(x)dxds
0 n

—n/2 00
w ) 1 —ken _lelig2 .
~() " ismt [Tt [ pgge T p(egace
O n
By changing the order of the double integral and a change of variable, we get
Pk($)¢($)/ elem T el dedy

Lh.s. of (5.21) :/
n 0
t=|wlelz|?/2 jwl e
n 0

(5.21)

|w]
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()7 1) [ Aorsoar s

Similarly,
w7 b
rhs of (5.21) = () (~isgn(w)) / Pe(e(€)
/oo 6—(k/2+a/2+1)e—%\ﬁ\z/sdgdg
0
el g2 /e —n/2 —(k+a)/2
i) <|w|) (— isgn(w))k/ P&y ()(|W|5|2>
2w
/Ootk/2+a/2 1 _tdtdf
0
- M —n/2 k & —(k+a)/2
= (27r —isgn (w 5 I'(k/2+a/2)
/ &)l e,
Thus, we get

(|w|>_(k+n /2 ~ —(k+n—a)
- I((k+n—-a)/2) | Pu(z)p(x)|x] dx

2 -
|w| -n/2 ‘w| —(k+a)/2
—() " cismer (8 e [ rige@id
which leads to (5.20).

Observe that when 0 < a < n and ¢ € ., then double integrals in the above converge
absolutely. Thus the formal argument just given establishes the lemma. O

Proof of Theorem 5.12. By the assumption that k& > 1, we have that the integral of
Py over any sphere centered at the origin is zero. Thus for ¢ € ., we get

/n m¢<x>dx=/| M[@(x)—¢(0)]dx+/ L@@(x)dx.

z|<1 |z [ktn—o |z|>1 |z [ftn=a

|51 Wgﬁ(m)dw as o — 0 by the dominated

convergence theorem. As in the proof of part (¢) of Theorem 4.26, ‘I:’lf%[@(:r) —$(0)] is

locally integrable, thus we have, by the dominated convergence theorem, the limit of the
first term in the r.h.s. of the above

Obviously, the second term tends to fl

i [ et oo = [ CRE o — a0l
D 3 . Pi(x)
_‘/acSl xllck(*zl pla)de = L e<jal<l ka(Jrzl o(x)da.

Thus, we obtain
Py(x) .

Similarly,
: Pi(§) : Pi(8)
hm/ <p§d§:hm/ w(&)dE.
a—0+ Jpn |E[FtTe (€) e=0 Jig|e |€|* (€)
Thus, by Lemma 5.11, we complete the proof with v, = limy_,0 V&,a- a
For fixed k > 1, the linear space of operators in (5.10), where 2(y) = P";ﬁg) and

P, € s, form a natural generalization of the Riesz transforms; the latter arise in the
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special case k = 1. Those for k > 1, we call the higher Riesz transforms, with k as the
degree of the higher Riesz transforms, they can also be characterized by their invariance
properties (see [Ste70, §4.8, p.79]).

5.3 Equivalence between two classes of transforms

We now consider two classes of transforms, defined on L?(R"). The first class consists
of all transforms of the form
2(y)

Tf=c-f+ lim —= f(x — y)dy, (5.23)

=0 Jiyze [yl”

where ¢ is a constant, 2 € C*°(5™"!) is a homogeneous function of degree 0, and the
integral [g,_, £2(x)do(z) = 0. The second class is given by those transforms 7" for which

F(TF)(€) =m(&)f(€) (5.24)

where the multiplier m € C°°(S"~!) is homogeneous of degree 0.

Theorem 5.16. The two classes of transforms, defined by (5.23) and (5.24) respectively,
are identical.

Proof. First, support that T is of the form (5.23). Then by Theorem 4.24, T is of the
form (5.24) with m homogeneous of degree 0 and

m© =c+ [ |- sm s (o) -/l o) 2@doto) =1 (625

Now, we need to show m € C°°(S™"~1). Write the spherical harmonic developments
') (%S N N

2z) = Yi(z), m(z) =Y Yi(x), Qv(x) =Y Vi(x), my(z) =D Yi(z), (5.26)
k=1 k=0 k=1 k=0

where Yy, Y}, € Hy, in view of part (3) in Proposition 5.9. k starts from 1 in the development
of 12, since fS”71 £2(z)dx = 0 implies that £2(x) is orthogonal to constants, and Hy contains
only constants.

Then, by Theorem 5.12, if 2 = 2y, then m(z) = my(z), with

f/k(x) = ’kak(.’I}), k>1.

But ma (@) — m (@) = fg [~5 sen(@)sen (v o) + In g | 120 (0) — n@)ldo(y).
Moreover by Holder’s inequality,

sup |mar(z) — my ()]
zesSn—1

9 1/2
< (sup/s B da(y)>

1/2
X (/S |20 (y) — QN(y)|2do'(y)) -0, (5.27)

as M, N — oo, since? for n =1, S° = {-1,1},

J.

4 There the argument is similar with some part of the proof of Theorem 4.24.

T

~ T sgn () sgn (y - ) + In(1/|y - )

2 7_(_2
dO’(y) = 73

T sen (w) sgn (y - ) + In(1/]y - )

2
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and for n > 2, we can pick a orthogonal matrix A satisfying Ae; = x and det A = 1 for
|x| = 1, and then by a change of variable,

sup
x Sn— 1

—sup [ [k a1/l )] dot

x

do(y)

T

— T sgn (@) sen (y - ) +In(1/Jy - )

2
= Wn1 +sup/ (In|y - Aey|)?do(y)
x Sn—1
71.2
Tt [ (ATl e Pdo(y)
x S'nfl
A1, 72
=AW / (In |21 ])%do(2) < oo.
1 -

Here, we have used the boundedness of the integral in the r.h.s., i.e., (with the notation
Z = (22, ..., zn), cf. [Gra04, p.A-20,p.267])
le

/S ()t = [ 11<1n|zl>2 / e YO e

5 ol

FEN T (1n|zl\)2/ 2(1—z$)<"—3>/2da(y)dm
on

1
:wn,g/ (ln|z1|)2(1 —zf)(”_‘g)/gdzl
-1

nzwsd, / (In | cos 8])2 (sin 0)"2d6 = wr_o1,.
0
If n > 3, then, by integration by parts,
I < / (In | cos 0])? sin 0dO = —2/ In|cosf|sin6df = 2/ sin 6df = 4.
0 0 0

If n = 2, then, by the formula foﬂ/2(1n(cos 0))%df =
p.531], we get

Zl(In2)% + 72/12], cf. [GR, 4.225.8,
™ /2
L = / (In| cos 0])%df = 2/ (In(cos 0))?df = w[(In2)? + 7% /12].
Thus, (5.27) shoows that ’
m(z) =c+ Z’kak(m).
Since {2 € C*°, we have, in view of part (g)_i)f Proposition 5.9, that
| e)dota) = 06)

as k — oo for every fixed N. However, by the explicit form of v, we see that v ~ k™
so m(z) is also indefinitely differentiable on the unit sphere, i.e., m € C°°(S"71).
Conversely, suppose m(z) € C°°(S™~1) and let its spherical harmonic development be
as in (5.26). Set ¢ = Yy, and Yy, () = ,yik}}k (z). Then £2(x), given by (5.26), has mean value
zero in the sphere, and is again indefinitely differentiable there. But as we have just seen
the multiplier corresponding to this transform is m; so the theorem is proved. a

n/2
7

As an application of this theorem and a final illustration of the singular integral trans-
forms we shall give the generalization of the estimates for partial derivatives given in
5.1.
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Let P(z) € &, (R™). We shall say that P is elliptic if P(x) vanishes only at the origin.
For any polynomial P, we consider also its corresponding differential polynomial. Thus, if
P(z) =3 aqgx®, we write P(a%) => aa(%)a as in the previous definition.

Corollary 5.17. Suppose P is a homogeneous elliptic polynomial of degree k. Let (8%)“ be
any differential monomial of degree k. Assume f € C¥, then we have the a priori estimate

o\" 0
(52) A, =2l (32)
Proof. From the Fourier transform of (%)a f and P (a@) f,

7(r(5)r)©@= [ c=r () "

T

<A
p

, l1<p<oo. (5.28)
P

P

and
7 ((8‘1) f) () = (i)' f(©),

we have the following relation

o7 () 1)©-e7(r(5)7) e

Since P(&) is non-vanishing except at the origin, 5(2) is homogenous of degree 0 and is

indefinitely differentiable on the unit sphere. Thus

(27 ((2))

where T is one of the transforms of the type given by (5.24). By Theorem 5.16, T is also
given by (5.23) and hence by the result of Theorem 4.24, we get the estimate (5.28). O




Chapter 6

The Littlewood-Paley g-function and
Multipliers

In harmonic analysis, Littlewood-Paley theory is a term used to describe a theoretical
framework used to extend certain results about L? functions to L? functions for 1 < p < oo.
It is typically used as a substitute for orthogonality arguments which only apply to LP
functions when p = 2. One implementation involves studying a function by decomposing
it in terms of functions with localized frequencies, and using the Littlewood-Paley g-
function to compare it with its Poisson integral. The 1-variable case was originated by J.
E. Littlewood and R. Paley (1931, 1937, 1938) and developed further by Zygmund and
Marcinkiewicz in the 1930s using complex function theory (Zygmund 2002 [1935], chapters
XIV, XV). E. M. Stein later extended the theory to higher dimensions using real variable
techniques.

6.1 The Littlewood-Paley g-function

The g-function is a nonlinear operator which allows one to give a useful characterization
of the L? norm of a function on R” in terms of the behavior of its Poisson integral. This
characterization will be used not only in this chapter, but also in the succeeding chapter
dealing with function spaces.

Let f € LP(R™) and write u(x,y) for its Poisson integral

jwl

ey = () [ eretcnfigae = [ posta -t

as defined in (4.15) and (4.17). Let A denote the Laplace operator in R}, that is A =

%22 +3 01 8%2?; V is the corresponding gradient, |Vu(z, y)|? = \%ZP—&— |V,u(z,y)|?, where

V(e y)f? = Y, |22
Definition 6.1. With the above notations, we define the Littlewood-Paley g-function
9(f)(x), by

1/2

o)) = ([ IVatenPu) (6.1)

We can also define two partial g-functions, one dealing with the y differentiation and the
other with the z differentiations,

01(f) () = ( / N ]g’Zm,y) dey> = ( / N |vzu<x,y>|2ydy)

1/2

(6.2)
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Obviously, g% = ¢% + g2.
The basic result for g is the following.
Theorem 6.2. Suppose f € LP(R"), 1 < p < co. Then g(f)(z) € LP(R™), and
A lf e < Nlg(Hllp < Apll flp- (6.3)

Proof. Step 1: We first consider the simple case p = 2. For f € L?(R™), we have

||g(f)||§=/]R / IVU(x»y)Ideyde/ y/R [Vu(z, y)[*dedy.
n 0 O n
In view of the identity
u(e,y) = (; ') / e e el f(g) g,
™ n
ou wl\" P ifr —lw
i ('%') /R —lwg| f(e)e e e e,

ou “"’ ‘ " ce f wix , —|w
(9.’1?] B <2/ > /n wzg] (E)e ‘ ¢ | glydg
’I‘}lus7 by PlanCherel’S fOI‘l’Ilula7

we have

and

2, oul? & ou
/n |Vu(z,y)]| dx—/n 7 —I—Z 890] Hay L 8x] L
= 1 e Fe ) 3+ 3 15 ity F©)e W)
j=1
—(50) |1 =tttz + 3 ity fere g
j=1
—2 () g e oemz = [ 2 (1) wigmpene eciae
2 27 Jen \ 27 ’
and so
o= [ [ 2 (L) wlepifpe #heay
= [ 2(E) weriser [ e by
_ el L e L\ s
- [ 2 () wmeriior e = 5 () g
1
S
Hence,
lo(Pll2 = 2772z (6.0

We have also obtained g1(f)l2 = lgs (f)ll2 = L1/ 2.

Step 2: We consider the case p # 2 and prove ||g(f)|lp < Ayl fllp- We define the Hilbert
spaces 77, and 5% which are to be consider now. 7 is the one-dimensional Hilbert space
of complex numbers. To define %, we define first % as the L? space on (0,00) with
measure ydy, i.e.,
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Y = {f A= [Py < oo}.

Let % be the direct sum of n+ 1 copies of J%’; so the elements of /% can be represented
as (n + 1) component vectors whose entries belong to 7. Since J# is the same as the
complex numbers, then L(.J71, 7%) is of course identifiable with J#%. Now let £ > 0, and
keep it temporarily fixed.
Define
Py c(x) OPyic(x) Py c(x)

K = e .
= ('CL‘) ( ay ? axl ) I axn )
Notice that for each fixed z, K.(x) € 4. This is the same as saying that

> |9P, 2 > 9P
/ ‘y+6(z) ydy < oo and / ‘y+8(x)
0 ay 0 axj
In fact, since Py(z) = W, we have that both
So the norm in 4% of K.(z),

2
ydy < oo, for j =1,....n.

P,
Oy

and ?)I:Jy are bounded by

A
([z]2+y2) D72

K, 2 A? 1/ L < A2 1/ — L C;
K@) (n+1) o (2?4 (y+e)2)nt! (n+1) o (y+e)yntt ’

and in another way

2 2 > ydy A1) s o —2n
K@ < 1) [ oty = SO ol 4647 < Clal
Thus,
|Ke(2)] € Lige(R™). (6.5)
Similarly,
2 [ele] o0
dz; o (= +y?)+? e (= +y2)+?
Therefore, K. satisfies the gradient condition, i.e.,
K
K. (z) < Clz|~ D), (6.6)
8$j

with C independent of ¢.
Now we consider the operator T, defined by

Tf@) = [ K.t)f(z— byt

Rn
The function f is complex-valued (take their value in 4#7), but T, f(x) takes its value in
J%. Observe that

T=f(x)] = (/Ooo \Vu(z,y+ 6)2ydy> %< (

Hence, ||T.f(x)|l2 < 27Y2| f|2, if f € L*(R™), by (6.4). Therefore,
|K.(z)] < 27Y2. (6.8)
Because of (6.5), (6.6) and (6.8), by Theorem 4.27 (cf. Theorem 4.18), we get | 1. f||, <

Apllfllp, 1 < p < oo with A, independent of €. By (6.7), for each z, |T. f(z)| increases to
g9(f)(z), as € = 0, so we obtain finally

lg(llp < Apllfllp, 1 <p<oo. (6.9)
Step 3: To derive the converse inequalities,

Al < Ng(H)llps 1 <p < oo (6.10)

[ |Vu<x7y>2ydy) ‘<o) 67)

€
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In the first step, we have shown that ||g1(f)||l2 = 3| f||2 for f € L?(R"). Let uy, u are the
Poisson integrals of f1,f2 € L? respectively Then we have |lgi(f1 + f2)[3 = 1llf1 + f2lI3,
e, fen foo | "1+“2 Pydyde = § [u |f1 + f2[>dw. It leads to the identity

/ / 1 ) 2 o e = [ (@ Tl
n 9 o

This identity, in turn, leads to the inequality, by Holder’s inequality and the definition of
91,

1L @R < [ sl @) e

Suppose now in addition that f, € LP(R") and f, € LP (R") with | fa],y < 1 and
1/p+1/p’ = 1. Then by Hoélder inequality and the result (6.9).

- fi(@) fa(x)da) < 4|1 (f)llpllgr (F2)llpr < 4Ap [lg1(f1)lp- (6.11)

Now we take the supremum in (6.11) as f, ranges over all function in L? N L¥', with
| f2llr < 1. Then, we obtain the desired result (6.10), with A}, = 1/4A,/, but where f
is restricted to be in L2 N LP. The passage to the general case is provided by an easy
limiting argument. Let f,, be a sequence of functions in L? N LP, which converges in L?
norm to f. Notice that g(fm) (@) — 9(fa)(@)] = |1Vt |2 0.ty — [Vt |2 0,y | <
[V, — Vg || 22(0,005ydy) = 9(fm — fn)(x) by the triangle inequality. Thus, {g(fm)} is a
Cauchy sequence in L? and so converges to ¢g(f) in L?, and we obtain the inequality (6.10)
for f as a result of the corresponding inequalities for f,,. a

We have incidentally also proved the following, which we state as a corollary.

Corollary 6.3. Suppose f € L*(R™), and g1(f) € LP(R"), 1 < p < co. Then f € LP(R"),
and Ay fllp < lg1(F)lp-

Remark 6.4. There are some very simple variants of the above that should be pointed out:
(i) The results hold also with g,(f) instead of g(f). The direct inequality ||g(f)||, <
Apll fllp is of course a consequence of the one for g. The converse inequality is then proved
in the same way as that for g;.
(ii) For any integer k > 1, define

oo ku 2 1/2
gk(f)(w)=</0 ’gyk(ﬂc,y) y%‘ldy) :

Then the L? inequalities hold for g, as well. both (i) and (ii) are stated more systematically
in [Ste70, Chapter IV, §7.2, p.112-113].

(iii) For later purpose, it will be useful to note that for each =, gi(f)(x) = Arg1(f)(x)
where the bound Ay depends only on k.

It is easily verified from the Poisson integral formula that if f € LP(R™), 1 < p < oo,
then

M%Oforeachx, as y — 00.
oy
Thus,
Fu(z,y) ® 9Ftlu(z,s) ,ds
ayk Y gsh+l O Gk

By Schwarz’s inequality, therefore,

OFu(z,y) ? o | Rz, 5)
dy* A\, Osk+1

2 oo
s?kds (/ s_%ds) .
y
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Hence, by Hardy’s inequality (2.18) (on p.41, with ¢ = r = 1 there), we have

|9k 2

(g6 (f)(2))? = /O ‘ak(fﬂ,y) vty
> > 8k+1 2k —2k 2k—1
g/o /y ‘85’“*1 ds ds) Y dy
1 0o Oy 2 2k 1 00
— - <
2]{71/0 (/y ‘askJrl <$7S) ds dy\ 2]{71/0
1 oo | ghtly, 2
T2k —1 /0 ’83k+1 ()

G2(k+1)—1 g
__1 2
ok — 1(9k:+1(f)(95)) :

Thus, the assertion is proved by the induction on k.

2

oty
S2k+1d8

Osk+1 (@,5)

The proof that was given for the LP inequalities for the g-function did not, in any
essential way, depend on the theory of harmonic functions, despite the fact that this
function was defined in terms of the Poisson integral. In effect, all that was really used is
the fact that the Poisson kernels are suitable approximations to the identity.

There is, however, another approach, which can be carried out without recourse to
the theory of singular integrals, but which leans heavily on characteristic properties of
harmonic functions. We present it here (more precisely, we present that part which deals
with 1 < p < 2, for the inequality (6.9)), because its ideas can be adapted to other
situations where the methods of Chapter 4 are not applicable. Everything will be based
on the following three observations.

Lemma 6.5. Suppose u is harmonic and strictly positive. Then
AuP = p(p — D)uP~?|Vul? (6.12)

Proof. The proof is straightforward. Indeed,
O, uP = puP~' 0, u, Bijup =p(p — 1)uP"?(dy,u)? +pup_18§ju,
which implies by summation
Au? = p(p — 1w 2| Vul® + puP ™! Au = p(p — 1)u? 2| Vul?,
since Au = 0. a

Lemma 6.6. Suppose F(z,y) € C(RTT)NC2(RT), and suitably small at infinity. Then

/ yAF (z,y)dzdy = / F(z,0)dz. (6.13)
R1+1 n

Proof. We use Green’s theorem

v ou
/D(uAv — vAu)dzdy = /aD (ua/\/ 3/\[) do

where D = B, N R}, with B, the ball of radius r in R"*! centered at the origin, A is
the outward normal vector. We take v = F', and u = y. Then, we will obtain our result
(6.13) if
/ yAF (z,y)dzdy — / yAF (z,y)dzdy, and / (yaF - F—= Oy > do — 0,
D Ri+1 8Dy BN aN

as r — oo. Here 0Dy is the spherical part of the boundary of D. This will certainly be the
case, if for example AF > 0, and |F| < O((|z| +y)™""°) and |VF| = O((|z| +y) " "179),
as |z| + y — oo, for some & > 0. O
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Lemma 6.7. If u(x,y) is the Poisson integral of f, then
sup lu(, )| < Mf(z) (6.14)
y>0

Proof. This is the same as the part (a) of Theorem 4.9. It can be proved with a similar
argument as in the proof of part (a) for Theorem 4.10. O
Now we use these lemmas to give another proof for the inequality |lg(f)|l, < Apllfllps
1<p<2
Another proof of |g(f)ll, < Apllfllps 1 < p < 2. Suppose first 0 < f € 2(R")
(and at least f # 0 on a nonzero measurable set). Then the Poisson integral u of f,
) = Jgn By(t)f(z — t)dt > 0, since P, > 0 for any 2 € R” and y > 0; and the
majorizations u(z,y) = O((Jz| + y)™™) and |Vu| = O((Jz| + y) "), as |z| + y — oo are
valid. We have, by Lemma 6.5, Lemma 6.7 and the hypothesis 1 < p < 2,

2 [T u(z,y)|? :71 b u? 7P AuP
@@ = [ Vat@fay = s [ Ay

2—p e ]
JMF@)r / yAuPdy,
plp—1) Jo

We can write this as

9(f)(@) < Cp(M f(2)) P2 (I (x))"/?, (6.15)
where I(z) = [;° yAuPdy. However, by Lemma 6.6,

/ I(z)dx = / yAuPdydr = / uP (z,0)dz = || f||}. (6.16)
n R1+1 Rn

This immediately gives the desired result for p = 2.
Next, suppose 1 < p < 2. By (6.15), Holder’s inequality, Theorem 3.9 and (6.16), we
have, for 0 < f € 2(R"),

| en@yds < cp [ 0np@)re )

1/r’ 1/r ,
<cp ([ ausepas) ([ 1wde) <G =g,

where r =2/p € (1,2) and 1/r + 1/7' = 1, then ' = 2/(2 — p).

Thus, |g(f)llp < Apllfllp, 1 <p <2, whenever 0 < f € Z(R").

For general f € LP(R™) (which we assume for simplicity to be real-valued), write
f = ft — f~ as its decomposition into positive and negative part; then we need only
approximate in norm f* and f~, each by a sequences of positive functions in Z(R™). We
omit the routine details that are needed to complete the proof. a

Unfortunately, the elegant argument just given is not valid for p > 2. There is, however,
a more intricate variant of the same idea which does work for the case p > 2, but we do
not intend to reproduce it here.

We shall, however, use the ideas above to obtain a significant generalization of the
inequality for the g-functions.

Definition 6.8. Define the positive function

wner= [ [ (5 +y)m V(e — t.y) Py’ didy. (6.17)

Before going any further, we shall make a few comments that will help to clarify the
meaning of the complicated expression (6.17).
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First, g%(f)(z) will turn out to be a pointwise majorant of g(f)(x). To understand
this situation better we have to introduce still another quantity, which is roughly midway
between g and g3. It is defined as follows.

Definition 6.9. Let I" be a fixed proper cone in RTFI with vertex at the origin and which
contains (0, 1) in its interior. The exact form of I" will not really matter, but for the sake
of definiteness let us choose for I' the up circular cone:

Ir= {(t,y) € Riﬂ Dt < y,y > 0}.
For any x € R", let I'(z) be the cone I" translated such that its vertex is at . Now
define the positive Luzin’s S-function S(f)(x) by
[S(H) (@) = / Vu(t, y)*y' " dydt = / Vu(z —t,y)*y" " dydt. (6.18)
I'(x) r

We assert, as we shall momentarily prove, that

Proposition 6.10.
9(f)(x) < CS(f)(x) < Cagr(f)(x). (6.19)

What interpretation can we put on the inequali-
ties relating these three quantities? A hint is afforded
by considering three corresponding approaches to the Fig. 6.1 I' and I'(z) forn =1
boundary for harmonic functions.

(a) With u(z,y) the Poisson integral of f(z), the simplest approach to the boundary
point & € R™ is obtained by letting y — 0, (with = fixed). This is the perpendicular
approach, and for it the appropriate limit exists almost everywhere, as we already know.

(b) Wider scope is obtained by allowing the variable point (¢,y) to approach (z,0)
through any cone I'(x), (where vertex is x). This is the non-tangential approach which
will be so important for us later. As the reader may have already realized, the relation of
the S-function to the g-function is in some sense analogous to the relation between the
non-tangential and the perpendicular approaches; we should add that the S-function is of
decisive significance in its own right, but we shall not pursue that matter now.

(c) Finally, the widest scope is obtained by allowing the variable point (¢, y) to approach
(x,0) in an arbitrary manner, i.e., the unrestricted approach. The function g} has the

analogous role: it takes into account the unrestricted approach for Poisson integrals.
Notice that g}(x) depends on A. For each z, the smaller A the greater g (z), and this
behavior is such that that LP boundedness of g3 depends critically on the correct relation
between p and A. This last point is probably the main interest in g3, and is what makes
its study more difficult than g or S.
After these various heuristic and imprecise indications, let us return to firm ground.
The only thing for us to prove here is the assertion (6.19).

Proof of Proposition 6.10. The inequality S(f)(z) < Cig;(f)(x) is obvious, since the
integral (6.17) majorizes that part of the integral taken only over I', and

An
y 5 L
<tl+y> ~ 2n

since |t| < y there. The non-trivial part of the assertion is:

9(f)(z) < CS(f)(=).
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It suffices to prove this inequality for z = 0. Let us de-
note by B, the ball in R"! centered at (0,y) and tangent to
the boundary of the cone I'; the radius of B, is then propor-
tional to y. Now the partial derivatives g—z and 8‘% are, like
u, harmonic functions. Thus, by the mean value theorem of
harmonic functions (i.e., Theorem 4.5 by noticing (0, y) is the

center of B,),

Fig. 6.2 ' and B,

0 1
Oy m(By) Jg Os

where m(B,,) is the n+1 dimensional measure of By, i.e., m(B,) = cy™* for an appropriate

constant ¢. By Schwarz’s inequality

ou(0,y) I” 1 / ou(z, s)|? / 1 / u(z,s)|?
< dxds dxds = dxds.
Jy (m(By))? B, s B, m(By) B, Js
If we integrate this inequality, we obtain
0o 2 [eS) 2
/ ) ’au(o,y) dy < / o / ou(s) | 1o\ ay.
0 dy 0 B, s

However, (z,s) € By clearly implies that ¢15 < y < cgs, for two positive constants ¢; and
co. Thus, apart from a multiplicative factor by changing the order of the double integrals,
the last integral is majorized by

cas 2 2
/ </ y‘”dy) ‘8u(aac7s) dxds < c’/ 8u(6;v,s) s'™"dxds.
r c18 S r S
This is another way of saying that,
> 10u(0,y)|? ) 2
/ y ‘ u(g ay) dy < C/// u(a'ra y) ‘ yl_ndl‘dy
0 Y r )

The same is true for the derivatives %, j = 1,...,n, and adding the corresponding
J
estimates proves our assertion. a

We are now in a position to state the L estimates concerning gy.

Theorem 6.11. Let A\ > 1 be a parameter. Suppose f € LP(R™). Then

(a) For every x € R", g(f)(x) < Cagi(f)().
(b) If 1 <p < o0, and p > 2/, then

lgx(Dllp < Apall fllp- (6.20)

Proof. The part (a) has already been proved in Proposition 6.10. Now, we prove (b).
For the case p > 2, only the assumption A > 1 is relevant since 2/ < 2 < p.
Let ¥ denote a positive function on R™, we claim that

[ @@ < as [ (o0)@)?010) (@) (6.21)
The Lh.s. of (6.21) equals

* ¢(30) An, —
y|Vul(t,y) 2 [/ —— "y "dx | dtdy,
VA ALy I =

o to prove (6.21), we must show that
’(/)(l‘) An, —n
sup/ —— "y < A\My(t). 6.22)
2 e Ul + ) w (
However, we know by Theorem 4.10, that

81;13(1/) * e ) (t) < AMp(t)
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for appropriate ¢, with ¢ () = e "p(x/¢c). Here, we have in fact o(z) = (1 + |z]) =",
e =y, and so with A > 1 the hypotheses of that theorem are satisfied. This proves (6.22)
and thus also (6.21).

The case p = 2 follows immediately from (6.21) by inserting in this inequality the
function ¢ = 1 (or by the definitions of g}(f) and g(f) directly), and using the L? result
for g.

Suppose now p > 2; let us set 1/q + 2/p = 1, and take the supremum of the Lh.s.
of (6.21) over all ¢ > 0, such that ¢ € L(R") and ||¢||, < 1. Then, it gives ||g5(f)[|2;
Holder’s inequality yields an estimate for the right side:

ANllg(OIZIM -
However, by the inequalities for the g-function, ||g(f)|l, < A} f|lp; and by the theorem
of the maximal function ||M1|l, < Agl[vlly < Af, since ¢ > 1, if p < oo. If we substitute
these in the above, we get the result:

19X (Nl < Apallfllp, 2<p<oo, A>1

The inequalities for p < 2 will be proved by an adaptation of the reasoning used for
g. Lemmas 6.5 and 6.6 will be equally applicable in the present situation, but we need
more general version of Lemma 6.7, in order to majorize the unrestricted approach to the
boundary of a Poisson integral.

It is at this stage where results which depend critically on the L? class first make their
appearance. Matters will depend on a variant of the maximal function which we define as
follows. Let p > 1, and write M, f(x) for

/p
1 H
M (2) = (iglgm(B(x’r)) L. uw dy> . (623)

Then M, f(z) = M f(z), and M, f(z) = ((M|f|*)(z))'/*. From the theorem of the maxi-
mal function, it immediately follows that, for p > p,

1M, £l = LAY @)Y, = I @Y < WA = 1l (6.24)

This inequality fails for p < u, as in the special case = 1.
The substitute for Lemma 6.7 is as follows.

Lemma 6.12. Let f € LP(R™), p > p > 1; if u(x,y) is the Poisson integral of f, then

|t|>n Mf(), (6.25)

|u(z —t,y)]| <A(1+
Yy

and more generally

n/p
ute — ol < 4, (14 1) o). (6.26)

We shall now complete the proof of the inequality (6.20) for the case 1 < p < 2, with
the restriction p > 2/A.

Let us observe that we can always find a u € [1, p) such that if we set \' = A — pr, then
one still has A’ > 1. In fact, if u = p, then \ — 2%1” > 1 since A > 2/p; this inequality can
then be maintained by a small variation of u. With this choice of u, we have by Lemma
6.12

n/w
Yy
et (25) < Ao (6.27)

We now proceed the argument with which we treated the function g.
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% s 1 1-n Y A w2 P(r — uP(z —
GO =gy [ (i) e helavie -y

_
p(p—1)

An
- Y
I"( :/ ) ( ) AP (2 — £, y)dtdy.
@)= forn? G )
It is clear that

Nn
I"(z)dx —/ / ( ) AuP (t,y)dzdtdy
\/]Rn R"+1 n y + |t —_ .T| ( )

=Cy / yAuP (t,y)dtdy.
n+1
i

S

AP (M f (2))* 771 (), (6.28)

where

The last step follows from the fact that if N > 1

An An - 1 An
o Gem) e LG o= L) e
re \Y + [t — | me \Y + 2| n \1+ 2]

=C)y < .

So, by Lemma 6.6

/ I (z)dx = C)\// uP (t,0)dt = Cx || f[}. (6.29)
Therefore, by (6.28), Holder’s inequality, (6.24) and (6.29),
g5 (F)llp < ClIM,f (@)1 (@)l < CIMLFI P21 12 < Cllf -
That is the desired result. O

Finally, we prove Lemma 6.12.

Proof of Lemma 6.12. One notices that (6.25) is unchanged by the dilation (z,t,y) —
(6, dt, 0y), it is then clear that it suffices to prove (6.25) with y = 1.

Setting y = 1 in the Poisson kernel, we have Py(z) = ¢, (1 + |z|>)~(*1/2 and u(z —
t,1) = f(x) * Pi(x — t), for each t. Theorem 4.10 shows that |u(x —t,1)] < A;M f(x),
where A; = [ Qi(z)dz, and Q;(x) is the smallest decreasing radial majorant of P (z — t),
ie.,

1
Qi(x) = cp ‘;‘U}F‘)xl 1+ |2 — t|2)(n+1)/2.

For Q:(z), we have the easy estimates, Q;(z) < ¢, for |z| < 2t and Qi(z) < A'(1 +
|z|?)~(+D/2 for |z| > 2|t|, from which it is obvious that A; < A(1 + [¢t|)” and hence
(6.25) is proved

Since u(z —t,y) = [gn Py(s)f(x —t —s)ds, and [, Py(s)ds = 1, by Holder inequality,
we have

1/
e =) S USRI < ([ POIfo == 9)ltas) =00~ ),
where U is the Poisson integral of | f|*. Apply (6.25) to U, it gives

(e — t,y)| < AVH(L+ [t /y)" (M) @) H = AL+ |t /y)™ " My, f (),
and the Lemma is established. O
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6.2 Fourier multipliers on LP

In this section, we introduce briefly the Fourier multipliers on L?, and we prove two (or
three) main multiplier theorems.

In the study of PDEs, we often investigate the estimates of semigroups. For example,
we consider the linear heat equation

up— Au =0, u(0)=up.
It is clear that u = . ~le~ !¢ Fuy =: H(t)uo is the solution of the above heat equation.
The natural question is: Is H(¢) a bounded semigroup from LP to LP? In other word, is
the following inequality true?
|7 e 8 Fug |, < oy, for 1< p < oo,

Of course, we have known that this estimate is true. From this example, we can give a
general concept.

Definition 6.13. Let p € %’. p is called a Fourier multiplier on LP if the convolution
(F~1p)* f e LPforall f €., and if
lplla, = sup [I(F 7 p) = fll,
Ifll=1
is finite. The linear space of all such p is denoted by M,,.

Since .7 is dense in L? (1 < p < 00), the mapping from .% to LP: f — (F ~'p) * f can
be extended to a mapping from LP to LP with the same norm. We write (% ~1p) * f also
for the values of the extended mapping.

For p = oo (as well as for p = 2) we can characterize M,,. Considering the map:

f=(Fp)xf for fe.”,

we have
pe Mo & |F o5 f(O) <O floey feES (6.30)
Indeed, if p € M, we have
- 17~ o fllo
|.Z 1« £(0)] < TWIIM < O f|lso-

On the other hand, if [.Z 1p* £(0)| < C||f]l0, We can get
1F " px flloe = sup |7 px fla)] = sup (77 p) * (fz +))](0)]
zeR™ zeR™

<O (@ + oo = Cllflloos
which yields ||p||m., < C, ie., p € My.

But (6.30) also means that .# ~1p is a bounded measure on R". Thus M, is equal to
the space of all Fourier transforms of bounded measures. Moreover, | p| ar, is equal to the
total mass of .# ~!p. In view of the inequality above and the Hahn-Banach theorem, we
may extend the mapping f — .# 1p* f from . to L™ to a mapping from L™ to L*>®

without increasing its norm. We also write the extended mapping as f — Z 'px f for
feLrL™.

Theorem 6.14. Let 1 < p < oo and 1/p+1/p' =1, then we have
M, = M, (equal norms). (6.31)

Moreover,
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M = {p €. F 1 pis a bounded measure}

6.32
llpllar, =total mass of Fp :/ |.F " p(x)|dx (6.32)
Rn

and
My = L™ (equal norm). (6.33)
For the norms (1 < po, p1 < o0)
lpllag, < lpllags el . Vo € Mp, N My, (6.34)

<
if1/p=(1-0)/po+0/p1 (0<0<1). In particular, the norm || - ||ape decreases with p in
the interval 1 < p < 2, and

MiCcM,CcM;CM, (1<p<g<2). (6.35)
Proof. Let f € LP, g € ¥ and p € M. Then, we have
Ipllar, = sup [(Z7'p)xglly =  sup  [{(F'p)*g(x), f(—x))]

llgllpr=1 Iflp=llgll,r =1

= sup  [(F ) xgxfO))= sup  |(F1p)xfxg(0)|
Ifllp=llgll,r =1 I llp=llgll,r=1

= s | [ (T Dal-)dy
Ifllp=llgll,r =1 "

= sup [(F'p)* fllp = llplla, -
lfllp=1

The assertion (6.32) has already been established because of M; = M. The Plancherel

theorem immediately gives (6.33). In fact,
B |w‘ n/2 R
ol = sup 1) fla= sup (B) ol < ol
I£ll2=1 Ifll2=1 \ =T

On the other hand, for any € > 0, we can choose a non-zero measurable set F such that
1p(€)| = ||plloc — € for € € E. Then choose a function f € L? such that supp Z f C E, we
can obtain [[olaz, > llpllee — =.

Invoking the Riesz-Thorin theorem, (6.34) follows, since the mapping f — (Z 1p) * f
maps LP° — LPo with norm |[|p|[as,, and LP* — LP* with norm ||p||ar,, -

Since 1/qg = (1—0)/p+0/p' for some 6 and p < ¢ < 2 < p/, by using (6.34) with pg = p,
p1 = p’, we see that

lpllar, < llellia,
from which (6.35) follows. 0

Proposition 6.15. Let 1 < p < oo. Then M), is a Banach algebra under pointwise
multiplication.

Proof. It is clear that || - ||z, is a norm. Note also that M), is complete. Indeed, let {px}
is a Cauchy sequence in M,,. So does it in L* because of M, C L*°. Thus, it is convergent
in L> and we denote the limit by p. From L>® C .#’, we have .Z 1 p,.Z f — F 1 p.Z f for
any f € . in sense of the strong topology on .. On the other hand, {y_lpkff} is also
a Cauchy sequence in LP C ./, and converges to a function g € LP. By the uniqueness of
limit in .%”/, we know that g = .Z 'p.Z f. Thus, ||pr — pllm, — 0 as k — oo. Therefore,
M, is a Banach space.
Let p1 € M, and py € M,. For any f € ., we have

17 prp2) * fllp =I(F 7 1)+ (F 7 p2) % fllp < Mlpallag 17~ p2) * £l
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<lpallaz, llp2llaz, 11 f1]p,
which implies p;p2 € M, and
lo1p2lln, < llpillas,llp2lla, -
Thus, M), is a Banach algebra. a

In order to clarify the next theorem we write M, = M,(R") for Fourier multipliers
which are functions on R™. The next theorem says that M,(R™) is isometrically invariant
under affine transforms of R".

Theorem 6.16. Let a : R® — R™ be a surjective affine transform' with n > m, and
p € M,(R™). Then
||P(a('))HMp(]R") = ||P||M,,(Rm)-
If m = n, the mapping a* is bijective. In particular, we have
(e, @ny =lp()llar, @y, Ve # 0, (6.36)

(s Dliag, &ey =lpOlIn, @), Vo #0, (6.37)
where (x,&) = Y1, 2:&;.
Proof. It suffices to consider the case that a : R™ — R™ is a linear transform. Make the
coordinate transform

which can be written as n = A7'¢ or £ = An where det A # 0. Let AT be the transposed
matrix of A. It is easy to see, for any f € (R™), that

lwl

Fota(@) 750 = () [ e sotatefieras

|w]

el (52) [ e At ) fandy

@l

n L R
:| det A| (27{') / ewZA xlnp(nla o 777m)f(A77)d77

=|det A[(F " p(n1,- - 1) f(An)) (AT )

=[Z o0, o) (FFUAT)H)) ()] (AT 2).
It follows from p € M,(R™) that for any f € .#(R")

1F " p(a(€))F fllp = |det A|YPIF " p(ne, -+ mn) (FFULATYE)) ()]l
=[det A7V |[(F 0 p 1 i) % AT ™) o) | ooy

<llpllaz, @y |1 f1lp-
Thus, we have

lo(a(-)lar,®n) < llollag, @m)- (6.39)
Taking f((AT)™') = fi(z1, -+ ,2m) fo(Tmy1, -+ ,Tn), one can conclude that the inverse
inequality (6.39) also holds. O

Now we give a simple but very useful theorem for Fourier multipliers.

1 An affine transform of R™ is a map F' : R™ — R™ of the form F(p) = Ap + q for all p € R", where
A is a linear transform of R™ and q € R™.
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Theorem 6.17 (Bernstein multiplier theorem). Assume that k > n/2 is an integer, and
that 03 p € L*R"), j=1,---,n and 0 < a < k. Then we have p € M,(R™), 1 < p < o0,

and
n/2k

n
1—n/2k
Ipliar, < lelly ™" { S 1105 pll-
j=1

Proof. Let ¢t > 0 and J(z) = 377, |z;|¥. By the Cauchy-Schwartz inequality and the
Plancherel theorem, we obtain

/ | |\ F " p(x)|de = /| ‘ J(@) " I (@)|F " pa)|da S P7ES 08 plla-
x| >t z|>t i=1
Similarly, we have
/}qu-wm»dxsfﬂzpm.

Choosing ¢ such that [|plla = t7% 37, [|9% pll2, we infer, with the help of Theorem 6.14,

that
n/2k

MM<MM:/

R™

o —1 1-n/2k - k
|7 p(a)]dz < lpll > 10k, oll2
j=1

This completes the proof. a

The first application of the theory of the functions g and g} will be in the study of
multipliers. Our main tool when proving theorems for the Sobolev and Besov spaces,
defined in the following chapters, is the following theorem. Note that 1 < p < oo here in
contrast to the case in Theorem 6.17. We give the theorem as follows.

Theorem 6.18 (Mihlin multiplier theorem). Suppose that p(&) € CH(R™ \ {0}) where

k > n/2 is an integer. Assume also that for every differential monomial (8% , o =
(a1, @2y ey ), with |a] = a1 + ag + ... + o, we have Mihlin’s condition
a (03
<8§> p(f)‘ < AlE|™ whenever |a| < k. (6.40)

Then p e My, 1 <p < oo, and
1pll3t, < CpnA.

The proof of the theorem leads to a generalization of its statement which we formulate
as a corollary.

Corollary 6.19 (Hérmander multiplier theorem). The assumption (6.40) can be replaced
by the weaker assumptions, i.e., Hérmander’s condition

Ip(&)] <A,

« 2 6.41
sup R2|a‘7"/ <6> p(§) (o4
0<R<oo r<lel<2r | \O&

d¢ <A, a| < k.
The theorem and its corollary will be consequences of the following lemma. Its statement
illuminates at the same time the nature of the multiplier transforms considered here, and
the role played by the g-functions and their variants.

Lemma 6.20. Under the assumptions of Theorem 6.18 or Corollary 6.19, let us set for
feL*®Rm)
F(z) = Tpf(x) = (F 1 (p(&)) * ().
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Then
g1 (F)(z) < Axgy(f)(z), where A =2k/n. (6.42)

Thus in view of the lemma, the g-functions and their variants are the characterizing
expressions which deal at once with all the multipliers considered. On the other hand, the
fact that the relation (6.42) is pointwise shows that to a large extent the mapping T, is
“semi-local”.

Proof of Theorem 6.18 and Corollary 6.19. The conclusion is deduced from the
lemma as follows. Our assumption on k is such that A\ = 2k/n > 1. Thus, Theorem 6.11
shows us that

lgx(H)@)llp < Axpllfllp, 2<p<oo, if f e L*NLP.
However, by Corollary 6.3, AL[|F||, < [lg1(#)(z)|lp, therefore by Lemma 6.20,

ITofllp = I1Fllp < Allgx(F)(@)]lp < Apllfllp, i 2<p <ooand feL?NLP.
That is, p € My, 2 < p < co. By duality, i.e., (6.31) of Theorem 6.14, we have also p € M),
1<p<2, Wthh gives the assertion of the theorem a

Now we shall prove Lemma 6.20.

Proof of Lemma 6.20. Let u(z,y) denote the Poisson integral of f, and U(z,y) the
Poisson integral of F'. Then with “denoting the Fourier transform w.r.t. the x variable, we
have

(,y) = e f(€), and U(€,y) = e WE () = 78 p() f(€).
Define M (z,y) = (le) Jpn €4 Se 1981 p(£)d€¢. Then clearly ]\7(&y) = e 19Clvp(¢), and
S0
U(&y +y2) = M(E,9)i(E,52), y=v1+v2, y1,52>0.
This can be written as

Uz, y1 +y2) = M(t, y1)u(x —t,y2)dt.
R‘VL

We differentiate this relation & times w.r.t. y; and once w.r.t. yo, and set y; = yo = y/2.
This gives us the identity

Ut (a,y) = [ MO y/2u0 (@ — t,y/2)d. (6.43)
RTL
Here the superscripts denote the differentiation w.r.t. y.
Next, we translates the assumptions (6.40) (or (6.41)) on p in terms of M (x,y). The

result is
IM®) (£, y)| <Ay, (6.44)

/ 2 (1, )2t <Ay~ (6.45)
R’VL

In fact, by the definition of M and the condition |p(£)] < A, it follows that

Ol < (51) b [ leleoaeras

|(U| " k > k —|w|ry,n—1 1, —n—k
<Awp_1 or |w| rie T hdr = A'y )
0

which is (6.44).
To prove (6.45), let us show more particularly that

/ 12° M® (2, y)[2dz < A'y ™,
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where |a| = k.
By Plancherel’s theorem

w
lz*M®) (2, y)ll2 = <|2> o] ®
™

So we need to evaluate, by using Leibniz’ rule,

(;)a“*d lesly) §:<%7(%) %ﬁ())@i)l—%w. (6.47)

(a)<m%@k‘*% (6.46)

9¢

2

B+y=a
Case I: (6.40) = (6.45). By the hypothesis (6.40) and Leibniz’ rule again, we have
9\’ o
’(85) (1€ p(&))| < A'I¢F 171, with |B] < k.
Thus,
8 i Bl - —|w T,T,—|w
(ag) (€lFpe)e ey <0 37 fgFPlyhleletly < 0 N fefryremlely,

|Bl+|vI=k 0<r<k
Since for r > 0

y2r / ‘£|2r672\w§\yd£ :Cy27‘ / R2r€72|w|RanfldR
R™ 0

oo
:Cyfn\/ 22r672|w|zzn71dz < vafn7
0
we get
lz*M® (@, y)lI3 < Ay, Jal =k,
which proves the assertion (6.45).

Case II: (6.41) = (6.45). From (6.46) and (6.47), we have, by Leibniz’ rule again and
(6.41),

lz M ™) (2, )2

" 2 1/2
0 0\ —2|wgly, 217
P> 2V et (2) oo e
1B/ 1418”1+ |vI=k "
" 2 1/2
2010 | ( 2) o]
NP> ZN'E:/< L <%> ple)| e2tlvag
187 +187 1+ 7 |=k ez Syl
<o N Sty el
|71+18"+17|=k jEZ
1/2

dg

(2) we|

<CA Z Z(ij)\7\+n/2ylv|e*|w|2jy2 = CAy "2 Z Z(ijQ)re*\w\?yr“

lvI<k 5€Z 0<r<k j€Z

<Cy~?,
which yields (6.45).

Now, we return to the identity (6.43), and for each y divide the range of integration
into two parts, |t| < y/2 and |t| > y/2. In the first range, use the estimate (6.44) on M (*)
and in the second range, use the estimate (6.45). This together with Schwarz’ inequality
gives immediately

(218" (2jy)2lﬁ”\—n/

20y<|E|<2itty
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|U(k+1)($,y)|2 gcyfnfmc /t|< B |u(1)(x _ t,y/2)|2dt
\y

[t]>y/2 [t[2

=11 (y) + I2(y).

Now

™)

/ Li(y)y*dy.
0

1

(s ()@ = [ 0E 0w g) Py dy <
0
J
However, by a change of variable y/2 — y,

[ nwway<e [© ] w2y
0 o Jit<y/2

<C /F V(e — t, )2y Hdtdy = C(S(f)(x))?

<CA(gA(f)(@))?.
Similarly, with nA = 2k,

/ L(y)y***+dy <C / / Y~ 2K (e — £, y) Pdtdy
0 0 Jt>y

<C(gx(f)(@)).
This shows that g1 (F)(z) < Crgi(f)(x). However by Remark 6.4 (iii) of g-functions after
Corollary 6.3, we know that g;(F)(z) < Crgr+1(F)(x). Thus, the proof of the lemma is
concluded. ad

6.3 The partial sums operators

We shall now develop the second main tool in the Littlewood-Paley theory, (the first
being the usage of the functions g and g*).

Let p denote an arbitrary rectangle in R™. By rectangle we shall mean, in the rest of
this chapter, a possibly infinite rectangle with sides parallel to the axes, i.e., the Cartesian
product of n intervals.

Definition 6.21. For each rectangle p denote by S, the partial sum operator, that is the
multiplier operator with m = x, = characteristic function of the rectangle p. So

F(Sp(H) =xpf. feL*RY)NLIRY). (6.48)
For this operator, we immediately have the following theorem.

Theorem 6.22.
1So(N)llp < Apllfllp, € L2NLP,
if 1 < p < oo. The constant A, does not depend on the rectangle p.
However, we shall need a more extended version of the theorem which arises when we

replace complex-valued functions by functions taking their value in a Hilbert space.
Let 77 be the sequence Hilbert space,

A =) (D les*)? = le] < o0},

J
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Then we can represent a function f € LP(R™, ), as sequences

f@) = (fr(@),---, fi(z), ),
where each f; is complex-valued and |f(z)| = (Z;’;l |fi(z)|>)}/2. Let R be a sequence
of rectangle, ® = {p; }]Oil Then we can define the operator Sy, mapping L?(R", 5#) to
itself, by the rule

Se(f) = (S, (f1),+ .S, (f5),++), where f = (fr,-+, fj,--). (6.49)
We first give a lemma, which will be used in the proof of the theorem or its gener-
alization. Recall the Hilbert transform f — H(f), which corresponds to the multiplier
—isgn (w) sgn (§) in one dimension.
Lemma 6.23. Let f(x) = (fi(z),---, fi(x),---) € L*(R™, ) N LP(R", ). Denote
Hf(x)=(Hfi(z),--- ,Hf;j(x),---). Then
[Hfllp < Apllfllp, 1<p<oo,

where A, is the same constant as in the scalar case, i.e., when J€ is one-dimensional.

Proof. We use the vector-valued version of the Hilbert transform, as is described more
generally in Sec. 4.7. Let the Hilbert spaces 7] and % be both identical with 7. Take in
R, K(x) = I-1/mx, where [ is the identity mapping on .. Then the kernel K (z) satisfies
all the assumptions of Theorem 4.27 and Theorem 4.24. Moreover,

lim K@) f(z—y)dy = Hf(x),

e=0 ) |ylze

and so our lemma is proved. a
The generalization of Theorem 6.22 is then as follows.
Theorem 6.24. Let f € L*(R", %) N LP(R", ). Then

1S (F)llp < Apllfllp, 1 <p<oo, (6.50)
where A, does not depend on the family R of rectangles.

Proof. The theorem will be proved in four steps, the first two of which already contain
the essence of the matter.

Step 1: n = 1, and the rectangles p1, p2, -+, pj, --- are the semi-infinite intervals
(—00,0).
It is clear that S(_o 0)f = ﬁ_lx(_mg)ﬂf = ﬂ_l%ﬂg)ﬁﬁ SO
I —isgn(w)H
Sy = T (6.51)

where [ is the identity, and S(_ ) is the partial sum operator corresponding to the
interval (—o0,0).
Now if all the rectangles are the intervals (—oo, 0), then by (6.51),

I—isgn(w)H
Sp = —
and so by Lemma 6.23, we have the desired result.
Step 2: n =1, and the rectangles are the intervals (—oo,a1), (—00,a2), - -+, (—00, a;),

Notice that Z (f(z)e~ %) = f(£ + a), therefore
F(H(e™"™ f(x))) = —isgn (w)sgn (€)f(€ +a),
and hence . (e 0 H (e=“a f(z))) = —isgn (w) sgn (€ — a) f(€). From this, we see that

(S(*Oo,aj)fj)(x) _ Jj —isgn (w)e“’“;ajH(e—w”'aj fj).

(6.52)
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If we now write symbolically e~ f for

(eiwm;.alfla to 7€7wiw-aj fj’ e )

with f = (f1,---, fj,---), then (6.52) may be written as

Spf = f—isgn (w)ew;m.aH(efwm.af) |

and so the result again follows in this case by Lemma 6.23.
Step 8: General n, but the rectangles p; are the half-spaces 1 < a;, i.e., p; ={z: 21 <

a;}.

(6.53)

Let S 1) denote the operator defined on L?(R™), which acts only on the x; variable,
by the actlon glven by S— . We claim that
Sy, S( ooay)’ (6.54)

This identity is obvious for L2 functlons of the product form

f,(zl)f”(x% T ,l‘n),
since their linear span is dense in L?, the identity (6.54) is established.

We now use the LP inequality, which is the result of the previous step for each fixed
To, T3, -+, Tn. We raise this inequality to the pt® power and integrate w.r.t. za, - -, 2.
This gives the desired result for the present case. Notice that the result holds as well if
the half-space {z : 71 < a;}32,, is replaced by the half-space {z : 71 > a;} or if the
role of the z1 axis is taken by the x5 axis, etc.

Step 4: Observe that every general finite rectangle of the type considered is the inter-
section of 2n half-spaces, each half-space having its boundary hyperplane perpendicular to
one of the axes of R™. Thus a 2n-fold application of the result of the third step proves the
theorem, where the family R is made up of finite rectangles. Since the bounds obtained

0o
j:la

do not depend on the family R, we can pass to the general case where R contains possibly
infinite rectangles by an obvious limiting argument. O

We state here the continuous analogue of Theorem 6.24. Let (I, dv) be a o-finite measure
space,? and consider the Hilbert space . of square integrable functions on I', i.e., ¢ =
L?(I,dvy). The elements

f e LR, )
are the complex-valued functions f(z,v) = f,(x) on R” x I', which are jointly measuable,
and for which ([p, ([, |f(z,7)[?dy)P/?dz)*/? = ||f|l, < oo, if p < co. Let R = {p,}rer,
and suppose that the mapping v — p, is a measurable function from I" to rectangles; that
is, the numerical-valued functions which assign to each v the components of the vertices

of p, are all measurable.
Suppose f € L?(R", 7). Then we define F' = Sy f by the rule

F(z,7v) =5, (f)(@), (fy(z)= f(z,7)).
Theorem 6.25.
[1Swfllp < Apllfllp, 1 <p<oo, (6.55)

for f € L*(R", ) N LP(R"™, ), where the bound A, does not depend on the measure
space (I',dy), or on the function v — p.,.

2 If p is measure on a ring R, a set E is said to have o-finite measure if there exists a sequence {Ey, } of
sets in R such that E C U2, E,,, and p(Ey) < n =1,2,... . If the measure of every set £ in R
is o-finite, the measure p is called o-finite on R.



128 6 The Littlewood-Paley g-function and Multipliers

Proof. The proof of this theorem is an exact repetition of the argument given for Theorem
6.24. The reader may also obtain it from Theorem 6.24 by a limiting argument. a

6.4 The dyadic decomposition

We shall now consider a decomposition of R™ into rectangles.

First, in the case of R, we decompose it as the union of the “disjoint” intervals (i.e.,
whose interiors are disjoint) [2%,2511], —0co < k < 00, and [-2FF1, —2K] —00 < k < <.
This double collection of intervals, one collection for the positive half-line, the other for
the negative half-line, will be the dyadic decomposition of R.3

Having obtained this decomposition of R, we take the corresponding product decom-
position for R™. Thus we write R™ as the union of “disjoint” rectangles, which rectangles
are products of the intervals which occur for the dyadic decomposition of each of the axes.
This is the dyadic decomposition of R™.

The family of resulting rectangles will be denoted
by A. We recall the partial sum operator S,, defined
in (6.48) for each rectangle. Now in an obvious sense, 1
(e.g. L? convergence) \

Z S, = Identity. 1
pEA \

Also in the L? case, the different blocks, S,f, p € A, —|=——F— *L
behave as if they were independent; they are of course —F——F— 7?
\
I
\
\
}

mutually orthogonal. To put the matter precisely: The
L? norm of f can be given exactly in terms of the L?
norms of S,f, i.e.,

SIS £13 = 11113, (6.56)

peEA
(and this is true for any decomposition of R™). For the
general LP case not as much can be hoped for, but the following important theorem can
nevertheless be established.

Fig. 6.3 The dyadic decomposition

Theorem 6.26 (Littlewood-Paley square function theorem). Suppose f € LP(R™), 1 <
p < o0o. Then

1S, F @Y 2l ~ 1 f -

peEA

The Rademacher functions provide a very useful de-

vice in the study of LP norms in terms of quadratic ri(t)
expressions. OO eSS poee oo
These functions, ro(t), r1(¢), - -+, rm(t), - -+ are de-
fined on the interval (0,1) as follows: e >
o) = {1 0<t<1/2, _J ?
0 -1, 1/2<t<1, e = e ro(t)

ro is extended outside the unit interval by periodicity, Fig. 6.4 ro(t) and r1(t)
ie, ro(t+1) =ro(t). In general, r,,(t) = ro(2™t). The

3 Strictly speaking, the origin is left out; but for the sake of simplicity of terminology, we still refer to it
as the decomposition of R.
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sequences of Rademacher functions are orthonormal (and in fact mutually independent)
over [0, 1]. In fact, for m < k, the integral

1 1 2m
/ o ()7 (£)dt = / ro(27)ro (2 ) dt = 27 / ro(s)ro(2-™s)ds
0 0 0
1 1/2 1
:/ ro(s)r0(2k_ms)ds:/ r0(2k_ms)ds—/ ro(287™s)ds
0 0 1

/2
_om—k [ /0 o ro(t)dt — /2 jk:l ro(t)dt]
=271 [/Olro(t)dt /Olfro(t)dt] =0,

so, they are orthogonal. It is clear that they are normal since fol(rm(t))zdt =1.

For our purposes, their importance arises from the following fact.

Suppose Yoo lam|* < 0o and set F(t) = >°°_ amrm(t). Then for every 1 < p < oo,
F(t) € L?[0,1] and

Al Fllp < [1Fllz = (D lam[)? < By, (6.57)
m=0

for two positive constants A, and B,.

Thus, for functions which can be expanded in terms of the Rademacher functions, all
the LP norms, 1 < p < oo, are comparable.

We shall also need the n-dimensional form of (6.57). We consider the unit cube Q C R™,
Q= {t = (t1,t2,--- ,tn) : 0 < t; < 1}. Let m be an n-tuple of non-negative integers m =
(my,ma, -+ ,my). Define 7y, (¢) = rm, (61)7m, (82) - 1, (E). Write F(t) = > amrm(t).

With
1/p
171, = ( /Q F<t>|pdt) ,

we also have (6.57), whenever Y |a,,|? < co. That is

Lemma 6.27. Suppose > |a,|?> < oco. Then it holds

o 1/2
1Elp ~ [1F]l2 = (Z Iam|2> , 1<p<oo. (6.58)

m=0

Proof. We split the proof into four steps.
Step 1: Let u, ag, a1, - -+, an, be real numbers. Then because the Rademacher functions
are mutually independent variables, we have, in view of their definition,

1 1 2m 1
/ etamrm(t) 3y :/ etamro(2™t) gy — Q*m/ etam7o(s) Jg — / eramro(s) gg
0 0 0 0

:271(6‘“17” + 6*#’1M) = cosh MG, .
and for m < k

1 1
/ euamrm(t) e,uakrk(t)dt — / €‘uamr0(2mt)e:“akr0(2kt)dt
0 0

2m 1
:2—m/ euamro(S)euawo@""mS)ds:/ elﬂlmm(s)eﬂakTU(QkH"S)dS
0

0
1

1/2
k—m k—m
:/ ettam e,u,akrg(Z S)ds + / e Ham euakro(2 S)ds
0 1/2
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=l

1 1 1
=27 L (eHam 4 gmHam) / erarro() gy — / etamrm(t) gt / eharTr(t) g
0 0 0
Thus, by induction, we can verify

1 N 1
/ et Ym0 GmTm (t)dt — H / ehamTm (t)dt.
0 m=0"0

2kf'mfl 2’(}77’”

e;tameuakm(t)dt +/

2k—m—1

e~ Ham ghakro(t) dt]

If we now make use of this simple inequality coshx < e’ (since coshz = Y 72 % <
D oheo GT = e®” for |z| < oo by Taylor expansion), we obtain
1 N
/ et FW g — H cosh pa,, < H e" am — = et * Y=o m,
0 m=0 m=0

. N
with FI(t) =Y g amrm(t).

Step 2: Let us make the normalizing assumption that Z
et 4 e HF  we have

0 m = 1. Then, since e Tl <

1
/ SHIFW] g < 908°
0

Recall the distribution function Fi(a) = m{t € [0,1] : |F(¢)| > a}. If we take p = /2
in the above inequality, we have

2 o2

F*(a):/ dtge*T/ eI FOlgt < e~ % 297 < 267,
|[F(t)|>a |F(t)|>a

From Theorem 2.16, the above and the formula fooo abe’ dy = I((b+1)/2)/2Vab+1 it
follows immediately that

S 1/p S 5 1/p
17l = (o [0 R@aa) < (2 [Tt Faa) =2/
0 0

for 1 < p < oo, and so in general

50 1/2
1Pl < A, (Z |am|2> , 1<p<o (6.59)
m=0

Step 8: We shall now extend the last inequality to several variables. The case of two
variables is entirely of the inductive procedure used in the proof of the general case.

We can also limit ourselves to the situation when p > 2, since for the case p < 2 the
desired inequality is a simple consequence of Holder’s inequality. (Indeed, for p < 2 and
some q > 2, we have ||F|1r0,1) < ||F||L‘1(O,1)||1||L’12"/(<1—P>(O,1) < IFllzao,1y by Hélder’s
inequality.)

We have

tlutZ Z Z AmimaTmy tl)er t2 Z le tZ)Tml(tl)

mi1= Om2 0 mi1= =0

By(6.59), it follows

p/2
/ F(ty, ta)[Pdty < A (Z Fon (£)] ) .

mi

Integrating this w.r.t. ¢2, and using Minkowski’s inequlaity with p/2 > 1, we have
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1 p/2 p/2
/0 <Z|Fm1(t2)|2> dty = Z|Fm1(t2)|2 < (Z |||Fm1(t2)|2|p/2>
mi mi p/2 mi
p/2
= (Z [1Eom,y (tz)llf;) :

However, I, (t2) = >, @mym,Tm,(t2), and therefore the case already proved shows
that

p/2

||Fm1 t2 Azzamlmz

Inserting this in the above gives

1 .1 p/2
A i |F(ty, t2)[Pdtydts < AP (ZZa?nm) ,

mi1 m2

which leads to the desired inequality
[Fll, < AplFll2, 2 <p < oo.
Step 4: The converse inequality
[Fll2 < BpllFllp, p>1

is a simple consequence of the direct inequality.
In fact, for any p > 1, (here we may assume p < 2) by Holder inequality

1/2
|Flls < IE121E],/2.
We already know that ||F'[|,, < A [[F|l2, p" > 2. We therefore get
1F]l2 < (Ap)?[1F I,
which is the required converse inequality. O
Now, let us return to the proof of the Littlewood-Paley square function theorem.

Proof of Theorem 6.26. It will be presented in five steps.
Step 1: We show here that it suffices to prove the inequality

/
(S 1505@P) | <Al 1<p <o, (6.60)

cA
P P

for f € L2(R™) N LP(R™). To see this sufficiency, let g € L2(R™) N L? (R™), and consider

the identity
Z/ S fSpgdas—/ fgdx

peEA
which follows from (6.56) by polarization. By Schwarz’s inequality and then Hoélder’s

inequality
/ fodx

1
2

<[ (Z |Spf|2> (Z Spg|2> s
()| J(mer) |

P P
Taking the supremum over all such g with the additional restriction that | g||,y < 1,
gives || f||p for the Lh.s. of the above inequality. The r.h.s. is majorized by
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(Sis.e)”

since we assume (6.60) for all p. Thus, we have also

1/2
Bpl| fllp < (Z |5pr2> : (6.61)

p

Ay

)

P

P
To dispose of the additional assumption that f € L?, for f € LP take f; € L?* N LP such
that || f; — f|l, = 0; use the inequality (6.60) and (6.61) for f; and f; — f;/; after a simple
limiting argument, we get (6.60) and (6.61) for f as well.

Step 2: Here we shall prove the inequality (6.60) for n = 1.

We shall need first to introduce a little more notations. We let A; be the family of
dyadic intervals in R, we can enumerate them as Iy, I1, ---, Iy, --- (the order is here
immaterial). For each I € Ay, we consider the partial sum operator Sy, and a modification
of it that we now define. Let ¢ € C! be a fixed function with the following properties:

1, 1<£<2,

S"(g){o, €<1/2, or €= 4. 1 f

Suppose [ is any dyadic interval, and assume
that it is of the form [2¥, 28], Define S; by

F(S11)(€) = (27 () = 0r(€) f(6). (6.62)
That is, Sy, like S 1, is a multiplier transform Whefégﬁh%'?nﬁl(t&l)plier is equal to one on the

interval I; but unlike Sy, the multiglier of S; is smooth.
A similar definition is made for S; when I = [-2FT1 —2F]. We observe that

5181 = Sr, (6.63)

since St has as multiplier the characteristic function of I.
Now for each t € [0, 1], consider the multiplier transform

o0

Ty = > rm(t)S,.

m=0

‘ 1 2 3 4 ¢

That is, for each t, 7} is the multiplier transform whose multiplier is m; (£), with

my() = Y rm(t)¢1,,(6)- (6.64)
m=0
By the definition of ¢y, , it is clear that for any £ at most three terms in the sum (6.64)
can be non-zero. Moreover, we also see easily that

dmt B
m ()| < B, 'f < 0 6.65
where B is independent of ¢. Thus, by the Mihlin multiplier theorem (Theorem 6.18)
ITefllp < Apllfllps  for f € L2NLP, (6.66)

and with A, independent of ¢. From this, it follows obviously that

1 1/p
(/ ||th|§;dt) < A0l

However, by Lemma 6.27 about the Rademacher functions,

1 1 _ »
/O||th||§olt:/0 /R ‘Zrm(t)(sjmf)(x) dxdt
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p/2
Al /R 1 (Z 15, f(x)|2> da.

Thus, we have

1/2
(Z |§Im(f)2> < Bpllflp- (6.67)

p
Now using (6.63), applying the general theorem about partial sums, Theorem 6.24, with
R = A; here and (6.67), we get, for F' = (S1, f, S, f,--, S, f. ),

1/2 1/2
(ZISzm(f)l2> = H <Z|Slmglm(f)2> = [15a, Fllp

p

1/2
<A F|p = Ap <Z 5T, (f)|2> < ApBpllfllp = Cpll fllp (6.68)
m
p
which is the one-dimensional case of the inequality (6.60), and this is what we had set out
to prove.
Step 8: We are still in the one-dimensional case, and we write T; for the operator

Tt = Z T'm (t)S[m .

Our claim is that
Hth”wa < Ap”inm I <p < oo, (6'69)

with A, independent of ¢, and f € L? N LP.

Write TN = ZZ:O rm(t)Sr,., and it suffices to show that (6.69) holds, with T}V in place
of Ty (and A, independent of N and t). Since each Sy, is a bounded operator on L? and
LP, we have that TN f € L?> N LP and so we can apply (6.61) to it, which has already been
proved in the case n = 1. So

N

1/2
BylITN fllre, < <Z ISImf|2> < Cpllflp,

m=0
p

by using (6.68). Letting N — oo, we get (6.69).
Step 4: We now turn to the n-dimensional case and define Tt(ll), as the operator Tj,
acting only on the x; variable. Then, by the inequality (6.69), we get

1
/ /1 |Tt(11)f($1,$2, U 7$n)|pde1dt1 < Ag/l |f($17 U 7xn)|pdx17 (670)
0 JR R

for almost every fixed =2, 73, - , 2y, since 1 — f(x1,22, -+ ,7,) € L2(R!) N LP(RY)
for almost every fixed za,--- ,x,, if f € L*(R™) N LP(R™). If we integrate (6.70) w.r.t.
T, , Ty, We obtain

1T Flr ., < Apllfllp, feL?nLr, (6.71)

with A, independent of ¢;. The same inequality of course holds with z; replaced by z2,
or xs, etc.

Step 5: We first describe the additional notation we shall need. With A representing the
collection of dyadic rectangles in R™, we write any p € A, as p = Iy, XIp,, X+ - - X I, where
Io, 11, -+ , I, -- represents the arbitrary enumeration of the dyadic intervals used above.
Thus if m = (mq, ma,- -+ ,my), with each m; > 0, we write pp, = Iy, X Ly X -+ X Iy,
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We now apply the operator Tt(ll) for the z; variable, and successively its analogues for
g, x3, etc. The result is

1T fllze, < Al (6.72)
Here

T = Z rm(t)Sp,,
pPmEA
with 7, (t) = 74m, (t1) -+ -7, (tn) as described in the previous. The inequality holds uni-
formly for each (t1,t2, -+ ,t,) in the unit cube Q.
We raise this inequality to the p'" power and integrate it w.r.t. ¢, making use of the
properties of the Rademacher functions, i.e., Lemma 6.27. We then get, as in the analogous
proof of (6.67), that

1/2
> 1801 < Al fllps
pPmEA
P
if f € L2(R™) N LP(R™). This together with the first step concludes the proof of Theorem
6.26. a

6.5 The Marcinkiewicz multiplier theorem

We now present another multiplier theorem which is one of the most important results
of the whole theory. For the sake of clarity, we state first the one-dimensional case.

Theorem 6.28. Let m be a bounded function on RY, which is of bounded variation on
every finite interval not containing the origin. Suppose

(a) [m(§)| < B, =00 < & < 00,

(b) [; Im(&)|dE < B, for every dyadic interval I.
Then m € M, 1 < p < oo; and more precisely, if f € L> N LP,

1T fllp < Apllflp,
where A, depends only on B and p.

To present general theorem, we consider R as divided into its two half-lines, R? as
divided into its four quadrants, and generally R™ as divided into its 2" “octants”. Thus,
the first octants in R™ will be the open “rectangle” of those £ all of whose coordinates are
strictly positive. We shall assume that m(§) is defined on each such octant and is there
continuous together with its partial derivatives up to and including order n. Thus m may
be left undefined on the set of points where one or more coordinate variables vanishes.

For every k < n, we regard R* embedded in R in the following obvious way: R is the
subspace of all points of the form (&1,&s,--+ ,&,0,---,0).

Theorem 6.29 (Marcinkiewicz’ multiplier theorem). Let m be a bounded function on R™
that is C™ in all 2™ “octant”. Suppose also

(a) [m(§)] < B,
(b) for each 0 < k < n,
okm

sup / _—
k1, 5€n Jp 851852 T 8&6
as p ranges over dyadic rectangles of RE. (If k = n, the “sup” sign is omitted.)

d§y---d§, < B
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(¢) The condition analogous to (b) is valid for every one of the n! permutations of the
variables £1,82,-++ ,&p.

Then m € M,, 1 < p < oo; and more precisely, if f € L>*NLP, | T fllp < Apllfllps
where A, depends only on B, p and n.

Proof. It will be best to prove Theorem 6.29 in the case n = 2. This case is already com-
pletely typical of the general situation, and in doing only it we can avoid some notational
complications.

Let f € L*(R?) N LP(R?), and write F = T}, f, that is .2 (F(x)) = m(€) f(€).

Let A denote the dyadic rectangles, and for each p € A, write f, = S, f, F, = S,F,
thus F, = T, f,.

In view of Theorem 6.26, it suffices to show that

H(ngF)lme <CpH(p62;|fp|2)l/2Hp~ (6.73)

The rectangles in A come in four sets, those in the first, the second, the third, and
fourth quadrants, respectively. In estimating the Lh.s. of (6.73), consider the rectangles of
each quadrant separately, and assume from now on that our rectangles belong to the first
quadrant.

We will express F), in terms of an integral involving f, and the partial sum operators.
That this is possible is the essential idea of the proof.

Fix p and assume p = {(£1,&) : 2F < & < 281 20 < & < 2!F1). Then, for (£1,&) € p,
it is easy to verify the identity

S 92m(t, t) ) )
= ’ — 2! —m(2"
m(fl, 52) /2 / 9t,0ts ———— "2 dt1dtsy +/2k a1, m(tl, )dtl +/21 ot m( ,t2)dt2

+m(2",24).
Now let S; denote the multiplier transform corresponding to the rectangle { (&1, &) : 28+ >
& > ty, 241 > & > to}. Similarly, let S(l) denote the multiplier corresponding to the
interval 2¥+1 > &, > t1, similarly for St(Q) Thus in fact, Sy = St(ll) St(f) Multiplying both
sides of the above equation by the function Y, f and taking inverse Fourier transforms

yields, by changing the order of integrals in view of Fubini’s theorem and the fact that
S,Tpnf =F,, and S{VS, = 50, §?5, = 5 5,5, = 5, we have

F,=T,S,f = fﬁlmxpf

(W) e [0 Tt g, 010
(Y L s, 2 €)16)

&2 .
/2 (2", )it (€)(6)] de
+ F (2

1 6t2

?r

12')Xp

2k+1 m(ti,t2)

<W> /]Ri’ Wf/z /2k 0110t oo Xz ()X 6] (b2)dtrdta X (6) F(€)dE

2k+1
ol+1

(“") L [ ol ) e ()t (© F(©)de + m(z 20,
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-(&) / 2/2/ s (&) (€O F€)ae T 2) y gy
-\ 2r 2t Jok R2€ Xltr, 201181 X 2, 2101]162) Xp Ot 0t 1
" = n/Wl/ € Xay 20411 (61) X0 (€).f(€)d E*m(t 2')dt
o - - [t1,2F 41181 ) Xp ot 1 1
|w| moE wim-£ ; k
+ | 5= e X[t2,21+1](SQ)XP(E)f(g)dS%m(Z Jta)dta +m(25,2)) f,
2! R2 2
*m(ty,to) SR 9 !
/Stfp 31,015 dtldt2+/2k Sty fpatlm(tlaz )dty
21+1
+/l fp—m(Zk ta)dts +m(2",2)) f,.
2

We apply the Cauchy-Schwarz inequality in the first three terms of the above w.r.t. the
measures |0y, Oy, m(t1,t2)|dt1dta, |0p, m(t1,2Y)|dtr, |Or,m (2%, ta)|dts, respectively, and we
use the assumptions of the theorem to deduce

|F), < < /|Stfp‘2 dtldt2><

(tlv )

2 1
w0 s0np
2k

2

L | otits dtldtz)

Ot 0ty 8752

2k+1

) (],

9 !
aitlm(tl, 2 )' dt1>

ottt ol +1
(2) o k
+ </2z 1S5, fol? m(2%, ) dtz)(/ﬂ 8752m(2 ,t2) dtg)
+ |m(2%,2")? |fp|2
>*m om(ty,2")
B’{/p|5tfp i dtldt2+/ 5D 72 atll‘dtl

/ 1527, 2 am@ .12) dt2+fp|2}

—C‘l—l— +\sp+\sp, Wlthp:h x 1.
To estimate (3 , |F,|2 )1/2 |lp, we estimate separately the contributions of each of the four
terms on the r.h.s. of the above inequality by the use of Theorem 6.25. To apply that
theorem in the case of %,1) we take for I" the first quadrant, and dy = |%§{t2)|dt1dt2,

the functions v — p, are constant on the dyadic rectangles. Since for every rectangle,

1/2 1/2
0?m(t1,t2) 1 5
=] T nar, | e < B, then > IS e IDA
r P ’ P
Similarly, for & C‘?,, 3% and 7, which concludes the proof. 0



Chapter 7
Sobolev and Holder Spaces

7.1 Riesz potentials and fractional integrals

Let f be a sufficiently smooth function which is small at infinity, then the Fourier
transform of its Laplacean Af is
F(-Af)(©) = wEF (). (7.1)
From this, we replace the exponent 2 in |£|? by a general exponent s, and thus to define
(at least formally) the fractional power of the Laplacean by
(—2)*2f = Z7H((wll€D* () (7.2)
Of special significance will be the negative powers s in the range —n < s < 0. In general,
with a slight change of notation, we can define

Definition 7.1. Let s > 0. The Riesz potential of order s is the operator

I, = (—A)~/2 (7.3)
For 0 < s < n, I, is actually given in the form
1
I f(x) = 7/ x—y|7" f(y)dy, 74
(@)= 75 |l =) (7.4)
with
T/2251(s/2
1) = T 2T,
I((n—s)/2)

The formal manipulations have a precise meaning.

Lemma 7.2. Let 0 < s < n.
(a) The Fourier transform of the function |x|~""*% is the function v(s)(|w||€])™%, in the
sense that

l.n+s = w '
[t = [ (s)elieh < peie, (1.5

whenever ¢ € .7 .
(b) The identity F(Isf) = (|w||&])~°f(§) holds in the sense that

| 1@t = [ fele g

whenever f,g € 7.

Proof. Part (a) is merely a restatement of Lemma 5.14 since v(s) = |w|*vo,s.
Part (b) follows immediately from part (a) by writing

137
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1@ =5 [ Sy = [ ()Tl

:/ (lwlleh)~* f(g)ewierde = / (lwll€)) = f(&)e=iEwde,
R™ R

| @@= [ [ (el i dsgimas

= [ (lieh ferateas

This completes the proof. a

SO

Now, we state two further identities which can be obtained from Lemma 7.2 and which
reflect essential properties of the potentials I.

Is(Itf):Is-‘rtfv feya 57t>0, s+t<n. (76)

A(Lf)=I,(Af)=—I;—of, fe€, n>3 2<s<n. (7.7)
The deduction of these two identities have no real difficulties, and these are best left to
the interested reader to work out.
A simple consequence of (7.6) is the n-dimensional variant of the beta function,*
—n—rs —n ’y 5 ly t —n S
[ =ttty = 2 e 78)
R™ Y(s+1)
with s,t > 0 and s +t < n. Indeed, for any ¢ € ., we have, by the definition of Riesz
potentials and (7.6), that

//R ) |z —y| "2y " dyp(z — x)dx
A
=/]R Iyl‘"”/ |z —y| " o(z —y — (@ — y))dady

= [ W6 e~ p)dy = 1O ) = A O L)

_’Y(S)V(t) z|~m (s+t) 2 — 2)dx
ST [ la e e

By the arbitrariness of ¢, we have the desired result.

We have considered the Riesz potentials formally and the operation for Schwartz func-
tions. But since the Riesz potentials are integral operators, it is natural to inquire about
their actions on the spaces LP(R").

For this reason, we formulate the following problem. Given s € (0,n), for what pairs
p and g, is the operator f — I f bounded from LP(R™) to L4(R™)? That is, when do we
have the inequality

s fllg < Allf1ln? (7.9)
There is a simple necessary condition, which is merely a reflection of the homogeneity
of the kernel (y(s))~t|y|=""*. In fact, we have

Proposition 7.3. If the inequality (7.9) holds for oll f € % and a finite constant A, then
1/g=1/p—s/n.

1 The beta function, also called the Euler integral of the first kind, is a special function defined by

B(z,y) = fol t*=1(1 —¢)¥~1dt for Rz > 0 and Ry > 0. It has the relation with I'-function: B(z,y) =
I(z)(y)/T'(x +y).
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Proof. Let us consider the dilation operator ¢., defined by . f(z) = f(ez) for € > 0. Then
clearly, for € > 0

1 -1, |—n+s c
(6osb:)la) = [ e =y ey

- n 1 ;
=en / le ™t (z — 2)| 7" f(2)dz
R™

v(s)
=" °If(x). (7.10)
Also
16 Fllp = €PN fllps  0c—11sfllq = €™ U Laf g (7.11)

Thus, by (7.9)
s fllg = ¥ 16c-1 L8 fllg = €57 L fllg < AT 98 f ||, = Ae*H TP £,
If | I fll; # 0, then the above inequality implies
1/¢g=1/p— s/n. (7.12)

If f # 0 is non-negative, then I;f > 0 everywhere and hence ||I;f||, > 0, and we can
conclude the desired relations. O

Next, we observe that the inequality must fail at the endpoints p = 1 (then ¢ = n/(n—s))
and ¢ = oo (then p = n/s).

Let us consider the case p = 1. It is not hard to see that the presumed inequality

cannot hold. In fact, we can choose a nice positive function ¢ € L' with [¢ =1 and a
compact support. Then, with ¢.(z) = e~ "¢(z/¢), we have that as e — 07,

Ls(pe)(x) = (y(s)) a7,
If | Lselln)(n—s) < Alle|l1 = A were valid uniformly as e, then Fatou’s lemma? will imply

that
/ |z| 7" dz < oo,
and this is a contradiction.

The second atypical case occurs when ¢ = oo. Again the inequality of the type
(7.9) cannot hold, and one immediate reason is that this case is dual to the case
p = 1 just considered. The failure at ¢ = oo may also be seen directly as follows. Let
f(z) = |z|=*(n1/]z|)~+)s/" for |z| < 1/2, and f(x) =0, for |z| > 1/2, where ¢ is pos-
itive but small. Then f € L™/*(R"), since ||f||"/® = Jiwi<aye 1217 (In 1/]z])~*4dz < oco.

n/s
However, I, f is essentially unbounded near the origin since
1
L) = 5 / 2|7 (I 1/[a) =+ " dz = oo,
v(s) |z|<1/2 |

as long as (1 +¢)s/n < 1.

After these observations, we can formulate the following Hardy-Littlewood-Sobolev the-
orem of fractional integration. The result was first considered in one dimension on the circle
by Hardy and Littlewood. The n-dimensional result was considered by Sobolev.

2 Fatou’s lamma: If {fx} is a sequence of nonnegative measurable functions, then

/lim inf frdp < lim inf/fkdu.
k— oo k— oo
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Theorem 7.4 (Hardy-Littlewood-Sobolev theorem of fractional integrations). Let 0 <
s<m,1<p<g<oo,1/g=1/p—s/n.
(a) If f € LP(R™), then the integral (7.4), defining I, f, converges absolutely for almost

every T.
(b) If, in addition, p > 1, then ||Isfllq < Apqllfllp-
(c) If f € LY(R™), then m{z : |Isf(z)| > a} < (Aa7t|f]l1)%, for all « > 0. That is,
the mapping [ — Isf is of weak type (1,q), with 1/g=1— s/n.

Proof. We first prove parts (a) and (b). Let us write

()T f () = /B I /

R\ B(z,8)

x—y| " f(y)dy

:ZL(;(CL') + H§(3§)
Divide the ball B(x,d) into the shells E; := B(z,2776) \ B(z,270*Y5), j = 0,1,2,...,
thus

Ly(x Z/ P ) Z/ & — " (y) dy

<Z/ 2 (J+1)5 n+s|f \dy Z/( 5) 2 (j+1)5)—n+s|f(y)|dy
B(z,2—7

_ (2—(J+1)5)—n+sm( (J),Q_J(S))
_]Z:;) m(B(z,2795)) /B(I?QM)U(y)ldy

o (27UFDE) T, (270)"
m(B(x,2779)) /B(m2 jé)lf(y)ldy

(=)

j=
V,6%2n~ 822 SIMf(x) =
7=0
Now, we derive an estimate for Hs(z). By Holder’s inequality and the condition 1/p >
s/n (ie., ¢ < 00), we obtain

1/p'
|H6( )l <Hf||p (/ B |{1’,‘ — y|(—”+3)p dy)
, 1/p’
I
n , 1/p’
g ([ e eniar)

Wn_1 1/p’ ,
N <<"—>P—n> =D £, = C(n, s, p)0" P £,

By the above two inequalities, we have
V(8)Isf ()] < C(n, $)6° M f(2) + C(n, 5,p)8" /2| fl, =: F(6).
Choose § = C(n, s, p)[|| f|l,/M f]P/™, such that the two terms of the r.h.s. of the above are
equal, i.e., the minimizer of F(§), to get
V() Lo f ()| < CM )P/ fl1Bem.

Therefore, by part (i) of Theorem 3.9 for maximal functions, i.e., M f is finite almost
everywhere if f € LP (1 < p < 0), it follows that |I;f(z)| is finite almost everywhere,
which proves part (a) of the theorem.

V52

T Mf(@).

N
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By part (iii) of Theorem 3.9, we know ||M f|, < A, fll, (1 <p < 00), thus
s fllg < CIM I LF 15" = Cl £l
This gives the proof of part (b).

Finally, we prove (c). Since we also have |Hy(z)| < ||f]167 "%, taking o = || f||16~ "%,
ie., 6 = (|| fll1/e)*/=%), by part (ii) of Theorem 3.9, we get

m{a L f(2)] > 2(v(5)) " o} <m{a: |Ls(@)| > a} + m{z : |Hs(z)| > a}

Sl = Cl L/l =) = Cli s /ol

o uide!
This completes the proof of part (c). a

<miz: |CO°Mf(z)] > a} +0 <

7.2 Bessel potentials

While the behavior of the kernel (y(s))~!|z|™"¢ as |z| — 0 is well suited for their
smoothing properties, their decay as |z| — oo gets worse as s increases.

We can slightly adjust the Riesz potentials such that we maintain their essential behav-
ior near zero but achieve exponential decay at infinity. The simplest way to achieve this
is by replacing the “nonnegative” operator —A by the “strictly positive” operator I — A,
where I = identity. Here the terms nonnegative and strictly positive, as one may have
surmised, refer to the Fourier transforms of these expressions.

Definition 7.5. Let s > 0. The Bessel potential of order s is the operator
Js = (I —A)=*/?
whose action on functions is given by
Jof = F G T =Gyx f,
where
Gs(a) = F (L +?(E)?) ().

Now we give some properties of G(z) and show why this adjustment yields exponential
decay for G at infinity.

Proposition 7.6. Let s > 0.
oo 4 _l=l® s-m
(a) Go(z) = (47r)"/21[’(s/2) J e tem At AL
(b) Gs(x) >0, VzeR";and Gs(x) € L'Y(R™), precisely, [5. Gs(x)de = 1.
(¢c) There exist two constants 0 < C(s,n),c(s,n) < oo such that
Gs(z) < C(s,n)e” 12 when 2| > 2,

and such that

N g < 9 ) h < 2;
o) S Ha@) c(s,n), when |z

where Hy is a function that satisfies
|z]57" + 1+ O(|z|57"2), 0<s<mn,
Hy(x) = In gy + 1+ 0(Jz]), s=n,
1+ 0(Jz|*~™), s>mn,
as |z| — 0.
(d) Gy(x) € L (R™) for any 1 < p < 0o and s > n/p.
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Proof. (a) For A, s > 0, we have the I'-function identity
_s/2 1 /Oo —tA,s/2 0t
A% = e e —
I'(s/2) Jo t’
which we use to obtain

1 > 2 dt
1 2)¢12\—5/2 _ / —to—tlwt| s /220

Note that the above integral converges at both ends (as |§] — 0, or 0o). Now take the
inverse Fourier transform in £ and use Theorem 1.10 to obtain

1 BT B —t|wé|? s/zﬂ_ 1 /OO —t =1 ( —t|lwg|? s/2ﬂ
G =y 7 /0 e = e ¢ F () e
S S / e*te*%t%ﬂ
~ (4m)n/2I(s/2) t
(b) We have easily® [., Gs(x)dz = FG(0) = 1. Thus, G, € L' (R™).

(c) First, we suppose |z| > 2. Then t + Iw‘ >t+1 and also ¢ + % > |x|. This implies
that

e _ ot 1
—t-Lo s -2 - 5
4t 2 2t 2

from which it follows that when |z| > 2
lz] lz]

1 1 seadt _lal =l
Gulo) < ey J, ¢RI GO <Clamen

where C(s,n) = W for s #n, and C(s,n) =

/Oo _e _ a1 dt /1 _adt /Oo ot
e ze 2tf< e 2t — + e
0 t 0 t 1

<2/ e Ydy+2 < 4.
1/2
Next, suppose that |z| < 2. Write G4(x) = GL(z) + G%(z) + G3(z), where

1 |I| |J—|2 s—n dt
Giz) =g TleTar T —
(@) (47r)"/2F(s/2)/0 ce mtE

m for s = n since

> d
dt:/ efy—erQe*l/Z
1/2 Y

|

1 4 212 s—n dt

GQ —t T4tz —
@) =@ 2ris2) /,Ne et
1 b 1212 s—n dt

) =g f, TS

Since t|z|? < 16 in G, we have e —tlel* =1 4 O(t|z|?) as |z| — 0; thus after changing

variables, we can write

3 Or use (a) to show it. From part (a), we know Gs(x) > 0. Since Jan e=mlel*/tdy = tn/2 by Fubini’s

theorem, we have
1 o s=n dt
/ Gs(m)dx:/ 7/ e te” b t 2 —dz
R® g (4m)/20(s/2) Jo t

1 /oo _t/ JRE—:
—_— e 1t dx 2 —
(4w)n/21(s/2) ¢
s=—n dt
,t(4ﬂ_t)n/2t77

(47r)”/2F(S/2) /
F(s/2/0 et ldt = 1.



7.2 Bessel potentials 143

Ghw) ol [ttt
’ (4m)"/21(s/2) Jo ;

! +2 1
:|$|3_n;/ et dt +M/ e~ dt T dt
(47r)n/2F(5/2) t (47T)n/2p(8/2) o
2”—8—2 s—n o] . nd 2n—s—40 s—n+2 0o end
_i/ vy (|| )/ Y
) 1/4

~{m)y I (s)2 y | @m)PI(s)2) "

=conlz[T" + Oz 2),  as 2] — 0.

2
Since 0 < % < % and 0 < t < 4in G2, we have e =17/ e‘t_f < 1, thus as |z| — 0,
we obtain
s—n s—n+1
4 dt ‘Inlia 2n—s ;o s<m,
G%(z) ~ / tsmm/2Z = 0 91n 2 o s=n,
|:1;|2 t 95— n+1
—, 5> n.
2
Finally, we have e~ /% < e -5 <1in G2, which yields that G2(z) is bounded above

and below by fixed positive constants. Combining the estimates for G%(x), we obtain the
desired conclusion.

(d) For p =1 and so p’ = 00, by part (c), we have |G4(z)||cc < C for s > n.

Next, we assume that 1 < p < oo and so 1 < p’ < co. Again by part (¢), we have, for
|z| > 2, that G2" < Ce ?'1#1/2 and then the integration over this range |z| > 2 is clearly
finite.

On the range |z| < 2, it is clear that fw‘<2 ' (z)dz < C for s > n. For the case s = n

<2 G¥ '(2)dz < C by noticing that

q 2 2 q
/ (ln > dr = C/ <1n ) r"ldr < C
|z <2 |33\ 0 r

for any ¢ > 0 since lim,_,o7¢In(2/r) = 0. For the case s = n = 1, we have
Jjj<a (I m) de = 2 [J(In2/r)idr = 4 [, (In1/r)%dr = 4T(q + 1) for ¢ > 0 by the
formula fo (In1/z)P~tde = I'(p) for Rp > 0. For the final case s < n, we have
f02 pls=mp'pn=lgr < C'if (s —n)p' +n > 0, ie., s > n/p.

Thus, we obtain ||Gs(z)|,y < C for any 1 < p < oo and s > n/p, which implies the
desired result. O

and n # 1, we also have fl

We also have a result analogues to that of Riesz potentials for the operator J.

Theorem 7.7. (a) For all 0 < s < 00, the operator J, maps L™ (R™) into itself with norm
1 foralll <r < oo.

(b) Let 0 < s <mn and 1 < p < q < oo satisfy 1/¢ = 1/p — s/n. Then there exists a
constant Cy, 5, < 0o such that for all f € LP(R™), we have

175 fllq < Cospll Fllp-

(c) If f € LY(R™), then m{x : |Jsf(z)| > a} < (Chsa ||fI1)?, for all « > 0. That is,
the mapping [ — Jof is of weak type (1,q), with 1/q=1— s/n.

Proof. By Young’s inequality, we have ||Jsf|l, = ||Gs * f|» < [|Gs|l1||f]l» = || f|l- This
proves the result (a).

In the special case 0 < s < n, we have, from the above proposition, that the kernel G
of J, satisfies

a7, <2
GS(I)N{e—wl/z, 2] > 2.
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Then, we can write

be(x) gcn s

)

[ e wl e+ [ |f(x_y)ey|/zdy]
ly| <2 lyl>2

<o LN + [ 17wl %ay]

We now use that the function e~1¥/2 € L" for all 1 < r < oo, Young’s inequality and
Theorem 7.4 to complete the proofs of (b) and (c). O

The affinity between the two potentials is given precisely in the following lemma.

Lemma 7.8. Let s > 0.
(i) There exists a finite measure us on R™ such that its Fourier transform [ is given
by
PN
ms(§) = (1+ [wE[2)s/2
1 ere exist a pair of finite measures vy and Ag on such that
ii) Th ; pai ] d A R™ h th

(1+ [wE[?)*/2 = (&) + |wE[ AL (6).

Remark 7.9. 1) The first part states in effect that the following formal quotient operator
is bounded on every LP(R™), 1 < p < o0,
(7 A)s /2
2) The second part states also to what extent the same thing is true of the operator
inverse to (7.14).

s> 0. (7.14)

Proof. To prove (i), we use the Taylor expansion

A=ty 2 =14 Apat™, [t <1, (7.15)
m=1

m! m!

where A, , = (—1)™ 772 = (-1)m sG=D-(5—mtl) _ (*%)(175)-(7%*%*1)' All the A,, .
are of same sign for m > £ + 1, so 3 |Am,s| < 0o, since (1 — ¢)*/? remains bounded as
t—1,if s > 0. Let t = (1 + |w&]?)~t. Then

el \** > .
<1+|w§|2> =1+ > A1+ [we)™™ (7.16)

However, Gam(2) = 0 and [, Gom (2)e ™ 8da = (1 + |wé[?) ™.
We noticed already that [ Gop,(z)dz =1 and so ||Gaml|1 = 1.
Thus from the convergence of ) |A,, 5|, it follows that if p, is defined by

[s = 60 + (Z Am,scm(x)) da (7.17)

m=1

m=1

with g the Dirac measure at the origin, then us represents a finite measure. Moreover, by
(7.16),
_ jwél®
1s(§) = 0+ e
For (ii), we now invoke the n-dimensional version of Wiener’s theorem, to wit: If &1 €
L'(R") and q'/i(f) +1 is nowhere zero, then there exists a &3 € L' (R™) such that (g/ﬁ\l(f) +
1)~ = 25(6) + 1.
For our purposes, we then write

(7.18)
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Dy(z) = Z Ap sGom (z) + Gs(2).

Then, by (7.18), we see that
|wél® +1
(1 + |wg[?)s/2’
which vanishes nowhere. Thus, for an appropriate &, € L', by Wiener’s theorem, we have
(1+ [w€?)*/? = (1 + |w&])[@2(€) + 1],

and so we obtain the desired conclusion with vy = A\; = §g + Po(z)dz. O

P1(E) +1=

7.3 Sobolev spaces

We start by weakening the notation of partial derivatives by the theory of distributions.
The appropriate definition is stated in terms of the space 2(R™).

Let 0 be a differential monomial, whose total order is |a|. Suppose we are given two
locally integrable functions on R™, f and g. Then we say that 0*f = g (in the weak sense),
if

F(@)0 p(x)dz = (—1)1°! / o(@)p(z)dz, Vo< P. (7.19)
Rn R

Integration by parts shows us that this is indeed the relation that we would expect if f
had continuous partial derivatives up to order ||, and 9% f = g had the usual meaning.

Of course, it is not true that every locally integrable function has partial derivatives
in this sense: consider, for example, f(z) = ¢/I*". However, when the partial derivatives
exist, they are determined almost everywhere by the defining relation (7.19).

In this section, we study a quantitative way of measuring smoothness of functions.
Sobolev spaces serve exactly this purpose. They measure the smoothness of a given function
in terms of the integrability of its derivatives. We begin with the classical definition of
Sobolev spaces.

Definition 7.10. Let k£ be a nonnegative integer and let 1 < p < co. The Sobolev space
WFP(R") is defined as the space of functions f in LP(R™) all of whose distributional
derivatives 9% f are also in LP(R™) for all multi-indices « that satisfies |a| < k. This space
is normed by the expression
[ fllwer = > 10°Fln, (7:20)
I

where 900 f = .

The index k indicates the “degree” of smoothness of a given function in W*P?. As k
increases, the functions become smoother. Equivalently, these spaces form a decreasing
sequence

PO WP S W2P 5 ...
meaning that each W*+LP(R") is a subspace of W*P(R") in view of the Sobolev norms.

We next observe that the space WH*P(R™) is complete. Indeed, if {f,,} is a Cauchy
sequence in W*P_ then for each a, {0%f,,} is a Cauchy sequence in L?, |a| < k. By the
completeness of L, there exist functions f(® such that f(® = lim,, 8*f,, in L?, then

clearly
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(=1)lel fm0%pdx = / 0% fmpdx — FDeoda,
Rn n Rn
for each ¢ € 2. Since the first expression converges to
(=Dl [ f0%eda,
R’n

it follows that the distributional derivative *f is f(®. This implies that fi = fin
WFP(R™) and proves the completeness of this space.
First, we generalize Riesz and Bessel potentials to any s € R by

I'f=F P Ff, fe SR, 0¢ suppf,
Jf =711+ |w§| VRZf fe S (RY).
It is clear that I=° = I, and J~® = Js for s > 0 are exactly Riesz and Bessel potentials,

respectively. we also note that J* - J* = J*t for any s, € R from the definition.
Next, we shall extend the spaces W#*P(R") to the case where the number £ is real.

Definition 7.11. Let s € R and 1 < p < oco. We write
1 llize = Hfsfllp, [ lezg = 1177 flp-
Then, the homogeneous Sobolev space H; (R™) is defined by

HyR") = {f € #'(R"): | € L} (R"), and |[fl|5, < oo}, (7.21)
The nonhomogeneous Sobolev space H;(]R”) is defined by
HE(R™) = {f €S ®Y): |flluy < oo} . (7.22)

If p = 2, we denote H3(R™) by H*(R") and H$(R™) by H*(R") for simplicity.

It is clear that the space M, (IR™) is a normed linear space with the above norm. More-
over, it is complete and therefore Banach space. To prove the completeness, let {f,,} be a
Cauchy sequence in Hj. Then, by the completeness of L”, there exists a g € L” such that

[ fm — I gllus = 1J°fn — gllp = 0, as m — oo,

Clearly, J=°g € . and thus H, is complete.
We give some elementary results about Sobolev spaces.

Theorem 7.12. Let s € R and 1 < p < oo, then we have

(a) & is dense in Hy, 1 \p<oo.

(b) H§+E C Hj, Ve > 0.

(c) Hy C L*, V¥s>n/p.

(d) Suppose l<p<ooands>1. Then f € Hy(R") if and only if f € H,;~ HR"™) and
for each j, az € H,” LR™). Moreover, the two norms are equivalent:

[ fllerg ~

Hs 1.

(e) HE(R™) = WkP(R™), 1 < p < o0, Vk € N.

Proof. (a) Take f € H, ie., Jof € LP. Since . is dense in LP (1 < p < 00), there exists
a g € & such that

1f = I glluy = 1°f — gllp
is smaller than any given positive number. Since J™*g € ., therefore . is dense in H.
(b) Suppose that f € H;‘*‘E. By part (a) in Theorem 7.7, we see that J. maps LP into
LP with norm 1 for € > 0. Form this, we get the result since
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£y = T fllp = T2 fllp = 1= fllp < 157 Fllp = 1 | grge-

(c¢) By Young’s inequality, the definition of the kernel G (z) and part (d) of Proposition
7.6, we get for s > 0

1 £lloo =[1F 1L + [wE?) ™ 2(1 + [wE]?) /2T flloo = |F (1 + [wE?) ™% % J* fl
<IZ 7+ wWEP) Pl 17 fllp = G @)l 1 f 225 < ClI -

d From the Mihlin multiplier theorem, we can get (w&;)(1 + |w&[?)~Y2 € M, for

(d) p ; get (w&;)(1 + |wé[?) p

1 < p < oo (or use part (i) of Lemma 7.8 and properties of Riesz transforms), and thus

C=IF T g ) TR wig) Z £
HS

=[|7 7 1+ W€ ) T2 (w8) (1 + [wE )27 £l
=7 (1 + |wéP) T2 (wEg) + I fllp < CIIT fllp = Ol fll-
Combining with ||f||H;71 < | flleg, we get

H Ox;

< Ol flleg-

Hsl

Now, we prove the converse mequahty. We use the Mihlin multiplier theorem once more
and an auxiliary function x on R, infinitely differentiable, non-negative and with x(z) =1
for |z| > 2 and x(z) = 0 for |z| < 1. We obtain

L+ w21+ D x(EIGN T € My, x()I416 € My, 1< p < oo.
=1
Thus,

1A llmg =1T°Fllp = 1771 + |wg?)2Z T fl

<OIZ ML+ Y XENENF T £,
j=1

<0Hf||HS ! JrCZ”J X(fj)‘fﬂg LTI 17“17

Jj=1

8

Hs 1
Thus, we have obtained the desired result.

(e) It is obvious that WP = HS = L? for k = 0. However, from part (d), if £ > 1, then
fe HZ’f if and only if f and a‘% € HI’f_l, j=1,..,n. Thus, we can extends the identity
of W’”’:H{f fromk=0tok=1,2,... a

We continue with the Sobolev embedding theorem.

Theorem 7.13 (Sobolev embedding theorem). Let 1 < p < p; < oo and s,s1 € R.
Assume that s — 5 =51 — p— Then the following conclusions hold

H: C H', HjCH.

p1’

Proof. It is trivial for the case p = p; since we also have s = s; in this case. Now, we
1 1

assume that p < p;. Since = =21 by part (b) of Theorem 7.7, we get

Iz = 17 Fllp = 1772 T fllpy = [ Js=s, T Fllpy < CINT°Fllp = Cllf |-
Similarly, we can show the homogeneous case. Therefore, we complete the proof. a
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Theorem 7.14. Let s,0 € R and 1 < p < co. Then J? is an isomorphism between H,
and H5™°.

Proof. It is clear from the definition. O

Corollary 7.15. Let s€ R and 1 < p < co. Then
(Hy)' = H.,*.

Proof. It follows from the above theorem and the fact that (L) = LP | if 1 < p < c0. O

Next we give the connection between the homogeneous and the nonhomogeneous spaces,
whose proof will be postponed to next chapter.

Theorem 7.16. Suppose that f € /' (R™) and 0 ¢ supp f. Then
fGH;(:)fGH;, VseR, 1 <p< 0.
Moreover, for 1 < p < oo, we have
Hy =LPNHj, Vs>0,
Hy =L+ H,, Vs<0,
H) =L = H).

7.4 Holder spaces

Definition 7.17. Let 0 < o < 1. Define the Hélder (or Lipschitz) space C* as

C=A{f e LR :[[f(x = 1) = f(@)lloc < AJt]*}.
The C'* norm is then given by

[fllce = [[flloc + sup
[t|>0

|/ (x - t|)t|2 J@lloo (7.23)

The first thing to observe is that the functions in C'* may be taken to be continuous,
and so the relation |f(z —t) — f(x)| < Al¢|* holds for every x. More precisely,
Proposition 7.18. FEvery f € C“ may be modified on a set of measure zero such that it

becomes continuous.

Proof. The proof can be carried out by using the device of regularization. Any smooth
regularization will do, and we shall use here that of the Poisson integral. Thus, consider

_ CnY
u(z,y) / Py( —t)dt, Py(t)= (E+ g2) o F D2 y > 0.

Then, since [, P,(t)dt =1,

u(z,y) — f(z) = /Rn P,®)[f(x —1t) — f(z)]dt,

and so, for 0 < a < 1,

) = F@e < [ PAOIS =) = f@)tt < Ay [

| [e%

t=ys o |S Al
==Aeny /R (P 1) s =AY
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In particular, ||u(z,y1) —u(z,y2)|lcoc — 0, as y1 and y2 — 0, and since u(z, y) is continuous
in z, then u(z,y) converges uniformly to f(x) as y — 0. Therefore, f(z) may be taken to
be continuous. ad

We begin by giving a characterization of f € C'™ in terms of their Poisson integrals
w(@,y).
Proposition 7.19. Suppose f € L°(R") and 0 < a < 1. Then f € C*(R") if and only
if

Hau Y H < Ayt (7.24)

Remark 7.20. If Ay is the smallest constant A for which (7.24) holds, then || || + A1 and
Il fllce give equivalent norms.

Proof. For Poisson kernel, we have
OPy(x) . (|lz|? + y2)(+D/2 — y%-‘rl(‘xp 4 y?)nD/2 gy

gy " (lzf? + y2)m*
2., .2 _ 2 2_ 2
PPyt Dy e —ny ’ (7.25)
(|22 + y2) (D241 (|22 + y2)m+ D72+
S0
OPy(x) c
‘ dy | S (aP+yp)mrz Y7 0- (7.26)
Differentiating [;, P,(x)dz =1 w.r.t. y, we obtain
0P,
/ (,;’;U)dx =0, y>0. (7.27)

Thus,

e = [ o= [ 20—y~ e

[t

Hence, by changing variables, we have
du(-,y) 0P, (t)
_— < o dt < o
| <lflen [ tr<clfle | oo
1

<el e / e e

1 —1+a
il fleoy™ | s < Cllfllony ™

This proves the necessariness part.

For the sufficiency part, it is far more enlightening, as it reveals an essential feature of
the spaces in question, although it is not much more difficult. This insight is contained
in the lemma below and the comments that follow. So we shall return to the proof of the
second part. (to be continued) O

Lemma 7.21. Suppose f € L=°(R™) and 0 < o < 1. Then the single condition (7.24) is
equivalent with the n conditions

ou(z,y

H Iz

Remark 7.22. The smallest A in (7.24) is comparable to the smallest A’ in (7.28).

H <Ayt =1, n (7.28)
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Proof. From the Poisson kernel, we can derive
0P, (z) (n+ 1)ecpyz; OPy(x) C
0r;  (REFACET | Ton | S R gm0
Since we also have Py(z) = (F~le~I«¢)(z), so for y = y1 + yo, it follows that P, =
F e lwtlnityz) — g—1(emlwtlvie—lwtlvyy = p, % P, with y;,ys > 0. Thus,

U(l‘,y) :Py*f:Py1 *Pyz *f:Py1 *’U;(ZE,yg),
and therefore, with y; = yo = y/2, we get
Pu__ 0Py dulry/?)

y>0. (7.29)

0yOx; Ox; 205
By Young S 1nequahty, (7.29) and (7.24), we get
ou(zx,y/2) dx 9o gy~ 1+a
8y6x7 8307 L 201 Rn (|z)2 + y2/4)(n+1)/2
r= yt/2 —2+4a _ 72+o¢
=CAy — = A
L. (e + 1><n+1>/ v
(7.30)
However, by Young’s inequality and (7 29),
0 — || flls
] I e I
So
8% u(z,y) — 0, asy— oo,
and therefore,
0 * 92u(z,y’
e u(z,y) = / #_)dy’.
i y Yy or;
Then, for a < 1, (7.30) gives that
oo
H 8 / y/—2+ady/ < A2y_1+a'
Zj Y
Conversely, suppose that (7.28) <
Asy~2te j =1, ..., n. However, since u is harmonic, that is because —Z = ZJ 1 83:2’

we have ngTgHoo < Ay~ 2+, Then, a similar integration argument shows that || 8Z loo <
A5y—1+a. O
We can now prove the converse part of Proposition 7.19.

Proof of Proposition 7.19 (continue). Suppose ||6,%u(;10,y)||Oo < Ay~ Then Lem-
ma 7.21 also shows that [|52-u(z, y)[ls < Ay~ 1T We write
J

fla+t) = f@) = [u(@+t,y) —u(z,y)] + [flz+1) —ulz+t,y)] - [f(z) — ulz,y)].
Here y does not necessarily depend on ¢ but it is best to choose y = |t|. Now |u(x +¢t,y) —
u(z,y)| < [, [Vou(z + s,y)|ds where L is the line segment (of length |¢|) joining x with
x +t. Thus

lu(z + t,y) — \tlZHuz]xynoo Cle|lt = = Clee.
Also
Y0
fla ) =ule+t) = = [ Jhute+ )iy
0
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and so
ou

fa+n—uartpl< [ |5

With a similar estimate for f(x) —u(z,y), the proof of the proposition is concluded. O

r< Cy® = C|t|a.

oo

Similar to Lemma 7.21, we can prove the following lemma, and remaind the proof to
interested readers.

Lemma 7.23. Suppose f € L>®(R"), and o > 0. Let k and [ be two integers, both greater
than «. Then the two conditions

k 1
‘8 u(ﬂ;y)H < Ayt and H@u(az,y)‘

are equivalent. Moreover, the smallest A and A; holding in the above inequalities are
comparable.

g Aly_l+a

oo

The utility of this lemma will be apparent soon.
We now can define the space C*(R™) for any a > 0. Suppose that k is the smallest
integer greater than «, i.e., the ceiling function of a. We set

= {f € L(R") : ’ ‘ < Ayk+°‘}. (7.31)

0"
If Aj denotes the smallest A appearing in the inequality in (7.31), then we can define
the C“ norm by

o0

[fllce = [ flloc + Ak (7.32)

According to Proposition 7.19, when 0 < « < 1, this definition is equivalent with the

previous one and the resulting norms are also equivalent. Lemma 7.23 also shows us that

9" u(z,y) 0 u(a,y) :
Tyk lel where [ is

we could have replaced the by the corresponding estimate for

any integer greater than «.
A remark about the condition in (7.31) is in order. The estimate
8k

a k (JT y) < Ay_k-‘ra

o0
is of interest only for y near zero, since the inequality H%u(z,y)“ < Ay~F (which is
stronger away from zero) follows already from the fact that f € ng, (as the argument
of Lemma 7.21 shows). This observation allows us to assert the inclusion C* ¢ O, if
a>dao.

In the case of 0 < a < 1, we considered the first order difference, next, we will consider
the case 0 < a < 2, it would be better to use the second order differences. In general, the
m-th order difference operator A} is defined by

Z Co(=D)F f(x + kt).

Thus, A? f(x) = f(z) —2f(z + 1) + f(x + 2t). But for simplicity, we denote
8% f(a) = f(x—t) = 2f(z) + f(z + 1)
in this section.
Proposition 7.24. Suppose 0 < o < 2. Then f € C* if and only if f € L>°(R™) and
|f(x—1t)—2f(z) + f(z+t)]|o < Alt|*. The expression
z—1t)—2f(x)+ f(x +1)| e
Hflloo+bp”f( ) f(o? fla+1)
|t/>0 It]

is equivalent with the C* norm.
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Proof. Differentiating f]R" t)dt =1 twice w.r.t. y, we obtain

/naay()dt—o y > 0. (7.33)

From (7.25), we have
O?Py(t) _ _cn(n+ 1)BJE —ny®)y

oy (7 + )7z
and then
0?P,(t) 0?P,(—t O?P,(t c
=T | < (39
Thus, we get
02 1 0?
) =5 | gaPuOlf =0 =2f()+ flx + 0

and so, for a < 2,

9? A
Hag (@ y>H Sl [ e [ prea
00 [tI<y [t|>y

Yy oo
<C {y”Q/ ro‘+”71d7“+/ r3+°‘dr}
0 Y

<Cy—2+o¢.

To prove the converse, we observe that if F' has two orders continuous derivatives, then

[l
A? F(x) = /0 / ﬁF(x +t'7)drds, where t' =t/|t|.

It follows immediately that

| 83 Fla) < 't'ZHax r
J

By the definition (7.31), it is clear that f € C* = f € C* where o < o. If we choose an
o’ < 1, then by the results in Propositions 7.18 and 7.19, we get

(7.35)

Ju(z,y) = f(@)]looc = 0, and ylluy(z,y)[lcc — 0, as y — 0. (7.36)
Thus, the identity
v, 02 no ou
f@)=u(z,0)= [ ¥ ulz,y)dy —y-—(z,y) + u(z,y) (7.37)
o = Oy dy

is obtained by noticing that the derivative w.r.t. y of the extreme r.h.s. vanishes, and by
the use of the end-point conditions (7.36). However, the arguments of Lemma 7.21 and

7.23 show that the inequality || 8 ule y) oo < Ay~2%* implies the estimates
2 3

0 U(SL’,y) < A/y—2+a’ 0 U(Q?,y) < A/y_3+a.

0z;0x; || Oyox;0x; ||

Thus, by using(7.35) to the last two terms of the r.h.s. of (7.37),
2

L ou
I a7 flloo <II A7 / Y gz, 9 )Y oo + yll 87 7= (2, 9)lloo + || A7 w(@,y) |00
o Oy dy
Y H? 3u Au
<4/ y' w(@,y)||lsody’ + [t {yH H }
[ ggute s+ | || }

8mi8xj
Y
gc/ Yy Ty + ClPlyy T 4+ y TP < Oy + Ot Py
0

Taking y = |¢| gives



7.4 Holder spaces 153

187 fllee < CJt1*,  if a >0,
which is the desired result. a
oy . . af -1
Proposition 7.25. Suppose a > 1. Then f € C® if and only if f € L™ and 9a; © ce
j=1,...n. The norms ||fllce and || flleo + > 27—, ||af llca-1 are equivalent.
Proof. Let us suppose for simplicity that 1 < a < 2, the other cases can be argued

similarly.
3
We first prove that % € L>. We have ||87u||oo < Ay—3t« since f € C%, which implies,

3
as we know, HO;#HOO < Ay~3+e, Equivalently, we see that ||d 203: lloo < Ay~'#, where
<P < 1since 1 < a < 2. We restrict to 0 < y < 1, then an 1ntegrat10n in y gives

Lou dy—{ 0%u ] 3 0%u
y 0y?0x; Oydx;],_, Oyoxz;’
and then
0%u I 93w 0%u
< ——| d <oy P .
Hayaﬂ% oo /y Oy?0x; ||, v [395%];1_1 Cvrre
Another integration,
Y2 82u

0 0
mdy = aTCjU(xam) - 87ju($’yl)’

Y1
then shows that

Y2
< / [Cy=? + Cldy = Clyy " —y1?) + Clya — w1).

[e’e} Y1

U(IIT, y2) -

9 9w )
8Ij 8xj e
Thus, {%u(m, y)} is Cauchy in the L* norm as y — 0, and so its limit can be taken to

be %. The argument also gives the bound
J

S CAy " < CALO| fllee,

8% Hax]

since 0 < y < 1anda>1
Slnce the (weak) derivative of f is %, the Poisson integral of the latter is %. But
J J

| 52 BUQ 895 oo < Ay=3T2. Therefore, 607’; € C*~ 1. The converse implication is proved in the
same way. O

The last proposition reduces the study of the spaces C* to those o such that 0 < o < 1.
Concerning the space C%, 0 < a < 1, the following additional remark is in order.
Remark 7.26. When 0 < a < 1, Proposition 7.24 shows that if f € L>°, the two conditions
If(x4+1t) — f(@)]|loo < Alt|* and || f(z —t) — 2f(x) + f(z + t)]|oo < A'|t|* are equivalent.
However, this is not the case when a = 1.
Ezample 7.27. There exists f € L°°(R™) such that

1f(z—1t) =2f(z) + f(z + )] < AJt], [t[>0,

but [|f(x +t) — f(z)||eo < A’|t] fails for all A’.

Solution. One can construct such f by lacunary series, and more particularly as Hardy-
Weierstrass non-differentiable functions.* To do this, we consider the function of one vari-

4 In mathematics, the Weierstrass function is a pathological example of a real-valued function on the
real line. The function has the property that it is continuous everywhere but differentiable nowhere. It is
named after its discoverer Karl Weierstrass.

Historically, the Weierstrass function is important because it was the first published (1872) to challenge
the notion that every continuous function was differentiable except on a set of isolated points.
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able z, given by f(z) = Y ;o a *e 2mia®s Tere q > 1, for simplicity, we take a to be an
integer and this makes f periodic.> Now

o)
f(J? _ t) _ 2f( ) + f T —|—t _ Za 27Tiak(x7t) _ 2627Tiakm + eZﬂ'ia’“(aH»t)]
k=1

a—k[€—27riakt —94 e27riakt]627riakm _ QZa_k[cos orakt — 1]6271'2'(1’“2:.
k=1
Therefore (assume |t| < 1 without loss of generalities)

Ifz—t) —2f(x)+ fle+ D)l <2 Y aFB@)?+4 > a

C v

ak|t|<1 ak|t|>1
- glloga lt17]+1 _ 1 —[loga It 71] -
<2Bt? > dfa ) ah 2B — S e R
k<log, [¢/~'] k>[log, [¢]~1]

<Al
We have used merely the fact that | cos 2ma*t — 1| < min(B(a*t)2,2) with B = 272 since
sinz < « for any > 0.
However, if we had |f(x +t) — f(2)|leo < A’|t|, then by Bessel’s inequality® for L2
periodic functions we would get

(AJt])? > / f+0) — f@)dr = |

(o]
> Za72k|e27riakt . 1|2 > Z a72k:‘627riakt . 1|2.
k=1

ak|t|<1/2

2
.k -k
271'111 t 1]627ma x| Ay

In the range a®|t| < 1/2, we have |627”'“k’5—1|2 > 16(a*t)? due to the inequality 2% > 2
for any x € (—m/2,7/2), and so we would arrive at the contradiction
(At)? =16t Y 1> 16)t? > 1,
ak|t|<1/2 1<k<[log, |t|~1/2]-1
which implies that A’ > 16 [log, [t|~'/2] — 16 and so A" — oo as [t| — 0. O

5 The result also holds if @ is non-integral.

6 Let S = {za : @ € A} be a complete orthonormal system of a Hilbert space X. For any f € X,
we define its Fourier coefficients fo = (f, ). Then we have Bessel’s inequality ) c 4 [fol? < |Ifl2-
Moreover, we have Parseval’s relation, || f||? = 3, c 4 |fal?.



Chapter 8
Besov and Triebel-Lizorkin Spaces

8.1 The dyadic decomposition: the smooth version

In this section, we will introduce another Littlewood-Paley dyadic decomposition, which
is also a very basic way to carve up the phase space.

The dyadic decomposition with rectangles is very intuitionistic for the statement, but
it is not convenient to do some operations such as differentiation, multiplier and so on.
Therefore, we use a smooth form of this decomposition. Throughout, we shall call a ball
any set {{ € R" : || < R} with R > 0 and an annulus any set {{ € R : Ry < [€] < Rz}
with 0 < Ry < Rs.

Let € (1,4/2) and % : R® — [0, 1] be a real radial smooth bump function, e.g.

1, gl <
1/}(5) = ¢ smooth, 1< €< (81)
0, §l=
Let ¢(&) be the function
@(&) = 1(§/2) — p(8). (8.2)
Thus, ¢ is a bump function supported on the annulus
A={¢: TT<l¢g<2 ). (8.3)
By construction, we have
e =1
kez

for all £ # 0. Thus, we can partition unity into the functions p(27%¢) for integers k, each
of which is supported on an annulus of the form |¢| ~ 2.
For convenience, we define the following functions

{1/}16(5) = 1/1(2_’“5)7 ke, (8.4)
er(€) = p(27%€) = Pr11 (&) — Yu(€), ke Z.
Since supp ¢ C A, we have
supp o C2FA = {¢: 2k —1 g < 2kt }, kez,
suppyr C{€: €] <2% }, kel
We now define the k—th'homogeneous dyadic blocks Ay and the homogeneous low-
frequency cut-off operators Sy by

Akf :ﬁ*ltpkff, Skf = 9*11/}ka = Z Ajf, k € Z. (86)
J<k—-1

(8.5)
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Informally, Ay is a frequency projection! to the annulus {5 c2F Tl g 2kt }, while
S}, is a frequency projection to the ball {E L lE] < 2k } The nonhomogeneous dyadic blocks
A are defined by
Af=0if k< -2, A_1f=2Sof, and Apf=Apfifk>0.
The nonhomogeneous low-frequency cut-off operator Sy is defined by
Sef= Y Nif.
j<k—1
Obviously, Sif =0if k < —1, and Sif = Si.f if k > 0.

Observe that Sy1 = S + Ay from (8.4). Also, if f is an L? function, then Sif —0
in L? as k — —oo, and Spf — f in L% as k — o0 (this is an easy consequence of
Parseval’s theorem). By telescoping the series, we thus can write the following (formal)
Littlewood-Paley (or dyadic) decomposition?

Id=)Y A, and Id=) Ay
kEZ kEZ
The homogeneous decomposition takes a single function and writes it as a superposition of
a countably infinite family of functions A f, each one of which has frequency of magnitude
roughly 2*. Lower values of k represent low frequency components of f; higher values
represent high frequency components.

Both decompositions have advantages and drawbacks. The nonhomogeneous one is more
suitable for characterizing the usual functional spaces whereas the properties of invariance
by dilation of the homogeneous decomposition may be more adapted for studying certain
PDEs or stating optimal functional inequalities having some scaling invariance.

In the nonhomogeneous cases, the above decomposition makes sense in ./ (R").

Proposition 8.1. Let f € .#'(R™), then f = klirf Sif in ' (R™).
— 400

Proof. Note that (f — Skf,g) = (f,g — Skg) for all f € ' (R") and g € Z(R"), so
it suffices to prove that g = klir+n Skg in .#(R™). Because the Fourier transform is an
— 00

automorphism of .7 (R™), we can alternatively prove that 1/(27%)§ tends to § in .%(R").
This can easily be verified, so we left it to the interested reader. O
For the operators A, and Sy, we can easily verify the following result:
Proposition 8.2. Let € (1,v2), k, 1 € Z, and Ay, Sy be defined as in (8.6). For any
fe SR and g € . (R™), we have the following properties:
SkAk-t,-lf =0, fl>=1,
ApNf=0, iflk—1>2,
2

L . 2
Ap(Si—1fAg) =0, z'fl—k}l—!—logzﬁ, ork—1>—1+1log,5 2

1 Strictly speaking, these are not quite projections, even though they are self-adjoint. They do not quite
square to themselves because we choose ¥ to be a smooth cut-off rather than a rough one. However, the
operator AkAk is of the same form as Ak, and similarly for Sk, and so it is still quite reasonable to
think of these operators as (smoothed out) projection operators.

2 Actually, this decomposition works for just about any locally integrable function which has some decay
at infinity, and one usually has all the convergence properties of the summation that one needs. In many
applications one can make the a priori assumption that f is Schwartz, in which case the convergence is
uniform. However, if f does not decay, the this formula fails. For instance, if f = 1, then all the projections

Apf vanish because Ayl = (|w]/(2m)" [ €€ (€)(|wl/(27)) " "8(£)dé = ¢1.(0) = (0) = 0.
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Remark 8.3. In these properties, we need the condition 2 < 2 which is the reason that
we requires < /2 in the beginning of the section.

When dealing with the Littlewood-Paley decomposition, it is convenient to introduce
the functions

(&) =(£/2), @(&) = v-1(§) +wo(§) + ¢1(§) = ¥(§/4) — Y(48).
as well as the operators
Sy =F W2 7ROF = S, Ap=F1p@27F) 7.
It is clear that Sy = Si S, due to < /2, and A, = A, A}, from Proposition 8.2.
Now, we give the Bernstein inequalities:

Proposition 8.4 (Bernstein inequalities). Let k € Ny, 1 < p < ¢ < 00, A be an annulus
and B be a ball. Then, for any f € LP(R™), we have

. 1_1
supp f CAB = ||Dkaq = |51‘1Pk Haaqu < CRANnG q)”pr;

supp f C AL = CTFTINF| £l < IDFFllp < CFFIAR(If -

Proof. Let ¢ be a function of 2(R") with value 1 near B and denote ¢)(£) = ¢(§/N). As
F(©) = ()£ (€), we have
O%f =0% x f with g\ =.Z 1¢y.
Thus, gx(z) = A"(F1¢)(Az) = A"g(\z) in view of Proposition 1.3, where we denote
g =91
Applying Young’s inequality with % =1- % + %, we get
10%fllq =l0%gx = fllg < 10%gllr [l f1lp

=A%) ) [ L fllp = N 0% gl £

1

n(t-1 let
NG 0% g1 £ -
The first assertion follows via
10%gll» <[|0%glloo + 10%g1

1
<09l + / 0g](1 + fwaf2)" ~da
R’VL

(1 + |wz[?)
1
< leY o 1 2\n qo o d
0%l + 10+ a0l | s
<Cul|(1 + |wz )" 0%glloo = Col| Z 1 F (1 + [wl*)"9%g) |
<G| Z (1 + |wa*)"0%g) |1 = Cull(1 = A)"((wi€)*$())
=C, [ CA=1Y AT (€76(9)|| < Cn D CalA(E(E))Ih
j=0 L j=0
<G, sup ||85(§a)80¢”1
0<|BI<el, 0<o|<2n—|B]
<Cy sup 1€°07 ]
0<|BI< e, 0<o|<2n—B]
<C,C* sup 07¢|l1 (since ¢ is compactly supported)
0<o|<2n
gC’CJrl.

To prove the second assertion, we consider a function ¢ € Z(R" \ {0}) with value 1 on
a neighborhood of A. From the algebraic identity
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= > g8 = aalif)(—ie)*,

11, gk < o=k

for some integer constants a, and the fact that f =9 f , we deduce that there exists a
family of integers (aa)aeny such that

F=Y haxdf, with hg:i=anF " (—wif)*w| **6(¢),
|a|=k
and the result follows. 0

Remark 8.5. When the frequency is localized, one can upgrade low Lebesgue integrability
to high Lebesgue integrability, at the cost of some powers of A; when the frequency A
is very slow, this cost is in fact a gain, and it becomes quite suitable to use Bernstein’s
inequality whenever the opportunity arises.

The following lemma describes the action of Fourier multipliers which behave like ho-
mogeneous functions of degree m.

Lemma 8.6. Let A be an annulus, m € R, and k = 2[1 + n/2] where [s] denotes the
integer part of s € R. Let o be a k-times differentiable function on R™\ {0} satisfying that
for any o € Ny with |a| < k, there exists a constant Cy, such that
00 ()] < Calg"™1, Ve eR™.
Then, there exists a constant C, depending only on the constants Cy, such that for any
p € [1,00] and any A > 0, we have, for any function f € LP with supp f C A\A,
lo(D)fllp < CA™||fllps  with o(D)f := F (o f).

Proof. Consider a smooth function € supported in an annulus and such that 6 =1 on A.
It is clear that we have

o(D)f = F ox f=FH0(E/No(€) * f = XN"FHO(E)o(A))(\) * f.
Thus, in view of Young’s inequality, we only need to prove A".Z~1(0(£)a(AE))(N\) €
LY (R™), or equivalently, Z ~1(0(£)a(\¢)) € LY(R™). In fact, for M := [1 + n/2], we have

(1 + wz )M Z7H 0o (M) (@) = F 11 = A)™ (0(§)r(AE))

=71 > CapX?070(€)0%(1E)

lee|+18]<2M
for some integers C, s (whose exact values do not matter). The integration may be re-
stricted to supp #. On this set, we have [0%0(\¢)| < Cs ™18l by the assumption. Thus,
we get

(1 + [waHM|FHO(E)a(AE)) ()| < CuA™.
As k = 2M > n, we may conclude that ||.Z ~1(8(&)a(N€))||l1 < CA™. This completes the
proof. O

By Young’s inequality, we can easily prove the following crucial properties of the oper-

ators Ay, and Sy

Proposition 8.7 (Boundedness of the operators). For any 1 < p < oo and k € Z, it holds
1Afll < Cllfllps 1SkFllp < ClLFllps

for some constant C independent of p.
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We now study how the Littlewood-Paley pieces Ay f (or Sif ) of a function are related
to the function itself. Specifically, we are interested in how the LP behavior of the Ay f
relate to the LP behavior of f. One can already see this when p = 2, in which case we have

1/2
1 fll2 ~ (Z ||Akf||§> : (8.7)

kEZ
In fact, we square both sides and take Plancherel to obtain

G W RGRIGIES

k€EZ
Observe that for each £ # 0 there are only three values of g (§) which does not vanish.
That is, for |£] ~ 2,

Do lek(©F = 0i1 (&) + @i (6) + 97 ()

kez
=(0e-1(8) + 0e(&) + e+1(€))* = 2(0e—1(&)@e (&) + Lr—1(§) e+1(€) + Le(€)pe+1(€))
=1 —2(e-1(&) + we11(6)e(€) =1 —2(1 — 0e(€))pe(€) = 1 — 204(£) + 2607 (€)

1 1 2
5 +2(3-w@) .
which yields
<) e <1, VE£0.

kEZ

DN | =

The claim follows.
Another way to rewrite (8.7) is

1/2
1fll2 ~ <Z|Akf|2> : (8.8)

keZ 9

. 1/2
The quantity (Zkez |Akf|2> is also known as the Littlewood-Paley square function.
More generally, the Littlewood-Paley square function theorem, i.e., Theorem 6.26 is valid
for this smooth type decomposition:

Theorem 8.8 (Littlewood-Paley square function theorem). For any 1 < p < oo, we have

1/2
(Z |Akf|2> ~ £y

kEZ
P

with the implicit constant depending on p.

The proof of this theorem is very similar to that of Theorem 6.26, so we remain it to
the interested reader.
Now, we can give the proof of Theorem 7.16.
Proof of Theorem 7.16. Since 0 ¢ supp f, we have f(£) = 0 in a neighborhood of
& = 0. Then there is some integer ky such that f = Z,@,m A f. Noting that
(1+ [we?)*?|we| 7 Y pi(€) € My
k>ko
by the Mihlin multiplier theorem, we see that for f € H; (R™)
1Nl = 1771+ w€ )2l D on(©F Il < Cllfllg, -

k>ko
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Conversely, if f € H,, then we note that [w¢[*(1 + |wg|2)—5/2 D ksk, Pr(§) € My in view
of Mihlin multiplier theorem. Thus,
1 gy = 17~ el (L W€ )72 Y or(©F I Fllp < Cllf -
k>ko
IffelPn H;, then we obtain as above for s € R

£l <IF M+ |wEP) 2 we 7Y o) F T fllp
k>0

HIF T+ wEP) 2D en(©)F £l
k<0

SC(IA N g + 17 1l)-
Conversely, if s > 0 and f € H;, then clearly f € L and
1F 1Lz <UZTHWEP (L + |WE) 2D ou(OF T £,

k>0

+lwl* Y 2N F T TRIED e (2R F Sl

k<0
SCUA Mg + 1 llp) < Cllfllag-
Now, we consider the case s < 0. If f € LP + H;, ie., f = f1 + fo for some f; € LP and
f2 € Hy, then
£ llzrs <l + I fellzr = 197 fallp + 17 71+ [wEP) 2 wé] > F L foll
<Ifillp + Cllfall g
by Theorem 7.7 and the fact that (1 + |[wé|?)%/?|wé|~% € M, for s < 0 by the Mihlin
multiplier theorem. Conversely, if f € Hy, then f = Y7, (Apf + Z@O A f where
I3 kco Drfllp < I1fllp and 3,50 Akf||H5 < ||fllm; by the first conclusion since

0 ¢ supp 9\(21@0 Akf)-
For the case s = 0, it is obviously from the definitions. O

8.2 Besov spaces and Triebel-Lizorkin spaces

The Littlewood-Paley decomposition is very useful. For example, we can define (inde-
pendently of the choice of the initial function ) the following Besov spaces. In order to
define the homogeneous Besov spaces, we first modify the Schwartz space % and its dual
. Denote

F(R") = {f e SR : (9°f)(0) =0, Vo € Ng} : (8.9)
which is a subspace of . (R™) with the same topology. We denote its dual space by .%’ (R™)

which can be also identified by the quotient space of ./ (R™)/Z(R™) with the polynomials
space Z(R™). Then we can give the following definition.

Definition 8.9. Let s € R, 1 < p, r < 0co. We write

1

By, — < Z (QSkAkﬂp)T) , VYfe y/(Rn)’

k=—oc0

171
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3=

1l B;., =ISofllp + (Z (ZSkHAkfp)T> , Vfe S (RY).

k=0

The homogeneous Besov space B;,,. is defined by

By, ={fe ' ®):|Ifllp, <oo},
and the nonhomogeneous Besov space B, ,. is defined by
B:, = {f e SR : |Ifllss, < oo} .
For the sake of completeness, we also define the Triebel-Lizorkin spaces.

Definition 8.10. Let s€ R, 1 < p < o0, 1 < r < co. We write

1
r

£l = (Z (28’“|Akf|)r> , Vfe S ®RY),
k=—o00 »
1£1l, =lS0fllp + (Z(2S’“|Akf|)r> . Vfe S (R).
k=0

p

The homogeneous Triebel-Lizorkin space FpﬁT is defined by

Fro={fe @)1, < oo},

and the nonhomogeneous Triebel-Lizorkin space F} . is defined by
By, = {f e @) Ifllsy, <0}

Remark 8.11. It is easy to see that the above quantities define a quasi-norm and a norm
in general, with the usual convention that » = co in both cases corresponds to the usual
L*> norm. On the other hand, we have not included the case r = oo in the definition of
Triebel-Lizorkin space because the L°° norm has to be replaced here by a more complicated
Carleson measure.

Besov space and Triebel-Lizorkin space were constructed between 1960’s and 1980’s.
Recently, they are widely applied to study PDEs. Roughly speaking, these spaces are
products of the function spaces ¢"(LP) or LP(¢") by combining the Littlewood-Paley de-
composition of phase space. The index s in the definition, describes the regularity of the
space.

From Theorem 8.8, we immediately have the following relations involving Sobolev spaces
and Triebel-Lizorkin spaces:

Theorem 8.12. Let s€ R and 1 < p < co. Then

s __ 178 s __ 118
Hp _Fp,2’ Hp _Fp727

(8.10)

with equivalent norms.

For simplicity, we use X to denote B or F' in the spaces, that is, X . ().(1‘;’707 resp.)

denotes B, . (B;T, resp.) or F;, (Fpsyr, resp.). But it will denote only one of them in the

same formula. We always assume that 1 < p < oo for By, (B;)T, resp.) and 1 < p < o0
for F; . (Fs

p,r?

resp.) if no other statement is declared. We have the following embedding
relations:

Theorem 8.13. Let X denote B or F. Then, we have the following embedding:

X5, C X3 X, X

p,r1 p,r2? psT1 psT2? Zf 1 < r2,
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Xprr € Xppy >0,
By min(pr) © Fpr € By max(pryr 41 <P <00,
By min(pr) © Fpr C By max(pryy 41 <p <00

Proof. It is clear that the first one is valid because of £" C £"T% for any a > 0. For the
second one, we notice that

~ s ~ s
(Z 25k'r2 ak|r2> < sup 2(s+s)k |ak‘ (Z 2—6kT2> 5 sup 2(s+5)k|ak|.
k=0 k>0 =0 k>0
Taking ay = [|Agfllp or ax = |Arf], we can get
X;»Jgg C X;,T’z’

which yields the second result in view of the first one.

For the third and last one, we separate into two cases and denote by = 25}“\Ak f| and
j = 0 for the third or j = —oco for the last one.

Case I: r < p. In this case, we have ¢" C (P and

Sty =3 [ @rde= [ 3 s
k=j k=j /R" R™ j=j

- / I (b) [ de < / I b) I,
RTL Rn

which yields the second parts of embedding relations. Moreover, by Minkowski’s inequali-
ty,3 we get

oo oo oo o0
Soi) | =|u] < S =X i,
k=j k=j » k=j k=j

p ™

which yields the first parts of embedding relations.
Case II: p < r. By Minkowski’s inequality, we have

T

Sl

o) o0 o0 o0
STbeln =S 0gle < |[Soor| = D6 ||
k=i k=j k=i ||p k=j

r P

which yields the second parts of embedding relations.
In this case, we have P C " and

) N I I CBi) lewll? = [ D051 =D lbwllp,s
k=j j

which yields the first parts of embedding relations. Thus, we complete the proof. a

From Theorems 8.12 and 8.13, we can get the following corollary.

Corollary 8.14. Let s € R. Then we have
i) For 1 <p <00, B} inp2) © Hy C By rnaxp2) @4 By rin(p.
In particular, H* = B3 , = F5 5 and H® = 3572 = sz,

ii) For 1< p< oo, By CHy CB, and By, C Hy C B ..

)y CHp C B ax(p2)-

,O0

3 Minkowski’s inequalities read
D252 fille < 22520 [1fillps for any p € [1, 00];
i) 22520 1f5lle < 122520 fillp, for any p € (0,1) and f; > 0.
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Proof. It obviously follows from Theorems 8.12 and 8.13 except the endpoint cases p = 1
or oo in ii). For the proof of the endpoint cases, one can see [BL76, Chapter 6]. a

Theorem 8.15. Let X denote B or F. Then,
i) X, . is a Banach space;
ii) S(R") C X5, C ' (R"), S (R") C X5, C L' (R);
iii) .7 (R") is dense in X5, if 1 < p,r < oo; L (R") is dense in X3

p,r? p,r? Zf]- ép,r < 00.

Proof. We only show the nonhomogeneous cases and leave the homogeneous cases to the
interested reader. Clearly, X7 . is a normed linear space with the norm |- || x: = since either
£"(LP) or LP(¢") is a normed linear space. Moreover, it is complete and therefore Banach
space which will be proved in the final. Let’s first prove the second result. We divide the
proofs into two steps.

Step 1: To prove ./ C B, . In fact, for ¢ = max(s, 0) and sufficiently large* L, N € Ny,
we have for any f € ., from Proposition 8.4 and 8.7, that

1fllBs . =lSofllp + igISQSkIIAkfllp <Cllfllp + 21;%25’“|\(v*A)’”Ak(vfﬂ)”fl\p

SO flas + sup 227N (V=2 flp

a,pB
S U las + 10+ 12 (V=2)" flloo S D Iflass-
o, a,B

where |f|q g is one of the semi-norm sequence of .. Thus, we obtain the result.

Step 2: To prove ./ C X7 . From Step 1, we know . C B;;g for any € > 0. From
Theorem 8.13, we get Byte C By rmin(p,r) € Bp.r N E .. Therefore, & C X7 .

Finally, let us prove the completeness of By .. The completeness of F; . can be proved
in a similar way. Let {fi}7~ be a Cauchy sequence in Bj .. So it does in .#” in view of
ii). Because ./ is a complete local convex topological linear space, there exists a f €
' such that f; — f according to the strong topology of .#’. On the other hand, that
{f1}7" is a Cauchy sequence implies that {A f;};=, is a Cauchy sequence in LP. From the
completeness of LP, there is a g, € LP such that

HAkfl — gk”p — 0, [ — oo. (811)
Since LP C . and Ay fi — Apf asl — oo in &, we get gr, = A\ f. Hence, (8.11) implies
18k = F)llp =0, 1 .

which yields supjg 2R Aw(fi — f)llp — 0 as | — oo for any & > 0.
Similarly, we have

1So(fi — F)llp =0, [ — oo

Therefore,

Ife = fllBy, S I1fi— £l

In a similar way, we can obtain the density statement in iii). We omit the details. O

pite 20, [ — o0

4 It is enough to assume that L > % and N > max(2L, o). In fact,

1/p

e 1/p oo
H(1+\w|2)‘Lllp:C(/ r"-1<1+r2>—“dr) gch(/ rn_l(l—i—r)_zPLdr)
0 0
%5} 1/p
<o2* (/ (1+r)*2pL+"*1dr) < C2F(2pL —n) /P,
0]

where we assume that 2pL > n.
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8.3 Embedding theorems and Gagliardo-Nirenberg inequalities

Theorem 8.16 (The embedding theorem). Let 1 < p,p1,r, 71 < 00 and s, s1 € R.

Assume that s — ; =51 — . Then the following conclusions hold
B; BZS&H’ BS B;S)in’ Vp <pp andr <.
F;u Flfll 10 F}f, F[fll ryo vp < pp < 0.

Proof. We only give the proof of the nonhomogeneous cases, the homogeneous cases can
be treated in a similar way.

Let us prove the first conclusion. From the Bernstein inequality in Proposition 8.4, we
immediately have

1Ak F Iy S 257501 Ak F Ly (S0 llps S 1150 lps (8.12)

since 1 < p < p1 < oo. Thus, with the help of the embedding B;, C B, ,, for r <7y in
Theorem 8.13, we get

1z, =ISofllp + (Z @20 f )" )

k=0

8

1

SlSoflle + <Z (2 1Ak f1l)" ) =111z, < If1B;,-

k=0

8

This gives the first conclusion.
Next, we prove the second conclusion. In view of Theorem 8.13, we need only prove

s S1
th Fp11

Fs__ = 1 and consider the norm

> 2k Af|
k=0 P1

We use the following equivalent norm (i.e., Theorem 2.16) on L? for 1 < p < oc:

1l =p / T tm({e: |f(@)] > )dt

Without loss of generality, we assume

1k, = IS0 llp, +

Thus, we have

0o p1 A 0o
> 2ok AL f] :p1/ "1~ tm ({:c DY 2R (A f) ()] > t}) dt
k=0 - 0 k=0
+p1/ "1 'm ({x D 2R (A f) ()] > t}) dt
A k=0
=141,
where A > 1 is a constant which can be chosen as below. Noticing that p < p; and
s—%zsl—pﬂl imply s > s1, we have
2 A f| S 2K T sup 2°F | Ay f|, VK € N, (8.13)
Py k>0

By taking K = 0 and noticing p < p; (which implies that tP1 =1 < APr=PtP~L for t < A),
we get

A
I 5/ 1 Im ({:v ssup 2°F| (AR f) ()| > ct}) dt
0 k>0
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cA
5/ P m ({x : supQSk\(Akf)(xﬂ > T}) dr <
0 k>0

where the implicit constant depends on A, but it is a fixed constant.
Now we estimate I1. By the Bernstein inequality in Proposition 8.4, we have

p

sup 2°%| Ay f|
k>0

P

[Akflloo S 267 AR S S 20 /P=9)

sup 2°F| A f|
k>0

p
Hence, for K € N, we obtain
K—-1 K—-1
D2k A f] Y 2R ) lsup 2%k | A f |
k=0 k=0 #=20 P (8.14)
<2Kn/p(lgup 25K | AL f)|| < 2K/
k>0 »

Taking K to be the largest natural number satisfying C25K™/P1 < t/2, we have 2K ~
tP/7 Tt is easy to see that such a K exists if ¢ > A > 1. Thus, for t > A and
> ne 2R |(Akf)(z)] > t, we have, from (8.13) and (8.14), that

o0

02K (s1=9) Sup25k|Akf| > 2 A > t/2. (8.15)
k=K
Hence, from (8.14) and (8.15), we get

I1 —pl T ( ZQSI’% (A f)(z)] > t}) dt

K—-1
e ({x 251K (AR ()] > t/2}) dt
k=0

+ [ m <{:c : i 231k (A f)(2)] > t/2}> dt
A

k=K

A
/ tP1=1m ({x L CoKn/m s, t/Q}) dt
/

tP1~Im ({x 02K G1=9) sup 25K (AL f) (2)] > t/2}> dt
A k>0

A
/ P~ Im ({x:sup25k|(Akf)(x)| >ctp1/p}) dt
A k>0

,S/Oo P~ im ({x s sup 2°F|(Ap f) (x)] > T}) dr
/ k>0

Slisup 2% A fI][5 < 1.
k>0

o0

5
S

+
S

That is,
>k ALfll S
k=0 P1
On the other hand, from (8.12), we have [|Sofll,, < 1. Therefore, we have obtained
I7llgs1 - < 1 under the assumption || f||gs = = 1. This completes the proof. O
P1,1 p,00

Theorem 8.17. Let 1 <p < oo, s >n/p and 1 <r < oo. Let X - denote BS
Then it holds

\T

S
or Fj,.

X5, CBY,,CL™
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Proof. By Bernstein’s inequality and Theorem 8.13, we have

£ lloo < D0 18 flloo S Y 25710k fllp S (Z 2k<n/ps>>

k=-1 k=-1 k=-1

Bs . Sfllx -

a

Now, we give some fractional Gagliardo-Nirenberg inequalities in homogeneous Besov,
Triebel-Lizorkin and Sobolev spaces without proofs (cf. [HMOW10]).

Theorem 8.18. Let 0 < p,pg,p1,7,70,71 < 00, §,80,51 € R, 0 <0 < 1. Assume that

s—n:(1—9)<so—n>+9<sl—n>,
p Po b1

then the fractional Gagliardo-Nirenberg inequality of the following type

1715, S 1712
holds for all f € BS0 ro N BS} rl if and only if one of the following conditions holds:
1 -0 9

i) s < (1—0)so+ 0s1 and —
-
ii) po =p1 and s = (1 — 0)80 + 931 but so ;é 81;

iii) 30——;&{9—E and s < (1 —0)sg + 0s;.
Po p

For homogeneous Triebel-Lizorkin spaces F]f -, we have the following:

Theorem 8.19. Let 1 < p,p;,r < 00, s,50,51 € R, 0 < 8 < 1. Then the fractional
Gagliardo-Nirenberg inequality of the following type

—0 0
SIS N

holds if and only if

s < (1 —6)sp+ 0s1,
so#s1 if s=(1—0)sg+ 0s1.

As a corollary, the following is the Gagliardo-Nirenberg inequality with fractional deriva-
tives in Sobolev spaces.

Corollary 8.20. Let 1 < p,po,p1 < 00, s, s1 € R, 0 < 0 < 1. Then the fractional
Gagliardo-Nirenberg inequality of the following type
11z S AN 11 s
holds if and only if
sfﬁf(lfﬁ) +9<51n>, s < 0s;.
p Po p1

At the end of this section, we state the following interpolation inequalities of nonhomo-
geneous Besov spaces.

Theorem 8.21. Let 51,50 € R with 51 < s3, 0 < 0 < 1, and 1 < p,r < 00. Let
s = (1—0)0s1 + Osq, then there szists a constant C > 0 such that

115, <Al IS

1fllss, < c L, 1
32’1\52781 0 1-6

52 B
o

—0
e [
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8.4 Differential-difference norm on Besov spaces

The next theorem points to an alternative definition of the Besov spaces B, , (s > 0)
in terms of derivatives and moduli of continuity. The modulus of continuity is defined by

wy'(t, f) = sup [| A fllp,
ly|<t

where A7 is the m-th order difference operator:
Z CF (=DF f(z + ky).

Theorem 8.22. Assume that s > 0, and let m and N be integers, such that m + N > s
and 0 < N < s. Then, with 1 < p, r < 00,

r 1/r
- >~ Ns m aNf dt
f||B;,,,~||f|p+;</o (t (t M)) t) |

Proof. We note that w," is an increasing function of ¢. Therefore it is sufficient to prove

that
N r\ 1/7
Iflls5, ~ |f||p+Z<Z ( BT <2f§§>>> :
{=—00 xj

First, we assume that f € B, .. It is clear that

m a m ONf - Nf
wy'(2 Z,a—N) = sup ||Ay vl = sup C’fﬁl(—l)kaiN(a:—&—ky)
T lyl<2t Tj lyl<2~* || =0 T »
m ] aNf
= sup ZC,’ﬁl(—l)kﬁ_lemkygﬁ—N(x)
PIRER (part Oz |,
m
. oN
= sup ﬂ_lzCﬁ(—l)ke"“kyg * ]{
lyl<2-1 paurt Owj ||
, N
= sup (5?_1(1—6“”'”5) ) N f
ly| <2~ i ll,
Thus, we denote p,(§) = (1 — e~"$)™. By the Littlewood-Paley decomposition, we have
_, ONf 3Nf
p( Z,W): Sup_ (& SOJFZAk
Z; ly|<2—* »
oN > oN
< sw [[(F o) S0t + s [T s 20
lyl<2-t O ||, W<z 15 ;|
< sup H(/ Py) *SofH + sup ZQMV H )*Akap
lyl<2=* lyl<2=* ;2

Hence,

E(E (s f5))

SO (2 swp (T ) Sof

ly|<2—*
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e r\ 1/7
+osup 32PNk (F ) e f,) )
lyl<2=¢ 1.2,

If we can prove that for all integers k
1F " py * So fllp < min(L, [y[™)[|So fl,, (8.16)
and that
17~ oy * Difllp S min(L, [y[™2™) | Ak f - (8.17)

r\ 1/7
Z Z 2@(3—N)wm (2—57 >> )
j=1 (z——oo < : 635;'\[

o0

<(32 (2™ sup min(L, g™ 1S0f,

lyl<2~

Then,

l=—00
oo

r\ 1/r
+ sup 02Nk min(1, 2| A, ) )
lyl<2=* 1 2

o0

SO (27 min(1, 27 ) S0 f1lp

l=—o0
o r\1/r
£ 3026 i1, 27y g ) )
k=0

S min(1,2757) # ()l
SN min(L, 275) o [(@)ller S I f 1155,

where the sequence ()52 with ay = 25| A fll, if £ >0, a_1 = ||Sof|l, and ay, = 0
if £ < —1, and we have used the Young inequality for a convolution of two sequences. In
addition, we have

£l SISofllp + D 124 £l

k=0
0o 1/r o 1/r
SISoflly + (Z 25”) (Z(Tkﬂﬂkf”p)r) S fls;
k=0 k=0

which implies the desired conclusion.
Now, we turn to prove (8.16) and (8.17). We only need to show p, € M, and

py()(y,-)~™ € M, for p € [1,00] and
loyllaz, <C5 Moy ()Y, )" llar, < C, Yy #0. (8.18)

In fact, from the definition of p,, we get

1 m k (_1\k m
IZ oy * fllp sup 12 k=0 O (1) f (@ + ky)llp < ch < C
k=0

lpyllag, = sup —————+ =
YITe  res £l fes £l "

By Theorem 6.16, we have
2y (§){y, &)™ " I a1, (rn) =I(1 — €m<y’£>)m<%5>7m||M,,(Rn)
=[I(CT = =) /m)™ | az, () -
In view of Theorem 6.17, we only need to show ((1 — e¥™)/n)™ € L*(R) and 9,((1 —
ew™) /)™ € L?(R). We split the L? integral into two parts |n| < 1 and |n| > 1. For

[n| < 1, we can use Taylor’s expansion to get the bound of the integral. For |n| > 1, it is
easy to get the bound by noting that m > 1 in view of the conditions m + N > s and
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0 < N < s. Thus, [|((1—e“")/n)"™||x, @) < C by Theorem 6.17, which completes the
proof of (8.18).
Similarly, we can prove

<y/ 1yl )™ (I, < €, and [[{y/lyl, )™ e()llm, < C,
which implies
Iys )™ C)llaz, < ClyI™, 1y, )™ 0275 ) |a, < Cly[m2m".
Thus clearly,
17~ oy % Sofllp SIS0 flps
1F = py * Soflly =I(F " py(€)(y: &)™)+ F =y, ™ F Sofllp S 1yI™ 150 |l
which yields (8.16). In the same way, we have
17~ oy * Dgfllp SNk Nlps
1F g D fllp =T 1oy (E)(y, ) 7™) * F 1y, )™ F Lifllp S 112" 1 2%

which yields (8.17).
The converse inequality will follow if we can prove the estimate

1Ak fllp < 27NN

=1

, (8.19)
P
where pjr = p(a-k¢;) with e; being the unit vector in the direction of the §;-axis and py
defined as the previous. In fact, if (8.19) is valid, we have, by noting ¢ € My, that

_ 1o}
(# lpjk) * N

1/r
o0 . n 3 8N
19, S0+ [ 32 (2460793 (o)« 5L
k=0 j=1 z;
n 0o aNf ry\ /7
SIfll+ (Z <2k<S‘N>w$ (2"“» iy )) ) :
=1 \k=0 T

which implies the desired inequality.
In order to prove (8.19), we need the following lemma.

Lemma 8.23. Assume that n > 2 and take ¢ as in (8.2). Then there exist functions
x; € L(R™) (1< j<n), such that
n

Zijl on suppp C {&: TP ¢ <2},
Jj=1

supp x; C {§ eR": ¢ = (3\/75)*1}, 1<j<n.

Proof. Choose 1 € #(R) with suppr = {£ € R : [¢] > (3y/n)"!} and with pos-
itive values in the interior of supp . Moreover, choose ¢ € .#(R""1) with suppl =
{€ e R"7!: |¢] < 3} and positive in the interior. Writing & = (&1, ,&-1, &1, 5 &n)
and
Xi(€) = K(ENUE)) D R(ENUE), 1<j<n,
j=1

where 27:1 k(&)0(&7) > 0 on supp ¢, only routine verifications remain to complete the
proof of the lemma. O

We now complete the proof of the theorem, i.e., we prove (8.19). By the previous lemma,
we obtain the formula
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n

12k fllp S Z

=1

T (27 N e(27R )« F pjw‘ o5

p

-1 _—m ( k)( kf) (2 k) T 1 myaNf
Pk Xi j Pik oN

ZTj p
<2—kN —-m., ¢—N ﬁ_l m aNf
~ Z 150" X3¢ ‘PHMP(R) Pjk* aN
Jj=1 i lp
KN\ Nf
2T Pik* x|
j=1 z lp
since, by Theorem 6.16 and 6.17, we have
(1= e )"y ()& N e(§) € My,
forl1<j<mnand1l<p< 0. a

Now, we give a relation between Holder spaces and Besov spaces.

Corollary 8.24. Let s > 0. Then we have BS, = C*.

Proof. By Theorem 8.22 with p = r = co and m = 2, and Proposition 7.24, for 0 < s < 1,
we can take N = 0 and then

1Bz, o ~ [1flloo +supts ‘Wi (t, f) =

By Proposition 7.25, we can extend to any s > 1. This completes the proof. a

Now we give a corollary which is very convenient for nonlinear estimates in PDEs.

Corollary 8.25. Assume that s >0 and s ¢ N. Let 1 < p, r < 0o, then

n 1/r
IIfB;,T~||f||p+Z</ (M “ sup Aha[ﬂfH) ) 7
J=1 |h|<t

where [s] denotes the integer part of the real number s and Ay denotes the first order
difference operator.

Similarly, we can get a equivalent norm for the homogeneous Besov space.

Theorem 8.26. Assume that s > 0, and let m and N be integers, such that m + N > s
and 0 < N < s. Then, with 1 < p, r < oo,

r 1/r
‘ ([~ N=sim ONF\\ dt
S (o (52) )

In particular, if s >0 and s ¢ N, then

; N 1/r
s B (0 (e, 2)

One of the following result is a straightforward consequence of Theorem 8.22 and Theo-
rem 8.26, which indicates the relation between homogeneous and nonhomogeneous spaces.

Theorem 8.27. Suppose that f € ' and 0 ¢ supp f Then

J€B,, & feB,,, VseR, 1<p,r<oo.

Moreover,

By, —LpﬂBIS)T, Vs >0, 1< pr<oo

)
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B, =L"+ B}

o Vs <0, 1<p,r<oo.

Proof. One can see [BL76, Chapter 6. O

Now, we give the duality theorem:

Theorem 8.28 (The duality theorem). Let s € R. Then we have

i) (By,) =B, 5, if 1 <p,r<oo.

i) (Fy,) = Fy5, if 1 <p,r<oo.

Proof. Please read [BL76, Tri83] for details. O






Chapter 9
BMO Spaces

9.1 Functions of bounded mean oscillation and BMO spaces

Functions of bounded mean oscillation were introduced by F. John and L. Nirenberg
[JN61], in connection with differential equations.

Definition 9.1. The mean oscillation of a locally integrable function f (i.e. a function
belonging to Lj,.(R™)) over a cube @ in R™ is defined as the following integral:

- 1
fo= m(Q)/Qf(m) - foldx,

where fg is the average value of f on the cube Q, i.e.

1
fo= 7/ f(z)dz.
2= m@ S
Definition 9.2. A BMO function is any function f belonging to L .(R™) whose mean

loc
oscillation has a finite supremum over the set of all cubes! @ contained in R”. Let

M# f(x) = sup fo,
zeQ

be called the mazimal BMO function or the sharp mazimal function, M# is called the sharp
mazimal operator. Then we denote the norm of f in this space by ||f||smo = [|M¥ f||co-
The set

BMO(R") = {f € Ljoe(R") : || fllB7o < o0}
is called the function space of bounded mean oscillation or the BMO space.

Remark 9.3. 1) Note first that the null elements in the BMO norm are the constants,
so that a function in BMO is, strictly speaking, defined only up to an additive constant.
Although || - [[Bmo is only a seminorm, we will occasionally refer to it as a norm with no
reason to cause confusion. Observe also that f would be still in BMO if the definition of
fQ were extended to allow arbitrary constants cg in place of the mean values fqg. Indeed,
if ||fllemo < A in our definition, we would then have |cg — fo| < A4, and || f|lsmo < 24
follows. Similar reason shows that an equivalent definition of BMO arises if we replace the
family of all cubes by, say, the family of all balls.

2) It is trivial that any bounded function is in BMO, i.e., L= C BMO. The converse
is false. A simple example that already typifies some of the essential properties of BMO

1 The use of cubes @ in R™ as the integration domains on which the mean oscillation is calculated, is not
mandatory: Wiegerinck (2001) uses balls instead and, as remarked by Stein ([Ste93], p. 140), in doing so
a perfectly equivalent of definition of functions of bounded mean oscillation arises.

173
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is given by the function f(z) = In|z|. To check that this function is in BMO, note that
the scaling transforms f(z) — f(dz), 6 > 0, map BMO functions to BMO functions, and
in fact do not change their norms. Under these scaling, In |z| is changed by at most an
additive constant. Thus to verify || f||smo < C it suffices to check the alternative assertions

/ IIn |z|| dx g/ [In |z|| dz < C,
Q |2|<14+v2

/ || — In(1/|xp])| dar = / (|2 [zo])] dez < / (2] zo])] dec
Q Q |z—z0|<V2

<|x0|—"/ In |2]| dz < C
(vV2-1)<|2<(1+v?2)

where @ is a cube of length 2 centered at xg. The first inequality holds when |zo| < 1; the
second holds when |z¢| > 1. This proves that In |z| € BMO.

3) It is a simple but useful fact that the space of real-valued BMO function forms a
lattice. If f and g belong to BMO, then so do max(f,¢) and min(f, g). This follows from
the observation that |f| is in BMO whenever f is, which in turn is a consequence of the

fact that |[f[ —[foll < |f — fol-

An element of BMO is a function that is “nearly bounded”. We shall see below the
precise sense in which this is true. A useful related fact is the following, which describes
the behavior of BMO functions at infinity.

Theorem 9.4. Let f € BMO, then f(z)(1+ |z|["™)~! is integrable on R™, and we have
T) —
I = / Mdm < C|fllsyo, (9.1)
R

no 14 |z|ntl
where C' is independent of f, and Qo = Q(0,1).

Proof. Let Qr = Q(0,2%), S, = Qi \ Qx_1 for k € N, Sy = Qo, and
e [ M0 taly, o,
s

1+ [z

Then, we have

I=I+Y I
k=1

Since

I = /Q @) = faol 4, /Q 1£(2) — fauldz < m(Qo)llfIlsyo,

o 1 [z["H!
it suffices to prove I, < Ck||fllsmo and 3, Cx < co. For z € Sj, we have |z| > 2¥~2 and
then
14 |27t > 14 20720 0FD) o y=(nt1)gk(nt1)

Hence,

I, <4ntig k(D) / 1F(z) — fauldz

k

g4n+12k(n+1)/Q [[f(z) = faurl + 1 fqr — fqolldx

<42 D m Q) (| fllsvo + | fau — faul)
=4" 27K (|| flsno + |fa — faol)-

The second term can be controlled as follows:
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k

|ka - fQ0| <Z|fQ1 - fQi—l‘
=1

E

1
< 1:21 m(Qi—l) /1,1 |f(.%‘) - fQi

Eoon
me(QZ)/Q If(z) — fq.

i=1 i

<k - 2"(| fllBmo-

dzx

dzx

Therefore,
I < 4n+12—k(n+1)2nk(1 +k2n)||f”BM07
where Oy = Ck27F and > Cr < 00. This completes the proof. O

9.2 The John-Nirenberg theorem

Having set down some basic facts about BMO, we now turn to a deeper property of
BMO functions: their exponential integrability. We begin with a preliminary example.

Ezample 9.5. Let f(z) =In|z|, I = (0,b), and
Eo={zel:|lnz— fi|>a},
then we have
Ey,={zel:lnz—fi>alU{xel:lnz— f; <—-a}
—{zel:x>eyu{osel:x<e ot}

When « is large enough, the first set is an empty set and the second one is (0,e~**71).
Thus

m(E,) = e T/,

By Jensen’s inequality, we get
1 1]
fr < lntdt = =
T / 2

Therefore,
1
m(FE,) < §|I|e_a.

Although the above relation is obtained from the function In|x| over (0,b), it indeed
reflects an essential property for any BMO function in the BMO space.

Theorem 9.6 (The John-Nirenberg theorem). For all f € BMO(R"), for all cubes Q,
and all o > 0, we have

m({z € Q: |f(z) — fol > a}) < em(Q)e~ A/ I/llpvo 9.2)
with A = (2"e)~ 1.

Proof. Since inequality (9.2) is not altered when we multiply both f and « by the same
constant, it suffices to assume that || f||smo = 1. Let us now fix a closed cube @ and a
constant b > 1 to be chosen later.

We apply the Calderén-Zygmund decomposition to the function f — fqg inside the cube
Q. We introduce the following selection criterion for a cube R:
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1
T | 17@) = Faldz > . (9.3)
Since

m(lQ)/Q"f(z) = foldz < || fllsmo = 1 <,

the cube @ does not satisfy the selection criterion (9.3). Set Q) = Q and subdivide Q©
into 2" equal closed subcubes of side length equal to half of the side length of Q). Select such
a subcube R if it satisfies the selection criterion (9.3). Now subdivide all nonselected cubes
into 2™ equal subcubes of half their side length by bisecting the sides, and select among
these subcubes those that satisfy (9.3). Continue this process indefinitely. We obtain a
countable collection of cubes {ngl)} ; satisfying the following properties:

(A-1) The interior of every Q(l) is contained in Q(©).
(B-1) b < m( Q(l fQu) |f(z) = fow|dz < 2.

(C-1) me fom| <27
(D-
(

D Ym@) <35 fom f( fQ<o>|dx 1m(Q©).
E-1) |f = foo| < bae. onthesetQ(O)\U )
We call the cubes Q; ) of first generation. Note that the second inequality in (D-1)
requires (B-1) and the fact that Q(®) does not satisfy (9.3). We now fix a selected first-

generation cube Q§1) and we introduce the following selection criterion for a cube R:

ﬁ /R |f($) — fQ§1) |da? > b. (9.4)

Observe that Q;l) does not satisfy the selection criterion (9.4). We apply a similar
Calderén - Zygmund decomposition to the function

f - ngl)
inside the cube Q;l). Subdivide Q;l) into 2n equal closed subcubes of side length equal

to half of the side length of Q;l) by bisecting the sides, and select such a subcube R if
it satisfies the selection criterion (9.4). Continue this process indefinitely. Also repeat this

(€]

process for any other cube @, of the first generation. We obtain a collection of cubes

{QZ(Q)}Z of second generation each contained in some Qg-l) such that versions of (A-1)-(E-1)
are satisfied, with the superscript (2) replacing (1) and the superscript (1) replacing (0).
We use the superscript (k) to denote the generation of the selected cubes.

For a fixed selected cube Qz(2) of second generation, introduce the selection criterion

ﬁ /R £@) ~ fogolda > . (9.5)

and repeat the previous process to obtain a collection of cubes of third generation inside
Ql(Q). Repeat this procedure for any other cube ng) of the second generation. Denote by
{Qg3)}5 the thus obtained collection of all cubes of the third generation.

We iterate this procedure indefinitely to obtain a doubly indexed family of cubes ng)
satisfying the following properties:

(A-k) The interior of every Q(k) is contained in Q(-k_l).

(B-k) b < m( fQ(k) |f(z fQ(k y|dx < 2™b.

(C-k) ’fQEk) - fQ§If—1)

< 27h.
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k (k=1
(D-k) 30, m(Q") < § 25 m(@r "),
(E-k) |f—fQ(‘k71>|<bae onthe setQ 1)\U (k).
We prove (A—l]f)—(E—k‘). Note that (A-k) and the lower inequality in (B-k) are satisfied by
construction. The upper inequality in (B-k) is a consequence of the fact that the unique

cube QE? with double the side length of Q;k) that contains it was not selected in the

process. Now (C-k) follows from the upper inequality in (B-k). (E-k) is a consequence of

the Lebesgue differentiation theorem, since for every point in Q (k—1) \ U;Q (k) there is a

sequence of cubes shrinking to it and the averages of
17 = Fqun]

over all these cubes is at most b. It remains to prove (D-k). We have

Z Q(k) bZ/(k) fQ(k 1)|d$
bz Z /(k) fQ(k 1)|dx

j’ 7 corresp. to j’

bZ/Q(k H fQ(k 1)‘d$

<& S m@ ) v
>

= > m@ ).
-

Having established (A-k)-(E-k) we turn to some consequences. Applying (D-k) successively
k — 1 times, we obtain

Z]m QY)Y < b~ Fm(Q©). (9.6)

For any fixed j we have that |fQ§1) fow| <2"band |f— fQ<1)| b a.e. on Q§1) \UlQl(2)
This gives
Ilf = foo| <2"b+b ae. on Q;l) \ UlQl(2),
which, combined with (E-1), yields
If = foow| <2720 ae. on QO\ UQP. (9.7)
For every fixed I, we also have that |f — fQ<2)| b a.e. on @, (2) \ Us 53), which combined
with ‘fQ(Q) — fQ(1)| 2™b and |fQ(1) — fQ(o)‘ < 2™ ylelds

|f - fQ(0)| <2"3b  ae. on Ql(2) \Ungg)'
In view of (9.7), the same estimate is valid on Q) \ Ung?’). Continuing this reasoning,
we obtain by induction that for all £ > 1 we have

|f = foo| <2"kb a.e. on QU U,QW. (9.8)
This proves the almost everywhere inclusion

{z€Q:|f(x)— fol > 2"kb} C U;QL

for all k =1,2,3,---. (This also holds when k& = 0.) We now use (9.6) and (9.8) to prove
(9.2). We fix an « > 0. If

2"kb < o < 2"(k + 1)b
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for some k > 0, then

m({z € Q:|f(z) — fol > a}) <m({z € Q: |f(z) — fol > 2"kb})
<D om( Q") < km(@“”)

:m(Q)e—klnb
<]In(Q)b67aln b/(2"b),
since —k < —1 — 553. Choosing b = e > 1 yields (9.2). O

Having proved the important distribution inequality (9.2), we are now in a position to
deduce from it a few corollaries.

Corollary 9.7. FEvery BMO function is exponentially integrable over any cube. More
precisely, for any v < 1/(2"e), for all f € BMO(R"), and all cubes @ we have

n 2
;/ I @=fal/IFloso g < 1 4 26T
m(Q) Jq I —2"ey
Proof. Using identity (2.13) with () = et — 1, we write

s etdr = L e —1)dx = b ooealm x Jh(2)] > a})da
m(Q)/Q a 1+m(Q)/Q( 1)d Hm(Q)/o ({z € Q: |n(x)] > a})d

for a measurable function h. Then we take h = v|f(z) — fol/|| fllBmo and we use inequality
(9.2) with v < A = (2"¢)~! to obtain

(oo}
L/ @ =fal/Iflevo g < / e A IS lm0) I Is3i0 g, — ¢,
m(Q) Jo 0 ’
where (), - is a unit less than the constant in the statement of the inequality. a

Another important corollary is the following.

Corollary 9.8. For all 0 < p < 0o, there exits a finite constant B, ,, such that
1/p
SUP ( / |f(x fQ|pdx> < Byl fllemo(mn).- (9.9)

Proof. This result can be obtained from the one in the preceding corollary or directly in
the following way:

1 Py =2 OQOép_llm x D f(x) — al)da
@) J, 10~ fabar =g [ ({r € Q:1f(x) ~ fol > a})d

P * ap—1e—Aa/ I fllpo
< em(Q / aP~le do
m(Q) (@) 0

(&
= T (0) 1/ aso

where A = (2")~. Setting By, = (pI'(p)-5)/? = (pI'(p))}/Pe'+1/P2" we conclude the
proof. a

Since the inequality in Corollary 9.8 can be reversed when p > 1 via Holder’s inequality,
we obtain the following important LP characterization of BMO norms.

Corollary 9.9. For all 1 < p < oo, we have
1 1/13
sup 7/f3€—f pdl“) ~ [ fllBmo-
w (g [0 fa I

Proof. Since the proof is obvious, we omit the details. a
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9.3 The sharp maximal function theorem and singular integral of
type (L, BMO)

Lemma 9.10. Let f be a nonnegative integrable function on R", t(a) = > po, m(QY)
where {Q} is the cubes sequence obtained by the Caldron-Zygmund decomposition of f at
level ae. Then for any A > 0, we have

1a) < (M* ). (a/4) + S1(2 ).

Proof. Let u = 27" la, {Q;‘} is the Caldrén-Zygmund decomposition at level p, then
every ()% is contained in a certain Q? . Thus, there are two possibilities between Qé—‘ and
the set {x € R" : M# f(z) > a/A}:
(i) QF C {z e R™: M# f(x) > a/A};
(i) Qf ¢ {x e R : M# f(x) > a/A}.
For the case (i), we have
> o m(@) < (MFf).(a/A). (9.10)
{3:Qf in (D} {k:QFCQS}
For the case (ii), since some points of @} don’t belong to the set {z € R” : M# f(z) >
a/A}, we get
1 «o
]m(Q?)/Q; [f(z) = fouldz < 1

Noticing that fQ;_z < 2"u = a/2, we have

o ¥ mepn< ¥ | /Q V(@

{k:QpcQlf} {k:QgcQ”

< ¥ /Q (@) = faelde +1fgel Y m(@Qp)

{mQpcqyy 9k {kQrcey)
«
<[ 1@ foplde S miQp)
< {k:QpCQ)
« «
<m@)+5 0 > mQp),
{k:QrCQl}

which implies that
o 2
>, m(@) < Gm(@)).
{k:QpcQl}
Hence, taking the sum for those QY in the case (ii) yields
a2 2 2
> > m@)<g > m@)< Gt =2 ).
{7:Q% in (i)} {k:QF CQY} {5:Q% in (i)}
Combining with (9.10), we obtain the desired result. O

Theorem 9.11 (The sharp maximal theorem). Let f € LP(R™), 1 < p < oo, then we
have

17 fllp ~ 1 f 1l (9.11)
where the hidden constants depend only on p and n.
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Proof. Since
1 1
3 f(a) = sup — o [ 17(@) ~ foldo < sup — [ [7(@lde + |fo] < 200 f(o),
zeQ M(Q) Jo © xe@ M(Q) Jo ¢
we have |M#f|, < C|f|l, by the Hardy-Littlewood maximal function theorem. Since

Il fllp < IM’ fllp, thus we only need to prove that
1M fllp, < CIM* fllp, 1 <p<oo. (9-12)

In fact, from Lemma 3.22 (which can be extended to any integrable functions),changes of
variables, we have

Al = [ s@rds=p [0 0 ). (a)da
<p OOo/’*lZ” m(Q] "*)do
Ji e e
gy [ 1S m(@f)a
v s > (@5

:2”7"”1)/0O BP1(B)dB.
0
By Lemma 9.10 and changes of variables, it yields
o0 oo 2 oo
p—1 < p—1 # . A = p—1y/9—n—1
| etmas< [ ptartn.eis+ 5 [ e gas

oo 2 oo
yy / o (MF f). (a)da + 20 HDP / 0?1 (a)da,
0 0
which implies, by taking A = 2(»+P+2 that
/ BP1(B)dS < 9(n+1)p”+2p+1 / P~ Y (M7 f),(a)do.
0

0
Thus, we obtain

1)p?+2p+1
||M’f||£ < 7npo(n+1)p°+2p+ +n||M#fH£_
Therefore, we complete the proof. a
We continue by proving an interpolation result in which the space L is replaced by

BMO. The sharp maximal function plays a key role in the following theorem.

Theorem 9.12. Let 1 < pg < 0o. Let T be a linear operator that maps LP°(R™) into
LPo(R™) with bound Ao and L*°(R™) into BMO(R™) with bound Ay. Then for all p with
po < p < oo there is a constant Cy, p, p, such that for all f € LP we have

ITfllp < Copopoll fllp-

Proof. We consider the operator

S(f) = M#(Tf)
define for f € LP° + L°°. It is easy to see that S is a sublinear operator. We prove that S
maps LP° into itself and L™ into itself:

IS(H)lpo =IMH(T)llpe < CITSllpo < CAollf o
IS(H)lloe =M (T f)lloe = I T fllBymo < At flloo-

Interpolating between these estimates using the Marcinkiewicz interpolation theorem, we
obtain the estimate

IMH(T )y = 1Sl < Ch oo ABP AT £

n,p,Po

<
<

for all py < p < oo. Then by Theorem 9.11, we have
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ITfllp < Chp o AE P AT 71 £
for all f € LP(R™). O
Now, we consider singular integral operators of type (L°°, BMO).

Theorem 9.13. Let K € L*(R") satisfy
(i) IK@E)I < A, £ €R™;
(i) For all y # 0, it holds

[ K-y - K@)l < 4
lz[>2]y]
Then Tf(z) = K * f(x) satisfies

1T fllBMo < Cllflloo,
where C depends only on n and A.

Remark 9.14. If we apply the Young inequality, the result of the theorem holds for C' =
||K||1- But the key point is that C is independent of || K|;.

Proof. Assume that ||f|lcc < 1 without loss of generality. Let @ = Q(0,r), B =
B(0,2y/r), and f(z) = fi(a) + fo(x) where

filz) = f@)xp(z), fa(2) = f(@)xr\B(2).
Denote

Tf(x) =K * fi(z) + K * fa(x) = uy (z) + ua(x).
Since f; € L?(R™), it follows that
lurllz = [|K % fills = CK filla < Allfill2 < CrAm(Q)"/?,

and then

[ lur(@)ide < (@) < €, 4m(@).

On the other hand, ta?king

ag = [ K(-y)f2(y)dy,

R’n
we have

us(e) —ag = [ [K(@—y) = K(~y)|2(s)dy

Thus, by the condition (ii), it implies

/\uz ) —agldx <// K(z —y) — K(—y)|dydz
'n\B

< Kz —vy) — K(—y)|dydz < Am(Q).
</Q/y|>2w||( y) — K(—y)|dydz < Am(Q)

Therefore, combining the above estimates we obtain

Im(lQ)/Q|Tf(x)—aQ|dx /|u1 |dx+ /\ug —ag|dz

<(C +1)A
This completes the proof. a
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