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Preface 

This book has been designed for a final year undergraduate course in stochastic 
processes . It will also be suitable for mathematics undergraduates and others 
with interest in probability and stochastic processes , who wish to study on their 
own . 

The main prerequisite is probability theory: probability measures, random 
variables , expectation, independence, conditional probability, and the laws of 
large numbers . The only other prerequisite is calculus .  This covers limits, series , 
the notion of continuity, differentiation and the Riemann integral . Familiarity 
with the Lebesgue integral would be a bonus . A certain level of fundamental 
mathematical experience , such as elementary set theory, is assumed implicitly. 

Throughout the book the exposition is interlaced with numerous exercises, 
which form an integral part of the course . Complete solutions are provided at 
the end of each chapter . Also , each exercise is accompanied by a hint to guide 
the reader in an informal manner . This feature will be particularly useful for 
self-study and may be of help in tutorials . It also presents a challenge for the 
lecturer to involve the students as active participants in the course . 

A brief introduction to probability is presented in the first chapter . This is 
mainly to fix terminology and notation, and to provide a survey of the results 
which will be required later on . However , conditional expectation is treated in 
detail in the second chapter , including exercises designed to develop the nec­
essary skills and intuition . The reader is strongly encouraged to work through 
them prior to embarking on the rest of this course . This is because conditional 
expectation is a key tool for stochastic processes, which often presents some 
difficulty to the beginner . 

Chapter 3 is about martingales in discrete time . We study the basic prop­
erties , but also some more advanced ones like stopping times and the Optional 

T �1 
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Doob's inequalities and convergence results . Chapter 5 is devoted to time­
homogenous Markov chains with emphasis on their ergodic properties . Some 
important results are presented without proof, but with a lot of applicat ions . 
However , Markov chains with a finite state space are treated in full detail . 

Chapter 6 deals with stochastic processes in continuous time . Much emphasis 
is put on two important examples , the Poisson and Wiener processes . Various 

properties of these are presented , including the behaviour of sample paths and 
the Doob maximal inequality. The last chapter is devoted to the Ito stochastic 
integral . This is carefully introduced and explained . We prove a stochastic ver­

sion of the chain rule known as the Ito formula, and conclude with examples 
and the theory of stochastic differential equations . 

It is a pleasure to thank Andrew Carroll for his careful reading of the final 
draft of this book. His many comments and suggestions have been invaluable 
to us . We are also indebted to our students who took the Stochastic Analysis 
course at the University of Hull . Their feedback was instrumental in our choice 
of the topics covered and in adjusting the level of exercises to make them 
challenging yet accessible enough to final year undergraduates . 

As this book is going into its 3rd printing , we would like to thank our 
students and readers for their support and feedback. In particular , we wish 
to express our gratitude to Iaonnis Emmanouil of the University of Athens 

and to Brett T. Reynolds and Chris N .  Reynolds of the University of Wales 
in Swansea for their extensive and meticulous lists of remarks and valuable 
suggestions , which helped us to improve the current version of Basic Stochastic 
Processes. 

We would greatly appreciate further feedback from our readers, who are 
invited to visit the Web Page http: I /www. hull. ac. uk/php/mastz/bsp. html 
for more information and to check the latest corrections in the book. 

Zdzislaw Brzezniak and Tomasz Zastawniak 

Kingston upon Hull , June 2000 
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1 
Review of Probability 

In this chapter we shall recall some basic notions and facts from probability 

theory. Here is a short list of what needs to be reviewed: 

1) Probability spaces, a-fields and measures; 

2) Random variables and their distributions; 

3) Expectation and variance; 

4) The u-field generated by a random variable; 

5) Independence, conditional probability. 

The reader is advised to consult a book on probability for more information. 

1.1 Events and Probability 

Definition 1.1 

Let f! be a non-empty set. A a-field F on f! is a family of subsets of [} such 

that 

1 )  the empty set 0 belongs to F; 

2) if A belongs to F, then so does the complement [}\A; 
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3 )  if A1, A2, ... is a sequence of sets in :F, then their union A1 U A2 U · · · also 
belongs to F. 

Example 1.1 
Throughout this course IR will denote the set of real numbers. The family of 
Borel sets F == B(IR) is a a-field on IR. We recall that B(IR) is the smallest 
a-field containing all intervals in IR. 

Definitio n 1.2 
Let :F be a a-field on n. A probabil·ity measure P is a function 

P : F -t [0 , 1] 

such that 

1) P(f2) = 1; 

2) if A1, A2, ... are pairwise disjoint sets (that is , Ai n Aj 
belonging to F, then 

0 for i :f. j) 

The triple (D, F, P) is called a probability space. The sets belonging to F 
are called events. An event A is said to occur almost surely (a . s . )  whenever 
P(A) == 1. 

Example 1.2 
We take the unit interval [} = [0, 1 ] with the a-field F == B([O, 1]) of Borel 
sets B C [0 , 1] , and Lebesgue measure P = Leb on [0 , 1] . Then (f2, F, P) is a 
probability space . Recall that Leb is the unique measure defined on Borel sets 
such that 

Leb[a , b] = b - a 

for any interval [a, b]. (In fact Leb can be extended to a larger a-field , but we 
shall need Borel sets only. ) 

Exercise 1.1 
Show that if A1, A2, . . .  is an expanding sequence of events , that is , 
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then 
P(A1UA2U···)== lim P(An)· 

n-too 

Similarly, if A1, A2, .. . is a contracting sequence of events, that is, 

then 
P(A1nA2n···)== lim P(An ) . 

n-too 

Hint Write A1 U A2 U · · · as the union of a sequence of disjoint events: start with 
A1 , then add a disjoint set to obtain A1 U A2, then add a disjoint set again to obtain 
A1 U A2 U A3, and so on. Now that you have a sequence of disjoint sets, you can use 
the definition of a probability measure. To deal with the product A1 n A2 n · · · write 
it as a union of some events with the aid of De Morgan's law. 

Lemma 1.1 (Borei-Cantelli) 

Let A1,A2, ... be a sequence of events such that P(A1) + P (A2) + · · · < oo 

and let Bn == An u An+l U · · · . Then P (B1 n B2 n · · ·) == 0. 

Exercise 1. 2 
Prove the Borel-Cantelli lemma above. 

Hint B 1, B2, ... is a contracting sequence of events. 

1.2 Random Variables 

Definition 1.3 
If :F is a a-field on f2, then a function e : f2 --+ IR is said to be F -measurable if 

{� E B} E F  

for every Borel set B E B(IR). If (D, F, P) is a probability space , then such a 

function e is called a random variable. 

Remark 1.1 
A short-hand notation for events such as {e E B} will be used to avoid clutter. 

To be precise , we should write 

�wE f}: E (w) E B1 
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in place of{� E B}. Incidentally, {€ E B} is just a convenient way of writing 
the inverse image �-l (B) of a set. 

Definition 1.4 

The ri-field a(�) generated by a random variable � : n --t IR consists of all sets 
of the form {� E B}, where B is a Borel set in JR. 

Definition 1.5 

The a-field a {�i : i E J} generated by a family {�i : i E I} of random variables 
is defined to be the smallest a-field containing all events of the form { �i E B}, 
where B is a Borel set in IR and i E I. 

Exercise 1. 3 

We call f : IR � lR a Borel function if the inverse image j-1 (B) of any Borel 
set B in IRis a Borel set. Show that iff is a Borel function and € is a random 
variable, then the composition f (�) is ri (�)-measurable. 

Hint Consider the event {/ (�) E B}, where B is an arbitrary Borel set. Can this 
event be written as { � E A} for some Borel set A? 

Lemma 1.2 (Doob-Dynkin) 
Let� be a random variable. Then each ri (�)-measurable random variable TJ can 
be written as 

17 == f ( �) 
for some Borel function f : � --t JR. 

The proof of this highly non-trivial result will be omitted. 

Definition 1.6 

Every random variable � : n --+ IR gives rise to a probability measure 

Pe(B) = P{� E B} 

on IR defined on the a-field of Borel sets B E B(IR). We call Pe the distribution 
of �. The function F� : lR --+ [0, 1] defined by 

Fe ( x ) = P { € < x } 
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Exercise 1. 4 

Show that the distribution function F� is non-decreasing , right-continuous ,  and 

lim Fe (x) = 0, lim F� (x) = 1. 
x�-oo x�+oo 

Hint For example, to verify right-continuity show that Fe (xn) � Fe (x) for any de­
creasing sequence Xn such that Xn � x. You may find the results of Exercise 1.1 
useful. 

Definitio n 1.7 

If there is a Borel function fe : lR --t lR such that for any Borel set B C lR 

P{� E B} = l !£. (x) dx, 

then � is said to be a random variable with absolutely continuous distribution 

and f� is called the density of �· If there is a (finite or infinite) sequence of 
pairwise distinct real numbers XI, x2, ... such that for any Borel set B C lR 

P {� E B} = L P {�=xi}, 
XiEB 

then � is said to have discrete distribution with values XI, x2, . . • and mass 

p {�=Xi} at Xi· 

Exercise 1.5 

Suppose that � has continuous distribution with density f�. Show that 

if f� is continuous at x. 

Hint Express Fe (x) as an integral of fe· 

Exercise 1. 6 

Show that if � has discrete distribution with values x1, x2, . • . , then Fe is 
constant on each interval (s, t] not containing any of the xi's and has jumps of 
size P {�=xi} at each Xi· 

Hint The increment Fe ( t) - Fe ( s ) is equal to the total mass of the Xi's that belong 
to the interval [s, t). 
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)efinition 1.8 
fhe joint distribution of several random variables �1, . . . , �n is a probability 
neasure P�1 , ... ,�n on !Rn s uch that 

·or any Borel s et B in !Rn. If there is a B orel function /e1, ... ,(n : lRn --t �such 
;hat 

P{(6, ... , �n) E B} = lf€1, . • .  ,€n (xl, . .. , xn) dx1···dxn 

·or any Borel set B in !Rn, then /e1, ... ,(n is called the joint dens ity of �1 , . . .  , �n. 

)efinition 1.9 
\ random variable � : fl --+ � is said to be integrable if 

rhen 

L 1�1 dP < 00. 

E(O = l � dP 

�xists and is called the expectation of �· The family of integrable  random vari­
tbles � : r2 ---t � will be denoted by L1 or , in case of possible ambiguity, by 
S1(r2,F,P). 

:xamp le 1.3 
rhe indicator function lA of a set A is equal to 1 on A and 0 on the complement 
? \ A of A. For any event A 

Ne say that 17 : f2 --t IR is a step function if 
n 

TJ = 2:: TJilA;, 
i=l 

vhere 1]1 , . .. , TJn are real numbers and A1 , . . . , An are pairwise disjoint events .  
Chen 
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Exercise 1. 7 
Show that for any Borel function h : IR --+ JR. such that h (�) is integrable 

E(h(�)) = L h(x) dP€ (x). 

Hint First verify the equality for step functions h : IR--+ IR, then for non-negative ones 
by approximating them by step functions, and finally for arbitrary Borel functions by 
splitting them into p ositive and negative parts. 

In particular, Exercise 1 .  7 implies that if � has an absolutely continuous 
distribution with density f€ , then 

E (h (�)) = 1:00 h (x) f€ (x) dx. 

If� has a discrete distribution with (finitely or infinitely many) pairwise distinct 
values x1, x2, . .. , then 

E(h(�)) = Lh(xi)P{�=xi}. 
i 

Definition 1.10 
A random variable � : [2 --+ IR is called square integrable if 

Then the variance of � can be defined by 

var (f.) = L (�- E(0)2 dP. 

The family of square integrable random variables � : fl -t IR will be denoted 
by £2 ( [2, :F, P) or, if no ambig·uity is possible , simply by L2. 

Remark 1.2 
The result in Exercise 1 . 8 below shows that we may write E(�) in the definition 
of variance . 

Exercise 1. 8 

Show that if� is a square integrable random variable ,  then it is integrable .  
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Hint Use the Schwarz inequality 

(1.1) 

with an appropriately chosen 1J. 

Exercise 1. 9 

Show that if 7J : [} -t (0, oo) is a non-negative square integrable random vari­

able , then 

Hint Express E ( 7J 2) in terms of the distribution function F71 ( t) of 17 and then integrate 
by parts . 

1.3 Conditional Probability and Independence 

Definition  1.11 

For any events A, B E :F such that P (B) f 0 the conditional probability of A 
given B is defined by 

Exercise 1.10 

P(AIB) = 
P (A n B) 

P (B) . 

Prove the total probability formula 

for any event A E :F and any sequence of pairwise disjoint events B 1 , B2, .. . E :F 
such that B1 U B2 U · · · = f} and P(Bn ) :f. 0 for any n. 

Hint A=(AnB1)U(AnB2)U···. 

Defi n it ion 1.12 

Two events A, B E :F are called independent if 

P(A n B) = P(A)P(B). 

In general, we say that n events A1, . . •  , An E F are independent if 
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for any indices 1 < i1 < i2 < · · · < ik < n. 

Exercise 1.11 

Let P (B) =F 0. Show that A and B are independent events if and only if 
P (AIB) == P(A). 

Hint If P (B) =I= 0, then you can divide by it. 

Definition 1.13 

Two random variables e and TJ are called independent if for any Borel sets 

A, B E B (IR) the two events 

{ � E A} and { 1J E B} 
are independent . We say that n random variables e1 , ... , �n are independent if 
for any Borel sets B1 , ... , Bn E B (IR) the events 

are independent. In general, a (finite or infinite) family of random variables 
is said to be independent if any finite number of random variables from this 
family are independent. 

Proposition 1.1 

If two integrable random variables e, 1J : {} --+ IR are independent, then they are 
uncorrelated, i .e. 

E(erJ) = E(e)E(ry), 
provided that the product e11 is also integrable . If �1 , ... , �n {} ---t IR are 

independent integrable random variables , then 

provided that the product �1 e2 • • •  en is also integrable . 

Definition 1.14 

Two a-fields g and H contained in Fare called independent if any two events 

A E Q and BE 1i 
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are independent . Similarly, any finite number of a-fields 91, ... , 9n contained 
in F are independent if any n events 

are independent . In general , a (finite or infinite) family of a-fields is said to be 
independent if any finite number of them are independent. 

Exercise 1 .12 

Show that two random variables � and 17 are independent if and only if the 
a-fields a (�) and a (17) generated by them are independent . 

Hint The events in a (�) and a (TJ) are of the form {e E A}, and {17 E B}, where A 
and B are Borel sets. 

Somet imes it is convenient to talk of independence for a combination of 
random variables ar1d a-fields . 

Defini tio n 1.15 

We say that a random variable � is independent of a a-field g if the a-fields 

a (�) and g 

are independent . This can be extended to any (finite or infinite) family con­
sis ting of random variables or £1-fields or a combination of them both . Namely, 
such a family is called independent if for any finite number of random variables 
�1,  . . .  , �m and £1-fields 91, . . .  , 9n from this family the a-fields 

are independent . 

1.4 Solutions 

Solution 1.1 

If A1 c A2 c · · · , then 
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where the sets A1, A2 \ A1 , A3 \ A2, . . .  are pairwise disjoint. Therefore , by the 
definition of probability measure 

p (AI u (A2 \AI) u (A3 \ A2) u ... ) 
P (A1) + P (A2 \At)+ P (A3 \ A2) + · · · 

lim P (An). n--too 
The last equality holds because the partial sums in the series above are 

• 

P (At U · · · U An) 
P (An). 

If A1 ::J A2 ::J · · · , then the equality 

follows by taking the complements of An and applying De Morgan's law 

Solution 1.2 

Since Bn is a contracting sequence of events, the results of Exercise 1.1 imply 
that 

lim P (Bn) n--too 
lim P (An U An+I U · · · ) n-too 

< lim (P (An) +  P (An+l) + · · · ) n-too 
== 0. 

The last equality holds because the series E� 1 P (An) is convergent. The 
inequality above holds by the subadditivity property 

P (An U An+ 1 U · · ·) < P (An) + P (An+ 1 ) + · · · . 

It follows that P (B1 n B2 n · · · ) = 0. 

Solution 1.3 

If B is a Borel set in IR and f : IR --t IRis a Borel function, then f-1 (B) is also 
a Borel set. Therefore 

{f (�) E B} = {� E /-1 (B)} 
belongs to the a-field a(�) generated by �· It follows that the composition f (�) 
l� IT ( t"l-TnP��llr� hlP 
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Solution 1 . 4  

If x < y, then { � < x } C { � < y}, so 

Fe ( x ) == P { � < x} < P { � < y} == Fe (y) . 

This means that Fe is non-decreasing. 
Next, we take any sequence x1 > x2 > · · · and put 

Then the events 

lim Xn ==X. 
n---+oo 

form a contracting sequence with intersection 

It follows by Exercise 1.1 that 

Fe(x)=P{�<x}= lim P{�<xn}== lim Fe (xn)
· n--+oo n--+oo 

This proves that Fe is right-continuous .  
Since the events 

{� < -1} :> {� < -2} :J ... 

form a contracting sequence with intersection 0 and 

{� < 1} c {� < 2} c ... 

form an expanding sequence with union n, it follows by Exercise 1.1 that 

lim Fe (x ) == lim Fe ( -n ) == lim P {� < -n} == P (0) == 0, 
x---+ -oo n--+oo n--+oo 

lim Fe ( x) == lim Fe ( n) = lim P { � < n } == P ( {}) == 1, 
x--+oo n--+oo n--+oo 

since Fe is non-decreasing. 

Solution 1.5 
If� has a density fe, then the distribution function Fe can be written as 

F� (X) = p { { < X} = 1� A (y) dy. 

Therefore, if fe is continuous at x, then Fe is differentiable at x and 

d 
rl rr Fe (X) == f e (X) . 
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Solution 1. 6 

If s < t are real numbers such that Xi ¢ (s, t] for any i, then 

Fe ( t) - Fe ( s) == P { � < t} - P { � < s} == P { � E ( s , t] } == 0, 

i . e .  F� (s ) == Fe(t). Because Fe is non-decreasing , this means that Fe is constant 

on ( s, t]. To show that Fe has a jump of size P { � == Xi} at each Xi, we compute 

lim Fe ( t) - lim Fe ( s) == lim P { � < t} - lim P { � < s} 
t�xi s/'xi t�Xi s/xi 

== P{� <Xi}- P{� <Xi}= P{� ==Xi}· 

Solution 1. 7 

If h. is a step function, 

i=l 

where h1, . . .  , hn are real numbers and A1, . . . , An are pairwise disjoint Borel 
sets covering IR, then 

n n 
E (h (e)) = L hiE (lA, (0) = L hiP {e E Ad 

i==l i=l 

Next , any non-negative Borel function h can be approximated by a non­
decreasing sequence of step functions . For such an h the result follows by the 

monotone convergence of integrals. F inally, this implies the desired equality 
for all Borel functions h, since each can be split into its positive and negative 

parts , h = h+- h-, where h+ , h- > 0. 

Solution 1.8 

By the Schwarz inequality (1.1) with 17 == 1, if� is square integrable, then 

i.e . � is integrable. 

Solution 1. 9 

Let F(t) == P {17 < t} be the distribution function of TJ· Then 

E(rl) = 100 t2dF(t). 
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Since P('l] > t) == 1- F(t), we need to show that 

fooo t2 dF(t) = 2 fooo t ( 1- F(t)) dt ( 1.2) 

First , let us establish a version of (1.2) with oo replaced by a finite number a. 
Integrating by parts ,  we obtain 

lo a 
t2d(F( t) - 1) 

t2(F(t) - 1) �� - 2 1a 
t(F(t) - 1) dt 

-a2(1- F(a)) + 2 1a 
t( 1 - F(t))dt. 

We see that ( 1 .2) follows from ( 1 .3), provided that 

a2 (1- F(a)) -+ 0 ,  as a-+ oo. 

But 

0 < a2 ( 1- F(a) ) == a2 P(ry >a) < (n + 1)2 P(rJ > n) < 4n2 P(ry > n), 
where n is the integer part of a, and 

Hence, 

( 1 .3) 

(1.4) 

00 

n2 p (17 > n ) < r 'f/2 dP = L r 'f/2 dP--+ 0 (1.5) 
}{7J>n} k=n }{k<7J<k+l} 

as n--+ oo, which proves ( 1 .4) . 

Solution 1. 10 

Since B1 UB2 U · · · == fl, 

A ==  An (B1 U B2 U ···)=(An B1) U (An Bz) U · · · , 

where 
(An Bi) n (An B1) ==An (Bin B1) =An 0 = 0. 

By countable additivity 

P(A) == P ((AnB1)U(AnB2)U···) 

= P(AnB1)+P(AnB2)+··· 

== P (AIB1) P(B1) + P (AIB2) P(B2) + · · · . 
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Solution 1.11 
If P (B) :f 0, then A and B are independent if and only if 

P(A) = 
P(AnB)

. P(B) 

In turn , this equality holds if and only if P (A) == P (AlB) . 

Solution 1.12 
The a-fields a (�) and a (17) consist , respectively, of events of the form 

{�EA} and {TJEB}, 

1 5  

where A and B are Borel sets in JR. Therefore , a (�) and a (17) are independent 
if and only if the events {� E A}, and {17 E B} are independent for any Borel 
sets A and B, which in turn is equivalent to � and 17 being independent. 





2 
Conditional Expectation 

Conditional expectation is a crucial tool in the study of stochastic processes . 
It is therefore important to develop the necessary intuition behind this notion, 
the definition of which may appear somewhat abstract at first . This chapter is 
designed to help the beginner by leading him or her step by step through several 
special cases , which become increasingly involved ,  culminating at the general 
definition of conditior1al expectation . Many varied examples and exercises are 
provided to aid the reader 's understanding. 

2.1 Conditioning on an Event 

The first and simplest case to consider is that of the conditional expectation 
E (� IB) of a random variable � given an event B. 

Definition 2.1 
For any integrable random variable � and any event B E F such that P(B) =/; 0 
the conditional expectation of � given B is defined by 
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Example 2.1 

Three coins, lOp, 20p and 50p are tossed . The values of those coins that land 
heads up are added to work out the total amount � ·  What is the expected total 
amount � given that two coins have landed heads up? 

Let B denote the event that two coins have landed heads up. We want to 
find E (�IE ) . Clearly, B consists of three elements, 

B == {HHT , HTH, THH}, 

each having the same probability �· (Here H stands for heads and T for tails . ) 
The corresponding values of � are 

Therefore 

� (HHT) 

�(HTH) 

�(THH) 

10 + 20 = 30, 

10 +50= 60, 
20 +50= 70. 

E(t!B) == 
1 { t dP = � (30 60 70) = 531. � P(B) }B� i 8 

+ 
8 

+ 
8 3 

Exercise 2. 1 

Show that E (�ID) = E(�) . 

Hint The definition of E (�)involves an integral and so does the definition of E (�ID). 
How are these integrals related? 

Exercise 2. 2 
Show that if 

lA(w) = { � for wE A 
for w ¢A 

(the indicator function of A), then 

where 

E(IAIB) = P(AIB), 

P(AIB) = 
P(A n B) 

P(B) 
is the conditional probability of A given B. 

Hint Write JB lA dP as P(A n B). 
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2.2 Conditioning on a Discrete Random 
Variable 

1 9  

The next step to�rards the general definition of conditional expectation involves 
conditioning by a discrete random variable 17 with possible values y1, y2, . .. such 
that P {17 == Yn} :f 0 for each n. Finding out the value of 17 amounts to finding 
out which of the events {17 == Yn} has occurred or not . Conditioning by 17 should 
therefore be the same as conditioning by the events { 17 = Yn}. Because we do 
not know in advance which of these events will occur , we need to consider all 
possibilit ies , involving a sequence of conditional expectations 

A convenient way of doing this is to construct a new discrete random variable 
constant and equal to E (�I { 17 = Yn}) on each of the sets { 17 = Yn}. This leads 
us to the next definition .  

Definit ion 2.2 

Let � be an integrable random variable and let 17 be a discrete random variable 
as above . Then the conditional expectation of � given 17 is defined to be a random 
variable E( � l77) such that 

E ( � !11) ( W) == E (� I { 17 == Y n } ) if 17 ( W) == Y n 
for any n == 1 , 2 , . .. . 

Example 2.2 

Three coins, lOp, 20p and 50p are tossed as in Example 2.1. What is the 
condit ional expectation E (�117) of the total amount � shown by the three coins 
given the total amount 17 shown by the lOp and 20p coins only? 

Clearly, 17 is a discrete random variable with four possible values : 0, 10, 20 
and 30. We find the four corresponding conditional expectations in a similar 
way as in Example 2 . 1 :  

Therefore 

E(�l {17 == 0}) == 25, 
E (�I {17 = 20}) == 45, 

E (�177) (w) == 

25 
35 
45 
55 

E (�I { 17 == 10}) == 35, 
E (�I {77 == 30}) ==55. 

if 17(w) == 0, 
if TJ(W) = 10, 
if TJ(W) = 20, 
if 1} ( w) == 30. 
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Example 2.3 
Take [} == (0, 1] with the a-field of Borel sets and P the Lebesgue measure on 
(0, 1]. We shall find E(�ITJ) for 

if X E (0, l], 
if X E ( l, i), 
if X E ( �, 1]. 

Clearly, TJ is discrete "'ith three possible values 1, 2, 0. The corresponding events 
are 

For x E (0, �] 

{1J == 1} 
{1] = 2} 
{TJ == 0} 

(0, k], 
(!, �), 
(i, 1]. 

1 

[ 1 1 (3 2 
2 

E(€17J)(x) = E(€1 0, 3]) = i lo 2x dx = 27. 

a 1 2 1 { 3 2 14 E(�i1J)(x) = E(�i(3, 3)) = 1 J� 2x dx = 27. 
3 3 

And for x E ( f, 1] 

1 h1 38 
E(�I7J)(x) = E(�i(�, 1]) = 1 2 2x2dx = 27. 

3 3 

The graph of E(�I1J) is shown in Figure 2.1 together with those of� and "7· 

Exercise 2. 3 
Show that if rJ is a constant function, then E(�J1J) is constant and equal to 
E(e). 
Hint The event { 17 = c} must be 0 or Q for any c E Ilt 

Exercise 2. 4 
Show that 

_ { P (AIB) 
E(lAilB)(w) - P(Aj.O \B) 

for any B such that 1 =I P(B) =I 0. 

if w E B 
if w ¢ B 
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Figure 2.1. The graph of E (�117) in Example 2.3 
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Hint How many different values does 18 take? What are the sets on which these 
values are taken? 

Exercise 2. 5 
Assuming that 17 is a discrete random variable, show that 

E(E(� l7J)) = E(�). 

Hint Observe that i E((l71) dP = i e dP 
for any event B on which 17 is constant. The desired equality can be obtained by 
covering n by countably many d isjoint events of this kind . 

P roposit ion 2.1 
If � is an integrable random variable and 17 is a discrete random variable, then 

I) E (�117) is a (17) -measurable; 

2) For any A E a (17) 

i E(�i1J) dP = i � dP. 

Proof 
Suppose that rJ has pairwise distinct values Yl, Y2, ... . Then the events 

{ry = Yl},{� = Y2} , ... 

(2.1) 
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are pairwise disjoint and cover n. The a-field a ( 1J) is generated by these events, 
in fact every A E a ( 1]) is a countable union of sets of the form { TJ == Yn}. Because 
E (�117) is constant on each of these sets, it must be a (ry)-measurable. 

For each n we have 

1 E(�i1l) dP = 1 E(�l {17 = Yn}) dP 
{ T]=Yn} { 'f1=Yn} 

= r � dP. 
}{1J=Yn} 

Since each A E a (TJ) is a countable union of sets of the form { 1J = Yn}, which 
are pairwise disjoint, it follows that 

i E(�i1l) dP = i � dP, 

as required . D 

2.3 Conditioning on an Arbitrary Random 

Variable 

?roperties I) and 2) in Proposition 2.1 provide the key to the definition of the 
;onditional expectation given an arbitrary random variable TJ. 

)efinition 2.3 

Jet � be an integrable random variable and let 1J be an arbitrary random 
·ariable. Then the conditional expectation of� given 11 is defined to be a random 
ariable E(�ITJ) such that 

1) E (�117) is a (17)-measurable; 

2) For any A E a (TJ) 

i E(�i1l) dP = i � dP. 

�emark 2.1 

fe can also define the conditional probability of an event A E :F given 1J by 

here lA is the indicator function of A. 
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Do the conditions of Definition 2.3 characterize E (�117) uniquely? The 
lemma below implies that E (�117) is defined to within equality on a set of 
full measure . Namely, 

if� == �' a. s . ,  then E (�117) = E (�'117) a.s. (2.2) 

The existence of E ( � 111) will be discussed later in this chapter . 

Lemma 2.1 

Let (Jl, F, P) be a probability space and let Q be a a-field contained in F. If � 
is a 9-measurable random variable and for any B E Q 

l �dP == 0, 

then � == 0 a. s .  

Proof 

0 bserve that P { � > £} == 0 for any c > 0 because 

o < c p { � > £ } = r c dP < r � dP == o. 
}g>e} }{�>e} 

The last equality hol<is, since { � > c } E 9. Similarly, P { � < -£ } = 0 for any 
c > 0. As a consequence, 

p { -€ < � < € } == 1 

for any c > 0. 
Let us put 

An = {- � < � < ! } . 
Then P (An)= 1 and 

00 

n=l 
Because the An form a contracting sequence of events, it follows that 

P { � == 0} = lim P (An) = 1,  n-+oo 
as required. 0 
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One difficulty involved in Definition 2 .3 is that no explicit formula forE (�/7J) 
is given. If such a formula is known , then it is usually fairly easy to verify 
conditions 1) and 2) . But how do you find it in the first place? The examples 
and exercises below are designed to show how to tackle this problem in concrete 
cases. 

Example 2.4 
Take {2 == [0, 1] with the a-field of Borel sets ar1d P the Lebesgue measure on 
[0 , 1] . We shall find E(�/7J) for 

7J(x) = { � if x E (0, �), 
if x E ( �, 1). 

Here 1] is no longer discrete and the general Definition 2 . 3  should be used . 
First we need to describe the a-field a(7J) .  For any Borel set B C [�, 1] we 

have 
B == {7J E B} E a(7J) 

and 
(0� t) U B == { 7] E B} U { 7J == 2} E a ( 7J) . 

In fact sets of these two kinds exhaust all elements of a ( TJ) . The inverse image 
{ 1J E C} of any Borel set C C � is of the first kind if 2 ¢ C and of the second 
kind if 2 E C. 

If E(c;I7J) is to be l7 (77) -measurable , it must be constant on [0, �) because 17 
is . If for any x E [0, ! ) 

then 

E(�f7J) (x) E(�/[0, �)) 
1 

1 r '(x) dx P([O, 2)) J[o,t) 
1 1 1 
1 2 2x2 dx 
2 0 
1 
6 '  

11 EW7J)(x) dx = 11 '(x) dx, 
[0,2) [0,2) 

i . e .  condition 2) of Definition 2 . 3 will be satisfied for A == [0, �). 
Moreover , if E(�lr1) == � on [�, 1], then of course 

l E(,I7J)(x) dx = l '(x) dx 
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for any Borel set B C [ � , 1 ] . 
Therefore , we have found that 

E(� \ ry) (x)  = { t2 if X E (0 ,  � ) , 
if X E [ ! ,  1 ) .  

25 

Because every elerr1ent of a ( "7) is of the form B or [0 , � ) U B, where B C [ � , 1 ]  
is  a Borel set , i t  follows immediately that conditions 1 )  and 2) of Definition 2 . 3  
are satisfied . The graph of E(� l "7) is presented in Figure 2 . 2  along with those 

of � and "7 ·  
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0 1 

Exercise 2. 6 
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1 . . . . . . . . . 

X 0 1 X 0 

Figure 2 . 2 .  The graph of E (e i 'TJ) in Example 2 . 4  
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I :  

, , 
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Let fl == [0 , 1] with Lebesgue measure as in Example 2 . 4 .  Find the conditional 
expectation E (� I  "7) if 

1J ( x ) = 1 - l 2x - I I  . 

Hint First describe the a-field generated by 1J· Observe that 1J is symmetric about � .  
What does it tell you about the sets in a (17) ? \\that does it tell you about E (e ! 'TJ) if it 
is to be a (17)-measurable? Does it need to be symmetric as well? For any A in a (17) 

try to transform fA e dP to make the integrand symmetric . 

Exercise 2. 7 
Let n be the unit sqttare [0 , 1 ]  X [0, 1 ] with the a-field of Borel sets and p the 
Lebesgue measure on [0, 1] x [0, 1 ] . Suppose that � and "7 are random variables 
on Sl with joint density 

fE . n (X , y )  == X + '!./ 
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for any x ,  y E [0 , 1] , and f€ ,11 ( x ,  y )  = 0 otherwise . Show that 

E W77) = � :  �� . 

Hint It suffices (why?)  to show that for any Borel set B 

r � dP = r 2 + 31] dP. 
J { 1J E B } J { 1J E B } 3 + 6'T] 

Try to express each side of this equal ity as an integral over the square [0 , 1) x [0 , 1 ]  
using the joint density f£. , 11  ( x ,  y) . 

Exercise 2. 8 

Let n be the unit square [0 , 1} x [0 , 1] with Lebesgue measure as in Exercise 2 . 7 . 
Find E (� 1 17) if � and 7J are random variables on n with joint density 

3 
( 2 2 ) !c., (x , y) = 2 x + Y 

for any x , y E (0 , 1 ] , and f€ , 71 (x , y )  == 0 otherwise .  

Hint This is slightly harder than Exercise 2 .  7 because here we have to derive a formula 
for the conditional expectation . Study the solution to Exercise 2. 7 to find a way of 
obtaining such a formula. 

Exercise 2. 9 

Let f2 be the unit disc { (x , y)  : x2 + y2 < 1 }  with the a-field of Borel sets and 

P the Lebesgue measure on the disc normalized so that P ( fl) = 1, i . e .  

for any Borel set A C fl.  Suppose that � and 1J are the projections onto the x 
and y axes , 

� (x , y) == x,  

for any (x , y) E fl.  Find E (�2 J 7J) .  

'17 (x,  y)  == y 

Hint What is the joint density of e and 11? Use this density to transform the integral 

r e dP 
J { fJ E B } 

for an arbitrary Borel set B so that the integrand becomes a function of 17 · How is 
this function of 1J related to E ( €2 fry) ? 
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2. 4  Condit ioning on a u- Field 

We are now in a position to make the final step towards the general definition 
of conditional expectation . It is based on the observation that E (� 1 17) depends 
only on the a-field a (17)  generated by 17, rather than on the actual values of 11 ·  

P ro p os it ion  2. 2 

If a (ry) == a (ry' ) ,  then E(� I7J) == E(� j ry' )  a . s .  (Compare this with (2 .2 ) . ) 

P roof 

This is an immediate consequence of Lemma 2 . 1 .  0 

Because of Proposition 2 . 2  it is reasonable to talk of conditional expectation 
given a a-field . The definition below differs from Definition 2 . 3  only by using an 
arbitrary a-field g in place of a a-field a ( 17) generated by a randon1 variable 17 ·  

Defi n it ion  2.4 
Let � be an integrable random variable on a probability space (fl ,  F, P) , and 
let 9 be a a-field contained in :F. Then the conditional expectation of � given 
9 is defined to be a random variable E (� 19) such that 

1 ) E (� J Q) is 9-measurable ; 

2) For any A E 9 

i E (� IQ ) dP = i � dP. (2 .3 ) 

Remark 2. 2 

The conditional probability of an event A E :F given a a-field g can be defined 
by 

P (AI9) == E ( lA I9) ,  

where l A  is the indicator function of A .  

The notion of conditional expectation with respect to a a-field extends 
conditioning on a random variable 17 in the sense that 

where a(n) is the a-field generated by n .  
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P ro p os it ion 2 . 3  
E(� l 9 ) exists and is unique in the sense that if � 
E(�' l 9 ) a. s .  

P roof 
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�' a. s . , then E (� l 9 ) 

Existence and uniqueness follow, respectively, from Theorem 2 . 1 below and 
Lemma 2 . 1 .  0 

Th eorem 2 . 1 ( Ra d on-N i kodym ) 

Let ( [},  F, P) be a probability space and let 9 be a a-field contained in F. 
Then for any random variable � there exists a 9-measurable random variable 
( such that 

for each A E 9 .  

The Radon-Nikodym theorem i s  important from a theoretical point of view. 
However , in practice there are usually other ways of establishing the existence 
of conditional expectation , for example ,  by finding an explicit formula,  as in 
the examples and exercises in the previous section . The proof of the Radon­
Nikodym theorem is beyond the scope of this course and is omitted . 

Exercise 2. 1 0  

Show that if 9 == { 0 ,  S?} , then E(� l 9 )  == E(�) a.s .  

Hint What random variables are Q-measurable if Q == {0 , il} ? 

Exercise 2. 1 1  

Show that if � is 9-measurable, then E(� l 9) == � a.s . 

Hint The conditions of Definition 2 .4  are trivially satisfied by � if � is Q-measurable . 

Exercise 2. 12  

Show that if B E 9 ,  then 
E (E (� 1 9 ) I B) == E (� I B) .  

Hint The conditional expectation on either side of the equality involves an integral 
nvPr R How are these intee:rals related to one another? 
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2 . 5  G eneral Prop ert ies 

Proposi t ion  2 . 4 
Conditional expectation has the following properties : 

1 ) E(a� + b( I Q) == aE (� I Q ) + bE(( j Q) ( linearity) ; 

2 )  E(E (� I Q) )  == E(� ) ; 

3) E(�( I Q ) == �E(( I 9) if � is 9-measurable ( taking out what is known) ; 

4) E(� l 9 ) == E(�) if � is independent of Q ( an independent condition drops 
out) ; 

5)  E ( E (� I 9) 17-l)  == E ( � 11-l)  i f  1-l C 9 ( tower property) ; 

6 ) If � >  0, then E(� l 9 ) > 0 (positivity) .  

Here a , b are arbitrary real numbers , � '  ( are integrable random variables on a 

probability space (S! ,  F, P) and Q ,  1-l are a-fields on fl contained in F. In 3) we 

also assume that the product �( is integrable . All equalities and the inequalities 

in 6) hold P-a. s .  

P roof 
1 ) For any B E Q 

L (aEW9) + bE(( j Q) )  dP = a L E(� IQ) dP + b l E(( j 9) dP 

= a L � dP + b l ( dP 

= L (a� + b() dP. 

By uniqueness this proves the desired equality. 

2)  This follows by putting A == n in (2 .3) . Also , 2 )  is a special case of 5)  
when 1{ == {0 , n}. 

3) We first verify the result for � ==  1A , where A E Q .  In this case 
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for any B E 9 ,  which implies that 

by uniqueness .  In a similar way we obtain the result if ( is a 9-measurable step 

function , 
m 

� = L: ai lAi '  
j= l 

where Aj E 9 for j == 1 ,  . . . , m .  Finally, the result in the general case follows 
by approximating � by 9-measurable step functions . 

4) Since ( is independent of 9 ,  the random variables � and l n  are inde­
pendent for any B E 9 .  It follows by Proposition 1 .1 (independent random 

variables are uncorrelated) that 

� E(�) dP = E(�)E(IB) 

== E(�lB ) 

= � � dP, 

which proves the assertion . 

5 )  By Definit ion 2 . 4  

l E(� IQ) dP = l � dP 

for every B E Q, and 

l E(�!1l) dP = l � dP 

for every B E 1-l .  Because 1l c 9 it follows that 

l E(� I Q) dP = l E(�!1l) dP 

for every B E 1i .  Applying Definition 2 .4 once again, we obtain 

E(E(� I9) J 1l) = E(€ f1i) . 

6) For any n we put 

An = { E W9) < - � }  · 

Then An E Q .  If � >  0 a. s . ,  then 

0 < -� � dP = .£ E (� !Q) dP < - � P (An ) , 
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which means that P (An ) == 0. Because 

00 

{E WQ) < 0} = U An 
n= l  

it follows that 
P {E (� I Q ) < 0} == 0, 

completing the proof. 0 

The next theorem , which will be stated without proof, involves the notion 
of a convex function , such as max (1, x) or e - x , for example . In this course the 
theorem will be used mainly for l x l , which is also a convex function . In general , 
we call a function 'P :  IR -t lR co nvex if for any x , y E IR and any A E [0, 1] 

'P (.:\x + ( 1 - A) y) < A<p (x) + ( I - A) 'P (y) . 

This condition means that the graph of 'P lies below the cord connecting the 
points with coordinates (x ,  'P (x) ) and (y , 'P (y ) ) . 

Theorem 2 . 2  (Jensen ' s  I nequa l i ty) 
Let 'P : 1R -t IR be a convex function and let � be an integrable random variable 
on a probability space ( Jl , F, P) such that 'P (�) is also integrable . Then 

'P (E (� IQ ) ) < E ('P (�) 1 9) a. s .  

for any a-field g on n contained in F. 

2 . 6  Various Exercises on Condit ional 

Exp ectation 

Exercise 2. 13 

Mrs . Jones has made a steak and kidney pie for her two sons . Eating more 
than a half of it will give indigestion to anyone . While she is away having tea 
with a neighbour , the older son helps himself to a piece of the pie . Then the 
younger son comes attd has a piece of what is left by his brother . We assume 
that the size of each of the two pieces eaten by Mrs . Jones ' sons is random and 
uniformly distributed over what is currently available . What is the expected 
size of the remaining piece given that neither son gets indigestion? 
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Hint All possible outcomes can be represented by pairs of numbers , the portions of 
the pie consumed by the two sons . Therefore n can be chosen as a subset of the 
plane. Observe that the older son is restricted only by the size of the pie , while the 
younger one is restricted by what is left by his brother . This will determine the shape 
of fl .  Next introduce a probability measure on n consistent with the conditions of 
the exercise . This can be done by means of a suitable density over D. Now you are in 
a posit ion to compute the probability that neither son will get indigestion . What is 
the corresponding subset of fl? Finally, define a random variable on fl representing 
the portion of the pie left by the sons and compute the conditional expectation . 

Exercise 2. 1 4  

As a probability space take n == (0 , 1 )  with the a-field of Borel sets and the 
Lebesgue measure on (0 , 1 ) . Find E (� 117) if 

{ 2x 
TJ (x) = 

2x - 1 
for 0 < x < � '  
for � < x < 1 .  

Hint What do events in a ('T/) look like? What do a (17)-measurable random variables 
look like? If you devise a neat way of describing these , it will make the task of 
finding E (� ! 11 ) much easier . You will need to transform the integrals in condition 2 )  
of Definition 2 . 3  to find a formula for the conditional expectation . 

Exercise 2. 15 

Take n == [0 , 1) with the a-field of Borel sets and P the Lebesgue measure on 
[0 , 1 ] . Let 

for x E [0 , 1] . Show that 

for any x E [0 , 1] . 

ry(x)  == x ( l - x) 

E(� I TJ) (x)  = 
�(x) + � ( 1 - x) 

2 

Hint Observe that 'f/ (x ) = 'f/ ( 1  - x ) . What does it tell you about the a-field generated 
by 17? Is � (� (x ) + � ( 1 - x ) )  measurable with respect to this a-field? If so , it remains 
to verify condition 2) of Definition 2 .3 .  

Exercise 2. 16 

Let � '  'TJ be integrable random variables with joint density fe ,11 (x , y) .  Show that 

Hint Study the solutions to Exercises 2 .  7 and 2 . 8 . 
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Remark 2 . 3  

If we put 

where 

f ( I ) - !e ,TJ(x , y ) 
€ ,TJ  X y -

jTJ (y) 
' 

f11 (y) = l f€ .11(x , y) dx 

is the density of T] ,  then by the result in Exercise 2 . 16 

E (� 117) = l x fc11 (x i 1J) dx . 

We call !� ,11 (x l y) the conditional density of � given 7] .  

Exercise 2. 1 7  

Consider £2 (F) == £2 ( f2 ,  F, P) as a Hilbert space with scalar product 

£2 (F) x L2 (F) 3 (� , ( ) r-+ E(�() E IR. 
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Show that if � is a random variable in £2 (F) and Q is a a-field contained in 
F, then E(� IQ )  is the orthogonal projection of � onto the subspace £2 (Q)  in 
£2 (F) consisting of Q-measurable random variables . 

Hint Observe that condition 2 )  of Definition 2 .4  means that � - E(� IQ )  is orthogonal 
(in the sense of the scalar product above) to the indicator function l A  for any A E Q .  

2 .  7 Solutions 

Solution 2. 1 

Since P (Jt) == 1 and .fn � dP == E (�) , 

Solution 2. 2 

By Definition 2 . 1 

E (� 1 .0) = 
P(
�

) 
L � dP = E (�) . 

P(�) L lA dP 

P}R\ f. _ 
dP 
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Solution 2. 3 

P(A n B) 
P (B)  

P(A I B) . 

Ba sic Sto c h a stic P rocesses 

Since 1J is constant , it has only one value c E �' for which 

{rJ == c} = n.  

Therefore E (�111) is constant and equal to 

E(� l 11 ) (w) == E (� l {17 = c} ) = E (� I D) == E (�) 
for each w E D .  The last equality has been verified in Exercise 2 . 1 .  

Solution 2. 4 

The indicator function ln  takes two values 1 and 0. The sets on which these 
values are taken are 

{ ln  == 1 } == B ,  { IB  == o }  == n \ B . 

Thus , for w E  B 

as in Exercise 2 . 2 .  Similarly, for w E fl \ B 

Solution 2. 5 
First we observe that 

Is E(� IB) dP = Is ( P(�) L � dP) dP = L � dP (2 .4) 

for any event B .  
Since 1J is discrete, it has count ably rr1any values y1 , y2 , . • . . We can as­

sume that these values are pairwise distinct , i . e .  Yi :/; YJ if i :f: j .  The sets 

{ 1J == YI } , { 1J == Y2 } , . . . are then pairwise disjoint and they cover the whole 
space [}.  Therefore , by (2 .4) 

E(EW11)) = L EW11) dP 

= L!  E(�l {17 = Yn}) dP 
n {q=yn } 
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Solution 2. 6 

� hfi=Yn } � dP 
�a � dP 

== E (� ) .  
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First we need to describe the £7-field O" (ry) generated by 1] .  Observe that TJ is 
symmetric about k ,  

ry (x) = ry ( l - x) 

for any x E [0 , 1 ] . "Te claim that £7 ( TJ) consists of all Borel sets A C (0 , 1] 
symmetric about ! , i . e .  such that 

A ==  1 - A.  (2 . 5 )  

Indeed , if A is such a set , then A == { TJ E B} , where 

B == {2x : x E A n  [0 , � ] } 

is a Borel set , so A E O" (TJ) . On the other hand , if A E a (ry) , then there is a 
Borel set B in � such that A == { TJ E B } . Then 

so A satisfies (2 . 5 ) . 

x E A <=> TJ (x) E B 
<=> ry ( l - x) E B 
{::} 1 - X E A,  

We are ready to  find E (� fTJ) . If it is to be a (17)-measurable , it must be 
symmetric about ! , i . e .  

E (� 177) (x) == E (� 117) ( 1 - x)  

for any x E (0 , 1 ] . For any A E £7 (TJ) we shall transform the integral below so 
as to make the integrand symmetric about � :  
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� 1J 
2 2 2 

1 1 1 

0 1 X 0 1 X 0 

Figure 2 . 3 .  The graph of E (� f1J) in Exercise 2 . 6  

It follows that 

E (� 1 17) (x) == x2 + ( 1 - x) 2 . 
The graphs of � '  17 and E (� f1J) are shown in Figure 2 . 3 .  

Solution 2. 7 

Since 

{17 E B} = (0 , 1] x B 
for any Borel set B,  we have 

and 

f � dP = { { x fc11 (x , y) dx dy j{17EB} jB jR 
= { ( r x(x + y) dx) dy j B }[0 , 1 ]  
= l (� + � y) dy 

1 2 + 31] ! 1
2 + 3y 

3 6 dP = 3 6 if..11 (x , y) dx dy {17EB} + TJ B R + Y 

E(�I1J ) 

, , ' ' , 

, 

r � + !y ( r (X + y) dx ) dy j B + Y j(O , l ]  

In ( � + � y) dy . 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

1 X 

B ecause each event in u (17) is of the form {17 E B} for some Borel set B, this 

means that condition 2) of Definition 2 .3  is satisfied. The random variable �!�� 
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i s  a (ry) -measurable ,  so condition 1 ) holds too . It  follows that 

E (� l ) == 

2 + 377 . 7] 3 + 67] 

Solution 2. 8 
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We are looking for a Borel function F : 1R -t IR such that for any Borel set B 

f � dP = { F (11) dP. (2 . 6 ) 
j{17EB } j{ 17EB} 

Then E (� 117) == F (ry) by Definition 2 .3 . 
We shall transforrn both integrals above using the joint density Jc, ,ry (x , y ) 

in much the same way as in the solution to Exercise 2 .  7, except that here we 
do not know the exact form of F (y) . Namely, 

and 

f � dP = { { x fc11 (x , y) dx dy 
j{ryEB } JB JIR 

� r ( r X ( x2 + y2 ) dx) dy 
j B }[0 , 1 ] 

3 f ( 1 
1 

2) - - + -y  dy 2 B 4 2 

{ F (11) dP = { { F (y) J{ , 11 (x ,  y) dx dy 
j{1JEB} jB jTR 

� { F (y) ( { (x2 + y2 ) dx ) dy 
1 B lro , l ] 

� L F (y) (� + y2 ) dy . 

Then , (2. 6) will hold for any Borel set B if 

It follows that 

Solution 2. 9 

1 + 1 2 3 6 2 F ( ) = 
4 2 Y _ 

+ Y y � + y2 4 + 12y2 . 

We are looking for a Borel function F : 1R --t � such that for any Borel set 
B e �  

r e dP = r F (11) dP. 
j{ryEB }  j{ryEB}  

( 2 . 7) 
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Then , by Definition 2.3 we shall have E (�2 1 11) = F (rJ) . 
Let us transform both sides of (2 .  7) . To do so we observe that the ran­

dom variables � and 1J have uniform joint distribution over the unit disc 
[2 == { (x , y ) : x2 + y2 < I } ,  with density 

1 f€ , 11 (x , y) == -

7r 

if x2 + y2 < 1, and !�,11 (x , y ) == 0 otherwise . It follows that 

and 

{ e dP = { { x2 f€.11 (x , y) dx dy 
j{7JEB} jB jiR 

.!. r rv'1=i? x2 dx dy 
1r 1 B 1-y'1=ii2 
_!_ r ( 1 - yz ) 3/2 dy 
37r ln 

f F (ry) dP = { { F (y ) f€ .11 (x ,  y) dx dy j { 71EB } j B jiR 

.!_ { F (y ) /_ y'1=ii2 dx dy 
1r 1B - F-Y2  
2 { F (y) ( 1 - yz ) I /2 dy . 
7r jB 

If ( 2. 7) is to be satisfied for all Borel sets B ,  then 

1 F (y) = 3 ( l - yz ) .  

This means that 

1 
E (e i11) (x , y ) = F (17 (x , y) ) = F (y) = 3 ( 1 - y2 ) 

for any (x ,  y) in n .  

Solution 2. 1 0  

If 9 == { 0 ,  !?} , then any constant random variable is Q-measurable . Since 

l � dP = E (�) = l E (�) dP 

and 
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Solution 2. 1 1  

Because the trivial identity 

i � dP = i � dP 

holds for any A E 9 and � is Q - measurable , it follows that E(� l 9 ) == � a. s .  

Solution 2. 1 2  

By Definition 2 . 3 

L E W 9) dP = L � dP, 

since B E g.  It follows that 

Solution 2. 1 3  

E (E W9) IB) P �B) l E W 9) dP 

P �B) l � dP 

= E (� J B) . 
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The whole pie will be represented by the interval [0 , 1 ] . Let x E [0 , 1] be the 
portion consurr1ed by the older son . Then [0 , 1 - x] will be available to the 

younger one , who takes a portion of size y E (0 , 1 - x] . The set of all possible 

outcomes is 

fl == { (x , y) : x , y > O , x + y < 1 } .  

The event that neither of Mrs . Jones ' sons will get indigestion is 

A = { (x ,  y) E D :  x , y < � } . 
These sets are shown in Figure 2 .4.  If x is uniformly distributed over [0 , 1 ]  and 

y is uniformly distributed over [0 , 1 - x] , then the probability measure P over 

[} with density 

f(x , y) = 1 1 
- X  

will describe the joint distribution of outcomes (x , y) ,  see Figure 2 . 5 . 
Now we are in a position to compute 

P(A) = i f (x ,  y ) dx dy 

1 ! 1 
= 

{ 2 { 2 
1 

dx dy lo lo - x 
== ln v'2. 
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y 

0 1 

y 

The random variable 

X 

X 

Basic Stoch astic P rocesses 

Figure 2 . 4 .  The sets fl and A in Exer­
cise 2 . 13 

Figure 2.5. The density f (x , y)  in Exer­
cise 2 . 1 3  

� (x , y ) == 1 - x - y 

defined on n represents the size of the portion left by Mrs . Jones ' sons . Finally, 
we find that 

E(� I A) 

Solution 2. 14  

P�) i (1 - x - y) f(x ,  y) dx dy 

1 r t r t 1 - X - y dx dy In v'2 1 o 1 o 1 - x 

1 - In v'2 
ln 4 

The a-field a ( 1J) generated by 1J consists of sets of the form B U ( B + � )  for 
some Borel set B C [0 , � ) . Thus , we are looking for a a (1J)-measurable random 
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variable ( such that for each Borel set B C [0 , � ) 

r � (x)  dx = r ( (x)  dx .  
1Bu (B+ ! )  1Bu (B+ ! )  

Then E (� 117) = ( by Definition 2 .3 .  

Transforming the integral on the left-hand side , we obtain 

r � (x) dx = r 2x2 dx + j 2x2 dx 
1Bu(B+ i )  jB B+ ! 

L 2x2 dx + L 2 ( x + � )  2 dx 

= 2 L ( x2 + ( x + � )  2 ) dx . 

For ( to be a (17) -measurable it must satisfy 

( (x) = ( (x + ! )  

for each x E [0 , � ) .  Tl1en 

{ ( ( x) dP = { ( ( x)  dx + { ( (X) dx 
1Bu(B+ � )  jB jB+ ! 

= l ( (x) dx + l ( (x + �)  dx 

= l ( (x) dx + l ( (x) dx 

= 2 1 ( (x) dx. 

If (2 .8) is to hold for any Borel set B C [0 , � ) , then 

( (x) = x2 + (x + �) 2 
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(2 .8 )  

(2 .9) 

for each x E [0 , � ) . The values of ( (x) for x E [ � ,  1 )  can be obtained from (2 .9) . 
It follows that 

{ x2 + (x + 1 ) 2 
E (€ l1J) (x ) = ( (x) = 2 2 

(x - � )  + x2 
for 0 < x < � '  
for � < x < 1 .  

The graphs of € ,  77 and E (€ 117) are shown in Figure 2 .6 .  



42 Basic Stoch a stic P rocesses 

� 
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0 1 

Solution 2. 15  

"' 
2 2 

1 1 

X 0 1 X 0 

E(�(1J )  
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I 
I 

I 
I 

I 

Figure 2 . 6 .  The graph of E (� ITJ) in Exercise 2 . 14 
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Since 17(x) = 17 ( 1  - x) , the a-field a (7J) consists of Borel sets B c [0 , I ]  such 
that 

B == 1 - B ,  

where 1 - B == { 1 - :r : x E B} . For any such B 

L �(x) dx = � L �{x)  dx + � L �(x) dx 

� r �(x) dx + � r � ( 1  - x) dx 
jB 11 -B 

� L �(x)  dx + � L � ( 1 - x ) dx 

= r � (x) + � ( 1  - x) 
dx .  

jB 2 
Because � ( � ( x) + � ( 1 - x) )  is a ( 1J) -measurable , it follows that 

Solution 2. 1 6  

E (� 117) (x) = �(x) + � ( 1 - x ) . 
2 

We are looking for a Borel function F (y) such that 

{ � dP = f F (17) dP 
j{qEB} j{qEB } 

for any Borel set B in IR. Because F (17) is a (rJ)-measurable and each event 
in a (rJ)  can be written as {rJ E B} for some Borel set B ,  this will mean that 
D f .t"' l _ \ . D f _ \  
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Let us transform the two integrals above using the joint density of � and '1}:  

and 

f e ap = f f x fcry (x , y ) dx dy j { 17EB } j B jR 

= l (L x f£. ,11 (x , y) dx) dy 

{ F (ry) dP = { { F (y)  f£.,11 (x , y)  dx dy j{17EB }  j B jR 

= L F (y)  (L f£. ,11 (x , y ) dx) dy . 

If these two integrals are to be equal for each Borel set B ,  then 

It follows that 

Solution 2. 1 7  

F ( Y ) = J IR x 1£., 11 ( x ,  y ) dx . 
fiR !� ,11 (x ,  y) dx 

We denote by ( the orthogonal projection of � onto the subspace L2 (Q)  c 
L2 (F) consisting of 9-measurable random variables . Thus , � - ( is orthogonal 
to L2 (9) , that is , 

E[(� - ()1'] = 0 

for each 'Y E £2 (Q ) . But for any A E g the indicator function lA  belongs to 
L2 (Q ) ,  so 

E[(� - () lA) == 0. 
Therefore 

for any A E Q .  This n1eans that ( = E(� IQ) . 





3 
Martingales in Discrete Time 

3 . 1 Sequences of Random Variables 

A sequence �1 , �2 , . . .  of random variables is typically used as a mathematical 
model of the outcomes of a series of random phenomena, such as coin tosses 
or the value of the FTSE All-Share Index at the London Stock Exchange on 
consecutive business days . The random variables in such a sequence are indexed 
by whole numbers , which are customarily referred to as discrete time. It is 
important to understand that these whole numbers are not necessarily related 
to the physical time when the events modelled by the sequence actually occur . 
Discrete t ime is used to keep track of the order of events ,  which may or may 
not be evenly spaced in physical time . For example , the share index is recorded 
only on business days , but not on Saturdays , Sundays or any other holidays . 
Rather than tossing a coin repeatedly, we may as well toss 100 coins at a time 
and count the outcorrtes . 

Defi n it ion 3 . 1  
The sequence of nurr1bers �1 (w) , �2 (w) , . . .  for any fixed w E [} is called a 
sample path. 

A sample path for a sequence of coin tosses is presented in Figure 3. 1 ( + 1 
stands for heads and - 1  for tails) . Figure 3 .2 shows the sample path of the 
FTSE All-Share Index up to 1997. Strictly speaking the pictures should con-
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Figure 3 . 1 .  Sample path for a sequence of coin tosses 
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1991  1993 1995 1997 

Figure 3 . 2 . Sample path representing the FTSE All-Share Index up to 1 997 

sist of dots , representing the values �1 (w) , {2 (w) , . . .  , but it is customary to 

connect them by a broken line for illustration purposes . 

3 . 2  Filtrations 

As the time n increases , so does our knowledge about what has happened in 
the past . This can be modelled by a filtration as defined below. 

Defin it ion 3 . 2  
A sequence of a-fields �i ,  :F2 , . . . on [} such that 
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is called a filtration. 

Here Fn represent s our knowledge at time n .  It contains all events A such 
that at time n it is possible to decide whether A has occurred or not . As n 
increases , there will be more such events A, i . e .  the family :Fn representing our 
knowledge will become larger . (The longer you live the wiser you become ! )  

Exa m ple  3 . 1  
For a sequence �1 , �2 , . . . of coin tosses we take :Fn to be the a--field generated 
by �1, · · · , �n , 

Let 
A == { tl1e first 5 tosses produce at least 2 heads} . 

At discrete time n == 5, i . e .  once the coin has been tossed five times , it will be 
possible to decide whether A has occurred or not . This means that A E :F5 . 

However , at n = 4 it is not always possible to tell if A has occurred or not . If 
the outcomes of the first four tosses are , say, 

tails , tails , heads , tails , 

then the event A remains undecided . We will have to toss the coin once more 
to see \vhat happens . Therefore A ¢. F4 . 

This example illustrates another relevant issue . Suppose that the outcomes 
of the first four coin tosses are 

tails , heads, tails , heads . 

In this case it is possible to tell that A has occurred already at n = 4 ,  whatever 
the outcome of the fifth toss will be. It does not mean , however, that A belongs 
to F4 . The point is that for A to belong to F4 it must be possible to tell whether 
A has occurred or not after the first four tosses , no matter what the first four 
outcomes are. This is clearly not so in the example in hand.  

Exercise 3. 1 
Let �1 , �2 , . . . be a sequence of coin tosses and let Fn be the a--field generated 
by E1 , . . . , �n · For eacl1 of the following events find the smallest n such that the 
event belongs to Fn : 

A = {the first occurrence of heads is preceeded by no more than 10  tails } , 
B = {there is at least 1 head in the sequence � 1 , �2 , . . . } , 
C = {the first 100 tosses produce the same outcome} , 
n - f t h oro � ra l'l f"\  Yn £'\rO f h � n  ') h a � £l �  � n £l  ') f � ; 1 �  � YY\ £'\l'l ll' t h o  h r�f I; f A�CIO� l. 
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Hint To find the smallest element in a set of numbers you need to make sure that 
the set is non-empty in the first place . 

Suppose that �1 , �2 , . . . is a sequence of random variables and F1 , F2 , . . . is 
a filtration . A priori , they may have nothing in common . However , in practice 
the filtration will usually contain the knowledge accumulated by observing the 
outcomes of the random sequence , as in Example 3 .1 .  The condition in the def­
inition below means that Fn contains everything that can be learned from the 
values of �1 , . . . , �n · In general , it may and often does contain more information . 

Definit ion 3 . 3 
We say that a sequence of random variables �1 , �2 , . . .  is adapted to a filtration 
F1 , F2 , . . .  if �n is Fn-measurable for each n = 1 ,  2 ,  . . .  . 

Exa m p le 3 . 2  
If F n == u (  �I , . . .  , �n ) is the a-field generated by �1 , . . .  , �n , then �1 ,  �2 ,  • . .  is 
adapted to F1 , :F2 , . . . . 

Exercise 3. 2 
Show that 

is the smallest filtration such that the sequence �1 , �2 , . . . is adapted to F1 ,  
F2 , . . . . That is to say, if YI , Y2 , . . .  is another filtration such that �1 , �2 , . . .  is 
adapted to Yl , Y2 , . . .  , then :Fn C 9n for each n .  

Hint For o- ({1 , . . .  , �n ) to be  contained in Qn you need to show that �1 , . . .  , �n are 
9n-measurable. 

3 . 3  Martingales 

The concept of a martingale has its origin in gambling , namely, it describes 
a fair game of chance , which will be discussed in detail in the next section . 
Similarly, the notions of submartingale and supermartingale defined below are 
related to favourable and unfavourable games of chance .  Some aspects of gam­
bling are inherent in the mathematics of finance , in particular , the theory of 
financial derivatives such as options . Not surprisingly, martingales play a cru­
cial role there . In fact 1 martingales reach well beyond game theory and appear 
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in various areas of modern probability and stochastic analysis , notably, in dif­

fusion theory. First of all , let us introduce the basic definitions and properties 

in the case of discrete time . 

Defi n i t i on 3 . 4  

A sequence �1 , �2 , . . . of random variables is called a martingale with respect to 

a filtration :F1 , F2 , . . .  if 

1) �n is integrable for each n == 1 ,  2 ,  . . .  ; 

2)  � 1 , � 2 , . . . is adapted to F 1 , F2 , . . . ; 

3)  E(�n+I I Fn )  == �n a.s . for each n == 1 ,  2 ,  . . . . 

Exa m p le  3 . 3  

Let TJ1 , 7]2 , • • . be a sequence of independent integrable random variables such 

that E(TJn ) == 0 for all n == 1 ,  2 ,  . . . . We put 

�n 1]1 + · · · + 1Jn ' 
F n cr ( 7]1 , . . 

· 
, 1Jn ) 

· 

Then �n is adapted to the filtration Fn , and it is integrable because 

Moreover , 

E ( I � n I ) E ( I 1J1 + · · · + 1Jn I ) 
< E( I7Jl l )  + · · · + E( I1Jn l )  
< 00 .  

E(1Jn+l iFn) + E(�n iFn) 

E(1Jn+ 1 ) + �n 
�n , 

since 'TJn+ 1  is independent of Fn ( 'and independent condition drops out ' ) and 

�n is Fn-measurable ( ' taking out what is known' ) . This means that �n is a 

mart ingale with respect to Fn . 

Exa mple 3 . 4  

Let � be an integrable random variable and let F1 , F2 , . . .  be a filtration.  We 

put 
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for n = 1 ,  2 ,  . . . . 
Then �n is Fn-measurable , 

which implies that 

Bas ic  Stoc h a st i c  P rocesses 

E( l �n f )  < E(E ( I� I IFn ) )  = E( l � l ) < 00 ,  

and 

since Fn C Fn+1 (the tower property of conditional expectation ) . Therefore 'n 
is a martingale with respect to Fn . 

Exercise 3. 3 
Show that if �n is a n1artingale with respect to Fn , ther1 

Hint What is the expectation of E(�n+I IFn )?  

Exercise 3. 4 

Suppose that �n is a martingale with respect to a filtration Fn . Show that �n 
is a martingale with respect to the filtration 

Hint Observe that 9n C :Fn and use the tower property of conditional expectation . 

Exercise 3. 5 
Let �n be a symmetric random walk, that is , 

�n = 1]1 + · · · + 1Jn ,  

where ry1 , 172 , . • •  is a sequence of independent identically distributed random 
variables such that 

1 
P { 'Tln = 1 }  = P { 'Tln == - 1 } = -2 

(a sequence of coin tosses , for example) .  Show that �; - n is a martingale with 
respect to the filtration 

:F n = U ( 1]1 , 
· · • , TJn )  · 



3 . M a rt i n gales in  D i screte Ti me 

Hint You want to transform E (�;+1 - (n + 1 )  IFn ) to obtain �� - n .  Write 

��+1 (�n + 1Jn+1 ) 2 

17�+ 1 + 27]n+ l  �n + �� 
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and observe that �n i s  Fn -measurable , while 7Jn+ l is independent of Fn . To transform 
the conditional expectation you can ' take out what is known ' and use the fact that 
'an independent condition drops out ' .  Do not forget to verify that �; - n is integrable 
and adapted to Fn . 

Exercise 3. 6 

Let �n be a symmetric random walk and Fn the filtration defined in Exer­
cise 3 . 5 .  Show that 

(n == ( - 1  )n cos ( 1r�n ) 
is a martingale with respect to Fn . 

Hint You want to transform E( (  - l ) n + l cos (7r�n+l ) IFn )  to obtain { - l) n cos (7r�n ) .  
Use a similar argument as in Exercise 3 . 5  to achieve this . But ,  first of all , make sure 
that (n is integrable and adapted to Fn . 

Defi n it ion 3 . 5  
We say that �1 , �2, . . . is a supermartingale ( sub martingale) with respect to a 
filtration :F1, F2 , . .  � if 

1 )  �n is integrable for each n == 1 ,  2 ,  . . .  ; 
2) � 1 , � 2 , . . . i s  adapted to F1 , :F 2 , . . . ; 

3 ) E(�n+l l :Fn )  < �n (respectively, E(�n+ l f:Fn ) > �n ) a. s .  for each n == 1 ,  2 ,  . . . .  

Exercise 3. 7 
Let �n be a sequence of square integrable random variables . Show that if �n is 
a martingale with respect to a filtration Fn , then �� is a submartingale with 
respect to the same filtration . 

Hint Use Jensen 's inequality with convex function <p (x) = x2 . 

3 .4  Games of Chance 

Suppose that you take part in a game such as the roulette ,  for example . Let 
111 _ 1JfJ . . • . be a seauence of intetrrable random variables _ where n'" are vour 
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winnings (or losses) per unit stake in game n .  If your stake in each game is 
one ,  then your total \vinnings after n games will be 

� n == 'T/1 + . . . + 1Jn . 

We take the filtration 
�n == a(7J1 , . · . , ryn )  

and also put �0 == 0 and Fo == { 0 ,  J?} for notational simplicity. 
If rz. - 1 rounds of the game have been played so far , your accumulated 

knowledge will be represented by the a-field �n- 1 . The game is fair if 

E(�n i Fn- 1 ) == �n- 1 ' 

that is , you expect that your fortune at step n will on average be the same as 
at step n - 1 .  The game will be favourable to you if 

and unfavourable to you if 

for n == 1 ,  2, . . . . This corresponds to �n being, respectively, a martingale , a 
submartingale, or a supermartingale with respect to Fn , see Definitions 3 . 4 
and 3.5. 

Suppose that you can vary the stake to be an in game n .  (In particular , an 
may be zero if you refrain from playing the nth game ; it may even be negative if 
you own the casino a11d can accept other people 's bets . ) When the time comes 
to decide your stake an , you will know the outcomes of the first n - 1 games . 
Therefore it is reasonable to assume that O:n is Fn- 1 -measurable , where Fn-l  
represents your knowledge accumulated up to and including game n - 1 .  In 
particular , since nothing is known before the first game , we take Fa = { 0 ,  J?} . 

Defi n i t i o n  3 . 6  

A gambling strategy o:1 ,  o:2 , . . . (with respect to a filtration F1 , F2 , . . . ) is a 
sequence of random variables such that an is Fn- 1 -measurable for each n == 
1 , 2, . . . , where Fa == {0 , Sl} . (Outside the context of gambling such a sequence 
of random variables an is called previsible. ) 

If you follow a strategy a 1 , n2 , . . .  , then your total winnings after n games 
will be 

(n 0:1 'l71 + · · · + O:n1Jn 

a 1  (£1 - tn ) + . . .  + O:n (tn - tn- 1 ) . 
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We also put (0 == 0 for convenience . 
The following proposit ion has important consequences for gamblers . It 

means that a fair gan1e will always turn into a fair one , no matter which gam­
bling strategy is used . If one is not in a position to wager negative sums of 
money (e .g .  to run a casino) , it will be impossible to turn an unfavourable 
game into a favourable one or vice versa. You cannot beat the system!  The 
boundedness of the sequence nn means that your available capital is bounded 
and so is your credit limit . 

Proposit ion  3 . 1 

Let a 1 ,  a2 , . . .  be a gambling strategy. 

1 )  If 0:1 , 0:2 , . . . is a bounded sequence and �o ,  �1 , �2 ,  . . . is a martingale , then 
(0 , (1 , (2 , . . .  is a martingale (a fair game turns into a fair one no matter 
what you do) ; 

2) If a 1 , a2 , . . .  i s  a non-negative bounded sequence and �0 , �1 ,  �2 ,  . . .  i s  a super­
martingale , then (0 , (I , (2 ,  . . .  is a supermartingale (an unfavourable game 
turns into an unfavourable one) . 

3 ) If a 1 , a 2 ,  . . . is a non-negative bounded sequence and �0 , �1 , �2 ,  . . .  is a sub­
martingale , then (0 , (I , (2 ,  . . .  is a submartingale (a favourable game turns 
into a favourable one) . 

Proof 

Because O:n and (n- 1 are Fn_ 1 -measurable , we can take them out of the ex­
pectation conditioned on Fn- 1 ( 'taking out what is known ' ,  Proposition 2 .4) . 
Thus, we obtain 

If �n is a martingale , then 

E ((n- 1 + O:n (�n - �n- 1 ) IFn- 1 ) 

(n- 1 + an (E (�n iFn- 1 ) - �n- 1 ) · 

which proves assertion 1 ) . If �n is a supermartingale and O:n > 0, then 

proving assertion 2) . Finally, assertion 3) follows because 

if tn is a submart ingale and O:n > 0. D 
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3 . 5  Stopping Times 

In roulette and many other games of chance one usually has the option to quit 
at any time . The nu1nber of rounds played before quitting the game will be 
denoted by r. It can be fixed , say, to be T = 10 if one decides in advance 
to stop playing after 10  rounds , no matter what happens . But in general the 
decision whether to quit or not will be made after each round depending on 
the knowledge accumulated so far . Therefore r is assumed to be a random 
variable with values ir1 the set { 1 ,  2 ,  . . .  } U { oo } .  Infinity is included to cover the 
theoretical possibility (and a dream scenario of some casinos) that the game 
never stops . At each step n one should be able to decide whether to stop playing 
or not , i . e .  whether or not r = n. Therefore the event that r = n sl1ould be 
in the a-field :Fn representing our knowledge at time n. This gives rise to the 
following definition . 

Defi n it ion 3 . 7  

A random variable T with values in the set { 1 , 2 ,  . . .  } U { oo } is called a stopping 

time (with respect to a filtration :Fn) if for each n = 1 ,  2 ,  . . .  

Exercise 3. 8 

{r  = n}  E :Fn . 

Show that the following conditions are equivalent : 

I )  {r < n}  E :Fn for each n = 1 , 2 ,  . . .  ; 

2 ) {r = n }  E Fn for each n = 1 , 2 ,  . . .  . 

Hint Can you express { r  < n} in terms of the events { r  = k } , where k = 1 ,  . . .  , n? 
Can you express { r = 1t} in terms of the events { r < k } ,  where k = 1 ,  . . . , n? 

Example  3 . 5  (Fi rst h jtti ng time) 
Suppose that a coin is tossed repeatedly and you win or lose £ 1 , depending 
on which way it lands . Suppose that you start the game with , say, £5 in your 
pocket and decide to play until you have £ 10 or you lose everything. If en is 
the amount you have at step n ,  then the time when you stop the game is 

T = min {n : en = 10 Of 0} , 

and is called the first hitting time (of 10 or 0 by the random sequence en ) ·  It 
,. T"'>. � • • • 
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Fn == a (�1 , . . .  , �n ) - 1'his is  because 

{r == n} = {0 < �1 < 10} n . . .  n {0 < �n- 1  < 10} n {�n == 10 or 0 } . 

Now each of the sets on the right-hand side belongs to Fn , so their intersection 
does too. This proves that 

{r == n} E Fn 

for each n ,  so T is a stopping time . 

Exercise 3. 9 
Let �n be a sequence of random variables adapted to a filtration Fn and let 
B C lR be a Borel set . Show that the time of first entry of �n into B ,  

T == min {n : �n E B} 

is a stopping t ime . 

Hint Example 3 . 5  covers the case when B = ( - oo ,  0] U [ 10 ,  oo) . Exten d the argument 
to an arbitrary Borel set B .  

Let �n be  a sequence of random variables adapted to a filtration Fn and 
let T be a stopping time (with respect to tl1e same filtration) . Suppose that 
�n represents your winnings (or losses) after n rounds of a game . If you decide 
to quit after T rounds , then your total winnings will be �r · In this case your 
winnings after n rounds will in fact be �rl\n · Here a 1\ b denotes the smaller of 
two numbers a and b , 

a l\ b = min (a, b) . 

Defin it ion 3 . 8  
We call �rl\n the sequence stopped at r . It is often denoted by �� - Thus , for 
each w E f2 

�� (w) = �r (w )An (w) . 

Exercise 3. 1 0  

Show that if en is a sequence of random variables adapted to a filtration :Fn , 
then so is the sequence �rAn · 

Hint For any Borel set B express {�TAn E B} in terms of the events {�k E B} and 
{ r = k} , where k = 1 ,  . . .  , n .  
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We already know that it is impossible to turn a fair game into an unfair 
one , an unfavourable game into a favourable one , or vice versa using a gambling 
strategy. The next proposition shows that this cannot be achieved using a 
stopping time either (essentially, because stopping is also a gambling strategy) . 

Proposi t ion 3 .2 
Let r be a stopping time . 

1 )  If �n is a martingale , then so is �rAn · 

2) If �n is a supermartingale , then so is �rAn · 

3) If �n is a submartingale , then so is �rAn · 

Proof 

This is in fact a consequence of Proposition 3. 1 .  Given a stopping tirne r ,  we 
put 

if T > n ,  

if T < n. 

We claim that O:n is a gambling strategy (that is , an is Fn_ 1 -measurable ) .  This 
is because the inverse image {an E B} of any Borel set B C 1R is equal to 

0 E Fn- 1 

if 0 ,  1 � B ,  or to 

Jl E Fn- 1  

if 0, 1 E B, or to 

{ O:n == 1 } == { T > n} == { T > n - 1 } E Fn-1 

if 1 E B and 0 ¢ B,  or to 

{an == 0} == { T < n} == { T < n - 1 } E Fn- 1 

if 1 ¢ B and 0 E B. For this gambling strategy 

Therefore Proposition 3. 1 implies assertions 1 ) , 2) and 3) above . D 
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Exa m ple  3 . 6  

(You could try to beat the system if you had unlimited capital and unlimited 
time. ) The following gambling strategy is called ' the martingale ' . (Do not con­
fuse this with the general definition of a martingale earlier in this section . )  
Suppose a coin is flipJ>ed repeatedly. Let us denote the outcomes by ry1 ,  1]2 , . . . , 
which can take values + 1 (heads) or - 1  (tails ) .  You wager £ 1  on heads . If you 
win ,  you quit . If you lose , you double the stake and play again . If you win this 
t ime round , you quit . Otherwise you double the stake once more , and so on . 
Thus , your gambling strategy is 

Let us put 

if 111 = · · · == 17n- 1 == tails , 
otherwise . 

(n = 171 + 21]2 + · · · + 2n- 1 TJn 
and consider the stopping time 

r = min {n : 17n == heads} . 

Then (rAn will be yo11r winnings after n rounds . It is a martingale (check it ! ) . 
It can be shown that P { r < oo} == 1 (heads will eventually appear in the 

sequence 111 , 172 , . . .  with probability one) . Therefore it makes sense to consider 
(r . This would be yoltr total winnings if you were able to continue to play the 
game no matter how long it takes for the first heads to appear . It would require 
unlimited time and capital . If you could afford these , you would be bound to 
win eventually because (r == 1 identically, since 

- 1 - 2 - · · · - 2n- 1 
+ 2n == 1 

for any n .  

Exercise 3. 1 1  

Show that if a gambler plays ' the martingale ' , his expected loss just before the 
ultimate win is infinite , that is , 

E ((r - 1 ) == - 00 . 

Hint What is the probability that the game will terminate at step n, i . e .  that r == n? 
If r = n, what is (r- 1  equal to? This will give you all possible values of (r- 1  and 
their probabilities . No"� compute the expectation of (r- 1 · 
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3 . 6  O pt ional Stopping Theorem 

If �n i s  a martingale , then , in particular ,  

for each n .  Example 3 . 6  shows that E(�r )  is not necessarily equal to E(�1 ) for 
a stopping time r .  However , if the equality 

does hold , it can be very useful . The Optional Stopping Theorem provides 
sufficient conditions for this to happen . 

Theorem 3 . 1 (Opt ion a l  Stoppi ng Theorem)  

Let �n be a rr1artingale and r a stopping t ime with respect to a filtration :Fn 
such that the following conditions hold : 

1 )  r < oo a.s . ,  

2)  (r is integrable , 

3) E (�n l { r>n} ) -t 0 as n -t 00 .  

Then 

Proof 

Because 

it follows that 

Since �r/\n is a martirtgale by Proposition 3 . 2 ,  the first term on the right-hand 
side is equal to 

The last term tends to zero by assumption 3) . The middle term 
00 

E(�T l {T>n} )  = L E(�k l {T=k} )  
k=n+l 
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tends to zero as n � oo because the series 

00 

E (�r ) = L E(�d {r=k} ) 
k=l  

i s  convergent by 2) . I t  follows that E(�r ) == E(�1 ) , as required . 0 

Examp l e  3 . 7  ( Expectat ion  of the fi rst h i tt i ng t ime for a ra ndom wa l k ) 

Let �n be a syn1metric random walk as in Exercise 3 . 5 and let K be a positive 
integer . We define the first hitting time (of ±K by �n ) to be 

r == min {n : l �n l = K} . 

By Exercise 3 .9 r is a stopping time . By Exercise 3 . 5  we know that �� - n is a 
martingale . If the Optional Stopping Theorem can be applied , then 

This allows us to find the expectation 

since l �r I == K.  
Let us verify conditions 1 )-3)  of the Optional Stopping Theorem . 
1 )  We shall show that P { r == oo} = 0.  To this end we shall estimate 

P { r > 2K n} . We can think of 2K n tosses of a coin as n sequences of 2K 
tosses . A necessary condition for r > 2K n is  that no one of these n sequences 
contains heads only. Therefore 

P { T > 2K n}  < ( 1 -
2
;K ) n 

-+ 0 

as n � oo .  Because {r  > 2Kn} for n == 1 , 2 , . . .  is a contracting sequence of 
sets (i .e . {r > 2Kn} :J {r > 2K (n + 1 ) } ) ,  it follows that 

P {r = oo} P (01 {r > 2Kn}) 
lim P { r > 2K n} = 0 ,  n-+oo 

completing the argurrtent . 
2) We need to show that 
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Indeed , 
00 

E(r) L nP {r = n} 
n= l 

oo 2K 
L L (2K n + k)  P { r = 2K n + k}  
n=O k= l 

oo 2K 
< L L 2K ( n + 1 )  P { r > 2K n} 

n==O k== l 
oo ( 1 ) n 

< 4K2 � ( n + 1 )  1 - 22K 
< oo ,  

since the series 2:� 1 ( n + 1 )  qn is convergent for any q E ( - 1 ,  1 ) .  Here we have 
recycled the estimate for P {T > 2Kn} used in 2) . Moreover , �; == K2 ,  so 

E ( ! �; - r l ) < E (�; ) + E (r) 
K2 + E(r) 

< 00 .  

3)  S ince �� < K2 on {r > n} , 

E (�; 1 {r >n} ) < K2 P {r > n} --t 0 

as n --t oo .  Moreover , 

E (n1 { r>n} )  < E (r1 { r>n} ) --t 0 

as n --t oo .  Convergence to 0 holds because E (r) < oo by 2) and {r > n}  is 
a contracting sequence of sets with intersection { T == oo} of measure zero . It 
follows that 

as required . 

Exercise 3. 12 

Let �n be a symmetric random walk and Fn the filtration defined in Exer­
cise 3. 5. Denote by r the smallest n such that l �n l  == K as in Example 3 .7 .  

Verify that 
(n == (- 1 )

n
cos [?r (�n + K)] 

is a martingale (see Exercise 3 .6) . Then show that (n and r satisfy the con­
ditions of the Optional Stopping Theorem and apply the theorem to find 
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Hint The equality (, == ( - 1 ) '  is a key to comp uting E [(- 1 ) ' ]  with the aid of the 
Optimal Stopping Theorem . The first two conditions of this theorem are either obvious 
in the case in hand or have been verified elsewhere in this chapter . To make sure that 
condition 3 )  holds it may be helpful to show that 

Use Jensen 's  inequality with convex function <.p (x) == l x l  to estimate the left-hand 
side. Do not forget to verify that (n is a martingale in the first place. 

3 .  7 Solut ions 

Solution 3. 1 
A belongs to F1 1 , but not to F1o . The smallest n is 1 1 .  
B does not belong to Fn for any n .  There is no smallest n such that B E :Fn . 
C belongs to :F1oo , but not to F99 .  The smallest n is 100 .  
Since D == 0 ,  it belongs to  :F n for each n == 1 ,  2, . . . . Here the smallest n i s  1 .  

Solution 3. 2 
Because the sequence of random variables �1 ,  �2 , . . . is adapted to the filtration 
91 ,  92 , . . . , it follows that �n is 9n-measurable for each n. But 

so �1 , . . .  , �n are 9n-rrteasurable for each n . As a consequence , 

for each n .  

Solution 3. 3 
Taking the expectation on both sides of the equality 

we obtain 

for each n .  This proves the claim. 

Solution 3. 4 
The random variables �n are integrable because �n is a martingale with respect 
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to Fn . Since 9n is the a-field generated by €1 , . . .  , �n , it follows that �n IS 

adapted to Yn · Finally, since 9n C Fn , 

�n E(�n l 9n )  
E(E(�n+I IFn ) l 9n ) 
E(�n+ l iYn ) 

by the tower property of conditional expectation (Proposition 2.4) . This proves 
that �n is a martingale with respect to 9n . 

Solution 3. 5 

Because 
�� - n = ( 7]1 + · · · + 1Jn ) 2 

- n 

is a function of 771 ,  . . .  , 1Jn , it is measurable with respect to the a-field Fn gen­
erated by 'T}l , • • •  , TJn , i . e .  �� - n is adapted to Fn .  Since 

it follows that 
E( J �� - n l ) < E(�� ) + n < n 2 + n < oo, 

so �� - n is integrable for each n .  Because 

��+1 = 77�+ 1 + 21Jn+l €n + €� , 

where �n and �� are Fn-measurable and "ln+ I is independent of Fn , we can use 
P roposition 2 .4 ( 'taking out what is known' and ' independent condition drops 
out ' ) to obtain 

This implies that 

E(77�+1 1Fn )  + 2E(1Jn+ l�n iFn )  + E(�� IFn ) 
E(77;+l )  + 2�nE(17n+1 ) + €� 
1 + c;� . 

E(��+l - n - l lFn) = �� - n ,  

so �� - n is  a martingale . 

Solution 3. 6 
Being a function of �n , the random variable (n is Fn-measurable for each n ,  
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since �n is . Because l (n l  < 1 ,  it is clear that (n is integrable . Because fJn+l  is 
independent of Fn and �n is Fn-measurable , it follows that 

using the formula 

E ( ( - 1 ) n+ l  cos [7r (�n + "7n+l  )] I Fn ) 
( - l )n+l  E (cos (7r�n ) cos (7rfJn+l ) IFn ) 

- ( - 1 ) n+l  E (sin ( 1T�n ) sin ( 1rTJn+l ) IFn ) 

( - 1 )n+1 cos (n�n ) E (cos (7r1Jn+l ) )  

- ( - 1 ) n+ 1 sin ( 7r � n ) E (sin ( 7r7Jn+ 1 ) ) 
( - l ) n 

COS (1T�n) 

(n , 

cos (a + {3) == cos a cos {3 - sin a sin ,B .  

To compute E (cos ( ?TTJn+l ) )  and E (sin ( 1TTJn+l ) )  observe that fJn+l = 1 or - 1  
and 

cos 7r = cos ( - 1[ ) == - 1 '  
sin 1r == sin ( - 1r ) = 0. 

It follows that (n is a martingale with respect to the filtration Fn .  

Solution 3. 7 

If �n is adapted to :F n , then so is �; . Since �n = E ( �n+ 1 l F n ) for each n and 
t.p (x) = x2 is a convex function , we can apply Jensen's inequality (Theorem 2 .2) 
to obtain 

�� = [E (�n+I IFn )]2 < E (��+ I IFn ) 
for each n .  This means that �; is a submartingale with respect to :Fn · 

Solution 3. 8 

1 ) =} 2) . If r has property 1 ) ,  then 

{r < n} E Fn 

and 

so 

{r < n - 1 } E Fn - t C :Fn , 

{ r = n } = { T < n } \ { r < n - 1 }  E :Fn . 
2) =} 1) .  If r has property 2) , then 

� T = k 1 � :F1. C :F., 
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for each k == 1 ,  . . .  , n .  Therefore 

{r  < n}  == {r  == 1 } U · · · U {r  == n }  E Fn . 

Solution 3. 9 
If 

then for any n 

7 = min { n : �n E B}  , 

{r == n} = {�1 � B }  n · · · n {�n- 1 � B} n {en E B} . 

Because B is a Borel set , each of the sets on the right-hand side belongs to the 
a-field Fn = a (�1 ,  . . . , �n ) , and their intersection does too . This proves that 
{ T = n}  E Fn for eacl1 n ,  so T is a stopping time . 

Solution 3. 10  

Let B C IR be a Borel set . We can write 
n 

{�r/\n E B} = {en E B , r > n} U U {ek E B , r = k} , 
k= l 

where 
{�n E B , T > n} == {�n E B } n {T > n} E Fn 

and for each k == 1 ,  . . . , n 

{ �k E B,  T == k } = { �k E B}  n { T = k} E :Fk C :Fn . 

It follows that for each n 

as required . 

Solution 3. 1 1  

The probability that �the martingale ' terminates at step n is 
1 

P {T == n} = -
2n 

( n - 1 tails followed by heads at step n) . Therefore 
00 

n=l 
00 

""' ( n-2 ) 1 == � -1 - 2 - · 
· 

· - 2 
2n 

n=l 
oo 2n- 1 - 1 - � 2n = - 00 . 
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Solution 3. 1 2  

The proof that (n is a martingale is almost the same as in Exercise 3 .6 .  We 
need to verify that (n and r satisfy conditions 1 )-3) of the Optional Stopping 
Theorem . 

Condition 1 )  has in  fact been verified in Example 3 . 7 . 
Condition 2 )  holds because l (r l  < 1 ,  so E( l (r l ) < 1 < oo . 
To verify condition 3)  observe that l (n l  < 1 for all n ,  so 

j E ((n 1 { r >n} ) j < E ( l (n l l { r >n} ) 
< E( 1 { r>n} ) 

P{r > n} .  

The family of events { r > n } , n == 1 , 2 , . . .  is a contracting one with intersection 
{ r == oo } . It follows that 

j E ((n 1 {T >n} ) j < P{r > n}  '\J P{r == oo} 

as n --+ oo .  But 
P{r = oo} == O  

by 1 ) ,  completing the proof. 
The Optional Stopping Theorem implies that 

Because �r == K or - K, we have 

(T == ( - 1 ) T cos [n (K + �r ) ]  = ( - 1 ) r . 

Let us compute 

It follows that 

1 
E ((1 )  = - 2 (cos [tr ( 1  + K)] + cos [tr ( - 1 + K)] ) 

cos (nK) = ( - 1 )K .  





4 
Martinga le Inequalities and Convergence 

Results on the convergence of martingales provide an insight into their structure 
and have a multitude of applications .  They also provide an important inter­
pretation of martingales . Namely, it turns out that a large class of martingales 
can be represented in the form 

( 4 . 1 )  
where � = limn �n is an integrable random variable and :F1 , :F2 , • • • is the filtra­
tion generated by �1 , �2 , . • .  , see Theorem 4 .4 below. This makes it possible to 
think of �1 , �2 , . . .  as the results of a series of imperfect observations of some 
random quantity � - As n increases , the accumulated knowledge Fn about � 
increases and �n bec<lmes a better approximation , approaching the observed 
quantity � in the limit .  

We shall begin with a few classical inequalities for martingales , known as 
the Doob inequalities . They provide the tools we shall need to study the con­
vergence of martingales and ,  later on , the properties of stochastic integrals . 
Then we shall present a classical result known as Doob 's Martingale Conver­
gence Theorem, which provides the limit limn �n of a martingale . However , 
Doob 's theorem has one inconvenient feature . It guarantees only that �n con­
verges a.s . ,  even though the limit is known to be an integrable random variable . 
However , to obtain (4. 1 )  we need convergence in L1 , which gives rise to a condi­
tion called uniform integrability. This condition and its consequences , including 
( 4 .3) , will be studied in the second section . Finally, as an example of an appli­
cation reaching beyond the theory of martingales , we present an elegant proof 
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4 . 1 Doob 's Mart ingale Inequalities 

Propos it ion 4 . 1 ( Doo b ' s  m axi m a l i neq u a l i ty) 

Suppose that �n ,  n E N, is a non-negative submartingale (with respect to a 

filtration Fn) ·  Then for any .\ > 0 

).P ( Tt:�k > ).) < E ( �n l {  m ax k $ n  h > A} ) ' 

where l A  is the characteristic function of a set A .  

Proof 

We put �� == max �k for brevity. For ,\ > 0 let us define k<n 

7 == min { k < n : �k > A} , 

if there is a k < n such that �k > .\ ,  and 7 = n otherwise . Then 7 is a stopping 
time such that r < n a.s .  Since �n is a submartingale , 

But 

Observe that if e� > A,  then er > A. Moreover , if �� < A, then 7 == n , and so 
�r = �n· Therefore 

It follows that 

completing the proof. D 

Th eorem 4 . 1  (Doob 's  m axi m a l  £2 i n eq ua l ity) 

If �n ,  n E N, is a non-negative square integrable submartingale (with respect 

to a filtration :Fn) , then 

2 
E T!; �k < 4EI�n 1 2 · (4 . 2)  
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Proof 
Put f� == maxk:Sn �k · By Exercise 1 . 9 ,  Proposition 4 . 1 , the Fubini theorem and 
finally the Cauchy-Schwarz inequality 

E � �� 1 2 = 21= 
tP (�� > t) dt < 2100 

E (�n l {(� > t } ) dt 

2 {oo ( { �n dP) dt = 2 { �n ( {(� dt) dP lo }{�� > t } J n lo 
2 L �n��dP = 2E (�n�� )  < 2 ( E l en l 2 ) 

1 12 ( E 1 e� 1 2 ) 
1 12 

Dividing by ( E l e� l 2r12 , we get (4 .2) . D 

The proof of Doob 's Convergence Theorem in the next section hinges on an 
inequality involving the number of upcrossings. 

Defi n i t ion 4 . 1 

Given an adapted sequence of random variables �1 , �2 , . . .  and two real numbers 
a < b, we define a garnbling strategy a1 , a2 , . . . by putting 

and for n == 1 , 2, . . . 

1 
1 
0 

if O:n == 0 and �n < a,  
if O:n = 1 and �n < b ,  
otherwise . 

It will be called the npcrossings strategy. Each k == 1 ,  2 ,  . . . such that ak == 1 
and ak+ 1 = 0 will be called an upcrossing of the interval [a , b] . The upcrossings 
form a (finite or infinite) increasing sequence 

U1 < U2 < · · .  · 

The number of upcrossings made up to time n ,  that is , the largest k such that 
Uk < n will be denoted by Un [a , b] (we put Un [a , b] == 0 if no such k exists ) .  

The meaning of the above definition is this . Initially, we refrain from playing 
the game and wait until �n becomes less than a. As soon as this happens , we 
start playing unit stakes at each round of the game and continue until �n 
becomes greater than b. At this stage we refrain from playing again , wait until 
�n becomes less than a,  and so on . The strategy O:n is defined in such a way 
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that an == 0 whenever we refrain from playing the nth game, and a n == 1 

otherwise . During each run of consecutive games with an == 1 the process �n 
crosses the interval [a. , b] , starting below a and finishing above b. This is what 
is meant by an upcrossing . Observe that each upcrossing will increase our total 
winnings by at least b - a.  For convenience , we identify each upcrossing with 

its last step k ,  such that o:k = 1 and ak+ 1 == 0. A typical sample path of the 
upcrossings strategy is shown in Figure 4 . 1 .  

Exercise 4 . 1 

Verify that the upcrossings strategy an is indeed a gambling strategy. 

Hint You want to prove that On is Fn - 1 -measurable for each n .  Since the upcrossings 
strategy is defined by induction , a proof by induction on n may be your best bet . 

Lem ma 4 . 1 { U pcross i ngs I nequa l ity) 
If �1 ,  �2 , . . .  is a supermartingale and a < b, then 

(b - a)E(Un [a ,  b] ) < E( (�n - a) - ) . 

By x - we denote the negative part of a real number x ,  i . e .  x -
= max {0 ,  - x } . 

Proof 
Let 

(n = n 1 (€1 - �o )  + · · · + O'.n (�n - �n- 1 ) 

be the total winnings at step n == 1 ,  2 ,  . . .  if the upcrossings strategy is followed , 
see Figure 4 . 1 .  It wil l be convenient to put (0 == 0 .  By Proposition 3 . 1  (one 
cannot beat the system using a gambling strategy) (n is a supermartingale . 

Let us fix an n and put k = Un [a, b] , so that 

Clearly, each upcrossing increases the total winnings by b - a,  

for i ==  1 ,  . . . , k .  (We l)Ut u 0  = 0 for simplicity. ) Moreover , 

It follows that 

(n > (b - a) Un [a , b] - (�n - a) - .  
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Figure 4. 1 .  Typical paths of �n , On and (n ; upcrossings are indicated by bold lines 

taking the expectation on both sides , we get 

E ((n ) > (b - a)E(Un [a ,  b] ) - E( (�n - a) - ) . 

But (n is a supermartingale , so 

whicl1 proves the Upcrossings Inequality. 0 

4 . 2  Doob's Martingale Convergence Theorem 

Theorem 4 . 2  (Doob ' s  Marti nga le Convergence Theorem ) 
Suppose that �1 , �2 , . . . 1s a supermartingale (with respect to a filtration 
F1 , :F2 , .. . . ) such that 

sup E ( l �n l ) < oo .  
n 

Then there is an integrable random variable � such that 

lim �n = � a. s . n-4oo 
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Rem a rk 4 . 1 

In particular , the theorem is valid for martingales because every martingale is a 
supermartingale . It is also valid for submartingales , since �n is a submartingale 
if and only if -�n is a supermartingale . 

Rema rk 4 . 2  

Observe that even though all the �n as well as the limit � are integrable random 
variables , it is claimed only that �n trends to � a.s .  Note that no convergence 
in £1 is asserted . 

P roof (of Doob 's  M a rt i nga le Convergence Th eorem ) 

By the Upcrossings I11equality 

where 

M = sup E ( I�n l ) < oo .  
n 

Since Un [a , b] is a non-decreasing sequence , it follows that 

E ( lim lln [a , bJ) = lim E (Un [a , b] ) < � + 
l a l < oo .  n-+oo n-too - a 

This implies that 

P { lim Un [a , b] < oo } = 1 .  n--too 

for any a < b .  Since the set of all pairs of rational numbers a < b i s  countable , 
the event 

A = n {}�� Un [a , b] < oo } (4 .3) 
a < b  rational 

has probability 1 .  (The intersection of countably many events has probability 1 
if each of these events has probability 1 . ) 

We claim that the sequence �n converges a. s .  to a limit � .  Consider the set 

B = { lim inf �n < lim sup �n } C [} n n 

on which the sequence �n fails to converge . Then for any w E B there are 

rational numbers a ,  b such that 

lim inf �n (w)  < a < b < lim sup �n (w) , n n 
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implying that limn-+oo Un [a , b] (w) == oo .  This means that B and the event A in 

(4 .3 )  are disjoint , so P(B) == 0 , since P(A) == 1 ,  which proves the claim . 

It remains to show that the limit � is an integrable random variable . By 

Fatou 's lemma 

E ( 1 � 1 ) E (limn
inf l �n l ) 

< lim inf E ( l �n \ )  
n 

< sup E ( l �n l )  < co .  
n 

This completes the proof. 0 

( Exercise 4. 2 
\ Show that if (n is a non-negative supermartingale , then it converges a. s .  to an 
I \ integrable random variable . 

�: To appl( Doob 's Theorem all you need to verify is that the sequence �n 1s 
bo�ded in L , i . e .  the supremum of E ( i �n i ) is less than oo .  

-� 

4 . 3  Uniform Integrability and L1 Convergence 

of Martingales 

The conditions of Doob 's  theorem imply pointwise (a.s . ) convergence of martin­
gales . In this section we shall study convergence in £1 . To this end we introduce 
a stronger condition called uniform integrability. Proposition 4 . 2  shows that it 
is a necessary condition for £1 convergence . In Theorem 4 .2  we prove that uni­
form integrability is in fact sufficient for a martingale to converge in L 1 . This 
enables us to show that each integrable martingale is of the form E (� IFn ) · As 
an application we give a martingale proof of Kolmogorov 's 0-1 law.  

Exercise 4. 3 
Show that a random variable � is integrable if and only if for every e > 0 there 

exists an M > 0 such that 

{ 1 � 1 dP < c . l{ le i >M} 
Hint Split n into two sets: { 1� 1 > M }  and { le i < M} . The integrals of l e i over these 
sets must add up to E ( I� I ) .  As M increases, one of the integrals increases, while the 
othPr onP. decreases . Investigate their limits as M -+ oo .  
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Thus , for any sequence �n of integrable random variables and any E > 0 

there is a sequence of numbers Mn > 0 such that 

1 l �n l dP < C .  
{ len J >Mn }  

If the Mn are independent of n ,  then we say that the sequence �n is uniformly 
integrable . 

Defin ition  4 . 2  
A sequence �1 , �2 , . . . of random variables is called uniformly integrable if for 
every c > 0 there exists an M > 0 such that 

for all n = 1 , 2 ,  . . . . 

Exercise 4. 4 

{ l �n l  dP < c J{ ien I >M} 

Let {} = [0 , 1 ]  with the a-field of Borel sets and Lebesgue measure . Take 

�n == n 1 (O , ! ) .  
Show that the sequence �I , �2 , . . •  is not uniformly integrable .  

Hint What i s  the integral of en over {en > M} if n > M? 

Proposition 4 .2  
Uniform integrability is a necessary condition for a sequence �1 , �2 , . . .  of inte­
grable random variables to converge in L1 . 

Lem ma 4 .2  
If � is integrable , the11 for every £ > 0 there is a � > 0 such that 

P(A) < 6 =} i I � I dP < c .  

Proof (of Lem-ma 4 .2) 
Let c > 0. Since � is integrable, by Exercise 4.3 there is an M > 0 such that 

f. . _ 1{ 1  dP < ! . 
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Now 

£ 1 � 1 dP 

Let J = 2M .  Then 

as required . 0 

Exercise 4 . 5 

! 1 � 1 dP + ! 1 � 1 dP 
An{ I � I :S M } An { l e i > M }  

< ! M dP + { 1 � 1 dP 
A j{ I � I > M } 

c 
< MP(A) + 2 . 

P(A) < 6 =* i I �  
I dP < c ,  

75 

Let � be an integrable random variable and ;:i ,  F2 , . . . a filtration . Show that 
E (� IFn ) is a uniformly integrable martingale . 

Hint Use Lemma 4 . 2 .  

Proof (of Propos it ion 4 . 2 )  

Suppose that €n � � in L1 , i .e .  E l�n - � � -4 0 .  We take any c > 0 .  There is an 
integer N such that 

By Lemma 4.2 there is a 6 > 0 such that 

P(A) < c5 =* i I� I dP < � .  
Taking a smaller l5 > 0 if necessary, we also have 

P(A) < c5 =* L l �n l dP < c for n = l ,  . . . , N. 

We claim that there is an M > 0 such that 

P { f €n l > M} < 8 

for all n .  Indeed , since 

E ( l �n D > { l �n l  dP > MP { I�n l > M} , 
j{ l en i >M} 

it suffices to take 1 M = t: sup E ( l en D . 
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:Because the sequence �n converges in L 1 ,  it is bounded in L1 , so the supremum 

s < oo.)  
Now , since P { l �n l > M} < 6,  

{ l �n l dP < { I � I dP + { l �n - � �  dP 
J{if,n i >M} J{ l €n i >M} J{ l €n i >M} 

< 
{ l � l dP + E ( l �n - � l ) J{ l {n I >M} 

c c 

< 2 + 2 == € .  
or any n > N and 

{ l �n l dP < c 
j{ l en i >M} 

or any n = I ,  . . .  , N,  completing the proof. 0 

:xercise 4. 6 
)how that a uniformly integrable sequence of random variables is bounded in 
r 1 • -' ' Le .  

sup E ( I�n l ) < oo .  
n 

fint Write E ( l �n f )  as the sum of the integrals of J�n l over { J �n l  > M} and { l�n )  < M} . 

Exercise 4 .6 implies that each uniformly integrable martingale satisfies the 
:onditions of Doob 's theorem . Therefore it converges a.s .  to an integrable ran­
lorn variable . We shall show that in fact it converges in L1 . 

rheorem 4 .3  
�very uniformly integrable supermartingale (submartingale) �n converges in L 1 . 

>roof 
Jy Exercise 4.6 the sequence �n is bounded in L1 , so it satisfies the conditions 
f Theorem 4 .2 (Doob 's Martingale Convergence Theorem) .  Therefore , there is 
.n integrable random variable � such that �n --+ � a.s .  We can assume without 
Jss of generality that � = 0 (since �n - � can be taken in place of �n ) .  That is 

o say, 

P { li� �n = 0 } = 1 .  

t follows that �n --t 0 in probability, i .e .  for any e > 0 

P f L t_ l  ':> -'" ). --4> 0 
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as n -t oo .  This is because by Fatou's lemma 

lim ;up P { l �n l  > c: } < P (lim
n
sup { l �n l  > E }) 

< p ( n \ { li!? �n = 0} ) 
0 .  

Let c > 0 .  By uniforn1 integrability there is an M > 0 such that 

{ � �n l dP < c: 
}{ l en i > M} 

3 

77 

for all n. Since �n --t 0 in probability, there is an integer N such that if n > N, 
then 

p { l �n l > ; } < 3� . 

We can assume without loss of generality that M > � .  Then 

for all n > N. This proves that E ( J �n I ) --t 0, that is , �n --t 0 in L 1 . D 

Theorem 4 . 4  

Let �n be a uniformly integrable martingale. Then 

�n = E (� fFn) , 

where � == limn �n is tl1e limit of �n in L1 and :Fn = a { �1 , . . .  , �n ) is the filtration 
generated by �n · 

Proof 
For any m > n 

i .e. for any A E :Fn 
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Let n be an arbitrary integer and let A E :Fn · For any m > n 

.£ (�n - 0 dP i (�m - �) dP 

< i l �m - � l dP 
< E ( l�m - � I )  --t 0 

as m� 4- oo .  It follows that 

i �n dP = i � dP 
for any A E Fn , so �n == E (� IFn ) . D 

Exercise 4.  7 

Show that if �n is a martingale and �n 4- a in £1  for some a E IR, then 
�n = a a.s .  for each n .  

Hint Apply Theorem 4.4 .  

Theorem 4 . 5  ( Ko l mogorov 's  0-1 Law) 
Let 'T}l , 772 , • • •  be a sequence of independent random variables . We define the 
tail 0' -field 

T = /1 n 12 n . . . , 

where Tn = a  ('TJn , 1Jn+l , . . . ) . Then 

P (A) == 0 or 1 

for any A E T. 

P roof 

Take any A E T and define 

where Fn = (j (1Jl , . . . , 1Jn ) . By Exercise 4. 5 �n is a uniformly integrable mar­
tingale , so �n --+ � in L1 . By Theorem 4.4 

for all n . Both � == limn �n and lA are measurable with respect to the a-field 

"'C - - ( ,.., _ --- \ 
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The family Q consist ing of all sets B E F such that JB � dP == JB l A  dP is a a­

field containing F1 U F2 U · · · . As a result , g contains the a-field Foo generated 
by the family F1 U F2 U · · · . By Lemma 2 . 1 it follows that � == l A  a. s .  

Since '1Jn i s  a sequence of independent random variables , the a-fields Fn 
and Tn+ 1 are independent . Because T C Tn+1 , the a-fields Fn and T are 
independent . Being T-measurable , l A  is therefore independent of Fn for any 
n .  1'h is means that 

Therefore the limit lirnn� oo �n == � is also constant and equal to P (A) a. s .  This 
means that P (A) == l A  a.s . , so P (A) == 0 or 1 .  D 

Exercise 4. 8 
Show that if An E a (�n )  for each n , then the events 

and 

belong to the tail a-field T. 

lim sup An = n U Ai 
n 

" > 1 i> . ) _ _ ) 

Hint You need to write lim supn An and lim infn An in terms of Ak , Ak+1 , . . . for any 
k,  that is, to show that lim supn An and lim inf n An will not be affected if any finite 
number of sets are removed from the sequence A1 , A2 , . . . .  

Exercise 4. 9 
Use Kolmogorov's 0-1 law to show that in a sequence of coin tosses there are 
a.s . infinitely many heads . 

Hint Show that the event 

{ 7] 1 , 172 , . . . contains infinitely many heads} 
belongs to the u-field T. Can the probability of this event be 0? The probability of 
the event 

{ 171 , 'T/2 , . . . contains infinitely many tails} 
should be the same . Can both probabilities be equal to 0? Can you simultaneously 
have finitely many heads and finitely many tails in the sequence 711 , 'r/2 , . . .  ? 
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4 .4  Solutions 

Solution 4. 1 
Because a 1 == 0 is constant , it is Fo == {0 ,  D}-measurable . Suppose that an is 
Fn_ 1 -measurable for some n == 1, 2, 0 0 0 0 Then 

because Fn- l C Fn and �n is Fn-measurable . This means that 

is Fn-measurable . By induction it follows that an is Fn_ 1 -measurable for each 
n == 1 , 2 ,  . . .  , so a 1 , a 2 , . . .  is a gambling strategy. 

Solution 4. 2 

For a non-negative supermartingale 

sup E ( I �n l ) == sup E (�n ) < E (�t ) == E ( f�1 1 ) < oo , n n 
s1nce 

for each n == 1, 2 ,  0 0 • •  Thus Doob's Martingale Convergence Theorem implies 
that �n converges a.s . to an integrable limit . 

Solution 40 3 
Necessity. Suppose that � is integrable . It follows that 

p { 1� 1 < 00} = 1 .  

The sequence of random variables l � l l { l e i >M} indexed by M == 1 ,  2, . . .  is mono­
tone and 

l � l l { l e i >M} � 0 as M --+ oo 

on the set { 1� 1  < oo } , i . e .  aos o  By the monotone convergence theorem for inte­
grals 

{ I� I dP � 0 as M � oo .  
j{ I{ I >M} 

It follows that for every c > 0 there exists an M > 0 such that 

{ 1 � 1 dP < c.  
l{ l e i >M} 
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Sufficiency. Take E == 1 .  There exists an M > 0 such that 

Then 

Solution 4. 4 

r 1� 1 dP < 1 . j{ IE. I >M} 

E ( 1 � 1 ) = fn 1 � 1 dP 

= r 1 � 1 dP + r 1 � 1 dP 
J{ I � I >M} J{ I� I <M} 

< 1 + M P { 1 � 1 < M} 
< 1 + M < oo . 

For any M > 0 and any n > M we have 

so 

(0 , � )  == {�n > M} , 

{ �n dP = { n dP = 1 .  
J{�n >M} J(o , ! ) 

This means that there is no M > 0 such that for all n 

{ �n dP < � ·  
}{f.n >M} 

The sequence �n is not uniformly integrable . 

Solution 4. 5 
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In Example 3.4 it was verified that �n = E(� IFn )  is a martingale . Let c > 0. 
By Lemma 4.2 there is a � > 0 such that 

P(A) < & ===> i 1 � 1 dP < c .  

By  Jensen 's inequalityMn l < E( I� I IFn )  a.s . ,  so 
I 

E( l � l )  > E( l �n l ) > { l �n l dP > MP{ l�n l > M} . 
j{ l en i >M} 

If we take M > E( � l ) /c5 ,  then 

\ P{ l �n l > M} < �-
Since { l �n f > M} E Fn , it follows that 

{ l �n l dP < { E( i� l lFn ) dP = { 1 � 1 dP < c , 
J{ l �n i >M} J{ l�n i >M} J{ l�n i >M} 

nrovini! that EIYl == E(E I:F'" )  is a uniformlv intee:rable seauence . r� ,' 
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Solution 4. 6 

Because �n is a. uniformly integrable sequence , there is an M > 0 such that for 
al l n 

It follows that 

{ i �n i dP < 1 .  
j{ l {n I > M} 

E ( i �n i ) { i �n i dP + { l �n l  dP 
J{ l �n i > M} J{ l(.n i $:M} 

< 1 + MP { I�n l < M } 
< l + M < oo 

for all n ,  proving that �n is a bounded sequence in L1 . 

Solution 4. 7 

By Theorem 4 .4 ,  �n == E (a iFn)  a. s .  But E (a iFn ) = a a.s . ,  which proves that 
�n == a  a. s .  

Solu tion 4 .  8 

Observe that 

for any k .  Since 

lim sup An = n U Ai 
n " > k i> · J _ _ j 

for every i > k ,  it follows that 

for every k . Therefore 

lim sup An = n U Ai E 1k 
n " > k i> . ) _  _ j  

sup An E T. 
n 

The argument for lim inf n An is similar . 

Solution 4 .  9 

Let f/1 , 1]2 , . . .  be a sequence of coin tosses , i .e�  independent random variables 
with values + 1 ,  - 1 (heads or tails) taken with probability � each . Consider the 

following event : 

A = { r11 , 112 , • • . contains infinitely many heads} . 
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This event belongs to the tail a-field T because 

A == lim sup An , 
n 

where 
An == { 17n == heads } E a (TJn )  

(see Exercise 4 . 8 ) .  Thus , by Kolmogorov 's 0-l law P(A) == 0 or 1 .  However , it 
cannot be 0 because the event 

B == { 111 , 1]2 , . . . contains infinitely many tails} 

has the same probability by symmetry and fl = A U B (there must be infinitely 
many heads or infinitely many tails) . 





5 
Markov Chains 

This chapter is concerned with an interesting class of sequences of random 
variables taking values in a finite or countable set , called the state space, and 
satisfying the so-called Markov property. One of the simplest examples is pro­
vided by a symmetric randorr1 walk �n with values in the set of integers Z .  If �n 
is equal to some i E Z at time n ,  then in the next time instance n + 1 it will jump 
either to i + 1 ,  with probability ! ,  or to i - 1 ,  also with probability !· What 
makes this model interesting is that the value of �n+l  at time n + 1 depends 
on the past only through the value at time n .  This is the Markov property 
characterizing Markov chains . There are numerous examples of Markov chains ,  
with a multitude of  applications . 

From the mathematical point of view, Markov chains are both simple and 
difficult . Their definit ion and basic properties do not involve any complicated 
notions or sophisticated mathematics . Yet ,  any deeper understanding of Markov 
chains requires quite advanced tools . For example , this is so for problems related 
to the long-time behaviour of Markov processes . In this chapter we shall try 
to maintain a balance between the accessibility of exposition and the depth of 
mathematical results . Various concepts will be introduced . In particular , we 
shall discuss the classification of states and its relevance to the asymptotic 
behaviour of transition probabilities . This will turn out to be closely linked to 
ergodicity and the existence and uniqueness of invariant measures . 
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5 . 1 First Examples and Definitions 

Exa mp le  5 . 1  
In some homes the use of the telephone can become quite a sensitive issue . 
Suppose that if the phone is free during some period of time , say the nth 
minute ,  then with probability p, where 0 < p < I ,  it will be busy during the 
next minute . If the phone has been busy during the nth minute , it will become 
free during the next rninute with probability q, where 0 < q < 1 .  Assume that 
the phone is free in the Oth minute . We would like to answer the following two 
questions . 

1 ) What is the probability Xn that the telephone will be free in the nth 
minute? 

2) What is limn�oo :rn , if it exists? 

Denote by An the event that the phone is free during the nth minute and let 

Bn = D \ An be its complement , i . e .  the event that the phone is busy during 
the nth minute .  The conditions of the example give us 

P(Bn+I IAn)  = p, 
P(An+I )Bn ) = q, 

{5 . I ) 

(5 . 2)  

We also assume that P(Ao ) = 1 , i .e .  x0 = I .  Using this notation , we have 
Xn = P (An ) · Then the total probability formula, see Exercise I . lO,  together 
with (5 . 1 )-(5 .2) imply that 

Xn+l P(An+l ) 

P(An+l lAn )P(An ) + P(An+l fBn)P(Bn )  

( I - p)xn + q ( I - Xn )  = q + ( I  - p - q)xn . (5 .3) 

It 's a bit tricky to find an explicit formula for X n . To do so we suppose first 
that the sequence {xn } is convergent , i .e .  

lim Xn = X . n�oo (5 .4) 

The elementary properties of limits and equation (5 .3) , i .e .  Xn+I = q + ( I - p ­
q)xn , yield 

x = q + ( I  - p - q)x . (5 .5) 
The unique solution to the last equation is 

x = --
q 

(5 .6) 
q + p 
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In particular , 
q == q + ( 1  - p - q) q . 

q + p q + p 
Subtracting (5 . 7) from ( 5 . 3 ) , we infer that 

Xn+ l  -
q = ( 1 - p - q) (xn -

q ) . q + p q + p 

Thus , { Xn - f+p} is a geometric sequence and therefore , for all n E N, 

Xn - q = ( 1 - p - q) n (xo - q ) . 
q + p q + p 

Hence, by taking into account the initial condition x0 == 1 , we have 

q + (xo - q ) ( I - p - q) n 
q + p q + p  

q . P ( I  ) n ;- - p - q . 
q + p q + p 

87 

(5 . 7) 

(5 . 8 )  

(5 . 9) 

Let us point out that although we have used the assumption ( 5 . 4) to derive 
(5 . 8) , the proof of the latter is now complete . Indeed , having proven (5 . 9) , we 
can show that the assumption (5 .4) is indeed satisfied . This is because the 
conditions 0 < p, q < I imply that I I - p - q j < 1 , and so ( 1 - p - q) n -t 0 as 
n -t oo .  Thus , (5 .4) holds . This provides an answer to the second part of the 

1 . I "  __2__ examp e ,  I .e .  lffin-+oo Xn = p+ q . 

The following exercise is a modification of the last example . 

Exercise 5. 1 

Ir1 the framework of Example 5 . I ,  let Yn denote the probability that the tele­
phone is busy in the n th minute . Supposing that y0 == 1 , find an explicit formula 
for Yn and , if it exists , limn-+oo Yn · 

Hint This exercise can be solved directly by repeating the above argument , or indi­
rectly by using some of the results in Example 5 . 1 . 

Remark 5 . 1 

The formulae (5 . 3) and (5 .64) can be written collectively in a compact form by 
using vector and matrix notation. First of all ,  since Xn + Yn = I ,  we get 

Xn+ l  == ( 1 - p)xn + qyn , 
Yn+l == PXn + ( 1 - q)Yn · 
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Hence , the matrix version takes the form 

[ Xn+ l ] [ 1 - P 
Yn+ l P 

q 
1 - q 

] [ :: ] . 
The situation described in Example 5 . 1 is quite typical . Often the proba­

bility of a certain event at time n + 1 depends only on what happens at time 
n ,  but not further into the past . Example 5 . 1  provides us with a simple case of 
a Markov chain . See also the following definition and exercises . 

Defi n i t ion 5 . 1  
Suppose that S is a finite or a countable set . Suppose also that a probability 
space (D ,  F, P) is given . An S-valued sequence of random variables �n ,  n E N, 
is called an S-valued Markov chain or a Markov chain on S if for all n E N and 
all s E S 

P(�n+l  == s l €o ,  . . .  , �n ) == P(�n+ l == s l �n ) · ( 5 . 10) 

Here P(€n+ l == s l €n ) is the conditional probability of the event { �n+ l == s }  with 
respect to random variable €n , or equivalently, with respect to the a-field a (�n ) 
generated by €n · Similarly, P(€n+ l == s l �o ,  . . . , �n )  is the conditional probability 
of { �n+l == s} with reHpect to the a-field a (€o , · · · ,  €n ) generated by the random 
variables €o , · · · , �n · 

Property (5 . 1 0) will usually be referred to as the Markov property of the 
Markov chain �n , n E N. The set S is called the state space and the elements 
of S are called states. 

Propos it ion 5 . 1 
The model in Example 5 . 1 and Exercise 5 . 1 is a Markov chain . 

Proof 

Let S == { 0 , 1 } ,  where 0 and 1 represent the states of the phone being free or 
busy. First we need t o  construct an appropriate probability space . Let [2 be 
the set of all sequences w0 , w 1 ,  . . . with values in S . Let J.-to be any probability 
measure on S .  For example , J.l == �0 corresponds to the case when the phone 
is free at time 0 .  We shall define P by induction . For any S-valued sequence 
so ,  s 1 ,  . . . we put 

and 

P ( {w E n : Wo == so } ) = J-Lo ( { so } ) 

o r  L . c n . , _  . .  - C' .  1 - n I I • n +- 1 1 1 

(5 . 1 1 ) 

( 5 . 12 )  
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== p(sn+ l l sn )P( {w E n : Wi == S i , i == 0 , · · . , n } ) , 

where p(s i r ) are the entries of the 2 x 2 matrix [ p(O I O) p(O I 1 ) ] 
== 
[ 1 - p q ] 

p( 1 I O) p ( 1 1 1 ) p 1 - q . 

It seems reasonable to expect P to be a probabil ity measure (with respect to 
the trivial a-field of all subsets of D) . Take this for granted , check only that 

P ( D) == 1 .  
How would you define the process �n , n E N? We shall do it in the standard 

way, 1 . e .  
�n (w) == Wn , W E  fl .  (5 . 13 ) 

First we shall show that the transition probabilit ies of �n are what they should 
be ,  i . e . 

P(�n+I  == 1 l �n == 0) == p, 
P (�n+l  == O l �n == 1 )  == q. 

The definition of conditional probability yields 

P(C == 1 I C == 0) == 
P(�n+l == 1 , �n == 0)

. �n+l  �n 
P(�n == 0) 

Next , the definition of P gives 

P (�n+ l  == 1 , �n == 0) 
P ( {w E f2 :  Wn == O , wn+ l == 1 } ) 

(5 . 14) 

(5 . 1 5 ) 

L P( { w E [2 : wi = S i , i = 0 ,  . . .  , n - 1 , Wn = 0 ,  Wn+ l = 1 } ) 
s o , · · · , s n - t E S 

L pP ( {w E f2 : Wi = S i , i = 0,  · · · , n - 1 , Wn = 0} ) 
s o , ·  . .  , s n - l E S 

== pP (�n == 0) , 

by (5. 12) .  We have proven (5 . 14) . Moreover , (5 . 15) follows by the same argu­
ment . A similar line of reasoning shows that �n is indeed a Markov chain . For 
this we need to verify that for any n E N and any so ,  s 1 , · · · , sn+ l E S 

P(�n+l == Sn+ l l �o == So , · · · , �n == Sn) == P(en+ l == Sn+ l l �n == sn) .  

We have 

P(�o == So , · · ·  , �n == Sn , �n+ l == Sn+ l ) 

== P( { w E n : Wi == S i , i == 0 ,  . . .  ' n + 1 } )  

= p(sn+ l l sn ) P( {w E f2 :  Wi 9 S i , i = 0 ,  · · · , n } ) 
== p(8n+ l l Sn )P( �0 == So , · · · , �n\ == Sn ) 
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which , in view of the definit ion of conditional probability, gives 

P(�n+l  == Sn+ l l �o == so , · · · , �n == Sn ) == p(sn+ l l sn ) · 
On the other hand , by an easy generalization of ( 5 . 14) and (5 . 1 5 )  

P(�n+ l = Sn+ l l �n = Sn )  = p(sn+ l l sn ) , 

which proves ( 5 . 1 0) .  D 

In Example 5 . 1 the transition probabilit ies from state i to state j do not 
depend on the time n .  This is an important class of Markov chains .  

Defi n i t i o n  5 . 2  
An S-valued Markov chain �n , n E N, is called time-homogeneous or homoge­

neous if for all n E N and all i ,  j E S 

P(�n-1- 1  == J l �n == i ) == P(�l = J l �o == i ) . ( 5 . 1 6 )  

The number P(�1 == J l �o == i ) i s  denoted by p(j l i )  and called the transition 

probability from state i to state j .  The matrix P == [p(j l i ) Jj , iES is called the 
transition matrix of the chain �n . 

Exercise 5. 2 
In the discussion so far we have seen an example of a transit ion matrix , P == 
[ 1 p 

p 
1 

q 
q 
] . Obviously the sum of the entries in each column of P is equal 

to 1 .  Prove that this is true in general . 

Hint Remember that P(D I A) == 1 for any event A.  

Defi n it i o n  5 . 3  

A ==  [aj i ] i ,jE S is called a stochastic matrix if 

1) a i i > 0, for all i ,  j E S; 

2) the sum of the entries in each column is 1, i .e .  I::jES ai i = 1 for any i E S . 

A is called a double stochastic matrix if both A and its transpose At are stochas­
tic matrices . 

r , 
! 
I! 
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P ro p osi t ion  5.2 

Show that a stochastic matrix is doubly stochastic if and only if the sum of the 
entries in each row is 1 ,  i . e .  LiES aj i == 1 for any j E S.  

P ro of 

Put At == [bij ] ·  Then , by the definition of the transposed matrix , bii ai i · 
Therefore , At is a stochastic matrix if and only if 

completing the proof. 0 

Exercise 5. 3 

L aji = L bij = 1 , 
. . 

1 1 

Show that if P == (pji] j , i E S is a stochastic matrix , then any natural power pn of 
P is a stochastic matrix. Is the corresponding result true for a double stochastic 
matrix? 

Hint Show that if A and B are two stochastic matrices , then so is BA.  For the second 
problem, recal l that (BA) t == At Bt . 

Exercise 5. 4 

Let P = [ 1 

P 
P q ] . Show that 

1 - q 

p2 = [ 1 + p2 - 2p + 
2
pq 

2p - pq - p 
2q - pq - q2 ] 

1 + q2 - 2q + pq 
. 

Hint This is just simple matrix multiplication . 

We see that there is a problem with finding higher powers of the matrix P. 

When multiplying P2 by P,  P2 , and so on , we obtain more and more compli­
cated expressions . 

Defi n i t i o n  5 . 4 

_ The n -step transition matrix of a Markov chain �n with transition probabilities 
p(j l i ) , j , i E S is the Inatrix Pn with entries 

Pn (j \ i )  == P (�n == j J �o == i ) . ( 5 . 1 7) 
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Exercise 5. 5 

Find an exact formula for Pn for the matrix P from Exercise 5 .4 .  

Hint Put Xn  == P(�n == O l �o == 0) and Yn == P(�n == l l �o == 1 ) . Is i t  correct to  suppose 
that Pn (O I O) == Xn and Pn ( 1 1 1 )  == Yn ? If yes , you may be able use Example 5 . 1  and 
Exercise 5 . 1 . 

Exercise 5. 6 

You may suspect that Pn equals pn , the nth power of the matrix P. This holds 
for n == 1 .  Check if it is true for n == 2 .  If this is the case , try to prove that 
Pn == pn for all n E N. 

Hint Once again, this is an exercise in matrix multiplication . 

The following is a generalization of Exercise 5 .6 . 

P ro p os it ion  5 . 3  ( C h a p m a n-Ko lmogorov eq u at ion ) 

Suppose that �n , n E N, is an S-valued Markov chain with n-step transition 
probabilities Pn (j l i ) . Then for all k ,  n E N 

Pn+k (j j i )  = L Pn (i i s )pk (s l i ) , i , j E S. 
s E S  

Exercise 5. 7 

Prove Proposition 5. 3 .  

Hint Pn+k  (j l i ) are the entries of the matrix Pn+k == pn+k . 

P roof ( of P rop osition 5 . 3) 

(5 . 1 8 ) 

Let P and Pn be , respectively, the transition probability matrix and the n-step 
transition probability matrix .  Since Pn (j l i ) are the entries of Pn , we only need 
to show that Pn == pn for all n E N. This can be done by induction . The 
assertion is clearly true for n == 1 .  Suppose that Pn == pn . Then , for i ,  j E S,  
by the total probability formula and the Markov property (5 . 1 0 ) 

Pn+l (j l i ) P (�n+l == j l�o = i ) 
L P(�n+l  = i l �o = i ,  �n = s)P(�n = s l �o = i )  
s E S  

L P(�n+l = i l �n = s )P (�n = s i �o = i )  
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= L p(j l s )pn ( s l i ) , 
s E S  

which proves that Pn+ l == P Pn . D 

Exercise 5. 8 (random walk} 
Suppose that S == Z .  Let 1Jn , n > 1 be a sequence of independent identically 
distributed random variables with P(171 == 1) == p and P(ry1 == - 1) == q == 1 - p. 
Define �n == 2:7 1 r7i for n > 1 and �o == 0 .  Show that �n is a Markov chain 
with transition probabilit ies 

p(j l i ) == 
p, 
q , 
0 ,  

if j == i + 1, 
if j == i - 1 ,  
otherwise . 

�n , n > 0 ,  is called a random walk starting at 0 . Replacing �o == 0 with �0 == i ,  
we get a random walk starting at i .  

Hint en+ l  = en + TJn+ l · Are en and 17n+ l  independent ? 

Exercise 5. 9 
For the random walk �n defined in Exercise 5 .8 prove that 

P((n = j � �0 = i )  = ( n+4-i ) p 
n +�- i q n -�+ i 

( 5 . 19 )  

if n + j - i i s  an even 11on-negative integer , and P (�n == i l �o == i ) == 0 otherwise . 

Hint Use induction . Note that ( n +l- ·  
)p  n +� - i  

equals 0 if IJ - i l  > n + 1 .  

P ro posit ion  5 .4 
For all p E (0 ,  1 ) 

Proof 

P(�n == i l �o == i )  --+ 0 ,  as n --+ oo ,  (5 . 20) 

To begin with , we shall consider the case p # ! ·  When j == i ,  formula ( 5 . 19 )  
becomes { {2k ) !  ( ) k 

( I . ) ( k ! )  2 pq ' P �n == i �0 == 'l == 
0, 

if n == 2k , 
if n is odd . 

( 5 . 21) 
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Then , denoting ak = fi�fJ (pq) k , we have 

ak+l  ( 2k  + 1 ) (2k + 2)  
ltk 

= pq (k + 1 ) 2 -+ 4pq < l . 

Hence , ak --t 0 .  Thus , P(�2k == i l�o == i ) --t 0 . The result follows , since 
P (�2k+ I  = i l�o == i ) == 0 --t 0 . 

This argument does not work for p == � because 4pq = 1 . In this case we 
shall need the Stir ling formula1 

k ! "" J2;k ( :) k , as k -+ oo. (5 . 22)  

Here we use the standard convention : an ""' bn whenever t -t 1 as n --t oo . 
By (5 . 22 ) 

Let us note that the second method works in the first case too . However , in the 
first case there is no need for anything as sophisticated as the Stirling formula. 
0 

Proposit ion 5 . 5  
The probability that the random walk €n ever returns to the starting point is 

1 - IP - q l . 

Proof 
Suppose that �o = 0 and denote by f0 (n) the probability that the process 
returns to 0 at time n, for the first time, i .e .  

f o ( n,) = P ( � n = 0 , � i f= 0 , i = 1 , · · · , n - 1 ) . 

If also po (n) == P (�n == 0) for any n E N, then we can prove that 
00 00 00 

L Po (n) = L Po (n) L fo (n) .  
n== l  n==O n=l 

(5 . 23) 

1 See , for example, E . C . Titchmarsh , The Theory of Functions , Oxford University 
n - � � �  " - -C� - ....1 1 tv7 o  
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Since all the numbers involved are non-negative , in order to prove (5 . 23) we 
need only to show that 

n 
Po (n) = L fo (k )po (n - k) for n > 1 . 

k= l  
The total probability formula and the Markov property ( 5 . 10) yield 

n 
Po (n) = L P(�n = 0 ,  �k = 0 , �i ¥: 0 ,  i = 1 , · . . , k - 1 ) 

k=l  
n 

L P(�k = 0 , �i ¥: 0 ,  i = 1 , . . .  ' k - 1 ) 
k= l 

x P(�n == O l �k == 0 ,  �i =f 0 ,  i = 1 , · · · , k - 1 ) 
n 

L P(�k = 0 ,  �i ¥: 0 ,  i = 1 , · · · , k - 1 ) P(�n = O l �k = 0) 
k= l  n 
L fo (k)po (n - k) . 
k= l  

liaving proved (5 . 23) � we are going to make use of it � First we notice that the 
probability tl1at the process will ever return to 0 equals L� 1 f0 (n) . Next , from 
(5 . 23) we infer that 

P(3n > 1 : �n == 0) 
00 

L fo (n) 
n= l  

Since Po ( 2k )  = ����J (pq ) k and 

00 (2k) 1 L k xk = ( 1 - 4x) - 1 /2 , l x l < 
4

' 
A =O 

it follows , that for p f; l/2  

( 5 . 24) 

P (3n > 1 :  �n = 0) = 1 - ( 1 - 4pq) 1 12 = 1 - Jp - q J , (5 .25)  

since , recalling that q = 1 - p,  we have 1 - 4pq = 1 - 4p + 4p2 == ( 1 - 2p) 2 == 
(q - p)2 . 

The case p == 1/2 is more delicate and we shall not pursue this topic here . 
Let us only remark that the case p = 1 /2 needs a special treatment as in 
Proposition 5 .4 .  0 
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Exercise 5. 1 0  

Prove formula (5 . 24) . 

Hint Use the Taylor formula to expand the right-hand side of (5 . 24) into a power 
series . 

Exercise 5. 1 1  (bran ching process) 

On the island Elschenbieden there lives an almost extinct species called Vugiel . 
Vugiel 's males can produce zero , one , two , · · · male offspring with probability 
Po , P1 , P2 , · · · respectively, where Pi > 0 and 2: � 0 Pi = 1 .  A challenging pro blern 
would be to find the Vugiel ' s chances of survival assuming that each individual 
l ives exactly one year . At this moment , we ask you only to rewrite the problem 
in the language of Markov chains . 

Hint The number of descendants of each male has the same distribution . 

Exercise 5. 1 2  

Consider the following two cases : 

1 )  In Exercise 5 . 1 1  suppose that 

Pm = (:) pm (l - p)N-m . 
for some p E (0 ,  1 )  and N E N* , where N* = { 1 ,  2 ,  3 ,  · · ·} . (Note that 
Pm == 0 if m > N. ) Show that 

Deduce that , in particular , p(j J i )  == 0 if j > Ni . 

2) Suppose that 
Am 

- ..\  �T Pm == -, e , m E  1 � ,  
m .  

( 5 . 26)  

for some A > 0 . In other words , assume that each Xi has the Poisson 
distribution with mean A.  Show that 

( 
.
, . ) 

- (Ai)i - >-. i . .  > 0 p J 'l - . ,  e ' J , 'l - . 
J .  

(5 . 27) 

Hint If X1 has the binomial distribution P(X1 = m) = (�)pm ( l - p)N -m ,  m E N, 
then there exists a finite sequence 11f , · · · , 11Jv of independent identically distributed 
random variables such that P(  nJ == 1) == v. P(  n} = 0) = 1 - v and X-; = ri! + . . .  + 
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rfN :::: m .  Hence, xl + . . .  + xi == L�=l  L�- 1  T}; ' i .e . the sum of Ni independent 
identically distributed random variables with distribution as above . Hence we infer 
(5 . 26 ) . 

P ropos it i on  5 . 6  
The probability of survival in Exercise 5 . 1 2 ,  part 2)  equals 0 if ..\ < 1 ,  and 1 - fk  
if  .:\ > 1 ,  where k i s  the initial Vugiel population and f E (0 ,  1 )  is a solution to 

Proof 

( r -- l ) A r == e  . ( 5 . 28) 

We denote by </>(  i ) , i E N the probability of dying out subject to the condition 
�o == i .  Hence , if A ==  {�n == 0 for n E N} , then 

</>(i ) == P (A I �o == i ) . ( 5 . 29) 
Obviously, ¢(0 )  == 1 and the total probability formula together with the Markov 
property ( 5 . 10) imply that for each i E N 

00 
<P(i)  = L P (A ieo = i , 6 = j ) P (6 = i l ea = i ) 

j ==O 
00 

L P (A I6  = j )  P (6 = i l ea = i )  
j==O 

00 

L <P(j )p(j l i ) . 
j==O 

Therefore , the sequence </>(i ) , i E N is bounded (by 1 from above and by 0 from 
below) and satisfies the following system of equations 

00 

</>(i) L ¢(j )p(j l i ) , i E N, ( 5 .30) 
j=O 

</>(0) 1 .  
So far , we have not used any particular distribution of X1 . From now on , we 
shall assume that the Xi have the Poisson distribution . Hence , by Exercise 5 . 1 2 , 

p(j l i ) == ( i�,) i e - iA . It i s  not an easy problem to find a solution to ( 5 . 30) , even in J .  
this special case . ¢ (  i ) is the probability that the population will die out , subject 
to the condition that initially there were i individuals . Since we assume that 
reproduction of different individuals is independent , it is reasonable to make 

the following Ansatz :  
( 5 . 31 )  
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for some A > 0 .  Although it is possible to prove this Ansatz , we shall not 
do so here . Note that the boundary condition ¢(0)  == 1 implies that A == 1 .  
Substituting (5 . 3 1 )  (with A ==  1 and r : == ¢( 1 ) ) into ( 5 .30) , we get 

Hence , r should satisfy 

Loo . (iA)i  _ . , 
rJ e z "'  . ' 

j==O J . 

(5 . 32) 

Since the function g(  r ) e < r- l ) -\ , r E [0 , 1 ] , i s  convex , there exist at most 
two solutions to the equation (5 . 32 ) . Obviously, one of them is r = 1 .  A bit of 
analysis , not included here , shows the following: 

1 ) If A <  1 ,  then the only solution to (5 . 32) in (0 , 1] is r = 1 .  

2 ) If A > 1 ,  then there exists a second solution f E (0 , 1 )  of the equation 
( 5 . 32 ) . • 

In case 1 )  the situation is simple . We have ¢ (  i )  = 1 for all i ,  and thus the 
probabil ity of extinct ion is 1 for any initial number of individuals . Case 2)  is 
slightly more involve<i . The first question we need to address is which of the 

k 
two solutions of (5 .32 ) gives the correct value of ¢ ( 1 ) ?  Recall that Pk == �! e-.\ . 
Define 00 00 >._k 

F(x) = LPkXk = L kfe-Axk = eAx e - A ,  ! x l  < 1 .  
k =O k=O 

Since P(�l = O J �o = 1 )  ==Po and 

00 
P (6 = O l �o = 1 )  = L P (6 = O l�1 = i ) P (6 = i l�o = 1 )  

i=O 
00 

= 'L(Po) iPi = F(po )  = F(F(O) ) , 
i=O 

we guess that the following holds : 

P(�n = O l�o = 1 )  = F(n) (O) ,  

( 5 .33 ) 

(5 . 34) 

where F(n) is the n-fold composition of F. To prove (5 .34) it is enough to prove 
it for n ,  while assuming it holds for n - 1 .  We have 

00 
P (�n = O l�o = 1 ) = L P (�n = 0 16 = i ) P (6 = i l �o = 1 )  
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00 

L PiP (�n- 1 = O l �o = i ) 
00 

LPi [P(�n- 1 = O l �o = l ) ] i 
i=O 
00 . 

LPi [F(n- 1 l (o)r = F(F(n- 1 l (o) ) = F(nl (o) . 
i=O 

Since the event {�n == 0 }  is contained in events {�n+ l  == 0} for all rt E N, we 
have 

¢( 1 )  P {�n == 0 ,  for some n E Nl �o = 1 } 
lim P {�n == O l�o = 1 }  n-+oo 

by the Lebesgue monotone convergence theorem . Therefore , we infer that 

¢( 1 )  == lim p(n) (O) . 
n-+oo 

With p(O) (x) = x we only need to show that 

F(n) (O) < f , n E N. ( 5 .35) 

Indeed , once the inequality (5 .35) is proven , we infer that ¢( 1 )  < f and thus 
¢(1 )  = f . We shall prove (5 .35 ) by induction . It is obviously valid for n == 0 , so 
we need to study the inductive step . We have 

since F is increasing . We conclude that in the case A > 1 the population will 
become extinct with positive probability. 

In the simplest example of the binomial distribution case , i .e .  when N == 1 ,  
equations (5 . 30) become 

tjJ(i ) = t tjJ(j) (�) pi ( 1 - p) i-i , i E N. 
j=O J 

Since ¢(0) = 1 ,  ¢( 1 )  satisfies 

¢>( 1 ) = q + ¢( 1 )p 
with q = 1 - p. Hence, trivially, ¢(1 ) = 1 . Then, by induction , one proves that 
¢(i)  = 1 .  Therefore ,  whatever the initial number of individuals , extinction of 

the species is certain . 0 
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Rem a rk 5 . 2  
The method presented in the last solution works for any distribution of the 
variables X1 . It turns out that the mean value A of X 1 plays the same role as 
above . One can show that if A < 1 ,  then the population will become extinct 
with probability 1 ,  while for A > 1 the probability of extinction is larger than 

0 and smaller than 1 .  

Exercise 5. 13  
O n  the , now familiar , island of Elschenbieden the question of survival of the 
Vugiel is a hot political issue . The (human) population of the island is N .  Those 
who believe that action should be taken in order to help the animals preach 
their conviction quite convincingly. For if a supporter discusses the issue with a 
non-supporter , the latter will change his mind with probability one . However , 
they do so only in face-to-face encounters . Suppose that the probability of an 
encounter of exactly one pair of humans during one day is p and that with 
probability q this pair is a supporter-non-supporter one . Write down a Markov 
chain model of this sit uation . Neglect the probability of two or more encounters 

during one day. 

Hint On each day the number of supporters can either increase by 1 or remain un­
changed .  What is the probability of the former? 

Exercise 5. 14  (queuing model} 

A car wash machine can serve at most one customer at a time . With probability 

p, 0 < p < 1 ,  the machine can finish serving a customer in a unit time . If this 
happens , the next waiting car (if any) can be served at the beginning of the 
next unit of time. During the time interval between the nth and (n + I ) st unit 
of time the number of cars arriving has the Poisson distribution with parameter 
A > 0. Let �n denote the number of cars being served or waiting to be served 
at the beginning of unit n. Show that �n ,  n E N, is a Markov chain and find 

its transit ion probabilities . 

Hint Let Zn , n == 0 ,  J ,  2 ,  · · · be a sequence of independent identically distributed 
random variables , each having the Poisson distribution with parameter A. Then �n+ l ­
�n - Zn equals - 1  or 0. 

Remark 5 . 3  
In the last model we are interested in the behaviour of �n for large values of n .  
In particular , i t  is interesting to  determine whether the limit of �n or that of �n 
(a� 11. -4 oo )  Pxists . In ExPrc.i�P S . :\fi WP. sh �.1 1 fi n rl  ron rl i t. ion � wh i rh rrn !=l r � n t PP 
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the existence of a unique invariant measure and imply that the Markov chain 

in question is ergodic . 

5 .  2 Classificat ion of States 

In what follows we fix an S-valued Markov chain with transition matrix P == 

[p(j J i ) ] j , i E S ,  where S is a non-empty and at most countable set . 

Defin it ion 5 . 5  

A state i is called recurrent if the process �n will eventually return to i given 

that it st arts at i ,  i . e .  

P(�n == i for some n > 1 l �o == i )  == 1 .  (5 .36) 

If the condit ion ( 5 .36) is not satisfied , then the state i is called transient. 

Theorem 5 . 1 

Show that for a rand om walk on Z with parameter p E (0 , 1 ) , the st ate 0 is 

recurrent if and only if p == 1 /2 .  Show that the same holds if 0 is replaced by 

any other state i E Z .  

P roof 

We know from ( 5 . 25)  that P(�n == i for some n > I l eo == i )  == 1 - IP - q l  for 

any i E Z .  D 

Definition 5 . 6  

We say that a state i communicates with a state j if with positive probability 

the chain will visit the state j having started at i ,  i . e .  

P (�n == j for some n > O l�o = i )  > 0 .  ( 5 . 37) 

If i communicates with j ,  then we shall write i � j .  We say that the state i 
intercommunicates with a state j ,  and write i +-+ j ,  if i � j and j � i .  

Exercise 5. 15  

Show that i -t j if an d only if Pk (j l i )  > 0 for some k > 1 .  
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Hint Recall that Pk (j l i )  = P(€k = j J€o = i) . 

Exercise 5. 1 6  

Show that 

1 )  i H i ,  

2 )  if i H j then j B i and 

3 )  if i f-t j ,  j B k then i f-i k .  

In other words ,  show that H i s  an equivalence relation on S .  

Hint I )  and 2 )  are obv ious . For 3 )  use the Chapman-Kolmogorov equations . 

Exercise 5. 1 7  

For J x f  < 1 and j, i E S define 

(5 . 38) 
n=O 

00 

Fji (x) = L fn (j l i )xn , (5 .39) 
n= 1 

where fn (j j i )  == P(�n == j,  �k -:J j, k == 1 ,  · · · , n - 1 f�o == i ) . Show that the power 
series in (5 .38)-(5 . 39) are absolutely convergent for l x f  < 1 and that 

Pji (x) 

Pii (x) 

Fj i (x) Pjj (x) , if j :1 i , 

1 + Fii (x ) Pii (x) . 

(5 .40) 

(5 .41 ) 

Hint Note that IPn (j J i ) J < 1 ,  so the radius of convergence of the power series (5 . 38) 
is  > 1 .  

Exercise 5. 1 8  

Show that limx/'1 Pjj (x) == L� o Pn (j (j)  and limx/'1 Fjj (x) = L� 0 fn (j (j ) .  

Hint Apply Abel 's lemma2 : If ak > 0 for all k > 0 and lim supk -too � < 1 ,  then 
linlx/' 1 'L:� 0 akxk = 2:�_0 ak , no matter whether this sum is finite or infinite .  

2 For example , see : \\t· . Rudin , Principles of Mathematical Analysis, McGraw-Hill 
Book Company, Ne"' York 1976. 

I 
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Exercise 5. 1 9  

Sl1ow that a state j is recurrent if and only if I:n Pn (j l i )  = oo .  Deduce that 
the state j is transient if and only if 

n 

Show that if j is transient , then for each i E S 

n 

Hint If j is recurrent , then Fjj (x) --t I:n fn (j jj) 
conjunction with Abel 's Lemma. 

Exercise 5. 20 

(5 .42 ) 

( 5 .43) 

1 as x /' 1 .  Use (5 .41 ) 1n 

For a Markov chain �n with transition matrix P = [ 1 
- p q ] show that 

p 1 � q 
both states are recurrent . 

Hint Use Exercise 5 . 1 9 and 5 . 5 .  

One may suspect that if the state space S is finite , then there must exist 
at least one recurrent state .  For otherwise , if all states were transient and 
S = { 1 ,  2 ,  · · · , N} , then with positive probability a chain starting from 1 would 
visit 1 only a finite 11umber of times . Thus , after visiting that state for the 
last time , the chain "'ould move to a different state, say i2 , in which it would 
stay for a finite time only with positive probability. Thus , in finite time, with 
positive probability, the chain will never return to states 1 and i2 • By induction , 
in finite time , with positive probability, the chain will never return to any of 
the states . This is impossible . The following exercise will give precision to this 
argument . 

Exercise 5. 21 

Show that if �n is a Markov chain with finite state space S, then there exists 
at least one recurrent state i E S . 

Hint Argue by contradiction and use (5 .43) .  

The following res11lt is quoted here for reference . The proof is surprisingly 
difficult and falls beyond the scope of this book. 
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T heore m  5 . 2  
A state j E S is recurrent if and only if 

P(�n == j for infinitely many n l �o == j) == 1 , 

and is transient if and only if 

P(�n == j for infinitely many n l�o == j) = 0 .  

Defi n it ion  5 . 7  
For an S-valued Markov chain �n , n E N, a state i E S is called null-recurrent 

if it is recurrent and its mean recurrence time m i defined by 

00 

mi : = :L nfn (i l i ) ( 5 . 44 )  
n==O 

equals oo .  A state i E S is called positive-recurrent if it is recurrent and its 
mean recurrence time m i is finite. 

Re m a rk 5 . 4  

One can show that a recurrent state i is null-recurrent if and only if Pn ( i j i )  � 0 .  

We already know that for a random walk on Z the state 0 is recurrent if and 
only if p = 1 /2 ,  i . e .  if and only if the random walk is symmetric . In the following 
problem we shall try to answer if 0 is a null-recurrent or posit ive-recurrent state 
(when p = 1 /2) . 

Exercise 5. 22 
Consider a symmetric random walk on Z .  Show that 0 is a null-recurrent state. 
Can you deduce whether other states are positive-recurrent or null-recurrent? 

Hint State 0 is null-recurrent if and only if En nfn (O I O) = oo .  As in Exercise 5 . 1 8 ,  
En nfn (O j O ) == limx / 1 F�o (x ) ,  where Foo is defined by ( 5 . 39) . -

Exercise 5. 23 

For the Markov chain �n from Exercise 5 . 20 show that not only are all states 
recurrent , but they are positive-recurrent . 

Hint Calculate fn (O j O) directly. 
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The last two exercises suggest that the type of a state i E S ,  i . e .  whether 
it is transient , null-recurrent or positive-recurrent is invariant under the equiv­
alence H .  We shall investigate this question in more detail below , but even 
before doing so we need one more notion : that of a periodic state . 

Defi n i t i o n  5.8 
Suppose that �n , n E N, is a Markov chain on a state space S. Let i E S. We 
say that i is a period,i,c s tate if and only if the greatest common divisor (gcd) 
of all n E N* , where N* == { 1 , 2 ,  3 ,  · · · } , such that Pn ( i l i ) > 0 is > 2 . Otherwise , 
the state i is called aperiodic. In both cases , the gcd is denoted by d( i )  and is 
called the period of the state i .  Thus , i is periodic if and only if d( i )  > 2 .  A 
state i which is positive recurrent and aperiodic is called ergodic. 

Exercise 5. 24 
Is this claim that Pd( i ) (i j i )  > 0 true or not? 

Hint Think of a Markov chain in which it is possible to return to the starting point 
by two different routes . One route with four steps , the other one with six steps .  

One of the by-products of the following exercise is another example of the 
type asked for in Exercise 5 . 24 .  

Exercise 5. 25 
Consider a Markov chain on S == { 1 ,  2} with transition probability matrix 

P = [ � �j� ] . This chain can also be described by the graph in Figure 5 . 1 .  

Find d( l )  and d(2) . 

1 

1/2 

1/2 

Figure 5 . 1 .  Transition probabilit ies of the 
Markov chain in Exercise 5 . 25 

Hint Calculate P2 and P3 . This can be done in two different ways: either algebraically 
or , probabilistically. 
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Propos i t ion 5 . 7  

Suppose that i ,  j E S and i f-7 j .  Show that 

1 )  i is transient if and only if j is ; 

2) i is recurrent if a11d only if j is ; 

3) i is null-recurrent if and only if j is ; 

4) i is positive-recurrent if and only if j is ; 

5) i is periodic if and only if j is , in which case d( i )  = d(j ) ; 

6) i is ergodic if and only if j is . 

Proof 

It is enough to show properties 1 ) , 4) and 5) . Since i t-t j one can find n ,  m E N 
such that Pm (J i i ) > 0 and Pn (i jj ) > 0 .  Hence € : ==  Pm (J J i )pn (i lj ) is positive .  
Let us  take k E N. Then by the Chapman-Kolmogorov equations 

Pm+k+n (j li ) = L Pm U i s)pk (s i r)pn (r jj ) > Pm (j j i)pk (i l i )Pn (i jj ) = EPk (i l i ) . 
r, s E S  

By symmetry 

Pn+k+m (i l i ) = L Pn (i l s )pk (s i r)pm (r i i ) > Pn (i jj)pk (j lj )pm (j i i ) = cpk (j lj ) . 
r, sES 

Hence, the series Lk Pk (i l i) and Ek Pk (j jj ) are simultaneously convergent or 
divergent . Hence I )  follows in view of Exercise 5 . 19 .  

To prove 5) it is enough to show that 

d(i ) < d(j ) . 

Using the first inequality derived above , we have 

for all k E N. From this inequality we can draw two conclusions : 

(a) d(i) ln  + m ,  since by taking k = 0 we get Pn+m (i J i )  > 0 ;  

(b) if Pk (j fj ) > 0, then Pn+k+m (i j i ) > 0 . 

From (a) and (b) we can see that d( i) J k provided that Pk (j Jj)  > 0 .  This proves 
what is required.  0 
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Exercise 5. 26 
Show that the following modification of 2) above is true : If i is recurrent and 
i -t j ,  then j --+ i .  Deduce that if i is recurrent and i -t j, then j is recurrent 
and j +-+ i .  

Hint Is it possible for a chain starting from i to visit j and then never return to i? 
Is such a situation possible when i is a recurrent state? 

The following result describes how the state space S can be partitioned into 
a countable sum of classes . One of these classes consists of all transient states .  
Each of the other class consists of interconnecting recurrent states .  If the chain 
enters one of the classes of second type, it will never leave it . However , if the 
chain enters the class of transient states , it will eventually leave it (and so never 
return to it ) . We begin with a definition . 

Defi n i t ion  5 . 9  

Suppose that �n , n E N, is a Markov chain on a countable state space S .  

1 )  A set C C S is called closed i f  once the chain enters C it will never leave 
it ., i . e .  

P (�k E S \ C for some k > n l�n E C) == 0 .  (5 .45 ) 

2 )  A set C C S is ca lled irreducible if any two elements i ,  j of C intercommu­
nicate, i .e .  for all i ,  j E C there exists an n E N such that Pn (j J i )  > 0 .  

Theorem 5 . 3  

Suppose that �n , n E N, is a Markov chain on a countable state space S .  Then 
N 

S = T U U Cj , (disjoint sum) , 
j=l 

(5 . 46 ) 

where T is the set of all transient states in S and each Cj is a closed irreducible 
set of recurrent states. 

Exercise 5. 27 

Suppose that �n , n E N, is a Markov chain on a countable state space S.  Show 
that a set C C S is closed if and only if p(j f i ) = 0 for all i E C and j E S \ C. 

Hint One implication is trivial . For the other one use the countable additivity of the 
measure P.  
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P ro of (of Theorem 5 . 3 ) 
Let R == S \ T denote the set of all recurrent states . If i +-t j ,  then both i 
and j belong either to T or to R. It follows that the interconnection relation 
f-t restricted to R is an equivalence relation as well . Therefore , R = U7 1 Ci , 
Ci == [sj ] , Sj E R. Here N denotes the number of different equivalent classes . 
Since by definition each Ci is an irreducible set , we only need to show that it 
is closed . But this follows fron1 Exercise 5 . 26 . Indeed , if i E Ck and i --+ j , then 
i +-+ j, and so j E C k . D 

5 . 3 Long-Time Behaviour of Markov Chains : 

General Case 

For convenience we shall denote the countable state space S by { 1 , 2 ,  3, · · · } 
when S is an infinite set and by { 1 ,  2 ,  · · · , n } when S is finite . 

P ro posit ion  5 .8 
Let P = (p(j l i ) ] be the transition matrix of a Markov chain with state space S.  
Suppose that for all i ,  j E S 

lim Pn (j I i )  = : 7r j . n-+CX> (5 . 47) 

(In particular , the lintit is independent of i . ) Then 

1 ) I:j 1rj < 1 ;  

2 )  I:i p(j l i )1ri = 1rj ; 
3) either I:j 7rj = 1 ,  or 7rj = 0 for all j E S. 

P roof 

To begin with , let us assume that S is finite with m elements .  Using the 
Chapman-Kolmogorov equations (5 . 18) , we have 

m m 

� 7rj == � lim Pn (i l i )  � � n-+oo j= l j==l  
m 

li� � Pn (i l i ) = lim 1 == 1 ,  n-+oo � n-+oo j= l 



5 .  Markov C h a i ns 109 

since E7 1 Pn (j l i ) == 1 for any n E N (see Exercise 5 . 2) . This proves 1 )  and 3) 
simultaneously. Moreover , it shows that the second alternative in 3) can never 
occur . To prove 2) we argue in a similar way. Let us fix j E S and (an auxiliary ) 
k E S. Then , 

m 

L v(i l i )1fi 
i== l  

m 

L lim p(j l i )pn (i l k) 
n--+oo 

i= l  
m 

lim � p(j l i )pn (i l k) == lim Pn+ I (j ! k) == 7rj , n--+ oo L.,_; n--+ oo i== l  
since E:n 1 p(j l i )pn (i l k ) == Pn+I (j j k) by the Chapman-Kolmogorov equations . 

When the set S is infinite , we cannot just repeat the above argument . The 
reason is quite simple : in general the two operations lim and E cannot be 
interchanged . They can when the sum is finite , and we used this fact above . 
But if S i s infinite , tl1en the situation is more subtle . One possible solution of 
the difficulty is contained in the following version of the Fatou lemma. 

Lem ma 5 .1 ( Fatou ) 
Suppose that ai ( n ) > 0 for j, n E N. Then 

L H�inf aj (n) < lim
n
inf L aj (n) . 

j j 
Moreover , if ai (n) < b1 for j, n E N and Ei b1 < oo ,  then 

l im sup L aj (n ) < L lim sup aj (n ) . 
n j j n 

(5 .48) 

(5 .49) 

Using the fact that for a convergent sequence lim and lim inf coincide , by 
the Fatou lemma we have 

00 00 

� 'Trj == � lim Pn (j l i ) L.,_; L.,_; n-t oo j=1 j=1 
00 

< lim inf � Pn (j J i ) == lim inf 1 == 1 
n-t oo L.,_; n-t oo j=1 

since , as before , Ef 1 Pn (i l i) == 1 for any n E N. This proves 1 ) .  A similar 
argument shows 2) . Indeed , with j E S and k E S fixed , by the Chapman­
Kolmogorov equations and the Fatou lemma we have 

00 
� lim p(j l i )pn (i ) k) L.,_; n-too 
.: _ , 
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00 
< l im inf " p(j l i )pn (i l k )  = lim inf Pn+I  (j j k) == 1rj . n-+oo � n-+oo i= l 

To complete the proof of 2) suppose that for some k E S 

00 

L p(k l i )1ri < 11"k · 
i= l 

Then , since Lj ES 7rj == Lj:;tk 1rj + 7rk , by the part of 2) already proven we have 

00 00 00 00 

L L PU i i )1ri = L L p(j i i )1ri 
j = l  l i= l j 

00 00 00 

L 1ri L PU i i ) = L 1ri · 
i= l j i=l  

We used the fact that Lj p(j l i ) == 1 together with (5 .65) . This contradiction 
proves 2) . 

In order to verify 3) observe that by iterating 2) we obtain 

Hence, 

L Pn U i i )1ri = 11"j · 
t 

7f ·  J 

" lim Pn (j f i )7ri � n--too 
t 

lim " Pn (j f i )7ri n--too � 
i 

Therefore , the product 7rj (Li 1ri - I )  is equal to 0 for all j E S.  As a result , 3) 

follows .  Indeed , if Li 1ri =I= 1 , then 7rj = 0 for all j E S. 0 

Defi n i t ion 5 . 1 0  
A probability measure Jl : = LjES pj 6j is an invariant measure of a Markov 
chain c;n , n E N, with transition probability matrix P = (p(j J i )] if for all n E N 
and all j E S 

L Pn (j l i )J.Li = J.Lj · 
i E S  
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Exercise 5. 28 
Under the assumptions of Proposition 5 .8 show that if EjES 7rj == 1 ,  then 
jj : == EjES 7rj �j is the unique invariant measure of our Markov chain . Here 81 
is the Dirac delta measure at j .  

Hint f-L is an invariant measure of a Markov chain en , n E N, if and only if for each 
n E N, the distribution of �n equals f-L ,  provided the same holds for eo . 

Exercise 5. 29 
Show that if 1r i == 0 for all j E S, then there is no invariant measure . 

Hint Look closely at the uniqueness part of the solution to Exercise 5 . 28 .  
The following exercise shows that a unique invariant measure may exist , 

even though the condition (5 .47) is not satisfied. 

Exercise 5. 30 
Find all invariant measures for a Markov chain whose graph is given in Fig­
ure 5 . 2 .  

1 

1 Figure 5 . 2 .  Transition probabilities of the 
Markov chain in Exercise 5 .30 

Hint Find the transition probability matrix P and solve the vector equation P1r = 1r 
for 1r = { 1r1 , 1r2 ) ,  subject to the condition 1r1 + 1r2 = 1 . 

We shall study some general properties of invariant measures . Above we 
have seen examples of Markov chains with a unique invariant measure . In what 
follows we shall investigate the structure of the set of all invariant measures . 

Exercise 5. 31 
Show that if 11 and v are invariant measures and () E [0 , 1 ] , then ( 1 - O)Jl + Ov 
is also an invariant measure. 

T T ' I " 1 1 1  _ 't _ £' __ � .t_ '  _ _ _ _ £ - - - � -- - - - -- � - -- ..L  -- - - - - - - -- -
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Exercise 5. 32 

Show that if J-L is an invariant measure of a Markov chain �n , n E N with state 
space S, then supp J.L C S \ T, where T denotes (as usual) the set of all transient 
states .  

Hint If j is a transient state , then Pn (j j i )  -+ 0 for all i E S. 

The above result shows that there is a close relationship between invariant 
measures and recurrent states . Below we shall present without proof a couple 
of results on the existence of such measures and their properties . 

Theorem 5 . 4 

Suppose that �n , n E N, is a Markov chain on a state space S = T U C, where 
T is the set of all transient states and C is a closed irreducible set of recurrent 
states . 3 Then there exists an invariant measure if and only if each element of C 
is positive-recurrent . Moreover , if this is the case , then the invariant measure 
is unique and it is given by Jl == Ei J.l,it5i , where 

1 
JLi = ­mi 

with m i being the mean recurrence time of the state i, see (5 .44) . 

Note , that by Exercise 5 .32 ,  the unique invariant measure in Theorem 5 .4 

is supported by C. 

Remark 5 . 5  

If C = Uf 1 Cj , where each Cj is a closed irreducible set of recurrent states , 
then the above result holds , except for the uniqueness part . In fact , if each 
element of some C1 is positive-recurrent , then there exists a invariant measure 
J.Lj supported by C1 . l\1oreover , J.Lj is the unique invariant measure with support 
in C1 . In the special case when each element of C is positive-recurrent , every 
invariant measure J-1, is a convex combination of the invariant measures /Lj , 
j E { 1 ,  · · · , N} .  

Theorem 5 . 5  

Suppose that �n , n E N, is a Markov chain with state space S. Let j E S be a 
recurrent state . 

3 Hence in the decomposition ( 5 . 46)  the number N of different classes of recurrent 
- L - L - - ! - - � - · - 1  L - 1 
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1 )  If j is aperiodic , then 

Moreover , for any i E S ,  

Pn (} lj ) --+ -
1 

· m ·  J 

( . 1  . ) 
Fj i ( 1 ) 

Pn J � --1 , m ·  J 

1 1 3 

(5 . 50 ) 

( 5 . 5 1 )  

where Fji ( 1 )  is the probability that the chain will ever visit state j if it 
starts at i ,  see ( 5 . 39) , and where mj is the mean recurrence t ime of state j ,  
see ( 5 . 44) ; 

2) If j is a periodic state of period d > 2 ,  then 

Exercise 5. 33 

Pnd (j l j ) -+ _!!___ · m ·  J 
( 5 . 52) 

Suppose that �n , n E N, is a Markov chain with state space S. Let j E S be a 
transient state . Show that for any i E S 

Pn (j l i ) --1 0. ( 5 . 53) 

Hint Use Exercise 5 . 1 9 .  

Defi n i t ion 5 . 11 

A Markov chain �n , n, E N, with state space S is called ergodic if each i E S is 
ergodic, i .e . each state i E S is positive , recurrent and aperiodic . 

Exercise 5. 34 

Show that if �n , n E N, is an ergodic irreducible Markov chain with state 
space S, then Pn (j l i ) --1 7rj as n --t oo for any j, i E S, where 1r == Ei 1ri lSi is 
the unique invariant Ineasure . 

Hint Use Theorem 5 . 5 .  You may assume as a known fact that if j is recurrent and 
i B j ,  then Fj i ( 1 )  = 1 .  

Exercise 5. 35 

Use the last result to investigate whether the random walk on Z has an invariant 
measure. 
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Below we shall see that a converse result to Theorem 5 . 5  is also true . 

Theorem 5 . 6 

Suppose that �n ,  n E N, is an irreducible aperiodic Markov chain with state 
space S. Then �n , n E N, is ergodic if and only if it has a unique invariant 
measure . 

P roof 

The ' if '  part is proved in Exercise 5 .34 .  We shall deal with the 'only if ' part . 
Suppose that 1r == 2:1 1ri 6i is the unique invariant measure of the chain . Then 
1fj > 0 for some j E S. Recall that due to Theorem 5 . 5 and the Exercise 5 . 33 , 
limn-4oo Pn (j l i ) exists for all i , j E S. 

Since Ei Pn (j l i )1ri == 7rj , by the Fatou lemma ( inequality (5 . 49 ) )  

L lim PnU i i}rri > lim sup L PnU i i )1ri = 7rj .  . n-+oo n-4oo . t l 

Hence , there exists an i E S such that limn-4cc Pn (j l i ) 1r i > 0 .  Therefore 
limn-4 oo Pn (j j i ) > 0 ,  which in view of Theorem 5 . 5  implies that mi < oo .  

Thus , j is an ergodic state and , since the chain is irreducible , all states are 
ergodic as well . D 

Exercise 5. 36 

Prove that if there exists an invariant measure for the Markov chain in Exer­
cise 5 . 1 4 , then >... ' : == Ef 0 jqj < 1 . Assuming that the converse is also true , 
conclude that the chain is ergodic if and only if A' < 1 .  Show that if such an 
invariant measure exists , then it is unique . 

Hint Suppose that 1r = 2::'; 0 1rj �i is an invariant measure . Write down an infinite 
system of linear equations for 7rj . If you don 't know how to follow, look at the solution . 

5 . 4 Long- Time Behaviour of Markov Chains 

with Finite State Space 

As we have seen above ,  the existence of the 7rj plays a very important role 
in the study of invariant measures . In what follows we shall investigate this 
question in the case when the state space S is finite. 
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Theorem 5 . 7  

Suppose that S is finite and the transition matrix P = [p(j l i) ] of a Markov 

chain on S satisfies the condition 

3?to E N  :3c > 0 : Pn0 (j l i )  > c , i , j E S. 

Then , the following limit exists for all i , j E S and is independent of i : 

The numbers 7rj satisfy 

lim Pn (j l i )  = 1Tj . n--+oo 

7rj > O , j E S and Z::: 7rj = 1 .  

j E S  

(5 . 54) 

(5 . 55)  

(5 .56) 

Conversely, if a sequence of nurr1bers 7rj , j E S satisfies conditions (5 . 55 )-( 5 . 56) , 
then assumption ( 5 . 54 )  is also satisfied . 

Proof 

Denote the matrix pno == [pn0 (j l i )] by Q == [q (j l i ) ] . Then the process 'f/k = �kno , 
k E N, is a Markov chain on S with transition probability matrix Q satisfying 

(5 . 54) with n0 equal to 1 .  Note that Pkn0 (j l i ) == Qk (j l i ) due to the Chapman­
Kolmogorov equations .  Suppose that the properties (5 . 55)-(5 .56) hold true 

for Q .  In particular , l imk--+oo Pkno (j l i ) == ?Tj exists and is independent of i .  We 
claim that they are also true for the original matrix P. Obviously, one only 

needs to check condition (5 . 55) . The Chapman-Kolmogorov equations (and 
the fact that S is finite) imply that for any r == 1 ,  · · · ,  n0 - 1 

s E S  s E S  
7rj L Pr (s j i )  = 7rj · 

s E S 
Therefore , by a simple result in calculus , according to which , if for a sequence 

an , n E N, there exists a natural number n0 such that for each r E {0 ,  1 ,  · · · ,  n0 -

1 }  the limit liink -too ltkno+r exists and is r-independent , then the sequence an 

is convergent to the common limit of those subsequences , we infer that (5 .55)  
is  satisfied . 

In what follows we shall assume that (5 . 54) holds with n0 == 1 .  Let us put 

Po (j f i ) = 6ji and for j E S 

mn (j ) : - WgPn (i li ) 

Mn (j ) · - �a.fPn (j li ) 
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Observe that M0 (j ) == 1 and mo (j ) == 0 for all j E S.  From the Chapman­

Kolmogorov equations it follows that the sequence Mn(j ) , n E N, is decreasing , 

while the sequence mn (j ) ,  n E N, is increasing . Indeed , since I: k p(k j i ) == 1 ,  

Pn+ l  (j l i ) I: Pn (j J k )p(k J i ) 
k E S 

> mln pn (j J k ) L p(k J i ) 
k E S 

min pn (i l k ) == mn (j ) . 
k 

Hence , by taking the minimum over all i E S, we arrive at 

Similarly, 

Pn+ l (j l i ) L Pn (j J k )p(k J i ) 
k E S 

< m,rxpn (j J k ) L p(k J i )  
k E S  

maxpn (j l k) == Mn(j ) . k 

Hence , by taking the maximum over all i E S, we obtain 

S ince Mn (j ) > mn (J ) , the sequences Mn (j ) and mn (j ) are bounded from below 
and from above , respectively. As a consequence , they both have limits . To show 
that the limits coincide we shall prove that 

lim (Mn (j ) - mn (j) )  == 0 .  n---too ( 5 . 5 7) 

For n > 0 we have 

Pn+ l (j J i ) = L vn (j J s )p(s J i ) (5 . 58) 
s E S  

s E S s E S  

L Pn (j J s ) (p(s J i ) - EPn (s Jj ) J + EP2n (J Jj ) 
s � S 

by the Chapman-Kolmogorov equations . The expression in square brackets is 
> 0 .  Indeed , by assun1ption (5 . 54) , p(s j i ) > c and Pn (s lj ) < 1 . Therefore , 
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Pn+ l (j j i ) > min pn (j j s ) � [p(s j i ) - EPn (s jj ) ] + EP2n (j jj )  s E S  � 
s E S  

( 1 - c )mn (j )  + cP2n (j Jj ) . 

By taking the minimum over i E S, we arrive at 

117 

(5 . 59 ) 

( 5 . 60) 

Recycling the above argument , we obtain a similar inequality for the sequence 

Mn (j ) : 
�1n+ I (j ) < ( 1  - c) Mn (j )  + EP2n (j jj ) . (5 .6 1 ) 

Thus , by subtracting (5 .60) from (5 . 6 1 ) we get 

Mn+l (j ) - ffin+l (j ) < ( 1 - c) (Mn (j ) - mn (j ) ) . (5 .62 ) 

Hence, by induction 

This proves (5 . 57) . Denote by 7rj the common limit of Mn (j) and mn (j ) . Then 
(5 . 55 )  follows from (5 . 57) . Indeed , if i , j E S, then 

To prove that 'lrj > 0 let us recall that mn (j ) is an increasing sequence and 
m1 (j ) > E by ( 5 . 54) . We infer that 'lrj > E . D 

Exercise 5. 37  
Show that Pn (J i i ) --+ 1fj at an exponential rate . 

Hint Recall that mn (j )  < 7rj < Mn (j) and use (5 .62) . 

The above proves the following important result . 

Theorem 5.8 
Suppose that the tra11sition matrix P = [p(j J i ) ] of a Markov chain �n , n E N, 
satisfies assumption ( 5 . 54) . Show that there exists a unique invariant measure 
J-L·  Moreover , for some A > 0 , and o: < 1 

IPn (J i i ) - 7rj j < Ao:n , i , j E S, n E N. (5 . 63) 
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Proof (of the converse pa rt of Theorem 5 . 7) 
Put 

Since Pn (i l i )  --t 1fj for all i , j E S ,  there i s  an no E N, such that Pk (j j i )  > c for 

all for k > n0 and (i , .i )  E 82 • Putting k == no proves that (5 . 54) is satisfied .  
Let us observe that we have used only two facts : 7rj > 0 for all j E S, and 

Pn (j I i )  --t 1r j for all i ,  j E S.  0 

Exercise 5. 38 

Investigate the existence and uniqueness of an invariant measure for the Markov 
chain in Proposition 5 . 1 .  

Hint Are the assumptions of Theorem 5 . 7  satisfied? 

Remark 5 . 6  
The solution to Exercise 5 . 38 allows us to find the unique invariant measure by 

direct methods ,  i . e .  by solving the linear equations (5 .79)-(5 .80) . 

Exercise 5. 39 

Find the invariar1t measure from Exercise 5 .38 by calculating the limits (5 . 55 ) . 

Hint Refer to Solution 5 . 5 .  

Exercise 5. 40 

Ian plays a fair game of dice . After the nth roll of a die he writes down the 

maximum outcome �n obtained so far . Show that �n is a Markov chain and find 

its transition probabilities. 

Hint �n+l  == max{�n , Xn+l } ,  where Xk is the outcome of the kth roll . 

Exercise 5. 41 

Analyse the Markov chain described in Exercise 5 . 40 ,  but with fair die replaced 

by a fair pyramid . 

Hint A pyramid has four faces only. 
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Exercise 5. 42 

Suppose that a > 1 is a natural number . Consider a random walk on S == 

{0 ,  1 ,  · · · , a } with abHor bing barriers at 0 and a ,  and with probability p of 
moving to the right and probability q = 1 - p of moving to the left from any 
of the states 1 ,  . . .  , a - 1 .  Hence , our random walk is a Markov chain with 
transition probabilit ies 

p(j l i ) == 

p if 1 < i < a - 1 , j == i + 1 , 
q 
1 
0 

if 1 < i < a - 1 ,  j == i - 1 ,  
if i = j == 0 or i == j = a ,  

otherwise . 

Find , ( a) all invariant measures (there may be j ust one) , (b) the probability of 
hitting the right-hand barrier prior to hitting the left-hand one . 

Hint For (a) recall  Exercise 5 . 30 and for (b) Exercise 5 . 1 2 .  

5 . 5  Solut ions 

Solution 5. 1 

First we give a direct Holution . With An and Bn being the events that the phone 
is free or busy in the nth minute , we have Yn = P (Bn )

· 
The total probability 

formula then yields , for n E N, 

I . e .  
Yn+ l  == P + ( 1 - P - q)Yn · ( 5 . 64) 

As before , assuming for the time being that y = lin1n Yn exists ,  we find that 
y == p + ( 1 _- p - q)y ,  and so y == ptq .  In particular , pfq == p + ( 1 - p - q) ptq .  
Subtracting the last equality from (5 . 64) , we see that {Yn - ptq }  is a geometric 

sequence , so that Yn - ptq = (Yo - pfq) ( 1 - p - q)n .  Since Yo = 1 ,  some simple 
algebra leads to the formula 

Yn = p + q ( 1 - p - q) n ,  n E N. 
p + q p + q  

The last formula can be used to prove that the limn Yn exists and is equal t-o 
_1?_ 
p+ q " 
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.. �nother approach is to use the results of Example 5 . 1 .  Since xo == 1 - Yo , 
by ( 5 . 8 )  we have 

Yn 1 - X n  == 1 - q - ( 1 - Yo - q ) ( 1  - p - q)n  p + q p + q p + q ( 1 - p - q)n ,  p + q p + q  
which agrees with the first method of solution . 

Solution 5. 2 
We have to show that EjES p(j l i ) = 1 for every i E S .  We have 

2:: P(6 = j J �o = i )  
jES 
P (UjES {�l == j } l�o = i ) == P(�l E S l �o == i ) 
P(D I�o == i ) = 1 .  

Solution 5. 3  

Suppose that A == [aJi ]j , iES  and B == [bJi ]j , i E S are two stochastic matrices . If 
C = BA, then Cji == Lk bjk aki · Hence , for any i E S 

l: cji 
j 

aki = L aki = 1 , 
k 

where the last two equalities hold because B and A are stochastic matrices . 
We have used the wel l-known fact that 

l: l: aij = L L aij , 
1, j j i 

5 .65) 

for any non-negative double sequence (aij )f.J=1 (see , for example , Rudi/'s book 
cited in the hint to Exercise 5 . 18) . The above argument implies t� P2 is a 
stochastic matrix .  The desired result follows by induction . / 

To prove that pn is a double stochastic matrix whenever P is , it is enough 
to observe that AB is a double stochastic matrix if A and B are . The latter 
follows because (AB) t == Bt At . 
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Solution 5. 4 
Some simple algebra gives 

p2 == [ ( 1 - p) ( 1 - p) + qp ( 1 - p) q + q ( 1 - q) ] 
p( 1 - p) + ( 1 - q)p pq + ( 1 - q) ( 1 - q) 

Solution 5. 5 

[ 1 + p2 - 2p + pq 2q - pq - q2 ] 
2p - pq - p2 1 + q2 - 2q + pq 

. 

1 2 1  

Put Xn == P(�n == O l (o == 0 )  and Yn == P(�n == 1 l �o == 1 ) .  We have calculated 

the formulae for Xn and Yn in Example 5 . 1 and Exercise 5 . 1 .  Since also 

1 - Xn 

1 - Yn 

p 
q + p 

q 
q + p 

p ( 1 - p - q)n , q + p  
q ( 1 - p - q) n ' q + p 

we arrive at the follo,ving formula for the n-step transition matrix : 

Solution 5. 6 

_.!}__ + _]!_ ( 1 - p - q) n q+p q+p 
_]!_ - _]!_ ( 1  - p - q) n q+p q+p 

Simplifying , we have [ _.!}__ + _1!_ ( 1 - p - q) 2 _.!}__ - _.!}__ ( 1 - p - q) 2 ] q+p q+p q+p q+p 
_]!_ - _]!_ ( 1  - p - q) 2 _1!_ + _.!}__ ( 1  - p - q) 2 q+p q+p q+p q+p [ qp - 2p + 1 + p2 - (q - 2 + p) q ] 
- ( q - 2 + p) p q2 - 2q + qp + 1 ' 

which , in view of the formula in Exercise 5 .4 ,  proves that P2 == P2 . 

( 5 . 66) 

We shall use induction to prove that Pn == pn for all n E N. We already 
know that the assert ion true for n == 1 (and also for n == 2) . Suppose that 

Pn == pn . Then some simple , but tedious algebra gives 

pn+ l  ppn 

[ l - p q J [ qfp + qfp ( l - p - q) n qfp - qfp ( 1 - p - q) n l 
p 1 - q qfp - qfp ( l - p - q)n qfp + qfp ( l - p - q) n 

[ qfp + qfp ( l _ p _ q) n+ l qfp _ qfp (l _ p _ q) n+ l l 
_1!_ _1!_ (1 p q) n+ l _]!_ + _!1_ ( 1  _ p _ q) n+ l  q+p - q+p - - q+p q+p 

Pn+ l · 
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Solution 5. 7 

Recall that pn+k == pn pk . Since Pn+k (j l i ) are the entries of the matrix Pn+k == 

pn+k == pn pk , we obtain (5 . 18 )  directly from the definition of the product of 

two matrices . 

Solution 5. 8 

Since the 1Ji are independent , �n and 1Jn+ l  are also independent . Therefore , 

S in1ilar ly, 

P (�n+l == s J �o == So , · · · , �n == sn ) 
P (�n + 1Jn+ l == s J �o == so , · · · , �n == Sn ) 

P (1Jn+ 1  == s - sn l �o == so , . . . , �n == Sn )  

P (1Jn+ 1 == S - Sn ) . 

P (�n+ l == s l �n == Sn )  == P (�n + 1Jn+ l == s l �n == Sn ) 

p ('Tln+ l == S - Sn l�n == Sn ) 

== P ('T7n+ 1  == S - Sn ) . 

Solution 5. 9 

Step 1 .  For n == 1 the right-hand side of (5 . 19 ) is equal to 0 unless J j - i l < 1 
and 1 + j - i is even . This is only possible when j == i + 1 or j == i - 1 .  In 
the former case the right-hand side equals p, and in the latter it equals q. This 

proves (5 . 19) for n == 1 .  
� Suppose that (5 . 19) is true for some n .  We will use the following 
version of the total probabil ity formula . If Hi E :F, P(Hi n Hj ) == 0 for i -:f. j ,  
and P(Ui Hi ) == 1 ,  then 

Then the Markov property and (5 .67) imply that 

P(�n+ I  == J l �o == i ) 

P (�n+l == i l �o == i �  �n == j - 1 )P(�n == j - 1 l �o == i ) 
+P(€n+ 1 == j J �o == i ,  �n == j + 1 )P(�n = j + 1 J �o = i ) 
P(�n+l == i l �n == j - 1 )P(�n == j - l J �o == i )  
+P(�n+l = j j�n = j + 1 )P(�n = j + l J �o = i )  ( n ) n +j - 1 - i  n - j + l + i  ( n ) n +i + l - i  n - j - l + i  

== P n+j- l- i  P 2 . q  2 + q n+i+l - i P 2 q 2 
2 2 

(5 . 67) 
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Solution 5. 1 0  

Denote the right-hand side of (5 . 24) by h(x) . It follows by induction that 

h( k )  (x) = (2

k
�

) ! 
( 1 - 4x) - 1 12- k , lx l  < � .  

On the other hand , h is analytic and 

Solu tion 5. 1 1  

We shall translate the problem into the Markov chain language . Denote by S 
the set of all natural numbers N == {0 ,  1, 2 ,  · · · } . Let �n denote the nurr1ber of 
males in the nth year (or generation) , where the present year is called year 0 . If 
�n == i , i . e .  there are exactly i males in year n ,  then the probability that there 

will be j males in the next year is given by 

P (�n+ l == i l �n == i ) == P(X1 + · · · Xi == j ) , (5 . 68) 

where (Xk )k' 1 is a sequence of independent identically distributed random 

variables with common distribution 

P (X1 == m) == Pm , m E N. 

Hence �n , n > 0 is a Markov chain on S with transition probabilities 

p(j fi )  == P(X1 + · · · Xi == j ) . (5 .69 ) 

Notice that p(O I O ) == 1 ,  i . e .  if �n == 0 ,  then �m == 0 for all m > n .  Dying out 
means that eventually �n == 0 ,  starting from some n E N. Once this happens , 

�n will stay at 0 forever . 

Solution 5. 12  

We shall only deal with part 2) , as in part 1 ) there is nothing to show. Suppose 
that �0 == i . Then �1 == X1 + · · · Xi , where Xi are independent identically 

distributed Poisson random variables with parameter .,\ .  Since the sum of such 
random variables has the Poisson distribution with parameter iA ,  (5 . 27) follows 

readily. 
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Solution 5. 1 3  

Let �n denote the nurnber of supporters at the end of day n .  Then �n+ l  - �n is 
equal to 1 or 0 and 

p(j l i ) == 
pq , 1 - pq , 

i f  j == i + 1 '  
if j == i , 

0 ,  otherwise . 
( 5 . 70) 

Thus �n is a Markov chain on a state space S == N with transit ion probabilit ies 
p(j J i )  given by (5 . 70) . 

Solution 5. 14  

We shall use the notation introduced in the hint . Observe that �n+ l  - �n - Zn 
equals - 1  or 0 .  The latter case occurs with probability p, i . e .  when the car 
served at the beginnii1g of the nth time interval was finished by the end of the 
nth time interval . The former case occurs with probability 1 - p. Therefore 

A_] - i+ l  A_] - i  
P(�n+ l = i l �n = i ) = p (j _ i + 1 ) !  e - A + ( 1 - p) (j _ i ) ! e - >.  

for i > 1 ,  j > i - 1 . O n  the other hand , if j > 0 , then 

P(�n+ l  = i l �n = 0) = �� e - >- .  
J . 

Thus , �n is a Markov chain with transition probabilities 

if i == O , j E N, 
p(j j i ) = if i > 1 ' j > i - 1 ' 

otherwise , 

q' - { pqk ,  k - ( 1 - p) Qk- 1  + pqk ,  
if k == 0 ' 

if k > 1 .  

The transit ion probal)ility matrix of our chain takes the form 

r Qo qb 0 0 
Ql q� qb 0 
Q2 q� qi qb 0 

P ==  q� q� 

( 5 .  7 1 ) 

( 5 .  72) 
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Solution 5. 15 

If Pk (j l i )  > 0 ,  then P( �n == j for some n > O l �o == i )  > Pk (j l i ) > 0 . If Pk (j l i )  == 0 

for all k > 1 ,  then 

00 00 
P(�n = j for some n > O l �o = i ) < L P(�n = i l �o = i )  = L PnU i i ) = 0 . 

n=l n=l 

Solu tion 5. 1 6  

Since P(�o == i l �o == i )  == 1 ,  it follows that i t-t i ,  which proves 1 ) .  Assertion 2 )  is 
obvious . To prove 3) we proceed as follows . From the solution to Exercise 5 . 1 5 
we can find n ,  m > 1 such that Pn (j j i ) > 0 and Pm (k lj ) > 0 .  Hence , the 

Chapman-Kolmogorov equations yield 

Pm+n (k l i ) = L Pm (k l s )pn (s l i ) > Pm (k l j )pn (j l i )  > 0 . 
s E S  

Solution 5. 1 7  

Since IPn (j j i ) l  < 1 and l fn (j j i ) l < 1 for all n E N, the radii of convergence of 

both power series are > 1 .  To prove the equalities (5 .40)-(5 .41 )  we shall show 

that for n > 1 and any i , j E S , 
n 

Pn (i l i )  = L fk (j l i )p�-k (j lj ) . 
k= l  �'lt 

By total probability formula and the Markov property 

Pn (j l i )  == P(�n == j l �o == i )  
n 

= L P(�n = j, �k = j, 6 =I j, 1 < l < k - 1 l �o = i ) 
k= l  
n 

= L P(�k = j, 6 =I j , 1 < l < k - 1 1�0 = i ) 
k=l 

n 
L fk (j l i )P(�n = i l�k = j )  
k=l 
n 

= L fk (j l i )Pn-k (j lj ) . 
k=l 

Solution 5. 18 

( 5 .  73) 

Since 0 < Pn (j j i ) < 1 and 0 < fn (j j i )  < 1 , the result follows readily from 
.4 1 - 1 , - 1 - - - - -- - -



126 Basic Stochastic P rocesses 

Solution 5.19 
Only the case of a recurrent state needs to be studied . Suppose that j is recur­
rent . Then E: 1 fn(.i J j )  == 1 .  Hence , by Exercise 5 . 18 ,  Fjj (x) / 1 as x / 1 .  
Thus Pjj (x ) == ( 1 - Fjj (x) ) - 1 � oo as x / 1 ,  and so , again by Exercise 5 . 18 ,  
E: 1 Pn(i lj )  == oo .  Conversely, suppose that E: 1 Pn(i li ) == oo .  Then , by 
Exercise 5 . 1 8 ,  Pjj (x ) = � oo as x / I . Thus , Fjj (x) = 1 - (Pjj (x ) ) - 1 � 1 as 
x / 1 .  Hence , E: 1 .fn (j Jj)  = 1 ,  which proves that j is recurrent . 

To prove (5 .43) we use (5 . 73) to get 

00 

L Pn (� l'l )  
n=O I J.. -J 

oo n- 1 
L L fn-k (j l i )pk (j lj ) 
n=O k=O 

00 00 

L L !m U i i )pk (j lj ) 
k=O m=1 

00 00 

L Pk U ii ) L !m U i i) 
k=O m=l 

00 
< LPk (j jj) . 

k=O 

This implies (5 .43) when j is transient . 

Solution 5. 20 

We shall show that the state 0 is recurrent . The other case can be treated in 
a similar way. From Exercise 5 .8  we have Pn(O IO )  == __!L_+ + _E_+ ( I - p - q)n . 

00 p q p q 
Thus Pn (OIO) � p.}q > 0 ,  and so En=o Pn(O J O) == oo ,  which proves that 0 is a 
recurrent state . 

Solution 5.21 
Suppose each j E S is transient . Then by (5 .43) En Pn(j J i ) < for all 
i E S .  Let us fix i E S. Then we would have EjES E: 1 Pn( � i )  < oo , 
since S is finite . Ho,vever , this is impossible because EjES Eoo 1 Pn (j f i ) 
E: 1 EjES Pn(j l i ) = E: 1 1 == 00 .  

Solution 5. 22 

Let us begin with a brief remark concerning the last part of the problem. Since 
the random walk is ' space homogenous ' ,  i .e .  p(j f i ) = p(j -i JO) , it should be quite 
obvious , at least intuitively, that either all states are positive-recurrent or all 
states are null-recurrent . One can prove this rigorously without any particular 
difficulty. First , observe (and prove by induction) that Pn(j fi ) = Pn(j -- i fO) . 
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Second , observe that the same holds for fn , i . e .  fn (i l i ) = fn (j - i i O) . Hence, in 
particular , mi = mo . 

To show that 0 is null-recurrent let us recall some useful tools : 
00 

-Rlo (x ) = L Pn (O I O )x
n , - 1  < x < 1 ,  

n=a 
()0 

F(>a (x ) L fn (O I O )xn , - 1  < X < 1 .  
n= 1 

Since , see Exercise 5 .9 ,  

P2k (O I O ) 

Poo ( x) = 

Then, using ( 5 .41 ) , we infer that Faa (x) = 1 - ( 1 - x2 ) 1 12 • Since F�0 (x) /' oo as 
x / 1 and FJ0 (x) = E� 1 nfn (O I O )xn by usi11g Abel 's lemma (compare with 
Exercise 5 . 18) , we infer that E� 1 nfn (O I O) = oo .  This shows that mo = oo 
and thus 0 is null-recurrent . 

Solution 5. 23 

We know that 0 is a recurrent state . From definition 

fn (O I O )  = p(O I 1 )p( 1 1 1 ) n-2p( 1 IO ) = pq ( 1 - q)n-2 . 

Since 1 1  - q l < 1 ,  we infer that E� 1 nfn (O l O) = E� 1 pq ( 1  - q) n-2 < oo .  
Hence m0 < oo and 0 is positive-recurrent . The same proof works for state 1 . 

Solution 5. 24 

Consider a Markov chain on S = { 1 ,  2 ,  · · · , 9}  with transition probabilities given 
by the graph in Figure 5 . 3 .  Then , obviously, P4 ( 1 1 1 ) == 1/2 and p6 ( 1 1 1 ) = 1/2 ,  

Figure 5 . 3 .  Transition probabil­
ities of the Markov chain in Exer­
cise 5 . 24 

but Pk ( 1 1 1 ) = 0 if k < 6 and k ¢ {4 , 6} . Hence d( 1 )  == 2 ,  but P2 ( l l 1 )  == 0 .  
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Solution 5. 25 

We begin with finding P2 == P2 in an algebraic way, i . e .  by multiplying the 
matrix P by itself. We have 

p2 = p2 = [ � �;� ] [ � �;� ] = [ t t ] . 
Alternatively, P2 can be found by observing that the only way one can get from 
1 to 1 in two steps is to move from 1 to 2 (with probability 1) and then from 2 
to 1 (with probability 1 /2) . Hence , the probability p2 ( 1 f 1 ) of going from 1 to 1 
in two steps equals 1 /2 .  Analogous ly, we calculate p2 ( 1 f 2 ) by observing that in 
order to move from 1 to 2 in two steps one needs first to move from 1 to 2 (with 
probability 1 )  and then stay at 2 (with probability 1 /2) . Hence , P2 ( l l 2 )  == 1 /2 .  
The remaining two elements of the matrix P2 can be  found by repeating the 
above argument , or � simply by adding the rows so that they equal 1 .  In the 
latter method we use the fact that P2 is a stochastic matrix , see Exercise 5 .3 .  
Tl1e graph representi11g P2 is shown in Figure 5 .4 .  

1/2 3/4 

Figure 5.4. Two-step transition 
probabilities in Exercise 5 . 25 

Using any of the rnethods presented above , we obtain 

p3 
= [ i t ] . 

Therefore , Pl ( 1 1 1 ) = 0 ,  P2 ( 1 f 1 ) == 1 /2 and P3 ( I I 1 ) = 1/4 .  Hence d( l) 1 
(although Pl ( 1 1 1 )  == 0) . Since Pt (2 1 2 ) == 1 /2 > 0,  it follows that d(2) = 1 .  

Solution 5. 26 

\ Suppose that �o == i .  Denote by Tk the minimum positive time when the chain 
\ nters state k , i .e .  

Tk == min{n > 1 :  �n == k } .  

The , P{ri < ri } == :  E > 0 if i -t j and i � j .  If j -�+ i ,  then it would 
be im"possible to return to i with probability at least c > 0 .  But this cannot 
happen as i is a recurrent state . Indeed , 

1 == p (Ti < 00) == p (ri < oor'Tj < 'Ti )  p ('Tj < Ti ) 
+ p (Ti < oof�i > 'Ti ) p (Tj > 'Ti ) . 
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The second term on the right-hand side is < 1 - c < I ,  while the first factor in 
the first term is equal to 0 (since i --++- j ) .  This is a contradiction . The second 
part is obvious . 

Solution 5. 27 
As observed in the hirtt , we only need to  show that ( 5 .45)  holds when p(j J i )  == 0 
for i E C and j E S \ C . We begin with the following simple observation .  If 
(fl ,  F, P) is a probability space and An E F, n E N, then P(Un An ) = 0 if and 
only if P (An )  == 0 for each n E N. Hence (5 .45) holds if and only if for each 
k > n  

P (�k E S \ C l�n E C) == 0 .  ( 5 . 74) 

In fact , the above holds if and only if it holds for k == n + 1 .  Indeed , suppose 
that for each n E N 

P (�n+ l  E S \ C l �n E C) == 0 .  (5 . 75 ) 

Let us take n E N. We shall prove by induction on k > n that (5 . 74)  holds . This 
is so for k == n and k == n + 1 .  Suppose that ( 5 . 74) holds for some k > n + 1 .  
We shall verify that it holds for k + 1 .  B y  the total probability formula (5 .67) 
and the Markov property (5 . 10 ) 

P (�k+l E S \ C l �n E C) 
== P (�k+ l E S \ C l�n E C, �k E C) P(�k E Cl�n E C) 

+ P (�k+ l E S \ C l�n E C, �k E S \ C) P(�k E S \ C J�n E C) 
== P (�k+ l E S \ C l �k E C) P(�k E Cl�n E C) 

+ P (�k+ l  E S \ C l�k E S \ C) P(�k E S \ C l�n E C) . 

By the induction hypothesis P(�k E S \ C I�n E C) == 0 and by (5 . 75) (applied to 
k rather than n) P (�k + l E S \ C l�k E C) == 0. Thus , P (�k+l  E S \ C l�n E C) == 

0 , which proves (5 . 74) . 
The time-homogeneity of the chain implies that (5 . 75 )  is equivalent to (5 . 74) 

for n == 0 .  Since P i s  a countably additive measure and S i s  a countable set , 
the latter holds if ancl only if p(j J i )  == 0 for i E C and j E S \ C . 

Solution 5.28 
Property 2) in Proposition 5 .8  implies that J.L is an invariant measure . Therefore 
it remains to prove uniqueness . Suppose that v == Ej 1 qi6i is an invariant 
measure . It is sufficie11t then to show that 1r i == qi for all j E S. 
Since 0 < Pn (i l i ) qi < qi for all i , j E S and Ei qi == 1 < oo ,  Lebesgue 's 
dominated convergence theorem yields 

00 

qj = LPn (i l i ) qi � L 11"jqi = 11"j · 
• 1 
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It follows that J.L == v .  

Solution 5. 29 
We shall argue as in the uniqueness part of Solution 5 . 28 .  If v == Ej 1 qi 6i is 
an invariant measure , then by Lebesgue ' s  dominated convergence theorem 

00 

qj = L PnU i i) qi -+ L 1fjqi = 0 .  
i= l i 

Hence v = 0 ,  which contradicts the assumption that v is a probability measure . 

Solution 5. 30 

Obviously, P = [ � � ] . Therefore equation P1r = 1r becomes 

The only solution of this system subject to the condition 1r 1 + 1r2 == 1 is rr 1 == 
7r2 == 1 /2 .  

Solution 5. 31 

LPn(i l i )  ( ( 1 - O)tti + Ovi )  
i E S  i E S  iE S 

( 1 - O)ttj + fJvi = [ ( 1 - B)J-t + Bv]J . 

Solution 5. 32 

J-tj = L Pn (j l i )J-ti -+ 0 
iES 

by the Lebesgue don1inated convergence theorem . Indeed , by Exercise 5 . 19 
Pn (i l i )  � 0 for all i E S, and Pn (j f i ) J.Li < J-li , where E tti < oo .  

Solution 5. 33 

Since j is transient in vie of (5 .43) , from Exercise 5 . 19 we readily get (5 . 53) . 
Solution 5. 34�� 
By Theorem 5 .5 Pn(i l i ) --t � .  for all i , j E S. Put 7rj = n! . , j E S .  We need to 

1 J 
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1 )  1r == Lj 7rj c5j is an invariant measure of the chain �n , n E N; 
2) 1r is the unique invariant measure . 

Part 1 )  will follow from Proposition 5 . 8  as soon as we can show that 1fj > 0 for 

at least one j E S .  But if j E S, then j is positive-recurrent and thus mj < oo .  

Part 2 )  follows from l�xercise 5 . 28 .  

Solution 5. 35 

Let us fix i , j E Z .  First suppose that j - i == 2a E 2Z . Then p2k+ 1 (j l i )  == 0 for 

all k E N, and also P2k (j l i ) == 0 if k < l a l . Moreover , if k > l a l , then 

P2k (J i i )  == ( 2k ) pk+aqk -a == (p) a ( 2k ) pk qk . k + a  q k + a 

Since (k�a) < (2k
k ) ,  it follows that 

P2k (j i i ) < (�) a (2:) pkqk --+ 0 

by Proposition 5 . 4 .  We have therefore proven that 7rj is well defined and that 

7rj == 0 for all j E Z .  Hence , we infer that no invariant measure exists .  

Solution 5. 36 

Suppose that 1r == Er; 0 7rjdj is an invariant measure of our Markov chain . 

Then Li p(j l i ) 7ri == 7rj for all j E S = N. Using the exact form of the transition 

probability matrix in the solution to Exercise 5 . 14 , we see that the sequence 

of non-negative numbers (7rj )j 0 solves the following infinite system of linear 

equations : 

I . e .  k+ l  
Qk 'ffO + L q�+ l -j'ffj = 'ffk , k E N. 

j=l 

(5 . 76) 

Multiplying the kth equation in (5 . 76) by xk , k > 0, and summing all of them 

up we obtain 

7ro Q (x) + G(x) f 'ffj Xi = II(x) , l x l  < 1 , 
X . 1 J =  

(5 . 77) 
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where for l x l  < 1 ,  
00 

II (x)  � 1f · Xj 
� J ' 
j=O 

Q (x) 

00 
G(x) = L qjxi . 

j=O 

Since Ef 1 7rj Zj == II (x) - 1r0 ,  we see that II, Q and G satisfy the functional 
equation 

II( ) _ G(x) - xQ(x) 
I I 1 x - rro G(x) - x ' x < . ( 5 . 78 )  

Since all the coefficients 7rj in the power series defining II are non-negative ,  
Abel 's lemma implies that 

00 
L 7rj = lim ll(x) . 

x / l  j=O 

It is possible to use ( 5 . 78)  to calculate this limit . However , there is still some 
work be done . We have to use ! 'Hospital 's rule . Since G(x) - x -t 0 ,  G(x) -
xQ (x) -t 0 , G' (x) - 1 � ).. ' - 1 and (G(x) - xQ(x) ) ' � )..' - ).. - 1 (all limits 
are for x / 1 ) , we obtain (recall that )..' == limx/'1  G' (x) ) 
1 )  if ).. ' f:- 1 ,  then II ( x) -t 1r0 1t��'A

' 
; 

2)  if ).. ' == 1 ,  then II(x) � oo .  
In case 1 ) 1t�-:\;x' > 1 ,  since rr0 < 1 . It follows that 1!.>.. ' > 0 ,  and so >.. ' < 1 .  
Moreover , in this case 

1 - )... ' 
7ro == 

1 - A.' + )... 
. 

The above argument shows that if there exists an i11variant measure , then it is 
Unique . 

Now suppose that an invariant measure exists (and then it is unique) . Since 
our chain is irreducible and aperiodic (check this ! ) ,  it follows from Theorem 5 .6 
that the Markov chain �n is ergodic . Therefore , by Theorem 5 . 5 ,  for any j E N 

j ,  as n � oo .  

Since Fji ( 1 )  == 1 ,  it al so follows that 

Pn (i l i ) 7rj , as n � oo .  
I 

I 
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Solution 5. 37  

We begin with the ca se no == 1 .  Then Mn (j ) - mn (j ) < ( 1  - c:)n from ( 5 . 62 ) . 

It follows that 

mn (j ) < 7rj < Mn (j ) , 

mn (j ) < Pn (J i i ) < Mn (j ) , 

and we infer that IPn (J i i ) - 1I"j l < ( 1 - c) n , n E N. Suppose that n0 > 2 .  Then 

for any r == 1 ,  · · · , n0 - 1 

Solution 5. 38 

_L Pkno U l s)pr (s l i ) - L 1rjPr (s l i ) 
sES  sES  

< L IPkno U l s) - 7rj 1Pr (s l i ) 
sE S 

The transition probability matrix P takes the form [ 1 
p 

p 
1 

q 
q 
] . Since 

all four numbers p, q �  1 - p, 1 - q are strict ly positive , the assumption ( 5 . 54) 

is satisfied , and so the limits 7rj = limn Pn (J i i ) exist and are i-independent . 

Hence , the unique invariant n1easure of the corresponding rviarkov chain is 

equal to 1roJo + 7rt bl . (Recall that S == { 0 , 1 }  in this example. ) We need to find 

the values 7rj . One way of finding them is to use the definition . As in Hint 5 . 28 ,  
the vector 1r == ( 1r0 , 1r1 ) solves the following linear equation in matrix form: 

[ :� ] 
1 . 

(5 .  79) 

( 5 . 80) 

Some elementary algebra allows us to find the unique solution to the above 

problem: 
q p 

7ro = , 1r1 = --p + q p �- q (5 .81 ) 

Hence , _!L_+ 80 + _p_+ 81 is the unique invariant measure of the Markov chain. 
p q p q 

Solution 5. 39 

From (5 . 66) we infer that 

Pn (O I O ) = 
q ! p + q � p ( 1 - p - q)n --+ q ! p ' 
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Pn ( l j O )  

Pn (O j 1 ) 

Pn ( l l l ) 
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p p 
( 1 - p - q) n -t p ' 

q + p q + p q + p 
q q ( 1  - p - q) n � q 

' 
q + p q + p q + p 

p + q ( 1 - p - q) n � p 
q + p q + p q + p  

Hence rr0 == _!1_+ and 1r1 == ___E_+ • This is in agreement with the previous solution . q p q p 

Solution 5. 40 
Suppose that �n == i . Then the value of �n+ 1 depends entirely on the outcome of 
the next roll of a die , say Xn+ 1 , and the value of �n · Since it depends on the past 
only through the value of �n , intuitively we can see that we are dealing with a 
Markov chain . To define �n in a precise way consider a sequence of independent 
identically distributed random variables Xn , n == 1 ,  2 ,  3 ,  · · · such that P(X1 == 
i )  == 1 /6 for all i == 1 ,  2 ,  · · · , 6 .  Then , putting �n+ 1 == max{ �n , Xn+ I } ,  we can see 
immediately that P ((n+ l == in+ l l �o == io , · · · , �n == in ) == P(�n+ l == in+ I I �n == 
i n ) and 

P(�n+ 1 == j J �n == i ) 

Thus , 

It follows that 

Solution 5. 41 

P(�n+ 1 == j J �n == i , Xn+ 1 < i )P (Xn+1 < i ) 

+P (�n+ 1 == J l �n == i , Xn+ 1 > i )P (Xn+ 1 > i )  

-

6 

1 
6 i 
6 
0 

0 if j > i , 
1 if j == i ' + 6 - t 

6 - i { -1 . 
6 0 

0 if j < i , 

if j > i ,  
if j == i ,  
if j < i .  

1 
6 if j > i ,  

p(j l i )  == i if j == i '  6 
0 if j < i .  

1 0 0 0 0 0 6 1 2 0 0 0 0 6 6 1 1 3 0 0 0 
P = 6 6 6 1 1 1 4 0 0 6 6 6 6 1 1 1 1 5 0 6 6 6 6 6 1 1 1 1 1 1 6 6 6 6 6 

if j > i , 
if j < i ,  

'rhP �r�.nh nf t.h P rh ain i �  Q'lVP.n in FiQ'ure fi . fl .  The tranRition matrix iR 
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Figure 5 . 5 .  Transition probabil­
ities of the Markov chain in Exer­
cise 5 . 4 1  

0 
0 
0 
1 

Either from the graph or from the matrix we can see that i --t j if and only if 
i < j . The state i == 1 is transient . Indeed , p( 1 J 1 ) = 1 /4 and Pn ( 1 1 1 ) == ( 1 /4) n 

by induction . Therefore , En Pn ( 1 ! 1 ) < oo and 1 is transient by Exercise 5 . 19 .  
The same argument shows that the states 2 and 3 are also transient . On the 
other ha11d , p(4 1 4) == 1 ,  and so 4 is a positive-recurrent state .  (As we know, 
that there should be at least one positive-recurrent state . )  

We shall find invariant measures by solving the system of four linear equa­
tions P1r == 1r for 1r == ( 1r 1 , 1r2 , 1r3 , 1r 4 ) ,  subject to the condition 1r1 + 1r2 + 
n3 + 1r 4 == 1 . Some elementary linear algebra shows that the only solution is 
1r 1 == 1r2 == 1r3 == 0 ,  1r4 == 1 .  Thus , the unique invariant measure is 1r == c54 . 

The invariant measure can also be found by invoking Theorem 5 .4 .  In our 
case C == { 4} , and so there is exactly one class of recurrent sets . Moreover , as 
we have seen before , 4 is positive-recurrent . Therefore , there exists a unique 
invariant measure . Sil1ce its support is contained in C, we infer that 1r == <54 . 

Solution 5. 42 

The graph representii1g the Markov chain for a =  4 is presented in Figure 5 .6 .  
0 

Obviously, i --t j for i E S \ {O , a} == : S and j E S. Moreover ,  0 --t j if and 
only if j == 0 and a --t j if and only if j == a .  Since p(OI O) = p(a la) == 1 ,  
both states 0 and a are positive-recurrent . All other states are transient . For 

0 
if i E S were recurrent , i would be intercommunicating with 0 because i --t 0 ,  
hv RxP.rc.i RP. !1 . 26 . This i s  imnossible . Therefore , bv Remark 5 .5 there exist an 
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Figure 5 . 6 .  Transition probabil­
ities of the Markov chain in Exer­
cise 5 . 42 

infinite number of invariant measures : 11 == ( 1  - 9)80 + 98a , where (} E [0 , 1) . 
Indeed , lSa is the only probability measure with support in the singleton {a} . 
It is possible to verify this with bare hands . Next , let ¢(i) denote the probabil­
ity that the investigated Markov chain �n hits the right-hand barrier prior to 
hitting the left-hand one . Once �n hits the left barrier it will never leave it , so 
¢( i )  is actually the probability that �n hits a .  Put 

A = { 3n E N :  �n == a} . 

Then , by the total probability formula and the Markov property of �n , we have 
for 1 < i < a - 1 

a 

</J(i ) = P(A I�o = i) = L P(A I .;o = i ,  6 = j) P(6 = i l .;o = i )  

Obviously, 

j=O 
a 

= L P(AI.;l = j)P(6 = i l .;o = i ) 
j=O 
a 

= L <fJ(j)P(6 = j l.;o = i )  = p</J(i + 1 ) + q</J(i - 1) . 
j=O 

¢(0) 0, 
¢ (a) 1 .  

Therefore , the sequence ( ¢ (  i) ) � 0 satisfies 

¢(i )  = p¢(i + 1 ) + q¢(i - 1 ) , 1 < i < a - I , 
t/J(O) = 0,  </>(a) = I .  

Since p + q = I , equations (5 .82 )  can be rewritten as follows :  

p [q)(i + I ) - ¢(i )] = q [¢(i ) - ¢(i - I ) ] , I < i < a - 1 .  

(5 .82) 
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Hen ce , 

[¢ ( i  + 1 ) - ¢ (i ) ] = (;) ' x , 

where x = ¢( 1 ) - ¢(0) is to be determined . Using the boundary condition 
¢(a) = 1 , we can easily find that 

a - 1 

1 = ¢(a) = L (¢(i + 1 ) - ¢(i ) ) 
i=O 

Here we assume that p =1- q. The case p = q = 1 /2 can be treated in a similar 
way. In fact the latter is easier . It follows that 

!1. _ 1 
x = _P __ 

( ! ) a - 1 

and therefore 





6 
Stochastic Processes in Continuous Time 

6 . 1 General Not ions 

The following definitions are straightforward extensions of those introduced 
earlier for sequences of random variables , the underlying idea being that of a 
family of random variables depending on time . 

Defi n it ion  6 . 1 

A stochastic process is a family of random variables e(t ) parametrized by t E T,  
where T C JR. When T = { 1 ,  2 ,  . . .  } ,  we shall say that � (t) is a stochastic process 
in dis crete time (i . e .  a sequence of random variables) .  When T is an interval 

in IR (typically T = [0 , oo) ) ,  we shall say that � ( t) is a stochastic process in 

continuous time. 
For every w E [} the funct ion 

T 3 t M e(t , w) 
is called a path (or sample path) of � (t) . 

Defi n i t ion 6 . 2  

A a ily Ft of a-fields on {} parametrized by t E T, where T C IR, is called a 

filtratio · r 
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Defi n it ion 6.3 

A. stochastic process � ( t ) parametrized by t E T is called a martingale ( sub­
martingale, supermartingale) with respect to a filtration Ft if 

1 ) � ( t )  is integrable for each t E T; 
2 )  �( t )  is Ft-measurable for each t E T ( in which case we say that � (t )  is 

adapted to Ft ) ;  

3) � (  s ) = E (� ( t ) IFs )  (respectively, < or > ) for every s , t E T such that s < t .  

In earlier chapters we have seen various stochastic processes , in particular , 
nartingales in discrete time such as the symmetric random walk , for example . 
:n what follows we shall study in some detail two processes in continuous time , 
1amely, the Poisson process and Brownian motion . 

) . 2  Poisson Process 

) . 2 . 1 Exp onential D istribution and Lack of MeiDory 

)efi n it i on 6.4 

We say that a randon1 variable TJ has the exponential distribution of rate .A > 0 

f 
P {TJ > t} = e->-t 

or all t > 0 .  

For example , the emissions of particles by a sample of radioactive material 

or calls made at a telephone exchange) occur at random times . The probability 

hat no particle is en1itted (no call is made) up to time t is known to decay 

xponentially as t increases . t is to say, the time TJ of the first emission has 
he exponential distribution , P { 7J > t 

:xercise 6. 1 

Vhat is the distribution function of a random variable 17 with exponent ial 
.istribut ion? Does it have a density? If so , find the density. 

rint What is the probability that 1J > 0? What is the probability that TJ > t for any 
iven t < 0? Can you express the distribution function in terms of P { TJ > t } ?  Is the ... .. - . - .. . .. . ...... 
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Exercise 6. 2 
Compute the expectation and variance of a random variable having the expo­

nential distribution . 

Hint Use the density found in Exercise 6 . 1 .  

Exercise 6. 3 
Show that a random variable fJ with exponential distribution satisfies 

P {ry > t + s } == P {ry > t} P {ry > s }  (6 . 1 )  

for any s , t > 0 .  
Hint When the probabilities are replaced by exponents , the equality should become 
obvious . 

Exercise 6. 4 

Show tl1at the equality in Exercise 6 .3  is equivalent to 

P {TJ > t + s JTJ  > s }  = P {TJ > t} (6 .2 )  

for any s , t > 0 .  
Hint Recall how to cotnpute conditional probability. Observe that 1J > s + t implies 
1] > s .  

The equality (6 .2 )  (or , equivalently, (6 . 1 ) )  is known as the lack of memory 
property. The odds that no particle will be emitted (no call will be made) in 

the next time interval of length t are not affected by the length of time s it has 

already taken to wait , given that no emission (no call) has occurred yet . 

Exercise 6. 5 

Show that the exponential distribution is the only probability distribution sat­

isfying the lack of memory property. 

Hint The lack of memory property means that g(t) = P {TJ > t} satisfies the func­
tional equation 

g(t + s) = g(t)g(s)  
for any s ,  t > 0. Find all non-negative non-increasing solutions of this functional 
equation . 
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6 . 2 . 2  Construction of the Poisson Process 

Let 171 , 172 , . . . be a sequence of independent random variables , each having the 
same exponential distribution of rate ,\. For example , the times between the 
emissions of radioact ive particles (or between calls made at a telephone ex­
change) have this property. We put 

�n == 171 + · · · + 17n ' 

which can be thought of as the time of the nth emission (the nth call ) . We also 

put �0 = 0 for convenience. The number of emissions (calls) up to time t > 0 is 

an n such that €n+ l > t > {n . In other words , the number of emissions (calls ) 

up to time t > 0 is equal to max {n : t > �n } · 

Defi n i t i o n  6 . 5  

We say that N(t) , where t > 0 ,  is a Poisson process if 

N(t) == max {n : t > �n } . 

Thus , N(t) can be regarded as the number of particles emitted (calls made) 
up to time t . It is an example of a stochastic process in continuous time . A 
typical path of N (t) is shown in Figure 6 . 1 .  It begins at the origin , N(O) = 0 
(no particles emitted at time 0) , and is right-continuous , non-decreasing and 
piecewise constant wi th jumps of size 1 at the times �n .  
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Figure 6 . 1 .  A typica path of N(t) and the jump times �n 
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What is the distribution of N(t) ? To answer this question we need to recall 
the definition of the Poisson distribution . 

Defi n it ion  6 . 6  
A random variable v has the Poisson distribution with parameter a > 0 if 

for any n == 0, 1 ,  2 ,  . . . .  

an 
P {v = n} = e-a -, 

n . .  

The probabilities P { v = n } for various values of a are shown in Figure 6 .2 .  

0 . 6  

0 .4 

0 . 2  

0 .6 

0.4 

0 .2  

0 1 2 3 n 
o:= l/3 

0 . 6 

0.4 

0 .2  

0 1 2 3 4 5 n 0 1 2 3 4 5 6 7 8 9  n 

o:=l o:=3 

Figure 6 . 2 .  Poisson distribution with parameter a 

Proposit ion 6 .1  

N(t) has the Poisson distribution with parameter A.t ,  

Proof 

First of all , observe tl1at 

P {N(t) = n } = e->.t 
(Att

. n !  

{N(t) < n} = {�n > t} . 
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It suffices to compute the probability of this event for any n because 

P { N(t) == n} P {N (t) < n + 1 } - P {N(t) < n } 

P {�n+ l > t} - P {�n > t} . 

We shall prove by induction on n that 

For n = 1 

n- 1 (:\t ) k 
P {�n > t} = e->.t L 

k !  . 
k=O 

P {�l > t} = P {TJ1 > t } = e-At . 

(6 . 3 ) 

(6 . 4) 

Next , suppose that (6 .4) holds for some n.  Then, expressing �n+l as the sum 
of the independent random variables �n and 1Jn+l ,  we compute 

P {�n+ l > t } P {�n + TJn+ l > t}  

P {1Jn+l > t} + P {�n > t - 1Jn+1 7 t > 17n+ l > 0} 

e ->. t + lo t 
P {�n > t - s } /11n+ t  (s )  ds 

1 t n- l
(.A (t ) ) k 

e - >.t + e->. ( t - s) L � s Ae->.sds 
O k=O 

n- 1 Ak+l t 
e->.t + e->.t L 

k!  1 (t
-

s ) k ds 
k=O O 

- ->.t � (At) k 

-
e 

L....J k !  ' 
k=O 

where /71"+1 (s) is the density of 17n+I ·  By induction, (6 .4) holds for any n .  Now 
apply (6 . 3) to complete the proof. 0 

Exercise 6. 6 

What is the expectation of N(t) ? 

Hint What are the possible values of N(t) ? What are the corresponding probabilities? 
Can you compute the expectation from these? To simplify the result use the Taylor 
expansion of e x . 

Exercise 6. 7 
Compute P {N(s ) = 1 ,  N(t) == 2} for any 0 < s < t .  

Hint Express {N(s )  = 1 ,  N(t ) = 2} as {171 < s < 7]1 + 7]2 < t < T/1 + "72 + 173 } . You 
can compute the probability of the latter , since 7]1 , 1]2 , T/3 are exponentially distributed 
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6 . 2 . 3 Poisson Process Starts froiD Scratch at Time t 

Imagine that you are to take part in an experiment to count the emissions of 
a radioactive particle . Unfortunately, in the excitement of proving the lack of 
memory property you forget about the engagement and arrive late to find that 
the experiment has already been running for time t and you have missed the 
first N ( t) emissions. Determined to make the best of it , you start counting right 
away, so at t ime t + s you will have registered N ( t + s) - N ( t) emissions . It will 
now be necessary to discuss N(t + s) - N(t) instead of N(s)  in your report . 

What are the properties of N(t+s) - N(t) ? Perhaps-you can guess something 
from the physical picture? After all , a sample of radioactive material will keep 
emitting particles no matter whether anyone cares to count them or not . So 
the moment when sorneone starts counting does not seem important . You can 
expect N ( t + s)  - }/ ( t) to behave in a similar way as N ( s) . And because 
radioactive emissions have no memory of the past , N(t + s) - N(t)  should be 
independent of N(t) . 

To study this conjecture recall the construction of a Poisson process N (t) 
based on a sequence of independent random variables 171 , 112 , . . .  , all having the 
same exponential distribution . We shall try to represent N(t + s)  - N(t )  in a 
similar way. 

Let us put 

7Jf : = �JV ( t )+ l  - t , 1]� : == 1JN( t )+n ' n = 2 ,  3 ,  · · · , 

see Figure 6 . 3 .  These are the t imes between the jumps of N(t + s) - N(t) . Then 
we define 

t t 171 + · · · + 11n ,  
max { n : �� < s}  . 

• I .  1}Nt 17Nt+I 17Nt+2 T/Nt+3 • • • 

- - �- - - - - �- - - - - - - - - - - - -�- - --�·- - - - - - � - -1 I I I 
I I I I 
I I I I 
I t I t I t I 
I 'Y) I 'Y) I 'Y) I 
I ' / 1 I ' /2 I ' / 3 I • • • 

: - -�- - - - - -�-- •:-c- - - -- -11-+- -
1 I I l 
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 

t 

Figure 6 .3 .  The random variables 7JI , 7]� , 71� , . . .  
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Exercise 6. 8 
Show that 

N t (s ) == N (t + s ) - N (t) . 

Hint First show that �� == �N ( t ) +n - t .  

If we can show that 11f , 1]� , . . .  are independent random variables having the 
same exponential dist ribution as 1]1 , ry2 , . . . , it will mean that N(t + s ) - N ( t) 
is a Poisson process \\'ith the same probability distribution as N ( s ) . Moreover , 
if the 77� turn out to be independent of N (t ) , it will imply that N(t + s ) - N( t) 
is also independent of N ( t ) . 

Before setting about this task beware of one common mistake . It is some­
times claimed that the times 11i , 17� , 1}� , . . .  between the jumps of N ( t + s ) - N ( t) 
are equal to (n+ I - t . rJn+2 , 17n+3 , . . .  for some n .  Hence 11i , 1]� , 11� , . . .  are inde­
pendent because the random variables �n+ l , 17n+2 , 17n+3 , . . .  are . The flaw in this 
is that , in fact , ryf , 77� , 1]� , . . .  are equal to �n+ I - t ,  17n+2 , 1Jn+3 , . . .  only on the set 
{N (t )  = n} . However , the argument can be saved by conditioning with respect 
to N(t) . Our task becomes an exercise in computing conditional probabilities . 

Exercise 6. 9 

Show that 
P{17� > s !N (t) } == P{rJI > s } .  

Hint It suffices (why?)  to verify that 

P{1Jf > s , N(t) == n} == P {171 > s} P{N(t) == n} 

for any n . To this end,  write the sets {N(t ) == n} and {7Ji > s , N(t) == n} in terms of 
�n and fJn+ l ,  which are independent random variables , and use the lack of memory 
property for "ln+l ·  

Exercise 6. 1 0  

Show that 

Hint Verify that 

P{1J� > s 1 ,  7]� > s 2 ,  . . . , 1Jk > B k , N(t) = n} = P{171 > s 1 } · · · P{7Jk > sk }P {N(t) == n} 

for any n .  This is done in Exercise 6 .9 for k = 1 . 
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Exercise 6. 1 1  

From the formula in Exercise 6 . 1 0  deduce that the random variables 7]� and 

N(t )  are independent , and the 17� have the same probability distribution as 1Jn , 
i . e . exponential with parameter .\ .  

Hint What do you get if you take the expectation on both sides of the equality in 
Exercise 6 . 1 0? Can you deduce the probability distribution of TJ� ? Can you see that 
the 17� are independent? 

To prove that the TJ� are independent of N(t) you need to be a little more careful 
and integrate over {N(t)  == n} instead of taking the expectation . 

Because N ( t + s ) - N ( t) can be defined in terms of 1JI , 17� , . . . in the same 

way the original Poisson process N ( t) is defined in terms of 1]1 , 112 , 0 0 0 , the 

result in Exercise 6 . 1 1  proves the theorem below 0 

Theorem 6 . 1 

For any fixed t > 0 

Nt (s ) == N(t + s) - N (t) , s > 0 

is a Poisson process independent of N(t) with the same probability law as N (s ) .  

That is to say, for any s ,  t > 0 the increment N(t + s ) - N (t) is independent 
of N (t) and has the same probability distribution as N (s ) .  The assertion can be 
generalized to several increments , resulting in the following important theorem. 

Theore m  6 . 2  

For any 0 < t 1 < t2 < · · · < tn the increments 

N(t1 ) , N(t ) - N (t1 ) ,  N(t3 ) - N(t2 ) , . . .  , N(tn ) - N(tn-1 ) 

are independent a have the same probability distribution as 

P roof 

From Theorem 6 . 1  it follows immediately that each increment N(ti ) - N(ti- l ) 
has the same distribution as N (ti - ti- l ) for i == 1 ,  . . .  , n .  

It remains to prove independence . This can be done by induction . The case 

when n = 2 is covered by Theorem 6 . 1 .  Now suppose that independence holds 

for n increments of a Poisson process for some n > 2. Take any sequence 

(l < f1 < fn < • • • � f <' + . ..  
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By the induction hypothesis 

are independent , since they can be regarded as increments of 

which is a Po isson process by Theorem 6 . 1 .  By the same theorem these incre­
ments are independent of N ( t 1 ) .  It follows that the n + 1 random variables 

are independent , completing the proof. D 

Defi n i t ion 6 .  7 
We say that a stochastic process � ( t) , where t E T ,  has independent increments 
if 

are independent for any to < t1 < · · · < tn such that to , t 1 , . . .  , tn E T .  

Defi n i t i on  6 . 8  

A stochast ic process � (t) , where t E T ,  is said to have stationary increments if 
for any s ,  t E T the probability distribution of � (t + h) - �(s + h) is the same 
for each h such that s + h, t + h E T .  

Theorem 6 . 2  implies that the Poisson process has stationary independent 
increments . The result in the next exercise is also a consequence of Theorem 6 . 2 .  

Exercise 6. 12 
Show that N (t) - At i s  a martingale with respect to the filtration :Ft generated 

by the family of random variables {N (s) : s E (0 , t) } .  

Hint Observe that N(t ) - N(s)  is independent of :Fs by Theorem 6 . 2 .  

6 . 2 .4 Various Exercises o n  the Poisson Pro cess 

Exercise 6. 13 
Show that �o < �1 < �2 < · · · a.s . 
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Hint What is the probability of the event {en - 1 < en } = {1Jn > 0}?  What is the 
probability of the intersection of all such events? 

Exercise 6. 1 4  

Show that limn�oo �n == oo a.s .  

Hint If limn-+oo en < oo ,  then the sequence 171 , 172 , . . .  of independent random vari­
ables , all having the same exponential distribution , must be bounded. What is the 
probability that such a sequence is bounded? Begin with computing the probability 
P { 'TJI < m ,  . . .  , TJn < m} for any fixed m > 0 .  

Although it is  instructive to estimate P { limn� oo  en < oo } in this way, there is a 
more elegant argument based on the strong law of large numbers. What does the law 
of large numbers tell us about the limit of f.;- as n --t oo? 

Exercise 6. 1 5 

Show that �n has absolutely continuous distribution with density 

(At) n- 1  fn (t) = Ae-At 
(n _ I) ! 

with parameters n and A. The density f n ( t) of the gamma distribution is shown 
in Figure 6 .4 for n == 2 ,  4 and A == 1 .  

0 .4  

0 .2  

0 4 8 t 
igure 6 . 4 .  Density fn (t )  of the 

�mma distribution with parame­
trrs n = 2, A = 1 and n = 4, A = 1 

I 

Hint Use the formula for P {�n > t} in the proof of Proposition 6 . 1 to find the dis­
tribution function of �n . Is this function differentiable? What is the derivative? 

Exercise 6. 1 6  

Prove that 
lim N(t) == oo a.s . 

.,. \. ---
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Hint What is the limit of P{N(k)  > n} as k --+  oo? Can you express { limt� oo  N(t) 
= oo } in terms of the sets {N(k ) > n} ? 

Exercise 6. 1 7  

Verify that 

P{N(t) is odd} 
P{N(t) is even} 

e - >--t si11h(At) , 
e - >--t cosh (At) . 

Hint What is the probability that N(t) = 2n + 1 ?  Compare this to the n-th term of 
the Taylor expansion of sinh At . 

Exercise 6.18 

Show that 
lim N(t) 

= ,\ a. s .  
t � oo  t 

if N(t) is a Poisson process with parameter A .  

Hint N(n) is the sum of independent identically distributed random variables N(l ) ,  
N(2) - N(l ) ,  . . .  , N(n) - N(n - 1 ) ,  so the strong law of large numbers can be applied 
to obtain the limit of N(n)/n as n --t oo. Because N(t) is non-decreasing, the limit 
will not be affected if n is replaced by a continuous parameter t > 0.  

6 . 3  Brownian Motion 

Imagine a cloud of srr1oke in completely still air . In time , the cloud will spread 
over a large volume, the concentration of smoke varying in a smooth manner . 
However, if a single smoke particle is observed , its path turns out to be ex­
tremely rough due to frequent collisions with other particles . This exemplifies 
two aspects of the same phenomenon called diffusion : erratic particle trajec­
tories at the microscopic level , giving rise to a very smooth behaviour of the 
density of the whole ensemble of particles . The Wiener process W (t) defined 
below is a mathematical device designed as a model of the motion of individual 
diffusing particles . In particular , its paths exhibit similar erratic behaviour to 
the trajectories of real smoke particles . Meanwhile , the density fw(t) of the 
random variable W(t) is very smooth , given by the exponential function 
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which is a solution of the diffusion equation 

8t 2 8x2 

1 5 1 

and can be interpreted as the density at time t of a cloud of smoke issuing form 
single point source at time 0. The Wiener process W(t) is also associated with 
the name of the British botanist Robert Brown , who around 1827 observed 
the random movement of pollen particles in water . We shall study mainly the 
one-dimensional Wiener process ,  which can be thought of as the projection of 
the position of a smoke particle onto one of the axes of a coordinate system. 

Apart from describing the motion of diffusing particles , the Wiener process 
is widely applied in matherhatical models involving various noisy systems , for 
example , the behaviour of asset prices at the stock exchange . If the noise in the 
system is due to a multitude of independent random changes , then the Central 
Limit Theorem predicts that the net result will have the normal distribution , a 
property shared by the increments W (t) - W (s) of the Wiener process . This is 
one of the main reasons of the widespread use of W ( t) in mathematical models . 

6 . 3 . 1 D efinit ion and Basic Propert ies 

Defi n ition 6 . 9  
The Wiener process (or Brownian motion) is a stochastic process W(t) with 
values in IR defined for t E [0, oo ) such that 

1 )  W(O) = 0 a.s . ;  

2 )  the sample paths t � W(t) are a.s . continuous ; 

3) for any finite sequence of times 0 < t1 < · · · < tn and Borel sets 

A1 , . . .  , An c IR 

where 

P {vV (t1 )  E A1 , . . .  , W(tn ) E An }  

! · · · ! p ( t1 , 0 , X1 ) p ( t2 - t1 , X1 , X2 ) · · · 
.4 1 An 

· · · p { tn - tn - 1  , X n - 1  , X n ) dx 1 · · · dx n , 

1 - < � - y ) 2  
p (t , x , y) = .j'iirte 21 

2trt 
defined for any x ,  y E IR and t > 0 is called the transition density. 

(6. 5 ) 
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W(t) 

0 

Exercise 6. 1 9  

Show that 

Basic  Stochast ic P rocesses 

t 

Figure 6 . 5 .  A typical path of 
W (t) 

1 ;e 2  

!w( t ) (x) = ...f'Fi(- u  
21ft 

is the probability density of W (t) and find the expectation and variance of W(t) . 

Hint The density of W ( t )  can be obtained from condition 3) of Definition 6 .9  written 
for a single time t and a single Borel set . You will need the formula 

to compute the integrals in the expressions for the expectation and variance. 

Rem a rk 6 . 1 

The results of Exercise 6 . 19  mean that W(t) has the normal distribution with 
mean 0 and variance t .  

Exercise 6.  20 

Show that 

E (W (s ) W (t) )  == min { s ,  t } .  

Hint The joint density of W(s) and W(t) will be needed. It can be found from 
condition 3) of Definition 6 .9  written for two times s and t and two Borel sets . 

Show that 

E ( I W(t) - W(s) i 2 ) = i t - sj . 
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Hint Expand the square and use the formula in Exercise 6 . 20 .  

Exercise 6. 22 

Compute the characteristic function E ( exp ( i A.  W ( t) ) )  for any A. E IR. 

Hint Use the density of W (t )  found in Exercise 6 . 1 9 .  

Exercise 6. 23 

Find E (W (t)4 ) .  
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Hint This can be done , for example , by expressing the expectation in terms of the 
density of W(t) and computing the resulting integral , or by computing the fourth 
derivative of the characteristic function of W(t) at 0. The second method is more 
efficient . 

Defi n i t ion  6 . 10 

We call W (t) == (�V 1 (t ) , . . .  , wn (t) )  an n - dimensional Wiener process if 
W1 (t) , . . .  , wn (t) are independent IR-valued Wiener processes . 

Exercise 6. 24 

For a two-dimensional Wiener process W (t) (W1 (t) , W2 (t) ) find the prob­
ability that IW (t) l < R, where R > 0 and l x l  is the Euclidean norm of 
x == ( x 1 ' x 2 ) in JR2 ' i .e .  I x 1 2  == ( x 1 ) 2 + ( x 2 ) 2 • 

Hint Express the probability in terms of the joint density of W1 (t)  and W2 (t) . In­
dependence means that the joint density of W1 (t) and W2 (t) is the product of their 
resp ective densities , which are known from Exercise 6 . 1 9 .  It is convenient to use polar 
coordinates to compute the resulting integral over a disc . 

6 . 3 . 2  Increments of Brownian Motion 

P roposit i on  6 . 2  

For any 0 < s < t the increment W (t) - W (s)  has the normal distribution with 
mean 0 and variance t - s .  
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Proof 

By condition 3) of Definition 6 .9  the joint density of W (s) , W (t) is 

!w(s ) , W( t ) (x , y) == p (s , O , x) p (t - s , x , y) . 
Hence , for any Borel set A 

P { W(t) - W (s ) E A} = ( p (s , O , x ) p (t - s , x , y) dx dy } { ( x , y ) : y - x EA}  

f+oo p ( s , O , x ) ( ( p (t - s , x , y ) dy) dx j - oo  }{ y : y - x EA}  

1: p (s , O , x ) (L p (t - s , x , x + u) du) dx 

1: p (s , O , x ) (L p (t - s , O , u ) du) dx 

( p (t - s , O , u ) du (+00 p (s , O , x) dx }A J_oo 
L p (t - s , O , u) du .  

But f (u) == p (t - s , 0 ,  u ) is the density of the normal distribution with mean 

0 and variance t - s ,  which proves the claim . 0 

Coro l lary 6 . 1 

Proposition 6 . 2  implies that W (t) has stationary increments . 

P roposit ion 6 . 3  

For any 0 == t0 < t 1 < · · · < tn the increments 

l1l (t1 ) - W (to ) ,  . . .  , W (tn ) - W (tn- 1 ) 
are independent . 

Proof 

From Propos ition 6 . 2 we know that the increments of W(t) have the normal 

distribution . Because normally distributed random variables are independent 

if and only if they are uncorrelated , it suffices to verify that 

E [ ( W (u) - W (t) ) ( W (s) - W (r) ) l  = 0 
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for any 0 < r < s < t < u .  But this follows immediately from Exercise 6 . 20 :  

E [ (W (u ) - W (t) ) (W (s) - W (r ) ) ] = E (W (u) W (s ) ) - E (W(u ) W (r ) )  
- E (W (t) W (s ) )  + E (W ( t) W (r) )  

as required . 0 

Coro l l a ry 6 . 2  

s - r - s + r 

0 ,  

For any 0 < s < t the increment W (t) - W (s) is independent of the a-field 

Fs = a { W ( r) : 0 < r < s }  . 

P roof 

By Proposit ion 6 . 3  the random variables W (t) - W (s) and W (r) - W (O) = W(r) 
are independent if 0 < r < s < t .  Because the a-field Fs is generated by such 

W (r) , it follows that W (t) - W ( s ) is independent of F8 • 0 

Exercise 6. 25 

Show that W ( t) is a Inartingale with respect to the filtration :Ft . 

Hint Take ad vantage of the fact that W ( t )  - W ( s)  is independent of Fs if s < t .  

Exercise 6.  26 

Show that j W(t ) l 2 - t is a martingale with respect to the filtration :Ft . 

Hint Once again , use the fact that W(t ) - W(s)  is independent of Fs if s < t .  

Let us state witltout proof the following useful characterization of  the 

Wiener process in terms of its increments . 

Theorem 6 . 3  

A stochastic process TV ( t ) , t > 0 ,  is a Wiener process if and only if the following 

conditions hold : 

1 ) W (O) = 0 a. s . ; 

2) the sample paths t t-t W (t) are continuous a . s . ;  
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3) W (t) has stationary independent increments ; 

4 ) the increment W (t) - W (s) has the normal distribution with mean 0 and 
variance t - s for any 0 < s < t .  

Exercise 6. 27  

Show that for any T > 0 

V(t) == W(t + T) - W(T) 

is a Wiener process if W (t) is . 

Hint Are the increments of V(t)  independent? What is their distribution? Does V(t) 
have continuous paths? Is it true that V (O) = 0? 

The Wiener process can also be characterized by its martingale properties . 
The following theorem is also given without proof. 

Theorem 6 . 4  ( Levy ' s  m a rt inga le c h a ra cter iza t ion ) 

Let W (t) ,  t > 0 ,  be a stochastic process and let Ft = a (W8 ,  s < t) be the 
filtration generated by it . Then W (t) is a Wiener process if and only if the 
following condit ions hold : 

1 ) W(O) = 0 a.s . ;  

2 )  the sample paths t H W(t) are continuous a.s . ;  

3) W (t) is a martingale with respect to the filtration Ft ; 
4) I W (t ) l 2 - t is a martingale with respect to Ft . 

Exercise 6. 28 

Let c > 0 . Show that V (t)  = � W(c2 t) is a Wiener process if W(t) is . 

Hint Is V(t) a martingale? With respect to which filtration? Is IV (t) J 2 - t a martin­
gale? Are the paths of V (t )  continuous? Is it true that V(O) = 0? 

6 . 3 . 3  San1ple Paths 

Let 
0 = t� < t? < · · · < t� = T, 
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where 
n iT 

t . == -
t ' 

n 

be a partition of the interval [0 ,  T] into n equal parts . We denote by 

the corresponding increments of the Wiener process W(t) . 

Exercise 6. 29 

Show that 
n - 1 

lim '"""' (L1iW)2 = T in L2 • n--+oo � i=O 

Hint You need to sho\\'" that 

1 57 

Use the independence of increments to simplify the expectation . What are the expec­
tations of Llf W ,  (LlfH/) 2 and (Llf W)4 ? 

The next theorem on the variation of the paths of W ( t )  is a consequence of 

the result in Exercise 6 . 29 .  First , let us recall that the variation of a function 

is defined as follows . 

Defi n it ion 6 . 1 1  

The variation of a function f : [0 , T] -t IR is defined to be 

n- 1 
lim sup L i f (ti+t ) - f (ti ) l , 
.dt---+0 i=O 

where t = (to , t1 , . . . , tn ) is a partition of [0 , T] , i .e . 0 � to < t1 < · · · < tn = T, 
and where 

L1t = . max l ti+1 - ti l · 
t=O , . . .  , n-1  

Theorem 6 . 5  

The variation of the paths of W (t) is infinite a.s .  
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Proof 
Consider the sequence of partitions tn == ( t0 , t1 , . . .  , t� ) of [0 , T] into n equal 
parts . Then 

S ince the paths of W ( t) are a. s .  continuous on (0 , T] , 
lim ( ._

max I L1rw J) == o a. s .  
n-4 oo t. - O , . . .  ,n-1 

By Exercise 6 .29 there is a subsequence tnk == (t�k , t�k , . . .  , t�z ) of partitions 
such that 

nk - 1  
lim L I Ll�k Wl 2 = T a.s .  

k -4 00  i =O 

This is because every sequence of random variables convergent in £2 has a 
subsequence convergent a.s .  It follows that 

while 

nA: - 1  
lim '""' l .d�k WI  == oo a.s . , 

k -t oo  � i=O 

lim Lltnk == lim I_ == 0 
k -4 oo  k -4 00  n k 

' 

which proves the theorem. 0 

1,heorem 6 . 5  has important consequences for the theory of stochastic inte­
grals presented in the next chapter . This is because an integral of the form 

loT j (t) dW(t) 

cannot be defined path wise (that is , separately for each w E D) as the Riemann­
Stieltjes integral if the paths have infinite variation . It turns out that an intrinsi­
cally stochastic approach will be needed to tackle such integrals , see Chapter 7. 

Exercise 6. 30 

Show that W(t) is a.s . non-differentiable at t = 0.  
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Hint By Exercise 6 . 28 Vc (t) = � W(c2t )  is a Wiener process for any c > 0 .  Deduce 
that the probability 

p { lWft ) l  > eM for some t E (0 ,  �] } 

is the same for each c > 0 .  What is the probability that the limit of I Wt( t ) J  exists as 
t � 0 ,  then? 

Exercise 6. 31 

Show that for any t > 0 the Wiener process W (t) is a . s .  non-differentiable at t .  

Hint vt (s)  == W(s + t) - W(t) is a Wiener process for any t > 0 .  

A weak point in  tlte assertion in  Exercise 6 .3 1 i s  that for each t the event of 
measure 1 in which ur (t) is non-differentiable at t may turn out to be different 
for each t > 0 .  The theorem below , which is presented without proof, shows 

that in fact the same event of measure 1 can be chosen for each t > 0 . This is 

not a trivial conclusion because the set of t > 0 is uncountable . 

Theorem 6 . 6  

With probability 1 the Wiener process W (t) is non-differentiable at any t > 0 .  

6 .3 .4 Do ob 's Maximal L2 Inequality for Brownian Motion 

The inequality proved in this section is necessary to study the propert ies of 
stochastic integrals in the next chapter . It can be viewed as an extension of 
Doob 's maximal L2 i11equality in Theorem 4 . 1 to the case of continuous time . 
In fact , in the result be]ow the Wiener process can be replaced by any square 
integrable martingale �(t ) , t > 0 with a. s .  continuous paths . 

Theorem 6 . 7  ( Doob ' s  m axi m a l L2 i neq u a l ity)  

For any t > 0 

P roof 

For t > 0 and n E N 've define 

Mn == W ( 
kt \ 

0 < k < 2n . k 2n } ' - -

(6 .6) 

(6 . 7) 
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Then , by Jensen 's inequality, MJ: , k = 0, · · · , 2n , is a non-negative square in­
tegrable submartingale with respect to the filtration :FJ: = :F � ,  so by Theo­

rem 4 . 1 

Since W(t) has a. s .  continuous paths , 

lim max 1Mr 1 2 = max I W (s ) l 2 a. s .  
n --+ oo k <2n s < t  - -

M 
. J\fn Mn+l  h jMn f 2  �T • • • oreover , since 1 v.  k == 

2k 
, t e sequence supk<2n k , n E 1� , IS Increasing . 

Hence by the Lebesgue monotone convergence theorem max8�t  j W (s) l 2 is ar1 
integrable function artd 

E (max 1 Vl' (s ) 1 2) = lim E (max 1Mr 1 2) < 4E IW(t) j 2 , s<t n--too k�2n 

completing the proof. 0 

6 . 3 . 5  Various Exercises on Brownian Mot ion 

Exercise 6. 32 
Verify that the transition density p( t ,  x ,  y) satisfies the diffusion equation 

8p 1 82p 
at - 2 8y2 · 

Hint Simply differentiate the expression (6 . 5 )  for the transition density. 

Exercise 6. 33 
Show that Z ( t ) = -W(t) is a Wiener process if W(t) is . 

Hint Are the increments of Z(t) independent ? How are they distributed? Are the 
paths of Z(t) continuous? Is it true that Z(O) = 0? 

Exercise 6. 34 
Show that for any 0 < s < t 

P {W(t) E AIW(s) } = L p (t - s , W (s) , y) dy .  
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-Hint Write the conditional probability as the conditional expectation of l A (W(t ) ) 
given W(s ) . Compute the conditional expectation by transforming the integral of 
l A (W(t ) )  over any event in the a-field generated by W(s) . This can be done using 
the j oint density of W ( s )  and W ( t ) . Refer to the chapter on condit ional exp ect ation 
if necessary. 

Exercise 6. 35 

Show that e W(t ) e - � is a martingale . (It is called the exponential martingale. ) 

Hint What is the expectation of e'-'V ( t ) - W (s ) for s < t? By indep endence it is equal 
to the conditional expectation of eW ( t ) - W (s ) given :Fs . This will give the martingale 
condition . 

Exercise 6. 36 

Compute E (W(s) IW (t) ) for 0 < s <;: t .  

Hint You want t o  find a Borel function F such that E (W(s ) I W(t) ) == F (W(t) ) ,  i . e .  

f W(s)  dP == f F (W(t) )  dP. 
{ l"/ ( t ) E A } { W ( t ) E A } 

Either side of this equality can be transformed using the joint density of W(t) and 
W(s ) . 

6 .4 Solutions 

Solution 6. 1 

Suppose that 1J is a random variable with exponential distribution of rate ,\.  
The distribution function of 1J is 

F ( t) = P { 1] < t }  = 1 - P { 1] > t} = { � _ e _ >.t 
Therefore 1J has density 

f( t) = ! F(t) = { �e->.t if t < 0 ,  
if t > 0 .  

if t < 0 ,  
if t > 0 .  

The distribution function F(t) and density f (t) are shown in Figure 6 .6 .  

Solution 6. 2 

t r�; ,... ,. + 'h .o  rl .on �i t u  f (t \  � l_p-At fon n rl  i n  RYPrr.i �P. fi . l and intef!'ratin�r bv narts . 
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F(t) 
2 2 

1 1 

-2  0 2 t -2  0 2 t 

Figure 6 . 6 .  The distribution function F(t)  and density f (t )  of a random variable 
with exponential distribution of rate A == 2 

we obtain 

100 roo roo d E (TJ) 
-oo 

tj (t) dt = 
Jo t>..e->.t dt = -

Jo t 
dt 

e- >.t dt 

-te->.t 00 + 
roo 

e- >.t dt = 0 - .! e->.t 00 = .! .  
o }0 A o ,.\ 

In a similar way we compute 

t2 f (t) dt = t2 Ae->..t dt = - t2 - e->.. t dt 100 100 100 d 

- ()()  0 0 dt 

-t2 e->..t + 2 te- >..t dt = 0 + - tf (t) dt = - .  

00 100 2 100 2 
o o A o ,.\2 

It follows that the variance is equal to 

Solution 6. 3 

( 2 ) 2 2 1 1 var (17 ) = E TJ - (E (TJ) ) = )..2 - )..2 = ;..2 · 

By the definition of a random variable with exponential distribution 

P {77 > s + t} == e-,\(s+t) == e-,\s e-,\t == P {17 > s }  P {rJ > t} .  

Solution 6. 4 
By the definition of conditional probability 

- �  
P { 11 > t + s i1J > s }  == P {TJ > t + s , 7J > s } 

P {1J > s} 
P {TJ > t + s} 

P {7J > s} ' 

since { 7J > t + s ,  77 > s}  == { 1J > t + s}  (because 1J > s + t implies that 'TJ > s) . 
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- Solution 6. 5 

The exponential distribution is the only probability distribution satisfying the 
lack of memory property because the only non-negative non- increasing solutions 
of the functional equation 

g (t + s ) == g (t)g (s ) 

are of the form g ( t )  == at for some 0 < a < 1 .  
To verify this observe that [g (m/n) ] n == g (m) == [g ( 1 ) ] m  for any integers m 

and n f:- 0 .  Let a : == g ( 1 ) .  It follows that 

g (q) == aq for any q E Q. 

Since g is 110n-increasing , 0 < a < 1 and 

so indeed 

at == inf g(q) > g (t) > sup g(q) == at , t > q EQ t < q E Q  

g (t) == at for any t E JR. 
As a result , P{ry  > t }  == at for some 0 < a <  1 .  But the distribution function 

of a random variable cannot be constant , so 0 "I a :/; 1 .  Hence a = e-A  for some 
A > 0 ,  completing the argument . 

Solution 6. 6 

Since N(t) has the Poisson distribution with parameter At we have E (N (t ) ) == 
A.t. Indeed 

E (N (t) ) 

Solution 6. 7 

oo oo (A.t )n 
L nP {N (t) = n } = L ne->.t 

n !  n=O n=O 
oo 

(A.t)
n- 1 

A.te -}t.t """ = A.te-}t.te)t.t == A.t . � (n - 1 ) ! n=l 

Using the fact that 1}1 , T}2 , • . .  are independent and exponentially distributed , 

we obtain 

P {N(s) = 1 , N (t) = 2 } = P {�1 < s < �2 < t < �3 } 

p { 1]1 < s < 7]1 + 112 < t < 7]1 + 7}2 + 1}3 } 

los P { s < u + 'r/2 < t < u + 'r/2 + 'r/3 } Ae->.udu [s (f. t�
.

u 
P { t < u + v + 'r/3 }  Ae->.v dv) Ae->.udu 
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Solution 6. 8 
Since 

it follows that 

Solution 6. 9 

Basi c  Stoch a st ic  P rocesses 

1s (l�
u

u e - .>. ( t - u-v )  >..e-.>.v dv) >..e- .>.udu 

>.? e-Ats (t - s ) . 

cnt t + + t � == "l1 · · · 'Tin 

== �N( t ) + l  - t + 'T/N(t ) +2 + . . . + TJN( t ) +n 
== �N(t ) +n - t , 

N
t (s ) == max{n : �� < s } 

== max{ n : �N( t ) +n < t + s } 

== max{n : �n < t + s } - N(t) 
= N(t + s) - N(t) . 

It is easily verified that 

{N(t) == n}  {7Jn+ 1 > t - �n , t > �n } 

{77i > s , N(t ) == n} = {7Jn+1 > S + t - �n , t > �n } 

Since �n , 1Jn+ l are independent and 1Jn+ 1 satisfies the lack of memory property 
from Exercise 6 .3 ,  

P {1Ji > s , N(t ) == n } P {1Jn+l  > s + t - �n , t > �n } 

!t
oo 

p {1Jn+ l  > s + t - u}  p�n (du) 

= p {1Jn+ l > S } �too p {1Jn+ I  > t - u}  p�n (du) 

== p {17n+ 1 > s } p {1Jn+ 1 > t - �n , t > �n } 
= P { 7Jn+I > s} P { N � t) = n} 
= P { 1]1 > s} P { N ( t) = n} . 

The last equality holds because 1Jn+1 has the same distribution as 7]1 . Now 
divide both sides by P{N(t) = n} to get 

P {7Jf > s iN(t) == n} = P{7Jl > s} 
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for any n == 0, 1 ,  2 ,  . . . . As a result , 

P{ 11f > s jN (t) } == P{ 111 > s}  

because N(t) is a discrete random variable with values 0 ,  1 ,  2 ,  . . . . 

Solution 6. 1 0  
As in Solution 6 .9 ,  

{N(t) = n} 
{7Jf > St , N(t) == n} 

and , more generally, 

{7Jn+l > t - �n , t > �n } ,  
{1Jn+ l > St + t - �n , t > �n } 

{ 11i > St , 1]� > s2 , . . . , 11i > s k ,  N ( t) == n} 
{1Jn+ l > S t  + t - �n , t > �n }  n {7Jn+2 > 82 } n · · · n {1Jn+k > Sk } · 
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Since �n , 1Jn+ l , . . . , 1Jn+k are independent and 1Jn+2 , . . . , 1Jn+k have the same 
distribution as ry2 , . . .  , 1Jk , using Exercise 6 . 9 we find that 

P{7Jf > St , 1]� > s2 , . . . , 1Ji > sk , N(t) == n}  
P{7Jn+ l  > S t  + t - �n , �n < t} P{7Jn+2 > s2 } . . .  P{1Jn+k > sk } 
P{7Jf > St , N (t) = n}P{112 > s2 } · · · P{7Jk > sk } 
P{TJf > S t iN(t) = n} P{172 > s2 } · · · P{7Jk > sk }P{N(t) == n} 

= P{7Jt > s1 }P{TJ2 > s2 } · · · P{7Jk > sk }P{N(t) = n} . 

As in Solution 6 .9 ,  this implies the desired equality. 

Solution 6. 1 1  
Take the expectation on both sides of the equality in Exercise 6 . 10 to find that 

P{77f > St , . . . , TJt > sk } == P{7Jt > St } · · · P{77k > sk } · 
If all the numbers sn except perhaps one are zero , it follows that 

P { 1]� > S n }  == P { 1Jn > S n } ,  n = 1 , . o • , k , 

so the random variables 1]� have the same distribution as 1Jn . Inserting this 
back into the first equality, we obtain 

P{7Jf > S t , . o . , 7Jt > sk } = P{7Jf > St } o · · P{TJi > sk } ,  

so the 17� are independent . 
To prove that the 77� are independent of N(t) integrate the formula in 

Exercise 6 . 10 over {N(t) == n} and multiply by P{N(t) = n} to get 

P{7Jf > s1 , . . . , 'T}l > sk , N(t) = n } = P{171 > St } · · o P{TJk > sk }P{N(t) == n } . 

But Pf n� > Sn l = P{ 11n > Sn l ,  hence N(t) and the TJ� are independent . 
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Solution 6. 12  

We need to verify condit ions 1 ) , 2 ) , 3 )  of Definition 6 .3 .  Clearly, N (t) - >..t is 

Ft -measurable . By Exercise 6 .6 

E ( I N (t) l )  == E (N (t) ) == >..t < oo , 

which means that N(t) is integrable , and so is N (t) - >..t . 
Theorem 6 .2 irnplies that N(t) -N (s)  is independent of Fs for any 0 < s < t , 

so 

E (N (t) - N (s) !Fs ) == E (N (t) - N(s) ) == E (N(t) ) - E (N (s) ) == >..t - >..s . 

It follows that 

E (N(t) - ,\t lFs ) == E (N (s ) - ,\s !Fs ) = N(s) - ,\s , 

completing the proof. 

Solution 6. 13  

Since 'T]n == �n - �n- 1 and P{'T]n > 0}  == e0 == 1 ,  

Here we have used the property that i f  P(An ) = 1 for all n == 1 ,  2 , . . .  , then 
P (n� 1 An )  == 1 . 

Solution 6. 1 4  

Since 

it follows that 

00 

lim �n == � 1Jn , n-4oo L.-t 
n=1 

{ lim �n < oo } C { 1]1 , 1]2 , . . . is a bounded sequence} n-+oo 
00 00 

u n {71n < m } . 
m= l n=1 ---

Let us compute the probability of this event . Because n� 1 { TJn < m } , N = 

1 ,  2 ,  . . .  is a contracting sequence of events , 



6 .  Stoch ast i c P rocesses i n  Conti n uous Ti m e  

It follows that 

P ( lim �n < oo) < n--too 

completing the proof. 

N 
lim IT P{1Jn < m} N-4oo n= l  
lim ( 1 - e->.m ) N 

N-4oo 
0 .  

0 ,  
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While it is instructive to work through the above estimates , there exists a 
much more elegant argument . By the strong law of large numbers 

ll·m 
�n = _!_ n-4 oo  n A a .s .  

Here l is the expectation of each of the independent identically distributed 
random variables 1Jn (see Exercise 6 . 2) . It follows that 

lim �n == oo a.s . ,  n--too 
as required . 

Solution 6. 15 

In the proof of Proposition 6. 1 it was shown that 
n-l (At) k 

p {�n > t} = e-At 2::: k !  
k=O 

for t >  0, see (6 . 4) . Therefore the distribution function 
- oo (At) k 

Fn (t) = P {�n < t} = 1 - P {�n > t} = e At L k ! 
of �n is differentiable , the density fn of �n being 

d 
fn (t) = dt Fn (t) 

k=n 

- ' -J..t � (At) k A - M  � (At) k- 1 
"e L,; k !  + e L,; (k - 1 ) !  k=n k=n 

Ae-J..t (Att-1 
(n - 1) ! 
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for t > 0 ,  and clearly fn (t) = 0 for t < 0 .  

Solution 6. 1 6  

Because N(t) has non-decreasing trajectories 
00 00 L�� N ( t)  = 00} = n u { N ( k) > n} . 

n= l k= l 

Also , {N(k) > n} , k = 1 ,  2 ,  . . .  is an expanding sequence of events and 
00 . 

P{N (k) > n}  = e - >.k L (A�) ' 

t .  
i=n 

[t follows that 

n- 1 · 

1 - - >. k ""' (Ak) ' 1 e L-t . , --+ 
'l .  i=O 

P {
k
Q {N(k) > n} } = 1 , 

as k --+ oo. 

50 

P L�� N ( t) = oo } = P { il1 
k
Q { N ( k) > n} } = 1 . 

Solution 6. 1 7  
3ince 

,ye have 

s inh (x) 

cosh(x) 

ex - e -x 00 x2n+l 

2 = � (2n + 1 ) ! ' 
ex + e - x 00 

x2n 

2 = � (2n) ! ' 

00 

P{N(t) is odd} L P{N(t) = 2n + 1 }  
n=O oo 

- At (At) 2n+I � e (2n + 1 ) !  
= e - At sinh(At) , 

00 

P{N(t) is even} = L P{N(t) = 2n} 
.---� -

n=O 
oo (At) 2n ""' - At 

= L-t e -(2-n)-! n=O 

= e - At cosh ( At) . 
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Solution 6. 1 8  

We can write 

N(n) == N( l )  + (N (2) - N( 1 ) )  + · · · + (N(n) - N (n - 1 ) ) , 

where N( 1 ) , N(2 ) - 1V ( 1 ) , N (3) - N(2) , . . . is a sequence of independent iden­

tically distributed random variables with expectation 

E (N( 1 ) ) = E (N (2) - N{ l ) )  = E (N (3) - N(2) ) = · · · == ,\ .  

By the strong law of large numbers 

lim 
N(n) = A 

n--+ oo n 
a.s .  

Now , if n < t < n + 1 ,  then N(n) < N(t) < N(n + 1 ) and 

N(n) N(t) N(n + I ) 
-- < < . 
n + l - t - n 

By (6 .8) both sides tend to ;\ as n --+ oo ,  implying that 

Solution 6. 1 9  

lim 
N(t) = A 

t -+ oo t 

Condition 3) of Definition 6 .9  implies that 

a.s . 

!w(t) (x) = p (t , 0 , x) 

(6 .8) 

is the density of W(t) . Therefore , integrating by parts, we can compute the 

expectation 

E (W(t) )  = 1:00 xp (t , O , x) dx 
1 /+oo x e- 2: dx � -oo 

- -e- 2T dx t !+oo d z 2 

� _ 00 dx 
t z 2 +oo - e-2t = 0 � - oo 
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nd variance 

J: x2 p (t , O , x) dx 

1 j+oo x2 e- �� dx 
� -()() 
- x-e- 2t dx t j+oo d z 2 

v'2ifi _ 00 dx 

Basic  Stochast ic  P rocesses 

t z2 +· oo t 1+oo z 2  - xe- 2t + e- 2T dx 
v'2ifi -00 v'2ifi - 00 

t 1+oo u2 
= 0 + y'2ir e- 2 du = t .  

27r -oo 
ve have used the substitution u = 7t and the formula stated in the hint . 

·olution 6. 20 
uppose that s < t . Condition 3) of Definition 6 .9 implies that the joint density 
f W(s)  and W(t) is 

f lV ( s ) ,  W ( t) (X , Y )  == p ( S , 0 ,  X) p ( t - S , X , y ) . 

follows that 

E (W (s)W (t) ) = 1:00 1:00 xy p (s , 0 , x) p (t - s , x ,  y) dx dy 

= 1:00 x p (s , O , x) (1:00 y p (t - s , x , y)  dy) dx 

= 1:00 x2p (s ,  0 ,  x) dx = s .  

his is because by the results of Exercise 6 . 19  

r+oo r+oo 
- oo y p (t - s , x , y) dy = 1_00 (x + u) p (t - s , x , x  + u) du 

r+oo 
= 1_00 (x + u) p (t - s , O , u) du 

= x J:oo p (t - s , O , u) du + 1:
00 

up (t - s , O , u) du 

= x + O = x 

td /+oo 
_ _  x2p (s , 0 ,  x) dx = s . 
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. It follows that for arbitrary s , t > 0 

E (W (s) W (t) )  == min {s , t } .  

Solu tion 6. 21 

Suppose that s < t .  Then by Exercise 6 .20 

E ( I W(t )  - W(s) l 2 ) = E (W (t) 2 )  - 2E (W (s ) W (t) ) + E (W (s) 2 ) 
== t - 2s + s == t - s . 

In general , for arbitrary s , t > 0 

E ( IW (t) - W(s) l 2 ) = I t - s l . 

Solution 6. 22 

Using the density !w (t )  (x) == p ( t ,  0,  x) of W (t) , we compute 

E (exp ( iAW (t) ) ) = 1: eiAxp ( t , 0 ,  x) dx 

Solution 6. 23 

1 �+oo . z 2  etAx e - 2t dx 
v'2ifi - 00  

-- e --2 e- 2 t  dx 
1 >. 2 t !+oo ( z - i � t ) 2 

v'2ifi -oo 

1 7 1  

Using the formula for the characteristic function of W ( t) found in Exercise 6 .  22 ,  
we compute 

Solu tion 6. 24 

Since W 1 ( t) , W2 ( t) are independent , their joint density is the product of the 
densities of W 1  (t) and W2 (t) . Therefore 

P { I W (t) l < R} = { p (t , 0 , x) p (t , o,  y) dx dy Jf l x i < R} 
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re have used the polar coordinates R, c.p to compute the integral . 

olution 6. 25 

>r any 0 < s < t 

E (W(t) I Fs )  == E (W(t) - W(s) f .. Fs ) + E (W(s) IFs )  
== E (W(t) - W(s) ) + W(s) 
== W(s) , 

nee W (t) - W(s) is i11dependent of Fa by Corollary 6 . 2 ,  W(s) is F8-measurable 
1d E (W (t) ) = E (�T (s) ) = 0 . 

olution 6. 26 
)r any 0 < s < t 

E (W(t)2 lFs )  = E ( IW (t) - W(s) J 2 1Fs) + E (2W(t) W(s ) IFs )  

- E  (W(s)2 1Fs) 

= E ( JW (t) - W(s) J 2) + 2W (s)E (W(t) JFs ) 

- W(s) 2 
= t - s + 2W(s) 2 - W (s)2 
= t - s + W(s)2 , 

nee W (t) - W(s) is independent of Fa and has the normal distribution with 
.ean 0 and variance t - s ,  W(s) is F8-measurable, and W(t) is a martingale . 
follows that 

E (W(t) 2 - t !Fs )  = W(s) 2 - s ,  

; required . 

olution 6. 27 
::> r  any 0 < to < t1 < · · · < tn the increments 

- - �  ... ... . , .  ' 
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of V ( t) are independent , since the increments 

W(tn + T) - W(tn - 1 + T) , · · · ,  Wv (t1 + T) - W (to + T) 

of W (t) are independent . For any 0 < s < t the increment V (t) - V (s)  has the 

normal distribution with mean zero and variance t - s , since W (t + T ) - W ( s + T ) 
does . Moreover , the paths t M V(t) = W (t + T) - W (T) are continuous and 

V (O) = ltV (T) - W (T) = 0 .  

By Theorem 6 . 3  V (t) is a Wiener process . 

Solution 6. 28 
It is clear that V(O) = �W (O) = 0 a. s .  and the paths t t-t V(t) = �W(c2 t) are 

a. s .  continuous . We sl1all verify that V (t) and jV (t) j 2 - t are martingales with 

respect to the filtration 

9t = a {V (s) : 0 < s < t} 
= a {W(c2 s) : O < s < t } 
= a { W ( s) : 0 < s < c2 t} 
= :Fc2t · 

Indeed , if s < t ,  then c2 s < c2t ,  so 

and 

E (V (t) l 9s )  E ( � W(c2 t) iFc2 s) 
!E (W(c2t) iFc2 s ) c 
1 -W(c2s) = V(s) c 

E ( 1V (t) i 2 - t i9s) = E (� I W(c2 t) l 2 - t iFc2 s) 
c�E ( IW(c2 t) l 2 - c2t iFc2 s) 
� ( I W(c2s) i 2 - c2s) 
IV(s) l2 - s ,  

since W(t) and } W (t) l 2 - t are martingales with respect to the filtration :Ft . It 

follows by Levy's  martingale characterization that V(t) is a Wiener process . 
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Solution 6. 29 

Since the increments .1f W are independent and 

E (.d?W) = 0, E ( (.dfW) 2) = � , E ( (LlfW) 4) = 3�2 , 
it follows that 

as n -4 oo .  

Solution 6. 30 

E [� ( (LlfW) 2 - �) r 
� E [ ( (LlfW) 2 - �) 2] 
� [E ((LlfW) 4) -

2
: E ((LlfW) 2) + �:] 

n- I  [ 3T2 2T2 T2 ] 2T2 
L � - n2 + n2 = ----;;: -+ 

0 
i==O 

We claim that , with probability 1 ,  for any positive integer n there is a t E (0 , �] 
such that 1 Wft) 1 > n . This condition implies that W(t) is not differentiable at 
t = 0 . 

Let us put 

An = { 1wp� 1 > n for some t E [0 , �1} 
By Exercise 6. 28 

Vn (t) = �W(n4t) n 
is a Brownian motion for any n .  Therefore 

P (An ) > P { j wD��4) 1  > n} 
P { j V ( I /n4 ) f  } I jn4 > n 
P { IW( I ) f > � }  --t I as n --t oo . 

Since A1 , A2 , 4 • •  is a contracting sequence of events ,  

P (rl An) = lim P(An) == 1 ,  n-+oo n=l 
which proves the claiin . 
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Solution 6. 31 

By Exercise 6 . 27 vt (s)  = W (8 + t) - W (t) is a Wiener process for any t > 0 .  
Therefore , by Exercise 6 .30 vt ( 8)  is a. s .  non-differentiable at 8 == 0 .  But this 
implies that W(t) is a. s .  non-differentiable at t . 

Solution 6. 32 

Differentiating 

we obtain 

so 

as required . 

Solution 6. 33 

1 - ( y - z )2 
p( t , x , y) = ..;27rt e 2 1  

27ft 

a 
atp(t , x , Y)  
8 
8yp(t , x ,  y) 
EJ2 
8y2 

p( t ' X '  y) 

y2 - 2yx + x2 - t 
2t2 

p(t , x ,  y) , 
x - y  
t p(t , x , y) , 

y2 - 2yx + x2 - t 
t2 p(t , x , y ) , 

8p 1 82p 
at - 2 oy2 ' 

Clearly, Z(t) = -W(t) has a.s .  continuous trajectories and Z(O) = - W (O) = 
0 a.s .  If W(t) has stationary independent increments , then so does Z(t) 
-W(t) .  Finally, 

Z(t) - Z(s) = - (W(t) - W(s) ) 
has the same distribution as W(t) -W(s) , i . e .  normal with mean 0 and variance 
t - s . By Theorem 6.3 Z(t) is a Wiener process . 

Solution 6. 34 

Let 0 < s < t . Then 

{ lA (W(t) ) dP = P {W(s) E B ,  W(t) E A}  
j{W(s ) EB} 

= l i p(s , 0 , x)p(t - s , x , y) dx dy 

= L (i p(t - s , x , y) dy) p(s , 0 , x) dx 

= f."' _, _ n , ( r p(t - s , W(s) , y ) dy) dP 
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Jr any tlorel set B C R It follows that 

P { W (t) E A / W ( s) }  = E ( l A (W (t) ) / W (s) ) = L p(t - s ,  W(s) , y) dy . 

;o/ution 6. 35 

N'e shall prove that e W(t) e - !  is a martingale with respect to the filtration :Ft . 
Jlearly, it is adapted to the filtration :Ft , since W(t) is . Let 0 < s < t . Because 
V(t) - W(s) is independent of :F8 and W(s) is :F8 -measurable , 

E (eW(t) IFs) = E (eW(t) -W(s) eW(s ) /Fs) 
eW(s) E  (eW(t) - W(s) IFs) 
eW(s)  E ( eW(t) - W(s) ) . 

['he increment W (t ) - W (s) has the normal distribution with mean 0 and 
rariance t - s ,  so the expectation of eW(t) - W( s) is equal to 

E (e W< t ) - W(s) ) = 1:00 exp(t - s , O , x) dx 

:t follows that 

l+oo = e t; •  -oo p(t - s , O , x - t) dx 

t - .s  
== e -2 . 

E (eW(t ) e- � /Fs) = e W( s) e- ! .  

1 also follows that e""'(t ) e - !  is integrable. Therefore e W(t ) e- i is a martingale . 

Solution 6. 36 

�et 0 < s < t . We are looking for a Borel function F such that E (W (s) J W ( t) )  = 
P (W ( t) ) ,  i .e .  

{ W(s) dP = { F (W(t) ) dP j{W( t ) EA }  j{ W(t )EA} 
�or any Borel set A in JR. The integral on the right-hand side can be written as 

{ F (W(t) ) dP = { F (y) p (t , O , y) dy j{W( t ) EA}  j A 
tnd the integral on the left-hand side as 

{ W (s ) dP = { ( {+oo x p ( s , O , x) p (t - s , x , y) dx) dy 

1 
I 
I 
I 
I 
I 
I 
I 
I I I 
i I I 
I 
l 
I 
I 
I 
I 

I 
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- using the expression for the joint density of W (s) and W (t) in Solution 6 . 20 .  
Let us  compute the inner integral : 

f+oo 100 ( s (t s)  s ) 
- oo  xp(s , 0 , x)p(t  - s , x ,  y )  dx = p(t , 0 , y )  - oo xp t , t Y ' x dx 

s 
= ty p(t , O , y ) . 

(To see that the first equality holds , just use formula (6 . 5 )  for p(t , x ,  y ) . ) There­
fore 

{ W (s) dP = ! 8 y p (t , O , y ) dy .  j{W(t) E A } A t 
It follows that F(y) == fy ,  i . e .  

s 
E (W (s) jW(t) )  == - W (t) . t 



1 
I 

I 
I 
I 



7 
ItO Stochastic Calculus 

One of the first applications of the Wiener process was proposed by Bachelier , 
who around 1900 wrote a ground-breaking paper on the modelling of asset 
prices at the Paris Stock Exchange . Of course Bachelier could not have called 
it the Wiener process , but he used what in modern terminology amounts to 
W(t)  as a description of the market fluctuations affecting the price X (t)  of 
an asset . Namely, he assumed that infinitesimal price increments dX (t) are 
proportional to the increments dW (t) of the Wiener process , 

dX (t) == D" dW(t) , 

where a is a positive constant . As a result , an asset with initial price X (0) == x 

would be worth 
X (t) == x + uW(t) 

at time t .  This approach was ahead of Bachelier 's time, but it suffered from 
one serious flaw:  for any t > 0 the price X (t) can be negative with non-zero 
probability. Nevertheless ,  for short times it works well enough, since the prob­
ability is negligible . But as t increases , so does the probability that X (t) < 0 ,  
and the model departs from reality. 

To remedy the flaw it was observed that investors work in terms of their 
potential gain or loss dX (t) in proportion to the invested sum X (t) . Therefore , 
it is in fact the relative price dX (t) /X (t) of an asset that reacts to the market 
fluctuations , i . e .  should be proportional to dW(t) , 

dX (t) == aX (t) dW (t) . (7 . 1 ) 



1 80 Basi c Stochast ic P rocesses 

What is the precise mathematical meaning of this equality? Formally, it resem­
bles a differential equation , but this immediately leads to a difficulty because 
the paths of W ( t ) are nowhere differentiable . A way around the obstacle was 
found by Ito in the 1940s . In his hugely successful theory of stochastic integrals 
and stochastic differential equations Ito gave a rigorous meaning to equations 
such as ( 7 . 1 )  by writing them as integral equations involving a new kind of 
integral . In particular , (7 . 1 )  can be written as 

X (t) = x + a  lot X (t) dW (t) , 

where the integral with respect to W(t) on the right-hand side is called the Ito 
stochastic integral and will be defined in the next section . While at first sight 
one would expect the solution to this equation to be xeW(t ) , in fact it turns 
out to be 

X (t)  == xeW(t ) e- ! , 
which is the exponential martingale introduced in Exercise 6 .35 . The intrigu­
ing additional factor e- ! is due to the non-differentiability of the paths of the 
Wiener process . Clearly, if x > 0 ,  then X (t) > 0 for all t > 0 ,  as required in 
the model of asset prices . In the following sections we shall learn how to trans­
form and compute stochastic integrals and how to solve stochastic differential 
equations . 

Throughout this chapter W (t)  will denote a Wiener process adapted to a 

filtration Ft and L2 will be the space of square integrable random variables . 

7. 1 ItO Stochastic Integral : Definition 

We shall follow a construction resembling that of the Riemann integral . First , 

the integral will be defined for a class of piecewise constant processes called 
random step processes . Then it will be extended to a larger class by approxi­
mation. 

There are ,  however , at least two major differences between the Riemann 
and Ito integrals . One is the type of convergence . The approximations of the 
Riemann integral converge in JR., while the Ito integral will be approximated by 
sequences of random variables converging in I12 . The other difference is this . 
The Riemann sums approximating the integral of a function f : (0 , T] --t IR are 
of the form 

n - 1 

L f (sJ ) ( ti+ l - tj ) ,  
j=O 
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, where 0 == t0 < t1 < · · · < tn == T and Sj is an arbitrary point in [tj , tj+ 1 ] for 
each j .  The value of the Riemann integral does not depend on the choice of the 
points Sj E (tj , ti+1 ) .  In the stochastic case the approximating sums will have 
the form 

n- 1  
L f (sj )  (W(tj+ l ) - W(tJ ) ) .  
j=O 

It turns out that the limit of such approximations does depend on the choice of 
the intermediate points Sj in [tj ,  ti+ 1 ] .  In the next exercise we take f (t) = W(t) 
and consider two different choices of intermediate points . 

Exercise 7. 1 
Let 0 == t0 < t! < · · · < t� = T,  where tj == if,  be a partition of the interval 
[0 , T] into n equal parts . Find the following limits in L2 : 

n- 1  
lim � W (tj) (W (tj+l ) - W(tj ) )  n�oo � j=O 

and 
n-1  

lim � W(tj+1 ) (W(tj+1 ) - W(tj ) ) . 
n�oo � j=O 

Hint Apply Exercise 6 . 29 .  You will need to transform the sums to make this possible . 
The identities 

a (b - a) 
b(b - a) 

may be of help . 

1 ( 2 2 ) 1 2 2 b - a  - 2 (a - b) , 
1 ( 2 2 ) 1 2 2 b - a  + 2 (a - b) 

The ambiguity resulting from different choices of th.e intermediate points s i 
in each subinterval [tj , tj+l ] can be removed by insisting that the approxima­
tions of the integrand should consist only of processes adapted to the underlying 
filtration Ft . This amounts to taking Sj == tj for each j .  The choice is Inotivated 
by the interpretation of Ft : the value of the approximation at t may depend 
only on what has happened up to time t, but not on any future events . 

Defi n it ion 7 .1 

We shall call f ( t ) , t > 0 a random step process if there is a finite sequence 
of numbers 0 == t0 < t 1 < . . . < tn and square integrable random variables 
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TJo , 1}1 , . . .  , 1Jn - 1  such that 
n - 1 

t(t) = L:>]j l[tj , tj + t ) (t) , (7 .2 )  
j=O 

where 1Ji is Ftj -measurable for j = 0, 1 , . . .  , n - 1 .  The set of random step 
processes will be denoted by M�ep .  

Observe that the assumption that the TJi are to be Fti -measurable ensures 
that f (t) is adapted to the filtration Ft . The assumption that the 1Ji are square 
integrable ensures that f (t) is square integrable for each t. Also , M82tep is a 
vector space , that is , af + bg E M�ep for any /, g E M52tep and a ,  b E JR.. 

Defi n i t ion 7 . 2  

The stochastic integral of a random step process f E Ms�ep of the form (7 .2) is 
defined by 

n - 1 
I(!) = L 'T/j (W(tj+l ) - W(tj ) ) . (7 .3 ) 

j=O 

Proposition 7 . 1 
For any random step process f E M;tep the stochastic integral I (f) is a square 
integrable random variable , i .e .  I(f) E £2 , such that 

Proof 

Let us denote the increment W (t1+1 )  - W (tj ) by Lli W and ti+1 - ti by Llj t 
for brevity. Then 

First , we shall corr1pute the expectation of 
n- l n - 1  n- 1 1 1(!) 1 2 = L L 'T/j'f/k Llj w L\k w = L TJJ LlJW + 2 L 'T/j'f/k Llj w Llk w. 
j=O k=O j=O k<j 

Since 1Ji and Lli W are independent , 
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If k < j ,  then 1]j 1]kLlk W and Llj W are independent , so 

Therefore n - 1 
E ( 1 ! (! ) 1 2 ) = L E (11} ) L1j t . 

j==O 

It follows that I (f ) E L2 , since 1]o , 7]1 , . . .  , 1Jn- 1 E L2 . 
On the other han<l , 

n - 1 n - 1 n- 1 
I J (t) 1 2 = L L 1lj17k 1 1t; . t;+ J ) (t) 1 1t , , t lo+ J ) (t) = L 17} 1 [t; . t; + I ) (t) , 

implying that 

This means that 

as required . 0 

Exercise 7. 2 

j=O k=O j=O 

Verify that for any random step processes /, g E M;tep 

E (I (f)I (g) ) = E (100 f (t)g(t) dt) . 

183 

Hint Try to adapt the proof of Proposition 7. 1 .  Use a common partition 0 = to < 
t 1  < · · · < tn in which to represent both f and g in the form {7 .2) .  

Exercise 7. 3 

Show that I : M52tep � L2 is a linear map, i .e .  for any J, g E M82tep and any 
a, /3 E lR 

I (af + {3g) = ai(f ) + {3I(g) . 

Hint As in Exercise 7. 2 ,  use a common partition 0 = to < t 1  < · · · < tn in which to 
represent both f and g in the form {7 .2) . 
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The stochastic integral /(f) has been defined for any random step process 

f E Ms;ep . The next stage is to extend I to a larger class of processes by 

approximation . This larger class can be defined as follows . 

D efi n i t io n  7 . 3 

We denote by M2 the class of stochastic processes f (t ) , t > 0 such that 

E (1oo i f ( t ) i 2 dt) < oo 

and there is a sequence /1 , /2 , . . .  E M82tep of random step processes such that 

lim E ( {oo 
i f (t) - fn (t) i 2 dt) == 0.  

n --7 oo  lo (7 .4) 

In this case we shall say that the sequence of random step processes /1 , /2 , . . . 
approximates f in M'J . 

Defi n it ion  7 .4  

We call l(f) E £2  the Ito stochastic integral (from 0 to oo ) of f E M2 if 

lim E ( I I(f ) - I (fn ) l 2) = 0 
n --7 oo  

(7 . 5 )  

for any sequence !1 , !2 , . . . E Ms�ep of random step processes that approximates 

f in M2 , i . e . such that (7 .4) is satisfied . We shall also write 

1= f (t) dW (t) 

in place of l(f) . 

Proposit io n 7 . 2  

For any f E M2 the stochastic integral l(f) E £2 exists , is unique (as an 
element of L2 � i . e .  to within equality a.s . ) and satisfies 

Proof 

It will be convenient to write 

l l f i i M2 = J E ( {oo i f (t) i 2 dt) and 1 117 1 1P = JE (172 ) 

(7 .6) 
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� for any f E M2 and rJ E L2 • These are norms 1 in M2 and L2 , respectively. 
Let /1 ,  !2 , . . .  E M82tep be a sequence of random step processes approximat­

ing f E M2 , i .e . satisfying (7 .4) , which can be written as 

lim l l f - fn i i M2 == 0 . n-+oo 

We claim that I (!1 ) ,  I (f2 ) , • • •  is a Cauchy sequence in L2 • Indeed , for any c > 0 
there is an N such that I l l - fn i i M2 < � for all n > N. By Proposition 7 . 1 

I I J (fm )  - l (fn ) l l £ 2 I I J (fm - fn) l l £2 

1 1 /m - fn l i M2 
< I I / - fm i i M2 + I I J - fn i i M2 

€ E < 2 + 2 
= c 

for any m ,  n > N ,  which proves the claim. 
Because L2 with the norm 1 1 · 1 1 £2 is a complete space (in fact a Hilbert 

space) , every Cauchy sequence in L2 has a limit . It follows that I (/I ) ,  1 (!2 ) ,  . . . 
has a limit in £2 for any sequence /I , f2 , . • •  of random step processes approxi­
mating f . It remains to show that the limit is the same for all such sequences . 
Suppose that /1 , !2 , . . .  and 9I , 92 , . . .  are two sequences of random step pro­
cesses approximating f .  Then the interlaced sequence /I , 91 , !2 , 92 , . . .  approxi­
mates f too , so the sequence I(/1 ) ,  l (9I ) ,  I(/2 ) , I(g2 ) ,  . • .  has a limit in £2 . But 
then all subsequences of the latter sequence , in particular , 1 (/I ) ,  l(f2 ) , • • .  and 
I(gi ) , I(g2 ) ,  . . . have the same limit , which we denote by !(f) .  We have shown 
that 

lim I ll (/ ) - I(fn ) 1 1 £ 2 = 0, n-+oo 

i . e .  ( 7 . 5 )  holds for any sequence /I , /2 , . . .  of random step processes approxi­
mating f . 

Finally, by Proposition 7. 1 

for each n ,  since the fn are random step processes . By taking the limit as 
n --+ oo we obtain 

But this is equality (7 .6) . 0 

1 To be yrecise , the norms are defined on classes of functions, resp ectively, from M2 
and L determined by the relation of equality a.s .  However , we shall follow the 
custom of identifying such classes with any of their members.  
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Exercise 7. 4 

Show that for any J, g E M2 

E (I(f)l(g) ) = E (1oo f (t)g (t) dt) . 
Hint Write the left-hand side in terms of E ( J I(f) + J(g) l 2 )  and E ( I I(/) - I(g) J 2 ) , 
the right-hand side in terms of E (J000 l f(t) + g(t) ) 2 dt) and E (J000 l f(t) - g(t ) J 2  dt) 
and then use (7 .6) . 

Having defined the Ito stochastic integral. from 0 to oo ,  we are now in a 
position to consider stochastic integrals over any finite time interval [0 , T] . 

Defi n it ion 7 .5 
F'or any T > 0 we sl1all denote by Mj. the space of all stochastic processes 
f (t) , t > 0 such that 

l [o ,T) f E M2 

The Ito stochastic integral (from 0 to T) of f E Mf is defined by 

Ir (f)  = I ( Iro ,r) /) . (7. 7) 
We shall also write 

1T f (t) dW(t) 

tn place of Ir(f) . 

Exercise 7. 5 
3how that each random step process f E _A,fs2tep belongs to Ml for any t > 0 
lnd 

It (/) = 1t f (s) dW(s) 

.s a martingale . 

Flint The stochastic integral of a random step process f is given by the sum {7.3) . 
What is the conditional expectation of the jth term of this sum given :Fs if s < ti ?  
What is it when s > ti ?  

The processes for which the stochastic integral exists have been defined 
ts those that can be approximated by random step processes . However , it is 
1ot always easy to check whether or not such an approximation exists . For 
Jractical purposes it is important to have a straightforward sufficient condition 
�or � nrorP�� t.o h :l.vP a �t.or.h:t..�t.ir. i nt.P.Q"raL In calculus there is a well-known 
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result of this kind : tl1e Riemann integral exists for any continuous function . 
Here is a theorem of this kind for the Ito integral . 

Th eorem 7 . 1 
Let f(t) , t > 0 be a stochastic process with a.s .  continuous paths adapted to 
the filtration Ft . Then 

1 )  f E M2 , i . e . the Ito integral l(f) exists ,  whenever 

(7 .8) 

2)  f E Mj, , i .e .  the Ito integral Ir (f) exists , whenever 

E (1T i f (t) i 2 dt) < oo .  (7 .9) 

P roof 

1 )  Suppose that f (t ) , t > 0 is an adapted process with a.s .  continuous paths . If 
( 7 .8 )  holds , then 

fn (t) = 
{ � Jk�-;; t f (s) ds � < t < k"fi1 for k == 1 ,  2 ,  . . .  , n2 - 1 ,  

otherwise, 
(7 . 10) 

is  a sequence of random step processes in Ms;ep · Observe that for any k = 
1 '  2 ,  . . .  

.!.±.! !!. 2 .!. h n l /n (t) 1 2 dt = n t: l f(t)dt < t:l l / (t) 1 2 dt a.s .  
n 

n 
n 

by Jensen's inequalit�'· We claim that 

This will imply that 

lim r
oo 

l f (t) - fn (t) i 2 dt = 0 a.s .  
n -+ oo Jo 

lim E ( r oo 

i f (t) - fn (t) 1 2 dt) == 0 
n --+ oo  Jo 

by the dominated convergence theorem and condition (7 .8) because 

100 
I J (t) - fn (t) l 2 dt < 2 100 ( 1 J (t) 1 2 + l /n (t) 1 2) dt 

< 4 [00 l / (t) l 2 dt .  

( 7 . 1 1 ) 
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The last inequality follows , since 

100 l fn (t ) l 2 dt < 100 l f ( t ) l 2  dt a.s . 

for any n ,  by taking t he sum from k == 0 to oo in (7 . 1 1 ) . 
To verify the claim observe that 

fooo I f ( t)  - J n ( t )  1 2  dt rN l f ( t ) - fn (t ) 1 2  dt + rXJ l f (t ) - fn (t) J 2  dt lo l1v 
< 1N 

1 / (t ) - fn {t) J 2  dt + 2 /Noo ( 1 J (t ) l 2 + l /n {t ) l 2) dt 

< 1N 
l f (t) - fn (t) j 2  dt + 4 roo 

l f ( t) l 2  dt a. s .  
0 jN- 1  

The last inequality holds because 

for any n and N ,  by taking the sum from k = nN to oo in ( 7 . 1 1 ) .  The claim 
follows because 

by ( 7 . 8) and 

lim roo l f ( t ) l 2  dt = 0 a.s .  
N ---+ oo j N - 1 

N lim r l f ( t )  - fn (t) l 2  dt = 0 a. s .  
·n -+ oo  Jo 

for any fixed N by the continuity of paths of f.  
The above means that the sequence /1 , /2 , . . .  E M;tep approximates f in 

the sense of Definitio11 7 .3 ,  so f E M2 . 
2 )  If f satisfies (7 .9) for some T > 0 , then l [o ,T) f satisfies (7 .8) . Since f is 

adapted and has a.s .  continuous paths , l [o ,T) ! is also adapted and its paths are 
a.s . continuous , except perhaps at T. But the lack of continuity at the single 
point T does not affect the argument in 1 ) , so l [o ,T) f E M2 . This in turn 
implies that f E M:j, , completing the proof. D 

Exercise 7. 6 

Show that the Wiener process W (t) belongs to Mj, for each T > 0 . 

Hint Apply part 2 )  of Theorem 7. 1 .  

Exer:cise 7. 7 
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Hint Once again , apply part 2 )  of Theorem 7 . 1 .  

The next theorem. which we shall state without proof, provides a character­
ization of M2 and Mj, , i .e .  a necessary and sufficient condition for a stochastic 
process f to belong to M2 or Mj, . It involves the notion of a progressively 
measurable process . 

Defi n i t ion  7 . 6  

A stochastic process f ( t ) , t > 0 is called progressively measurable if for any 
t > O  

( s , w) r---t f (s , w) 

is a measurable function from [0 , t] X n with the a-field B[O ,  t] x F  to JR. Here 
B [O ,  t] x :F  is the product a-field on [0 , t] X n ,  that is , the smallest a-field con­
taining all sets of the form A x B ,  where A C [0 , t] is a Borel set and B E F. 

Theorem 7 . 2  

1 )  The space M2 consists of all progressively measurable stochastic processes 
f (t) , t > 0 such that 

2)  The space Mj, consists of all progressively measurable stochastic processes 
f (t) , t > 0 such that 

7 . 2 Examples 

According to Exercise 7 .6 ,  the Wiener process W(t) belongs to Mj, for any 
T > 0 .  Therefore the stochastic integral in the next exercise exists .  

Exercise 7. 8 

Verify the equality 

{T 1 1 
J
o W (t) dW (t) = 2 W (T)2 -

2
T 
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by computing the stochastic integral from the definition , that is , by approxi­
mating the integrand by random step functions . 

Hint It is convenient to use a partition of the interval (0 , T] into n equal parts . The 
limit of the sums approximating the integral has been found in Exercise 7 . 1 . 

Exercise 7. 9 
Verify the equality 

T {T 1 t dW (t) = TW (T) - Jo W (t) dt , 

by computing the stochastic integral from the definition . (The integral on the 
right-hand side is understood as a Riemann integral defined pathwise , i . e .  sep­
arately for each w E [} . )  

Hint You may want to use the same partition of (0 , T] into n equal parts as in 
Solution 7 .8 .  The sums approximating the stochastic integral can be transformed 
with the aid of the identity 

c(b - a) = (db - ca) - b (d - c) . 

Exercise 7. 1 0  
Show that W (t) 2 belongs to M:j, for each T > 0 and verify the equality 

1T W (t) 2dW (t) = � W (T)3  - 1T W (t) dt , 

where the integral on the right-hand side is a Riemann integral . 

Hint As in the exercises above, it is convenient to use the partition of [0 , T] into n 
equal parts . The identity 

2 1 ( 3 3 ) 2 1 3 a (b - a ) == 3 b - a  - a  (b - a ) - 3 (b - a ) 

can be applied to transform the sums approximating the stochastic integral . You may 
also need the following identity : 

7.3 Properties of the Stochastic Integral 

The basic properties of the Ito integral are summarized in the theorem below. 
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Theorem 7 . 3  
The following properties hold for any j, g E M? , any n ,  (3 E IR, and any 0 < 
s < t :  

1 )  linearity 

lo t 
(af (r ) + /3g (r ) )  dW (r) = a lo t 

f (r) dW(r) + f3 lo t 
g (r) dW (r) ; 

2) isometry 

E ( lo t 
f (r) dW(r) 

2) = E (lo t 
l f (r) l 2 dr) ; 

3) martingale prope1·ty 

P roof 

E (lo t 
f (r) dW (r) Fs) = lo s 

f (r) dW(r) .  

1 )  If f and g belong to M[ , then l [o , t ) !  and l [o , t ) 9  belong to M2 , so there are 
sequences /I , f2 , · · .  and 91 , 92 , ·  . .  in M;tep approximating l [o , t ) ! and l [o , t ) 9 ·  It 
follows that l [o , t ) (af + (3g) can be approximated by af1 + (3g1 ,  af2 + (3g2 , . . . . 
By Exercise 7 .3 

I (afn + f3gn ) == al(fn ) + (3I(gn ) 
for each n .  Taking the £2 limit on both sides of this equality as n --+ oo ,  we 
obtain 

I ( l [o , t )  (af + (3g) ) == ai( 1 [o ,t ) !) + (3I( l [o , t ) 9) , 
which proves 1 ) . 

2) This follows by approximating l [o , t ) ! by random step processes in M82tep 
and using Propositior1 7 . 1 .  

3 )  If f belongs to Mf , then l [o , t ) ! belongs to M2 . Let /1 , /2 , · · ·  be a se­
quence of processes in M82tep approximating l [o , t ) f · By Exercise 7 . 5  

(7 . 12) 

for each n .  By taking the £2 limit of both sides of this equality as n --+ oo ,  we 
shall show that 

E (I ( l [o , t ) f) IFs ) == I ( l [o , s ) /) ,  
which is what needs to be proved . Indeed , observe that l [o , s ) /1 ,  1 [o , s ) f2 , . . .  is a 
sequence in M82tep apJ>roximating l [o , s ) f, so 

I ( l [o , s ) f n ) --+ I ( l [o , s ) f) in L2 as n --+ oo . 
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Hmilarly, l [o , t ) /1 ,  l [o , t ) /2 , · · .  is also a sequence in Ms;ep approximating l [o , t ) f ,  
vhich implies that 

['he lemma below implies that 

:ompleting the proof. D 

_ e m m a  7 . 1  

f � and �1 , �2 , . . .  are square integrable random variables such that �n ---t � in 
�2 as n ---t oo , then 

E (�n l9)  ---t E (� 1 9 ) in L2 as n ---t oo 

or any a-field Q on fl contained in F. 

' roof 

3y Jensen 's inequality, see Theorem 2 . 2 ,  

vhich implies that 

�s n � oo .  0 

E ( IE  (�n i Q) - E ( e iQ ) I 2 ) < E ( E ( l en - e l 2 Q) )  
E ( l en - e l 2 ) -+ 0 

In the next theorem we consider the stochastic integral J; f ( s ) dW ( s ) as a 
unction of the upper integration limit t .  Similarly as for the Riemann integral , 
t is natural to ask if this is a continuous function of t . The answer to this 
tuestion involves the notion of a modification of a stochastic process . 

)efi n i t ion  7 . 7  
.Jet � (t) and ( (t) be stochastic processes defined for t E T ,  where T c �. We 
ay that the processes are modifications (or versions) of one another if 

p f t { {\  - r ( +) 1 == 1 f()r � 1 1  t t=. r ( 7  1 � \  
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Rem ark 7 . 1  

If T c IR is a countable set , then ( 7 . 1 3 )  is equivalent to the condition 

P {� (t) = ( (t) for all t E T} = 1 .  

However , this is not necessarily so if T is uncountable . 

The following result is stated without proof. 

Theorem 7 . 4  

Let f ( s)  be a process belonging to M[ and let 

( (t) = 1t f (s)  dW (s)  

1 93 

for every t > 0 .  Then there exists an adapted modification ( (t )  of � ( t ) with a . s .  

continuous paths . This modification is unique up to equality a. s .  

From now on we shall always identify J� f (s) dW (s) with the adapted mod­

ification having a . s .  continuous paths . This convention works beautifully to­

gether with Theorem 7 . 1 whenever there is a need to show that a stochastic 

integral can be used as the integrand of another stochastic integral , i . e .  belongs 

to Mj, for T > 0. This is illustrated by the next exercise . 

Exercise 7. 1 1  

Show that 

((t) = 1t W(s) dW (s)  

belongs to M:Y, for any T > 0 .  

Hint B y  Theorem 7 . 4  ( (t )  can b e  identified with an adapted modification having a . s .  
continuous trajectories . Because of  this , i t  suffices to verify that � (t )  satisfies condition 
(7 .9)  of Theorem 7 . 1 .  

7.4 St ochast ic D ifferential and Ito Formula 

Any continuously differentiable function x (t) such that x (O) = 0 satisfies the 

formulae 

x(T) 2 = 2 1T x(t)  dx (t) , 
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x(T) 3 = 3 1T 
x(t) 2 dx (t) , 

where dx(t) can simply be understood as a shorthand notation for x' (t) dt , the 
integrals on the right-hand side being Riemann integrals . Similar formulae have 
been obtained in Exercises 7 .8 and 7. 10 for the Wiener process : 

W(T) 2 1T 
dt + 21T 

W (t) dW (t) , 

W (T) 3 = 3 1T 
W(t) dt + 3 1T 

W(t) 2dW (t) . 

Here the stochastic integrals resemble the corresponding expressions for a 
smooth function x (t ) ,  but there are also the intriguing terms J0T 

dt and 

3 J0T 
W (t) dt . The formulae for W(T)2 and W (T)3 are examples of the much 

more general Ito jo1·mula, a crucial tool for transforming and computing 
;;tochastic integrals . Terms such as J0T 

dt and 3 J0T 
W (t) dt , which have no ana­

logues in the classical calculus of smooth functions , are a feature inherent in 
the Ito formula and referred to as the Ito correction. The class of processes 
1.ppearing in the Ito formula is defined as follows . 

Defi n i t ion  7 . 8  

� stochastic process �(t) , t > 0 is called an Ito process if it has a . s . continuous 
)aths and can be represented as 

� (T) = �(0) + 1T 
a(t) dt + 1T 

b(t) dW (t) a. s . , (7 . 14) 

;vhere b(t) is a process belonging to M:f for all T > 0 and a(t) is a process 
tdapted to the filtration Ft such that 

1T 
i a (t) i dt < oo a. s .  ( 7 . 15) 

or all T > 0 .  The class of all adapted processes a (t) satisfying (7 . 15 ) for some 
r > 0 will be denoted by .C} . 

For an Ito process � it is customary to write (7. 14) as 

d�(t) = a(t) dt + b(t) dW (t) (7. 16) 

Lnd to call d� (t) the stochastic differential of � (t) . This is known as the Ito 
lifferential no tation. It should be emphasized that the stochastic differential 
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understood in the corttext of the rigorous equation ( 7 . 14) . The Ito differential 
notation is an efficient way of writing this equation, rather than an attempt to 

give a precise mathen1atical meaning to the stochastic differential . 

Exa m ple 7 . 1 

The Wiener process TV (t) satisfies 

W (T) = loT 
dW(t) . 

(The right-hand side is the stochastic integral I (f) of the random step process 
f == 1 [o ,T) · ) This is an equation of the form (7 . 14) with a (t) = 0 and b(t) = 1 , 
which belong , respectively, to .C� and Mf, for any T > 0 .  It follows that the 
Wiener process is an Ito process . 

Exa m ple  7 . 2 

Every process of the form 

�(T) = � (0 ) + loT 
a(t) dt , 

where a(t) is a process belonging to ..C� for any T > 0 ,  is an Ito process . In 
particular , every deterministic process of this form , where a(  t) is a deterministic 
integrable function , is an Ito process .  

Exa m ple 7 . 3  

Since a( t )  == 1 and b (  t) = 2 W  ( t) belong, respectively, to the classes ..C� and 
Mj, for each T > 0 , 

T {T 
TV (T) 2 = lo dt + 2 

Jo W(t) dW (t) 

is an Ito process ; see Exercise 7 .8 .  The last equation can also be written as 

d (W(t) 2 ) = dt + 2 W(t) dW(t) , 

providing a formula for the stochastic differential d (W(t) 2 )  of W (t) 2 . 

Exercise 7. 12 

Show that W(t) 3 is an Ito process and find a formula for the stochastic differ­

ential d (W(t)3 ) .  
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Hint Refer to Exercise 7 . 10. 

Exercise 7. 13  
Show that tW (t) i s  an Ito process and find a formula for the stochastic differ­

ential d (tW(t) ) . 

Hint Use Exercise 7 .9 .  
The above examples and exercises are particular cases of  an extremely im­

portant general formtlla for transforming stochastic differentials established by 
Ito .  To begin with , we shall state and prove a simplified version of the formula, 
followed by the general theorem. The proof of the simplified version captures 
the essential ingredients of the somewhat tedious general argument , which will 
be omitted . In fact ,  n1any of the essential ingredients of the proof are already 
present in the examples and exercises considered above . 

T h eorem 7 .5 ( I to form u l a ,  s i m p l i fied version ) 

Suppose that F(t , x) is a real-valued function with continuous partial deriva­
tives Ff (t , x ) , F� (t , x) and F�'x (t , x) for all t > 0 and x E JR. We also assume 
that the process F� (t ,  W(t ) ) belongs to Mj, for all T > 0 .  Then F(t ,  W (t ) ) is 

an Ito process such that 

F (T, W (T) ) - F(O, W (O) )  loT ( Ff (t , W(t) ) + �F�'x (t , W (t) ) ) dt 

T + fo F� (t , W(t) ) dW (t) a. s . (7 . 1 7) 

In differential notation this formula can be written as 

dF( t ,  W (t) ) = (F; ( t ,  W (t) ) + �F�'x (t ,  W (t) )) dt + F� (t ,  W(t) ) dW (t) . ( 7 . 18) 

Rem a rk 7 . 2  
Compare the latter with the chain rule 

dF ( t, x ( t) ) == Ff ( t, x ( t) )  dt + F� ( t , x ( t) ) dx ( t) .  

for a smooth function x(t) , where dx(t) is understood as a shorthand notation 
for x' ( t) dt . The additional term �F�'x (t ,  W(t) ) dt in (7 . 18) is called the Ito 
correction. 
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P roof 
First we shall prove the Ito formula under the assumption that F and the 
partial derivatives F� and F�'x are bounded by some C > 0 .  

Consider a partition 0 == tg < t? < · · · < t� == T ,  where tr == i� , of 
[O , T] into n equal parts . We shall denote the increments W(ti+ 1 ) - W(ti ) 
by LliW and ti+ 1 - ti by Llit .  We shall also write win instead of W(ti ) for 
brevity. According to the Taylor formula, there is a point Win in each interval 
[W (ti ) , W(tr+ 1 ) ]  and a point ti in each interval [tit, ti+ 1 ] such that 

n- 1 
F(T, W (T) ) - F(O, W (O) )  = L (F(ti+ l •  Wtt-1 ) - F(tf, Wt ) ) 

i=O 
n- 1 n- 1 
L (F(ti+t • wi�l ) - F(ti, wi�l ) ) + L (F(ti, wi�l ) - F(ti, Wt ) )  
i = O  i = O  
n- 1 n- 1  n- 1 
L F!(ii, wi�l ) Llit  + L F�(ti, Wt)L1f W + � L F�'x (ti, Wt) (L1i W)2 
i=O i=O i=O 
n- 1 n- 1 n- 1 
L Ff(if, wi�d Llit + � L F�'x (ti, Wt )L1it + L F�(ti, Wt)L1fW 
i=O i=O i=O 

n- 1 
+ ! """ F" ( t� w.n ) ( (L1�W) 2 - Ll�t) 2 � X X  1. '  t t t 

i=O 
n- 1 

+ � L [F�'x (tf ,  Wt) - F�'x(tf, Wt) ] (L1fW) 2 · 
i=O 

We shall deal separately with each sum in the last expression , splitting the 
proof into several steJ)S . 

Step 1 .  We claim that 

n - 1 T 
lim L F! (if, Wi�l ) L1it = 1 Ff(t, W (t ) ) dt a.s . n--too 0 i=O 

This is because the paths of W(t) are a.s . continuous , and Ff (t, x) is continuous 
as a function of two variables by assumption . Indeed , every continuous path 
of the Wiener process is bounded on [0 , T] , i .e .  there is an M > 0 ,  which may 
depend on the path, such that 

IW (t) l < M for all t E [O , T] . 

As a continuous function , Ff (t , x ) is uniformly continuous on the compact set 
[0 , T] x [-M, M] and W is uniformly continuous on [0 ,  T] . It follows that 

lim sup j Ff (ti , W[t1 ) - Ff (t, W (t) ) I == 0 a.s . , n-too 1 . t 
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where the supremum is taken over all i == 0 ,  . . . , n - 1 and t E [ti , ti+ 1 ] .  By the 
definition of the Rierr1ann integral this proves the claim . 

Step 2 .  This is very similar to Step 1 .  By cont inuity 

lim sup IF�� (tf , win ) - F�� (t , W(t) ) I ==  0 a. s . , 
n --+ oo  i , t  

where the supremum is taken over all i == 0 ,  . . .  , n - 1  and t E [ti , tf+ 1 ] . By the 
definition of the Riemann integral 

Step 3 .  We sl1all verify that 

If F� (t , x) is bounded by C > 0 ,  then f (t) == F� (t ,  W (t) ) belongs to M:f by 
Theorem 7. 1 ,  and the sequence of random step processes 

n- 1 
fn = L F� (tf , Wt) l [t? , ti+ 1 ) E M52tep 

i=O 

approximates f . Indeed , by continuity 

lim lfn (t) - f (t) l 2 = 0 for any t E [0 , T] , a.s .  n-+oo 

Because l fn (t) - f (t) l 2 < 4C2 , it follows that 

lim 1T l fn (t) - f (t) l 2 dt = 0 a. s .  n-+oo 0 

by Lebesgue 's dominated convergence theorem. But J0T l fn (t) - f (t ) l 2 dt < 
4TC2 , so 

}�� E (loT l fn (t) - f (t) j 2 dt) = 0 

again by Lebesgue 's dominated convergence theorem. This shows that fn ap­
proximates / ,  which in turn implies that I(fn) tends to !(f) in £2 , concluding 
Step 3 . 

Step 4.  If F�'x is bounded by C > 0 ,  then 
n-1 

!�� L F�� (ti ,  Wt) ( (L1fW)2 - .1ft) = 0 in £2 , 
i=O 
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0 

s1nce 

n - 1 2 E L F�'x (tf ,  Wt ) ( (L\fW)2 - Ll?t) i==O 
H - 1 

= L E F�'x (tf , win ) ( (LliW)2 - Llit) 2 
!,=0 

n - 1  
2 

n - 1 

< C2 2:::: E (LlfW)2 - Llit = 2C2 L (L\ft) 2 
i=O i=O 

The first equality above holds because for any i < j 

E [ F�'x (tf , Wt) ( (�fW) 2 - Llit) F�'x WJ , Wp) ( (LljW) 2 - Lljt) ]  
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= E [F�� (ti , fVr ) ( (LlfW)2 - Llit) F�'x (tj , Wp)] E [ (L1JW) 2 - LlJt] 
- 0  - . 

This is because the expressions in the last two square brackets are independent 
and the last expectation is equal to zero . 

Step 5 .  By a similar continuity argument as in Steps 1 and 2 

lim Sllp F;� (t? , win) - F;'x Ctr , win)  I = 0 a. o S o ,  
n � oo i 

where the supremum is taken over all i = 0 , 1 ,  0 . . , n - 1 0  Since E� 0
1 (LlfW) 2 --+ 

T in £2 as n --+ oo ,  there is a subsequence n1 < n2 < . 0 0 such that 

n �c - l  

L (Llf"W)2 -+ T a.s .  
i=O 

as k --+ oo .  It follows that 

n�c - 1  

'"' (F" (t':k 1V!lk ) - F" (t"!'k W!lk ) ) (Ll �k W)2 � X X  t ' t. X X  '& ' t t 

i=O 
n�c - 1 

< sup F�� ( t?" ' W7�1 )  - F�'x (tf" '  wi�\) L (Ll?"W)2 -+ 0 
l i=O 

as k --+  oo .  

a.s o  
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In those steps above where £2 convergence was obtained , we also have 
convergence a.s .  by taking a subsequence . This proves the Ito formula (7 . 1 7) 
under the assumptio11 that the partial derivatives F� (t , x ) and F�'x ( t , x ) are 
bounded . To complete the proof we need to remove this assumption . Let F( t , x)  
be  an arbitrary function satisfying the conditions of Theorem 7. 5 .  For each 
positive integer n take a smooth function <fJn from IR to [0 , 1] such that <{Jn ( x) == 

1 for any x E (-n , n] and <fJn (x) == 0 for any x � [-n - 1 ,  n + 1] . Then 

Fn (t , x) == <fJn (x)F(t ,  x) 

also satisfies the conditions of Theorem 7. 5 and has bounded partial derivatives 
(Fn ) � ( t , x)  and (Fn )� :c (t , x) for each n.  Therefore , by the first part of the proof 

Fn (T, W(T) ) - Fn (O , W (O) ) 

= 1T ( (Fn ) � (t , W(t) )  + � (Fn ) �x (t , W(t) ) ) dt + 1T 
(Fn ) � (t , W(t) )  dW(t) . 

Consider the expanding sequence of events 

An == { sup fW (t) f < n} . 
tE [O ,T] 

Since F (t , x) == Fn (t . x) for every t E (0 , T] and x E (-n , n] , it follows that 
(7 . 17) holds on An · It remains to show that 

lim P(An ) == 1 n�oo 
to prove that ( 7 . 1 7) holds a.s . But the latter is true because of Doob 's maximal 
L2 inequality, Theorem 6 .7 ,  which implies that 

n2 ( 1 - P(An ) )  == n2 P { sup f W (t) f > n} 
t E [O ,T] 

< E ( sup J W (t) f) 2 
t E [O,T] 

< 4E f W(T) f 2 == 4T, 

::ompleting the proof. 0 

Exa m ple 7 .4  
F'or F(t , x) == x2 we have F{ (t, x) == 0 ,  F� (t , x) = 2x and F�'x (t , x)  = 2 .  The Ito 
:ormula gives 

d (W (t) 2 ) = dt + 2W(t) dW(t) , 
.vh ir.h i� the same eo t talitv a..<:; in Exercise 7 .R .  
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Exa m ple  7 . 5  

For F(t , x) == x3 we have Ff (t, x) == 0 ,  F� (t , x) == 3x2 and F�'x (t , x) == 6x . By 
the Ito formula we obtain the same equality 

d (W (t) 3 ) = 3W (t) dt + 3W(t) 2 dW (t) 

as in Exercise 7 . 10 .  

Exercise 7. 1 4  (exponential martingale} 

Show that the exponential martingale X (t) = eW( t ) e- � is an Ito process and 
verify that it satisfies the equation 

dX (t) = X (t) dW (t) . 

Hint Use the Ito formula with F(t ,  x )  = e x e - � .  

As compared witl1 the simplified version just proved , in the general Ito 
formula below W (t) wil l be replaced by an arbitrary Ito process � (t) such that 

d� ( t) == a ( t) dt + b ( t) dW ( t) , (7 . 19 )  

where a belongs to Cj and b to M? for all t > 0 .  In the general case the proof 
will be omitted . 

Theorem 7 .6  ( I to form u l a , ge nera l case) 

Let � (t) be an Ito process as above . Suppose that F(t,  x)  i s  a real-valued func­
tion with continuous partial derivatives Ff (t , x) , F� (t , x )  and F�'x (t , x) for all 
t > 0 and x E JR. We also assume that the process b(  t)  F� ( t ,  � ( t) ) belongs to 
M:f for all T > 0. Then F(t , � (t) ) is an Ito process such that 

dF(t , � (t) ) = ( Ff ( t ,  �(t) ) + F� (t ,  � (t) ) a (t )  + � F�� (t ,  { (t) ) b(t) 2 ) dt 

+ F; (t ,  � (t) ) b (t) dW(t) . (7 . 20) 

A convenient way to remember the Ito formula is to write down the Taylor 
expansion for F(t ,  x) up to the terms with partial derivatives of order two, 
substituting �(t)  for x and the expression on the right-hand side of (7 . 19 )  for 
d�(t) , and using the so-called Ito multiplication table 

dt dt = 0 ,  
dW (t) dt == 0 ,  

dt dW(t) = 0 ,  
dW(t) dW(t) = dt . 
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his informal procedure gives 

�F 1 1 F' dt + F' dC + -F" dt dt + F" dt dC + -F" dC dC t X � 2 tt tx � 2 X X � � 

F; dt + F� (a dt + b dW) 
1 1 

+ 2 F:: dt dt + F:� dt (a dt + b dW) + 2 F�1x (a dt + b dW) (a dt + b dW )  

F: dt + F; (a dt + b dW) + !p;� b2 dt 2 

( F: + F;a + �F;1x b2) dt + F; b dW, 

hich is the expression in (7 . 20) . Here we have omitted the arguments ( t ,  � (t ) ) 
1d , respectively, ( t ) in al l functions for brevity. 

xercise 7. 15  
pplying the Ito forn1ula to F(t ,  x ) == x n , show that 

n (n - 1 )  d W (t) n = W(t) n-2 dt + nW(t) n-l dW (t ) 2 (7 . 2 1 ) 

-int This is a direct application of the Ito formula, but be careful with the assump­
ons , in particular make sure that nW (t)n - l belongs to Mf, for all T > 0 .  

xercise 7. 1 6  ( Ornstein-Uhlenbeck process) 
uppose that a > 0 and a E IR are fixed. Define Y(t) , t > 0 to be an adapted 
todification of the Ito integral 

Y(t) = (J' e - o: t it e o: s  dW (s) 

" ith a � s .  continuous paths . Show that Y(t) satisfies 

dlT (t) == -o:Y(t) dt + a  dW (t) 

rint Y (t )  == F(t , � (t) ) with � (t )  = a  JC: eo: s dW (s ) and F(t ,  x) == e-o: tx .  

' . 5 Sto chast ic D ifferent ial Equations 

'his section will be devoted to stochastic differential equations of the form 

d�(t) = f(�(t) ) dt + g (� (t) ) dW (t) . 
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Solutions will be sought in the class of Ito processes � (t )  with a . s .  continuous 

paths . As in the theory of ordinary differential equations , we need to specify 
an initial condition 

� (0) == �0 .  

Here �0 can be a fixed real number or , in general , a random variable . Being an 

Ito process , � (t) must be adapted to the filtration :Ft of W (t) , so �0 must be 
:Fo-measurable . 

Example 7 . 6  
The stochastic differential equation 

dX (t) == X (t) dW (t) (7 . 22 ) 

was used as a motivat ion for developing Ito stochastic calculus at the beginning 

of the present chapter . In Exercise 7 . 1 4  it was verified that the exponential 
martingale 

X (t )  == eW( t ) e- � 
satisfies ( 7 . 22) . It also satisfies the initial condition X (O) == 1 .  This is an ex­
ample of a linear stochastic differential equation . For the solution of a general 

equation of this type with an arbitrary initial condition , see Exercise 7 . 20 . 

Example 7 . 7  
In Exercise 7 . 16  it was shown that the Ornstein-Uhlenbeck process 

satisfies the stochastic differential equation 

dY (t) == -aY(t) dt + a  dW (t) 

with initial condition Y (O) == 0. This is an example of an inhomogeneous lin­

ear stochastic differential equation . See Exercise 7 . 1 7  for a solution with an 

ar bi tr ary initial condi tion . 

Defin ition 7 . 9  
An Ito process � (t) , t > 0 is called a solution of the initial value problem 

d� ( t) f ( � ( t) ) dt + g ( � ( t) )  dW ( t) , 
� (0) �0 
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if �0 is an F0-measurable random variable , the processes f(�(t) ) and g (�(t) ) 
belong, respectively, t o  £} and M:j,, and 

� (T) = (o + loT 
f (� (t) ) dt + loT 

g (� (t) ) dW(t) a.s . (7 . 23) 

for all  T > 0 .  

Rem a rk 7 . 3  

In view of this definit ion , the notion of a stochastic differential equation is 
a fict ion . In fact , only stochastic integral equations of the form (7 . 23) have a 
rigorous mathematical meaning. However , it proves convenient to use stochastic 
differentials informally and talk of stochastic differential equations to draw on 
the analogy with ordinary differential equations . This analogy will be employed 
to solve some stochas tic differential equations later on in this section . 

The existence and uniqueness theorem below resembles that in the theory 
of ordinary differential equations , where it is also crucial for the right-hand side 
of the equation to be Lipschitz continuous as a function of the solution . 

Theore m 7 . 7 

Suppose that f and g are Lipschitz continuous functions from IR. to IR, i . e .  there 
is a constant C > 0 such that for any x, y E JR. 

l f (x) - f (y ) j < C f x - y f , 
l g (x) - g (y) f < C l x - Y l · 

Moreover , let �o be an F0-measurable square integrable random variable . Then 
the initial value problem 

d�(t) 

�(0 ) 

I ( � ( t) ) dt + g ( � ( t) ) dW ( t) , 
�0 

(7 .24) 

(7 .25) 

has a solution �(t) , t > 0 in the class of Ito processes . The solution is unique in 
the sense that if "l (t) , t > 0 is another Ito process satisfying (7 .24) and (7 .25) , 
then the two processes are identical a.s . ,  that is , 

P {� (t) = 71(t) for all t > 0} = 1 .  
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Proof (outl i ne) 
Let us fix T > 0 .  We are looking for a process � E Mj, such that 

� (s) = �o + 18 f(�(t ) ) dt + los g(�(t) ) dW(t) a.s . (7 .26) 

for all s E [0 , T] . Once we have shown that such a � E Mj, exists , to obtain 
a solution to the stochastic differential equation (7 . 24) with initial condition 
(7 .25)  it suffices to take a modification of � with a.s . continuous paths , which 
exists by Theorem 7 . 4 .  

To show that a solut ion to the stochastic integral equation (7 .26) exists we 
shall employ the Banach fixed point theorem in Mj, with the norm 

1 1 � 1 1 �  = E 1T e-At l �(tW dt , (7. 27)  

which turns M} into a complete normed vector space . The number A > 0 

should be chosen large enough , see below . To apply the fixed point theorem 
define P : Mj, � M:f by 

!P (�) (s ) = �o + 18 f(�(t) ) dt + 18 g(�(t) ) dW(t) (7.28)  

for any � E Mj, and s E [0 , T] . We claim that ifJ is a strict contraction , i .e .  

(7 .29) 

for some a < 1 and all � ' ( E Mj, . Then, by the Banach theorem , � has a 
unique fixed point � = �(�) . This is the desired solution to (7 .26) . 

It remains to verify that ifJ is indeed a strict contraction . It suffices to show 
that the two maps <!>1 and �2 , where 

!P 1 ( � ) (  s ) = .fo 8 f ( � ( t) ) dt ' 

are strict contractions with contracting constants a1 and a2 such that a1 +a2 < 
1 .  For 4>1  this follows from the Lipschitz continuity of f. For qi2 we need to use 
the Lipschitz continuity of g and the isometry property of the Ito integral . Let 
us mention just one essential step in the latter case . For any � ,  ( E M:f 

I I !P2 (�) - !P2 (() 1 1 �  = E 1T e-As 18 [g (�(t) ) - g(((t) ) ] dW(t) 
2 
ds 

E 1T e-As fo8 lg (� (t) ) - g(( (t) ) l 2 dt ds 

< C2 E [T e-As [8 l�(t) - ( (t) l 2 dt ds 
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c2 E loT (1T e-Ase>.t ds) e- At l � (t ) - ( (t) 1 2 dt 

< �
2 E loT e->.t l � (t )  - ( (t ) l 2 dt = �2 

I I � - ( I I � , 

ince ftT e->-s e>.t ds = l ( 1  - e- A(T-t) ) < l ·  Here C is the Lipschitz constant 
f g .  If .X >  C2 /c , the11 �2 is a strict contraction with contracting constant < c .  

There remain some technical points to b e  settled , but the main idea of the 
1roof is shown above. 0 

:xercise 7. 1 7  

'ind a solution of the stochastic differential equation 

dX (t ) = -aX(t) dt + a  dW(t) 

1ith initial condition X (O)  = x0 , where x0 is an arbitrary real number . Show 
hat the solution is unique . 

lint Use the substitut ion Y(t) = e a t  X(t) . 
A linear stochastic differential equation has the general form 

dX(t) = aX (t) dt + bX (t) dW(t) , (7 .30) 
rhere a and b are real numbers . In particular ,  for a == 0 and b == 1 we obtain the 
tochastic differential equation dX (t) == X (t) dW(t) in Example 7 .6 .  The solu­
ion to the initial value problem for any linear stochastic differential equation 
an be found by exploiting the analogy with ordinary differential equations , as 
�resented in the exercises below. 

:xercise 7. 1 8  

uppose that w(t) ,  t > 0 is a determi·nistic real-valued function of class C1 such 
hat w (O) == 0 .  Solve the ordinary differential equation 

dx (t) == ax(t) dt + bx (t) dw (t) , (7 .3 1 )  
rith initial condition x(O) == xo to find that 

x(t) = Xoeat+bw(t) .  (7.32) 

W.e write dw(t) in place of w' (t ) dt to emphasize the analogy with stochastic 
ifferential equations . )  
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Hint The variables can be separated: 
dx ( t) ( , 

x (t ) = a + bw (t ) )  dt . 

By analogy with the deterministic solution (7 .32 ) , let us consider a process 
defined by 

X (t ) == Xoeat+bW(t ) 

for any t > 0 ,  ''.rhere lV ( t) is a Wiener process .  

Exercise 7. 1 9  

(7 .33) 

Show that X (t) defined by (7 .33) is a solution of the linear stochastic differential 

equation 

dX (t) = (a + � )  X(t) dt + bX (t ) dW (t) ,  

with initial condition X (O ) == Xo . 

Hint Use the Ito formula with F(t , x )  == e a t +bx . 

Exercise 7. 20 

Show that the linear stochastic differential equation 

dX (t) == aX (t) dt + bX (t) dW ( t) 

with initial condition X (O) == X0 has a unique solution given by 

b2 
X ( t ) = Xoe(a- T ) t+bW(t) . 

Hint Apply the result of Exercise 7. 19  with suitably redefined constants .  

(7 .34) 

Having solved the general linear stochastic differential equation (7.30) , let 
us consider an examJ>le of a non-linear stochastic differential equation . Once 
again , we begin with a deterministic problem . 

Exercise 7. 21 

Suppose that w (t) ,  t > 0 is a deterministic real-valued function of class C 1 such 
that w (O) == 0 .  Solve the ordinary differential equation 

dx( t) == JI + x (t) 2 dt + JI + x (t)2  dw(t) 

with initial condition x(O) = xo . 

Hint The variables in this differential equation can be separated. 
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�ercise 7. 22 
ow that the process defined by 

X ( t) == sinh ( C + t + W ( t) ) ,  

Lere W (t) is a Wiener process and C = sinh- 1 X0 ,  is a solution of the stochas­
differential equation 

dX (t) = ( y'I + X(t) 2 + �X (t)) dt + ( y'I + X(t) 2 ) dW (t) 

th initial condition X(O) = Xo . 

nt Use the Ito formula with F(t ,  x ) = sinh(t + x ) . 

We shall conclude this chapter with an example of a stochastic differen­
.1 equation which does not satisfy the assumptions of Theorem 7 .7 .  It turns 
t that the solution may fail to exist for all times t > 0. This is a familiar 
enomenon in ordinary differential equations . However , stochastic differential 
uations add a new effect , which does not even make sense in the deterministic 
se : the maximum time of existence of the solution , called the explosion time 
ty be a (non-constant ) random variable, in fact a stopping time . 

ca mp le 7 . 8  
>nsider the stochast ic differential equation 

1en 

dX(t) = X(t) 3dt + X(t) 2dW(t) . 

1 
X(t) = 1 - W(t) 

a solution , which can be verified , at least formally, by using the Ito formula 
th F(t, x) == 1 

1 
x . The solution X (t) exists only up to the first hitting time 

r = inf { t > 0 : W ( t) = 1 }  

1is is the explosion time of X (t) . Observe that 

lim X (t) = oo .  t/r  
rictly speaking , the Ito formula stated in Theorem 7.6 does not cover this 
se, since F(t , x ) = 1 1 x has a singularity at x = 1 .  Definition 7.9 does not 
1ply either , as it requires the solution X(t) to be defined for all t > 0. Suitable 
tensions of the Ito formula and the definition of a solution are required to 

udy stochastic differential equations involving explosions .  However , to prevent 
L explosion of this l1ook � we -have to refer the interested reader to a further 

- - - - ,! _ _ _ ..._ - __ ,__ - --.L. ! .-.. - - ..... 1 _ . ,... : ,.. 
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7 . 6 Solutions 

Solution 7. 1 

Using the first identity in the hint we obtain 

n- l  
L W(tj ) (W(tj+l ) - W(tj ) ) 
j=O 

n- l � L (W(tj+1 ) 2 - W (tj ) 2 )  
j=O 

n- l - � L (W (tj+l ) - W(tj ) ) 2 
j=O 

n- 1 
�W(T)2 - � L (W(tj+ l ) - W(tj ) ) 2 . 

j=O 

By Exercise 6 . 29 the limit is 

n- 1 
lim "" W(tj ) (W(tj+l ) - W(tj ) ) = 

! w(T) 2 - !r. n-too � 2 2 
j=O 

Similarly, the second identity in the hint enables us to write 

n- 1 n- 1 
L W(tj+l ) (W(tj+l ) - W(tj ) ) � L (W (tj+1 ) 2 - W (tj ) 2 ) 
j=O j=O 

n- 1 
+ � L (W(tj+l ) - W(tj) ) 2 

j=O 
n- 1 �W(T)2 + � L (W(tj+ l ) - W(tj) ) 2 . 
i=O 

It follows that 

n- l 
J1� L W(tj+ l ) (W(tj+ l ) - W(tj ) )  = �W(T) 2 + �T. 

j=O 

Solution 7. 2 

For any random step processes /, g E Ms;ep there is a partition 0 = t0 < t1 < 
· · · < tn such that for any t > 0 

n - 1 n- 1 
f (t) = �:::>]jl[t; , t;+ 1 ) (t) and g(t) = L (j l [t; , t; + 1 ) (t) ,  

j=O j=O 
where 7Ji and (j are square integrable Fti -measurable random variables for each 
� - n 1 71 - 1 (Tf t.hP. two nartitions in the formulae for _f and g happen to 
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, e  different , then it is always possible to find a common refinement of the two 
�artitions . )  

As in the proof of Proposition 7 . 1 ,  we denote the increment W ( t i + 1 ) - W ( t i ) 
•y Ll1 W and ti+ l  - t1 by �i t .  Then 

n- 1 n-- 1  
I(J ) I (g) = L L 'T]j (k Llj w Ll k w 

j==O k==O 
n- 1 
L 'T]j (j I Llj W l2 + L 'T]j (k LljW Ll k w + L (j'T]kLlj w Llk W, 
j==O j< k j< k 

1here , by independence , 

E (rJj (k �j W �k W) 
E ( (j rJk �j W L1k W) 

E (TJJ (k �i W) E (�k  W) == 0 
E ((j TJk �i W) E (�k  W)  == 0 

:Jr any j < k .  It follows that 

n - 1 

E ( I (f ) I (g) ) = L E ('T]j (j )  Llj t . 
j==O 

�herefore , it suffices to show that 

tut this is true because 

f (t) g (t) 

)o/ution 7. 3 

n - l n - 1 

L L 'T]j ck l rtj . t; + l ) ( t) 11t ,. , t ,. + J ) < t) 
j=O k=O 
n - 1 

L 'T]j (j l [t; . tH t )  (t ) . 
j=O 

'Ve shall use a partition 0 = t0 < t1  < · · · < tn such that 

n - 1 

1 = L 'T]j l [t; . t;+ t ) 
J=O 

n- 1 
and g = L (j l [ti , tHd , 

j=O 
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where 'rJi and (j are square integrable Ft3 -measurable random variables for each 
j == 0 ,  1 ,  . . .  , n - 1 .  (If the two partitions in the formulae for f and g happen 
to be different , then it is always possible to find a common refinement of the 
two partit ions . )  The increments W(t1+ 1 ) - W (tj )  will be denoted by L11 W for 
brevity. Then 

n- 1 
a.f + /3g = 2::.: (ar/j + /3(j ) l [ ti , tH i l 

j==O 

and 

n- 1 
I (af + f3g) 2::.: (mJi + /3(j ) .dj W 

j=O 
n - 1 n - 1 

0'. 2::.: 1}j L1j W + ,B L (j .dj W 
j==O j=O 

ai (f)  + /3I (g) . 

Solution 7. 4 
Consider the following scalar products in M2 and £2 : 

(J , g) M2 = E (fooo f (t ) g (t) dt) and (TJ , () p = E (17() 

for any f, g E M2 and 17 , ( E £2 . They can be expressed in terms of the 
corresponding norms defined in the proof of Proposition 7 . 2 , 

(f , g ) M2 

(1J � () £2  

Therefore Proposition 7 .2  implies that 

(I (f) , I (g) )  £2 == (/, g) M2 , 

which is the same as the equality to be proved . 

Solution 7. 5 

If f E M;tep is a random step process , then so is l [o ,t] f E M52tep C M2 for any 

t > 0 .  This in turn implies that f E M[ for any t > 0 . 
We shall verify that It (f )  is a martingale with respect to the filtration :Ft . 

Let 0 < s < t and suppose that f E M;tep can be written in the form (7 . 2 ) , 
where 

0 = tn < t, < · · · < t� == S < tk..+- 1 < · · · < tm == t < tm+l < · · · < tn .  
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ch a partition t0 , . . .  , tn can always be obtained by adding the points s and 
f necessary. We shall denote the increment W ( t i+ 1 ) - W ( t 1 )  by Ll i W as in 
� proof of Proposition 7 . 1 .  Then 

d 

m - 1  
l [o , t] f = L 1Ji l [t; , t; + I ] 

j=O 

m - 1  
'- t (f ) = J( l [o , tJ f ) = L 1Ji .di W, 

j=O 
. ich is adapted to Ft and square integrable , and so integrable . It remains to 
npute 

m - 1  
E Ut (f) JFs )  = E (I( l [o , tJ f) JFs ) = L E (7]j .dj W JFs ) · 

j=O 

i < k, then 1Ji and .di W are F8-measurable and 

i > k,  then Fs C Fti and 

E (1}j L1j W IFs ) = E (E (7Jj Llj W fFtj )  IFs )  
= E (1Jj E (Lli W IFti ) )Fs )  
= E (1Ji !Fs ) E (Lli W) = 0,  

ce 1Ji i s  Ft; -measurable and Lli W is independent of :Ft; . It follows that 
k - 1  

E (It (J ) JFs ) = L 7]j .dj W = I ( l [o ,s] f ) = Is (f ) . 
j=O 

,fution 7. 6 

definition ,  W (t) is adapted to the filtration :Ft and has a. s .  continuous paths . 
>reover, 

E (LT J W(t) J 2 dt) = loT E ( 1 W(t) J 2 ) dt 
= foT t dt < oo. 

Theorem 7 . 1 it follows that the Wiener process W belongs to Mj,. 
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Solution 7. 7 

Since W (t) is adapte<l to the filtration :Ft ,  so is W (t)2 • Moreover , 

E (1T 
I W (t) 1 4 dt) == 1T 

E ( 1 W (t) 1 4) dt 

== 1T 
3t2 dt < 00 . 

Theorem 7 . 1  implies that W (t)2 belongs to M:j, . 

Solution 7. 8 

We fix T > 0 and put 

f (t) = 1 [o ,T) (t) W(t) . 

Then f E M2 and 

1T W (t) dW (t) == �a= f (t) dW (t) . 

2 1 3  

Take 0 = t0 < t} < · · · < t� = T,  where tf = i� , to be a partition of [0 , T] 
into n equal parts , and put 

n- 1 
fn == L W (ti ) l [t;' , ti+ l ) ·  

i=O 

Then the sequence !1 , !2 , . . . E M;tep approximates f ,  since 

By Exercise 7.1 

n- 1 t" � 1
:-

i+ l 
( t - ti ) dt 

n- 1  1 � ( n n ) 2 2 � ti+l - ti 
i=O 

1 T2 - - 4 0 as n --t oo . 2 n 

n- 1 
I(fn )  = L W (ti ) (W(ti+l ) - W (ti ) )  � �W{T)2 - �T 

i=O 



L 4  Basic Stochast ic P rocesses 

. L2 as n --t oo. We have found , therefore , that 

olution 7. 9 

{T 1 1 
Jo 

W (t)  dW (t) = 2 W (T) 2 - 2 r. 

et f (t) == t .  Then l [o ,T] f belongs to M:f.  We shall use the same partit ion of 
' , T] into ·n equal parts as in Solution 7.8 .  The sequence 

n- l  
fn = I: tf l [t� , t�+ 1 ) E Ms:;ep 

Jproximates l [o ,r] f , since 
i=O 

1 n- 1 T3 
3 I: n3 

i= l 
T3 
Jn2 

-+ 0 as n -+ oo. 

lith the aid of the identity in the hh1t , we can write the stochastic integral of 
1 as 

n- 1 
I(fn)  L tf {W (tf+I ) - W(tf ) ) 

i=O 
n - 1 n- l  
L (tf+l W (tf+l ) - tfW (tf ) ) - L W (tf+l ) {tf+ l - tf) 
i=O i=O 

n- 1 
TW (T) - :2::: W(tf+ 1 ) (tf+ I - tf ) . 

i=O 
follows that 

I (in ) -+ TW (T) - 1T 
W(t) dt 

2 . L2 as n -t oo .  Indeed , by the classical inequality I:� 01 ai < n 2:7 01 l ai 1 2 
1d by the Cauchy-Schwartz inequality 

n- l  T 

( 
2) 

E � W(tf+I )  (ti+I - ti) - 1  W(t) dt 

l 
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= E � (1;?+ 1 (W (tf+ l ) - W(t) )  dt) 2 

< n � E ( 1;?+ 1 (W (tf+ 1 ) - W(t) ) dt 
2) 

< n � (tZt- 1 - ti ) E (1;?+ 1 IW (ti+d - W(t) l 2 dt) 
� (tH.-1 - tf ) 3 n- 1 T3 T3 = n L...,; 2 = n L 2n 3 

= 
2n � 0 as n � oo . 

i=O i=O 

This proves the equality in the exercise . 

Solution 7. 1 0  

2 1 5  

Using the  same partition of [0 , T] into n equal parts as in Solution 7 . 8 and 
putting n - 1  

fn = L W(tf ) 2 1 [t i , t i+ 1 ) ,  
i=O 

we obtain a sequence !1 , !2 , . . .  E M52tep of random step processes which ap­
proximates f = l [o ,T] W2 . Indeed , 

T3 - --+ 0 as n -t oo .  
n 

The expectation above is computed with the aid of the following formula valid 
for any 0 < s < t : 

E ( {Wt2 - W;) 2 ) = E ( (Wt - Ws)4) + 4E ( (Wt - Ws ) 3 Ws) 
+ 4E ( (Wt - Ws)2 w;) 

3 (t - s ) 2 + 4 (t - s ) s 



16  Basic Stochastic Processes 

rsing the identity in the hint , we can write 
n- 1 

l(fn )  = L W(ti) 2 (W(tf+ l ) - W(tf ) )  
i==O 

n- 1 � L (W ( ti+ 1 ) 3 - W(ti ) 3 ) 
i ==O 

n- 1  n- 1 
- L W(ti ) (W(tN-1 ) - W(ti ) ) 2 - � L (W (tf+ l ) - W(tf ) ) 3 

i=O i=O 
n-1 � W(T)3 - L W(tf )  (tf+ l - tf) 
i=O 

n-1  
- L W(tf)  [ (W(tf+l ) - W(tf) ) 2 - (tf+ l - tf ) ] 

i=O 
n- 1 - � L (W(ti+ l ) - W(tf ) ) 3 . 
i=O 

he £2 limits of the last three sums are 
n- 1 

lim � W(tr ) (t�+ 1 - t?) n�oo L-t 
i=O 

n- 1 
nl�� L W(tf) [ (W(tf+ l ) - W(tf ) ) 2 - (ti+ l - tf) ] 

i=O 
n- 1 

lim � {W(tf+1 ) - W(t? ) ) 3 
n � oo  L-t 

i=O 

ldeed, the first limit is correct because 
n-1 T 2 

E L W(tf) (tf+l - ti) - 1 W(t) dt 
i=O 0 

= E I: 1:i+1 (W(tf ) - W(t) ) dt 2 
i=O ti 

� l�i+ l E ( IW(tf) - W(t) 1 2) dt 
i==O ti 
n- 1  t n 
L ln i+ l (t - ti ) dt 
i==O t i  

T2 
- --t 0 as n --t oo .  2n 

1T W(t) dt 

0 

0 
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To the second limit can be verified as follows : 

n- l 2 
E L W(tf ) [ (W(tf+l ) - W(tf ) ) 2 - (t?+l - ti ) ] 

i=O 

� E ( W (t? ) 2 (W(tH-1 ) - W(tf ) ) 2 - (tf+1 - tf ) 2) 

� E (W (ti ) 2 ) E ( (W (tf+l ) - W(ti ) ) 2 - (ti+ l - ti ) 2)  

n- 1  
2 L ti (tH-l - ti ) 2 

i=O 

(n - I )  · >  --2-T� --t 0 as n --t oo .  n 
Finally, for the third limit we have 

n-1  
E L (W(ti+d - W(ti ) ) 3 

i=O 

n - 1 

2 

L E ( (W(ti+ l ) - W(ti ) ) 6 )  

It follows that 

i=O 
n- 1  

6 L (ti+l - ti ) 3 
i=O 
n- 1  T3 6T3 6 '"' - = - --t 0 as n --t oo .  
� n3 n2 i=O 

I(fn ) � � W(T)3 - loT W(t) dt, 

which proves the forn1ula in the exercise . 

Solution 7. 1 1  
We shall use part 2) of Theorem 7. 1 to verify that 

€(t) = lot W(s) dW(s) 

217  

belongs to Mj, for any T > 0.  By Theorem 7.4 �(t) can be identified with an 
adapted modification having a.s .  continuous trajectories . It suffices to verify 
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Lat � (t) satisfies condition (7 .9) . Since the stochastic integral is an isometry, 1t 
2 1t 1t 

t2 E W (s) dW (s) == E  I W (s) l 2 ds = s ds == - . 
0 0 0 2 

follows that 

rT rT r t 2 rT t2 r3 
E lo l � (t) l 2 dt = E lo lo W (s) dW (s) dt = lo 2 dt = 6 < oo ,  

� - �(t) sat isfies ( 7 .9 ) . As a result , � (t) belongs to M:j, . 

olu tion 7. 12  

Te shall use the equality proved in Exercise 7 . 10 :  

he process 3W ( t ) belongs to .C� for any T > 0 because it  is  adapted and 
as a.s .  continuous paths , so the integral J[ I 3W (t) l dt exists and is finite . 
y Exercise 7 . 7 the process 3W (t) 2 belongs to Mj, for any T > 0 .  It follows 
1at W(t) 3 is an Ito process . Moreover, the above equation can be written in 
ifferential form as 

dW ( t) 3 == 3W(t) dt + 3W (t)2 dW (t) , 

hich gives a formula. for the stochastic differential dW ( t) 3 . 

·o/u tion 7. 13  
, has been shown in Exercise 7 . 9 that 

TW(T) = loT W(t) dt + loT t dW(t) . 
ince the Wiener process W(t) is adapted and has continuous paths , it belongs 
> C� , while the deterministic process f (t) == t belongs to Mf, for any T > 0 .  
, follows that tW(t) is an Ito process with stochastic differential 

d (tW(t) ) == W(t) dt + t dW(t) . 
'o/ution 7. 14  
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ex e- � and F�'x (t , x) == ex e- � .  Since X (t) == eW( t ) e- � ,  the Ito formula implies 

that 

dX (t) dF(t , W (t) ) 

( F; ( t ,  W (t ) ) + � F�'x (t , W(t) )) dt + F� (t , W (t) ) dW (t) 

(- �X ( t ) + �X (t )) dt + X (t) dW (t) 

X (t) dW (t) . 

B ecause of this , to show that X (t) is an Ito process we need to verify that 

X (t) == ew (t ) e- � belongs to M:j, for any T > 0 .  Clearly, it is an adapted 

process . It was computed in Solution 6 . 35 that EeW(t )  == e ! ,  so 

E loT I X (t) l dt = loT EeW(t ) e- � dt = loT dt = T < oo , 

which proves that X (t ) belongs to M:j,. 

Solution 7. 15 

Take F( t , x)  == xn . Tl1en F! (t , x) == 0 ,  F� (t , x) == nxn- 1 and F�'x (t , x) == n (n ­
l )xn-2 . The derivatives of F(t ,  x) are obviously continuous ,  so we only need 

to verify that F� (t ,  V}. (t) ) = nW (t)n- 1 belongs to M} for T >  0 .  Clearly, it is 

adapted and has a. s .  continuous paths . Moreover , 

{T 
T T E 

J
o j nW (t)n- l j 2 dt = n2 fo E j W(t) j 2n-2 dt = 1 a2n-2 tn- l dt < oo , 

where ak = 2k/21f-l /2 r( kt1 ) and r (x)  == fo00tx- 1 e-t dt is the Euler gamma 
function . It follows by part 2) of Theorem 7 . 1 that F� (t , W (t) ) == nW (t)n- 1 
belongs to Mj,. Therefore we can apply the Ito formula to get 

as required . 

n(n - 1)  
d (W(tt )  = 

2 
W(t)n-2dt + nW (t)n- 1 dW(t) , 

Solution 7. 1 6  

Some elementary calculus shows that F(t , x) = e - o:t x has continuous partial 

derivatives such that Ff (t , x) == -ae-a:tx ,  F� (t , x)  = e-o:t and F;� (t , x ) == 0. 
Clearly, �(t) = a J; eas dW(s) is an ItO process with 

d�(t) = ae0tdW(t) . 
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ce the function ueo:t F� (t ,  x ) is bounded on each set of the form (0 ,  T] x IR, 

allows immediate!)' that aeo:t F� ( t ,  � ( t ) ) belongs to M:f for any T > 0 .  As a 

lsequence, we can use the Ito formula (the general case in Theorem 7 .6) to 

dY(t) = d (e-o:t� (t) ) 
-ae-o:t� (t) dt + e-o:taeo:t dW (t) 
-aY(t) dt + a  dW(t) , 

ich proves that Y ( t) satisfies the equality 

dY(t) = -aY (t) dt + a  dW (t) . 

fution 7. 1 7  

ce F( t , x ) = eo:t x and consider the process 

Y(t) = F(t ,  X (t) ) .  

�n Y(O) = xo and 

dY(t) = dF(t = X (t) ) 

(Ft (t , X(t) ) - aX(t)F� (t , X (t) ) + � o-2F�� (t , X(t) )) dt 

+ a  F; (t , X (t) ) dW(t) 
(aeo:t:X(t) - aeo:t X (t) ) dt + aeo:t dW(t) 

= aeo:t dW (t) . 

the Ito formula. It follows that 

Y(t) = Xo + u lo
t eas dW(s) 

X (t) = e-o:tY(t) 

= e-atxo + ue-at lot eas dW(s) . 

queness follows directly from the above argument, but Theorem 7 .  7 can 

� be used. Namely, the stochastic differential equation 

dX (t) = -aX(t) dt + u dW(t) 

,f the form (7.24) with f(x) = -ax and g (x ) = u, which are Lipschitz 

tinuous functions . Therefore , the solution to the initial value problem must 
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Solution 7. 18  

According to the theory of ordinary differential equations , (7 .31)  with initial 

condition x (O) = x0 has a unique solution . If x0 = 0, then x(t) = 0 is the 

solution . If x0 =I 0 ,  then 

ln 
x(t) 

= at +  w(t) 
xo 

by integrating the eq11ation in the hint , which implies that 

x(t) = xoeat+bw(t ) . 

Solution 7. 1 9  

By the Ito formula (verify the assumptions ! )  

dX (t) d ( Xoeat+bW(t ) ) 
( aXoeat+bW(t)  + � Xoeat+bW(t)) dt + bXoeat+bW(t) dW(t) 

(a + � ) X (t) dt + bX (t) dW(t) . 

This proves that X (t)  satisfies the stochastic differential equation (7 .34) . As 

regards the initial cortdition , we have 

X (O) = Xoeat+bW(t) = Xo . 
t=O 

Solution 7. 20 

The stochastic differential equation 

dX (t) = aX (t) dt + bX (t) dW (t) 

can be written as 

dX (t) = ( c + b: ) X(t) dt + bX (t) dW(t) , 

where c = a - b; . By Exercise 7 .19 the solution this stochastic differential 

equation with initial condition X (0) = X0 is 

X (t) = Xoect+bW(t )  

= Xoe (a- b: ) t+bW(t ) . 

The uniqueness of this solution follows immediately from Theorem 7 .7 .  
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>lution 7. 21 
e can write the ordinary differential equation to be solved in the form 

dx (t) 
--;:::=== = ( I + w' (t) ) dt , 
J! + x(t) 2 

1ich implies that 

sinh- 1 x(t) - sinh- 1 x0 = t + w (t) .  

>mposing the last  formula with sinh, we obtain 

x ( t) = sinh (c + t + w (t) ) ,  

1ere c = sinh - 1 x0 . 

J!ution 7. 22 
nee F(t ,  x) == sinh (t + x ) satisfies the assumptions of the Ito formula, 

dX (t) == dF(t, C + W (t) ) 

(F£ (t ,  C + W(t) ) + �F;'x (t ,  C + W (t) )) dt 

+ F; (t , C + W (t) ) dW (t) 

( cosh (C + t + W(t) ) + � sinh (C + t + W (t) )) dt 

+ cosh(C + t + W(t) ) dW(t) 

(/I + sinh2 (C + t + W(t) ) + � sinh(C + t + W (t) )) dt 

+ /I +  sinh2 (C + t + W (t) ) dW (t) 

( yii + X (t) 2 + �X (t)) dt + (VI + X (t) 2 ) dW (t) . 

be initial condition X(O) == sinh C = X0 is also satisfied . 

(7 .35)  
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