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Preface

A textbook presents more than any professor can cover in class. In contrast,
these lecture notes present exactly* what I covered in Harmonic Analysis
(Math 545) at the University of Illinois, Urbana–Champaign, in Fall 2008.

The first part of the course emphasizes Fourier series, since so many
aspects of harmonic analysis arise already in that classical context. The
Hilbert transform is treated on the circle, for example, where it is used to
prove Lp convergence of Fourier series. Maximal functions and Calderón–
Zygmund decompositions are treated in Rd, so that they can be applied again
in the second part of the course, where the Fourier transform is studied.

Real methods are used throughout. In particular, complex methods such
as Poisson integrals and conjugate functions are not used to prove bounded-
ness of the Hilbert transform.

Distribution functions and interpolation are covered in the Appendices.
I inserted these topics at the appropriate places in my lectures (after Chap-
ters 4 and 12, respectively).

The references at the beginning of each chapter provide guidance to stu-
dents who wish to delve more deeply, or roam more widely, in the subject.
Those references do not necessarily contain all the material in the chapter.

Finally, a word on personal taste: while I appreciate a good counterex-
ample, I prefer spending class time on positive results. Thus I do not supply
proofs of some prominent counterexamples (such as Kolmogorov’s integrable
function whose Fourier series diverges at every point).

I am grateful to Noel DeJarnette, Eunmi Kim, Aleksandra Kwiatkowska,
Kostya Slutsky, Khang Tran and Ping Xu for TEXing parts of the document.

Please email me with corrections, and with suggested improvements of
any kind.

Richard S. Laugesen Email: Laugesen@illinois.edu
Department of Mathematics
University of Illinois
Urbana, IL 61801
U.S.A.

*modulo some improvements after the fact
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Introduction

Harmonic analysis began with Fourier’s effort to analyze (extract informa-
tion from) and synthesize (reconstruct) the solutions of the heat and wave
equations, in terms of harmonics. Specifically, the computation of Fourier
coefficients is analysis, while writing down the Fourier series is synthesis, and
the harmonics in one dimension are sin(nt) and cos(nt). Immediately one
asks: does the Fourier series converge? to the original function? In what
sense does it converge: pointwise? mean-square? Lp? Do analogous results
hold on Rd for the Fourier transform?

We will answer these classical qualitative questions (and more!) using
modern quantitative estimates, involving tools such as summability meth-
ods (convolution), maximal operators, singular integrals and interpolation.
These topics, which we address for both Fourier series and transforms, con-
stitute the theoretical core of the course. We further cover the sampling
theorem, Poisson summation formula and uncertainty principles.

This graduate course is theoretical in nature. Students who are intrigued
by the fascinating applications of Fourier series and transforms are advised
to browse [Dym and McKean], [Körner] and [Stein and Shakarchi], which are
all wonderfully engaging books.

If more time (or a second semester) were available, I might cover ad-
ditional topics such as: Littlewood–Paley theory for Fourier series and in-
tegrals, Fourier analysis on locally compact abelian groups [Rudin] (espe-
cially Bochner’s theorem on Fourier transforms of nonnegative functions),
short-time Fourier transforms [Gröchenig], discrete Fourier transforms, the
Schwartz class and tempered distributions and applications in Fourier analy-
sis [Strichartz], Fourier integral operators (including solutions of the wave
and Schrödinger equations), Radon transforms, and some topics related to
signal processing, such as maximum entropy, spectral estimation and predic-
tion [Benedetto]. I might also cover multiplier theorems, ergodic theorems,
and almost periodic functions.
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Chapter 1

Fourier coefficients: basic
properties

Goal

Derive basic properties of Fourier coefficients

Reference

[Katznelson] Section I.1

Notation

T = R/2πZ is the one dimensional torus

Lp(T) = {complex-valued, p-th power integrable, 2π-periodic functions}
‖f‖Lp(T) =

(
1
2π

∫
T |f(t)|p dt

)1/p
where

∫
T can be taken over any interval of

length 2π

Nesting of Lp-spaces: L∞(T) ⊂ L2(T) ⊂ L1(T)

C(T) = {complex-valued, continuous, 2π-periodic functions}, Banach space
with norm ‖·‖L∞(T)

Trigonometric polynomial P (t) =
∑N

n=−N aneint

Translation fτ (t) = f(t− τ)

9
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Definition 1.1. For f ∈ L1(T) and n ∈ Z, define

f̂(n) = n-th Fourier coefficient of f

=
1

2π

∫

T
f(t)e−int dt. (1.1)

The formal series S[f ] =
∑

f̂(n)eint is the Fourier series of f .

Aside. For f ∈ L2(T), note f̂(n) = 〈f, eint〉 where 〈f, g〉 = 1
2π

∫
T f(t)g(t) dt is

that L2 inner product. Thus f̂(n) =amplitude of f in direction of eint. See
Chapter 5.

Theorem 1.2 (Basic properties). Let f, g ∈ L1(T), j, n ∈ Z, c ∈ C, τ ∈ T.

Linearity ̂(f + g)(n) = f̂(n) + ĝ(n) and (̂cf)(n) = cf̂(n)

Conjugation f̂(n) = f̂(−n)

Trigonometric polynomial P (t) =
∑N

n=−N ane
int has P̂ (n) = an for |n| ≤ N

and P̂ (n) = 0 for |n| > N

̂ takes translation to modulation, f̂τ (n) = e−inτ f̂(n)

̂ takes modulation to translation, [f(t)eijt ]̂ (n) = f̂(n− j)

̂ : L1(T) → `∞(Z) is bounded, with |f̂(n)| ≤ ‖f‖L1(T)

Hence if fm → f in L1(T) then f̂m(n) → f̂(n) (uniformly in n) as m →∞.

Proof. Exercise.

Lemma 1.3 (Difference formula). For n 6= 0,

f̂(n) =
1

4π

∫

T
[f(t)− f(t− π/n)] e−int dt.

Proof.

f̂(n) = − 1

2π

∫

T
f(t)e−in(t+π/n) dt since e−iπ = −1

= − 1

2π

∫

T
f(t− π/n)e−int dt (1.2)

by t 7→ t− π/n and periodicity. By (1.2) and the definition (1.1),

f̂(n) =
1

2
f̂(n) +

1

2
f̂(n) =

1

4π

∫

T
[f(t)− f(t− π/n)] e−int dt.
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Lemma 1.4 (Continuity of translation). Fix f ∈ Lp(T), 1 ≤ p < ∞. The
map

φ : T→ Lp(T)

τ 7→ fτ

is continuous.

Proof. Let τ0 ∈ T. Take g ∈ C(T) and observe

‖fτ − fτ0‖Lp(T) ≤ ‖fτ − gτ‖Lp(T) + ‖gτ − gτ0‖Lp(T) + ‖gτ0 − fτ0‖Lp(T)

= 2‖f − g‖Lp(T) + ‖gτ − gτ0‖Lp(T)

→ 2‖f − g‖Lp(T)

as τ → τ0, by uniform continuity of g. By density of continuous functions in
Lp(T), 1 ≤ p < ∞, the difference f − g can be made arbitrarily small. Hence
lim supτ→τ0‖fτ − fτ0‖Lp(T) = 0, as desired.

Corollary 1.5 (Riemann–Lebesgue lemma). f̂(n) → 0 as |n| → ∞.

Proof. Lemma 1.3 implies

|f̂(n)| ≤ 1

2
‖f − fπ/n‖L1(T),

which tends to zero as |n| → ∞ by the L1-continuity of translation in
Lemma 1.4, since f = f0.

Smoothness and decay

The Riemann–Lebesgue lemma says f̂(n) = o(1), with f̂(n) = O(1) explicitly
by Theorem 1.2. We show the smoother f is, the faster its Fourier coefficients
decay.

Theorem 1.6 (Less than one derivative). If f ∈ Cα(T), 0 < α ≤ 1, then

f̂(n) = O(1/|n|α).

Here Cα(T) denotes the Hölder continuous functions: f ∈ Cα(T) if f ∈
C(T) and there exists A > 0 such that |f(t) − f(τ)| ≤ A|t − τ |α whenever
|t− τ | ≤ 2π.
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Proof.

f̂(n) =
1

4π

∫

T
[f(t)− f(t− π/n)]e−int dt

by the Difference Formula in Lemma 1.3. Therefore

|f̂(n)| ≤ 1

4π
A

∣∣∣π
n

∣∣∣
α

2π =
const.

|n|α .

Theorem 1.7 (One derivative). If f is 2π-periodic and absolutely continuous

(f ∈ W 1,1(T)) then f̂(n) = o(1/n) and |f̂(n)| ≤ ‖f ′‖L1(T)/|n|.
Proof. Absolute continuity of f says

f(t) = f(0) +

∫ t

0

f ′(τ) dτ,

where f ′ ∈ L1(T). Integrating by parts gives

f̂(n) =
1

2π

∫

T
f(t)e−int dt =

1

2π

∫

T

e−int

in
f ′(t) dt.

By Riemann-Lebesgue applied to f ′,

f̂(n) =
1

in
f̂ ′(n) =

1

in
o(1) = o(

1

n
),

with

|f̂(n)| ≤ 1

|n| |f̂
′(n)| ≤ 1

|n|‖f
′‖L1(T).

Theorem 1.8 (Higher derivatives). If f is 2π-periodic and k times differen-

tiable (f ∈ W k,1(T)) then f̂(n) = o(1/|n|k) and |f̂(n)| ≤ ‖f (k)‖L1(T)/|n|k.
Proof. Integrate by parts k times.

Remark 1.9. Similar decay results hold for functions of bounded variation,
provided one integrates by parts using the Lebesgue–Stieltjes measure df(t)
instead of f ′(t) dt.
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Convolution

Definition 1.10. Given f, g ∈ L1(T), define their convolution

(f ∗ g)(t) =
1

2π

∫

T
f(t− τ)g(τ) dτ, t ∈ T.

Theorem 1.11 (Convolution and Fourier coefficients). If f ∈ Lp(T), 1 ≤
p ≤ ∞, and g ∈ L1(T), then f ∗ g ∈ Lp(T) with

‖f ∗ g‖Lp(T) ≤ ‖f‖Lp(T)‖g‖L1(T) (1.3)

and
(̂f ∗ g)(n) = f̂(n)ĝ(n), n ∈ Z.

Further, if f ∈ C(T) and g ∈ L1(T) then f ∗ g ∈ C(T).

Thus ̂ takes convolution to multiplication.

Proof. That f ∗ g ∈ Lp(T) satisfies (1.3) is exactly Young’s Theorem A.3.
Then by Fubini’s theorem,

(̂f ∗ g)(n) =
1

2π

∫

T

( 1

2π

∫

T
f(t− τ)g(τ) dτ

)
e−int dt

=
1

2π

∫

T

( 1

2π

∫

T
f(t− τ)e−in(t−τ) dt

)
g(τ)e−inτ dτ

= f̂(n)ĝ(n).

Finally, if f ∈ C(T) and g ∈ L1(T) then f ∗ g is continuous because (f ∗
g)(t + δ) → (f ∗ g)(t) as δ → 0 by uniform continuity of f .

Convolution facts [Katznelson, Section I.1.8]

1. Convolution is commutative:

(f ∗ g)(t) =
1

2π

∫

T
f(t− τ)g(τ) dτ

=
1

2π

∫

T
f(θ)g(t− θ) dθ where τ = t− θ, dτ = −dθ

= (g ∗ f)(t).

Convolution is also associative, and linear with respect to f and g.
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2. Convolution is continuous on Lp(T): if fm → f ∈ Lp(T), 1 ≤ p ≤ ∞, and
g ∈ L1(T) then fm ∗ g → f ∗ g in Lp(T).
Proof. Use linearity and (1.3), to prove fm ∗ g → f ∗ g in Lp(T).

3. Convolution with a trigonometric polynomial gives a trigonometric poly-
nomial: if f ∈ L1(T) and P (t) =

∑n
j=−n aje

ijt then

(P ∗ f)(t) =
n∑

j=−n

aj f̂(j)eijt. (1.4)

Proof.

(P ∗ f)(t) =
n∑

j=−n

aj
1

2π

∫

T
eij(t−τ)f(τ) dτ

=
n∑

j=−n

aje
ijtf̂(j).

[Sanity check: ̂(P ∗ f)(j) = aj f̂(j) = P̂ (j)f̂(j) as expected.]

More generally, (1.4) holds for P (t) =
∑∞

j=−∞ aje
ijt provided {aj} ∈ `1(Z).



Chapter 2

Fourier series: summability in
norm

Goal

Prove summability (averaged convergence) in norm of Fourier series

Reference

[Katznelson] Section I.2

Write

(Snf)(t) =
n∑

j=−n

f̂(j)eijt

= n-th partial sum of Fourier series of f .

In Chapter 9 we prove norm convergence of Fourier series: Sn(f) → f in
Lp(T), when 1 < p < ∞. In this chapter we prove summability of Fourier
series, meaning σn(f) → f in Lp(T) when 1 ≤ p < ∞, where

σn(f) =
S0(f) + · · ·+ Sn(f)

n + 1
=

n∑
j=−n

(
1− |j|

n + 1

)
f̂(j)

= arithmetic mean of partial sums.

Aside. Norm convergence is stronger than summability. Indeed, if a sequence
{sn} in a Banach space converges to s, then the arithmetic means (s0 + · · ·+
sn)/(n + 1) also converge to s (Exercise).

15
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Definition 2.1. A summability kernel is a sequence {kn} in L1(T) satisfying:

1

2π

∫

T
kn(t) dt = 1 (Normalization) (S1)

sup
n

1

2π

∫

T
|kn(t)| dt < ∞ (L1 bound) (S2)

lim
n→∞

∫

{δ<|t|<π}
|kn(t)| dt = 0 (L1 concentration) (S3)

for each δ ∈ (0, π).

Some kernels satisfy a stronger concentration property:

lim
n→∞

sup
δ<|t|<π

|kn(t)| = 0 (L∞ concentration) (S4)

for each δ ∈ (0, π).

Call the kernel positive if kn ≥ 0 for each n.

Example 2.2. Define the Dirichlet kernel

Dn(t) =
n∑

j=−n

eijt (2.1)

=
ei(n+1)t − e−int

eit − 1
by geometric series (2.2)

=
sin

(
(n + 1

2
)t

)

sin
(

1
2
t
) (2.3)

(S1) holds by (2.1). You can show (optional exercise) that ‖Dn‖L1(T) ∼
(const.) log n as n →∞, so that (S2) fails.

∴ {Dn} is not a summability kernel.

Example 2.3. Define the Fejér kernel

Fn(t) =
D0(t) + · · ·+ Dn(t)

n + 1
(2.4)

=
n∑

j=−n

(
1− |j|

n + 1

)
eijt by (2.4) and (2.1) (2.5)

=
1

n + 1

(
sin

(
n+1

2
t
)

sin
(

1
2
t
)

)2

by (2.4), (2.2) and geometric series (2.6)
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-Π Π
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Figure 2.1: Dirichlet kernel with n = 10

-Π Π

10

Figure 2.2: Fejér kernel with n = 10
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(S1) holds by (2.5), and Fn ≥ 0 so that (S2) holds also. For (S4),

sup
δ<|t|<π

|Fn(t)| ≤ 1

n + 1

1

sin2
(

1
2
δ
) by (2.6)

→ 0 as n →∞.

∴ {Fn} is a positive summability kernel.

Example 2.4. Define the Poisson kernel

Pr(t) = 1 + 2
∞∑

j=1

rj cos(jt) (2.7)

=
∞∑

j=−∞
r|j|eijt (2.8)

=
1− r2

1− 2r cos t + r2
(2.9)

by summing two geometric series (j < 0 and j ≥ 0) in (2.8) and simplifying.
The Poisson kernel is indexed by r ∈ (0, 1), with limiting process r ↗ 1.

After suitably modifying the definition of summability kernel, we see (S1)
holds by (2.7), and Pr ≥ 0 by (2.9) so that (S2) holds also. For (S4),

sup
δ<|t|<π

|Pr(t)| ≤ 1− r2

1− 2r cos δ + r2
by (2.9)

→ 0 as r ↗ 1.

∴ {Pr} is a positive summability kernel.

Example 2.5. Define the Gauss kernel

Gs(t) =
∞∑

j=−∞
e−j2seijt (2.10)

=
2π√
4πs

∞∑
n=−∞

e−(t+2πn)2/4s (2.11)

by Example 23.7 later in the course.
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Figure 2.3: Poisson kernel with r = 0.9

-Π Π
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20

Figure 2.4: Gauss kernel with s = 0.01
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The Gauss kernel is indexed by s ∈ (0,∞), with limiting process s ↘ 0.
The analogue of (S1) holds by (2.10), and Gs ≥ 0 by (2.11) so that (S2)
holds also. For (S4),

sup
δ<|t|<π

|Gs(t)| ≤ 2π√
4πs

[
e−δ2/4s +

∑

n 6=0

e−(πn)2/4s

]
by (2.11)

→ 0 as s ↘ 0.

∴ {Gs} is a positive summability kernel.

Connection to Fourier series

Sn(f) = Dn ∗ f

Proof. Dn(t)
(2.1)
=

∑n
j=−n 1eijt implies

(Dn ∗ f)(t) =
n∑

j=−n

1f̂(j)eijt = Sn(f)

by Convolution Fact (1.4).

σn(f) = Fn ∗ f

Proof. Fn(t)
(2.4)
=

∑n
j=−n(1− |j|

n+1
)eijt implies

(Fn ∗ f)(t) =
n∑

j=−n

(
1− |j|

n + 1

)
f̂(j)eijt = σn(f)

by Convolution Fact (1.4). Alternatively, use that σn(f) = [S0(f) + · · · +
Sn(f)]/(n + 1) and Fn = [D0 + · · ·+ Dn]/(n + 1).

Thus for summability of Fourier series, we want Fn ∗ f → f .

Abel mean of S[f ] = Pr ∗ f
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Proof. Pr(t)
(2.8)
=

∑∞
j=−∞ r|j|eijt implies

(Pr ∗ f)(t) =
∞∑

j=−∞
r|j|f̂(j)eijt (2.12)

by Convolution Fact (1.4) (with the series converging absolutely and uni-
formly), and this last expression is the Abel mean of S[f ].

Summability in norm

Theorem 2.6 (Summability in Lp(T) and C(T)). If {kn} is a summability
kernel and f ∈ Lp(T), 1 ≤ p < ∞, then

kn ∗ f → f in Lp(T), as n →∞.

Similarly, if f ∈ C(T) then kn ∗ f → f in C(T).

Proof. Let ε > 0. By (S2) and continuity of translation on Lp(T) (Lemma 1.4),
we can choose 0 < δ < π such that

max
|τ |≤δ

‖fτ − f‖Lp(T) · sup
n
‖kn‖L1(T) < ε. (2.13)

Then
∥∥(kn ∗ f)(t)− f(t)

∥∥
Lp(T)

=
∥∥ 1

2π

∫

T
kn(τ)[fτ (t)− f(t)] dτ

∥∥
Lp(T)

by (S1)

≤ 1

2π

∫

T
|kn(τ)|‖fτ − f‖Lp(T) dτ

by Minkowski’s Integral Inequality, Theorem A.1,

=
1

2π

(∫ δ

−δ

+

∫

{δ<|τ |<π}

)
|kn(τ)|‖fτ − f‖Lp(T) dτ

≤ max
|τ |≤δ

‖fτ − f‖Lp(T)
1

2π

∫ δ

−δ

|kn(τ)| dτ

+ max
|τ |≤π

‖fτ − f‖Lp(T)
1

2π

∫

{δ<|τ |<π}
|kn(τ)| dτ

< ε + ε
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by (2.13) and (S3), for all large n.
If f ∈ C(T) then repeat the argument with p = ∞, using uniform conti-

nuity of f get that fτ → f in L∞(T).

Consequences

• Summability of Fourier series in C(T), Lp(T), 1 ≤ p < ∞:

σn(f) → f

in norm.
Proof. Choose kn = Fn =Fejér kernel. Then σn(f) = Fn ∗ f → f in norm by
Theorem 2.6.

• Trigonometric polynomials are dense in C(T), Lp(T), 1 ≤ p < ∞.
Proof. σn(f) is a trigonometric polynomial arbitrarily close to f .

Aside. Density of trigonometric polynomials in C(T) proves the Weierstrass
Trigonometric Approximation Theorem.

• Uniqueness theorem:

if f, g ∈ L1(T) with f̂(n) = ĝ(n) for all n, then f = g in L1(T). (2.14)

In other words, the map ̂ : L1(T) → `∞(Z) is injective.

Proof. Fn∗f = Fn∗g by Convolution Fact (1.4), since f̂ = ĝ. Letting n →∞
gives f = g.

Connection to PDEs

To finish the section, we connect our summability kernels to some important
partial differential equations. Fix f ∈ L1(T).

1. The Poisson kernel solves Laplace’s equation in a disk:

v(reit) = (Pr ∗ f)(t) =
1

2π

∫

T

1− r2

1− 2r cos(t− τ) + r2
f(τ) dτ

solves
∆v = vrr + r−1vr + r−2vtt = 0

on the unit disk {r < 1}, with boundary value v(1, t) = f(t) in the sense of
Theorem 2.6.
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That is, v is the harmonic extension of f from the boundary circle to the
disk.

Proof. Differentiate through formula (2.12) for Pr ∗ f and note that

( ∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂t2

)
(r|j|eijt) = 0.

2. The Gauss kernel solves the diffusion (heat) equation:

w(s, t) = (Gs ∗ f)(t)

solves
ws = wtt

for (s, t) ∈ (0,∞) × T, with initial value w(0, t) = f(t) in the sense of
Theorem 2.6.

Proof. Gs(t)
(2.10)
=

∑∞
j=−∞ e−j2seijt implies

(Gs ∗ f)(t) =
∞∑

j=−∞
e−j2sf̂(j)eijt

by Convolution Fact (1.4). Now differentiate through the sum and use that

(
∂

∂s
− ∂2

∂t2

)
(e−j2seijt) = 0.
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Chapter 3

Fourier series: summability at
a point

Goal

Prove a sufficient condition for summability at a point

Reference

[Katznelson] Section I.3

By Chapter 2, if f is continuous then σn(f) → f in C(T). That is,
σn(f) → f uniformly. In particular, σn(f)(t) → f(t), for each t ∈ T.

But what if f is merely continuous at a point?

Theorem 3.1 (Summability at a point). Assume {kn} is a summability
kernel,f ∈ L1(T) and t0 ∈ T. Suppose either {kn} satisfies the L∞ concen-
tration hypothesis (S4), or else f ∈ L∞(T).

(a) If f is continuous at t0 then (kn ∗ f)(t0) → f(t0) as n →∞.
(b) If in addition the summability kernel is even (kn(−t) = kn(t)) and

L = lim
h→0

f(t0 + h) + f(t0 − h)

2

exists (or equals ±∞), then

(kn ∗ f)(t0) → L as n →∞.
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Note if f has limits from the left and right at t0, then the quantity L
equals the average of those limits.

The Fejér and Poisson kernels satisfy (SR4), and so Theorem 3.1 applies
in particular to summability at a point for σn(f) = Fn ∗ f and for the Abel
mean Pr ∗ f .

Proof. (a) Let ε > 0 and choose 0 < δ < π such that

sup
n
‖kn‖L1(T) ·max

|τ |≤δ
|f(t0 − τ)− f(t0)| < ε, (3.1)

using here (S2) and continuity of f at t0. Then as n →∞,

|(kn ∗ f)(t0)− f(t0)|
=

∣∣∣
∫

{|τ |<δ}
kn(τ)[f(t0 − τ)− f(t0)] dτ

−
∫

{δ<|τ |<π}
kn(τ) dτ · f(t0) +

∫

{δ<|τ |<π}
kn(τ)f(t0 − τ) dτ

∣∣∣ using (S1)

<

{
ε + o(1) + o(1) · ‖f‖L1(T) by (3.1), (S3) and (S4), or else

ε + o(1) + o(1) · ‖f‖L∞(T) by (3.1), (S3) and (S1),

< ε

for all large n.
(b) The proof is similar to (a), but uses symmetry of the kernel.

Remark 3.2.
1. How does the proof of summability at a point, in Theorem 3.1(a), differ
from the proof of summability in norm, in Theorem 2.6?
2. Theorem 3.1 treats summability at a single point t0 at which f is con-
tinuous. Chapter 7 will prove kn ∗ f → f at almost every point, for each
integrable f .



Chapter 4

Fourier coefficients in `1(Z) (or,
f ∈ A(T))

Goal

Establish the algebra structure of A(T)

Reference

[Katznelson] Section I.6

Define

A(T) = {f ∈ L1(T) :
∑

n∈Z
|f̂(n)| < ∞}

= functions with Fourier coefficients in `1(Z).

The map ̂ : A(T) → `1(Z) is a linear bijection.
Proof. Injectivity follows from the uniqueness result (2.14). To prove

surjectivity, let {cn} ∈ `1(Z) and define g(t) =
∑

n∈Z cneint. The series for g
converges uniformly since

sup
t∈T

∣∣ ∑

|n|>N

cne
int

∣∣ ≤
∑

|n|>N

|cn| → 0

as N → ∞. (Hence g is continuous.) We have ĝ(m) = cm for every m, and
so ĝ = {cm} as desired.
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Our proof has shown each f ∈ A(T) is represented by its Fourier series:

f(t) =
∑

n∈Z
f̂(n)eint a.e. (4.1)

so that f is continuous (after redefinition on a set of measure zero). This
Fourier series converges absolutely and uniformly.

Definition 4.1. Define a norm on A(T) by

‖f‖A(T) = ‖f̂‖`1(Z) =
∑

n

|f̂(n)|.

A(T) is a Banach space under this norm (because `1(Z) is one).

Define the convolution of sequences a, b ∈ `1(Z) by

(a ∗ b)(n) =
∑

m∈Z
a(m)b(n−m).

Clearly
‖a ∗ b‖`1(Z) ≤ ‖a‖`1(Z)‖b‖`1(Z) (4.2)

because
∑

n

|(a ∗ b)(n)| ≤
∑
m

|a(m)|
∑

n

|b(n−m)| = ‖a‖`1(Z)‖b‖`1(Z).

Theorem 4.2 ( ̂ takes multiplication to convolution). A(T) is an algebra,
meaning that if f, g ∈ A(T) then fg ∈ A(T). Indeed

f̂g = f̂ ∗ ĝ

and ‖fg‖A(T) ≤ ‖f‖A(T)‖g‖A(T).

Proof. fg is continuous, and hence integrable, with

(̂fg)(n) =
1

2π

∫

T
f(t)g(t)e−intdt

=
∑
m

f̂(m)
1

2π

∫

T
g(t)e−i(n−m)t dt by (4.1)

=
∑
m

f̂(m)ĝ(n−m)

= (f̂ ∗ ĝ)(n).

So ‖(̂fg)‖`1(Z) ≤ ‖f̂‖`1(Z)‖ĝ‖`1(Z) by (4.2).
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Sufficient conditions for membership in A(T) are discussed in [Katznelson,
Section I.6], for example, Hölder continuity: Cα(T) ⊂ A(T) when α > 1

2
.

Theorem 4.3 (Wiener’s Inversion Theorem). If f ∈ A(T) and f(t) 6= 0 for
every t ∈ T then 1/f ∈ A(T).

We omit the proof. Clearly 1/f is continuous, but it is not clear that

(̂1/f) belongs to `1(Z).
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Chapter 5

Fourier coefficients in `2(Z) (or,
f ∈ L2(T))

Goal

Study the Fourier ONB for L2(T), using analysis and synthesis operators

Notation and definitions

Let H be a Hilbert space with inner product 〈u, v〉 and norm ‖u‖ =
√
〈u, u〉.

Given a sequence {un}n∈Z in H, define the

synthesis operator S : `2(Z) → H

{cn}n∈Z 7→
∑

n

cnun

and

analysis operator T : H → `2(Z)

u 7→ {〈u, un〉}n∈Z.

Theorem 5.1. If analysis is bounded (
∑

n |〈u, un〉|2 ≤ (const.)‖u‖2 for all
u ∈ H), then so is synthesis, and the series S({cn}) =

∑
cnun converges

unconditionally.
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Proof. Since T is bounded, the adjoint T ∗ : `2(Z) → H is bounded, and for
each sequence {cn}, u ∈ H, N ≥ 1, we have

〈T ∗({cn}N
n=−N), u〉 = 〈{cn}N

n=−N , Tu〉`2

=
N∑

n=−N

cn〈u, un〉 by definition of Tu

= 〈
N∑

n=−N

cnun, u〉.

Hence T ∗({cn}N
n=−N) =

∑N
n=−N cnun. The limit as N →∞ exists on the left

side, and hence on the right side; therefore T ∗({cn}) =
∑∞

n=−∞ cnun, so that
T ∗ = S. Hence S is bounded.

Convergence of the synthesis series is unconditional, because if A ⊂ Z
then

∥∥S({cn}n∈Z)− S({cn}n∈A)
∥∥ =

∥∥S({cn}n∈Z\A)
∥∥

≤ ‖S‖‖{cn}‖`2(Z\A),

which tends to 0 as A expands to fill Z, regardless of the order in which A
expands.

Remark 5.2. The last proof shows S = T ∗, meaning

analysis and synthesis are adjoint operations.

Theorem 5.3 (Fourier coefficients on L2(T)). The Fourier coefficient (or
analysis) operator ̂ : L2(T) → `2(Z) is an isometry, with

‖f‖L2(T) = ‖f̂‖`2(Z) (Plancherel)

〈f, g〉L2(T) = 〈f̂ , ĝ〉`2(Z) (Parseval)

for all f, g ∈ L2(T).

Proof. First we prove Plancherel’s identity: since Pr ∗ f → f in L2(T) by
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Theorem 2.6, we have

1

2π

∫

T
|f(t)|2 dt = lim

r→1

1

2π

∫

T
f(t)(Pr ∗ f)(t) dt

= lim
r→1

1

2π

∫

T
f(t)

∑

n∈Z
r|n|f̂(n)eint dt by (2.12) for Pr ∗ f

= lim
r→1

∑

n∈Z
r|n||f̂(n)|2

=
∑

n∈Z
|f̂(n)|2

by monotone convergence.
Parseval follows from Plancherel by polarization, or by repeating the ar-

gument for Plancherel with 〈f, f〉 changed to 〈f, g〉 (and using dominated
instead of monotone convergence).

Since the Fourier analysis operator is bounded, so is its adjoint, the
Fourier synthesis operator

ˇ : `2(Z) → L2(T)

{cn}n∈Z 7→
∑

n

cne
int

Theorem 5.4 (Fourier ONB).

(a) If f ∈ L2(T) then
∑

n f̂(n)eint = f with unconditional convergence in

L2(T). That is, (f̂ )̌ = f .
(b) If c = {cn} ∈ `2(Z) then (

∑
n∈Z cne

int)̂ (j) = cj. That is, (č)̂ = c.
(c) {eint}n∈Z is an orthonormal basis of L2(T).

Part (a) says Fourier series converge in L2(T). Parts (a) and (b) together
show that Fourier analysis and synthesis are inverse operations.

Proof. Fourier analysis and synthesis are bounded operators, and analysis
followed by synthesis equals the identity (

∑
n f̂(n)eint = f) on the class of

trigonometric polynomials. That class is dense in L2(T), and so by continuity,
analysis followed by synthesis equals the identity on L2(T).

Argue similarly for part (b), using the dense class of finite sequences in
`2(Z).
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For orthonormality in part (c), observe

〈eint, eimt〉 =
1

2π

∫

T
einte−imt dt =

{
1 if n = m,

0 if n 6= m.

The basis property follows from part (a), noting f̂(n) = 〈f, eint〉L2(T).

Remark 5.5. Fourier analysis satisfies

̂ : L1(T) → `∞(Z) by Theorem 1.2,

̂ : L2(T) → `2(Z) (isometrically) by Theorem 5.3.

Further, ̂ : L2(T) → `2(Z) is a linear bijection by Theorem 5.4.
In Chapter 13 we will interpolate to show

̂ : Lp(T) → `p′(Z), whenever 1 ≤ p ≤ 2,
1

p
+

1

p′
= 1.



Chapter 6

Maximal functions

Goals

Connect abstract maximal functions to convergence a.e.
Prove weak and strong bounds on the Hardy–Littlewood maximal function
Prepare for sumability pointwise a.e. in next Chapter

References

[Duoandikoetxea] Section 2.2
[Grafakos] Section 2.1
[Stein] Section 1.1

Definition 6.1 (Weak and strong operators). Let (X, µ) and (Y, ν) be mea-
sure spaces, and 1 ≤ p, q ≤ ∞. Suppose

T : Lp(X) → {measurable functions on Y }.
(We do not assume T is linear.)

Call T strong (p,q) if T is bounded from Lp(X) to Lq(Y ), meaning a
constant C > 0 exists such that

‖Tf‖Lq(Y ) ≤ C‖f‖Lp(X), f ∈ Lp(X).

When q < ∞, we call T weak (p,q) if C > 0 exists such that

ν
({y ∈ Y : |(Tf)(y)| > λ})1/q ≤ C‖f‖Lp(X)

λ
∀ λ > 0, f ∈ Lp(X).
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When q = ∞, we call T weak (p,∞) if it is strong (p,∞):

‖Tf‖L∞(Y ) ≤ C‖f‖Lp(X), f ∈ Lp(X).

Lemma 6.2. Strong (p, q) ⇒ weak (p, q).

Proof. When q = ∞ the result is immediate by definition. Suppose q < ∞.
Write

E(λ) = {y ∈ Y : |(Tf)(y)| > λ}
for the level set of Tf above height λ. Then

λq ν
(
E(λ)

)
=

∫

E(λ)

λq dν(y)

≤
∫

E(λ)

|(Tf)(y)|q dν(y) since λ < |Tf | on E(λ)

≤ ‖Tf‖q
Lq(Y )

and so

ν
(
E(λ)

)1/q ≤ ‖Tf‖Lq(Y )

λ

≤ C‖f‖Lp(X)

λ

if T is strong (p, q).

Lemma 6.3. If T is weak (p, q) then Tf ∈ Lr
loc(Y ) for all 0 < r < q.

Thus intuitively, T “almost” maps Lp into Lq, locally.

Proof. Let f ∈ Lp(X) and suppose Z ⊂ Y with ν(Z) < ∞. We will show
Tf ∈ Lr(Z).

Write g = Tf . Then
∫

Z

|g(y)|r dν(y)

=

∫ ∞

0

rλr−1ν
({y ∈ Z : |g(y)| > λ}) dλ by AppendixB

≤
∫ 1

0

rλr−1ν(Z) dλ +

∫ ∞

1

rλr−1
(C‖f‖Lp(X)

λ

)q

dλ by weak (p, q)

< ∞
since ν(Z) < ∞ and

∫∞
1

λ−1−q+r dλ < ∞ (using that −q + r < 0).
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Theorem 6.4 (Maximal functions and convergence a.e.). Assume

Tn : Lp(X) → {measurable functions on X}
for n = 1, 2, 3, . . .. Define

T ∗ : Lp(X) → {measurable functions on X}
by

(T ∗f)(x) = sup
n
|(Tnf)|(x)|, x ∈ X.

If T ∗ is weak (p, q) and each Tn is linear, then the collection

C = {f ∈ Lp(X) : lim
n

(Tnf)(x) = f(x) a.e}

is closed in Lp(X).

T ∗ is called the maximal operator for the family {Tn}. Clearly it takes
values in [0,∞]. Note T ∗ is not linear, in general.

Remark 6.5. In this theorem a quantitative hypothesis (weak (p, q)) implies
a qualitative conclusion (closure of the collection C where Tnf → f a.e.).

Proof. Let fk ∈ C with fk → f in Lp(X). We show f ∈ C.
Suppose q < ∞. For any λ > 0,

µ
({x ∈ X : lim sup

n
|(Tnf(x)− f(x)| > 2λ})

= µ
({x ∈ X : lim sup

n
|Tn(f − fk)(x)− (f − fk)(x)| > 2λ})

by linearity and the pointwise convergence Tnfk → fk a.e.

≤ µ
({x ∈ X : T ∗(f − fk)(x) + |(f − fk)(x)| > 2λ}) by triangle inequality

≤ µ
({x ∈ X : T ∗(f − fk)(x) > λ}) + µ

({x ∈ X : |(f − fk)(x)| > λ})

≤
(C‖f − fk‖Lp(X)

λ

)q

+
(‖f − fk‖Lp(X)

λ

)p

by weak (p, q) on T ∗

→ 0

as k →∞.
Therefore lim supn |(Tnf)(x) − f(x)| ≤ 2λ a.e. Taking a countable se-

quence of λ ↘ 0, we conclude lim supn |(Tnf)(x) − f(x)| = 0 a.e. Therefore
limn(Tnf)(x) = f(x) a.e., so that f ∈ C.

The case q = ∞ is left to the reader.
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To apply maximal functions on Rd and T, we will need:

Lemma 6.6 (Covering). Let {Bi}k
i=1 be a finite collection of open balls in

Rd. Then there exists a pairwise disjoint subcollection {Bij}l
j=1 of balls such

that
∣∣

k⋃
i=1

Bi

∣∣ ≤ 3d
∣∣

l⋃
j=1

Bij

∣∣ = 3d

l∑
j=1

|Bij |.

Thus the subcollection covers at least 1/3d of the total volume of the
balls.

Proof. Re-label the balls in decreasing order of size: |B1| ≥ |B2| ≥ · · · ≥ |Bk|.
Choose i1 = 1 and employ the following greedy algorithm. After choosing
ij, choose ij+1 to be the smallest index i > ij such that Bi is disjoint from
Bi1 , . . . , Bij . Continue until no such ball Bi exists.

The Bij are pairwise disjoint, by construction.

Let i ∈ {1, . . . , k}. If Bi is not one of the Bij chosen, then Bi must
intersect one of the Bij and be smaller than it, so that

radius (Bi) ≤ radius(Bij).

Hence Bi ⊂ 3Bij (where we mean the ball with the same center and three
times the radius). Thus

∣∣
k⋃

i=1

Bi

∣∣ ≤
∣∣

l⋃
j=1

(3Bij)
∣∣

≤
l∑

j=1

|3Bij |

= 3d

l∑
j=1

|Bij |

= 3d
∣∣

l⋃
j=1

Bij

∣∣

by disjointness of the Bij .
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Definition 6.7. The Hardy–Littlewood (H-L) maximal function of a locally
integrable function f on Rd is

(Mf)(x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)

|f(y)| dy

= “largest local average” of |f | around x.

Properties

Mf ≥ 0

|f | ≤ |g| ⇒ Mf ≤ Mg

M(f + g) ≤ Mf + Mg (sub-linearity)

Mc = c if c = (const.) ≥ 0

Theorem 6.8 (H-L maximal operator). M is weak (1, 1) and strong (p, p)
for 1 < p ≤ ∞.

Proof. For weak (1, 1) we show

|E(λ)| ≤ 3d‖f‖L1(Rd)

λ
(6.1)

where E(λ) = {x ∈ Rd : Mf(x) > λ}. If x ∈ E(λ) then

1

|B(x, r)|
∫

B(x,r)

|f(y)| dy > λ

for some r > 0. The same inequality holds for all x′ close to x, so that x′ ∈
E(λ). Thus E(λ) is open (and measurable), and Mf is lower semicontinuous
(and measurable).

Let F ⊂ E(λ) be compact. Each x ∈ F is the center of some ball B such
that

|B| < 1

λ

∫

B

|f(y)| dy. (6.2)

By compactness, F is covered by finitely many such balls, say B1, . . . , Bk.
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The Covering Lemma 6.6 yields a subcollection Bi1 , . . . , Bil . Then

|F | ≤
∣∣

k⋃
i=1

Bi

∣∣

≤ 3d

l∑
j=1

|Bij | by Covering Lemma 6.6

≤ 3d

λ

l∑
j=1

∫

Bij

|f(y)| dy by (6.2)

≤ 3d

λ

∫

Rd

|f(y)| dy by disjointness

=
3d

λ
‖f‖L1(Rd).

Taking the supremum over all compact F ⊂ E(λ) gives (6.1).

For strong (∞,∞), note Mf(x) ≤ ‖f‖L∞(Rd) for all x ∈ Rd, by definition
of Mf . Hence ‖Mf‖L∞(Rd) ≤ ‖f‖L∞(Rd).

For strong (p, p) when 1 < p < ∞, let λ > 0 and define

g(x) =

{
f(x) if |f(x)| > λ/2

0 otherwise
= “large” part of f ,

h(x) =

{
f(x) if |f(x)| ≤ λ/2

0 otherwise
= “small” part of f .

Then f = g + h and |h| ≤ λ/2, so that Mf ≤ Mg + λ/2. Hence

|E(λ)| =
∣∣{x : Mf(x) > λ}

∣∣
≤ ∣∣{x : Mg(x) > λ/2}∣∣

≤ 3d‖g‖L1(Rd)

λ/2
by the above weak (1, 1) result

=
2 · 3d

λ

∫

{x:|f(x)|>λ/2}
|f(x)| dx. (6.3)



41

Therefore
∫

Rd

|Mf(x)|p dx

=

∫ ∞

0

pλp−1|E(λ)| dλ by Appendix B

≤ 2 · 3dp

∫ ∞

0

λp−2

∫

{x:|f(x)|>λ/2}
|f(x)| dxdλ by (6.3)

=
(
2p3d p

p− 1

) ∫

Rd

|f(x)|p dx

by Lemma B.1 with r = 1, α = 2. We have proved the strong (p, p) bound.

Notice the constant in the strong (p, p) bound blows up as p ↘ 1. As this
observation suggests, the Hardy–Littlewood maximal operator is not strong
(1, 1). For example, the indicator function f = 1[−1,1] in 1 dimension has
Mf(x) ∼ c/|x| when |x| is large, so that Mf /∈ L1(R).

The maximal function is locally integrable provided f ∈ L log L(Rd); see
Problem 9.
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Chapter 7

Fourier series: summability
pointwise a.e.

Goal

Prove summability a.e. using Fejér and Poisson maximal functions

Definition 7.1.

Dirichlet maximal function (D∗f)(t) = sup
n
|(Dn ∗ f)(t)| = sup

n
|Sn(f)(t)|

Fejér maximal function (F ∗f)(t) = sup
n
|(Fn ∗ f)(t)| = sup

n
|σn(f)(t)|

Poisson maximal function (P ∗f)(t) = sup
0<r<1

|(Pr ∗ f)(t)|
Gauss maximal function (G∗f)(t) = sup

0<s<∞
|(Gs ∗ f)(t)|

Lebesgue maximal function (L∗f)(t) = sup
0<h<π

|(Lh ∗ f)(t)|

where the Lebesgue kernel is Lh(t) = 2π 1
2h
1[−h,h](t), extended 2π-periodically.

Notice (Lh ∗ f)(t) = 1
2h

∫ t+h

t−h
f(τ) dτ is a local average of f around t.

Lemma 7.2 (Majorization). If k ∈ L1(T) is nonnegative and symmetric
(k(−t) = k(t)), and decreasing on [0, π], then

|(k ∗ f)(t)| ≤ ‖k‖L1(T)(L
∗f)(t) for all t ∈ T, f ∈ L1(T).
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Thus convolution with a symmetric decreasing kernel is majorized by the
Hardy–Littlewood maximal function.

Proof. Assume k is absolutely continuous, for simplicity. We first establish
a “layer cake” decomposition of k, representing it as a linear combination of
kernels Lh:

k(t) = k(|t|) = k(π)−
∫ π

|t|
k′(h) dh

= k(π)− 1

2π

∫ π

0

2hLh(t)k
′(h) dh,

since

1

2π
2hLh(t) =

{
1, if h ≥ |t|,
0, if h < |t|.

Hence

(k ∗ f)(t) = k(π)
1

2π

∫

T
f(τ) dτ +

1

2π

∫ π

0

2h(Lh ∗ f)(t)
(− k′(h)

)
dh

|(k ∗ f)(t)| ≤ k(π)|(Lπ ∗ f)(t)|+ 1

2π

∫ π

0

2h
(− k′(h)

)
dh (L∗f)(t)

using k(π) ≥ 0 and k′ ≤ 0

≤ 2

2π

∫ π

0

k(h) dh (L∗f)(t) by parts

= ‖k‖L1(T)(L
∗f)(t)

by symmetry of k.

Theorem 7.3 (Lebesgue dominates Fejér and Poisson). For all f ∈ L1(T),

F ∗f ≤ 2L∗|f |
P ∗f ≤ L∗f

Proof. Pr(t) is nonnegative, symmetric, and decreasing on [0, π] (exercise),
with ‖Pr‖L1(T) = 1. Hence |Pr ∗ f | ≤ L∗f by Majorization Lemma 7.2, so
that P ∗f ≤ L∗f .
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The Dirichlet kernel is not decreasing on [0, π], but it is bounded by a
symmetric decreasing kernel, as follows:

Fn(t) =
1

n + 1

(
sin

(
n+1

2
t
)

sin
(

1
2
t
)

)2

≤ k(t)
def
=

1

n + 1

{
(n + 1)2 if |t| ≤ π/(n + 1),

π2/t2 if π/(n + 1) ≤ |t| ≤ π,

since

sin(n + 1)θ ≤ (n + 1) sin θ, 0 ≤ θ ≤ π

2
,

sin
(1

2
t
) ≥ t

π
, 0 ≤ t ≤ π.

Note the kernel k is nonnegative, symmetric, and decreasing on [0, π], with

‖k‖L1(T) =
1

2π

(
4π − 2π

n + 1

)
< 2.

Hence |Fn ∗ f | ≤ k ∗ |f | ≤ 2L∗|f | by Majorization Lemma 7.2, so that
F ∗f ≤ 2L∗|f |.

The Gauss kernel can be shown to be symmetric decreasing, so that
G∗f ≤ L∗f , but we omit the proof.

Corollary 7.4. F ∗, P ∗ and L∗ are weak (1, 1) on T.

Proof.

∣∣{t ∈ T : (L∗f)(t) > 2πλ}
∣∣ ≤

∣∣{t ∈ T : (L∗|f |)(t) > 2πλ}
∣∣ ≤ 3

λ

∫

T
|f(t)| dt

by repeating the weak (1, 1) proof for the Hardy–Littlewood maximal func-
tion. These weak (1, 1) estimates for L∗f and L∗|f | imply weak (1, 1) for
F ∗f , since if (F ∗f)(t) > λ then (L∗|f |)(t) > λ/2 by Theorem 7.3. Argue
similarly for P ∗f .

Theorem 7.5 (Summability a.e.). If f ∈ L1(T) then

σn(f) = Fn ∗ f → f a.e. as n →∞ (Fejér summability)

Pr ∗ f → f a.e. as r ↗ 1 (Abel summability)

Lh ∗ f → f a.e. as h ↘ 0 (Lebesgue differentiation theorem)
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Proof. By the weak (1, 1) estimate in Corollary 7.4 and the abstract conver-
gence result in Theorem 6.4, the set

C = {f ∈ L1(T) : lim
n

(Fn ∗ f)(t) = f(t) a.e.}

is closed in L1(T).
Obviously C contains the continuous functions on T, since Fn ∗ f → f

uniformly when f is continuous. Thus C is dense in L1(T). Because C is
also closed, it must equal L1(T), thus proving Fejér summability a.e. for each
f ∈ L1(T).

Argue similarly for Pr ∗ f and Lh ∗ f .

The result that Lh ∗ f → f a.e. means

1

2h

∫ t+h

t−h

f(τ) dτ → f(t) a.e.,

which is the Lebesgue differentiation theorem on T.



Chapter 8

Fourier series: convergence at a
point

Goals

State divergence pointwise can occur for L1(T)
Show divergence pointwise can occur for C(T)
Prove convergence pointwise for Cα(T) and BV (T)

References

[Katznelson] Section II.2, II.3
[Duoandikoetxea] Section 1.1

Fourier series can behave badly for integrable functions.

Theorem 8.1 (Kolmogorov). There exists f ∈ L1(T) whose Fourier series
diverges unboundedly at every point. That is,

sup
n
|Sn(f)(t)| = ∞ for all t ∈ T,

so that D∗f ≡ ∞.

Recall Sn(f) = Dn ∗ f and D∗f is the maximal function for the Dirichlet
kernel.

Proof. [Katznelson, Section II.3].
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Even continuous functions can behave badly.

Theorem 8.2. There exists a continuous function whose Fourier series di-
verges unboundedly at t = 0. That is,

sup
n
|Sn(f)(0)| = ∞.

Proof. Define

Tn : C(T) → C
f 7→ Sn(f)(0) = (nth partial sum of f at t = 0).

Then Tn is linear. Each Tn is bounded since

|Tn(f)| = |Sn(f)(0)|
= |(Dn ∗ f)(0)|
=

∣∣ 1

2π

∫

T
Dn(τ)f(0− τ) dτ

∣∣

≤ ‖Dn‖L1(T)‖f‖L∞(T).

Thus ‖Tn‖ ≤ ‖Dn‖L1(T). We show ‖Tn‖ = ‖Dn‖L1(T). Let ε > 0 and choose
g ∈ C(T) with ‖g‖L∞(T) = 1 and g even and

g(t) =





1 if Dn(t) > 0,

−1 if Dn(t) < 0,

except for small intervals around the zeros of Dn,

with total length of those intervals < ε/(2n + 1).

Then

|Tn(g)| =
∣∣ 1

2π

∫

T
Dn(τ)g(τ) dτ

∣∣

≥ 1

2π

∫

T\{intervals}
|Dn(τ)| dτ − 1

2π

∫

{intervals}
|Dn(τ)| dτ

=
1

2π

∫

T
|Dn(τ)| dτ − 2

2π

∫

{intervals}
|Dn(τ)| dτ

≥ ‖Dn‖L1(T) − 1

π

ε

2n + 1
(2n + 1) using definition (2.1) of Dn

= ‖Dn‖L1(T) − ε

π

=
(‖Dn‖L1(T) − ε

π

)‖g‖L∞(T).
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Thus ‖Tn‖ ≥ ‖Dn‖L1(T) − ε/π for all ε > 0, and so ‖Tn‖ = ‖Dn‖L1(T).

Recalling that ‖Dn‖L1(T) → ∞ as n → ∞ (in fact, ‖Dn‖ ∼ c log n by
[Katznelson, Ex. II.1.1]) we conclude from the Uniform Bounded Principle
(Banach–Steinhaus) that there exists f ∈ C(T) with supn |Tn(f)| = ∞, as
desired.

Another proof. [Katznelson, Sec II.2] gives an explicit construction of f ,
proving divergence not only at t = 0 but on a dense set of t-values.

Now we prove convergence results.

Theorem 8.3 (Dini’s Convergence Test). Let f ∈ L1(T), t ∈ T. If

∫ π

−π

∣∣∣∣
f(t− τ)− f(t)

τ

∣∣∣∣ dτ < ∞

then the Fourier series of f converges at t to f(t).

Proof.

Sn(f)(t)− f(t) =
1

2π

∫ π

−π

[f(t− τ)− f(t)]
sin

(
(n + 1

2
)τ

)

sin
(

1
2
τ
) dτ

using that
1

2π

∫ π

−π

Dn(τ) dτ = 1

=
1

2π

∫ π

−π

{
f(t− τ)− f(t)

τ

τ

sin
(

1
2
τ
) cos

(1

2
τ
)
}

sin(nτ) dτ

+
1

2π

∫ π

−π

[f(t− τ)− f(t)] cos(nτ) dτ (8.1)

by expanding sin
(
(n + 1

2
)τ

)
with a trigonometric identity.

Notice the factor {· · · } is integrable with respect to τ , by the Dini hy-
pothesis. And τ 7→ [f(t − τ) − f(t)] is integrable too. Hence both integrals
in (8.1) tend to 0 as n →∞, by the Riemann–Lebesgue Corollary 1.5 (after
expressing sin(nτ) and cos(nτ) in terms of e±inτ ).

Corollary 8.4 (Convergence for Hölder continuous f). If f ∈ Cα(T), 0 <
α ≤ 1, then the Fourier series of f converges to f(t), for every t ∈ T.
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Proof. Put Hölder into Dini:
∫ π

−π

∣∣∣∣
f(t− τ)− f(t)

τ

∣∣∣∣ dτ ≤
∫ π

−π

(const.)|τ |α
|τ | dτ < ∞.

Now apply Dini’s Theorem 8.3.
(Exercise. Prove the Fourier series in fact converges uniformly.)

Corollary 8.5 (Localization Principle). Let f ∈ L1(T), t ∈ T. If f vanishes
on a neighborhood of t, then Sn(f)(t) → 0 as n →∞.

Proof. Apply Dini’s Theorem 8.3.

In particular, if two functions agree on a neighborhood of t and the Fourier
series of one of them converges at t, then the Fourier series of the other
function converges at t to the same value. Thus Fourier series depend only
on local information.

Theorem 8.6 (Convergence for bounded variation f). If f ∈ BV (T) then the
Fourier series converges everywhere to 1

2
[f(t+)+f(t−)], and hence converges

to f(t) at every point of continuity.

Proof. Let t ∈ T. On the interval (t − π, t + π), express f as the difference
of two bounded increasing functions, say f = g − h. It suffices to prove the
theorem for g and h individually.

We have

Sn(g)(t)− 1

2
[g(t+) + g(t−)] =

1

2π

∫ π

0

(
g(t− τ)− g(t−)

)
Dn(τ) dτ (8.2)

+
1

2π

∫ π

0

(
g(t + τ)− g(t+)

)
Dn(τ) dτ (8.3)

since Dn(τ) is even and 1
2π

∫ π

0
Dn(τ) dτ = 1

2
.

Let G(τ) = g(t + τ) − g(t+) for τ ∈ (0, π), so that G is increasing with
G(0+) = 0. Write

Hn(τ) =

∫ τ

0

Dn(σ) dσ

so that H ′
n = Dn. Let 0 < δ < π. Then

(8.3) =
1

2π

∫ δ

0

G(τ)H ′
n(τ) dτ +

1

2π

∫ π

δ

G(τ)Dn(τ) dτ

=
1

2π
G(δ)Hn(δ)− 1

2π

∫

(0,δ]

Hn(τ) dG(τ) + o(1)
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as n → ∞, by parts in the first term and by the Localization Principle in
the last term, since the function





G(τ), δ < τ < π,

0, −δ < τ < δ,

G(−τ), −π < τ < −δ,

vanishes near the origin. Hence

lim sup
n

|(8.3)| ≤ 1

2π
sup

n
‖Hn‖L∞(T)

(
G(δ) +

∫

(0,δ]

dG(τ)

)

=
1

2π
sup

n
‖Hn‖L∞(T) · 2G(δ) since G(0+) = 0

→ 0

as δ → 0. Therefore (8.3) → 0 as n →∞. Argue similarly for (8.2), and for
h.

Thus we are done, provided we show

sup
n
‖Hn‖L∞(T) < ∞.

We have

|Hn(τ)| ≤
∣∣∣
∫ τ

0

sin
(
(n + 1

2
)σ

)
1
2
σ

dσ
∣∣∣ +

∣∣∣
∫ τ

0

sin
(
(n +

1

2
)σ

)( 1

sin
(

1
2
σ
) − 1

1
2
σ

)
dσ

∣∣∣

≤ 2
∣∣∣
∫ (n+ 1

2
)τ

0

sin σ

σ
dσ

∣∣∣ +

∫ π

0

(const.)
σ3

σ2
dσ by a change of variable

≤ 2 sup
ρ>0

∣∣∣
∫ ρ

0

sin σ

σ
dσ

∣∣∣ + (const.)

< ∞
since limρ→∞

∫ ρ

0
sin σ

σ
dσ exists.

The convergence results so far in this chapter rely just on Riemann–
Lebsgue and direct estimates. A much deeper result is:

Theorem 8.7 (Carleson–Hunt). If f ∈ Lp(T), 1 < p < ∞ then the Fourier
series of f converges to f(t) for almost every t ∈ T.
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For p = 1, the result is spectacularly false by Kolmogorov’s Theorem 8.1.

Proof. Omitted. The idea is to prove that the Dirichlet maximal operator
(D∗f)(t) = supn |(Dn ∗ f)(t)| is strong (p, p) for 1 < p < ∞. Then it is weak
(p, p), and so convergence a.e. follows from Chapter 6.

Thus one wants

∥∥ sup
n
|Dn ∗ f |

∥∥
Lp(T)

≤ Cp‖f‖Lp(T)

for 1 < p < ∞. The next Chapters show

sup
n
‖Dn ∗ f‖Lp(T) ≤ Cp‖f‖Lp(T),

but that is not good enough to prove Carleson–Hunt!



Chapter 9

Fourier series: norm
convergence

Goals

Characterize norm convergence in terms of uniform norm bounds

Show norm divergence can occur for L1(T) and C(T)

Show norm convergence for Lp(T) follows from boundedness of the Hilbert
transform

Reference

[Katznelson] Section II.1

Theorem 9.1. Let B be one of the spaces C(T) or Lp(T), 1 ≤ p < ∞.

(a) If supn‖Sn‖B→B < ∞ then Fourier series converge in B:

lim
n→∞

‖Sn(f)− f‖B = 0 for each f ∈ B.

(b) If supn‖Sn‖B→B = ∞ then there exists f ∈ B whose Fourier series
diverges unboundedly: supn‖Sn(f)‖B = ∞.

Proof.

(b) This part follows immediately from the Uniform Boundedness Prin-
ciple in functional analysis.
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(a) The collection of trigonometric polynomials is dense in B (as remarked
after Theorem 2.6). Further, if g is a trigonometric polynomial then Sn(g) =
g whenever n exceeds the degree of g. Hence the set

C = {f ∈ B : lim
n→∞

Sn(f) = f in B}

is dense in B. The set C is also closed, by the following proposition, and so
C = B, which proves part (a).

Proposition 9.2. Let B be any Banach space and assume the Tn : B → B
are bounded linear operators.

If supn‖Tn‖B→B < ∞ then

C = {f ∈ B : lim
n→∞

Tnf = f in B}

is closed.

Proof. Let A = supn‖Tn‖B→B. Consider a sequence fm ∈ C with fm → f .
We must show f ∈ C, so that C is closed.

Choose ε > 0 and fix m such that ‖fm − f‖ < ε/2(A + 1). Since fm ∈ C
there exists N such that ‖Tnfm − fm‖ < ε/2 whenever n > N . Then

‖Tnf − f‖ ≤ ‖Tnf − Tnfm‖+ ‖Tnfm − fm‖+ ‖fm − f‖
≤ (A + 1)‖f − fm‖+ ‖Tnfm − fm‖ < ε

whenever n > N , as desired.

Norm Estimates

‖Sn‖B→B ≤ ‖Dn‖L1(T)

when B is C(T) or Lp(T), 1 ≤ p < ∞, since

‖Sn(f)‖B =
∥∥Dn ∗ f

∥∥
B
≤ ‖Dn‖L1(T)‖f‖B.

This upper estimate is not useful, since we know ‖Dn‖L1(T) →∞.

Example 9.3 (Divergence in C(T)). For B = C(T) we have

‖Sn‖C(T)→C(T) = ‖Dn‖L1(T).
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Indeed, for each ε > 0 one can construct g ∈ C(T) that approximates
sign(Dn) (like in Chapter 8), so that

‖Sn(g)‖C(T) ≥ |Sn(g)(0)| ≥ (‖Dn‖L1(T) − ε
)‖g‖C(T).

Therefore supn‖Sn‖C(T)→C(T) = ∞, so that (by Theorem 9.1(b)) there
exists a continuous function f ∈ C(T) whose Fourier series diverges un-
boundedly in the uniform norm: supn‖Sn(f)‖C(T) = ∞.

Of course, this result follows already from the pointwise divergence in
Chapter 8.

Example 9.4 (Divergence in L1(T)). For B = L1(T) we have

‖Sn‖L1(T)→L1(T) = ‖Dn‖L1(T).

Proof. Fix n. Then Sn(FN) = FN ∗Dn → Dn in L1(T) as N →∞, and so

‖Dn‖L1(T) = lim
N→∞

‖Sn(FN)‖L1(T)

≤ ‖Sn‖L1(T)→L1(T)‖FN‖L1(T)

= ‖Sn‖L1(T)→L1(T).

Therefore supn‖Sn‖L1(T)→L1(T) = ∞, so that (by Theorem 9.1(b)) there
exists an integrable function f ∈ L1(T) whose Fourier series diverges un-
boundedly in the L1 norm: supn‖Sn(f)‖L1(T) = ∞.

Aside. For an explicit example of L1 divergence, see [Grafakos, Exercise
3.5.9].

Convergence in Lp(T), 1 < p < ∞
1. We shall prove (in Chapters 10–12) the existence of a bounded linear
operator

H : Lp(T) → Lp(T), 1 < p < ∞,

called the Hilbert transform on T, with the property

(̂Hf)(n) = −i sign(n)f̂(n).

(Thus H is a Fourier multiplier operator.) That is

Hf ∼
∞∑

n=−∞
(−i) sign(n)f̂(n)eint.
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2. Then the Riesz projection P : Lp(T) → Lp(T) defined by

Pf =
1

2
f̂(0) +

1

2
(f + iHf)

is also bounded, when 1 < p < ∞. (Note the constant term f̂(0) is bounded
by ‖f‖Lp(T), by Hölder’s inequality.)

Observe P projects onto the nonnegative frequencies:

Pf ∼
∑
n≥0

f̂(n)eint

since i(−i sign(n)) = sign(n).

3. The following formula expresses the Fourier partial sum operator in terms
of the Riesz projection and some modulations:

e−imtP (eimtf)− ei(m+1)tP (e−i(m+1)tf) = Sm(f). (9.1)

Proof.

eimtf ∼
∞∑

n=−∞
f̂(n)ei(m+n)t

P (eimtf) ∼
∑

n≥−m

f̂(n)ei(m+n)t

e−imtP (eimtf) ∼
∑

n≥−m

f̂(n)eint

ei(m+1)tP (e−i(m+1)tf) ∼
∑

n≥m+1

f̂(n)eint

Subtracting the last two formulas gives Sm(f), on the right side, and we
conclude that the left side of (9.1) has the same Fourier coefficients as Sm(f).
By the uniqueness result (2.14), the left side of (9.1) must equal Sm(f).

4. From (9.1) and boundedness of the Riesz projection it follows that

sup
m
‖Sm‖Lp(T)→Lp(T) ≤ 2‖P‖Lp(T)→Lp(T) < ∞

when 1 < p < ∞. Hence from Theorem 9.1 we conclude:

Theorem 9.5 (Fourier series converge in Lp(T)). Let 1 < p < ∞. Then

lim
n→∞

‖Sn(f)− f‖Lp(T) = 0 for each f ∈ Lp(T).

It remains to prove Lp boundedness of the Hilbert transform.



Chapter 10

Hilbert transform on L2(T)

Goal

Obtain time and frequency representations of the Hilbert transform

Reference

[Edwards and Gaudry] Section 6.3

Definition 10.1. The Hilbert transform on L2(T) is

H : L2(T) → L2(T)

f 7→
∞∑

n=−∞

(− i sign(n)f̂(n)
)
eint.

We call {−i sign(n)} the multiplier sequence of H.

Since | sign(n)| ≤ 1, the definition indeed yields Hf ∈ L2(T), with

‖Hf‖2
L2(T) =

∑

n∈Z
|(̂Hf)(n)|2 =

∑

n 6=0

|f̂(n)|2 ≤ ‖f̂‖2
`2(Z) = ‖f‖2

L2(T)

by Plancherel in Chapter 5. Hence ‖H‖L2→L2 = 1. Observe also H2(f) =

H(Hf) = −∑
n 6=0 f̂(n)eint = −f + f̂(0).

Lemma 10.2 (Adjoint of Hilbert transform). H∗ = −H
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Proof. For f, g ∈ L2(T),

〈Hf, g〉L2(T) = 〈Ĥf, ĝ〉`2(Z)

= 〈−i sign(n)f̂(n), ĝ(n)〉`2(Z)

= 〈f̂(n), i sign(n)ĝ(n)〉`2(Z)

= 〈f̂ ,−Ĥg〉`2(Z)

= 〈f,−Hg〉L2(T).

Proposition 10.3. If f ∈ L2(T) is C1-smooth on an open interval I ⊂ T,
then

(Hf)(t) =
1

2π

∫ π

0

[f(t− τ)− f(t + τ)] cot
(τ

2

)
dτ (10.1)

= lim
ε→0

1

2π

∫

ε<|τ |<π

f(t− τ) cot
(τ

2

)
dτ (10.2)

for almost every t ∈ I.

Remark 10.4. Formally (10.2) says that

Hf = f ∗ cot
( t

2

)
.

But the convolution is ill-defined because the Hilbert kernel cot(t/2) is not
integrable. That is why (10.2) evaluates the convolution in the principal
valued sense, taking the limit of integrals over T \ [−ε, ε].

Proof. First, geometric series calculations show that

N∑
n=−N

(− i sign(n)einτ
)

= i

−1∑
n=−N

einτ − i

N∑
n=1

einτ

= i
e−i(N+1)τ − e−iτ

e−iτ − 1
− i

ei(N+1)τ − eiτ

eiτ − 1

= i
e−i(N+1/2)τ − e−iτ/2 + ei(N+1/2)τ − eiτ/2

e−iτ/2 − eiτ/2

=
cos

(
τ
2

)− cos
(
(N + 1

2
)τ

)

sin( τ
2
)

. (10.3)



59

Second, the Nth partial sum of Hf is

N∑
n=−N

(− i sign(n)f̂(n)
)
einτ

=
1

2π

∫

T
f(τ)

N∑
n=−N

(−i) sign(n)ein(t−τ) dτ

=
1

2π

∫ π

−π

f(t− τ)
N∑

n=−N

(−i) sign(n)einτ dτ by τ 7→ t− τ

=
1

2π

∫ π

0

[f(t− τ)− f(t + τ)]
cos

(
τ
2

)− cos
(
(N + 1

2
)τ

)

sin( τ
2
)

dτ

=
1

2π

∫ π

0

[f(t− τ)− f(t + τ)] cot
(τ

2

)
dτ by (10.3)

− 1

2π

∫ π

0

f(t− τ)− f(t + τ)

sin( τ
2
)

cos
(
(N +

1

2
)τ

)
dτ.

If t ∈ I then the second integrand belongs to L1(T) since it is bounded
for τ near 0, by the C1-smoothness of f . Hence the second integral tends to
0 as N → ∞ by the Riemann-Lebesgue Corollary 1.5. Formula (10.1) now
follows, because the partial sum

N∑
n=−N

(
−i sign(n)f̂(n)

)
einτ

converges to Hf(t) in L2(T) and hence some subsequence of the partial sums
converges to (Hf)(t) a.e.

Now write (10.1) as

(Hf)(t) = lim
ε→0

1

2π

∫ π

ε

[f(t− τ)− f(t + τ)] cot
(τ

2

)
dτ

and use oddness of cot(τ/2) to obtain (10.2).
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Chapter 11

Calderón–Zygmund
decompositions

Goal

Decompose a function into good and bad parts, preparing for a weak (1, 1)
estimate on the Hilbert transform

References

[Duoandikoetxea] Section 2.5
[Grafakos] Section 4.3

Definition 11.1. For k ∈ Z, let

Qk = {2−k
(
[0, 1)d + m

)
: m ∈ Zd}.

Notice the cubes in Qk are small when k is large.
Call ∪kQk the collection of dyadic cubes.

Facts (exercise)

1. For all x ∈ Rd and k ∈ Z, there exists a unique Q ∈ Qk such that x ∈ Q.
That is, there exists a unique m ∈ Zd with x ∈ 2−k

(
[0, 1)d + m

)
.

2. Given Q ∈ Qk and j < k, there exists a unique Q̃ ∈ Qj with Q ⊂ Q̃.
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3. Each cube in Qk contains exactly 2d cubes in Qk+1.

4. Given two dyadic cubes, either one of them is contained in the other,
or else the cubes are disjoint.

Definition 11.2. For f ∈ L1
loc(Rd), let

(Ekf)(x) =
∑

Q∈Qk

( 1

|Q|
∫

Q

f(y) dy
)
1Q(x).

Then Ekf is constant on each cube in Qk (equalling there the average of f
over that cube), and ∫

Ω

Ekf dx =

∫

Ω

f dx (11.1)

whenever Ω is a finite union of cubes in Qk.
Define the dyadic maximal function

(Mdf)(x) = sup
k
|(Ekf)(x)|

= sup
{∣∣∣ 1

|Q|
∫

Q

f(y) dy
∣∣∣ : Q is a dyadic cube containing x

}
.

Theorem 11.3.
(a) Md is weak (1, 1).
(b) If f ∈ L1

loc(Rd) then limk→∞(Ekf)(x) = f(x) a.e.

Proof. We employ a “stopping time” argument like in probability theory for
martingales.

For part (a), let f ∈ L1(Rd), λ > 0. Since Mdf ≤ Md|f |, we can assume
f ≥ 0. Let

Ω = {x ∈ Rd : (Mdf)(x) > λ},
Ωk = {x ∈ Rd : (Ekf)(x) > λ and (Ejf)(x) ≤ λ for all j < k}.

Clearly Ωk ⊂ Ω. And if x ∈ Ω then (Ekf)(x) > λ for some k; a smallest such
k exists, because

lim
j→−∞

(Ejf)(x) ≤ lim
j→−∞

1

(2−j)d

∫

Rd

f(y) dy

= 0

< λ.
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Choosing the smallest k implies (Ejf)(x) ≤ λ for all j < k, and so x ∈ Ωk.
Hence Ω = ∪kΩk, so that

|Ω| =
∑

k

|Ωk| by disjointness of the Ωk

≤ 1

λ

∑

k

∫

Ωk

Ekf dx since Ekf > λ on Ωk

=
1

λ

∑

k

∫

Ωk

f dx by (11.1), since Ωk equals a union of cubes in Qk

(recall Ekf is constant on each cube in Qk)

≤ 1

λ

∫

Rd

f dx.

Therefore Md is weak (1, 1).

Part (b) holds if f is continuous, and hence if f ∈ L1
loc(Rd) by Theorem 6.4

(exercise), using that the dyadic maximal operator Md is weak (1, 1).

Note we did not need a covering lemma, when proving the dyadic maximal
function is weak (1, 1), because disjointness of the cubes is built into the
construction.

Theorem 11.4 (Calderón–Zygmund decomposition at level λ). Let f ∈
L1(Rd), λ > 0. Then there exists a “good’ function g ∈ L1 ∩ L∞(Rd) and a
“bad” function b ∈ L1(Rd) such that

i. f = g + b

ii. ‖g‖L1(Rd) ≤ ‖f‖L1(Rd), ‖g‖L∞(Rd) ≤ 2dλ, ‖b‖L1(Rd) ≤ 2‖f‖L1(Rd)

iii. b =
∑

l bl where bl is supported in a dyadic cube Q(l) and the {Q(l)}
are disjoint; we do not assume Q(l) ∈ Ql, just Q(l) ∈ Qk for some k.

iv.
∫

Q(l)
bl(x) dx = 0

v. ‖bl‖L1(Rd) ≤ 2d+1λ|Q(l)|

vi.
∑

l |Q(l)| ≤ 1
λ
‖f‖L1(Rd)
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Proof. Apply the proof of Theorem 11.3 to |f |, and decompose the disjoint
sets Ωk into dyadic cubes in Qk. Together, these cubes form the collection
{Q(l)}. Property (vi) is just the weak (1, 1) estimate that we proved.

For (i), (iii), (iv), argue as follows. Let

bl(x) =
(
f(x)− 1

|Q(l)|
∫

Q(l)

f(y) dy
)
1Q(l)(x)

so that bl integrates to 0. Define

b(x) =
∑

l

bl(x) =

{
f(x)− 1

|Q(l)|
∫

Q(l)
f(y) dy on Q(l), for each l,

0 on Rd \ ∪lQ(l).

Then let

g = f − b

=

{
1

|Q(l)|
∫

Q(l)
f(y) dy on Q(l), for each l,

f(x) on Rd \ ∪lQ(l).

For (ii), note ‖g‖L1(Rd) ≤ ‖f‖L1(Rd), since g = f off ∪lQ(l) and on Q(l)
we have ∫

Q(l)

|g(x)| dx ≤
∫

Q(l)

|f(x)| dx.

Hence ‖b‖L1(Rd) = ‖f − g‖L1(Rd) ≤ 2‖f‖L1(Rd).
Next we show ‖g‖L∞(Rd) ≤ 2dλ. Suppose x ∈ Rd \ ∪lQ(l). Then g(x) =

f(x). Since x /∈ Ωk for all k we have (Ek|f |)(x) ≤ λ for all k. Hence
|f(x)| ≤ λ (for almost every such x) by Theorem 11.3(b), so that |g(x)| ≤ λ.

Next suppose x ∈ Q(l) for some l, so that x ∈ Ωk for some k. Then
(Ek−1|f |)(x) ≤ λ, which means

1

|Q|
∫

Q

|f(y)| dy ≤ λ

for some cube Q ∈ Qk−1 with x ∈ Q(l) ⊂ Q. Hence

1

2d|Q(l)|
∫

Q(l)

|f(y)| dy ≤ λ (11.2)

since Q(l) ⊂ Q and side(Q) = 2 side(Q(l)). Therefore |g(x)| ≤ 2dλ, by
definition of g.
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For (v), just note
∫

Q(l)

|bl(x)| dx ≤ 2

∫

Q(l)

|f(x)| dx by definition of bl

≤ 2d+1λ|Q(l)|
by (11.2).

Now we adapt the theorem to T. We will restrict to “large” λ values, so
that the dyadic intervals have length at most 2π and thus fit into T.

Corollary 11.5 (Calderón–Zygmund decomposition on T). Let f ∈ L1(T), λ >
‖f‖L1(T). Then there exists a “good’ function g ∈ L∞(T) and a “bad” func-
tion b ∈ L1(T) such that

i. f = g + b

ii. ‖g‖L1(T) ≤ ‖f‖L1(T), ‖g‖L∞(T) ≤ 2λ, ‖b‖L1(T) ≤ 2‖f‖L1(T)

iii. b =
∑

l bl where bl is supported in some interval I(l) of the form 2π ·
2−k

(
[0, 1) + m

)
where k ≥ 1, 0 ≤ m ≤ 2k − 1, and where the {I(l)} are

disjoint.

iv.
∫

I(l)
bl(t) dt = 0

v. ‖bl‖L1(T) ≤ 4
2π

λ|I(l)|
vi.

∑
l |I(l)| ≤ 2π

λ
‖f‖L1(T)

Proof. Let d = 1. Apply the Calderón–Zygmund Theorem 11.4 to

f̃(t) =

{
f(2πt), 0 ≤ t < 1,

0, otherwise,

to get f̃ = g̃ + b̃. Note Ωk is empty for k ≤ 0, since

(Ek|f̃ |)(t) ≤ 1

2−k

∫ 1

0

|f̃(τ)| dτ

= 2k 1

2π

∫ 2π

0

|f(τ)| dτ

≤ ‖f‖L1(T) since k ≤ 0

< λ
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by assumption on λ.
Further, Ωk ⊂ [0, 1] for k ≥ 1, since Ek|f̃ | = 0 outside [0, 1]. Thus

I(l) = 2πQ(l) has the form stated in the Corollary.

The Corollary now follows from Theorem 11.4, with f̃ = g̃ + b̃ yielding
f = g + b.



Chapter 12

Hilbert transform on Lp(T)

Goals

Prove a weak (1, 1) estimate on the Hilbert transform on T
Deduce strong (p, p) estimates by interpolation and duality

Reference

[Duoandikoetxea] Section 3.3

Theorem 12.1 (weak (1, 1) on L2(T)). There exists A > 0 such that

|{t ∈ T : |(Hf)(t)| > λ}| ≤ A

λ
‖f‖L1(T)

for all λ > 0 and f ∈ L2(T).

Proof. If λ ≤ ‖f‖L1(T) then A = 2π works. So suppose λ > ‖f‖L1(T). Apply
the Calderón–Zygmund Corollary 11.5 to get f = g + b. Note g ∈ L∞(T)
and so g ∈ L2(T), hence Hg ∈ L2(T) by Chapter 10. And b = f − g ∈ L2(T)
so that Hb ∈ L2(T). Further, bl ∈ L2(T) and b =

∑
l bl with convergence in

L2(T), using disjointness of the supports of the bl. Hence Hb =
∑

l Hbl with
convergence in L2(T).

Since Hf = Hg + Hb, we have

|{t ∈ T : |(Hf)(t)| > λ}|
≤ |{t ∈ T : |(Hg)(t)| > λ/2}|+ |{t ∈ T : |(Hb)(t)| > λ/2}|
= γ + β,
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say. First, use the L2 theory on g:

γ ≤
∫

T

|(Hg)(t)|2
(λ/2)2

dt

≤ 4

λ2

∫

T
|g(t)|2 dt since ‖H‖L2(T)→L2(T) = 1 by Chapter 10

≤ 8

λ

∫

T
|g(t)| dt since ‖g‖L∞(T) ≤ 2λ

≤ 8 · 2π
λ

‖f‖L1(T) since ‖g‖L1(T) ≤ ‖f‖L1(T).

Second, use L1 estimates on b, as follows:

β ≤
∣∣⋃

l

2I(l)
∣∣ + |{t ∈ T \

⋃

l

2I(l) : |(Hb)(t)| > λ/2}|

≤ 4π

λ
‖f‖L1(T) +

∫

T\∪l2I(l)

|(Hb)(t)|
λ/2

dt

by the Calderón–Zygmund Corollary 11.5(vi)

≤ 4π

λ
‖f‖L1(T) +

2

λ

∑

l

∫

T\2I(l)

|(Hbl)(t)| dt

since |Hb| ≤ ∑
l |Hbl| a.e.

To finish the proof, we show

∑

l

∫

T\2I(l)

|(Hbl)(t)| dt ≤ (const.)‖f‖L1(T). (12.1)
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By Proposition 10.3 on the interval T \ 2I(l), we have
∫

T\2I(l)

|Hbl(t)| dt

=

∫

T\2I(l)

∣∣∣ 1

2π

∫

I(l)

bl(τ) cot
(1

2
(t− τ)

)
dτ

∣∣∣ dt

noting t− τ is bounded away from 0, since τ ∈ I(l) and t /∈ 2I(l),

=

∫

T\2I(l)

∣∣∣ 1

2π

∫

I(l)

bl(τ)
[
cot

(1

2
(t− τ)

)− cot
(1

2
(t− cl)

)]
dτ

∣∣∣ dt

where cl is the center of I(l), using here that

∫

I(l)

bl(τ) dτ = 0,

=

∫

T\2I(l)

∣∣∣ 1

2π

∫

I(l)

bl(τ)
sin

(
1
2
(τ − cl)

)

sin
(

1
2
(t− τ)

)
sin

(
1
2
(t− cl)

) dτ
∣∣∣ dt

≤ (const.)

∫

I(l)

|bl(τ)|
∫

R\2I(l)

|I(l)|
|t− τ ||t− cl| dtdτ.

Note that

|t− cl| ≤ |t− τ |+ |τ − cl|
≤ |t− τ |+ 1

2
|I(l)| when τ ∈ I(l)

≤ 2|t− τ | when t ∈ R \ 2I(l).

Hence
∫

R\2I(l)

|I(l)|
|t− τ ||t− cl| dt ≤ 2

∫

R\2I(l)

|I(l)|
|t− cl|2 dt

= 4

∫ ∞

2r

2r

t2
dt where 2r = |I(l)|

= 4.

Thus

the left side of (12.1) ≤ (const.)
∑

l

∫

I(l)

|bl(τ)| dτ

= (const.)‖b‖L1(T)

≤ (const.)‖f‖L1(T)
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by the Calderón–Zygmund Corollary 11.5.
We have proved (12.1), and thus the theorem.

Corollary 12.2. The Hilbert transform is strong (p, p) for 1 < p < ∞, with

(̂Hf)(n) = −i sign(n)f̂(n) for all f ∈ Lp(T), n ∈ Z.

Proof. H is strong (2, 2) and linear, by definition in Chapter 10, and H is
weak (1, 1) on L2(T) (and hence on the simple functions on T) by The-
orem 12.1. So H is strong (p, p) for 1 < p < 2 by Remark C.4 after
Marcinkiewicz Interpolation (in Appendix C). That is, H : Lp(T) → Lp(T)
is bounded and linear for 1 < p < 2.

For 2 < p < ∞ we will use duality and anti-selfadjointness H∗ = −H on
L2(T) (see Lemma 10.2) to reduce to the case 1 < p < 2. Write 1

p
+ 1

p′ = 1.

If f ∈ Lp ∩ L2(T) then

‖Hf‖p = sup
{∣∣ 1

2π

∫

T
(Hf)g dt

∣∣ : g ∈ Lp′(T) with norm 1
}

= sup{
∣∣ 1

2π

∫

T
(Hf)g dt

∣∣ : g ∈ Lp′ ∩ L2(T) with norm 1}

by density of Lp′ ∩ L2 in Lp′

= sup{
∣∣ 1

2π

∫

T
f(Hg) dt

∣∣ : g ∈ Lp′ ∩ L2(T) with norm 1}
since H∗ = −H on L2(T)

≤ ‖f‖Lp(T) sup{‖Hg‖Lp′ (T) : g ∈ Lp′ ∩ L2(T) with norm 1} by Holder

≤ (const.)p′‖f‖Lp(T)

by the strong (p′, p′) bound proved above, noting 1 < p′ < 2. Thus H is
bounded and linear on the dense subset Lp ∩ L2(T) of Lp(T). Hence H
extends to a bounded operator on Lp(T).

Finally, for f ∈ Lp(T), 1 < p < ∞, let fm ∈ Lp ∩ L2(T) with fm → f
in Lp(T). Boundedness of H on Lp implies Hfm → Hf in Lp. Hence

fm → f and Hfm → Hf in L1(T). Thus passing to the limit in (̂Hfm)(n) =

−i sign(n)f̂m(n) yields (̂Hf)(n) = −i sign(n)f̂(n), as desired.



Chapter 13

Applications of interpolation

Goal

Apply Marcinkiewicz and Riesz–Thorin interpolation to the Hilbert trans-
form, maximal operator, Fourier analysis and convolution

The Marcinkiewicz and Riesz–Thorin interpolation theorems are covered
in Appendix C. Some important applications are:

Hilbert transform.

H : Lp(T) → Lp(T) is bounded, for 1 < p < ∞,

by the Marcinkiewicz interpolation and duality argument in Corollary 12.2.

Hardy–Littlewood maximal operator. M is weak (1, 1) and strong
(∞,∞) by Chapter 6, and hence M is strong (p, p) for 1 < p < ∞ by
the Marcinkiewicz Interpolation Theorem C.2. (Note M is sublinear.)

Strong (p, p) was proved directly, already, in Chapter 6.

Fourier analysis. The Hausdorff–Young theorem says

̂ : Lp(T) → `p′(Z), 1 ≤ p ≤ 2,
1

p
+

1

p′
= 1.

It fails for p > 2 [Katznelson, Section IV.2.3].
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To interpret the theorem, note Lp(T) gets smaller as p increases, and so
does `p′(Z).
Proof. The analysis operators ̂ : L1(T) → `∞(Z) and ̂ : L2(T) → `2(Z) are
bounded. Observe

1

p
=

1− θ

1
+

θ

2
⇐⇒ θ

2
= 1− 1

p
⇐⇒ 1

p′
=

1− θ

∞ +
θ

2
.

Now apply the Riesz–Thorin Interpolation Theorem C.6.

Convolution. The Generalized Young’s theorem says

‖f∗g‖Lr(Rd) ≤ ‖f‖Lp(Rd)‖g‖Lq(Rd) when
1

p
+

1

q
=

1

r
+1, 1 ≤ p, q, r ≤ ∞.

Proof. Fix g ∈ Lq(Rd) and define Tf = f ∗ g. Then T is strong (1, q) since

‖f ∗ g‖Lq(Rd) ≤ ‖f‖L1(Rd)‖g‖Lq(Rd)

by Young’s Theorem A.3, and T is strong (q′,∞) since

‖f ∗ g‖L∞(Rd) ≤ ‖f‖Lq′ (Rd)‖g‖Lq(Rd)

by Hölder’s inequality. In both cases, ‖T‖ ≤ ‖g‖Lq(Rd). Observe

1

p
=

1− θ

1
+

θ

q′
⇐⇒ θ

q
= 1− 1

p
=

1

q
− 1

r
⇐⇒ 1

r
=

1− θ

q
+

θ

∞ .

Now apply the Riesz–Thorin Interpolation Theorem C.6.



Epilogue: Fourier series in
higher dimensions

We have studied Fourier series only on the one dimensional torus T = R/2πZ.
The theory extends readily to the higher dimensional torus Td = Rd/2πZd.

Summability kernels can be obtained by taking products of one dimen-
sional kernels. Thus the higher dimensional Dirichlet kernel is

Dn(t) = Dn(t1) · · ·Dn(td)

=
n∑

j1,...,jd=−n

eijt,

where j = (j1, . . . , jd), t = (t1, . . . , td)
† and † denotes the transpose operation.

The Dirichlet kernel corresponds to “cubical” partial sums of multiple
Fourier series, because

(Dn ∗ f)(t) =
1

(2π)d

∫

T
· · ·

∫

T
Dn(t− τ)f(τ) dτ1 · · · dτd

=
n∑

j1,...,jd=−n

f̂(j)eijt.

“Spherical” partial sums of the form
∑

|j|≤n f̂(j)eijt can be badly behaved.

For example, they can fail to converge for f ∈ Lp(Td) when p 6= 2. See
[Grafakos] for this theorem and more on Fourier series in higher dimensions.
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Part II

Fourier integrals

75





Prologue: Fourier series
converge to Fourier integrals

Fourier series do not apply to a function g ∈ L1(R), since g is not periodic.
Instead we take a large piece of g and look at its Fourier series: for ρ > 0, let

f(t) = g(ρt), t ∈ [−π, π),

and extend f to be 2π-periodic. Then

f̂(j) =
1

2π

∫ π

−π

g(ρt)e−ijt dt

=
1

2πρ

∫ ρπ

−ρπ

g(y)e−i(j/ρ)y dy

by changing variable. Formally, for |x| < ρπ we have

g(x) = f(ρ−1x) =
∞∑

j=−∞
f̂(j)eij(ρ−1x)

=
1

2π

∞∑
j=−∞

( ∫ ρπ

−ρπ

g(y)e−i(j/ρ)y dy
)
ei(j/ρ)x · 1

ρ

→ 1

2π

∫ ∞

−∞

( ∫ ∞

−∞
g(y)e−iξy dy

)
eiξx dξ

as ρ →∞, by using Riemann sums on the ξ-integral.
The inner integral (“Fourier transform”) is analogous to a Fourier coeffi-

cient.
The outer integral (“Fourier inverse”) is analogous to a Fourier series.
We aim to develop a Fourier integral theory that is analogous to the

theory of Fourier series.
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Chapter 14

Fourier transforms: basic
properties

Goal

Derive basic properties of Fourier transforms

Reference

[Katznelson] Section VI.1

Notation

‖f‖Lp(Rd) =
( ∫
Rd |f(x)|p dx

)1/p

Nesting of Lp-spaces fails: L∞(Rd) 6⊂ L2(Rd) 6⊂ L1(Rd) due to behavior at
infinity e.g. 1/(1 + |x|) is in L2(R) but not L1(R)
Cc(Rd) = {complex-valued, continuous functions with compact support}
C0(Rd) = {complex-valued, continuous functions with f(x) → 0 as |x| → ∞},
Banach space with norm ‖·‖L∞(Rd)

Translation fy(x) = f(x− y)

Definition 14.1. For f ∈ L1(Rd) and ξ ∈ Rd, define

f̂(ξ) = Fourier transform of f

=

∫

Rd

f(x)e−iξx dx. (14.1)

Here ξ is a row vector, x is a column vector, and so ξx = ξ1x1 + · · · + ξdxd

equals the dot product.
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Theorem 14.2 (Basic properties). Let f, g ∈ L1(Rd), ξ, ω ∈ Rd, c ∈ C, y ∈
Rd, A ∈ GL(R, d).

Linearity ̂(f + g)(ξ) = f̂(ξ) + ĝ(ξ) and (̂cf)(ξ) = cf̂(ξ)

Conjugation f̂(ξ) = f̂(−ξ)

̂ takes translation to modulation, f̂y (ξ) = e−iξyf̂(ξ)

̂ takes modulation to translation, [f(x)eiωx ]̂ (ξ) = f̂(ξ − ω)

̂ takes matrix dilation to its inverse, [ | det A|f(Ax) ]̂ (ξ) = f̂(ξA−1)

̂ : L1(Rd) → L∞(Rd) is bounded, with ‖f̂‖L∞(Rd) ≤ ‖f‖L1(Rd)

f̂ is uniformly continuous
If fm → f in L1(Rd) then f̂m → f̂ in L∞(Rd).

Proof. Exercise. For continuity, observe

|f̂(ξ + ω)− f̂(ξ)| ≤
∫

Rd

|f(x)||e−iξx||e−iωx − 1| dx

→ 0

as ω → 0, by dominated convergence. The convergence is independent of ξ,
and so f̂ is uniformly continuous.

Corollary 14.3 (Transform of a radial function). If f ∈ L1(Rd) is radial

then f̂ is radial.

Recall that f is radial if it depends only on the distance to the origin:
f(x) = F (|x|) for some function F . Equivalently, f is radial if f(Ax) = f(x)
for every x and every orthogonal (“rotation and reflection”) matrix A.

Proof. Suppose A is orthogonal. Then f(Ax) = f(x) (since f is radial) and
so

f̂(ξA−1) = [ | det A|f(Ax) ]̂ (ξ) = f̂(ξ),

using Theorem 14.2 and that | det A| = 1.

Lemma 14.4 (Transform of a product). If f1, . . . , fd ∈ L1(R) then f(x) =∏d
j=1 fj(xj) has transform f̂(ξ) =

∏d
j=1 f̂j (ξj).

Proof. Use Fubini and the homomorphism property of the exponential: e−iξx =∏d
j=1 e−iξjxj .
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Lemma 14.5 (Difference formula). For ξ 6= 0,

f̂(ξ) =
1

2

∫

Rd

[f(x)− f(x− πξ†/|ξ|2)] e−iξx dx,

where ξ† is the column vector transpose of ξ.

Proof. Like Lemma 1.3.

Lemma 14.6 (Continuity of translation). Fix f ∈ Lp(Rd), 1 ≤ p < ∞. The
map

φ : Rd → Lp(Rd)

y 7→ fy

is continuous.

Proof. Like Lemma 1.4 except using Cc(Rd), which is dense in Lp(Rd).

Corollary 14.7 (Riemann–Lebesgue lemma). f̂(ξ) → 0 as |ξ| → ∞. Thus

f̂ ∈ C0(Rd).

Proof. Lemma 14.5 implies

|f̂(ξ)| ≤ 1

2
‖f − fπξ†/|ξ|2‖L1(Rd),

which tends to zero as |ξ| → ∞ by the L1-continuity of translation in
Lemma 14.6, since ξ†/|ξ|2 has magnitude 1/|ξ| → 0.

Example 14.8. We compute the Fourier transforms in Table 14.1.

1.
∫
R 1[−1,1](x)e−iξx dx =

∫ 1

−1
e−iξx dx = 2 sin(ξ)/ξ

2.
∫
R(1− |x|)1[−1,1](x)e−iξx dx = 2

∫ 1

0
(1− x) cos(ξx) dx = 2ξ−2(1− cos ξ),

and 1− cos ξ = 2 sin2(ξ/2)

4. Next we compute for the fourth example, the Gaussian e−|x|
2/2, so that

we can use it later for the third example e−|x|.
For d = 1, let g(ξ) =

∫
R e−x2/2e−iξx dx be the transform we want. Note

g(0) =
√

2π. Differentiating,

g′(ξ) =

∫

R
e−x2/2(−ix)e−iξx dx,
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dimension f(x) f̂(ξ)

1 1[−1,1](x) 2 sin ξ
ξ

= 2 sinc ξ

1 (1− |x|)1[−1,1](x)
(

sin(ξ/2)
ξ/2

)2
= sinc2(ξ/2)

d e−|x| (2π)dcd

(1+|ξ|2)(d+1)/2

d e−|x|
2/2 (2π)d/2e−|ξ|

2/2

Table 14.1: Fourier transforms from Example 14.8. In the third example,
cd = Γ

(
d+1
2

)/
π(d+1)/2, so that c1 = 1/π. The fourth example says the

Fourier transform of a Gaussian is a Gaussian.

with the differentiation through the integral justified by using difference quo-
tients and dominated convergence (Exercise). Hence

g′(ξ) = i

∫

R

(
e−x2/2

)′
e−iξx dx

= −i

∫

R
e−x2/2

(
e−iξx

)′
dx by parts

= −ξ

∫

R
e−x2/2e−iξx dx

= −ξg(ξ).

Solving the differential equation yields g(ξ) =
√

2πe−ξ2/2.

For d > 1, note the product structure e−|x|
2/2 =

∏d
j=1 e−x2

j/2 and apply
Lemma 14.4.

3. For d = 1,
∫
R e−|x|e−iξx dx =

∫∞
0

e−(1+iξ)x dx +
∫ 0

−∞ e(1−iξ)x dx = 1/(1 +
iξ) + 1/(1− iξ), which simplifies to the desired result.

To handle d > 1, we need a calculus lemma that expresses a decaying
exponential as a superposition of Gaussians.
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Lemma 14.9. For b > 0,

e−b =
1√
2π

∫ ∞

0

e−a/2

√
a

e−b2/2a da.

Proof.

eb 1√
2π

∫ ∞

0

e−a/2

√
a

e−b2/2a da

=
2
√

b√
2π

∫ ∞

0

e−b(c−1/c)2/2 dc by letting a = bc2

=
2
√

b√
2π

∫ ∞

0

e−b(c−1/c)2/2c−2 dc by c 7→ 1/c

=

√
b√

2π

∫ ∞

0

e−b(c−1/c)2/2(1 + c−2) dc by averaging the last two formulas

=

√
b√

2π

∫ ∞

−∞
e−bu2/2 du where u = c− 1/c

= 1.

Now we compute the Fourier transform of e−|x| as
∫

Rd

e−|x|e−iξx dx

=
1√
2π

∫ ∞

0

e−a/2

√
a

∫

Rd

e−|x|
2/2e−i(ξ

√
a)x dx ad/2 da by Lemma 14.9 and x 7→ √

ax

=
1√
2π

∫ ∞

0

a(d−1)/2e−a/2(2π)d/2e−|ξ
√

a|2/2 da by the Gaussian in Table 14.1

= (2π)(d−1)/2
(
(1 + |ξ|2)/2)−(d+1)/2

∫ ∞

0

u(d−1)/2e−u du

where u = a(1+|ξ|2)/2. The last integral is Γ((d+1)/2), so that the transform
equals (2π)dcd(1 + |ξ|2)−(d+1)/2 as claimed in the Table.

Smoothness and decay

Theorem 14.10 (Differentiation and Fourier transforms).
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(a) If f ∈ C1
c (Rd) (or more generally, f ∈ W 1,1(Rd)) then

(̂∂jf)(ξ) = iξj f̂(ξ),

where ∂j = ∂/∂xj for j = 1, . . . , d. Thus:

̂ takes differentiation to multiplication by iξj.

(b) If (1 + |x|)f(x) ∈ L1(Rd) then f̂ is continuously differentiable, with

̂(−ixjf)(ξ) = (∂j f̂)(ξ),

where ∂j = ∂/∂ξj for j = 1, . . . , d. Thus:

̂ takes multiplication by −ixj to differentiation.

Proof. For (a)
∫

Rd

(∂jf)(x)e−iξx dx =

∫

Rd

f(x)(iξj)e
−iξx dx by parts

= iξj f̂(ξ).

For (b) we compute a difference quotient, with δ ∈ R and ej = unit vector
in the j-th direction:

f̂(ξ + δej)− f̂(ξ)

δ
=

∫

Rd

f(x)e−iξx e−iδxj − 1

δ
dx

→
∫

Rd

f(x)e−iξx(−ixj) dx = ̂(−ixjf)(ξ)

as δ → 0, by dominated convergence with dominating function f(x)|x| ∈
L1(Rd). Hence f̂(ξ) has partial derivative ̂(−ixjf)(ξ), which is continuous
by Theorem 14.2.

Theorem 14.11 (Smoothness of f and decay of f̂).

(a) If f ∈ L1(Rd) then f̂(ξ) = o(1) as |ξ| → ∞, and

|f̂(ξ)| ≤ ‖f‖L1(Rd) = O(1).

(b) If f ∈ C1
c (Rd) then f̂(ξ) = o(1/|ξ|) as |ξ| → ∞, and

|f̂(ξ)| ≤ d maxj‖∂jf‖L1(Rd)

|ξ| = O(1/|ξ|).
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Proof. (a) Use Riemann–Lebesgue (Corollary 14.7) and Theorem 14.2.
(b) For each ξ there exists j such that |ξj| ≥ |ξ|/d (since |ξ1|+ · · ·+ |ξd| ≥

|ξ|). Then

|f̂(ξ)| =
∣∣∣∣∣
(̂∂jf)(ξ)

iξj

∣∣∣∣∣ ≤
|(̂∂jf)(ξ)|
|ξ|/d

≤ d maxj |(̂∂jf)(ξ)|
|ξ|

= o(1/|ξ|) by Riemann–Lebesgue

≤ d maxj‖∂jf‖L1(Rd)

|ξ| by Theorem 14.2

= O(1/|ξ|).

Or one could argue more directly using the gradient vector:

|f̂(ξ)| = |(̂∇f)(ξ)|
|iξ| = o(1/|ξ|) by Riemann–Lebesgue

≤ ‖∇f‖L1(Rd)

|ξ| by Theorem 14.2

= O(1/|ξ|).

Convolution

Definition 14.12. Given f, g ∈ L1(Rd), define their convolution

(f ∗ g)(x) =

∫

Rd

f(x− y)g(y) dy, x ∈ Rd.

Theorem 14.13 (Convolution and Fourier transforms). If f, g ∈ L1(Rd)
then f ∗ g ∈ L1(Rd) with

‖f ∗ g‖L1(Rd) ≤ ‖f‖L1(Rd)‖g‖L1(Rd)

and
(̂f ∗ g)(ξ) = f̂(ξ)ĝ(ξ), ξ ∈ Rd.
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Thus the Fourier transform takes convolution to multiplication.

Proof. Like Theorem 1.11.

Example 14.14. Let f = 1[−1/2,1/2], so that (f ∗ f)(x) = (1− |x|)1[−1,1](x)

by direct calculation. We find f̂(ξ) = sinc(ξ/2) like example 1 of Table 14.1,

and (̂f ∗ f)(ξ) = sinc2(ξ/2) by example 2 of Table 14.1.

Hence (̂f ∗ f) = (f̂)2, as Theorem 14.13 predicts.
As this example illustrates, convolution is a smoothing operation,

and hence improves the decay of the transform: sinc(ξ/2) decays like 1/ξ
while sinc2(ξ/2) decays like 1/ξ2.

Convolution facts (similar to Chapter 2)

1. Convolution is commutative: f ∗ g = g ∗ f . It is also associative, and
linear with respect to f and g.

2. If f ∈ Lp(Rd), 1 ≤ p ≤ ∞, and g ∈ L1(Rd), then f ∗ g ∈ Lp(Rd) with

‖f ∗ g‖Lp(Rd) ≤ ‖f‖Lp(Rd)‖g‖L1(Rd).

Further, if f ∈ C0(Rd) and g ∈ L1(Rd) then f ∗ g ∈ C0(Rd).
Proof. For the first claim, use Young’s Theorem A.3. For the second, if
f ∈ C0(Rd) and g ∈ L1(Rd) then f ∗ g is continuous because (f ∗ g)(x+ z) →
(f ∗g)(x) as z → 0 by uniform continuity of f (exercise). And (f ∗g)(x) → 0
as |x| → ∞ by dominated convergence, since f(x− y) → 0 as |x| → ∞.

3. Convolution is continuous on Lp(Rd): if fm → f in Lp(Rd), 1 ≤ p ≤ ∞,
and g ∈ L1(Rd), then fm ∗ g → f ∗ g in Lp(Rd).
Proof. Use linearity and Fact 2.

4. If f ∈ L1(Rd) and P (x) =
∫
Rd Q(ξ)eiξx dξ for some Q ∈ L1(Rd), then

(P ∗ f)(x) =

∫

Rd

Q(ξ)f̂(ξ)eiξx dξ. (14.2)

Proof.

(P ∗ f)(x) =

∫

Rd

Q(ξ)

∫

Rd

eiξ(x−y)f(y) dydξ by Fubini

=

∫

Rd

Q(ξ)eiξxf̂(ξ) dξ.



Chapter 15

Fourier integrals: summability
in norm

Goal

Develop summability kernels in Lp(Rd)

Reference

[Katznelson] Section VI.1

Definition 15.1. A summability kernel on Rd is a family {kω} of inte-
grable functions such that

∫

Rd

kω(x) dx = 1 (Normalization) (SR1)

sup
ω

∫

Rd

|kω(x)| dx < ∞ (L1 bound) (SR2)

lim
ω→∞

∫

{x:|x|>δ}
|kω(x)| dx = 0 (L1 concentration) (SR3)

for each δ > 0.

Some kernels further satisfy

lim
ω→∞

sup
|x|>δ

|kω(x)| = 0 (L∞ concentration) (SR4)

for each δ > 0.

(Notation. Here kω(x) does not mean the translation k(x− ω).)
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-2 2

4

Figure 15.1: Dirichlet kernel with ω = 10

Example 15.2. Suppose k ∈ L1(Rd) is continuous with
∫
Rd k(x) dx = 1.

Put
kω(x) = ωdk(ωx)

for ω > 0. Then {kω} is a summability kernel.
Proof. Show (SR1) and (SR2) by changing variable with y = ωx, dy = ωddx.
For (SR3),

∫

{x:|x|>δ}
|kω(x)| dx =

∫

{y:|y|>ωδ}
|k(y)| dy

→ 0

as ω →∞, by dominated convergence.

Example 15.3. For d = 1, let

D(x) =
1

2π

∫

R
1[−1,1](ξ)e

iξx dξ (15.1)

=
sin x

πx
=

1

π
sinc x. (15.2)

The Dirichlet kernel is

Dω(x) = ωD(ωx) =
1

2π

∫ ω

−ω

eiξx dξ (15.3)

=
sin(ωx)

πx
. (15.4)
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-2 2

4

Figure 15.2: Fejér kernel with ω = 10

See Figure 15.1. D is not integrable since |D(x)| ∼ |x|−1 at infinity.

∴ {Dω} is not a summability kernel.

In higher dimensions the Dirichlet function is
∏d

j=1 D(xj), with associated

kernel Dω(x) =
∏d

j=1 Dω(xj).

Example 15.4. For d = 1, let

F (x) =
1

2π

∫

R
(1− |ξ|)1[−1,1](ξ)e

iξx dξ (15.5)

=
1

2π

(
sin

(
1
2
x
)

1
2
x

)2

by Table 14.1. (15.6)

The Fejér kernel is

Fω(x) = ωF (ωx) =
1

2π

∫ ω

−ω

(1− |ξ|/ω)eiξx dξ (15.7)

=
ω

2π

(
sin

(
1
2
ωx

)
1
2
ωx

)2

. (15.8)

See Figure 15.2. F is integrable since F (x) ∼ x−2 at infinity. And
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∫

R
F (x) dx =

2

π
lim
ρ→∞

∫ ρ

−ρ

sin2(x/2)

x2
dx

=
2

π
lim
ρ→∞

∫ ρ

−ρ

2 sin(x/2) cos(x/2) · (1/2)

x
dx by parts

=
1

π
lim
ρ→∞

∫ ρ

−ρ

sin x

x
dx

= 1.

∴ {Fω} is a summability kernel.
In higher dimensions the Fejér function is

∏d
j=1 F (xj), with associated

kernel Fω(x) =
∏d

j=1 Fω(xj).

The Fejér kernel is an arithmetic mean of Dirichlet kernels; for example,
F (x) =

∫ 1

0
Dω(x) dω in 1 dimension, by integrating (15.3).

Example 15.5.

P (x) =
1

(2π)d

∫

Rd

e−|ξ|eiξx dξ (15.9)

=
cd

(1 + |x|2)(d+1)/2
by Table 14.1. (15.10)

The Poisson kernel is

Pω(x) = ωdP (ωx) =
1

(2π)d

∫

Rd

e−|ξ|/ωeiξx dξ (15.11)

= cd
ω−1

(|x|2 + ω−2
)(d+1)/2

. (15.12)

See Figure 15.3. P is integrable since P (x) ∼ |x|−(d+1) at infinity. And∫
Rd P (x) dx = P̂ (0) = 1 because P̂ (ξ) = e−|ξ| by Example 16.3 below; al-

ternatively, one can integrate (15.10) directly (see [Stein and Weiss, p. 9] for
d > 1).
∴ {Pω} is a summability kernel.

Example 15.6.

G(x) =
1

(2π)d

∫

Rd

e−|ξ|
2/2eiξx dξ (15.13)

= (2π)−d/2e−|x|
2/2 by Table 14.1. (15.14)
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Figure 15.3: Poisson kernel with ω = 10

The Gauss kernel is

Gω(x) = ωdG(ωx) =
1

(2π)d

∫

Rd

e−|ξ/ω|2/2eiξx dξ (15.15)

=
ωd

(2π)d/2
e−|ωx|2/2. (15.16)

See Figure 15.4. G is clearly integrable, and
∫
Rd G(x) dx = 1 from (15.14).

∴ {Gω} is a summability kernel.

Connection to Fourier integrals

For f ∈ L1(Rd):

(Dω ∗ f)(x) =
1

(2π)d

∫

[−ω,ω]d
f̂(ξ)eiξx dξ (15.17)

(Fω ∗ f)(x) =
1

(2π)d

∫

[−ω,ω]d

( d∏
j=1

(1− |ξj|/ω)
)
f̂(ξ)eiξx dξ (15.18)

(Pω ∗ f)(x) =
1

(2π)d

∫

Rd

e−|ξ|/ωf̂(ξ)eiξx dξ (15.19)

(Gω ∗ f)(x) =
1

(2π)d

∫

Rd

e−|ξ/ω|2/2f̂(ξ)eiξx dξ (15.20)
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Figure 15.4: Gauss kernel with ω = 10

Proof. Use Convolution Fact (14.2) and definitions (15.1), (15.5), (15.9),
(15.13), respectively.

Caution. The left sides of the above formulas make sense for f ∈ Lp(Rd),
but the right side does not: so far we have defined the Fourier transform only
for f ∈ L1(Rd).

Summability in norm

Theorem 15.7 (Summability in Lp(Rd) and C0(Rd)). Assume {kω} is a
summability kernel.

(a) If f ∈ Lp(Rd), 1 ≤ p < ∞, then kω ∗ f → f in Lp(Rd) as ω →∞.

(b) If f ∈ C0(Rd) then kω ∗ f → f in C0(Rd) as ω →∞.

Recall that C0(Rd) uses the L∞ norm.

Proof. Argue as for Theorem 2.6. Use that if f ∈ C0(Rd) then f is uniformly
continuous.
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Consequences

• Fejér summability for f ∈ L1(Rd):

1

(2π)d

∫

[−ω,ω]d

( d∏
j=1

(1− |ξj|/ω)
)
f̂(ξ)eiξx dξ → f(x) in L1(Rd). (15.21)

Similarly for Poisson and Gauss summability.

Proof. Use Theorem 15.7 and formulas (15.18)–(15.20).

• Uniqueness theorem:

if f, g ∈ L1(Rd) with f̂ = ĝ then f = g. (15.22)

That is, the Fourier transform ̂ : L1(Rd) → L∞(Rd) is injective.

Proof. Use Fejér summability (15.21) on f and g.

Connection to PDEs

Fix f ∈ L1(Rd).

1. The Poisson kernel solves Laplace’s equation in a half-space:

v(x, xd+1) = (P1/xd+1
∗ f)(x)

= cd

∫

Rd

xd+1(|x− y|2 + x2
d+1

)(d+1)/2
f(y) dy

solves
(∂2

1 + · · ·+ ∂2
d + ∂2

d+1)v = 0

on Rd × (0,∞), with boundary value v(x, 0) = f(x) in the sense of Theo-
rem 15.7.

That is, v is the harmonic extension of f from Rd to the halfspace Rd ×
(0,∞).

Proof. Take ω = 1/xd+1 in (15.19) and differentiate through the integral,
using

d+1∑
j=1

∂2

∂x2
j

(e−|ξ|xd+1eiξx) =
(
(iξ1)

2 + · · ·+ (iξd)
2 + (−|ξ|)2

)
e−|ξ|xd+1eiξx

= 0.
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For the boundary value, note ω = 1/xd+1 →∞ as xd+1 → 0.

2. The Gauss kernel solves the diffusion (heat) equation:

w(t, x) = (G1/
√

2t ∗ f)(x)

=
1

(4πt)d/2

∫

Rd

e−|x−y|2/4tf(y) dy

solves
wt = ∆w

for (t, x) ∈ (0,∞) × Rd, with initial value w(0, x) = f(x) in the sense of
Theorem 15.7. (Here ∆ = ∂2

1 + · · ·+ ∂2
d .)

Proof. Take ω = 1/
√

2t in (15.20) and differentiate through the integral,
using

(
∂

∂t
−

d∑
j=1

∂2

∂x2
j

)
(e−|ξ|

2teiξx) =
(− |ξ|2 − (iξ1)

2 − · · · − (iξd)
2
)
e−|ξ|

2teiξx

= 0.

For the boundary value, note ω = 1/
√

2t →∞ as t → 0.



Chapter 16

Fourier transforms in L1(Rd),
and Fourier inversion

Goal

Fourier inversion when f̂ is integrable

Reference

[Katznelson, Section VI.1]

Definition 16.1. Define

ǧ(x) =
1

(2π)d

∫

Rd

g(ξ)eiξx dξ

=
1

(2π)d
ĝ(−x).

We call ˇ the inverse Fourier transform, in view of the next theorem.

Theorem 16.2. (Fourier inversion)

(a) If f, f̂ ∈ L1(Rd) then f is continuous and

f(x) =
1

(2π)d

∫

Rd

f̂(ξ)eiξx dξ, x ∈ Rd.

(b) If g, ǧ ∈ L1(Rd) then g is continuous and

g(ξ) =

∫

Rd

ǧ(x)e−iξx dx, ξ ∈ Rd.
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dimension f(x) f̂(ξ)

d F (x) = 1
(2π)d

∏d
j=1

(
sin(xj/2)

xj/2

)2
F̂ (ξ) = 1[−1,1]d(ξ)

∏d
j=1(1− |ξj|)

d P (x) = cd

(1+|x|2)(d+1)/2 P̂ (ξ) = e−|ξ|

d G(x) = (2π)−d/2e−|x|
2/2 Ĝ(ξ) = e−|ξ|

2/2

Table 16.1: Fourier transforms of the Fejér, Poisson and Gauss functions,
from Example 16.3.

The theorem says (f̂ )̌ = f and (ǧ)̂ = g .

Proof. (a) The L1 convergence in Fejér summability (15.21) implies pointwise
convergence a.e. for some subsequence of ω-values:

f(x) = lim
ω→∞

1

(2π)d

∫

Rd

1[−ω,ω]d(ξ)
( d∏

j=1

(1− |ξj|/ω)
)
f̂(ξ)eiξx dξ

=
1

(2π)d

∫

Rd

f̂(ξ)eiξx dξ

by dominated convergence, using that f̂ ∈ L1(Rd).
(b) Apply part (a) to g, change ξ 7→ −ξ, and then swap x and ξ.

Example 16.3. The Fourier transforms of the Fejér, Poisson and Gauss
functions can be computed by Fourier Inversion Theorem 16.2(b), because
definitions (15.5), (15.9) and (15.13) express those kernels as inverse Fourier
transforms. For example, if we choose g(ξ) = e−|ξ|

2/2 then definition (15.13)

says G(x) = ǧ(x), so that Ĝ = g by Theorem 16.2(b).
Table 16.1 displays the results.



Chapter 17

Fourier transforms in L2(Rd)

Goal

Extend the Fourier transform to an isometric bijection of L2(Rd) to itself

Reference

[Katznelson] Section VI.3

Notation

Inner product on L2(Rd) is 〈f, g〉 =
∫
Rd f(x)g(x) dx.

Theorem 17.1 (Fourier transform on L2(Rd)). The Fourier transform ̂ :
L2(Rd) → L2(Rd) is a bijective isometry (up to a constant factor) with

‖f‖L2(Rd) = (2π)−d/2‖f̂‖L2(Rd) (Plancherel)

〈f, g〉 = (2π)−d〈f̂ , ĝ〉 (Parseval)

(f̂ )̌ = f, (ǧ)̂ = g (Inversion)

for all f, g ∈ L2(Rd).

The proof will show ̂ : L1 ∩ L2(Rd) → L2(Rd) is bounded with respect
to the L2 norm. Then by density of L1 ∩ L2 in L2, we conclude the Fourier
transform extends to a bounded operator from L2 to itself.
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Proof. For f ∈ L1 ∩ L2(Rd),

‖f‖2
L2(Rd) = lim

ω→∞

∫

Rd

f(x)(Gω ∗ f)(x) dx

since Gω ∗ f → f in L2(Rd) by Theorem 15.7

= lim
ω→∞

1

(2π)d

∫

Rd

∫

Rd

f(x)e−iξxf̂(ξ)e−|ξ/ω|2/2 dξdx by (15.20)

= lim
ω→∞

1

(2π)d

∫

Rd

|f̂(ξ)|2e−|ξ/ω|2/2 dξ by Fubini, using f̂ ∈ L∞(Rd),

=
1

(2π)d

∫

Rd

|f̂(ξ)|2 dξ by monotone convergence

=
1

(2π)d
‖f̂‖2

L2(Rd). (17.1)

By density of L1 ∩ L2 in L2, the Fourier transform ̂ extends to a bounded
operator from L2(Rd) to itself. Plancherel follows from (17.1) by density.
Thus the Fourier transform is an isometry, up to a constant factor.

Parseval follows from Plancherel by polarization, or by repeating the ar-
gument for Plancherel with 〈f, f〉 changed to 〈f, g〉 (and using dominated
instead of monotone convergence).

For Inversion, note ˇ : L2(Rd) → L2(Rd) is bounded by Definition 16.1,
since the Fourier transform is bounded. If f is smooth with compact support
then f̂ is bounded and decays rapidly at infinity, by repeated use of Theo-
rem 14.11. Hence f̂ ∈ L1(Rd), with (f̂ )̌ = f by Inversion Theorem 16.2. So
the Fourier transform followed by the inverse transform gives the identity on
the dense set L1∩L2(Rd), and hence on all of L2(Rd) by continuity. Similarly
(ǧ)̂ = g for all g ∈ L2(Rd).

Finally, the Fourier transform is injective by Plancherel, and surjective
by Inversion.

Example 17.2. In 1 dimension, the Dirichlet function

D(x) =
sin x

πx

belongs to L2(R) and has

D̂(ξ) = 1[−1,1](ξ).

Proof. D = (1[−1,1])̌ by definition in (15.1), and so D̂ = 1[−1,1] by Theo-
rem 17.1 Inversion.
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dimension f(x) f̂(ξ)

d D(x) = 1
πd

∏d
j=1

sin xj

xj
D̂(ξ) = 1[−1,1]d(ξ)

Table 17.1: Fourier transform of the Dirichlet function, from Example 17.2.

Remark 17.3. If f ∈ L2(Rd) then f1B(n) ∈ L1 ∩L2(Rd) and f1B(n) → f in
L2(Rd). Hence

f̂(ξ) = lim
n→∞

̂(f1B(n))(ξ) in L2(Rd), by Theorem 17.1,

= lim
n→∞

∫

B(n)

f(x)e−iξx dx.

How can this limit exist, when f need not be integrable? The answer must
be that oscillations of e−iξx yield cancelations that allow f(x)e−iξx to be
integrated improperly, as above, for almost every ξ.

Theorem 17.4 (Hausdorff–Young for Fourier transform). The Fourier trans-
form

̂ : Lp(Rd) → Lp′(Rd)

is bounded for 1 ≤ p ≤ 2, where 1
p

+ 1
p′ = 1.

Proof. Apply the Riesz–Thorin Interpolation Theorem C.6, using bounded-
ness of

̂ : L1(Rd) → L∞(Rd) in Theorem 14.2, and

̂ : L2(Rd) → L2(Rd) in Theorem 17.1.

Note the Fourier transform is well defined on L1 + L2(Rd), since the L1 and
L2 Fourier transforms agree on L1 ∩ L2(Rd).

Remark 17.5. The first five Basic Properties in Theorem 14.2 still hold
for the Fourier transform on Lp(Rd), 1 ≤ p ≤ 2, and so do Corollary 14.3
(radial functions) and Lemma 14.4 (product functions) and (15.17)–(15.20)
(connection to Fourier integrals).
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Proof. Given f ∈ Lp(Rd), take fm ∈ L1 ∩ Lp(Rd) with fm → f in Lp(Rd).

Then f̂m → f̂ in Lp′(Rd) by the Hausdorff–Young Theorem 17.4. Here f̂m

is the usual Fourier transform of fm ∈ L1(Rd), so that Theorem 14.2, Corol-
lary 14.3, Lemma 14.4 and (15.17)–(15.20) all apply to fm. Now let m →∞
in those results.

Corollary 17.6 (Convolution and Fourier transforms). If f ∈ L1(Rd), g ∈
Lp(Rd), 1 ≤ p ≤ 2, then f ∗ g ∈ Lp(Rd) and

(̂f ∗ g) = f̂ ĝ.

Proof. Take gm ∈ L1∩Lp(Rd) with gm → g in Lp(Rd). Then ̂(f ∗ gm) = f̂ ĝm

by Theorem 17.1. Let m →∞ and use the Hausdorff–Young Theorem 17.4,
noting f̂ is bounded.

Consequence

Analogue of Weierstrass trigonometric approximation: functions with com-
pactly supported Fourier transform are dense in Lp(Rd), 1 ≤ p ≤ 2.

Proof. Fω ∗ f → f in Lp(Rd) by Theorem 15.7, and ̂(Fω ∗ f) = F̂ωf̂ has

compact support (because F̂ω has compact support by Table 16.1).



Chapter 18

Fourier integrals: summability
pointwise

Goal

Prove sufficient conditions for summability at a single point, and a.e.

Reference

[Grafakos] Sections 2.1b, 3.3b

If f ∈ C0(Rd) then kω ∗ f → f uniformly by Theorem 15.7(b), and hence
convergence holds at every x. But what if f is merely continuous at a point?

Theorem 18.1 (Summability at a point). Assume {kω} is a summability
kernel. Suppose either f ∈ L1(Rd) and {kω} satisfies the L∞ concentration
hypothesis (SR4), or else f ∈ L∞(Rd).

If f is continuous at x0 ∈ Rd then (kω ∗ f)(x0) → f(x0) as ω →∞.

Proof. Adapt the corresponding result on the torus, Theorem 3.1(a).

The Poisson and Gauss kernels satisfy (SR4), and so does the Fejér kernel
in 1 dimension. More generally, if k(x) = o(1/|x|d) as |x| → ∞ then kω(x) =
ωdk(ωx) satisfies (SR4) (Exercise).

Next we aim at summability a.e., by using maximal functions like we did
for Fourier series in Chapter 7.
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Definition 18.2. Define the

Dirichlet maximal function (D∗f)(x) = sup
ω
|(Dω ∗ f)(x)|

Fejér maximal function (F ∗f)(x) = sup
ω
|(Fω ∗ f)(x)|

Poisson maximal function (P ∗f)(x) = sup
ω
|(Pω ∗ f)(x)|

Gauss maximal function (G∗f)(x) = sup
ω
|(Gω ∗ f)(x)|

Lebesgue maximal function (L∗f)(x) = sup
ω
|(Lω ∗ f)(x)|

where

L(x) =
1

|B(1)|1B(1)(x)

is the normalized indicator function of the unit ball.

Lemma 18.3.

L∗f ≤ L∗|f | ≤ Mf

where M is the Hardy–Littlewood maximal operator from Chapter 6.

Proof. First,

L1/ω(y) = (1/ω)dL(y/ω) =
1

|B(ω)|1B(ω)(y). (18.1)

Hence

|(L1/ω ∗ f)(x)| ≤ 1

|B(ω)|
∫

B(ω)

|f(x− y)| dy

≤ (Mf)(x).

Lemma 18.4 (Majorization). If k ∈ L1(Rd) is nonnegative and radially
symmetric decreasing, then

|(k ∗ f)(x)| ≤ ‖k‖L1(Rd)(L
∗f)(x) for all x ∈ Rd, f ∈ L1(Rd).
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Proof. Write k(x) = ρ(|x|) where ρ : [0,∞) → R is nonnegative and decreas-
ing. Assume ρ is absolutely continuous, for simplicity. We first establish a
layer-cake decomposition of k, like we did on the torus in Lemma 7.2:

k(y) = ρ(|y|) = −
∫ ∞

|y|
ρ′(ω) dω since ρ(∞) = 0 by integrability of k

= −
∫ ∞

0

|B(ω)|L1/ω(y)ρ′(ω) dω,

because by (18.1),

L1/ω(y) =

{
1/|B(ω)| if ω > |y|,
0 if ω ≤ |y|.

Hence

(k ∗ f)(x) =

∫ ∞

0

|B(ω)|(L1/ω ∗ f)(x)
(− ρ′(ω)

)
dω

and so

|(k ∗ f)(x)| ≤
∫ ∞

0

|B(ω)|(− ρ′(ω)
)
dω · (L∗f)(x) since ρ′ ≤ 0

=

∫ ∞

0

∫ ω

0

|∂B(1)|rd−1 dr
(− ρ′(ω)

)
dω · (L∗f)(x)

by spherical coordinates for |B(ω)| =
∫

B(ω)

dy

=

∫ ∞

0

|∂B(1)|ωd−1ρ(ω) dω · (L∗f)(x)

by parts with respect to ω (why does the ω = ∞ term vanish?)

=

∫

Rd

k(y) dy · (L∗f)(x)

by using spherical coordinates again.

Theorem 18.5 (Lebesgue dominates Poisson and Gauss in all dimensions,
and Fejér in 1 dimension).

F ∗f ≤ 4

π
L∗|f | (when d = 1)

P ∗f ≤ L∗f

G∗f ≤ L∗f

for all f ∈ Lp(Rd), 1 ≤ p ≤ ∞.
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Proof. P ∗f ≤ L∗f by the Majorization Lemma 18.4, since Pω is nonnegative
and radially symmetric decreasing, with ‖Pω‖L1(Rd) = 1. Similarly G∗f ≤
L∗f .

When d = 1,

Fω(x) =
ω

2π

(
sin

(
ω
2
x
)

ω
2
x

)2

by (15.8)

≤ k(x)
def
=

ω

2π

{
1, |x| ≤ 2/ω,

1/
(

ω
2
x
)2

, |x| > 2/ω.

Note k is nonnegative, even and decreasing, with ‖k‖L1(R) = 4/π. Hence
|Fω ∗ f | ≤ k ∗ |f | ≤ (4/π)L∗|f | by Majorization Lemma 18.4.

Remark 18.6. The Fejér kernel is not majorized by a radially symmetric
decreasing integrable function, when d ≥ 2. For example, taking ω = 2 gives

F2(x) =
d∏

j=1

1

π

(
sin xj

xj

)2

,

which decays like x−2
1 along the x1-axis. Thus the best possible radial bound

would be O(|x|−2), which is not integrable at infinity in dimensions d ≥ 2.

Corollary 18.7. F ∗, P ∗, G∗ and L∗ are weak (1, 1) and strong (p, p) on
Lp(Rd), for 1 < p ≤ ∞.

Proof. Combine Theorem 18.5 and Lemma 18.3 with the weak and strong
bounds on the Hardy–Littlewood maximal operator in Chapter 6.

For the Fejér kernel in dimensions d ≥ 2, see [Grafakos, Theorem 3.3.3].

Theorem 18.8 (Summability a.e.). If f ∈ Lp(Rd), 1 ≤ p ≤ ∞, then

Fω ∗ f → f a.e. as ω →∞,

Pω ∗ f → f a.e. as ω →∞,

Gω ∗ f → f a.e. as ω →∞,

Lω ∗ f → f a.e. as ω →∞.

(The last statement is the Lebesgue differentiation theorem.)
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Proof. Assume 1 ≤ p < ∞. F ∗ is weak (p, p) by Corollary 18.7. Hence the
Theorem in Chapter 6 says

C = {f ∈ Lp(Rd) : lim
ω→∞

Fω ∗ f = f a.e.}

is closed in Lp(Rd). Obviously C contains every f ∈ Cc(Rd), because Fω∗f →
f uniformly by Theorem 15.7. Thus C is dense in Lp(Rd) (using here that
p < ∞). Because C is closed, it must equal Lp(Rd), which proves the result.

When p = ∞, consider f ∈ L∞(Rd). For m ∈ N, put g = 1B(m)f and
h = f − g. Then g ∈ L1(Rd), and so Fω ∗ g → g a.e., by the part of the
theorem already proved. Hence Fω ∗ g → f a.e. on B(m). Next h ∈ L∞(Rd)
is continuous on B(m), with h = 0 there, and so Fω ∗h → h = 0 on B(m) by
Theorem 18.1. Since f = g + h we deduce Fω ∗ f → f a.e. on B(m). Letting
m →∞ proves the result.

Argue similarly for the other kernels.
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Chapter 19

Fourier integrals: norm
convergence

Goal

Show norm convergence for Lp(Rd) follows from boundedness of the Hilbert
transform on R

Reference

I do not know a fully satisfactory reference for this material. Suggestions are
welcome!

Definition 19.1. Write
Sω(f) = Dω ∗ f

where

Dω(x) =
d∏

j=1

ωD(ωxj) =
d∏

j=1

sin(ωxj)

πxj

is the Dirichlet kernel on Rd and D(z) = (sin z)/πz is the Dirichlet function
in 1 dimension.

Sω is the “partial sum” operator for the Fourier integral, because if f ∈
Lp(Rd), 1 ≤ p ≤ 2, then Sω(f) = (1[−ω,ω]d f̂)ˇ by (15.17) and Remark 17.5.
In particular,

Sω : L2(Rd) → L2(Rd)
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is bounded, by boundedness of the Fourier transform and its inverse on L2.
Further, 1[−ω,ω]d f̂ → f̂ and so Sω(f) → f in L2(Rd), as ω →∞.

Sω(f) is well defined whenever f ∈ Lp(Rd), 1 ≤ p < ∞, because Dω ∈
Lq(Rd) for each q > 1 and so Dω ∗ f ∈ Lr(Rd) for each r ∈ (p,∞], by the
Generalized Young’s Theorem in Chapter 13.

We will prove below that Sω(f) ∈ Lp(Rd) when f ∈ Lp(Rd), 1 < p < ∞.
But Sω(f) need not belong to L1(Rd) when f ∈ L1(Rd) (Exercise).

Our goal in this Chapter is to improve the Lp summability for Fourier
integrals (Fω ∗f → f in Theorem 15.7) to Lp convergence (Dω ∗f = Sω(f) →
f in Theorem 19.4 below). As remarked above, we have the result already
for p = 2.

First we reduce norm convergence to norm boundedness.

Theorem 19.2. Let 1 < p < ∞ and suppose supω‖Sω‖Lp(Rd)→Lp(Rd) < ∞.
Then Fourier integrals converge in Lp(Rd): limω→∞‖Sω(f)−f‖Lp(Rd) = 0 for
each f ∈ Lp(Rd).

Proof. Let A = {g ∈ L1 ∩ Lp(Rd) : ĝ has compact support}. We claim A is
dense in Lp(Rd). Indeed, if f ∈ L1 ∩ Lp(Rd) then Fω ∗ f ∈ L1 ∩ Lp(Rd) and
̂(Fω ∗ f) = F̂ωf̂ has compact support by Table 16.1. Thus Fω ∗ f ∈ A. Since

Fω ∗ f → f in Lp(Rd) by Theorem 15.7, and L1 ∩ Lp is dense in Lp, we see
A is dense in Lp(Rd).

We further show Sω(g) = g, when g ∈ A, provided ω is large enough that
[−ω, ω]d contains the support of ĝ. To see this fact, note Sω(g) ∈ L2(Rd)
because Dω ∈ L2(Rd) and g ∈ L1(Rd); thus

Ŝω(g) = D̂ωĝ

= 1[−ω,ω]d ĝ by Table 17.1

= ĝ.

Applying Fourier inversion in L2 gives Sω(g) = g.
We conclude

A ⊂ {f ∈ Lp(Rd) : lim
ω→∞

Sω(f) = f in Lp(Rd)} def
= C,

so that C is dense in Lp(Rd). Because C is closed by Proposition 9.2 (using
the assumption that supω‖Sω‖Lp(Rd)→Lp(Rd) < ∞), we conclude C = Lp(Rd),
which proves the theorem.
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Next we reduce to norm boundedness in 1 dimension. For the sake of
generality we allow different ω-values in each coordinate direction. (Thus
our “square partial sums” for convergence of Fourier integrals can be relaxed
to “rectangular partial sums”; proof omitted.)

Given a vector ~ω = (ω1, . . . , ωd) of positive numbers, define

D~ω(x) =
d∏

j=1

ωjD(ωjxj).

The Fourier multiplier

D̂~ω = 1[−ω1,ω1]×···×[−ωd,ωd]

is the indicator function of a rectangular box.

Write

Cp,d = sup
~ω

‖S~ω‖Lp(Rd)→Lp(Rd)

for the norm bound on the partial sum operators. We have not yet shown
that this constant is finite.

Theorem 19.3 (Reduction to 1 dimension). Cp,d ≤ (Cp,1)
d.

Proof. First observe that for g ∈ Lp(R) and ω > 0,

∫

R

∣∣∣
∫

R
ωD(ω(x− y))g(y) dy

∣∣∣
p

dx = ‖Dω ∗ g‖p
Lp(R)

≤ Cp
p,1‖g‖p

Lp(R) by definition of Cp,1

= Cp
p,1

∫

R
|g(y)|p dy. (19.1)
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Hence for f ∈ Lp(R2) and ~ω = (ω1, ω2),

∫

R2

|(D~ω ∗ f)(x1, x2)|p dx1dx2

=

∫

R

∫

R

∣∣∣
∫

R
ω1D(ω1(x1 − y1))

∫

R
ω2D(ω2(x2 − y2))f(y1, y2) dy2dy1

∣∣∣
p

dx1dx2

≤ Cp
p,1

∫

R

∫

R

∣∣
∫

R
ω2D(ω2(x2 − y2))f(y1, y2) dy2

∣∣p dy1dx2

by (19.1) with g(y1) =

∫

R
ω2D(ω2(x2 − y2))f(y1, y2) dy2

≤ C2p
p,1

∫

R

∫

R
|f(y1, y2)|p dy2dy1

by (19.1) with g(y2) = f(y1, y2).

Taking p-th roots gives ‖S~ω‖Lp(R2)→Lp(R2) ≤ C2
p,1, which proves the theorem

when d = 2.
Argue similarly for d ≥ 3.

Aside. The “ball” multiplier 1B(1)(ξ) does not yield a partial sum operator
with uniform norm bounds, when p 6= 2; see [Grafakos, Section 10.1]. There-
fore Fourier integrals and series in higher dimensions should be evaluated
with “rectangular” partial sums, and not “spherical” sums, when working in
Lp for p 6= 2.

Boundedness in Lp(R)

1. We shall prove (in Chapters 20 and 21) the existence of a bounded linear
operator

H : Lp(R) → Lp(R), 1 < p < ∞,

called the Hilbert transform on R, with the property that

(̂Hf)(ξ) = −i sign(ξ)f̂(ξ)

when f ∈ Lp ∩ L2(R). (Thus H is a Fourier multiplier operator.)

2. Then the Riesz projection P : Lp(R) → Lp(R) defined by

Pf =
1

2
(f + iHf)
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is also bounded, when 1 < p < ∞.
Observe P projects onto the positive frequencies:

(̂Pf)(ξ) = 1(0,∞)(ξ)f̂(ξ), f ∈ L2(R),

since i(−i sign(ξ)) = sign(ξ).

3. The following formula expresses the Fourier partial sum operator in terms
of the Riesz projection and some modulations: for ω > 0,

e−iωxP (eiωxf)− eiωxP (e−iωxf) = Sω(f), f ∈ L2(R). (19.2)

Proof.

[eiωxf ]̂ (ξ) = f̂(ξ − ω)

[P (eiωxf)]̂ (ξ) = 1(0,∞)(ξ)f̂(ξ − ω)

[e−iωxP (eiωxf)]̂ (ξ) = 1(0,∞)(ω + ξ)f̂(ξ)

= 1(−ω,∞)(ξ)f̂(ξ)

[eiωxP (e−iωxf)]̂ (ξ) = 1(ω,∞)(ξ)f̂(ξ)

Subtracting the last two formulas gives 1(−ω,ω]f̂ , which equals Ŝω(f). Fourier
inversion now completes the proof.

4. From (19.2) applied to the dense class of f ∈ Lp ∩ L2(R), and from
boundedness of the Riesz projection, it follows that

Cp,1 = sup
ω
‖Sω‖Lp(R)→Lp(R) ≤ 2‖P‖Lp(R)→Lp(R) < ∞

when 1 < p < ∞. Hence from Theorems 19.2 and 19.3 we conclude:

Theorem 19.4 (Fourier integrals converge in Lp(Rd)). Let 1 < p < ∞.
Then

lim
ω→∞

‖Sω(f)− f‖Lp(Rd) = 0 for each f ∈ Lp(Rd).

It remains to prove Lp boundedness of the Hilbert transform on R.
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Chapter 20

Hilbert and Riesz transforms
on L2(Rd)

Goal

Develop spatial and frequency representations of Hilbert and Riesz trans-
forms

Reference

[Duoandikoetxea] Section 4.3
[Grafakos] Section 4.1

Definition 20.1. The Riesz transforms on Rd are

Rj : L2(Rd) → L2(Rd)

f 7→ (−i(ξj/|ξ|)f̂ )̌

for j = 1, . . . , d.
In dimension d = 1, the Riesz transform equals the Hilbert transform on

R, defined by

H : L2(R) → L2(R)

f 7→ (−i sign(ξ)f̂ )̌

because sign(ξ) = ξ/|ξ|.
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Rj is bounded since the Fourier multiplier −iξj/|ξ| is a bounded function
(in fact, bounded by 1). Clearly

‖Rj‖L2(Rd)→L2(Rd) ≤ 1 by Plancherel,

d∑
j=1

R2
j = −I since

d∑
j=1

(−iξj/|ξ|)2 = −1,

R∗
j = −Rj by Parseval.

Proposition 20.2 (Spatial representation of Hilbert transform). If f ∈
L2(R) is C1-smooth on an interval then

(Hf)(x) = p.v.

∫

R
f(x− y)

1

πy
dy (20.1)

for almost every x in the interval.

The proposition says formally that

Hf = f ∗ 1

πx

or
(
p.v.

1

πx

)̂
= −i sign(ξ).

Later we will justify these formulas in terms of distributions.

The right side of (20.1) is a singular integral, since the convolution kernel
1/πy is not integrable.

Proof. [This proof is similar to Proposition 10.3 on T, and so was skimmed
only lightly in class.] For ω > 0,

1

2π

∫

[−ω,ω]

(−i) sign(ξ)eiξy dξ =
i

2π

∫ 0

−ω

eiξy dξ − i

2π

∫ ω

0

eiξy dξ

=
1− cos(ωy)

πy
. (20.2)
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If f ∈ L1 ∩ L2(R) then

(1[−ω,ω]Ĥf) (̌x) dξ =
1

2π

∫

[−ω,ω]

(−i) sign(ξ)f̂(ξ)eiξx dξ

=

∫

R
f(y)

1

2π

∫

[−ω,ω]

(−i) sign(ξ)eiξ(x−y) dξdy by Fubini

=

∫

R
f(x− y)

1− cos(ωy)

πy
dy by y 7→ x− y and (20.2)

=

∫

|y|<1

[f(x− y)− f(x)]
1− cos(ωy)

πy
dy

+

∫

|y|>1

f(x− y)
1− cos(ωy)

πy
dy

by oddness of
(
1− cos(ωy)

)
/πy. The second integral converges to
∫

|y|>1

f(x− y)
1

πy
dy (20.3)

as ω → ∞, by the Riemann–Lebesgue Corollary 14.7. The first integral
similarly converges to

∫

|y|<1

[f(x− y)− f(x)]
1

πy
dy, (20.4)

assuming f is C1-smooth on a neighborhood of x (which ensures integrability
of y 7→ [f(x− y)− f(x)]/πy on |y| < 1).

Meanwhile, 1[−ω,ω]Ĥf converges to Ĥf in L2(R) as ω → ∞, so that

(1[−ω,ω]Ĥf )̌ converges to Hf . Convergence holds a.e. for some subsequence
of ω-values. Formula (20.1) therefore follows from (20.3) and (20.4), since∫

ε<|y|<1
(1/πy) dy = 0.

Finally, one deduces (20.1) in full generality by approximating f off a
neighborhood of x using functions in L1∩L2. (Obviously f belongs to L1∩L2

already on each neighborhood of x.)

Proposition 20.3 (Spatial representation of Riesz transform). If f ∈ L2(Rd)
is C1-smooth on an open set U ⊂ Rd then

(Rjf)(x) = p.v.

∫

Rd

f(x− y)
cd yj

|y|d+1
dy

for almost every x ∈ U , for each j = 1, . . . , d.



116 CHAPTER 20. HILBERT AND RIESZ TRANSFORMS ON L2(RD)

Here cd = Γ
(
(d + 1)/2

)
/π(d+1)/2 > 0. For example, c1 = 1/π.

The proposition says formally that

Rjf = f ∗ cd yj

|y|d+1

or (
p.v.

cd yj

|y|d+1

)̂
= −i

ξj

|ξ| .

Proof. To motivate the following proof, observe

1

|ξ| =

∫ ∞

0

e−|ξ|z dz (20.5)

and that e−|ξ|z is the Fourier transform of the Poisson kernel P1/z. Our proof
will use a truncated version of this identity:

e−|ξ|δ − e−|ξ|/δ

|ξ| =

∫ 1/δ

δ

e−|ξ|z dz. (20.6)

In class we proceeded formally, skipping the rest of this proof and using (20.5)
instead of (20.6) in the proof of Lemma 20.4 below.

For f ∈ L2(Rd),

(̂Rjf)(ξ) = −i
ξj

|ξ| f̂(ξ)

= lim
δ→0

(−iξj)
e−|ξ|δ − e−|ξ|/δ

|ξ| f̂(ξ)

with convergence in L2(Rd) (by dominated convergence). Applying L2 Fourier
inversion yields

(Rjf)(x) = lim
δ→0

(
−iξj

e−|ξ|δ − e−|ξ|/δ

|ξ| f̂

)
(̌x)

in L2(Rd), and hence pointwise a.e. for some subsequence of δ values. Thus
the theorem is proved when f ∈ L1 ∩ L2(Rd), by Lemma 20.4 below.

Finally, one deduces the theorem for f ∈ L2(Rd) by approximating f off
a neighborhood of x using functions in L1 ∩ L2. (Obviously f belongs to
L1 ∩ L2 already on each neighborhood of x.)
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Lemma 20.4. If f ∈ L1∩L2(Rd) is C1-smooth on an open set U ⊂ Rd, then

lim
δ→0

(
−iξj

e−|ξ|δ − e−|ξ|/δ

|ξ| f̂

)
(̌x)

=

∫

|y|<1

[f(x− y)− f(x)]
cd yj

|y|d+1
dy +

∫

|y|>1

f(x− y)
cd yj

|y|d+1
dy (20.7)

for almost every x ∈ U . Further, the first integral in (20.7) equals

lim
ε→0

∫

ε<|y|<1

f(x− y)
cd yj

|y|d+1
dy.

Proof. First, ξj/|ξ| is bounded by 1, and the exponentials e−|ξ|δ and e−|ξ|/δ are

square integrable, and so is f̂ . Thus their product is integrable, so that by the
L1 Fourier Inversion Theorem 16.2 (and the definition of f̂ for f ∈ L1(Rd)),

(
−iξj

e−|ξ|δ − e−|ξ|/δ

|ξ| f̂

)
(̌x)

= − 1

(2π)d

∫

Rd

iξj
e−|ξ|δ − e−|ξ|/δ

|ξ|
∫

Rd

f(y)e−iξy dy eiξx dξ

= −
∫

Rd

f(x− y)
1

(2π)d

∫

Rd

iξj
e−|ξ|δ − e−|ξ|/δ

|ξ| eiξy dξdy

after changing y 7→ x− y. To evaluate the inner integral, we express it using
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Poisson kernels:

1

(2π)d

∫

Rd

iξj
e−|ξ|δ − e−|ξ|/δ

|ξ| eiξy dξ

=
∂

∂yj

1

(2π)d

∫

Rd

e−|ξ|δ − e−|ξ|/δ

|ξ| eiξy dξ

=

∫ 1/δ

δ

∂

∂yj

1

(2π)d

∫

Rd

e−|ξ|zeiξy dξdz by identity (20.6)

=

∫ 1/δ

δ

∂

∂yj

P1/z(y) dz by (15.11)

=

∫ 1/δ

δ

cd z
∂

∂yj

1

(|y|2 + z2)(d+1)/2
dz by (15.12)

=

∫ 1/δ

δ

cd yj
∂

∂z

1

(|y|2 + z2)(d+1)/2
dz (why?!)

=
cdyj

(|y|2 + z2)(d+1)/2

∣∣∣∣
z=1/δ

z=δ

.

By substituting this expression into the above, we find

(
−iξj

e−|ξ|δ − e−|ξ|/δ

|ξ| f̂

)
(̌x)

= −
∫

Rd

f(x− y)
cd yj

(|y|2 + z2)(d+1)/2

∣∣∣∣
z=1/δ

z=δ

dy

= −
∫

|y|<1

[f(x− y)− f(x)]
cd yj

(|y|2 + z2)(d+1)/2

∣∣∣∣
z=1/δ

z=δ

dy (20.8)

−
∫

|y|>1

f(x− y)
cd yj

(|y|2 + z2)(d+1)/2

∣∣∣∣
z=1/δ

z=δ

dy (20.9)

where we used the oddness of yj to insert f(x) in (20.8).
Now fix a point x ∈ U . As δ → 0, expression (20.8) converges to

∫

|y|<1

[f(x− y)− f(x)]
cd yj

|y|d+1
dy

by dominated convergence (noting the C1-smoothness ensures the integrand
is O(|y|) ·O(1/|y|d) = O(1/|y|d−1) near the origin, which is integrable). And
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as δ → 0, expression (20.9) converges to

∫

|y|>1

f(x− y)
cd yj

|y|d+1
dy

by dominated convergence (noting f ∈ L2(Rd) and yj/|y|d+1 = O(1/|y|d) is
square integrable for |y| > 1). (Exercise: explain why the terms with z = 1/δ
in (20.8) and (20.9) vanish as δ → 0, using dominated convergence.)

For the final claim in the lemma, write
∫
|y|<1

= limε→0

∫
ε<|y|<1

and use

the oddness of yj to remove the term with f(x).

Connections to PDEs

1. The Riesz transforms map the normal derivative of a harmonic function
to its tangential derivatives.

Formal Proof. Given a function f , let

u(x, xd+1) = (P1/xd+1
∗ f)(x), x ∈ Rd, xd+1 > 0,

so that u is harmonic on the upper halfspace Rd × (0,∞) with boundary
value u = f when xd+1 = 0 (see Chapter 15). Put

v(x) =
∂

∂xd+1

u(x, xd+1)

∣∣∣∣
xd+1=0

= normal derivative of u at the boundary.

Then

Rjv =
∂f

∂xj

, j = 1, . . . , d,
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because

(̂Rjv)(ξ) = −i
ξj

|ξ| v̂(ξ)

= −i
ξj

|ξ|
∂

∂xd+1

û(ξ, xd+1)

∣∣∣∣
xd+1=0

= −i
ξj

|ξ|
∂

∂xd+1

(
e−|ξ|xd+1 f̂(ξ)

)∣∣∣∣
xd+1=0

= −i
ξj

|ξ|(−|ξ|)f̂(ξ)

= iξj f̂(ξ)

=

(
∂f

∂xj

)
(̂ξ).

Thus we have shown the jth Riesz transform maps the normal derivative of
u to its jth tangential derivative, on the boundary.

2. Mixed Riesz transforms map the Laplacian to mixed partial derivatives.

Formal Proof. (
∂2f

∂x2
j

)
(̂ξ) = (iξj)

2f̂(ξ) = −ξ2
j f̂(ξ)

and so summing over j gives

(∆f )̂ (ξ) = −|ξ|2f̂(ξ).

Hence

(RjRk∆f )̂ (ξ) =
(−iξj)

|ξ|
(−iξk)

|ξ| (−|ξ|2)f̂(ξ)

= −(iξj)(iξk)f̂(ξ)

= −
(

∂2f

∂xj∂xk

)
(̂ξ)

so that

RjRk∆f = − ∂2f

∂xj∂xk

.

That is, mixed Riesz transforms map the Laplacian to mixed partial deriva-
tives.
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The above formal derivation is rigorous if, for example, f is C2-smooth
with compact support.

Consequently, the norm of a mixed second derivative is controlled by the
norms of the pure second derivatives in the Laplacian, with

∥∥∥∥
∂2f

∂xj∂xk

∥∥∥∥
L2(Rd)

≤ ‖∆f‖L2(Rd)

since each Riesz transform has norm 1 on L2(Rd). Similar estimates hold on
Lp(Rd), 1 < p < ∞, by the Lp boundedness of the Riesz transform proved in
the next chapter.
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Chapter 21

Hilbert and Riesz transforms
on Lp(Rd)

Goal

Prove weak (1, 1) for Riesz transform, and deduce strong (p, p) by interpola-
tion and duality

Reference

[Duoandikoetxea] Section 5.1

Theorem 21.1 (weak (1, 1) on L1 ∩ L2(Rd)). There exists A > 0 such that

|{x ∈ Rd : |(Rjf)(x)| > ω}| ≤ A

ω
‖f‖L1(Rd)

for all ω > 0, j = 1, . . . , d and f ∈ L1 ∩ L2(Rd).

Proof. Apply the Calderón–Zygmund Theorem 11.4 to get f = g + b. Note
g ∈ L1 ∩ L∞(Rd) and so g ∈ L2(Rd), hence Rjg ∈ L2(Rd) by Chapter 20.
And b = f − g ∈ L2(Rd) so that Rjb ∈ L2(Rd).

Now proceed like in the proof of Theorem 12.1, just changing T to Rd

and the interval I(l) to the cube Q(l). To finish the proof, we want to show

∑

l

∫

Rd\2
√

dQ(l)

|(Rjbl)(x)| dx ≤ (const.)‖f‖L1(Rd). (21.1)
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By Proposition 20.3 applied on the open set U = Rd\2
√

dQ(l) (where bl = 0),
we have
∫

Rd\2
√

dQ(l)

|Rjbl(x)| dx

=

∫

Rd\2
√

dQ(l)

∣∣∣
∫

Q(l)

bl(y)
cd(xj − yj)

|x− y|d+1
dy

∣∣∣ dx

noting x− y is bounded away from 0, since y ∈ Q(l) and x /∈ 2
√

dQ(l),

=

∫

Rd\2
√

dQ(l)

∣∣
∫

Q(l)

bl(y)
[
ρj(x− y)− ρj(x− c(l))

]
dy

∣∣ dx

where
ρj(x) = cd

xj

|x|d+1

is the jth Riesz kernel and c(l) is the center of Q(l); here we used that∫
Q(l)

bl(y) dy = 0. Hence

∫

Rd\2
√

dQ(l)

|Rjbl(x)| dx

≤
∫

Q(l)

|bl(y)|
∫

Rd\2
√

dQ(l)

|ρj(x− y)− ρj(x− c(l))| dxdy

≤ (const.)

∫

Q(l)

|bl(y)| dy (21.2)

by Lemma 21.2 below; the hypotheses of that lemma are satisfied here be-
cause

|(∇ρj)(x)| ≤ (const.)

|x|d+1

and if x ∈ Rd \ 2
√

dQ(l) and y ∈ Q(l) then

|x− c(l)| ≥ 1

2
side

(
2
√

dQ(l)
)

≥ 2|y − c(l)|.

Now (21.1) follows by summing (21.2) over l and recalling that ‖b‖L1(Rd) ≤
2‖f‖L1(Rd) by the Calderón–Zygmund Theorem 11.4.
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Lemma 21.2 (Hörmander condition). If ρ ∈ C1(Rd \ {0}) with

|(∇ρ)(x)| ≤ (const.)

|x|d+1
, x ∈ Rd,

then

sup
y,z∈Rd

∫

{x:|x−z|≥2|y−z|}
|ρ(x− y)− ρ(x− z)| dx < ∞.

Proof. We can take z = 0, by a translation. By the Fundamental Theorem,

ρ(x− y)− ρ(x) =

∫ 1

0

∂

∂s
ρ(x− sy) ds

= −
∫ 1

0

y · (∇ρ)(x− sy) ds.

Hence
∫

{x:|x|≥2|y|}
|ρ(x− y)− ρ(x)| dx

≤ |y|
∫ 1

0

∫

|x|≥2|y|
|(∇ρ)(x− sy)| dxds

≤ (const.)|y|
∫

|x|≥2|y|

1

(|x|/2)d+1
dx

by using the hypothesis, since |x− sy| ≥ |x| − |y| ≥ |x|/2,

= (const.)|y|
∫ ∞

2|y|

1

rd+1
rd−1 dr

= (const.)

Now we deduce strong (p, p) estimates.

Corollary 21.3. The Riesz transforms are strong (p, p) for 1 < p < ∞.

Proof. Rj is strong (2, 2) and linear, by definition in Chapter 20, and Rj is
weak (1, 1) on L1 ∩ L2(Rd) (and hence on all simple functions with support
of finite measure) by Theorem 21.1. So Rj is strong (p, p) for 1 < p < 2
by Remark C.4 after Marcinkiewicz Interpolation (in Appendix C). That is,
Rj : Lp(Rd) → Lp(Rd) is bounded and linear for 1 < p < 2.
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For 2 < p < ∞ we use duality and anti-selfadjointness R∗
j = −Rj on

L2(Rd) to reduce to the case 1 < p < 2, just like in the proof of Corollary 12.2.

Alternatively, for singular integral kernels of the form

O(x/|x|)
|x|d

whereO is an odd function on the unit sphere, one can instead use the method
of rotations [Grafakos, Section 4.2c]. The idea is to express convolution with
this kernel as an average of Hilbert transforms taken in all possible directions
in Rd.

The Riesz kernel cd(xj/|x|)/|x|d fits this form, since O(y) = yj is odd.
The strong (p, p) bound on the Riesz transform can be generalized to a

whole class of convolution-type singular integral operators [Duoandikoetxea,
Section 5.1].



Part III

Fourier series and integrals
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Chapter 22

Compactly supported Fourier
transforms, and the sampling
theorem

Goal

Show band limited functions are holomorphic
Prove the Kotelnikov–Shannon–Whittaker sampling theorem

Reference

[Katznelson] Section VI.7

Definition 22.1. We say f = ǧ is band limited if g ∈ L1(Rd) has compact
support.

Theorem 22.2 (Band limited functions are holomorphic). Assume g ∈
L1(Rd) is supported in a ball B(R), and define

f(z) = ǧ(z) =
1

(2π)d

∫

B(R)

g(ξ)eiξz dξ

for z = x + iy ∈ Cd, x, y ∈ Rd. (Here ξz = ξ1z1 + · · ·+ ξdzd.)
Then f is holomorphic, and |f(z)| = O(eR|y|).
If in addition g ∈ L2(Rd) then |f(z)| = O(eR|y|/

√
|y|).
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Thus once more, decay of the Fourier transform (here, compact support)
implies smoothness of the function (here, holomorphicity). The theorem
also bounds the rate of growth of the function in the complex directions.
(The function must vanish at infinity in the real directions, by the Riemann–
Lebesgue corollary, since g is integrable.)

For example, the Dirichlet kernel D(x) = sin(x)/πx = (1[−1,1])̌ (x) is
band limited with R = 1, in 1 dimension. Taking z = 0 + iy, we calculate

D(iy) =
ey − e−y

2πy
= O(e|y|/|y|),

which is better (by a factor of
√
|y|) than is guaranteed by the theorem.

Proof. f is well defined because ξ 7→ eiξz is bounded on B(R), for each z.
And f is holomorphic because eiξz is holomorphic and f can be differenti-
ated through the integral with respect to the complex variable z. (Exercise.
Justify these claims in detail.)

Clearly

|f(z)| ≤ 1

(2π)d

∫

B(R)

|g(ξ)|e−ξy dξ since eiξz = eiξxe−ξy

≤ 1

(2π)d
‖g‖L1(Rd)e

R|y|.

If in addition g ∈ L2(Rd), then

|f(z)| ≤ 1

(2π)d
‖g‖L2(Rd)

( ∫

B(R)

e−2ξy dξ
)1/2
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and
∫

B(R)

e−2ξy dξ =

∫

B(R)

e−2ξ|y|e1 dξ

by ξ 7→ ξA for some orthogonal matrix A with Ay = |y|e1

=

∫

B(R)

e−2ξ1|y| dξ

≤
∫

[−R,R]d
e−2ξ1|y| dξ

= (2R)d−1 e2R|y| − e−2R|y|

2|y|
≤ (2R)d−1

2

e2R|y|

|y| .

Hence |f(z)| ≤ (const.)eR|y|/
√
|y|.

Holomorphic functions are known to be determined by their values on
lower dimensional sets in Cd. For a band limited function, that “sampling
set” can be a lattice in Rd.

Theorem 22.3 (Sampling theorem for band limited functions). Assume f ∈
L2(Rd) is band limited, with f̂ supported in the cube [−ω, ω]d for some ω > 0.

Then

f(x) =
∑

n∈Zd

f
(π

ω
n
) d∏

j=1

sinc(ωxj − πnj)

with the series converging in L2(Rd), and also uniformly (in L∞(Rd)).

Remark 22.4.
1. The sampling rate ω/π is proportional to the bandwidth ω, that is, to
the highest frequency contained in the signal f . Intuitively, the sampling
rate must be high when the frequencies are high, because many samples are
needed to determine a highly oscillatory function.
2. sinc(ωxj −πnj) is centered at the sampling location (π/ω)nj and rescaled
to have bandwidth ω. It vanishes at all the other sampling locations (π/ω)mj,
since

sinc
(
ω(π/ω)mj − πnj

)
= sinc

(
π(mj − nj)

)
= 0.
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-2 - 3
2 -1 - 1

2
1
2 1 3

2 2
-1

1

2

3

Figure 22.1: Example of sampling formula in Theorem 22.3, with ω = 2π
and sampling rate ω/π = 2. The dashed curves are two of the sinc functions
making up the signal. See Remark 22.4.

3. A graphical example of the sampling formula is shown in Figure 22.1, for
ω = 2π and

f(x) = − sinc
(
2π(x + 1)

)
+ 2 sinc

(
2π(x + 1/2)

)
+ 3 sinc

(
2πx

)

+ 2 sinc
(
2π(x− 1/2)

)
+ 1 sinc

(
2π(x− 1)

)
.

The figure shows f with a solid curve, and 3 sinc
(
2πx

)
and 2 sinc

(
2π(x −

1/2)
)

with dashed curves.

Proof of Sampling Theorem. We can assume ω = π, by replacing x with
(π/ω)x (Exercise).

Next, f̂ is square integrable and compactly supported, and so is inte-
grable. Hence by L1 Fourier inversion, f is continuous (after redefining it on
some set of measure zero) with

f(x) =
1

(2π)d

∫

Rd

f̂(ξ)eiξx dξ, x ∈ Rd. (22.1)

Thus the pointwise sampled values f
(
(π/ω)n

)
in the theorem are well de-

fined.
We will prove

f̂(ξ) =
∑

n∈Zd

f(−n)eiξn, ξ ∈ [−π, π]d, (22.2)
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with convergence in L2([−π, π]d). Indeed, if we regard f̂ as a square inte-
grable function on the cube Td = [−π, π]d, then its Fourier coefficients are

1

(2π)d

∫

[−π,π]d
f̂(ξ)e−iξn dξ

=
1

(2π)d

∫

Rd

f̂(ξ)e−iξn dξ since f̂ is supported in [−π, π]d

= f(−n)

by the inversion formula (22.1). Thus (22.2) simply expresses the Fourier

series of f̂ on the cube.
After changing n 7→ −n in (22.2), we have

f̂(ξ) =
∑

n∈Zd

f(n)e−iξn1[−π,π]d(ξ), ξ ∈ Rd,

with convergence in L2(Rd) and in L1(Rd). Applying L2 inversion gives

f(x) =
∑

n∈Zd

f(n)
(
e−iξn1[−π,π]d

)̌
(x)

=
∑

n∈Zd

f(n)
d∏

j=1

sin(π(xj − nj))

π(xj − nj)

with convergence in L2(Rd). Applying L1 inversion gives convergence in
L∞.

Paley–Wiener space

For a deeper perspective on Sampling Theorem 22.3, consider the Paley–
Wiener space

PW (ω) = {f ∈ L2(Rd) : f̂ is supported in [−ω, ω]d }.
Clearly PW (ω) is a subspace of L2(Rd), and it is a closed subspace (since if

f = limm fm in L2(Rd) and f̂m is supported in [−ω, ω]d, then f̂ = limm f̂m is
also supported in [−ω, ω]d).

Hence PW (ω) is a Hilbert space with the L2 inner product. It is iso-
metric, under the Fourier transform, to L2([−ω, ω]d) with inner product
(2π)−d〈·, ·〉L2 . That space has orthonormal Fourier basis

{
(π/ω)d/21[−ω,ω]d(ξ)e

−iξ(π/ω)n
}

n∈Zd ,
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where the indicator function simply reminds us that we are working on the
cube. Taking the inverse Fourier transform gives an orthonormal basis of
sinc functions for the Paley–Wiener space:

{gn}n∈Zd =
{
(ω/π)d/2

d∏
j=1

sinc(ωxj − πnj)
}

n∈Zd .

Using this orthonormal basis, we expand

f =
∑

n∈Zd

〈f, gn〉L2 gn, for all f ∈ PW (ω), (22.3)

where the coefficient is

〈f, gn〉L2 =
1

(2π)d
〈f̂ , (π/ω)d/21[−ω,ω]de

−iξ(π/ω)n〉L2 by Parseval

= (π/ω)d/2f
(
(π/ω)n

)

by Fourier inversion. Thus the orthonormal expansion (22.3) simply restates
the Sampling Theorem 22.3.

Our calculations have, of course, essentially repeated the proof of the
Sampling Theorem.



Chapter 23

Periodization and Poisson
summation

Goal

Periodize functions on Rd to functions on Td

Show the Fourier series of periodization gives the Poisson summation formula

References

[Folland] Section 8.3
[Katznelson] Section VI.1

Definition 23.1. Given f ∈ L1(Rd), its periodization is the function

Pe(f)(x) = (2π)d
∑

n∈Zd

f(x + 2πn), x ∈ Rd.

Example 23.2. In 1 dimension, if f = 1[−π,2π), then Pe(f) = 2π(21[−π,0) +
1[0,π)) for x ∈ [−π, π), with Pe(f) extending 2π-periodically to R.

Lemma 23.3. If f ∈ L1(Rd) then the series for Pe(f)(x) converges ab-
solutely for almost every x, and Pe(f) is 2πZd-periodic. Further, Pe : L1(Rd) →
L1(Td) is bounded, with

‖Pe(f)‖L1(Td) ≤ ‖f‖L1(Rd).
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The periodization has Fourier coefficients

P̂e(f)(j) = f̂(j), j ∈ Zd.

That is, the jth Fourier coefficient of Pe(f) equals the Fourier transform
of f at j.

Proof. See Problem 19 in Assignment 3.

Lemma 23.4 (Periodization of a convolution). If f, g ∈ L1(Rd) then

Pe(f ∗ g) = Pe(f) ∗ Pe(g).

Proof. We have

(
Pe(f ∗ g)

)̂
(j) = (f ∗ g)̂ (j) by Lemma 23.3

= f̂(j) ĝ(j)

= P̂e(f)(j) P̂e(g)(j) by Lemma 23.3 again

=
(
Pe(f) ∗ Pe(g)

)̂
(j)

and so Pe(f ∗g) = Pe(f)∗Pe(g) by the uniqueness theorem for Fourier series.

For a more direct proof, suppose f and g are bounded with compact
support, so that the sums in the following argument are all finite rather than
infinite. (Thus sums and integrals can be interchanged, below.)
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For each x ∈ Rd,

Pe(f ∗ g)(x)

= (2π)d
∑

n∈Zd

(f ∗ g)(x + 2πn)

= (2π)d
∑

n∈Zd

∫

Rd

f(x + 2πn− y)g(y) dy

=

∫

Rd

Pe(f)(x− y)g(y) dy by definition of Pe(f)

=
∑

m∈Zd

∫

Td

Pe(f)(x− y − 2πm)g(y + 2πm) dy since Rd =
⋃
m

(Td + 2πm)

=
∑

m∈Zd

∫

Td

Pe(f)(x− y)g(y + 2πm) dy using periodicity of Pe(f)

=
1

(2π)d

∫

Td

Pe(f)(x− y) Pe(g)(y) dy

=
(
Pe(f) ∗ Pe(g)

)
(x),

remembering that our definition of convolution on Td has a prefactor of
(2π)−d.

Finally, pass to the general case by a limiting argument, using that if
fm → f in L1(Rd) then Pe(fm) → Pe(f) in L1(Td) by Lemma 23.3.

Theorem 23.5 (Poisson summation formula). Suppose f ∈ L1(Rd) is con-
tinuous and decays in space and frequency according to:

|f(x)| ≤ C

(1 + |x|)d+ε
, x ∈ Rd, (23.1)

|f̂(ξ)| ≤ C

(1 + |ξ|)d+ε
, ξ ∈ Rd, (23.2)

for some constants C, ε > 0.
Then the periodization Pe(f) equals its Fourier series at every point:

(2π)d
∑

n∈Zd

f(x + 2πn) =
∑

j∈Zd

f̂(j)eijx, x ∈ Rd.

In particular, taking x = 0 gives

(2π)d
∑

n∈Zd

f(2πn) =
∑

j∈Zd

f̂(j).



138 CHAPTER 23. PERIODIZATION AND POISSON SUMMATION

This Poisson summation formula relates a lattice sum of values of the
function to a lattice sum of values of its Fourier transform.

Proof. Pe(f) has Fourier coefficients in `1(Zd), since

∑

j∈Zd

∣∣P̂e(f)(j)
∣∣ =

∑

j∈Zd

|f̂(j)| by Lemma 23.3

≤
∑

j∈Zd

C

(1 + |j|)d+ε
by (23.2)

≤
∫

Rd

(const.)

(1 + |ξ|)d+ε
dξ

< ∞

by spherical coordinates.
Hence the Fourier series of Pe(f) converges absolutely and uniformly to

a continuous function. That continuous function has the same Fourier co-
efficients as Pe(f), and so it equals Pe(f) a.e. (just like in 1 dimension; see
Chapter 4).

To complete the proof we will show Pe(f) is continuous, for then Pe(f)
equals its Fourier series everywhere (and not just almost everywhere).

Notice that Pe(f)(x) = (2π)d
∑

n∈Zd f(x + 2πn) is a series of continuous
functions. The series converges absolutely and uniformly on each ball in Rd

(by using (23.1); exercise), and so Pe(f) is continuous.

Example 23.6 (Periodizing the Poisson kernel). The Poisson kernel Pr on
T equals the periodization of the Poisson kernel Pω on R:

1− r2

1− 2r cos x + r2
= 2π

∑

n∈Z

1

π

ω−1

(x + 2πn)2 + ω−2
, x ∈ R, (23.3)

provided r = e−1/ω. Hence we obtain a series expansion for the square of the
cosecant:

π2

sin2 πx
=

∑

n∈Z

1

(x + n)2
, x ∈ R \ Z.

Proof. First, to partially motivate these results we note Pe(Pω∗f) = Pe(Pω)∗
Pe(f) by Lemma 23.4, so that it is plausible Pω periodizes to Pr for some r.
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To prove (23.3), observe that Pω satisfies decay hypotheses (23.1) and
(23.2) because

Pω(x) =
1

π

ω−1

x2 + ω−2
, x ∈ R,

P̂ω(ξ) = e−|ξ|/ω, ξ ∈ R,

by (15.12) and Table 16.1. Hence the Poisson Summation Formula says that

Pe(Pω)(x) =
∑

j∈Z
P̂ω(j)eijx

=
∑

j∈Z
e−|j|/ωeijx

=
∑

j∈Z
r|j|eijx since r = e−1/ω

= Pr(x)

by (2.8), which proves (23.3).
Changing x to 2πx in (23.3) gives

∑

n∈Z

1

(x + n)2 + (2πω)−2
= 2π2ω

1− r2

1− 2r cos(2πx) + r2
.

Since

r = e−1/ω = 1− 1

ω
+ O

( 1

ω2

)
,

letting ω →∞ implies that

∑

n∈Z

1

(x + n)2
=

4π2

2− 2 cos(2πx)
=

π2

(sin πx)2
,

where we used monotone convergence on the left side.

Example 23.7 (Periodizing the Gauss kernel). The Gauss kernel Gs(t) =∑
j∈Z e−j2seijt on T equals the periodization of the Gauss kernel Gω on R:

∑

j∈Z
e−j2seijx = 2π

∑

n∈Z

ω√
2π

e−ω2(x+2πn)2/2, x ∈ R, (23.4)
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provided s > 0 and ω = 1/
√

2s. Hence

∑

n∈Z
e−n2πs = s−1/2

∑

n∈Z
e−n2π/s, s > 0.

In terms of the theta function ϑ(s) =
∑

n∈Z e−n2πs, the last formula ex-
presses the functional equation

ϑ(s) = s−1/2ϑ(s−1).

Proof. Decay hypotheses (23.1) and (23.2) hold for Gω because

Gω(x) =
ω√
2π

e−(ωx)2/2, x ∈ R,

Ĝω(ξ) = e−(ξ/ω)2/2, ξ ∈ R,

by (15.16) and Table 16.1. Hence the Poisson Summation Formula says that

Pe(Gω)(x) =
∑

j∈Z
Ĝω(j)eijx

=
∑

j∈Z
e−(j/ω)2/2eijx

=
∑

j∈Z
e−j2seijx since ω = 1/

√
2s

= Gs(x),

which proves (23.4).
Taking x = 0 in (23.4) and changing s to πs yields the functional equation

for the theta function.



Chapter 24

Uncertainty principles

Goal

Establish qualitative and quantitative uncertainty principles

References

[Goh and Micchelli] Section 2

[Jaming] Section 1

Uncertainty principles say that f and f̂ cannot both be too localized.
Consequently, if f̂ is well localized then f is not, and so we are “uncertain”
of the value of f .

Proposition 24.1 (Qualitative uncertainty principles).

(a) If f ∈ L2(T) is continuous, f has infinitely many zeros in T, and f̂
is finitely supported, then f ≡ 0.

(b) If f ∈ L2(Rd) is continuous, f vanishes on some open set, and f̂ is
compactly supported, then f ≡ 0.

Proof.

(a) f is a trigonometric polynomial since it has only finitely many nonzero
Fourier coefficients. Thus part (a) says:

a trigonometric polynomial that vanishes infinitely often in T
must vanish identically.
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To prove this claim, write f(t) =
∑N

n=−N ane
int. Then f(t) = p(eit)/eiNt

where p is the polynomial

p(z) =
2N∑
n=0

an−Nzn, z ∈ C.

Since f has infinitely many zeros t ∈ T, we see p has infinitely many zeros
eit on the unit circle. The Fundamental Theorem of Algebra implies p ≡ 0.

(b) f is band limited, and hence is holomorphic on Cd by Theorem 22.2.
In particular, f is real analytic on Rd.

Choose x0 ∈ Rd such that f ≡ 0 on a neighborhood of x0; then the Taylor
series of f centered at x0 is identically zero. That Taylor series equals f on
Rd, and so f ≡ 0.

Theorem 24.2 (Benedicks’ qualitative uncertainty principle). If f ∈ L2(Rd)

is continuous and f and f̂ are supported on sets of finite measure, then f ≡ 0.

In contrast to Proposition 24.1, here the support of f̂ need not be com-
pact.

Proof. We prove only the 1 dimensional case.
Let A = {x ∈ R : f(x) 6= 0} and B = {ξ ∈ R : f̂(ξ) 6= 0}. By dilating f

we can suppose |A| < 2π. Then
∣∣{x ∈ T : f(x + 2πn) 6= 0 for some n ∈ Z}

∣∣
=

∣∣{x ∈ T :
∑

n∈Z
1A(x + 2πn) ≥ 1}

∣∣

≤
∫

T

∑

n∈Z
1A(x + 2πn) dx

=

∫

R
1A(x) dx

= |A|
< |T| = 2π.

Therefore the complementary set

E = {x ∈ T : f(x + 2πn) = 0 for all n ∈ Z}
has positive measure.
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Next,

∫

[0,1)

∑

j∈Z
1B(ξ + j) dξ =

∫

R
1B(ξ) dξ

= |B|
< ∞,

so that
∑

j∈Z 1B(ξ + j) is finite for almost every ξ ∈ [0, 1), say for all ξ ∈
F ⊂ [0, 1) where F has full measure, |[0, 1) \F | = 0. Hence when ξ ∈ F , the

set {j ∈ Z : f̂(ξ + j) 6= 0} is finite.
Fix ξ ∈ F and consider the periodization

Pe(fe−iξx)(x) = 2π
∑

n∈Z
f(x + 2πn)e−iξ(x+2πn),

which is well defined since f ∈ L1(R). The jth Fourier coefficient of the
periodization equals

(fe−iξx)̂ (j) = f̂(ξ + j),

which equals zero for but finitely many j, since ξ ∈ F . Thus Pe(fe−iξx)
equals some trigonometric polynomial Q(x) a.e. But Pe(fe−iξx)(x) = 0 for
all x ∈ E, and so Q vanishes a.e. on E. In particular, Q vanishes at infinitely
many points in T (using here that E has positive measure). Hence Q ≡ 0 by

Proposition 24.1(a). The Fourier coefficient f̂(ξ + j) of Q therefore vanishes
for all j.

Since f̂(ξ + j) = 0 for all j ∈ Z and almost every ξ ∈ [0, 1), we deduce

f̂(ξ) = 0 a.e., and so f ≡ 0.

Theorem 24.3 (Nazarov’s quantitative uncertainty principle). A constant
Cd > 0 exists such that

‖f‖2
L2(Rd) = ‖f̂‖2

L2(Rd) ≤ C
|A||B|+1
d

( ∫

Rd\A
|f(x)|2 dx +

∫

Rd\B
|f̂(ξ)|2 dξ

)

for all sets A,B ⊂ Rd of finite measure and all f ∈ L2(Rd).

We omit the proof.
Nazarov’s theorem implies Benedicks’ theorem, because if f is supported

in A and f̂ is supported in B, then the right side is zero and so f ≡ 0.
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Next we develop an abstract commutator inequality that leads to the
Heisenberg Uncertainty Principle.

Let H be a Hilbert space. Suppose T is a linear operator from a subspace
D(T ) into H. Write T ∗ for its adjoint, defined on a subspace D(T ∗), meaning
T ∗ is linear and

〈Tf, g〉 = 〈f, T ∗g〉 whenever f ∈ D(T ), g ∈ D(T ∗).

Define

∆f (T ) = min
α∈C

‖Tf − αf‖
= norm of component of Tf perpendicular to f .

The minimum is attained for α = 〈Tf, f〉/‖f‖2.

Theorem 24.4 (Commutator estimate). Let T and U be linear operators
like above. Then

∣∣〈[T, U ]f, f〉
∣∣ ≤ ∆f (T

∗)∆f (U) + ∆f (T )∆f (U
∗)

for all f ∈ D(TU) ∩ D(UT ) ∩ D(T ∗) ∩ D(U∗).

Here [T, U ] = TU − UT is the commutator of T and U .

Proof.
∣∣〈[T, U ]f, f〉∣∣ =

∣∣〈TUf, f〉 − 〈UTf, f〉∣∣
=

∣∣〈Uf, T ∗f〉 − 〈Tf, U∗f〉
∣∣

≤ ‖Uf‖‖T ∗f‖+ ‖Tf‖‖U∗f‖. (24.1)

Let α, β ∈ C. Note that

[T − αI, U − βI] = [T, U ].

Hence by replacing T with T − αI and U with U − βI in (24.1) we find
∣∣〈[T, U ]f, f〉

∣∣ ≤ ‖Uf − βf‖‖T ∗f − αf‖+ ‖Tf − αf‖‖U∗f − βf‖.
Minimizing over α and β proves the theorem, noting for the adjoints that

α =
〈Tf, f〉
‖f‖2

⇐⇒ α =
〈T ∗f, f〉
‖f‖2

.
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Example 24.5 (Heisenberg Uncertainty Principle). Take H = L2(R),

(Tf)(x) = xf(x) with D(T ) = {f ∈ L2(R) : xf(x) ∈ L2(R)},
(Uf)(x) = −if ′(x) with D(U) = {f ∈ L2(R) : f ′ ∈ L2(R)}.

Here T is the position operator and U is the momentum operator.
Observe T ∗ = T, U∗ = U and

[T, U ]f = TUf − UTf

= x · (− i
d

dx
f(x)

)
+ i

d

dx

(
xf(x)

)

= if(x).

The Commutator Theorem 24.4 implies

‖f‖2
L2(R) ≤ 2∆f (T )∆f (U)

≤ 2‖xf − αf‖L2(R) ‖−if ′ − βf‖L2(R)

= 2‖(x− α)f‖L2(R)

1√
2π
‖(ξ − β)f̂‖L2(R)

by Plancherel. Squaring yields the Heisenberg Uncertainty Principle:

1

4
‖f‖4

L2(R) ≤
∫

R
|x− α|2|f(x)|2 dx · 1

2π

∫

R
|ξ − β|2|f̂(ξ)|2 dξ (24.2)

for all α, β ∈ C.
We interpret (24.2) as restricting how localized f and f̂ can be, around

the locations α and β.
In quantum mechanics, we normalize ‖f‖L2(R) = 1 and interpret |f(x)|2

as the probability density for the position x of some particle, and regard
|f̂ |2/2π as the probability density for the momentum ξ. Thus the Heisenberg
Uncertainty Principle implies that the variance (or uncertainty) in position
multiplied by the variance in momentum is at least 1/4.

Roughly, the Principle says that the more precisely one knows the position
of a quantum particle, the less precisely one knows its momentum, and vice
versa.

Remark 24.6.
1. Equality holds in the Heisenberg Principle (24.2) if and only if f(x) =

Ceiβxe−γ(x−α)2 is a β-modulated Gaussian at α (with C ∈ C, γ > 0).
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2. A more direct proof of (24.2) can be given by integrating by parts in

‖f‖2
L2(R) =

∫

R
f(x)f(x)(x− α)′ dx

and then applying Cauchy–Schwarz.

3. The Heisenberg Uncertainty Principle extends naturally to higher di-
mensions.

4. On T, the analogous uncertainty principle says

1

4
m2

∣∣∣ 1

2π

∫

T
eimt|f(t)|2 dt

∣∣∣
2

≤ 1

2π

∫

T
|eimt − α|2|f(t)|2 dt ·

∑

n∈Z
|n− β|2|f̂(n)|2

for all α, β ∈ C,m ∈ Z (exercise).
One considers here a quantum particle at position eit on the unit circle,

with momentum n ∈ Z. When α = 0 we deduce a lower bound on the
localization of momentum, in terms of Fourier coefficients of the position
density |f |2:

1

4
‖f‖−2

L2(T) sup
m∈Z

m2
∣∣(|f |2)̂ (m)

∣∣2 ≤
∑

n∈Z
|n− β|2|f̂(n)|2.



Part IV

Problems
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Assignment 1

Problem 1. Do the following problems, but do not hand them in:
[Katznelson] Ex. 1.1.2, 1.1.4.

Problem 2. ([Katznelson] Ex. 1.1.5: downsampling)
Let f ∈ L1(T),m ∈ N, and define

f(m)(t) = f(mt).

(a) Prove that f̂(m)(n) = f̂(n/m) if m|n and f̂(m)(n) = 0 otherwise. Use only
the definition of the Fourier coefficients, and elementary manipulations.
(b) Then give a quick, formal (nonrigorous) proof using the Fourier series of f .

Problem 3. ([Katznelson] Ex. 1.2.8: Fejér’s Lemma)
Let f ∈ Lp(T) and g ∈ Lq(T), where 1 < p ≤ ∞, 1 ≤ q < ∞ and

1
p

+ 1
q

= 1. Prove that

lim
m→∞

1

2π

∫

T
f(mt)g(t) dt = f̂(0)ĝ(0).

Hint. Use that trigonometric polynomials are dense in Lq(T).

Problem 4. (Weak convergence and oscillation)
Let H be a Hilbert space. We say un converges weakly to u, written

un ⇀ u weakly, if 〈un, v〉 → 〈u, v〉 as n → ∞, for each v ∈ H. Clearly if
un → u in norm (meaning ‖un − u‖ → 0) then un ⇀ u weakly.

(a) Show that eimt ⇀ 0 weakly in L2(T), as m →∞.
(b) Let f ∈ L2(T). Show

f(m) ⇀ f̂(0) = (mean value of f)

weakly in L2(T), as m →∞.
Remark. Thus rapid oscillation yields weak convergence to the mean.
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Problem 5. (Smoothness of f implies rate of decay of f̂)

(a) Show that if f has bounded variation, then f̂(n) = O(|n|−1).
(b) Show that if f is absolutely continuous and f ′ has bounded variation,

then f̂(n) = O(|n|−2).
Remark. These results cover most of the functions encountered in elemen-
tary courses. For example, functions that are smooth expect for finitely many
jumps (such as the sawtooth f(t) = t, t ∈ (−π, π]) have bounded variation.
And functions that are smooth except for finitely many corners (such as the
triangular wave f(t) = |t|, t ∈ (−π, π]) have first derivative with bounded
variation. That is why one encounters so many functions with Fourier coef-
ficients decaying like 1/n or 1/n2.

Problem 6. ([Katznelson] Ex. 1.3.2: rate of uniform summability)
Assume f is Hölder continuous, with f ∈ Cα(T) for some 0 < α < 1.

Prove there exists C > 0 (depending on the Hölder constant of f) such that

‖σN(f)− f‖L∞ ≤ C

1− α

1

Nα
, N ∈ N.

Remark. Thus the “smoother” f is, the faster σN(f) converges to f as
N →∞.

Problem 7. ([Katznelson] Ex. 1.5.4)
Let f be absolutely continuous on T with f ′ ∈ L2(T). In other words,

f ∈ W 1,2(T).
(a) Prove that

‖f̂‖`1(Z) ≤ ‖f‖L1(T) +

(
2

∞∑
n=1

1

n2

)1/2

‖f ′‖L2 .

Hint. First evaluate ‖f ′‖2
L2 .

(b) Deduce that f ∈ A(T).
Remark. Hence the Fourier series of f converges uniformly by Chapter 4,
so that Sn(f) → f in L∞(T). In particular, if f is smooth except for finite
many corners (such as the triangular wave f(t) = |t| for t ∈ (−π, π]), then
the Fourier series converges uniformly to f .

Problem 8. (A lacunary series)
Assume 0 < α < 1.



151

(a) Suppose that f is continuous on T and that

∑

2n≤|j|<2n+1

|f̂(j)| ≤ C2−nα

for each n ≥ 0. Prove f ∈ A(T), and then f ∈ Cα(T).
(b) Let f(t) =

∑∞
n=0 2−nαei2nt. Show f ∈ Cα(T). Deduce that the rate

of decay f̂(n) = O(|n|−α) proved in Theorem 1.6 for Cα(T) is sharp. (That

is, show f̂(n) = O(|n|−β) fails for some f ∈ Cα(T), when β > α.)

Problem 9. (Maximal function when p = 1)
Define L log L(Rd) to be the class of measurable functions for which∫

Rd |f(x)| log
(
1 + |f(x)|) dx < ∞. Prove that

f ∈ L log L(Rd) =⇒ Mf ∈ L1
loc(Rd).

Remark. Thus if the singularities of f are “logarithmically better than L1”
then the Hardy–Littlewood maximal function belongs to L1 (at least locally).

Problem 10. Enjoyable reading (nothing to hand in).
Read Chapter 8 “Compass and Tides” from [Körner], which shows how

sums of Fourier series having different underlying periods can be used to
model the heights of tides.

Sums of periodic functions having different periods are called almost pe-
riodic functions. Their theory was developed by the Danish mathematician
Harald Bohr, brother of physicist Niels Bohr. Harald Bohr won a silver medal
at the 1908 Olympics, in soccer.
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Assignment 2

Problem 11 (Hilbert transform of indicator function).

(a) Evaluate (H1[a,b])(t), where [a, b] ⊂ (−π, π) is a closed interval. Sketch
the graph, for t ∈ [−π, π].

(b) Conclude that the Hilbert transform on T is not strong (∞,∞).

Problem 12 (Fourier synthesis on `p). Let 1 ≤ p ≤ 2.

Prove that the Fourier synthesis operator T , defined by

(T{cn})(t) =
∑

n∈Z
cneint,

is bounded from `p(Z) to Lp′(T). Estimate the norm of T .

Extra credit. Show the series converges unconditionally, in Lp′(T).

Problem 13 (Parseval on Lp). Do part (a) or part (b). You may do both
parts if you wish.

(a) Let 1 ≤ p ≤ 2. Take f ∈ Lp(T) and g ∈ L1(T) with {ĝ(n)} ∈ `p(Z).
Prove that g ∈ Lp′(T), and establish the Parseval identity

1

2π

∫

T
f(t)g(t) dt =

∑

n∈Z
f̂(n)ĝ(n).

(In your solution, explain why the integral and sum are absolutely conver-
gent.)

(b) Let 1 < p < ∞. Take f ∈ Lp(T) and g ∈ Lp′(T). Prove the Parseval
identity

1

2π

∫

T
f(t)g(t) dt = lim

N→∞

∑

|n|≤N

f̂(n)ĝ(n).
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Problem 14 (Fourier analysis into a weighted space). Let 1 < p ≤ 2.
(a) Show

(∑

n 6=0

|f̂(n)|p|n|p−2

)1/p

≤ Cp‖f‖Lp(T) for all f ∈ Lp(T).

Hint. Y = Z \ {0} with ν = counting measure weighted by n−2.
(b) Show that combining the Hölder and Hausdorff–Young inequalities in

the obvious way does not prove part (a).

Problem 15 (Poisson extension). Recall Pr denotes the Poisson kernel on T,
and write D for the open unit disk in the complex plane. Suppose f ∈ C(T)
and define

v(reit) =

{
(Pr ∗ f)(t) for 0 ≤ r < 1, t ∈ T,

f(t) for r = 1, t ∈ T,

so that v is defined on the closed disk D.
(a) Show v is C∞ smooth and harmonic (∆v = 0) in D.
(b) Show v is continuous on D.
(c) [Optional; no credit] Assume f ∈ C∞(T) and show v ∈ C∞(D). (Parts

(a) and (b) show v is smooth on D and continuous on D. Thus the task is to
prove each partial derivative of v on D extends continuously to D.).
Aside. (Pr∗f)(t) is called the harmonic extension to the disk of the boundary
function f .

Problem 16 (Boundary values lose half a derivative). Assume u is a smooth,
real-valued function on a neighborhood of D, and define

f(t) = u(eit)

for the boundary value function of u. Hence f ∈ C∞(T), and so the Poisson
extension v belongs to C∞(D) by Problem 15(c).

(a) Prove
1

2π

∫

D
|∇v|2 dA =

∑

n∈Z
|n||f̂(n)|2.

Hint. Use one of Green’s formulas, and remember v = v since f and v are
real-valued.
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(b) Prove ∫

D
|∇v|2 dA ≤

∫

D
|∇u|2 dA.

Hint. Write u = v + (u− v) and use one of Green’s formulas.
Aside. This result is known as “Dirichlet’s principle”. It asserts that

among all functions having the same boundary values, the harmonic function
has smallest Dirichlet integral. As your proof reveals, this result holds on
arbitrary domains.

(c) Conclude
∑

n∈Z
|n||f̂(n)|2 ≤ 1

2π

∫

D
|∇u|2 dA.

Discussion. We say f has “half a derivative” in L2, since {|n|1/2f̂(n)} ∈
`2(Z). Justification: if f has zero derivatives (f ∈ L2(T)) then {f̂(n)} ∈
`2(Z), and if f has one derivative (f ′ ∈ L2(T)) then {nf̂(n)} ∈ `2(Z).

Halfway inbetween lies the condition {|n|1/2f̂(n)} ∈ `2(Z).
Boundary trace inequalities like in part (c) are important for partial dif-

ferential equations and Sobolev space theory. The inequality says, basically,
that if a function u has one derivative ∇u belonging to L2 on a domain, then
u has half a derivative in L2 on the boundary. Thus the boundary value loses
half a derivative, compared to the original function.

Note that in this problem, f ∈ C∞(T) and so certainly f ′ ∈ L2(T), which

implies {nf̂(n)} ∈ `2(Z). You might wonder, then, why you should bother

proving the weaker result {|n|1/2f̂(n)} ∈ `2(Z) in part (c). But actually you

prove more in part (c): you obtain a norm estimate on {|n|1/2f̂(n)} ∈ `2(Z)
in terms of the L2 norm of ∇u. (We do not have such a norm estimate on

{nf̂(n)}.) This norm estimate means that the restriction map

H1(D) → H1/2(∂D)

u 7→ f

is bounded from the Sobolev space H1(D) on the disk with one derivative
in L2 to the Sobolev space H1/2(∂D) on the boundary circle with half a
derivative in L2.

Aside. The notion of fractional derivatives defined via Fourier coefficients
can be extended to fractional derivatives in Rd, by using Fourier transforms.
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Problem 17 (Measuring diameters of stars).
Enjoyable reading; nothing to hand in.
Read Chapter 95 “The Diameter of Stars” from [Körner], which shows

how the diameters of stars can be estimated using Fourier transforms of radial
functions, and convolutions.



Assignment 3

Problem 18 (Adjoint of Fourier transform).
Find the adjoint of the Fourier transform on L2(Rd).

Problem 19 (Periodization, and Fourier coefficients and transforms).

Suppose f ∈ L1(Rd).

(a) Prove that the periodization

Pe(f)(x) = (2π)d
∑

n∈Zd

f(x + 2πn)

of f satisfies
‖Pe(f)‖L1(Td) ≤ ‖f‖L1(Rd).

(b) Deduce from your argument that the series for Pe(f)(x) converges
absolutely for almost every x, and that Pe(f) is 2πZd-periodic.

(c) Show that the jth Fourier coefficient of Pe(f) equals the Fourier trans-
form of f at j:

P̂e(f)(j) = f̂(j), j ∈ Zd

Problem 20 (Course summary).
Write a one page description of the most important and memorable results

and general techniques from this course. Be brief, but thoughtful; explain
how these main results fit together.

You need not state the results technically — intuition is more helpful
than rigor, at this stage.
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Appendices
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Appendix A

Minkowski’s integral inequality

Goal

State Minkowski’s integral inequality, and apply it to norms of convolutions

Minkowski’s inequality on a measure space (X,µ) is simply the triangle
inequality for Lp(X), saying that the norm of a sum is bounded by the sum
of the norms:

∥∥ ∑
j

fjνj

∥∥
Lp(X)

≤
∑

j

‖fj‖Lp(X)νj

whenever fj ∈ Lp(X) and the constants νj are nonnegative. Similarly, the
norm of an integral is bounded by the integral of the norms:

Theorem A.1. Suppose (X,µ) and (Y, ν) are σ-finite measure spaces, and
that f(x, y) is measurable on the product space X × Y . If 1 ≤ p ≤ ∞ then

∥∥∥
∫

Y

f(x, y) dν(y)
∥∥∥

Lp(X)
≤

∫

Y

‖f(x, y)‖Lp(X) dν(y)

whenever the right side is finite.

Proof. Take q to be the conjugate exponent, with 1
p

+ 1
q

= 1. Then for all
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g ∈ Lq(X),
∣∣∣
∫

X

( ∫

Y

f(x, y) dν(y)
)
g(x) dµ(x)

∣∣∣

≤
∫

Y

∫

X

|f(x, y)||g(x)| dµ(x)dν(y)

≤
∫

Y

( ∫

X

|f(x, y)|p dµ(x)
)1/p

‖g‖Lq(X) dν(y) by Hölder

=

∫

Y

‖f(x, y)‖Lp(X) dν(y) · ‖g‖Lq(X).

Now the theorem follows from the dual characterization of the norm on Lp(X)
(see [Folland, Theorem 6.14]).

Definition A.2. Define the convolution of functions f and g on T by

(f ∗ g)(t) =
1

2π

∫

T
f(t− τ)g(τ) dτ, t ∈ T,

whenever the integral makes sense.
Define the convolution of functions f and g on Rd by

(f ∗ g)(x) =

∫

Rd

f(x− y)g(y) dy, x ∈ Rd,

whenever the integral makes sense.

Theorem A.3 (Young’s theorem). Fix 1 ≤ p ≤ ∞. Then

‖f ∗ g‖Lp(T) ≤ ‖f‖Lp(T)‖g‖L1(T),

‖f ∗ g‖Lp(Rd) ≤ ‖f‖Lp(Rd)‖g‖L1(Rd),

whenever the right sides are finite. In particular, the convolution f ∗g is well
defined a.e. whenever f ∈ Lp and g ∈ L1.

Proof.

‖f ∗ g‖Lp(Rd) =
∥∥∥

∫

Rd

f(· − y)g(y) dy
∥∥∥

Lp(Rd)

≤
∫

Rd

‖f(· − y)‖Lp(Rd)|g(y)| dy

by Minkowski’s integral inequality, Theorem A.1,

= ‖f‖Lp(Rd)‖g‖L1(Rd).

Argue similarly on T.
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Lp norms and the distribution
function

Goal

Express Lp-norms in terms of the distribution function

Given a σ-finite measure space (X, µ) and a measurable function f on X,
write

E(λ) = {x ∈ X : |f(x)| > λ}
for the level set of f above level λ. The distribution function of f is µ(E(λ)).

Lemma B.1. Let α > 0.
If −∞ < r < p < ∞ then

∫ ∞

0

λp−r−1

∫

E(λ/α)

|f(x)|r dµ(x)dλ =
αp−r

p− r

∫

X

|f(x)|p dµ(x). (B.1)

If −∞ < p < r < ∞ then
∫ ∞

0

λp−r−1

∫

E(λ/α)c

|f(x)|r dµ(x)dλ =
αp−r

r − p

∫

X

|f(x)|p dµ(x). (B.2)

In particular, when r = 0 < p < ∞ and α = 1, formula (B.1) expresses
the Lp-norm in terms of the distribution function:

∫ ∞

0

pλp−1µ(E(λ)) dλ =

∫

X

|f(x)|p dµ(x) = ‖f‖p
Lp(X). (B.3)
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Proof. We can assume α = 1 without loss of generality, by changing variable
with λ 7→ αλ.

Write E = {(x, λ) ∈ X × (0,∞) : |f(x)| > λ}, so that (x, λ) ∈ E ⇔ x ∈
E(λ). Then the left hand side of (B.1) equals

∫ ∞

0

λp−r−1

∫

X

1E(x, λ)|f(x)|r dµ(x)dλ

=

∫

X

|f(x)|r
∫ ∞

0

λp−r−11E(x, λ) dλdµ(x) by Fubini

=

∫

X

|f(x)|r
∫ |f(x)|

0

λp−r−1 dλdµ(x) since λ < |f(x)| on E

=

∫

X

|f(x)|r 1

p− r
|f(x)|p−r dµ(x)

since p− r > 0. Thus we have proved (B.1), and (B.2) is similar.



Appendix C

Interpolation

Goal

Interpolation of operators on Lp spaces, assuming either weak endpoint
bounds (Marcinkiewicz) or strong endpoint bounds (Riesz–Thorin)

References

[Folland] Chapter 6

[Grafakos] Section 1.3

Definition C.1. An operator is sublinear if

|T (f + g)(y)| ≤ |(Tf)(y)|+ |(Tg)(y)|

|T (cf)(y)| = |c||(Tf)(y)|
for all f, g in the domain of T , all c ∈ C, and all y in the underlying set.

Theorem C.2 (Marcinkiewicz Interpolation). Let 1 ≤ p0 < p1 ≤ ∞ and
suppose (X,µ) and (Y, ν) are measure spaces. Assume

T : Lp0 + Lp1(X) → {measurable functions on Y }

is sublinear. If T is weak (p0, p0) and weak (p1, p1), then T is strong (p, p)
whenever p0 < p < p1.
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Proof. Write A0, A1 for the constants in the weak (p0, p0) and (p1, p1) esti-
mates. Let α > 0. Consider f ∈ Lp(X), λ > 0. Split f into “large” and
“small” parts:

g = f1{x:|f(x)|>λ/α} and h = f1{x:|f(x)|≤λ/α}.

Notice that

g ∈ Lp0(X) since |g|p0 ≤ |f |p(λ/α)p0−p,

h ∈ Lp1(X) since |h|p1 ≤ |f |p(λ/α)p1−p.

Hence f = g + h ∈ Lp0 + Lp1(X). By sublinearity, |Tf | ≤ |Tg|+ |Th|.

Case 1. Assume p1 < ∞. Then

ν ({y ∈ Y : |Tf(y)| > λ})
≤ ν ({y ∈ Y : |Tg(y)| > λ/2}) + ν ({y ∈ Y : |Th(y)| > λ/2}) by sublinearity

≤
(

A0

λ/2
‖g‖Lp0(X)

)p0

+

(
A1

λ/2
‖h‖Lp1 (X)

)p1

by the weak estimates on T

= (2A0)
p0λ−p0

∫

{x:|f(x)|>λ/α}
|f(x)|p0 dµ(x)

+ (2A1)
p1λ−p1

∫

{x:|f(x)|≤λ/α}
|f(x)|p1 dµ(x). (C.1)

Therefore

‖Tf‖p
Lp(Y ) =

∫ ∞

0

pλp−1ν ({y ∈ Y : |Tf(y)| > λ}) dλ

≤ p(2A0)
p0

αp−p0

p− p0

‖f‖p
Lp(X) + p(2A1)

p1
αp−p1

p1 − p
‖f‖p

Lp(X)

by (C.1) and formulas (B.1), (B.2). We have proved strong (p, p).

Choosing α = 2A
p1/(p1−p0)
1 /A

p0/(p1−p0)
0 gives simple constants:

‖Tf‖Lp(Y ) ≤ 2p1/2

(
1

p− p0

+
1

p1 − p

)1/p

A1−θ
0 Aθ

1‖f‖Lp(X) (C.2)

where 0 < θ < 1 is determined by expressing 1
p

as a convex combination of
1
p0

and 1
p1

:

1

p
=

1− θ

p0

+
θ

p1

.

Note the estimate in (C.2) blows up as p approaches p0 or p1.
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Case 2. Assume p1 = ∞. Let α = 2A1. We have ‖Th‖L∞(Y ) ≤
A1‖h‖L∞(X), because weak (∞,∞) is defined to mean strong (∞,∞), and so

‖Th‖L∞(Y ) ≤ A1
λ

α
=

λ

2

by definitions of h and α. Hence

ν ({y ∈ Y : |Tf(y)| > λ}) ≤ ν ({y ∈ Y : |Tg(y)| > λ/2})

because |Tf | ≤ |Tg|+ |Th|. Now argue like in Case 1 to get strong (p, p).

Next we weaken the hypotheses of Marcinkiewicz Interpolation.

Definition C.3. Given a measure space (X,µ), write

Σ(X) = {simple functions on X with support of finite measure}.

That is, f ∈ Σ(X) provided f =
∑

αj1Fj
where the sum is finite, αj ∈

C \ {0}, and the sets Fj have finite measure and are disjoint.

Remark C.4 (Linear Operators). Suppose

T : Σ(X) → {measurable functions on Y }

is linear. Then Marcinkiewicz Interpolation still holds: if T is weak (p0, p0)
and weak (p1, p1) on the simple functions in Σ(X), then T is strong (p, p) on
Lp(X) whenever p0 < p < p1.

Proof. If f is simple with support of finite measure, then so are g = f1{|f |>λ/α}
and h = f1{|f |≤λ/α}. And Tf = Tg + Th by linearity. Hence the proof of
Marcinkiewicz Interpolation gives a strong (p, p) bound for T on Σ(X). By
density of Σ(X) in Lp(X) (using here that p < p1 implies p < ∞), we deduce
T has a unique extension to a bounded linear operator on Lp(X). (This
extension step uses linearity of T .)

Our next interpolation result needs:

Lemma C.5 (Hadamard’s Three Lines). Assume H(z) is holomorphic on
U = {z ∈ C : 0 < Re(z) < 1} and continuous and bounded on U = {z ∈ C :
0 ≤ Re(z) ≤ 1}. Let B0 = supRe(z)=0 |H(z)| and B1 = supRe(z)=1 |H(z)|.

Then |H(z)| ≤ B1−θ
0 Bθ

1 whenever Re(z) = θ ∈ [0, 1].
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(Exercise. Let Bθ = supRe(z)=θ |H(z)|, so that Bθ ≤ B1−θ
0 Bθ

1 by the Lemma.
Show that θ 7→ log Bθ is convex.)

Proof. Assume B0 > 0 and B1 > 0. Then

G(z) =
H(z)

B1−z
0 Bz

1

is holomorphic on U and bounded on U , since H is bounded and |B1−z
0 Bz

1 | =
B

1−Re(z)
0 B

Re(z)
1 ≥ min(B0, B1) > 0. Let Gm = G(z)e(z2−1)/m,m > 0. Then

Gm is holomorphic on U with

|Gm(z)| = |G(z)|e−(y2+1)/me(x2−1)/m where z = x + iy

≤ |G(z)|e−(y2+1)/m since x2 ≤ 1 on U .

Hence Gm → 0 as |z| → ∞ in U . Therefore the Maximum Principle applied
to Gm in U says

sup
z∈U

|Gm(z)| ≤ sup
∂U∪{∞}

|Gm|

= sup
∂U
|Gm|

≤ sup
∂U
|G|

≤ 1,

since |H| ≤ B0 on {Re(z) = 0} and |H| ≤ B1 on {Re(z) = 1}. Letting
m →∞ gives |G(z)| ≤ 1, which proves the lemma.

If B0 = 0 or B1 = 0, then add ε to H and argue as above. Let ε → 0.

Theorem C.6 (Riesz–Thorin Interpolation). Let 1 ≤ p0, p1, q0, q1 ≤ ∞, and
(X, µ) and (Y, ν) be measure spaces. (If q0 = q1 = ∞, then further assume ν
is semi-finite.) Suppose

T : Lp0 + Lp1(X) → Lq0 + Lq1(Y )

is linear.
If T is strong (p0, q0) and (p1, q1), then T is strong (p, q) whenever

(1

p
,
1

q

)
= (1− θ)

( 1

p0

,
1

q0

)
+ θ

( 1

p1

,
1

q1

)

for some 0 < θ < 1. Specifically,

‖T‖Lp(X)→Lq(Y ) ≤ ‖T‖1−θ
Lp0 (X)→Lq0 (Y )‖T‖θ

Lp1 (X)→Lq1 (Y ).
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H
1
p1

,
1
q1
L

H
1
p

,
1
q
L

H
1
p0

,
1
q0
L

H1,1L

1
p

1
q

0

Figure C.1: Parameters in the Riesz–Thorin theorem.

Remark C.7.
1. The relationship between the p and q parameters is shown in Figure C.1.
In particular, if θ = 0 then (p, q) = (p0, q0), and if θ = 1 then (p, q) = (p1, q1).

2. The space

Lp0 + Lp1(X) = {f0 + f1 : f0 ∈ Lp0(X), f1 ∈ Lp1(X)}
consists of all sums of functions in Lp0 and Lp1 . Recall from measure theory
that

Lp ⊂ Lp0 + Lp1 ,

by splitting f ∈ Lp into large and small parts.
A subtle aspect of the theorem is that when we assume T maps Lp0 +

Lp1(X) into Lq0 + Lq1(Y ), we need the value of Tf to be independent of the
choice of decomposition f = f0 + f1.

In applications of the theorem, usually one has T defined and linear on
Lp0(X) and Lp1(X), and the two definitions agree on the intersection Lp0 ∩
Lp1(X). Then one defines T on f = f0 + f1 ∈ Lp0 + Lp1 by Tf = Tf0 + Tf1.
This definition is independent of the decomposition, as follows. For suppose
f = f̃0 + f̃1. Then

f0 − f̃0 = f̃1 − f1 ∈ Lp0 ∩ Lp1(X)
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and so T
(
f0 − f̃0

)
= T

(
f̃1 − f1

)
, where on the left side we use T defined on

Lp0(X) and on the right side we use T on Lp1(X). Linearity of T now yields

Tf0 + Tf1 = T f̃0 + T f̃1 so that the definition of Tf is independent of the
decomposition of f .

3. When T = identity, Riesz–Thorin says that

Lp0 ∩ Lp1 ⊂ Lp

with

‖f‖Lp(X) ≤ ‖f‖1−θ
Lp0 (X)‖f‖θ

Lp1 (X) (C.3)

where 1
p

= 1−θ
p0

+ θ
p1

. Here is a direct proof:

‖f‖p
Lp(X) =

∫

X

|f |p dµ

=

∫

X

|f |p(1−θ)|f |pθ dµ

≤
( ∫

X

|f |p(1−θ)·p0/p(1−θ) dµ
)p(1−θ)/p0

( ∫

X

|f |pθ·p1/pθ dµ
)pθ/p1

by Hölder

= ‖f‖p(1−θ)
Lp0(X)‖f‖pθ

Lp1 (X)

Proof of Riesz–Thorin Interpolation. First suppose p0 = p1, so that p0 =
p1 = p. Then

‖Tf‖Lq(Y ) ≤ ‖Tf‖1−θ
Lq0 (Y )‖Tf‖θ

Lq1 (Y )

by (C.3) applied to Tf on Y . Now the (p0, q0) and (p1, q1) bounds can be
applied directly to give the (p, q) bound.

Next suppose p0 6= p1, so that p < ∞.

We will prove an Lp → Lq bound on Tf for f ∈ Σ(X). Then at the end
we will prove the bound for f ∈ Lp(X).

Let f ∈ Σ(X) and g ∈ Σ(Y ), say f =
∑

αj1Fj
and g =

∑
βj1Gj

. Fix
θ ∈ (0, 1), which fixes p and q. For z ∈ C, define

P (z) =
p

p0

(1− z) +
p

p1

z,

Q′(z) =
q′

q′0
(1− z) +

q′

q′1
z
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where 1
q

+ 1
q′ = 1. (The ′ in Q′ does not denote a derivative, here.) Let

fz(x) = |f(x)|P (z)ei arg f(x), x ∈ X,

gz(y) = |g(y)|Q′(z)ei arg g(y), y ∈ Y.

Note fθ = f and gθ = g, since P (θ) = 1 and Q′(θ) = 1. Clearly

gz =
∑

|βj|Q′(z)ei arg βj1Gj
. (C.4)

Therefore gz(y) is bounded for y ∈ Y, z ∈ U , and it has support (independent
of z) with finite measure. Similarly,

Tfz =
∑

|αj|P (z)ei arg αj(T1Fj
) (C.5)

by linearity, so that

|Tfz| ≤
∑

|αj|Re P (z)|T1Fj
|

≤ (const.)
∑

|T1Fj
| for z ∈ U .

The right side belongs to Lq0 ∩ Lq1(Y ) by the strong (p0, p0) and (p1, p1)
bounds, since 1Fj

∈ Lp0 ∩ Lp1(X). Hence the function

H(z) =

∫

Y

(Tfz)(y)gz(y) dν(y) (C.6)

is well-defined and bounded for z ∈ U , by Hölder. And H is holomorphic,
as one sees by substituting (C.4) and (C.5) into (C.6) and taking the sums
outside the integral. Next,

Re(z) = 0 ⇒ Re P (z) =
p

p0

, Re Q′(z) =
q′

q′0
⇒ |fz|p0 = |f |p0 Re P (z) = |f |p

|gz|q′0 = |g|q′0 Re Q′(z) = |g|q′

⇒ ‖fz‖Lp0 (X) = ‖f‖p/p0

Lp(X)

‖gz‖Lq′0 (Y )
= ‖g‖q′/q′0

Lq′ (Y )

(valid even when p0 = ∞ or q0 = ∞)

⇒ |H(z)| ≤ ‖Tfz‖Lq0(Y )‖gz‖Lq′0 (Y )
by Hölder

|H(z)| ≤ ‖T‖Lp0 (X)→Lq0 (Y )‖f‖p/p0

Lp(X)‖g‖
q′/q′1
Lq′ (Y )

.
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Similarly,

Re(z) = 1 ⇒ |H(z)| ≤ ‖T‖Lp1(X)→Lq1 (Y )‖f‖p/p1

Lp(X)‖g‖
q′/q′1
Lq′ (Y )

.

Hence by the Hadamard Three Lines Lemma C.5 and a short calculation, if
z = θ then

|〈Tf, g〉| = |H(θ)|
≤ ‖T‖1−θ

Lp0 (X)→Lq0 (Y )‖T‖θ
Lp1 (X)→Lq1 (Y )‖f‖Lp(X)‖g‖Lq′ (Y ).

Now the dual characterization of the norm on Lq(Y ) implies

‖Tf‖Lq(Y ) ≤ ‖T‖1−θ
Lp0 (X)→Lq0 (Y )‖T‖θ

Lp1 (X)→Lq1 (Y )‖f‖Lp(X), (C.7)

which is the desired strong (p, p) bound. (See [Folland, Theorem 6.14] for
the dual characterization of the norm, which uses semi-finiteness of ν when
q = ∞.)

We must extend this bound (C.7) from f ∈ Σ(X) to f ∈ Lp(X). So
fix f ∈ Lp(X) and let E = {x : |f(x)| > 1}. Choose a sequence of simple
functions fn ∈ Σ(X) with |fn| ≤ |f | and fn → f at every point, and with
fn → f uniformly on X\E; such a sequence exists by [Folland, Theorem 2.10].
Define

g = f1E, gn = fn1E,

and
h = f1X\E, hn = fn1X\E,

so that f = g + h, fn = gn + hn, and |gn| ≤ |g|, |hn| ≤ |h|. Suppose p0 < p1,
by swapping p0 and p1 if necessary. Then gn → g in Lp0(X) by dominated
convergence, and so Tgn → Tg in Lq0(Y ). By passing to a subsequence we
can further suppose Tgn → Tg pointwise a.e.

Also hn → h in Lp1(X) by dominated convergence (or, if p1 = ∞, by the
uniform convergence fn → f on X \ E). Hence Thn → Th in Lq1(Y ). By
passing to a subsequence we can suppose Thn → Th a.e.

Therefore by linearity of T , we have Tfn → Tf pointwise a.e. and so

‖Tf‖Lq(Y ) ≤ lim inf
n

‖Tfn‖Lq(Y ) by Fatou’s lemma

≤ ‖T‖1−θ
Lp0 (X)→Lq0 (Y )‖T‖θ

Lp1(X)→Lq1(Y ) lim inf
n

‖fn‖Lp(X)

by (C.7), the strong (p, p) bound on the simple functions,

= ‖T‖1−θ
Lp0 (X)→Lq0 (Y )‖T‖θ

Lp1 (X)→Lq1 (Y )‖f‖Lp(X)
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since fn → f in Lp(X) by dominated convergence.
We have proved the desired strong (p, p) bound for all f ∈ Lp(X), and so

the proof is complete.
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