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9.5 Itô’s Formula 168
9.6 Integral Representation Theorem 172
9.7 Girsanov’s Theorem 174
9.8 Multiple Stochastic Integrals 175
9.9 Wiener Chaos for Poisson Random Measures 177

Exercises 180

10 Malliavin Calculus for Jump Processes I 182
10.1 Derivative Operator 182
10.2 Divergence Operator 187
10.3 Ornstein–Uhlenbeck Semigroup 191
10.4 Clark–Ocone Formula 192
10.5 Stein’s Method for Poisson Functionals 193
10.6 Normal Approximation on a Fixed Chaos 194

Exercises 199

11 Malliavin Calculus for Jump Processes II 201
11.1 Derivative Operator 201
11.2 Sobolev Spaces 205
11.3 Directional Derivative 208
11.4 Application to Diffusions with Jumps 212

Exercises 220

Appendix A Basics of Stochastic Processes 221
A.1 Stochastic Processes 221
A.2 Gaussian Processes 222
A.3 Equivalent Processes 223
A.4 Regularity of Trajectories 223
A.5 Markov Processes 223
A.6 Stopping Times 224
A.7 Martingales 225

References 228
Index 235





Preface

This textbook provides an introductory course on Malliavin calculus in-
tended to prepare the interested reader for further study of existing mono-
graphs on the subject such as Bichteler et al. (1987), Malliavin (1991),
Sanz-Solé (2005), Malliavin and Thalmaier (2005), Nualart (2006),
Di Nunno et al. (2009), Nourdin and Peccati (2012), and Ishikawa (2016),
among others. Moreover, it contains recent applications of Malliavin cal-
culus, including density formulas, central limit theorems for functionals of
Gaussian processes, theorems on the convergence of densities, noncentral
limit theorems, and Malliavin calculus for jump processes. Recommended
prior knowledge would be an advanced probability course that includes
laws of large numbers and central limit theorems, martingales, and Markov
processes.

The Malliavin calculus is an infinite-dimensional differential calculus
on Wiener space, first introduced by Paul Malliavin in the 1970s with the
aim of giving a probabilistic proof of Hörmander’s hypoellipticity theo-
rem; see Malliavin (1978a, b, c). The theory was further developed, see
e.g. Shigekawa (1980), Bismut (1981), Stroock (1981a, b), and Ikeda and
Watanabe (1984), and since then many new applications have appeared.

Chapters 1 and 2 give an introduction to stochastic calculus with respect
to Brownian motion, as developed by Itô (1944). The purpose of this cal-
culus is to construct stochastic integrals for adapted and square integrable
processes and to develop a change-of-variable formula.

Chapters 3, 4, and 5 present the main operators of the Malliavin calcu-
lus, which are the derivative, the divergence, the generator of the Ornstein–
Uhlenbeck semigroup, and the corresponding Sobolev norms. In Chapter
4, multiple stochastic integrals are constructed following Itô (1951), and
the orthogonal decomposition of square integrable random variables due to
Wiener (1938) is derived. These concepts play a key role in the develop-
ment of further properties of the Malliavin calculus operators. In particular,
Chapter 5 contains an integration-by-parts formula that relates the three op-

xi



xii Preface

erators, which is crucial for applications. In particular, it allows us to prove
a density formula due to Nourdin and Viens (2009).

Chapters 6, 7, and 8 are devoted to different applications of the Malliavin
calculus for Brownian motion. Chapter 6 presents two different stochastic
integral representations: the first is the well-known Clark–Ocone formula,
and the second uses the inverse of the Ornstein–Ulhenbeck generator. We
present, as a consequence of the Clark–Ocone formula, a central limit the-
orem for the modulus of continuity of the local time of Brownian motion,
proved by Hu and Nualart (2009). As an application of the second represen-
tation formula, we show how to derive tightness in the asymptotic behavior
of the self-intersection local time of fractional Brownian motion, following
Hu and Nualart (2005) and Jaramillo and Nualart (2018). In Chapter 7 we
develop the Malliavin calculus to derive explicit formulas for the densities
of random variables and criteria for their regularity. We apply these criteria
to the proof of Hörmander’s hypoellipticity theorem. Chapter 8 presents an
application of Malliavin calculus, combined with Stein’s method, to nor-
mal approximations.

Chapters 9, 10, and 11 develop Malliavin calculus for Poisson random
measures. Specifically, Chapter 9 introduces stochastic integration for jump
processes, as well as the Wiener chaos decomposition of a Poisson random
measure. Then the Malliavin calculus is developed in two different direc-
tions. In Chapter 10 we introduce the three Malliavin operators and their
Sobolev norms using the Wiener chaos decomposition. As an application,
we present the Clark–Ocone formula and Stein’s method for Poisson func-
tionals. In Chapter 11 we use the theory of cylindrical functionals to intro-
duce the derivative and divergence operators. This approach allows us to
obtain a criterion for the existence of densities, which we apply to diffu-
sions with jumps.

Finally, in the appendix we review basic results on stochastic processes
that are used throughout the book.



1

Brownian Motion

In this chapter we introduce Brownian motion and study several aspects of
this stochastic process, including the regularity of sample paths, quadratic
variation, Wiener stochastic integrals, martingales, Markov properties, hit-
ting times, and the reflection principle.

1.1 Preliminaries and Notation

Throughout this book we will denote by (Ω,F , P) a probability space,
where Ω is a sample space, F is a σ-algebra of subsets of Ω, and P is a
σ-additive probability measure on (Ω,F ). If X is an integrable or nonneg-
ative random variable on (Ω,F , P), we denote by E(X) its expectation. For
any p ≥ 1, we denote by Lp(Ω) the space of random variables on (Ω,F , P)
such that the norm

‖X‖p := (E(|X|p))1/p

is finite.
For any integers k, n ≥ 1 we denote by Ck

b(Rn) the space of k-times
continuously differentiable functions f : Rn → R, such that f and all its
partial derivatives of order up to k are bounded. We also denote by Ck

0(Rn)
the subspace of functions in Ck

b(Rn) that have compact support. Moreover,
C∞

p (Rn) is the space of infinitely differentiable functions on Rn that have at
most polynomial growth together with their partial derivatives, C∞

b (Rn) is
the subspace of functions in C∞

p (Rn) that are bounded together with their
partial derivatives, and C∞

0 (Rn) is the space of infinitely differentiable func-
tions with compact support.

1.2 Definition and Basic Properties

Brownian motion was named by Einstein (1905) after the botanist Robert
Brown (1828), who observed in a microscope the complex and erratic mo-

1



2 Brownian Motion

tion of grains of pollen suspended in water. Brownian motion was then rig-
orously defined and studied by Wiener (1923); this is why it is also called
the Wiener process. For extended expositions about Brownian motion see
Revuz and Yor (1999), Mörters and Peres (2010), Durrett (2010), Bass
(2011), and Baudoin (2014).

The mathematical definition of Brownian motion is the following.

Definition 1.2.1 A real-valued stochastic process B = (Bt)t≥0 defined on
a probability space (Ω,F , P) is called a Brownian motion if it satisfies the
following conditions:

(i) Almost surely B0 = 0.
(ii) For all 0 ≤ t1 < · · · < tn the increments Btn − Btn−1 , . . . , Bt2 − Bt1 are

independent random variables.
(iii) If 0 ≤ s < t, the increment Bt−Bs is a Gaussian random variable with

mean zero and variance t − s.
(iv) With probability one, the map t → Bt is continuous.

More generally, a d-dimensional Brownian motion is defined as an Rd-
valued stochastic process B = (Bt)t≥0, Bt = (B1

t , . . . , B
d
t ), where B1, . . . , Bd

are d independent Brownian motions.
We will sometimes consider a Brownian motion on a finite time interval

[0, T ], which is defined in the same way.

Proposition 1.2.2 Properties (i), (ii), and (iii) are equivalent to saying
that B is a Gaussian process with mean zero and covariance function

Γ(s, t) = min(s, t). (1.1)

Proof Suppose that (i), (ii), and (iii) hold. The probability distribution of
the random vector (Bt1 , . . . , Btn ), for 0 < t1 < · · · < tn, is normal because
this vector is a linear transformation of the vector(

Bt1 , Bt2 − Bt1 , . . . , Btn − Btn−1

)
,

which has a normal distribution because its components are independent
and normal. The mean m(t) and the covariance function Γ(s, t) are given by

m(t) = E(Bt) = 0,

Γ(s, t) = E(BsBt) = E(Bs(Bt − Bs + Bs))

= E(Bs(Bt − Bs)) + E(B2
s) = s = min(s, t),

if s ≤ t. The converse is also easy to show. �



1.2 Definition and Basic Properties 3

The existence of Brownian motion can be proved in different ways.
(1) The function Γ(s, t) = min(s, t) is symmetric and nonnegative defi-

nite because it can be written as

min(s, t) =
∫ ∞

0
1[0,s](r)1[0,t](r)dr.

Then, for any integer n ≥ 1 and real numbers a1, . . . , an,

n∑
i, j=1

aia j min(ti, t j) =
n∑

i, j=1

aia j

∫ ∞

0
1[0,ti](r)1[0,t j](r)dr

=

∫ ∞

0

( n∑
i=1

ai1[0,ti](r)
)2

dr ≥ 0.

Therefore, by Kolmogorov’s extension theorem (Theorem A.1.1), there ex-
ists a Gaussian process with mean zero and covariance function min(s, t).

Moreover, for any s ≤ t, the increment Bt−Bs has the normal distribution
N(0, t − s). This implies that for any natural number k we have

E
(
(Bt − Bs)2k

)
=

(2k)!
2kk!

(t − s)k.

Therefore, by Kolmogorov’s continuity theorem (Theorem A.4.1), there
exists a version of B with Hölder-continuous trajectories of order γ for any
γ < (k − 1)/(2k) on any interval [0,T ]. This implies that the paths of this
version of the process B are γ-Hölder continuous on [0, T ] for any γ < 1/2
and T > 0.

(2) Brownian motion can also be constructed as a Fourier series with
random coefficients. Fix T > 0 and suppose that (en)n≥0 is an orthonormal
basis of the Hilbert space L2([0, T ]). Suppose that (Zn)n≥0 are independent
random variables with law N(0, 1). Then, the random series

∞∑
n=0

Zn

∫ t

0
en(r)dr (1.2)

converges in L2(Ω) to a mean-zero Gaussian process B = (Bt)t∈[0,T ] with
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covariance function (1.1). In fact, for any s, t ∈ [0, T ],

E
(( N∑

n=0

Zn

∫ t

0
en(r)dr

)( N∑
n=0

Zn

∫ s

0
en(r)dr

))
=

N∑
n=0

(∫ t

0
en(r)dr

)(∫ s

0
en(r)dr

)
=

N∑
n=0

〈
1[0,t], en

〉
L2([0,T ])

〈
1[0,s], en

〉
L2([0,T ]) ,

which converges as N → ∞ to〈
1[0,t], 1[0,s]

〉
L2([0,T ]) = min(s, t).

The convergence of the series (1.2) is uniform in [0,T ] almost surely; that
is, as N tends to infinity,

sup
0≤t≤T

∣∣∣∣∣ N∑
n=0

Zn

∫ t

0
en(r)dr − Bt

∣∣∣∣∣ a.s.−→ 0. (1.3)

The fact that the process B has continuous trajectories almost surely is a
consequence of (1.3). We refer to Itô and Nisio (1968) for a proof of (1.3).

Once we have constructed the Brownian motion on an interval [0,T ],
we can build a Brownian motion on R+ by considering a sequence of inde-
pendent Brownian motions B(n) on [0, T ], n ≥ 1, and setting

Bt = B(n−1)
T + B(n)

t−(n−1)T , (n − 1)T ≤ t ≤ nT,

with the convention B(0)
T = 0.

In particular, if we take a basis formed by the trigonometric functions,
en(t) = (1/

√
π) cos(nt/2) for n ≥ 1 and e0(t) = 1/

√
2π, on the interval

[0, 2π], we obtain the Paley–Wiener representation of Brownian motion:

Bt = Z0
t√
2π
+

2√
π

∞∑
n=1

Zn
sin(nt/2)

n
, t ∈ [0, 2π]. (1.4)

The proof of the construction of Brownian motion in this particular case
can be found in Bass (2011, Theorem 6.1).

(3) Brownian motion can also be regarded as the limit in distribution
of a symmetric random walk. Indeed, fix a time interval [0, T ]. Consider
n independent and identically distributed random variables ξ1, . . . , ξn with
mean zero and variance T/n. Define the partial sums

Rk = ξ1 + · · · + ξk, k = 1, . . . , n.
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By the central limit theorem the sequence Rn converges in distribution, as
n tends to infinity, to the normal distribution N(0, T ).

Consider the continuous stochastic process S n(t) defined by linear inter-
polation from the values

S n

(
kT
n

)
= Rk, k = 0, . . . , n.

Then, a functional version of the central limit theorem, known as the
Donsker invariance principle, says that the sequence of stochastic processes
S n(t) converges in law to Brownian motion on [0, T ]. This means that, for
any continuous and bounded function ϕ : C([0, T ]) → R, we have

E(ϕ(S n)) → E(ϕ(B)),

as n tends to infinity.

Basic properties of Brownian motion are (see Exercises 1.5–1.8):

1. Self-similarity For any a > 0, the process (a−1/2Bat)t≥0 is a Brownian
motion.

2. For any h > 0, the process (Bt+h − Bh)t≥0 is a Brownian motion.
3. The process (−Bt)t≥0 is a Brownian motion.
4. Almost surely limt→∞ Bt/t = 0, and the process

Xt =

⎧⎪⎪⎨⎪⎪⎩ tB1/t if t > 0,
0 if t = 0,

is a Brownian motion.

Remark 1.2.3 As we have seen, the trajectories of Brownian motion on
an interval [0, T ] are Hölder continuous of order γ for any γ < 1

2 . However,
the trajectories are not Hölder continuous of order 1

2 . More precisely, the
following property holds (see Exercise 1.9):

P
(

sup
s,t∈[0,1]

|Bt − Bs|√|t − s| = +∞
)
= 1.

The exact modulus of continuity of Brownian motion was obtained by
Lévy (1937):

lim sup
δ↓0

sup
s,t∈[0,1],|t−s|<δ

|Bt − Bs|√
2|t − s| log |t − s| = 1, a.s.

Lévy’s proof can be found in Mörters and Peres (2010, Theorem 1.14). In
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contrast, the behavior at a single point is given by the law of the iterated
logarithm, due to Khinchin (1933):

lim sup
t↓s

|Bt − Bs|√
2|t − s| log log |t − s| = 1, a.s.

for any s ≥ 0. See also Mörters and Peres (2010, Corollary 5.3) and Bass
(2011, Theorem 7.2).

Brownian motion satisfies E(|Bt − Bs|2) = t − s for all s ≤ t. This means
that when t − s is small, Bt − Bs is of order

√
t − s and (Bt − Bs)2 is of

order t − s. Moreover, the quadratic variation of a Brownian motion on
[0, t] equals t in L2(Ω), as is proved in the following proposition.

Proposition 1.2.4 Fix a time interval [0, t] and consider the following
subdivision π of this interval:

0 = t0 < t1 < · · · < tn = t.

The norm of the subdivision π is defined as |π| = max0≤ j≤n−1(t j+1 − t j). The
following convergence holds in L2(Ω):

lim
|π|→0

n−1∑
j=0

(Bt j+1 − Bt j )
2 = t. (1.5)

Proof Set ξ j = (Bt j+1 − Bt j )
2 − (t j+1 − t j). The random variables ξ j are

independent and centered. Thus,

E
(( n−1∑

j=0

(Bt j+1 − Bt j )
2 − t

)2)
= E

(( n−1∑
j=0

ξ j

)2)
=

n−1∑
j=0

E
(
ξ2

j

)
=

n−1∑
j=0

(
3(t j+1 − t j)2 − 2(t j+1 − t j)2 + (t j+1 − t j)2

)

= 2
n−1∑
j=0

(t j+1 − t j)2 ≤ 2t|π| |π|→0−→ 0,

which proves the result. �

As a consequence, we have the following result.

Proposition 1.2.5 The total variation of Brownian motion on an interval
[0, t], defined by

V = sup
π

n−1∑
j=0

|Bt j+1 − Bt j |,
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where π = {0 = t0 < t1 < · · · < tn}, is infinite with probability one.

Proof Using the continuity of the trajectories of Brownian motion, we
have

n−1∑
j=1

(Btj+1 − Bt j )
2 ≤ sup

j
|Bt j+1 − Bt j |

( n−1∑
j=0

|Bt j+1 − Bt j |
)

≤ V sup
j
|Bt j+1 − Bt j |

|π|→0−→ 0

if V < ∞, which contradicts the fact that
∑n−1

j=0(Bt j+1 − Bt j )
2 converges in

mean square to t as |π| → 0. Therefore, P(V < ∞) = 0. �

Finally, the trajectories of B are almost surely nowhere differentiable.
The first proof of this fact is due to Paley et al. (1933). Another proof,
by Dvoretzky et al. (1961), is given in Durrett (2010, Theorem 8.1.6) and
Mörters and Peres (2010, Theorem 1.27).

1.3 Wiener Integral

We next define the integral of square integrable functions with respect to
Brownian motion, known as the Wiener integral.

We consider the set E0 of step functions

ϕt =

n−1∑
j=0

aj1(t j,t j+1](t), t ≥ 0, (1.6)

where n ≥ 1 is an integer, a0, . . . , an−1 ∈ R, and 0 = t0 < · · · < tn. The
Wiener integral of a step function ϕ ∈ E0 of the form (1.6) is defined by∫ ∞

0
ϕtdBt =

n−1∑
j=0

aj(Bt j+1 − Bt j ).

The mapping ϕ → ∫ ∞
0
ϕtdBt from E0 ⊂ L2(R+) to L2(Ω) is linear and

isometric:

E
((∫ ∞

0
ϕtdBt

)2)
=

n−1∑
j=0

a2
j(t j+1 − t j) =

∫ ∞

0
ϕ2

t dt = ‖ϕ‖2
L2(R+).

The space E0 is a dense subspace of L2(R+). Therefore, the mapping

ϕ→
∫ ∞

0
ϕtdBt
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can be extended to a linear isometry between L2(R+) and the Gaussian
subspace of L2(Ω) spanned by the Brownian motion. The random variable∫ ∞

0
ϕtdBt is called the Wiener integral of ϕ ∈ L2(R+) and is denoted by

B(ϕ). Observe that it is a Gaussian random variable with mean zero and
variance ‖ϕ‖2

L2(R+).
The Wiener integral allows us to view Brownian motion as the cumula-

tive function of a white noise.

Definition 1.3.1 Let D be a Borel subset of Rm. A white noise on D is a
centered Gaussian family of random variables

{W(A), A ∈ B(Rm), A ⊂ D, �(A) < ∞},
where � denotes the Lebesgue measure, such that

E(W(A)W(B)) = �(A ∩ B).

The mapping 1A → W(A) can be extended to a linear isometry from
L2(D) to the Gaussian space spanned by W, denoted by

ϕ→
∫

D
ϕ(x)W(dx).

The Brownian motion B defines a white noise on R+ by setting

W(A) =
∫ ∞

0
1A(t)dBt, A ∈ B(R+), �(A) < ∞.

Conversely, Brownian motion can be defined from white noise. In fact, if
W is a white noise on R+, the process

Wt = W([0, t]), t ≥ 0,

is a Brownian motion.
The two-parameter extension of Brownian motion is the Brownian sheet,

which is defined as a real-valued two-parameter Gaussian process (Bt)t∈R2
+

with mean zero and covariance function

Γ(s, t) = E(BsBt) = min(s1, t1) min(s2, t2), s, t ∈ R2
+.

As above, the Brownian sheet can be obtained from white noise. In fact, if
W is a white noise on R2

+, the process

Wt = W([0, t1] × [0, t2]), t ∈ R2
+,

is a Brownian sheet.
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1.4 Wiener Space

Brownian motion can be defined in the canonical probability space
(Ω,F , P) known as the Wiener space. More precisely:

• Ω is the space of continuous functions ω : R+ → R vanishing at the
origin.

• F is the Borel σ-field B(Ω) for the topology corresponding to uniform
convergence on compact sets. One can easily show (see Exercise 1.11)
that F coincides with the σ-field generated by the collection of cylinder
sets

C = {ω ∈ Ω : ω(t1) ∈ A1, . . . , ω(tk) ∈ Ak} , (1.7)

for any integer k ≥ 1, Borel sets A1, . . . , Ak in R, and 0 ≤ t1 < · · · < tk.
• P is the Wiener measure. That is, P is defined on a cylinder set of the

form (1.7) by

P(C) =
∫

A1×···×Ak

pt1 (x1)pt2−t1 (x2 − x1) · · · ptk−tk−1 (xk − xk−1) dx1 · · · dxk,

(1.8)
where pt(x) denotes the Gaussian density

pt(x) = (2πt)−1/2e−x2/(2t), x ∈ R, t > 0.

The mapping P defined by (1.8) on cylinder sets can be uniquely ex-
tended to a probability measure on F . This fact can be proved as a conse-
quence of the existence of Brownian motion on R+. Finally, the canonical
stochastic process defined as Bt(ω) = ω(t), ω ∈ Ω, t ≥ 0, is a Brownian
motion.

The canonical probability space (Ω,F , P) of a d-dimensional Brownian
motion can be defined in a similar way.

Further into the text, (Ω,F , P) will denote a general probability space,
and only in some special cases will we restrict our study to Wiener space.

1.5 Brownian Filtration

Consider a Brownian motion B = (Bt)t≥0 defined on a probability space
(Ω,F , P). For any time t ≥ 0, we define the σ-field Ft generated by the
random variables (Bs)0≤s≤t and the events in F of probability zero. That is,
Ft is the smallest σ-field that contains the sets of the form

{Bs ∈ A} ∪ N,
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where 0 ≤ s ≤ t, A is a Borel subset of R, and N ∈ F is such that P(N) = 0.
Notice that Fs ⊂ Ft if s ≤ t; that is, (Ft)t≥0 is a nondecreasing family of
σ-fields. We say that (Ft)t≥0 is the natural filtration of Brownian motion on
the probability space (Ω,F , P).

Inclusion of the events of probability zero in each σ-field Ft has the
following important consequences:

1. Any version of an adapted process is also adapted.
2. The family of σ-fields is right-continuous; that is, for all t ≥ 0, ∩s>tFs =

Ft.

Property 2 is a consequence of Blumenthal’s 0–1 law (see Durrett, 2010,
Theorem 8.2.3).

The natural filtration (Ft)t≥0 of a d-dimensional Brownian motion can be
defined in a similar way.

1.6 Markov Property

Consider a Brownian motion B = (Bt)t≥0. The next theorem shows that
Brownian motion is an Ft-Markov process with respect to its natural filtra-
tion (Ft)t≥0 (see Definition A.5.1).

Theorem 1.6.1 For any measurable and bounded (or nonnegative) func-
tion f : R→ R, s ≥ 0 and t > 0, we have

E( f (Bs+t)|Fs) = (Pt f )(Bs),

where

(Pt f )(x) =
∫
R

f (y)pt(x − y)dy.

Proof We have

E( f (Bs+t)|Fs) = E( f (Bs+t − Bs + Bs)|Fs).

Since Bs+t − Bs is independent of Fs, we obtain

E( f (Bs+t)|Fs) = E( f (Bs+t − Bs + x))|x=Bs

=

∫
R

f (y + Bs)
1√
2πt

e−|y|
2/(2t)dy

=

∫
R

f (y)
1√
2πt

e−|Bs−y|2/(2t)dy = (Pt f )(Bs),

which concludes the proof. �
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The family of operators (Pt)t≥0 satisfies the semigroup property Pt ◦Ps =

Pt+s and P0 = Id.
We can also show that a d-dimensional Brownian motion is anFt-Markov

process with semigroup

(Pt f )(x) =
∫
Rd

f (y)(2πt)−d/2 exp
(
−|x − y|2

2t

)
,

where f : Rd → R is a measurable and bounded (or nonnegative) function.
The transition density pt(x − y) = (2πt)−d/2 exp(−|x − y|2/(2t)) satisfies the
heat equation

∂p
∂t
=

1
2
Δp, t > 0,

with initial condition p0(x − y) = δx(y).

1.7 Martingales Associated with Brownian Motion

Let B = (Bt)t≥0 be a Brownian motion. The next result gives several funda-
mental martingales associated with Brownian motion.

Theorem 1.7.1 The processes (Bt)t≥0, (B2
t −t)t≥0, and (exp(aBt−a2t/2))t≥0,

where a ∈ R, are Ft-martingales.

Proof Brownian motion is a martingale with respect to its natural filtra-
tion because for s < t

E(Bt − Bs|Fs) = E(Bt − Bs) = 0.

For B2
t − t, we can write for s < t, using the properties of conditional

expectations,

E(B2
t |Fs) = E((Bt − Bs + Bs)2|Fs)

= E((Bt − Bs)2|Fs) + 2E((Bt − Bs)Bs|Fs) + E(B2
s |Fs)

= E(Bt − Bs)2 + 2BsE((Bt − Bs)|Fs) + B2
s

= t − s + B2
s .

Finally, for exp(aBt − a2t/2), we have

E(exp(aBt − a2t/2)|Fs) = eaBs E(exp(a(Bt − Bs) − a2t/2)|Fs)

= eaBs E(exp(a(Bt − Bs) − a2t/2))

= eaBs exp(a2(t − s)/2 − a2t/2)

= exp(aBs − a2s/2).

This concludes the proof of the theorem. �
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As an application of Theorem 1.7.1, we will study properties of the ar-
rival time of Brownian motion at some fixed level a ∈ R. This is called the
Brownian hitting time, defined as the stopping time

τa = inf{t ≥ 0 : Bt = a}.
The next proposition provides an explicit expression for the Laplace trans-
form of the Brownian hitting time.

Proposition 1.7.2 Fix a > 0. Then, for all α > 0,

E(exp(−ατa)) = e−
√

2αa. (1.9)

Proof By Theorem 1.7.1, for any λ > 0, the process Mt = eλBt−λ2t/2 is a
martingale such that

E(Mt) = E(M0) = 1.

By the optional stopping theorem (Theorem A.7.4), for all N ≥ 1,

E(Mτa∧N) = 1.

Note that Mτa∧N = exp(λBτa∧N − λ2(τa ∧ N)/2) ≤ eaλ. Moreover,

lim
N→∞ Mτa∧N = Mτa if τa < ∞,
lim

N→∞ Mτa∧N = 0 if τa = ∞,

and the dominated convergence theorem implies that

E(1{τa<∞}Mτa ) = 1.

That is,

E
(
1{τa<∞} exp

(
−λ

2τa

2

))
= e−λa.

Letting λ ↓ 0 we obtain

P(τa < ∞) = 1, (1.10)

and, consequently,

E
(
exp

(
−λ

2τa

2

))
= e−λa.

With the change of variable λ2/2 = α, we get the desired result. �
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From expression (1.9), inverting the Laplace transform, we can compute
the distribution function of the random variable τa:

P(τa ≤ t) =
∫ t

0

ae−a2/(2s)

√
2πs3

ds. (1.11)

Furthermore, computing the derivative of (1.9) with respect to the variable
α yields

E(τa exp(−ατa)) =
ae−

√
2αa

√
2α
,

and letting α ↓ 0 we obtain E(τa) = +∞.
Proposition 1.7.3 If a < 0 < b then

P(τa < τb) =
b

b − a
.

Proof By (1.10) we have that τb < ∞ almost surely, and taking into ac-
count that (−Bt)t≥0 is also a Brownian motion, we deduce that τa < ∞
almost surely. By the optional stopping theorem (Theorem A.7.4), we have

E(Bt∧τa∧τb ) = E(B0) = 0.

Since, for all t ≥ 0,

a ≤ Bt∧τa∧τb ≤ b,

letting t → ∞ and using the dominated convergence theorem, it follows
that

E(Bτa∧τb ) = 0.

This implies that

0 = aP(τa < τb) + b(1 − P(τa < τb)),

which proves the desired formula. �

Proposition 1.7.4 Let T = inf{t ≥ 0 : Bt � (a, b)}, where a < 0 < b. Then

E(T ) = −ab.

Proof Because B2
t − t is a martingale, we get, by the optional stopping

theorem (Theorem A.7.4),

E(B2
T∧t) = E(T ∧ t).

Therefore, from the dominated convergence theorem and Proposition 1.7.3,

E(T ) = lim
t→∞ E(B2

T∧t) = E(B2
T ) = −ab,
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which concludes the proof. �

1.8 Strong Markov Property

Let B = (Bt)t≥0 be a Brownian motion. The next result is the strong Markov
property of Brownian motion, which was first proved independently by
Hunt (1956) and Dynkin and Yushkevich (1956).

Theorem 1.8.1 Let T be a finite stopping time with respect to the natural
filtration of Brownian motion (Ft)t≥0. Then the process

BT+t − BT , t ≥ 0,

is a Brownian motion that is independent of FT .

Proof Consider the process B̃ = (B̃t)t≥0 defined by B̃t = BT+t − BT , and
suppose first that T is bounded. Let λ ∈ R and 0 ≤ s ≤ t. Applying the
optional stopping theorem to the complex-valued martingale

exp
(
iλB̃t +

λ2t
2

)
yields

E
(

exp
(
iλBT+t +

λ2

2
(T + t)

)∣∣∣∣∣FT+s

)
= exp

(
iλBT+s +

λ2

2
(T + s)

)
.

Therefore,

E
(

exp
(
iλ(BT+t − BT+s)

)∣∣∣∣∣FT+s

)
= exp

(
− λ

2

2
(t − s)

)
.

This implies that the increments of B̃ are independent, stationary, and nor-
mally distributed with mean zero and variance equal to the length of the
increment. Moreover the process B̃ is independent of FT , which concludes
the proof when T is bounded. If T is not bounded, we can consider the
stopping time T ∧ N and let N → ∞. �

As a consequence, for any measurable and bounded (or nonnegative)
function f : R→ R and any finite stopping time T for the filtration (Ft)t≥0,
we have

E( f (BT+t)|FT ) = (Pt f )(BT ),

where Pt is the semigroup of operators associated with Brownian motion.
As an application of the strong Markov property, we have the following

reflection principle, which was first formulated by Lévy (1939).
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Theorem 1.8.2 Let Mt = sup0≤s≤t Bs. Then, for all a > 0,

P(Mt ≥ a) = 2P(Bt > a).

Proof Consider the reflected process

B̂t = Bt1{t≤τa} + (2a − Bt)1{t>τa}, t ≥ 0.

Recall that τa < ∞ a.s. by (1.10). Then, by the strong Markov property
(Theorem 1.8.1), both the processes (Bt+τa − a)t≥0 and (−Bt+τa + a)t≥0 are
Brownian motions that are independent of Bτa . Pasting the first process to
the end point of (Bt)t∈[0,τa], and doing the same with the second process,
yields two processes with the same distribution. The first is just (Bt)t≥0 and
the second is B̂ = (B̂t)t≥0. Thus, we conclude that B̂ is also a Brownian
motion. Therefore,

P(Mt ≥ a) = P(Bt > a) + P(Mt ≥ a, Bt ≤ a)

= P(Bt > a) + P(B̂t ≥ a) = 2P(Bt > a),

which concludes the proof. �

Corollary 1.8.3 For any a > 0, the random variable Ma = supt∈[0,a] Bt

has density

p(x) =
2√
2πa

e−x2/(2a)1[0,∞)(x).

Using the reflection principle (Theorem 1.8.2), we obtain the following
property.

Lemma 1.8.4 With probability one, Brownian motion attains its maxi-
mum on [0, 1] at a unique point.

Proof It suffices to show that the set

G =
{
ω : sup

t∈[0,1]
Bt = Bt1 = Bt2 for some t1 � t2

}
has probability zero. For each n ≥ 0, we denote by In the set of dyadic
intervals of the form [( j − 1)2−n, j2−n], with 1 ≤ j ≤ 2n. The set G is equal
to the countable union⋃

n≥1

⋃
I1,I2∈In,I1∩I2=∅

{
sup
t∈I1

Bt = sup
t∈I2

Bt

}
.

Therefore, it suffices to check that, for each n ≥ 1 and for any pair of
disjoint intervals I1, I2,

P
(
sup
t∈I1

Bt = sup
t∈I2

Bt

)
= 0. (1.12)
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Property (1.12) is a consequence of the fact that, for any rectangle [a, b] ⊂
[0, 1], the law of the random variable supt∈[a,b] Bt conditioned on Fa is con-
tinuous. To establish this property, it suffices to write

sup
t∈[a,b]

Bt = sup
t∈[a,b]

(Bt − Ba) + Ba.

Then, conditioning on Fa, Ba is a constant and supt∈[a,b](Bt − Ba) has the
same law as sup0≤t≤b−a Bt, which has the density given in Corollary 1.8.3.

�

Exercises

1.1 Let Z be a random variable with law N(0, 1). Consider the process Xt =
√

tZ,
t ≥ 0. Is (Xt)t≥0 a Brownian motion? Which properties of Definition 1.2.1
hold and which don’t?

1.2 Let B be a d-dimensional Brownian motion. Consider an orthogonal d × d
matrix U (that is, UUT = Id, where Id denotes the identity matrix of order
d). Show that the process

Xt = UBt, t ≥ 0,

is a d-dimensional Brownian motion.
1.3 Compute the mean and covariance function of the following stochastic pro-

cesses related to Brownian motion.

(a) Brownian bridge: Xt = Bt − tB1, t ∈ [0, 1].
(b) Brownian motion with drift: Xt = σBt + μt, t ≥ 0, where σ > 0 and
μ ∈ R are constants.

(c) Geometric Brownian motion: Xt = eσBt+μt, t ≥ 0, where σ > 0 and
μ ∈ R are constants.

Which of the above are Gaussian processes?
1.4 Define Xt =

∫ t
0 Bsds, where B = (Bt)t≥0 is a Brownian motion. Show that Xt

is a Gaussian random variable. Compute its mean and its variance.
1.5 Let B be a Brownian motion. Show that, for any a > 0, the process

(a−1/2Bat)t≥0 is a Brownian motion.
1.6 Let B be a Brownian motion. Show that, for any h > 0, the process (Bt+h −

Bh)t≥0 is a Brownian motion.
1.7 Let B be a Brownian motion. Show that the process (−Bt)t≥0 is a Brownian

motion.
1.8 Let B be a Brownian motion. Show that limt→∞ Bt/t = 0 almost surely and

that the process

Xt =

⎧⎪⎪⎨⎪⎪⎩ tB1/t if t > 0,

0 if t = 0,
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is a Brownian motion.
1.9 Let B be a Brownian motion. Show that

P
⎛⎜⎜⎜⎜⎝ sup

s,t∈[0,1]

|Bt − Bs|√|t − s| = +∞
⎞⎟⎟⎟⎟⎠ = 1.

1.10 Let B be a Brownian motion. Using the Borel–Cantelli lemma, show that if
(πn)n≥1, πn = {0 = tn

0 < · · · < tn
kn
= t}, is a sequence of partitions of [0, t]

such that
∑

n |πn| < ∞, then
∑kn−1

j=0 (Btn
j+1
− Btn

j
)2 converges almost surely to t.

1.11 Let (Ω,F , P) be the Wiener space. Show that F coincides with the σ-field
generated by the collection of cylinder sets

{ω ∈ Ω : ω(t1) ∈ A1, . . . , ω(tk) ∈ Ak}
where k ≥ 1 is an integer, A1, . . . , Ak ∈ B(R), and 0 ≤ t1 < · · · < tk.
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Stochastic Calculus

The first aim of this chapter is to construct Itô’s stochastic integrals of the
form

∫ ∞
0

utdBt, where B = (Bt)t≥0 is a Brownian motion and u = (ut)t≥0 is
an adapted process. We then prove Itô’s formula, which is a change of vari-
ables formula for Itô’s stochastic integrals and plays a crucial role in the
applications of stochastic calculus. We then discuss some consequences of
Itô’s formula, including Tanaka’s formula, the Stratonovich integral, and
the integral representation theorem for square integrable random variables.
Finally, we present Girsanov’s theorem, which provides a change of prob-
ability under which a Brownian motion with drift becomes a Brownian
motion.

2.1 Stochastic Integrals

The stochastic integral of adapted processes with respect to Brownian mo-
tion originates in Itô (1944). For complete expositions of this topic we refer
to Ikeda and Watanabe (1989), Karatzas and Shreve (1998), and Baudoin
(2014).

Recall that B = (Bt)t≥0 is a Brownian motion defined on a probability
space (Ω,F , P) equipped with its natural filtration (Ft)t≥0. We proved in
Chapter 1 that the trajectories of Brownian motion have infinite variation
on any finite interval. So, in general, we cannot define the integral∫ T

0
ut(ω)dBt(ω)

as a pathwise integral. However, we will construct the integral
∫ ∞

0
utdBt by

means of a global probabilistic approach for a class of processes satisfying
some adaptability and integrability conditions specified below.

Definition 2.1.1 We say that a stochastic process u = (ut)t≥0 is progres-

18
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sively measurable if, for any t ≥ 0, the restriction of u to Ω × [0, t] is
Ft × B([0, t])-measurable.

Remark 2.1.2 If u is adapted and measurable (i.e., the mapping (ω, s) −→
us(ω) is measurable on the product spaceΩ×R+ with respect to the product
σ-field F ×B(R+)) then there is a version of u which is progressively mea-
surable (see Meyer, 1984, Theorem 4.6). Progressive measurability guar-
antees that random variables of the form

∫ t

0
usds are Ft-measurable.

Let P be the σ-field of sets A ⊂ Ω × R+ such that 1A is progressively
measurable. We denote by L2(P) the Hilbert space L2(Ω × R+,P, P × �),
where � is the Lebesgue measure, equipped with the norm

‖u‖2
L2(P) = E

( ∫ ∞

0
u2

sds
)
=

∫ ∞

0
E(u2

s)ds,

where the last equality follows from Fubini’s theorem.
In this section we define the stochastic integral

∫ ∞
0

utdBt of a process u
in L2(P) as the limit in L2(Ω) of integrals of simple processes.

Definition 2.1.3 A process u = (ut)t≥0 is called a simple process if it is of
the form

ut =

n−1∑
j=0

φ j1(t j,t j+1](t), (2.1)

where 0 ≤ t0 < t1 < · · · < tn, and the φ j are Ft j -measurable random vari-
ables such that E(φ2

j) < ∞. We denote by E the space of simple processes.

We define the stochastic integral of a process u ∈ E of the form (2.1) as

I(u) :=
∫ ∞

0
utdBt =

n−1∑
j=0

φ j(Btj+1 − Bt j ).

The stochastic integral defined on the space E of simple processes has the
following three properties.

1 Linearity

For any a, b ∈ R and simple processes u, v ∈ E,∫ ∞

0
(aut + bvt) dBt = a

∫ ∞

0
utdBt + b

∫ ∞

0
vtdBt.
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2 Zero Mean

For any u ∈ E,

E
( ∫ ∞

0
utdBt

)
= 0.

In fact, assuming that u is given by (2.1), and taking into account that the
random variables φ j and Bt j+1 − Bt j are independent, we obtain

E
( ∫ ∞

0
utdBt

)
=

n−1∑
j=0

E(φ j(Bt j+1 − Bt j )) =
n−1∑
j=0

E(φ j)E(Bt j+1 − Bt j ) = 0.

3 Isometry Property

For any u ∈ E,

E
(( ∫ ∞

0
utdBt

)2)
= E

( ∫ ∞

0
u2

t dt
)
.

Proof Assume that u is given by (2.1). Set ΔBj = Bt j+1 − Bt j . Then

E
(
φiφ jΔBiΔBj

)
=

⎧⎪⎪⎨⎪⎪⎩ 0 if i � j,
E(φ2

j)(t j+1 − t j) if i = j,

because if i < j the random variables φiφ jΔBi and ΔBj are independent,
and if i = j the random variables φ2

i and (ΔBi)2 are independent. So, we
obtain

E
(( ∫ ∞

0
utdBt

)2)
=

n−1∑
i, j=0

E
(
φiφ jΔBiΔBj

)
=

n−1∑
i=0

E(φ2
i )(ti+1 − ti)

= E
( ∫ ∞

0
u2

t dt
)
,

which concludes the proof of the isometry property. �

The extension of the stochastic integral to the class L2(P) is based on the
following density result.

Proposition 2.1.4 The space E of simple processes is dense in L2(P).

Proof We first establish that any u ∈ L2(P) can be approximated by pro-
cesses which are continuous in L2(Ω). Then our result will follow if we
show that simple processes are dense in the space of processes which are
continuous in L2(Ω).
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If u belongs to L2(P), we define

u(n)
t = n

∫ t

(t−1/n)∨0
usds.

The processes u(n)
t are continuous in L2(Ω) and satisfy

lim
n→∞ E

( ∫ ∞

0
|ut − u(n)

t |2dt
)
= 0.

Indeed, for each ω we have∫ ∞

0
|ut(ω) − u(n)

t (ω)|2dt
n→∞−→ 0,

and we can apply the dominated convergence theorem because∫ ∞

0
|u(n)

t (ω)|2dt ≤
∫ ∞

0
|ut(ω)|2dt.

Suppose that u ∈ L2(P) is continuous in L2(Ω). In this case, we can
choose approximating processes u(n,N)

t ∈ E defined by

u(n,N)
t =

n−1∑
j=0

ut j 1(t j,t j+1](t),

where t j = jN/n. The continuity in L2(Ω) of u implies that

E
( ∫ ∞

0

∣∣∣ut − u(n,N)
t

∣∣∣2 dt
)
≤ E

( ∫ ∞

N
u2

t dt
)
+ N sup

|t−s|≤N/n
E(|ut − us|2).

This converges to zero if we first let n → ∞ and then N → ∞. �

Proposition 2.1.5 The stochastic integral can be extended to a linear
isometry

I : L2(P) → L2(Ω).

Proof The stochastic integral of a process u in L2(P) is defined as the
following limit in L2(Ω):

I(u) = lim
n→∞

∫ ∞

0
u(n)

t dBt, (2.2)

where u(n) is a sequence of simple processes which converges to u in the
norm of L2(P). Notice that the limit (2.2) exists because the sequence of
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random variables
∫ ∞

0
u(n)

t dBt is Cauchy in L2(Ω), owing to the isometry
property

E
(( ∫ ∞

0
u(n)

t dBt −
∫ ∞

0
u(m)

t dBt

)2)
= E

( ∫ ∞

0
(u(n)

t − u(m)
t )2dt

)
≤ 2E

( ∫ ∞

0
(u(n)

t − ut)2dt
)
+ 2E

( ∫ ∞

0
(ut − u(m)

t )2dt
)

n,m→∞−→ 0.

Furthermore, it is easy to show that the limit (2.2) does not depend on the
approximating sequence u(n). �

The stochastic integral has the following properties: for any u, v ∈ L2(P),

E(I(u)) = 0 and E(I(u)I(v)) = E
( ∫ ∞

0
usvsds

)
.

For any T > 0, we set∫ T

0
usdBs =

∫ ∞

0
us1[0,T ](s)dBs, (2.3)

which is the indefinite integral of u with respect to B. Notice that in order
to define

∫ T

0
usdBs, we only need that u ∈ L2

T (P), where

L2
T (P) := L2(Ω × [0, T ],P|Ω×[0,T ], P × �).

Example 2.1.6 For any T > 0, we have∫ T

0
BtdBt =

1
2 B2

T − 1
2 T.

Indeed, the process B being continuous in L2(Ω), we can choose as approx-
imating sequence

u(n)
t =

n−1∑
j=0

Bt j 1(t j,t j+1](t),

where t j = jT/n, and we obtain, using Proposition 1.2.4,∫ T

0
BtdBt = lim

n→∞

n−1∑
j=0

Bt j (Bt j+1 − Bt j )

= 1
2 lim

n→∞

n−1∑
j=0

(B2
t j+1

− B2
t j
) − 1

2 lim
n→∞

n−1∑
j=0

(Bt j+1 − Bt j )
2

= 1
2 B2

T − 1
2 T,

where the convergence holds in L2(Ω).



2.2 Indefinite Stochastic Integrals 23

2.2 Indefinite Stochastic Integrals

We denote by L2
∞(P) the set of progressively measurable processes such

that E
(∫ t

0
u2

sds
)
< ∞ for each t > 0. For any process u ∈ L2

∞(P), we can
define the indefinite integral process

{ ∫ t

0
usdBs, t ≥ 0

}
.

We now give six properties of indefinite integrals.

1 Additivity

For any a ≤ b ≤ c, we have∫ b

a
usdBs +

∫ c

b
usdBs =

∫ c

a
usdBs.

2 Factorization

If a < b, and F is a bounded and Fa-measurable random variable then∫ b

a
FusdBs = F

∫ b

a
usdBs.

3 Martingale Property

Proposition 2.2.1 Let u ∈ L2
∞(P). Then, the indefinite stochastic integral

Mt =

∫ t

0
usdBs, t ≥ 0,

is a square integrable martingale with respect to the filtration (Ft)t≥0 and
admits a continuous version.

Proof We first prove the martingale property. Suppose that u ∈ E is a
simple process of the form

ut =

n−1∑
j=0

φ j1(t j,t j+1](t).
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Then, for any s ≤ t,

E
( ∫ t

0
uvdBv

∣∣∣Fs

)
=

n−1∑
j=0

E
(
φ j(Bt j+1∧t − Bt j∧t)

∣∣∣Fs

)

=

n−1∑
j=0

E
(
E

(
φ j(Bt j+1∧t − Bt j∧t)

∣∣∣Ft j∨s
)∣∣∣Fs

)

=

n−1∑
j=0

E
(
φ jE

(
Bt j+1∧t − Btj∧t|Ft j∨s

)∣∣∣Fs

)

=

n−1∑
j=0

φ j(Bt j+1∧s − Bt j∧s) =
∫ s

0
uvdBv.

So, Mt =
∫ t

0
usdBs is an Ft-martingale if u ∈ E.

Fix T > 0. In the general case, let u(n) be a sequence of simple processes
that converges to u in L2

T (P). Then, for any t ∈ [0, T ],∫ t

0
u(n)

s dBs
L2(Ω)−→

∫ t

0
usdBs.

Taking into account that the above convergence in L2(Ω) implies the con-
vergence in L2(Ω) of the conditional expectations, we deduce that the pro-
cess

(∫ t

0
usdBs

)
t∈[0,T ]

is a martingale. This holds for any T > 0, which im-
plies that the indefinite integral process is a martingale on R+.

Let us prove that the indefinite integral has a continuous version. Let u ∈
L2
∞(P) and fix T > 0. Consider a sequence of simple processes u(n) which

converges to u in L2
T (P). By the continuity of the paths of Brownian motion,

the stochastic integral M(n)
t =

∫ t

0
u(n)

s dBs has continuous trajectories. Then,
taking into account that M(n) is a martingale, Doob’s maximal inequality
(Theorem A.7.5) yields, for any λ > 0,

P
(

sup
0≤t≤T

|M(n)
t − M(m)

t | > λ
)
≤ 1
λ2 E

(
|M(n)

T − M(m)
T |2

)
=

1
λ2 E

( ∫ T

0
|u(n)

t − u(m)
t |2dt

)
n,m→∞−→ 0.

We can choose an increasing sequence of natural numbers nk, k = 1, 2, . . .,
such that

P
(

sup
0≤t≤T

|M(nk+1)
t − M(nk)

t | > 2−k

)
≤ 2−k.
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The events Ak :=
{
sup0≤t≤T |M(nk+1)

t − M(nk)
t | > 2−k

}
verify that

∞∑
k=1

P(Ak) < ∞.

Hence, the Borel–Cantelli lemma implies that P(lim supk→∞ Ak) = 0. Set
N = lim supk→∞ Ak. Then, for any ω � N, there exists k1(ω) such that, for
all k ≥ k1(ω),

sup
0≤t≤T

|M(nk+1)
t (ω) − M(nk)

t (ω)| ≤ 2−k.

As a consequence, if ω � N, the sequence M(nk)
t (ω) is uniformly convergent

on [0, T ] to a continuous function Jt(ω). Moreover, we know that, for any
t ∈ [0, T ], M(nk)

t converges in L2(Ω) to
∫ t

0
usdBs. So Jt(ω) =

∫ t

0
usdBs almost

surely, for all t ∈ [0, T ]. Since T > 0 is arbitrary, this implies the existence
of a continuous version for (Mt)t≥0. �

4 Maximal Inequalities

For any T, λ > 0, and u ∈ L2
∞(P),

P
(

sup
t∈[0,T ]

|Mt| > λ
)
≤ 1
λ2 E

(∫ T

0
u2

t dt
)

(2.4)

and

E
(

sup
t∈[0,T ]

|Mt|2
)
≤ 4E

( ∫ T

0
u2

t dt
)
. (2.5)

These inequalities are a direct consequence of Proposition 2.2.1 and Doob’s
maximal inequalities (Theorem A.7.5). We remark that if u belongs to
L2(P) then these inequalities also hold if T is replaced by ∞.

5 Quadratic Variation of the Integral Process

Proposition 2.2.2 Let u ∈ L2
∞(P). Consider the following subdivision of

the interval [0, t]:

π = {0 = t0 < t1 < · · · < tn = t}.
Then, as |π| → 0,

S 2
π(u) :=

n−1∑
j=0

(∫ t j+1

t j

usdBs

)2 L1(Ω)−→
∫ t

0
u2

sds. (2.6)

This proposition implies that the quadratic variation of the martingale
Mt equals

∫ t

0
u2

sds (see Theorem A.7.2).
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Proof of Proposition 2.2.2 As a consequence of the quadratic variation
property of Brownian motion (see Proposition 1.2.4), it is easy to see that
(2.6) holds when u ∈ E (see Exercise 2.2). Let u ∈ L2

∞(P). Fix ε > 0 and
let v ∈ E such that

E
(∫ t

0
(us − vs)2ds

)
< ε. (2.7)

Then, we write

E
(∣∣∣∣∣S 2
π(u) −

∫ t

0
u2

sds
∣∣∣∣∣) ≤E

(∣∣∣S 2
π(u) − S 2

π(v)
∣∣∣) + E

(∣∣∣∣∣S 2
π(v) −

∫ t

0
v2

sds
∣∣∣∣∣)

+ E
(∣∣∣∣∣ ∫ t

0
(u2

s − v2
s)ds

∣∣∣∣∣).
As (2.6) holds for v ∈ E, the second term converges to 0 as |π| → 0.
Moreover, since u2

s − v2
s = (us + vs)(us − vs), using the Cauchy–Schwarz

inequality and (2.7), we obtain

E
(∣∣∣∣∣ ∫ t

0
(u2

s − v2
s)ds

∣∣∣∣∣) ≤ √
ε
(
E

( ∫ t

0
(us + vs)2ds

))1/2

≤ √
ε
((

E
( ∫ t

0
u2

sds
))1/2

+
√
ε
)
.

Similarly,

E
(∣∣∣S 2
π(u) − S 2

π(v)
∣∣∣) ≤ √

ε
((

E
( ∫ t

0
u2

sds
))1/2

+
√
ε
)
.

Therefore,

lim sup
|π|→0

E
(∣∣∣∣∣S 2
π(u) −

∫ t

0
u2

sds
∣∣∣∣∣) ≤ 2

√
ε
((

E
( ∫ t

0
u2

sds
))1/2

+
√
ε
)
.

Taking into account that ε > 0 is arbitrary, we get the desired convergence.
�

As a consequence of this proposition and the Burkholder–Davis–Gundy
inequality (Theorem A.7.6), we obtain the following.

Theorem 2.2.3 Let u ∈ L2
∞(P). Then, for any p > 0 and T > 0, we have

cpE
(∣∣∣∣∣ ∫ T

0
u2

sds
∣∣∣∣∣p/2) ≤ E

(
sup

t∈[0,T ]

∣∣∣∣∣ ∫ t

0
usdBs

∣∣∣∣∣p) ≤ CpE
(∣∣∣∣∣ ∫ T

0
u2

sds
∣∣∣∣∣p/2).
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6 Stochastic Integration up to a Stopping Time

Proposition 2.2.4 Suppose that u ∈ L2(P) and let τ be a finite stopping
time. Then the process u1[0,τ] also belongs to L2(P) and we have∫ ∞

0
ut1[0,τ](t)dBt =

∫ τ

0
utdBt.

Proof Suppose first that ut = F1(a,b](t), where 0 ≤ a < b and F ∈
L2(Ω,Fa, P), and τ takes values in a finite set {0 = t0 < t1 < · · · < tn}.
On the one hand, we have∫ τ

0
utdBt = F(Bb∧τ − Ba∧τ).

On the other hand, the process 1(0,τ] is simple because

1(0,τ](t) =
n−1∑
j=0

1{τ≥t j+1}1(t j,t j+1](t)

and 1{τ≥t j+1} = 1{τ≤t j}c ∈ Ft j . Therefore,

∫ ∞

0
ut1(0,τ](t)dBt = F

n−1∑
j=0

1{τ≥t j+1}

∫ ∞

0
1(a,b]∩(t j,t j+1](t)dBt

= F
n∑

i=1

1{τ=ti}

∫ ∞

0
1(a,b]∩[0,ti](t)dBt

= F(Bb∧τ − Ba∧τ).

For a general finite stopping time τ, we approximate τ by the sequence of
stopping times

τn =

n2n∑
i=1

i
2n 1{(i−1)/2n≤τ<i/2n},

that satisfy τn ↓ τ. Taking the limit as n tends to infinity we deduce the
equality in the case of a simple process.

In the case of a general process u ∈ L2(P), we approximate u by simple
processes u(n) in the norm of L2(P). The convergence∫ τ

0
u(n)

t dBt
L2(Ω)−→

∫ τ

0
utdBt
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follows from the maximal inequality (2.5) when T = ∞. In fact,

E
(∣∣∣∣∣ ∫ τ

0
u(n)

t dBt −
∫ τ

0
utdBt

∣∣∣∣∣2) ≤ E
(

sup
t≥0

∣∣∣∣∣ ∫ t

0
(u(n)

s − us)dBs

∣∣∣∣∣2)
≤ 4E

( ∫ ∞

0
|u(n)

s − us|2ds
)
,

which concludes the proof. �

We observe that Proposition 2.2.4 also holds when u ∈ L2
∞(P) and τ is

bounded.

2.3 Integral of General Processes

The stochastic integral can be defined for a class of processes larger than
L2
∞(P). Let L2

loc(P) be the set of progressively measurable processes u =
(ut)t≥0 such that for all t ≥ 0,

P
( ∫ t

0
u2

sds < ∞
)
= 1.

Suppose that u ∈ L2
loc(P). For each n ≥ 1, we define the stopping time

Tn = inf
{
t ≥ 0 :

∫ t

0
u2

sds = n
}

(2.8)

and the sequence of processes u(n)
t = ut1[0,Tn](t) which belong to L2(P).

Proposition 2.3.1 Let u ∈ L2
loc(P). Then there exists an adapted and con-

tinuous process
(∫ t

0
usdBs

)
t≥0

such that, for any n ≥ 1,∫ t

0
u(n)

s dBs =

∫ t

0
usdBs on t ≤ Tn.

Proof If n ≤ m, as a consequence of Proposition 2.2.4 we have that, on
the set {t ≤ Tn}, ∫ t

0
u(n)

s dBs =

∫ t

0
u(m)

s dBs. (2.9)

We define ∫ t

0
usdBs =

∫ t

0
u(n)

s dBs on t ≤ Tn.

By (2.9), this definition does not depend on n and produces an adapted and
continuous process because Tn ↑ ∞. �
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If u ∈ L2
loc(P), the process (Mt)t≥0 defined by Mt =

∫ t

0
usdBs is a con-

tinuous local martingale; that is, there exists a sequence of stopping times
Tn ↑ ∞ (we can take the stopping times defined in (2.8)), such that, for
each n ≥ 1, (Mt∧Tn )t≥0 is a martingale.

Instead of the isometry property, the stochastic integral of processes in
L2

loc(P) has the following continuity property in probability.

Proposition 2.3.2 Suppose that u ∈ L2
loc(P). Then, for all K, δ,T > 0, we

have

P
(∣∣∣∣∣ ∫ T

0
usdBs

∣∣∣∣∣ ≥ K
)
≤ P

( ∫ T

0
u2

sds ≥ δ
)
+
δ

K2 .

Proof Consider the stopping time defined by

τ = inf
{
t ≥ 0 :

∫ t

0
u2

sds = δ
}
,

with the convention that τ = T if
∫ T

0
u2

sds < δ. We have on the one hand

P
(∣∣∣∣∣ ∫ T

0
usdBs

∣∣∣∣∣ ≥ K
)
≤ P

( ∫ T

0
u2

sds ≥ δ
)

+ P
(∣∣∣∣∣ ∫ T

0
usdBs

∣∣∣∣∣ ≥ K,
∫ T

0
u2

sds ≤ δ
)
.

On the other hand,

P
(∣∣∣∣∣ ∫ T

0
usdBs

∣∣∣∣∣ ≥ K,
∫ T

0
u2

sds ≤ δ
)
= P

(∣∣∣∣∣ ∫ T

0
usdBs

∣∣∣∣∣ ≥ K, τ = T
)

≤ P
(∣∣∣∣∣ ∫ τ

0
usdBs

∣∣∣∣∣ ≥ K
)

≤ 1
K2 E

(∣∣∣∣∣ ∫ τ

0
usdBs

∣∣∣∣∣2) = 1
K2 E

( ∫ τ

0
u2

sds
)
≤ δ

K2 ,

which concludes the proof. �

As a consequence of the above proposition, if u(n) is a sequence of pro-
cesses in L2

loc(P) that converges to u ∈ L2
loc(P) in probability, that is, for all

ε > 0 and T > 0,

lim
n→∞ P

(∣∣∣∣∣ ∫ T

0
(un

s − us)2ds
∣∣∣∣∣ > ε) = 0,

then the sequence
∫ T

0
un

s dBs converges in probability to
∫ T

0
us dBs, for all

T > 0.
Moreover, we can show (see Exercise 2.3) that, for all u ∈ L2

loc(P) and
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t ≥ 0, if π = {0 = t0 < t1 < · · · < tn = t} denotes a subdivision of the
interval [0, t], we have that, as |π| → 0,

n−1∑
j=0

( ∫ t j+1

t j

usdBs

)2 P−→
∫ t

0
u2

sds. (2.10)

Therefore,
∫ t

0
u2

sds is the quadratic variation of the local martingale
∫ t

0
u2

sdBs

(see Theorem A.7.2).

2.4 Itô’s Formula

Itô’s stochastic integral does not follow the chain rule of classical calculus.
For instance, in Example 2.1.6, we showed that∫ t

0
BsdBs =

1
2 B2

t − 1
2 t, (2.11)

whereas, if xt is a differentiable function such that x0 = 0,∫ t

0
xsdxs =

∫ t

0
xsx′sds = 1

2 x2
t .

Equation (2.11) can also be written as

B2
t =

∫ t

0
2BsdBs + t.

That is, the stochastic process B2
t can be expressed as the sum of the in-

definite stochastic integral
∫ t

0
2BsdBs plus a differentiable function. More

generally, Itô’s formula below shows that any process of the form f (Bt),
where f is twice continuously differentiable, can be expressed as the sum
of an indefinite Itô integral and a process with differentiable trajectories.
This leads to the definition of an Itô process.

Denote by L1
loc(P) the space of progressively measurable processes v =

(vt)t≥0 such that, for all t > 0,

P
( ∫ t

0
|vs| ds < ∞

)
= 1.

Definition 2.4.1 A continuous and adapted stochastic process (Xt)t≥0 is
called an Itô process if

Xt = X0 +

∫ t

0
usdBs +

∫ t

0
vsds, (2.12)

where u ∈ L2
loc(P), v ∈ L1

loc(P), and X0 is an F0-measurable random vari-
able.
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Notice that F0-measurable random variables are constant a.s.
Using (2.10), one can easily show (see Exercise 2.4) the following prop-

erty.

Proposition 2.4.2 Let (Xt)t≥0 and (Yt)t≥0 be two Itô processes of the form

Xt = X0 +

∫ t

0
uX

s dBs +

∫ t

0
vX

s ds

and

Yt = Y0 +

∫ t

0
uY

s dBs +

∫ t

0
vY

s ds,

where uX , uY ∈ L2
loc(P) and vX , vY ∈ L1

loc(P). Let π = {0 = t0 < t1 < · · · <
tn = t} be a partition of the interval [0, t]. Then, as |π| → 0,

n−1∑
j=0

(Yt j+1 − Yt j )(Xt j+1 − Xt j )
P−→

∫ t

0
uX

s uY
s ds.

Therefore, 〈X, Y〉t =
∫ t

0
uX

s uY
s ds is the quadratic covariation between the

local martingales
∫ t

0
uX

s dBs and
∫ t

0
uY

s dBs (see Definition A.7.3).

We say that a function f : R+ × R → R is of class C1,2 if it is twice
differentiable with respect to the variable x ∈ R and once differentiable
with respect to t ∈ R+, with continuous partial derivatives ∂ f /∂x, ∂2 f /∂x2,
and ∂ f /∂t.

Theorem 2.4.3 (Itô’s formula) Let f : R+ ×R→ R be a function of class
C1,2. Suppose that X is an Itô process of the form (2.12). Then, the process
Yt = f (t, Xt) is also an Itô process, with representation

Yt = f (0, X0) +
∫ t

0

∂ f
∂t

(s, Xs)ds +
∫ t

0

∂ f
∂x

(s, Xs) usdBs

+

∫ t

0

∂ f
∂x

(s, Xs) vsds +
1
2

∫ t

0

∂2 f
∂x2 (s, Xs) u2

sds, (2.13)

which holds a.s., for all t ≥ 0.

Remark 2.4.4 (1) Notice that all the integrals in (2.13) are well defined,
that is, the processes

∂ f
∂t

(s, Xs),
∂ f
∂x

(s, Xs) vs, and
∂2 f
∂x2 (s, Xs) u2

s

belong to L1
loc(P), and (∂ f /∂x)(s, Xs) us belongs to L2

loc(P).
(2) We set 〈X〉t =

∫ t

0
u2

sds, that is, 〈X〉t is the quadratic variation of the
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local martingale
∫ t

0
usdBs in the sense of (2.10). Then (2.13) can be written

as

Yt = f (0, X0)+
∫ t

0

∂ f
∂t

(s, Xs)ds+
∫ t

0

∂ f
∂x

(s, Xs)dXs+
1
2

∫ t

0

∂2 f
∂x2 (s, Xs)d〈X〉s.

(3) In differential notation, we write

dXt = utdBt + vtdt,

and Itô’s formula can be written as

d f (t, Xt) =
∂ f
∂t

(t, Xt)dt +
∂ f
∂x

(t, Xt)dXt +
1
2
∂2 f
∂x2 (t, Xt) (dXt)2 ,

where (dXt)2 is computed using the product rule

× dBt dt

dBt dt 0
dt 0 0

Notice also that (dXt)2 = u2
t dt = d〈X〉t.

(4) In the particular case ut = 1, vt = 0, and X0 = 0, the process X is the
Brownian motion B, and Itô’s formula has the following simple form:

f (t, Bt) = f (0, 0)+
∫ t

0

∂ f
∂x

(s, Bs)dBs+

∫ t

0

∂ f
∂t

(s, Bs)ds+
1
2

∫ t

0

∂2 f
∂x2 (s, Bs)ds.

Proof of Theorem 2.4.3 We will give the proof only in the case where
vt = 0, that is,

Xt = X0 +

∫ t

0
usdBs,

and f does not depend on t. The extension of the proof to the general case
is easy and we omit the details. We claim that

f (Xt) = f (X0) +
∫ t

0
f ′(Xs)usdBs +

1
2

∫ t

0
f ′′(Xs)u2

sds.

By a localization argument, we may assume that f ∈ C2
b(R),

∫ ∞
0

u2
sds ≤

N, and supt≥0 |Xt| ≤ N, for some integer N ≥ 1 such that |X0| ≤ N. In fact,
consider the sequence of stopping times

TN = inf
{
t ≥ 0 :

∫ t

0
u2

sds ≥ N, or |Xt| ≥ N
}
.
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Let fN : R → R be a function in C2
0(R) such that f (x) = fN(x) for |x| ≤ N.

Then, if u(N)
t = ut1[0,TN ](t) and

X(N)
t = X0 +

∫ t

0
u(N)

s dBs,

by Itô’s formula we get

fN(X(N)
t ) = fN(X0) +

∫ t

0
f ′N(X(N)

s )u(N)
s dBs +

1
2

∫ t

0
f ′′N (X(N)

s )(u(N)
s )2ds.

By Proposition 2.3.1,

X(N)
t = X0 +

∫ TN∧t

0
usdBs = XTN∧t,

and

f (XTN∧t) = f (X0) +
∫ TN∧t

0
f ′(Xs)usdBs +

1
2

∫ TN∧t

0
f ′′(Xs)u2

sds.

Then, we let N → ∞ to get the result.
Consider the uniform partition 0 = t0 < t1 < · · · < tn = t, where ti = it/n.

We can write, using Taylor’s formula,

f (Xt) − f (X0) =
n−1∑
i=0

( f (Xti+1 ) − f (Xti ))

=

n−1∑
i=0

f ′(Xti )(Xti+1 − Xti ) +
1
2

n−1∑
i=0

f ′′(X̃i)(Xti+1 − Xti )
2,

where X̃i is a random point between Xti and Xti+1 .
It is an easy exercise to show that

n−1∑
i=0

f ′(Xti )(Xti+1 − Xti )
L2(Ω)−→

∫ t

0
f ′(Xs)usdBs, (2.14)

as n tends to infinity (see Exercise 2.5).
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For the second term, we write∫ t

0
f ′′(Xs)u2

sds −
n−1∑
i=0

f ′′(X̃i)(Xti+1 − Xti )
2

=

n−1∑
i=0

∫ ti+1

ti
( f ′′(Xs) − f ′′(Xti ))u

2
sds

+

n−1∑
i=0

f ′′(Xti )
( ∫ ti+1

ti
u2

sds −
( ∫ ti+1

ti
usdBs

)2)
+

n−1∑
i=0

( f ′′(Xti ) − f ′′(X̃i))
( ∫ ti+1

ti
usdBs

)2

=: An
1 + An

2 + An
3.

Then, it suffices to show that each term An
i converges to zero in probability.

We have

|An
1| ≤ sup

|s−r|≤t/n
| f ′′(Xs) − f ′′(Xr)|

∫ t

0
u2

sds

and

|An
3| ≤ sup

0≤i≤n−1
| f ′′(Xti ) − f ′′(X̃i)|

n−1∑
i=0

( ∫ ti+1

ti
usdBs

)2

.

Taking into account that f ′′ and X are continuous, together with Proposi-
tion 2.2.2, we obtain that both expressions converge to zero in probability
as n tends to infinity.

As the sequence ξi =
∫ ti+1

ti
u2

sds −
(∫ ti+1

ti
usdBs

)2
is bounded and satisfies

E(ξi|Fti ) = 0, we obtain

E((A2
n)2) =

n−1∑
i=0

E( f ′′(Xti )
2ξ2

i ) ≤ ‖ f ′′‖2
∞

n−1∑
i=0

E(ξ2
i )

≤ 2‖ f ′′‖2
∞

n−1∑
i=0

E
(( ∫ ti+1

ti
u2

sds
)2

+

( ∫ ti+1

ti
usdBs

)4)
≤ 2‖ f ′′‖2

∞E
(
N sup

i

∫ ti+1

ti
u2

sds

+ sup
i
|Xti+1 − Xti |2

n−1∑
i=0

( ∫ ti+1

ti
usdBs

)2)
,

which converges to zero as n → ∞. This completes the proof. �
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Example 2.4.5 (1) If f (x) = x2 and Xt = Bt, we obtain

B2
t = 2

∫ t

0
BsdBs + t,

because f ′(x) = 2x and f ′′(x) = 2.
(2) If f (x) = x3 and Xt = Bt, we obtain

B3
t = 3

∫ t

0
B2

sdBs + 3
∫ t

0
Bsds,

because f ′(x) = 3x2 and f ′′(x) = 6x. More generally, if n ≥ 2 is a natural
number,

Bn
t = n

∫ t

0
Bn−1

s dBs +
n(n − 1)

2

∫ t

0
Bn−2

s ds.

(3) If f (t, x) = exp(ax − a2t/2) , Xt = Bt, and Yt = exp(aBt − a2t/2), we
obtain

Yt = 1 + a
∫ t

0
YsdBs

because
∂ f
∂t
+

1
2
∂2 f
∂x2 = 0. (2.15)

In particular, the solution to the stochastic differential equation

dYt = aYtdBt, Y0 = 1,

is not Yt = exp(aBt) but Yt = exp(aBt − a2t/2).
(4) If a function f of class C1,2 satisfies equality (2.15) then,

f (t, Bt) = f (0, 0) +
∫ t

0

∂ f
∂x

(s, Bs)dBs.

This implies that f (t, Bt) is a continuous local martingale. The process is a
square integrable martingale if for all t ≥ 0

E
( ∫ t

0

(
∂ f
∂x

(s, Bs)
)2

ds
)
< ∞.

2.5 Tanaka’s Formula

Consider the two-parameter random field (Lx
t )t≥0,x∈R defined as

Lx
t = lim

ε↓0

1
2ε
�{0 ≤ s ≤ t : |Bs − x| ≤ ε}, (2.16)
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where � denotes the Lebesgue measure. Lévy (1948) proved that this limit
exists and is finite. Moreover, there exists a version of this process which is
continuous in both variables (t, x). This random field is called the Brownian
local time, whose name is justified by the following fact. For any Borel set
A ∈ B(R), we define the occupation measure of the Brownian motion up to
time t ≥ 0 as

μt(A) =
∫ t

0
1{Bs∈A}ds.

Then, this measure is absolutely continuous with respect to the Lebesgue
measure, and its density coincides with the Brownian local time Lx

t defined
by (2.16) (see for instance Yor, 1986). That is, for any bounded or nonneg-
ative measurable function f : R→ R,∫ t

0
f (Bs)ds =

∫
R

f (x)Lx
t dx. (2.17)

Formally, we can write Lx
t =

∫ t

0
δx(Bs)ds, that is, the local time is the time

spent by the Brownian motion at x in the time interval [0, t].
Tanaka’s formula (Tanaka, 1963) gives a representation of the Brownian

local time.

Theorem 2.5.1 (Tanaka’s formula) Almost surely, for any x ∈ R and
t > 0,

1
2 Lx

t = (Bt − x)+ − (−x)+ −
∫ t

0
1{Bs>x}dBs (2.18)

and

1
2 Lx

t = (Bt − x)− − (−x)− +
∫ t

0
1{Bs<x}dBs. (2.19)

Trotter (1958) showed the existence of the local time by first showing
that the right-hand side of (2.18) admits a continuous modification in (t, x)
and then using Tanaka’s formula. See also Karatzas and Shreve (1998, The-
orem 6.11) for a proof of Trotter’s theorem.

Proof of Theorem 2.5.1 We consider an approximation of the Dirac delta
function δ0(y) by a sequence of probability density functions. More specif-
ically, we set

fn(y) = n f (ny),
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where f is the C∞(R) function given by

f (y) =

⎧⎪⎪⎨⎪⎪⎩ c exp(1/((y − 1)2 − 1)) if 0 < y < 2,
0 otherwise;

here the constant c is chosen in such a way that
∫
R

f (y)dy = 1. We also
consider the sequence of functions

un(y) =
∫ y

−∞

∫ w

−∞
fn(z − x)dzdw, y ∈ R, n ≥ 1.

We observe that u′n(y) =
∫ y

−∞ fn(z − x)dz, which implies that for all y ∈ R,

lim
n→∞ u′n(y) = 1(x,∞)(y) and lim

n→∞ un(y) = (y − x)+.

Applying Itô’s formula (Theorem 2.4.3), we obtain, for all t ≥ 0,

un(Bt) = un(0) +
∫ t

0
u′n(Bs)dBs +

1
2

∫ t

0
fn(Bs − x)ds. (2.20)

Now, from (2.17) we get∫ t

0
fn(Bs − x)ds =

∫
R

fn(y − x)Ly
t dy,

which, by the continuity of the local time, converges to Lx
t almost surely as

n → ∞. Moreover,

E
(∣∣∣∣∣ ∫ t

0
u′n(Bs)dBs −

∫ t

0
1(x,∞)(Bs)dBs

∣∣∣∣∣2) = E
( ∫ t

0

∣∣∣u′n(Bs) − 1(x,∞)(Bs)
∣∣∣2ds

)
≤

∫ t

0
P

(
|Bs − x| ≤ 2

n

)
ds,

which converges to zero as n → ∞. Therefore, equation (2.18) for each
fixed t > 0 follows on letting n → ∞ in (2.20). Because of the continuity
of the processes, we obtain the result almost surely for all t > 0 and x ∈ R.
Equation (2.19) can be deduced from (2.18), taking into account that Lx

t
coincides with the local time at −x of the Brownian motion −B. �

Corollary 2.5.2 Almost surely, for any x ∈ R and t > 0,

Lx
t = |Bt − x| − |x| −

∫ t

0
sign(Bs − x) dBs,

where sign(x) = 1{x>0} − 1{x<0}.
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2.6 Multidimensional Version of Itô’s Formula

Itô’s formula can be extended to a multidimensional setting as follows.
Suppose that B = (Bt)t≥0, Bt = (B1

t , B
2
t , . . . , B

m
t ), is an m-dimensional Brow-

nian motion.

Definition 2.6.1 An n-dimensional continuous and adapted process (Xt)t≥0

is called a multidimensional Itô process if

Xt = X0 +

∫ t

0
usdBs +

∫ t

0
vsds, (2.21)

where v = (vt)t≥0 is an n-dimensional process, u = (ut)t≥0 is a process with
values in the set of n × m matrices, and we assume that the components of
u belong to L2

loc(P) and those of v belong to L1
loc(P).

We say that a function f : R+ × Rn → R is of class C1,2 if the partial
derivatives ∂ f /∂t, ∂ f /∂xi, and ∂ f /∂xi∂x j, 1 ≤ i, j ≤ n, exist and are con-
tinuous.

Theorem 2.6.2 (Multidimensional version of Itô’s formula) Suppose that
X is a multidimensional Itô process of the form (2.21). Let f : R+ × Rn →
R be a function of class C1,2. Then, the process Yt = f (t, Xt) is also a
multidimensional Itô process with representation

Yt = f (0, X0) +
∫ t

0

∂ f
∂t

(s, Xs)ds +
n∑

i=1

∫ t

0

∂ f
∂xi

(s, Xs)dXi
s

+
1
2

n∑
i, j=1

∫ t

0

∂2 f
∂xi∂x j

(s, Xs)(usuT
s )i jds

almost surely, for all t ≥ 0.

Proof The proof follows the same lines as that for the one-dimensional
Itô’s formula (Theorem 2.4.3) using Exercise 2.10. �

Remark 2.6.3 (1) Set

〈Xi, X j〉t =

∫ t

0
(usuT

s )i jds =
∫ t

0

m∑
k=1

(us)ik(us) jkds.

That is, 〈Xi, X j〉t is the quadratic covariation of the local martingales∑m
k=1

∫ t

0
(us)ikdBk

s and
∑m

k=1

∫ t

0
(us) jkdBk

s. Then, Itô’s formula can be written



2.6 Multidimensional Version of Itô’s Formula 39

in the form

Yt = f (0, X0) +
∫ t

0

∂ f
∂t

(s, Xs)ds +
n∑

i=1

∫ t

0

∂ f
∂xi

(s, Xs)dXi
s

+
1
2

n∑
i, j=1

∫ t

0

∂2 f
∂xi∂x j

(s, Xs)d〈Xi, X j〉s.

(2) In differential notation, the multidimensional Itô’s formula can be
written as

dYt =
∂ f
∂t

(t, Xt)dt + ∇ f (t, Xt)dXt +
1
2

n∑
i, j=1

∂2 f
∂xi∂x j

(t, Xt)dXi
tdX j

t .

The product of differentials dXi
tdX j

t is computed by means of the product
rules dBi

tdt = 0, (dt)2 = 0, and

dBi
tdBj

t =

⎧⎪⎪⎨⎪⎪⎩ 0 if i � j,
dt if i = j.

(3) As an application of the multidimensional Itô’s formula we can de-
duce the following integration-by-parts formula. Suppose that (Xt)t≥0 and
(Yt)t≥0 are one-dimensional Itô processes. Then

XtYt = X0Y0 +

∫ t

0
XsdYs +

∫ t

0
YsdXs +

∫ t

0
d〈X, Y〉s. (2.22)

The multidimensional Itô’s formula leads to the following result, whose
proof is left an exercise (Exercise 2.11).

Proposition 2.6.4 Let f : R+ × Rd → R be a function of class C1,2, and
let B be a d-dimensional Brownian motion. Then, the process

Xt = f (t, Bt) −
∫ t

0

(
1
2Δ f (s, Bs) +

∂ f
∂t

(s, Bs)
)

ds

is a local martingale. If, moreover,

d∑
i=1

(
∂ f
∂xi

(t, x)
)2

≤ K2(t) exp(K1|x|β),

for some constants K1 ≥ 0, β ∈ [0, 2), and a function K2(t) ≥ 0 such that∫ T

0
K2(t)dt < ∞ for all T > 0, then (Xt)t≥0 is a martingale.
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2.7 Stratonovich Integral

Itô’s integral was defined as the limit in L2(Ω) or in probability of for-
ward Riemann sums. If we consider symmetric Riemann sums defined by
taking the value of the integrand in the middle point of each interval, we
obtain a different type of integral, called the Stratonovich integral. In the
next proposition we define the Stratonovich integral of one Itô process with
respect to another.

Proposition 2.7.1 Let (Xt)t≥0 and (Yt)t≥0 be two Itô processes of the form

Xt = X0 +

∫ t

0
uX

s dBs +

∫ t

0
vX

s ds

and

Yt = Y0 +

∫ t

0
uY

s dBs +

∫ t

0
vY

s ds,

where uX , uY ∈ L2
loc(P) and vX , vY ∈ L1

loc(P). Let π = {0 = t0 < t1 < · · · <
tn = t} be a partition of the interval [0, t]. Then, as |π| → 0,

n−1∑
j=0

1
2 (Yt j + Yt j+1 )(Xt j+1 − Xt j )

P−→
∫ t

0
YsdXs +

1
2 〈X, Y〉t.

This limit is called the Stratonovich integral of Y with respect to X and is
denoted by

∫ t

0
Ys ◦ dXs.

Proof The result follows easily from the decomposition

1
2 (Yt j + Yt j+1 )(Xt j+1 − Xt j ) = Yt j (Xt j+1 − Xt j ) +

1
2 (Yt j+1 − Yt j )(Xt j+1 − Xt j )

and Proposition 2.4.2. �

The Stratonovich integral follows the rules of classical calculus. That is,
if f ∈ C3(R), then

f (Xt) = f (X0) +
∫ t

0
f ′(Xs) ◦ dXs.

Indeed, by Itô’s formula (Theorem 2.4.3) and Proposition 2.7.1,

f (Xt) = f (X0) +
∫ t

0
f ′(Xs)dXs +

1
2

∫ t

0
f ′′(Xs)d〈X〉s

= f (X0) +
∫ t

0
f ′(Xs) ◦ dXs − 1

2 〈 f ′(X), X〉t +
1
2

∫ t

0
f ′′(Xs)d〈X〉s.
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Furthermore, again by Itô’s formula, 〈 f ′(X), X〉t is the quadratic covari-
ation between the martingales

∫ t

0
f ′′(Xs)usdBs and

∫ t

0
usdBs, which coin-

cides with
∫ t

0
f ′′(Xs)d〈X〉s.

2.8 Backward Stochastic Integral

Let B = (Bt)t≥0 be a Brownian motion. Fix T > 0. For any t ∈ [0, T ] we
denote by F̂t the σ-field generated by the random variables {BT − Bs, t ≤
s ≤ T } and the sets of probability zero. Notice that (F̂t)t∈[0,T ] is a decreasing
family of σ-fields.

A stochastic process u = (ut)t∈[0,T is called backward predictable if for
all t ∈ [0, T ], ut(ω) restricted to Ω × [t, T ] is measurable with respect to
the σ-field F̂t × B([t, T ]). We denote by L2

T (P̂) the space of backward pre-

dictable processes u such that E
(∫ T

0
u2

sds
)
< ∞.

For a process u ∈ L2
T (P̂) we define the backward Itô stochastic integral

of u as the following limit in L2(Ω):

∫ T

0
utd̂Bt = lim

n→∞

n−2∑
j=0

( n
T

∫ ( j+2)T/n

( j+1)T/n
usds

)
(B( j+1)T/n − BjT/n).

If the process u is adapted to the backward filtration F̂t and is continuous
in L2(Ω) then the backward Itô stochastic integral is the limit of backward
Riemann sums, that is,

∫ T

0
utd̂Bt = lim

n→∞

n−1∑
j=0

u( j+1)T/n(B( j+1)T/n − BjT/n).

The process B̂t = BT−BT−t, t ∈ [0, T ], is a Brownian motion with natural
filtration F̂T−t. Then, one can easily show (see Exercise 2.12) that for any
process u ∈ L2

T (P̂), ∫ T

0
utd̂Bt =

∫ T

0
uT−tdB̂t.

As a consequence, the backward Itô integral has the properties similar to
those of the Itô integral.
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2.9 Integral Representation Theorem

Consider a process u in the space L2
∞(P). We know that the indefinite

stochastic integral

Xt =

∫ t

0
usdBs

is a martingale with respect to the filtration (Ft)t≥0. The aim of this sub-
section is to show that any square integrable martingale is of this form. We
start with the integral representation of square integrable random variables.

Theorem 2.9.1 (Integral representation theorem) Fix T > 0 and let F ∈
L2(Ω,FT , P). Then there exists a unique process u in the space L2

T (P) such
that

F = E(F) +
∫ T

0
usdBs.

Proof Suppose first that

F = exp
( ∫ T

0
hsdBs − 1

2

∫ T

0
h2

sds
)
, (2.23)

where h ∈ L2([0, T ]). Define

Yt = exp
( ∫ t

0
hsdBs − 1

2

∫ t

0
h2

sds
)
, 0 ≤ t ≤ T.

By Itô’s formula applied to the function f (x) = ex and the process Xt =∫ t

0
hsdBs − 1

2

∫ t

0
h2

sds, we obtain, for all t ∈ [0, T ],

Yt = 1 +
∫ t

0
YshsdBs.

Hence,

F = 1 +
∫ T

0
YshsdBs

and we get the desired representation because E(F) = 1 and Yh ∈ L2
∞(P).

By linearity, the representation holds for linear combinations of exponen-
tials of the form (2.23).

In the general case, any random variable F ∈ L2(Ω,FT , P) can be ap-
proximated in L2(Ω) by a sequence Fn of linear combinations of exponen-
tials of the form (2.23). Then, we have

Fn = E(Fn) +
∫ T

0
u(n)

s dBs.
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By the isometry of the stochastic integral,

E((Fn − Fm)2) ≥ Var(Fn − Fm) = E
(( ∫ T

0
(u(n)

s − u(m)
s )dBs

)2)
= E

( ∫ T

0
(u(n)

s − u(m)
s )2ds

)
.

Hence, u(n) is a Cauchy sequence in L2
T (P) and it converges to a process

u in L2
T (P). Applying again the isometry property, and taking into account

that E(Fn) converges to E(F), we obtain

F = lim
n→∞ Fn = lim

n→∞

(
E(Fn) +

∫ T

0
u(n)

s dBs

)
= E(F) +

∫ T

0
usdBs.

Finally, uniqueness also follows from the isometry property. Indeed,
suppose that u(1) and u(2) are processes in L2

T (P) such that

F = E(F) +
∫ T

0
u(1)

s dBs = E(F) +
∫ T

0
u(2)

s dBs.

Then

0 = E
(( ∫ T

0
(u(1)

s − u(2)
s )dBs

)2)
= E

( ∫ T

0
(u(1)

s − u(2)
s )2ds

)
,

and hence u(1)
s (ω) = u(2)

s (ω) for almost all (ω, s) ∈ Ω × [0, T ]. �

Corollary 2.9.2 (Martingale representation theorem) Suppose that M =
(Mt)t≥0 is a square integrable martingale with respect to (Ft)t≥0. Then there
exists a unique process u ∈ L2

∞(P) such that

Mt = E(M0) +
∫ t

0
usdBs.

In particular, M has a continuous version.

Example 2.9.3 We want to find the integral representation of F = B3
T . By

Itô’s formula,

B3
T =

∫ T

0
3B2

t dBt + 3
∫ T

0
Btdt

and, using the integration-by-parts formula (2.22) yields∫ T

0
Btdt = T BT −

∫ T

0
tdBt =

∫ T

0
(T − t)dBt.
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So, we obtain the representation

B3
T =

∫ T

0
3(B2

t + (T − t))dBt.

2.10 Girsanov’s Theorem

Girsanov’s theorem says that a Brownian motion with drift (Bt + λt)t∈[0,T ]

can be seen as a Brownian motion without drift under a suitable probability
measure.

Suppose that L is a nonnegative random variable on a probability space
(Ω,F , P) such that E(L) = 1. Then Q(A) = E (1AL) defines a new probabil-
ity on (Ω,F ). In fact, Q is aσ-additive measure such that Q(Ω) = E(L) = 1.
We say that L is the density of Q with respect to P, and we write dQ/dP =
L. The probability Q is absolutely continuous with respect to P, that is, for
any A ∈ F ,

P(A) = 0 =⇒ Q(A) = 0.

If L is strictly positive P-almost surely, then the probabilities P and Q are
equivalent (that is, mutually absolutely continuous). This means that for
any A ∈ F ,

P(A) = 0 ⇐⇒ Q(A) = 0.

The next example is a simple version of Girsanov’s theorem.

Example 2.10.1 Let X be a random variable with distribution N(m, σ2).
Consider the random variable

L = exp
(
− m
σ2 X +

m2

2σ2

)
,

which satisfies E(L) = 1. Suppose that Q has density L with respect to P.
On the probability space (Ω,F ,Q), the variable X has characteristic func-
tion

EQ(eitX) = E(eitXL) =
1√

2πσ2

∫ ∞

−∞
exp

(
− (x − m)2

2σ2 − mx
σ2 +

m2

2σ2 + itx
)

dx

=
1√

2πσ2

∫ ∞

−∞
exp

(
− x2

2σ2 + itx
)

dx = exp
(
− σ

2t2

2

)
,

so, X has distribution N(0, σ2).

We now go back to the case where (Bt)t≥0 is a Brownian motion on a
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probability space (Ω,F , P). Given a process θ ∈ L2
T (P), consider the local

martingale

Lt = exp
( ∫ t

0
θsdBs − 1

2

∫ t

0
θ2sds

)
, 0 ≤ t ≤ T,

which satisfies the linear stochastic differential equation

Lt = 1 +
∫ t

0
θsLsdBs, 0 ≤ t ≤ T.

The next lemma is due to Novikov (1972), and a proof can be found in
Baudoin (2014, Lemma 5.76).

Lemma 2.10.2 (Novikov’s condition) If

E
(

exp
(

1
2

∫ T

0
θ2sds

))
< ∞ (2.24)

then (Lt)0≤t≤T is a martingale.

Thus, as a consequence of Lemma 2.10.2, we have:
(1) The random variable LT is a density in the probability space (Ω,FT , P)

and defines a probability Q such that

LT =
dQ
dP
.

(2) For any t ≥ 0,

Lt =
dQ
dP

∣∣∣∣∣Ft

. (2.25)

In fact, if A ∈ Ft, we have

Q(A) = E(1ALT ) = E(E(1ALT |Ft))

= E(1AE(LT |Ft))

= E(1ALt).

Girsanov’s theorem was first proved by Cameron and Martin (1944) for
non-random integrands, and then extended by Girsanov (1960).

Theorem 2.10.3 (Girsanov’s theorem) Suppose that θ satisfies the Novikov
condition (2.24). Then, on the probability space (Ω,FT ,Q), the stochastic
process

Wt = Bt −
∫ t

0
θsds,

is a Brownian motion on [0, T ].
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Proof It is enough to show that on the probability space (Ω,FT ,Q), for
all s < t ≤ T , the increment Wt − Ws is independent of Fs and has the
normal distribution N(0, t − s).

These properties follow from the relation, for all s < t ≤ T , A ∈ Fs,
λ ∈ R,

EQ(1A exp(iλ(Wt − Ws))) = Q(A) exp
(
−λ

2

2
(t − s)

)
. (2.26)

In order to show (2.26) we write, using (2.25),

EQ(1A exp(iλ(Wt − Ws))) = E(1A exp(iλ(Wt − Ws)) Lt)

= E(1ALsΨs,t) exp
(
−λ

2

2
(t − s)

)
,

where

Ψs,t = exp
( ∫ t

s
(iλ + θv)dBv − 1

2

∫ t

s
(iλ + θv)2dv

)
.

Then, the desired result follows from

E
(
Ψs,t|Fs

)
= 1.

�

Fix θ ∈ R. Recall that under Q, given by

dQ
dP

∣∣∣∣∣Ft

= Lt := exp
(
θBt − θ

2

2
t
)
, (2.27)

(Bt)t≥0 is a Brownian motion with drift θt. As an application, in the next
proposition we compute the distribution of the hitting time for a Brownian
motion with drift.

Proposition 2.10.4 Set τa = inf{t ≥ 0, Bt = a}, where a � 0. Let Q
be defined by (2.27). Then, with respect to Q, the random variable τa has
probability density

f (s) =
|a|√
2πs3

exp
(
− (a − θs)2

2s

)
, s > 0. (2.28)

Proof For any t ≥ 0, the event {τa ≤ t} belongs to the σ-field Fτa∧t be-
cause, for any s ≥ 0,

{τa ≤ t} ∩ {τa ∧ t ≤ s} = {τa ≤ t} ∩ {τa ≤ s}
= {τa ≤ t ∧ s} ∈ Fs∧t ⊂ Fs.
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Consequently, using the optional stopping theorem (Theorem A.7.4) yields

Q(τa ≤ t) = E(1{τa≤t}Lt) = E(1{τa≤t}E(Lt|Fτa∧t))

= E(1{τa≤t}Lτa∧t) = E(1{τa≤t}Lτa )

= E
(
1{τa≤t} exp

(
θa − 1

2θ
2τa

))
=

∫ t

0
exp

(
θa − 1

2θ
2s

)
f (s)ds,

where f is the density of the random variable τa. We know by (1.11) that

f (s) =
|a|√
2πs3

exp
(
− a2

2s

)
.

Hence, with respect to Q the random variable τa has the probability density
given by (2.28). �

Letting t ↑ ∞ in the above proof, we obtain

Q(τa < ∞) = exp(θa) E
(

exp
(
− 1

2θ
2τa

))
= exp(θa − |θa|).

If θ = 0 (Brownian motion without drift), the probability of reaching the
level a is one. If θa > 0 (the drift θ and the level a have the same sign) this
probability is also one. If θa < 0 (the drift θ and the level a have opposite
signs) this probability is exp(2θa).

Exercises

2.1 Show that the limit (2.2) does not depend on the approximating sequence
u(n).

2.2 Let u ∈ E and t ≥ 0. Consider a partition π = {0 = t0 < t1 < · · · < tn = t}.
Show that, as |π| → 0,

n−1∑
j=0

( ∫ t j+1

t j

usdBs

)2 L1(Ω)−→
∫ t

0
u2

sds.

2.3 Let u ∈ L2
loc(P) and t ≥ 0. Consider a partition π = {0 = t0 < t1 < · · · < tn =

t}. Show that, as |π| → 0,

n−1∑
j=0

( ∫ t j+1

t j

usdBs

)2 P−→
∫ t

0
u2

sds.

2.4 Show Proposition 2.4.2.
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2.5 Let f ∈ C2
b(R) and

Xt = X0 +

∫ t

0
usdBs,

where u ∈ L2
loc(P). Show that, as n → ∞,

n−1∑
i=0

f ′(Xti )(Xti+1 − Xti )
L2(Ω)−→

∫ t

0
f ′(Xs)usdBs,

where ti = it/n, 0 ≤ i ≤ n.
2.6 Use Itô’s formula in order to compute E(B4

t ). Do it again for E(B6
t ). Write a

recurrence formula to compute E(Bn
t ) in terms of E(Bn−2

t ).
2.7 Show that, for any x ∈ R, the process

Xt =

∫ t

0
sign(Bs − x)dBs, t ≥ 0,

is a Brownian motion.
Hint: Apply Itô’s formula to the process exp(iλ(Xt − Xs)).

2.8 Let B be a Brownian motion. Using Itô’s formula, check whether the follow-
ing processes are martingales:

(a) X(1)
t = B3

t − 3tBt.
(b) X(2)

t = t2Bt − 2
∫ t

0 sBsds.

(c) X(3)
t = et/2 cos Bt.

(d) X(4)
t = et/2 sin Bt.

(e) X(5)
t = (Bt + t) exp(−Bt − 1

2 t).

2.9 Let B1 and B2 be two independent Brownian motions. Show that B1(t)B2(t)
is a martingale.

2.10 Let B be an m-dimensional Brownian motion. Consider a partition π = {0 =
t0 < t1 < · · · < tn = t} of the interval [0, t]. Show that, if i � j, as |π| → 0 we
have

n−1∑
k=0

(Bi
tk+1

− Bi
tk )(Bj

tk+1
− Bj

tk )
L2(Ω)−→ 0.

2.11 Prove Proposition 2.6.4.
2.12 Using the notation of Section 2.8, show that, for any process u ∈ L2

T (P̂),∫ T

0
utd̂Bt =

∫ T

0
uT−tdB̂t.

2.13 Find the stochastic integral representation on the time interval [0, T ] of the
following random variables:

BT , B2
T , eBT ,

∫ T

0
Btdt, B3

T , sin BT ,

∫ T

0
tB2

t dt.
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2.14 Let p(t, x) = 1/
√

1 − t exp(−x2/(2(1 − t))), for 0 ≤ t < 1, x ∈ R, and
p(1, x) = 0. Define Mt = p(t, Bt), where (Bt)t∈[0,1] is a Brownian motion.

(a) Show that, for each 0 ≤ t < 1,

Mt = M0 +

∫ t

0

∂p
∂x

(s, Bs)dBs.

(b) Set Ht = (∂p/∂x)(t, Bt). Show that
∫ 1

0 H2
t dt < ∞ almost surely, but

E
( ∫ 1

0
H2

t dt
)
= ∞.

2.15 Let B and B̃ be two independent Brownian motions. Fix t > 0 and consider
the Brownian motion B̂ = e−tB+

√
1 − e−2t B̃. Consider two random variables

X, Y taking values in the interval [a, b], where 0 < a < b, such that X is B̂-
measurable and Y is B-measurable. Fix p > 1 and set q = e2t(p − 1) + 1. Let
q′ be such that 1/q + 1/q′ = 1. Show that

E(XY) ≤ ‖X‖p‖Y‖q′ .

Hint: Consider the stochastic integral representations

Xp = E(Xp) +
∫ ∞

0
ϕsdB̂s,

Yq′ = E(Yq′ ) +
∫ ∞

0
ψsdBs,

and apply Itô’s formula to the function f (x, y) = x1/py1/q′ and to the martin-
gales

Mt = E(Xp) +
∫ t

0
ϕsdB̂s,

Nt = E(Yq′ ) +
∫ t

0
ψsdBs.
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Derivative and Divergence Operators

The Malliavin calculus is a differential calculus on a Gaussian probability
space. In this chapter we introduce the derivative and divergence operators
when the underlying process is a Brownian motion (Bt)t≥0.

3.1 Finite-Dimensional Case

We consider first the finite-dimensional case. That is, the probability space
(Ω,F , P) is such that Ω = Rn, F = B(Rn) is the Borel σ-field of Rn, and
P is the standard Gaussian probability with density p(x) = (2π)−n/2e−|x|

2/2.
In this framework we consider two differential operators. The first is the
derivative operator, which is simply the gradient of a differentiable func-
tion F : Rn → R:

∇F =
(
∂F
∂x1
, . . . ,

∂F
∂xn

)
.

The second differential operator is the divergence operator and is defined
on differentiable vector-valued functions u : Rn → Rn as follows:

δ(u) =
n∑

i=1

(
uixi − ∂ui

∂xi

)
= 〈u, x〉 − div u.

It turns out that δ is the adjoint of the derivative operator with respect to
the Gaussian measure P. This is the content of the next proposition.

Proposition 3.1.1 The operator δ is the adjoint of ∇; that is,

E(〈u,∇F〉) = E(Fδ(u))

if F : Rn → R and u : Rn → Rn are continuously differentiable functions
which, together with their partial derivatives, have at most polynomial
growth.

50
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Proof Integrating by parts, and using ∂p/∂xi = −xi p, we obtain∫
Rn
〈∇F, u〉pdx =

n∑
i=1

∫
Rn

∂F
∂xi

ui pdx

=

n∑
i=1

(
−

∫
Rn

F
∂ui

∂xi
pdx +

∫
Rn

Fuixi pdx
)

=

∫
Rn

Fδ(u)pdx.

This completes the proof. �

3.2 Malliavin Derivative

Let B = (Bt)t≥0 be a Brownian motion on a probability space (Ω,F , P) such
that F is the σ-field generated by B. Set H = L2(R+), and for any h ∈ H,
consider the Wiener integral

B(h) =
∫ ∞

0
h(t)dBt.

The Hilbert space H plays a basic role in the definition of the derivative
operator. In fact, the derivative of a random variable F : Ω → R takes
values in H, and (DtF)t≥0 is a stochastic process in L2(Ω; H).

We start by defining the derivative in a dense subset of L2(Ω). More
precisely, consider the set S of smooth and cylindrical random variables of
the form

F = f (B(h1), . . . , B(hn)), (3.1)

where f ∈ C∞
p (Rn) and hi ∈ H.

Definition 3.2.1 If F ∈ S is a smooth and cylindrical random variable of
the form (3.1), the derivative DF is the H-valued random variable defined
by

DtF =
n∑

i=1

∂ f
∂xi

(B(h1), . . . , B(hn))hi(t).

For instance, D(B(h)) = h and D(Bt1 ) = 1[0,t1], for any t1 ≥ 0.
This defines a linear and unbounded operator from S ⊂ L2(Ω) into

L2(Ω; H). Let us now introduce the divergence operator. Denote by SH

the class of smooth and cylindrical stochastic processes u = (ut)t≥0 of the
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form

ut =

n∑
j=1

F jh j(t), (3.2)

where F j ∈ S and hj ∈ H.

Definition 3.2.2 We define the divergence of an element u of the form
(3.2) as the random variable given by

δ(u) =
n∑

j=1

F jB(hj) −
n∑

j=1

〈DF j, hj〉H .

In particular, for any h ∈ H we have δ(h) = B(h).
As in the finite-dimensional case, the divergence is the adjoint of the

derivative operator, as is shown in the next proposition.

Proposition 3.2.3 Let F ∈ S and u ∈ SH. Then

E(Fδ(u)) = E(〈DF, u〉H).

Proof We can assume that F = f (B(h1) . . . , B(hn)) and

u =
n∑

j=1

gj(B(h1) . . . , B(hn))hj,

where h1, . . . , hn are orthonormal elements in H. In this case, the duality
relationship reduces to the finite-dimensional case proved in Proposition
3.1.1. �

We will make use of the notation DhF = 〈DF, h〉H for any h ∈ H and F ∈
S. The following proposition states the basic properties of the derivative
and divergence operators on smooth and cylindrical random variables.

Proposition 3.2.4 Suppose that u, v ∈ SH, F ∈ S, and h ∈ H. Then, if
(ei)i≥1 is a complete orthonormal system in H, we have

E(δ(u)δ(v)) = E(〈u, v〉H) + E
( ∞∑

i, j=1

Dei〈u, e j〉HDe j〈v, ei〉H

)
, (3.3)

Dh(δ(u)) = δ(Dhu) + 〈h, u〉H , (3.4)

δ(Fu) = Fδ(u) − 〈DF, u〉H . (3.5)

Property (3.3) can also be written as

E(δ(u)δ(v)) = E
( ∫ ∞

0
utvtdt

)
+ E

( ∫ ∞

0

∫ ∞

0
DsutDtvsdsdt

)
.
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Proof of Proposition 3.2.4 We first show property (3.4). Consider u =∑n
j=1 F jh j, where F j ∈ S and hj ∈ H for j = 1, . . . , n. Then, using

Dh(B(hj)) = 〈h, hj〉H , we obtain

Dh(δ(u)) = Dh

( n∑
j=1

F jB(hj) −
n∑

j=1

〈DF j, hj〉H

)
=

n∑
j=1

F j〈h, hj〉H +

n∑
j=1

(DhF jB(hj) − 〈Dh(DF j), hj〉H)

= 〈u, h〉H + δ(Dhu).

To show property (3.3), using the duality formula (Proposition 3.2.3) and
property (3.4), we get

E(δ(u)δ(v)) = E(〈v,D(δ(u))〉H)

= E
( ∞∑

i=1

〈v, ei〉H Dei (δ(u))
)

= E
( ∞∑

i=1

〈v, ei〉H

(
〈u, ei〉H + δ(Dei u)

))
= E(〈u, v〉H) + E

( ∞∑
i, j=1

Dei〈u, e j〉H Dej〈v, ei〉H

)
.

Finally, to prove property (3.5) we choose a smooth random variable G ∈ S
and write, using the duality relationship (Proposition 3.2.3),

E(δ(Fu)G) = E(〈DG, Fu〉H) = E(〈u,D(FG) −GDF〉H)

= E((δ(u)F − 〈u,DF〉H)G),

which implies the result because S is dense in L2(Ω). �

3.3 Sobolev Spaces

The next proposition will play a basic role in extending the derivative to
suitable Sobolev spaces of random variables.

Proposition 3.3.1 The operator D is closable from Lp(Ω) to Lp(Ω; H) for
any p ≥ 1.

Proof Assume that the sequence FN ∈ S satisfies

FN
Lp(Ω)−→ 0 and DFN

Lp(Ω;H)−→ η,



54 Derivative and Divergence Operators

as N → ∞. Then η = 0. Indeed, for any u =
∑N

j=1 G jh j ∈ SH such that
G jB(hj) and DG j are bounded, by the duality formula (Proposition 3.2.3),
we obtain

E(〈η, u〉H) = lim
N→∞ E(〈DFN , u〉H)

= lim
N→∞ E(FNδ(u)) = 0.

This implies that η = 0, since the set of u ∈ SH with the above properties
is dense in Lp(Ω; H) for all p ≥ 1. �

We consider the closed extension of the derivative, which we also denote
by D. The domain of this operator is defined by the following Sobolev
spaces. For any p ≥ 1, we denote by D1,p the closure of S with respect to
the seminorm

‖F‖1,p =

(
E(|F|p) + E

(∣∣∣∣∣ ∫ ∞

0
(DtF)2dt

∣∣∣∣∣p/2))1/p

.

In particular, F belongs toD1,p if and only if there exists a sequence Fn ∈ S
such that

Fn
Lp(Ω)−→ F and DFn

Lp(Ω;H)−→ DF,

as n → ∞. For p = 2, the space D1,2 is a Hilbert space with scalar product

〈F,G〉1,2 = E(FG) + E
( ∫ ∞

0
DtFDtGdt

)
.

In the same way we can introduce spaces D1,p(H) by taking the closure of
SH . The corresponding seminorm is denoted by ‖ · ‖1,p,H .

The Malliavin derivative satisfies the following chain rule.

Proposition 3.3.2 Let ϕ : R → R be a continuous differentiable function
such that |ϕ′(x)| ≤ C(1 + |x|α) for some α ≥ 0. Let F ∈ D1,p for some
p ≥ α + 1. Then, ϕ(F) belongs to D1,q, where q = p/(α + 1), and

D(ϕ(F)) = ϕ′(F)DF.

Proof Notice that |ϕ(x)| ≤ C′(1+ |x|α+1), for some constant C′, which im-
plies that ϕ(F) ∈ Lq(Ω) and, by Hölder’s inequality, ϕ′(F)DF ∈ Lq(Ω; H).
Then, to show the proposition it suffices to approximate F by smooth and
cylindrical random variables, and ϕ by ϕ∗αn, where αn is an approximation
of the identity. �

The chain rule can be extended to the case of Lipschitz functions (see
Exercise 3.3).
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We next define the domain of the divergence operator. We identify the
Hilbert space L2(Ω; H) with L2(Ω × R+).
Definition 3.3.3 The domain of the divergence operator Dom δ in L2(Ω)
is the set of processes u ∈ L2(Ω × R+) such that there exists δ(u) ∈ L2(Ω)
satisfying the duality relationship

E(〈DF, u〉H) = E(δ(u)F),

for any F ∈ D1,2.

Observe that δ is a linear operator such that E(δ(u)) = 0. Moreover, δ is
closed; that is, if the sequence un ∈ SH satisfies

un
L2(Ω;H)−→ u and δ(un)

L2(Ω)−→ G,

as n → ∞, then u belongs to Dom δ and δ(u) = G.
Proposition 3.2.4 can be extended to random variables in suitable Sobolev

spaces. Property (3.3) holds for u, v ∈ D1,2(H) ⊂ Dom δ (see Exercise 3.5)
and, in this case, for any u ∈ D1,2(H) we can write

E(δ(u)2) ≤ E
( ∫ ∞

0
(ut)2dt

)
+ E

( ∫ ∞

0

∫ ∞

0
(Dsut)2dsdt

)
= ‖u‖2

1,2,H .

Property (3.4) holds if u ∈ D1,2(H) and Dhu ∈ Dom δ (see Exercise 3.6).
Finally, property (3.5) holds if F ∈ D1,2, Fu ∈ L2(Ω; H), u ∈ Dom δ, and
the right-hand side is square integrable (see Exercise 3.7).

We can also introduce iterated derivatives and the corresponding Sobolev
spaces. The kth derivative DkF of a random variable F ∈ S is the k-
parameter process obtained by iteration:

Dk
t1,...tk F =

n∑
i1,...,ik=1

∂k f
∂xi1 · · · ∂xik

(B(h1), . . . , B(hn))hi1 (t1) · · · hik (tk).

For any p ≥ 1, the operator Dk is closable from Lp(Ω) into Lp(Ω; H⊗k) (see
Exercise 3.8), and we denote by Dk,p the closure of S with respect to the
seminorm

‖F‖k,p =

(
E(|F|p) + E

( k∑
j=1

∣∣∣∣∣ ∫
R

j
+

(Dj
t1,...,t j

F)2dt1 · · · dt j

∣∣∣∣∣p/2))1/p

.

For any k ≥ 1, we set Dk,∞ := ∩p≥2D
k,p, D∞,2 := ∩k≥1D

k,2, and D∞ :=
∩k≥1D

k,∞. Similarly, we can introduce the spaces Dk,p(H).
These spaces satisfy that, for any q ≥ p ≥ 2 and � ≥ k, D�,q ⊂ Dk,p.We

also have the following Hölder’s inequality for the ‖ · ‖k,p-seminorms.
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Proposition 3.3.4 Let p, q, r ≥ 2 such that 1/p + 1/q = 1/r. Let F ∈ Dk,p

and G ∈ Dk,q. Then FG belongs to Dk,r and

‖FG‖k,r ≤ cp,q,r‖F‖k,p‖G‖k,q.

Proof The result follows from the Leibnitz rule (see Exercise 3.9) and the
usual Hölder’s inequality. �

3.4 The Divergence as a Stochastic Integral

The Malliavin derivative is a local operator in the following sense. Let
[a, b] ⊂ R+ be fixed. We denote by F[a,b] the σ-field generated by the ran-
dom variables {Bs − Ba, s ∈ [a, b]}.
Lemma 3.4.1 Let F be a random variable in D1,2 ∩ L2(Ω,F[a,b], P). Then
DtF = 0 for almost all (t, ω) ∈ [a, b]c ×Ω.

Proof If F belongs to S ∩ L2(Ω,F[a,b], P) then this property is clear. The
general case follows by approximation. �

The following result, proved by Gaveau and Trauber (1982), says that
the divergence operator is an extension of Itô’s integral.

Theorem 3.4.2 We have L2(P) ⊂ Dom δ and, for any u ∈ L2(P), δ(u)
coincides with Itô’s stochastic integral

δ(u) =
∫ ∞

0
utdBt.

Proof Consider a simple process u of the form

ut =

n−1∑
j=0

φ j1(t j,t j+1](t),

where 0 ≤ t0 < t1 < · · · < tn and the random variables φ j ∈ S are Ft j -
measurable. Then δ(u) coincides with the Itô integral of u because, by (3.5),

δ(u) =
n−1∑
j=0

φ j(Bt j+1 − Bt j ) −
n−1∑
j=0

∫ t j+1

t j

Dtφ jdt =
n−1∑
j=0

φ j(Bt j+1 − Bt j ),

taking into account that Dtφ j = 0 if t > t j by Lemma 3.4.1. Then the
result follows by approximating any process in L2(P) by simple processes
(see Proposition 2.1.4), and approximating any φ j ∈ L2(Ω,Ft j , P) by Ft j -
measurable smooth and cylindrical random variables. �
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If u is not adapted, δ(u) coincides with an anticipating stochastic inte-
gral introduced by Skorohod (1975). Using techniques of Malliavin cal-
culus, Nualart and Pardoux (1988) developed a stochastic calculus for the
Skorohod integral.

If u and v are adapted then, for s < t, Dtvs = 0 and, for s > t, Dsut = 0.
As a consequence, property (3.3) leads to the isometry property of Itô’s
integral for adapted processes u, v ∈ D1,2(H):

E(δ(u)δ(v)) = E
( ∫ ∞

0
utvtdt

)
.

If u is an adapted process in D1,2(H) then, from property (3.4), we obtain

Dt

( ∫ ∞

0
usdBs

)
= ut +

∫ ∞

t
DtusdBs, (3.6)

because Dtus = 0 if t > s.
The next result shows that we can differentiate Lebesgue integrals of

stochastic processes.

Proposition 3.4.3 For any u ∈ D1,2(H) and h ∈ H, we have 〈u, h〉H ∈ D1,2

and

Dt〈u, h〉H = 〈Dtu, h〉H .

Proof Let u ∈ D1,2(H). Then there exists a sequence un ∈ SH that con-
verges to u in L2(Ω; H) and is such that the sequence Dun converges to Du
in L2(Ω; H ⊗ H). Now, let h ∈ H. Then the sequence 〈un, h〉H converges
to 〈u, h〉H in L2(Ω), and the sequence D〈un, h〉H converges to D〈u, h〉H in
L2(Ω; H), which concludes the proof. �

Example 3.4.4 Taking h = 1[0,T ], we get

Dt

∫ T

0
us ds =

∫ T

0
Dtus ds.

For example,

Dt

∫ T

0
Bs ds =

∫ T

0
DtBs ds = T − t.

3.5 Isonormal Gaussian Processes

So far, we have developed the Malliavin calculus with respect to Brown-
ian motion. In this case, the Wiener integral B(h) =

∫ ∞
0

h(t)dBt gives rise
to a centered Gaussian family indexed by the Hilbert space H = L2(R+).
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More generally, consider a separable Hilbert space H with scalar prod-
uct 〈·, ·〉H . An isonormal Gaussian process is a centered Gaussian family
H1 = {W(h), h ∈ H} satisfying

E(W(h)W(g)) = 〈h, g〉H ,

for any h, g ∈ H. Observe that H1 is a Gaussian subspace of L2(Ω). The
notion of isonormal Gaussian process was introduced by Segal (1954).

The Malliavin calculus can be developed in the framework of an isonor-
mal Gaussian process, and all the notions and properties that do not depend
on the fact that H = L2(R+) can be extended to this more general context.
For a complete exposition of the Malliavin calculus with respect to a gen-
eral isonormal Gaussian process we refer to Nualart (2006). We next give
several examples of isonormal Gaussian processes.

Example 3.5.1 Let (T,B, μ) be a measure space, where μ is a σ-finite
measure. Consider a centered Gaussian family of random variables

W = {W(A), A ∈ B, μ(A) < +∞},
with covariance

E(W(A) ∩ W(B)) = μ(A ∩ B).

Then W is called a white noise on (T,B, μ); this is a generalization of the
white noise in D ⊂ Rm (see Definition 1.3.1). The mapping 1A → W(A) can
be extended to a linear isometry from L2(T ) to the Gaussian space spanned
by W:

ϕ→
∫

T
ϕ(x)W(dx).

Example 3.5.2 Let X = (Xt)t≥0 be a continuous centered Gaussian pro-
cess with covariance function

R(s, t) = E(XtXs).

The Gaussian subspace generated by X can be identified with an isonormal
Gaussian process H1 = {X(h), h ∈ H}, where the separable Hilbert space
H is defined as follows. We denote by E the set of step functions on [0, T ].
Let H be the Hilbert space defined as the closure of E with respect to the
scalar product

〈1[0,t], 1[0,s]〉H = R(t, s).

The mapping 1[0,t] �→ Xt can be extended to an isometry h → X(h) between
H and H1.
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Example 3.5.3 A particular case of Example 3.5.2 is the fractional Brow-
nian motion, with Hurst parameter H ∈ (0, 1), denoted BH = (BH

t )t≥0.
By definition, BH is a centered Gaussian process with covariance function
given by

RH(t, s) := E(BH
t BH

s ) = 2−1(t2H + s2H − |t − s|2H). (3.7)

This process was introduced by Kolmogorov (1940) and was studied by
Mandelbrot and Van Ness (1968), where a stochastic integral representa-
tion in terms of a two-sided Brownian motion on the whole real line was
established.

One can find a square integrable kernel KH, whose precise expression is
given below, such that∫ t∧s

0
KH(t, u)KH(s, u)du = RH(t, s).

This implies the existence of the fractional Brownian through the integral
representation BH

t =
∫ t

0
KH(t, s)dWs, where W = (Wt)t≥0 is a Brownian

motion. Conversely, given BH, we will show that there exists a Brownian
motion W such that this integral representation holds.

Note that, for H = 1
2 , BH is a standard Brownian motion. However, for

H � 1
2 the increments are non-independent and are positively correlated for

H > 1
2 and negatively correlated for H < 1

2 .
The form of the covariance function entails that

E(|BH
t − BH

s |2) = |t − s|2H.

This implies that the process BH has stationary increments. Moreover, by
Kolmogorov’s continuity criterion (Theorem A.4.1), the trajectories of BH

are γ-Hölder continuous on [0, T ] for any γ < H and T > 0. Moreover, the
process is self-similar in the sense that for any a > 0, the processes (BH

t )t≥0

and (a−HBH
at)t≥0 have the same distribution.

The Gaussian subspace generated by BH can be identified with the iso-
normal Gaussian process defined in Example 3.5.2. However, we do not
know whether the elements of the Hilbert space H introduced in Example
3.5.2 can be considered as real-valued functions. This turn out to be true
for H < 1

2 but false when H > 1
2 , as is explained below.

In the case H > 1
2 , one can show that the kernel KH(t, s) is given by, for

s < t,

KH(t, s) = cHs1/2−H
∫ t

s
rH−3/2(r − s)H−1/2dr,
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where cH is defined as

cH =

( H(2H − 1)
β(2 − 2H,H − 1

2 )

)1/2

.

Then, the elements of H may be not functions but distributions of negative
order; see Pipiras and Taqqu (2000). One can show that

L2([0, T ]) ⊂ L1/H([0, T ]) ⊂ |H| ⊂ H,

where |H| is the Banach space of measurable functions ϕ on [0, T ] such
that

‖ϕ‖2
|H| = H(2H − 1)

∫ T

0

∫ T

0
|r − u|2H−2|ϕ(r)||ϕ(u)|dudr < ∞.

In the case where H < 1
2 , the kernel KH(t, s) is given by, for s < t,

KH(t, s) = cH

{( t
s

)H−1/2

(t− s)H−1/2 −
(1
2
−H

)
s1/2−H

∫ t

s
rH−3/2(r− s)H−1/2dr

}
,

where

cH =

( 2H
(1 − 2H)β(1 − 2H,H + 1

2 )

)1/2

.

Then, for all α > 1
2 − H, we have that

Cα([0, T ]) ⊂ H ⊂ L2([0, T ]).

Consider the operator K∗
H from E to L2([0, T ]) defined as

K∗
H1[0,t](s) = KH(t, s)1[0,t](s).

Then K∗
H is a linear isometry between E and L2([0, T ]) that can be extended

to the Hilbert space H.
In the case H > 1

2 the operator K∗
H can be expressed in terms of fractional

integrals, while in the case H > 1
2 it can be expressed in terms of fractional

derivatives. In both cases, one can show that, for any a ∈ [0, T ], the indica-
tor function 1[0,a] belongs to the image of K∗

H and thus Im(K∗
H) = L2([0, T ]).

Now, consider the family W = {W(ϕ), ϕ ∈ H} defined as

W(ϕ) = BH((K∗
H)−1ϕ).

It is easy to show that W is a family of centered Gaussian random variables
with covariance given by

E(W(ϕ)W(ψ)) = 〈ϕ, ψ〉L2([0,T ]) for all ϕ, ψ ∈ L2([0, T ]).

In particular, the process Wt = BH((K∗
H)−11[0,t]) is a Brownian motion.
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Moreover, for any ϕ ∈ H, the stochastic integral BH(ϕ) admits the fol-
lowing representation as a Wiener integral:

BH(ϕ) =
∫ T

0
K∗

Hϕ(s)dWs.

In particular,

BH
t =

∫ t

0
KH(t, s)dWs.

Exercises

3.1 Consider the family P of random variables of the form
p(B(h1) . . . , B(hn)), where hi ∈ H and p is a polynomial. Show that P is
dense in Lq(Ω) for all q ≥ 1.
Hint: Assume that q > 1 and let r be the conjugate of q. Show that if Z ∈
Lr(Ω) satisfies E(ZY) = 0 for all Y ∈ P then Z = 0.

3.2 Show that Definition 3.2.1 does not depend on the choice of the representa-
tion for F.

3.3 Let ϕ : R→ R be a function such that

|ϕ(x) − ϕ(y)| ≤ K|x − y|,
for all x, y ∈ R. Let F be a random variable in the space D1,2. Show that ϕ(F)
belongs to D1,2 and that there exists a random variable G bounded by K such
that

D(ϕ(F)) = GDF.

Moreover, show that when the law of the random variable F is absolutely
continuous with respect to the Lebesgue measure, then G = ϕ′(F).
Hint: Approximate ϕ by the sequence ϕn = ϕ ∗ αn, where αn is an approxi-
mation of the identity, apply the chain rule in Proposition 3.3.2 to the random
variable F and the function ϕn, and use Corollary 4.2.5 to conclude.

3.4 Let X = (Xt)t∈[0,1] be a continuous centered Gaussian process. Assume that
a.s. X attains its maximum on a unique random point T at [0, 1]. Show that
the random variable M = supt∈[0,1] Xt belongs to the space D1,2 and that
Dt M = 1[0,T ](t).
Hint: Approximate the supremum of X by the maximum on a finite set, and
use the chain rule for Lipschitz functions (Exercise 3.3), and Corollary 4.2.5.

3.5 Show that, for any u, v ∈ D1,2(H),

E(δ(u)δ(v)) = E
( ∫ ∞

0
utvtdt

)
+ E

( ∫ ∞

0

∫ ∞

0
DsutDtvsdsdt

)
.
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3.6 Suppose that u ∈ D2,2(H) and let h ∈ H. Show that Dhu belongs to the
domain of the divergence, δ(u) belongs to D1,2, and

Dh(δ(u)) = δ(Dhu) + 〈h, u〉H .

3.7 Show that, for any F ∈ D1,2 and u ∈ Dom δ such that Fu ∈ L2(Ω; H),

δ(Fu) = Fδ(u) − 〈DF, u〉H ,

provided that the right-hand side is square integrable.
3.8 Show that, for any p ≥ 1, the operator Dk is closable from Lp(Ω) into

Lp(Ω; H⊗k).
3.9 Prove the following Leibnitz rule for an iterated derivative: for any random

variables F,G ∈ S and any k ≥ 2,

Dk(FG) =
k∑

i=0

(
k
i

)
DiFDk−iG.
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Wiener Chaos

In this chapter we present the Wiener chaos expansion, which provides an
orthogonal decomposition of random variables in L2(Ω) in terms of multi-
ple stochastic integrals. We then compute the derivative and the divergence
operators, introduced in Chapter 3, on the Wiener chaos expansion. This
allows us to derive further properties of these two operators.

4.1 Multiple Stochastic Integrals

Recall that B = (Bt)t≥0 is a Brownian motion defined on a probability space
(Ω,F , P) such that F is generated by B. Let L2

s(R
n
+) be the space of sym-

metric square integrable functions f : Rn
+ → R. If f : Rn

+ → R, we define
its symmetrization by

f̃ (t1, . . . , tn) =
1
n!

∑
σ

f (tσ(1), . . . , tσ(n)),

where the sum runs over all permutations σ of {1, 2, . . . , n}. Observe that

‖ f̃ ‖L2(Rn
+) ≤ ‖ f ‖L2(Rn

+).

Definition 4.1.1 The multiple stochastic integral of f ∈ L2
s(R

n
+) is defined

as the iterated stochastic integral

In( f ) = n!
∫ ∞

0

∫ tn

0
· · ·

∫ t2

0
f (t1, . . . , tn)dBt1 · · · dBtn .

Note that if f ∈ L2(R+), I1( f ) = B( f ) is the Wiener integral of f .
If f ∈ L2(Rn

+) is not necessarily symmetric, we define

In( f ) = In( f̃ ).

Using the properties of Itô’s stochastic integral, one can easily check (see

63
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Exercise 4.1) the following isometry property: for all n,m ≥ 1, f ∈ L2(Rn
+),

and g ∈ L2(Rm
+ ),

E(In( f )Im(g)) =

⎧⎪⎪⎨⎪⎪⎩ 0 if n � m,
n!〈 f̃ , g̃〉L2(Rn

+) if n = m.
(4.1)

Next, we want to compute the product of two multiple integrals. Let
f ∈ L2

s(R
n
+) and g ∈ L2

s(R
m
+ ). For any r = 0, . . . , n ∧ m, we define the

contraction of f and g of order r to be the element of L2(Rn+m−2r
+ ) defined

by

( f ⊗r g) (t1, . . . , tn−r, s1, . . . , sm−r)

=

∫
R

r
+

f (t1, . . . , tn−r, x1, . . . , xr)g(s1, . . . , sm−r, x1, . . . , xr)dx1 · · · dxr.

We denote by f ⊗̃r g the symmetrization of f ⊗r g. Then, the product of
two multiple stochastic integrals satisfies the following formula:

In( f )Im(g) =
n∧m∑
r=0

r!
(
n
r

)(
m
r

)
In+m−2r( f ⊗r g). (4.2)

The nth Hermite polynomial is defined by

hn(x) = (−1)nex2/2 dn

dxn (e−x2/2). (4.3)

The first few Hermite polynomials are h0(x) = 1, h1(x) = x, h2(x) = x2 − 1,
h3(x) = x3 − 3x, . . . It is easy to see (see Exercise 4.3) that these polyno-
mials satisfy the following series expansion:

exp
(
tx − t2

2

)
=

∞∑
n=0

tn

n!
hn(x). (4.4)

The next result gives the relation between multiple stochastic integrals
and Hermite polynomials.

Proposition 4.1.2 For any g ∈ L2(R+), we have

In(g⊗n) = ‖g‖n
L2(R+)hn

( B(g)
‖g‖L2(R+)

)
,

where g⊗n(t1, . . . , tn) = g(t1) · · · g(tn).

Proof We can assume that ‖g‖L2(R+) = 1. We proceed by induction over
n. The case n = 1 is immediate. We then assume that the result holds for
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1, . . . , n. Using the product rule (4.2), the induction hypothesis, and the
recursive relation for the Hermite polynomials (4.20), we get

In+1(g⊗(n+1)) = In(g⊗n)I1(g) − nIn−1(g⊗(n−1))

= hn(B(g))B(g) − nhn−1(B(g))

= hn+1(B(g)),

which concludes the proof. �

The next result is the Wiener chaos expansion.

Theorem 4.1.3 Every F ∈ L2(Ω) can be uniquely expanded into a sum of
multiple stochastic integrals as follows:

F = E(F) +
∞∑

n=1

In( fn),

where fn ∈ L2
s(R

n
+).

For any n ≥ 1, we denote by Hn the closed subspace of L2(Ω) formed
by all multiple stochastic integrals of order n. For n = 0, H0 is the space of
constants. Observe that H1 coincides with the isonormal Gaussian process
{B( f ), f ∈ L2(R+)}. Then Theorem 4.1.3 can be reformulated by saying
that we have the orthogonal decomposition

L2(Ω) = ⊕∞n=0Hn.

Proof of Theorem 4.1.3 It suffices to show that if a random variable G ∈
L2(Ω) is orthogonal to ⊕∞n=0Hn then G = 0. This assumption implies that G
is orthogonal to all random variables of the form B(g)k, where g ∈ L2(R+),
k ≥ 0. This in turn implies that G is orthogonal to all the exponentials
exp(B(h)), which form a total set in L2(Ω). So G = 0. �

4.2 Derivative Operator on the Wiener Chaos

Let us compute the derivative of a multiple stochastic integral.

Proposition 4.2.1 Let f ∈ L2
s(R

n
+). Then In( f ) ∈ D1,2 and

DtIn( f ) = nIn−1( f (·, t)).
Proof Assume that f = g⊗n, with ‖g‖L2(R+) = 1. Then, using Proposition
4.1.2 and the property (4.19) below of Hermite polynomials, we have

DtIn( f ) = Dt(hn(B(g))) = h′n(B(g))Dt(B(g)) = nhn−1(B(g))g(t)

= ng(t)In−1(g⊗(n−1)) = nIn−1( f (·, t)).
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The general case follows using linear combinations and a density argument.
This finishes the proof. �

Moreover, applying (4.1), we have

E
( ∫
R+

(DtIn( f ))2dt
)
= n2

∫
R+

E(In−1( f (·, t))2)dt

= n2(n − 1)!
∫
R+

‖ f (·, t)‖2
L2(Rn−1

+ )dt

= nn!‖ f ‖2
L2(Rn

+)

= nE(In( f )2). (4.5)

As a consequence of Proposition 4.2.1 and (4.5), we deduce the follow-
ing result.

Proposition 4.2.2 Let F ∈ L2(Ω) with Wiener chaos expansion F =∑∞
n=0 In( fn). Then F ∈ D1,2 if and only if

E(‖DF‖2
H) =

∞∑
n=1

nn!‖ fn‖2
L2(Rn

+) < ∞,

and in this case

DtF =
∞∑

n=1

nIn−1( fn(·, t)).

Similarly, if k ≥ 2, one can show that F ∈ Dk,2 if and only if

∞∑
n=1

nkn!‖ fn‖2
L2(Rn

+) < ∞,

and in this case

Dk
t1,...,tk F =

∞∑
n=k

n(n − 1) · · · (n − k + 1)In−k( fn(· , t1, . . . , tk)),

where the series converges in L2(Ω × Rk
+). As a consequence, if F ∈ D∞,2

then the following formula, due to Stroock (1987) (see Exercise 4.7), al-
lows us to compute explicitly the kernels in the Wiener chaos expansion of
F:

fn =
1
n!

E(DnF). (4.6)
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Example 4.2.3 Consider F = B3
1. Then

f1(t1) = E(Dt1 B3
1) = 3E(B2

1)1[0,1](t1) = 31[0,1](t1),

f2(t1, t2) = 1
2 E(D2

t1,t2 B3
1) = 3E(B1)1[0,1](t1 ∨ t2) = 0,

f3(t1, t2, t3) = 1
6 E(D3

t1,t2,t3 B3
1) = 1[0,1](t1 ∨ t2 ∨ t3),

and we obtain the Wiener chaos expansion

B3
1 = 3B1 + 6

∫ 1

0

∫ t1

0

∫ t2

0
dBt1 dBt2 dBt3 .

Proposition 4.2.2 implies the following characterization of the space
D

1,2.

Proposition 4.2.4 Let F ∈ L2(Ω). Assume that there exists an element
u ∈ L2(Ω; H) such that, for all G ∈ S and h ∈ H, the following duality
formula holds:

E(〈u, h〉HG) = E(Fδ(Gh)). (4.7)

Then F ∈ D1,2 and DF = u.

Proof Let F =
∑∞

n=0 In( fn), where fn ∈ L2
s(R

n
+). By the duality formula

(Proposition 3.2.3) and Proposition 4.2.1, we obtain

E(Fδ(Gh)) =
∞∑

n=0

E(In( fn)δ(Gh)) =
∞∑

n=0

E(〈D(In( fn)), h〉HG)

=

∞∑
n=1

E(〈nIn−1( fn(·, t)), h〉HG).

Then, by (4.7), we get
∞∑

n=1

E(〈nIn−1( fn(·, t)), h〉HG) = E(〈u, h〉HG),

which implies that the series
∑∞

n=1 nIn−1( fn(·, t)) converges in L2(Ω; H) and
its sum coincides with u. Proposition 4.2.2 allows us to conclude the proof.

�

Corollary 4.2.5 Let (Fn)n≥1 be a sequence of random variables in D1,2

that converges to F in L2(Ω) and is such that

sup
n

E(‖DFn‖2
H) < ∞.

Then F belongs to D1,2 and the sequence of derivatives (DFn)n≥1 converges
to DF in the weak topology of L2(Ω; H).
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Proof The assumptions imply that there exists a subsequence (Fn(k))k≥1

such that the sequence of derivatives (DFn(k))k≥1 converges in the weak
topology of L2(Ω; H) to some element α ∈ L2(Ω; H). By Proposition 4.2.4,
it suffices to show that, for all G ∈ S and h ∈ H,

E(〈α, h〉HG) = E(Fδ(Gh)). (4.8)

By the duality formula (Proposition 3.2.3), we have

E(〈DFn(k), h〉HG) = E(Fn(k)δ(Gh)).

Then, taking the limit as k tends to infinity, we obtain (4.8), which con-
cludes the proof. �

The next proposition shows that the indicator function of a set A ∈ F
such that 0 < P(A) < 1 does not belong to D1,2.

Proposition 4.2.6 Let A ∈ F and suppose that the indicator function of
A belongs to the space D1,2. Then, P(A) is zero or one.

Proof Consider a continuously differentiable function ϕ with compact
support, such that ϕ(x) = x2 for each x ∈ [0, 1]. Then, by Proposition
3.3.2, we can write

D1A = D[(1A)2] = D[ϕ(1A)] = 21AD1A.

Therefore D1A = 0 and, from Proposition 4.2.2, we deduce that 1A = P(A),
which completes the proof. �

4.3 Divergence on the Wiener Chaos

We now compute the divergence operator on the Wiener chaos expansion.
A square integrable stochastic process u = (ut)t≥0 ∈ L2(Ω × R+) has an
orthogonal expansion of the form

ut =

∞∑
n=0

In( fn(·, t)),

where f0(t) = E(ut) and, for each n ≥ 1, fn ∈ L2(Rn+1
+ ) is a symmetric

function in the first n variables.

Proposition 4.3.1 The process u belongs to the domain of δ if and only if
the series

δ(u) =
∞∑

n=0

In+1( f̃n) (4.9)
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converges in L2(Ω).

Proof Suppose that G = In(g) is a multiple stochastic integral of order
n ≥ 1, where g is symmetric. Then

E(〈u,DG〉H) =
∫
R+

E
(
In−1( fn−1(·, t))nIn−1(g(·, t)))dt

= n(n − 1)!
∫
R+

〈 fn−1(·, t), g(·, t)〉L2(Rn−1
+ ) dt

= n!〈 fn−1, g〉L2(Rn
+) = n!〈 f̃n−1, g〉L2(Rn

+)

= E(In( f̃n−1)In(g)) = E(In( f̃n−1)G).

If u ∈ Dom δ, we deduce that

E(δ(u)G) = E(In( f̃n−1)G)

for every G ∈ Hn. This implies that In( f̃n−1) coincides with the projection
of δ(u) on the nth Wiener chaos. Consequently, the series in (4.9) converges
in L2(Ω) and its sum is equal to δ(u). The converse can be proved by similar
arguments. �

4.4 Directional Derivative

Suppose that (Ω,F , P) is the Wiener space introduced in Section 1.4. The
Malliavin derivative can be interpreted as a directional derivative in the
direction of functions in the Cameron–Martin space, defined as

H =
{
g ∈ Ω : g(t) =

∫ t

0
ġ(s)ds , ġ ∈ L2(R+)

}
.

For any fixed g ∈ H , we consider the shift transformation τg : Ω → Ω
defined by τg(ω) = ω + g. Notice that, for all h ∈ H,

τg(B(h)) = B(h) + 〈h, ġ〉H .

By Girsanov’s theorem (Theorem 2.10.3), there exists a probability Q,
equivalent to P, such that the process Bt + g(t) is a Brownian motion under
Q. Therefore, if F ∈ L2(Ω), the random variable F ◦ τg(ω) = F(ω + g) is
well defined almost surely.

Definition 4.4.1 We define the directional derivative of F ∈ L2(Ω) in the
direction g ∈ H as the following limit in probability:

D̃gF = lim
ε→0

1
ε

(F ◦ τεg − F),
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if it exists.

We next define the space D̃1,2 as the set of random variables F ∈ L2(Ω)
satisfying:

(1) for any g ∈ H , there exists a version of the process (Fg ◦ τεg)ε≥0

whose trajectories are absolutely continuous with respect to the Lebesgue
measure;

(2) there exists a process u ∈ L2(Ω × R+) such that for any g ∈ H the
directional derivative D̃gF exists, and D̃gF = 〈u, ġ〉H .

The following characterization of the space D1,2 is due to Sugita (1985).

Theorem 4.4.2 We have D1,2 = D̃1,2, and the Malliavin derivative of
F ∈ D̃1,2 is DF = u, where u is the process appearing in (2).

Proof We first show that D1,2 ⊂ D̃1,2. Let F ∈ D1,2. It suffices to show that
F satisfies conditions (1) and (2). We start by proving condition (2). Since
F ∈ D1,2, there exists a sequence Fn in S that converges to F in L2(Ω)
and for which the sequence DFn converges to DF in L2(Ω; H). We now fix
g ∈ H and ε > 0, and write

E
(∣∣∣∣∣1ε (F ◦ τεg − F) − 〈DF, ġ〉H

∣∣∣∣∣) ≤E
(∣∣∣∣∣1ε (F ◦ τεg − F) − 1

ε
(Fn ◦ τεg − Fn)

∣∣∣∣∣)
+ E

(∣∣∣∣∣1ε (Fn ◦ τεg − Fn) − 〈DFn, ġ〉H

∣∣∣∣∣)
+ E(|〈DFn, ġ〉H − 〈DF, ġ〉H |).

(4.10)

Clearly, the third term on the right-hand side of (4.10) converges to 0 as
n tends to infinity. For fixed n, the second term converges to 0 as ε → 0
because Fn ∈ S. Thus, it suffices to show that the first term converges to
0 as n tends to infinity uniformly in ε ∈ (0, 1]. Since Fn ∈ S, it is easy to
show that

1
ε

(Fn ◦ τεg − Fn) =
1
ε

∫ ε

0
〈DFn ◦ ταg, ġ〉Hdα.

By Girsanov’s theorem (Theorem 2.10.3), taking the limit in L1(Ω) as n →
∞ of each member in the above equality yields

1
ε

(F ◦ τεg − F) =
1
ε

∫ ε

0
〈DF ◦ ταg, ġ〉Hdα. (4.11)
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Finally,

sup
ε∈(0,1]

E
(∣∣∣∣∣1ε

∫ ε

0
〈DF ◦ ταg, ġ〉Hdα −

∫ ε

0
〈DFn ◦ ταg, ġ〉Hdα

∣∣∣∣∣)
≤ ‖ġ‖H sup

α∈(0,1]
E(‖DFn − DF‖H ◦ ταg),

which converges to zero as n → ∞ by Girsanov’s theorem. We conclude
that F satisfies condition (2) with u = DF.

Furthermore, condition (2) is an immediate consequence of (4.11).
We now show that D̃1,2 ⊂ D1,2. Let F ∈ L2(Ω) and g ∈ H , and assume

that (1) and (2) hold. We need to show that F belongs to D1,2 and that
DF = u, where u is the process in (2). We divide the proof into steps.

Step 1 Fix g ∈ H . Condition (1) implies that there exists a version of the
process (F ◦ τεg)ε≥0 which is differentiable almost everywhere in R. That
is, for all ω ∈ Ω and for almost all ε ∈ R+,

d
dε

(F ◦ τεg)(ω) = lim
α→0

1
α

(F ◦ τ(ε+α)g(ω) − F ◦ τεg(ω)). (4.12)

Then, by Fubini’s theorem, this implies that there exists a Borel set N ⊂ R
with �(N) = 0 such that, for all ε � N, (4.12) holds for almost all ω ∈ Ω.

By Definition 4.4.1, we get the convergence in probability

lim
α→0

1
α

(F ◦ ταg − F) = D̃gF.

As a consequence, by Girsanov’s theorem we obtain the following conver-
gence in probability for any ε ∈ R

lim
α→0

1
α

(F ◦ τ(α+ε)g − F ◦ τεg) = (D̃gF) ◦ τεg. (4.13)

Then, from (4.12) and (4.13), we deduce that, for almost all (ε, ω),

d
dε

(F ◦ τεg)(ω) = (D̃gF) ◦ τεg(ω). (4.14)

Step 2 By Proposition 4.2.4, it suffices to show that there exists u ∈
L2(Ω × R+) such that, for all G ∈ S and h ∈ H,

E(〈u, h〉HG) = E(Fδ(Gh)). (4.15)

By (2), (4.15) is equivalent to showing that

E(D̃gFG) = E(Fδ(Gh)), (4.16)

where ġ = h.
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Step 3 Using that an absolutely continuous function is the integral of its
derivative, and applying (4.14), we can write

D̃gF = lim
α→0

1
α

(F ◦ ταg − F) = lim
α→0

1
α

∫ α

0
(D̃gF) ◦ τεgdε, (4.17)

where the convergence holds in probability. Applying Girsanov’s theorem,
one can show that

sup
ε∈(0,1]

∥∥∥(D̃gF) ◦ τεg
∥∥∥

q
< ∞,

for any 1 ≤ q < 2. Therefore, the convergence in (4.17) is in Lq(Ω) for all
1 ≤ q < 2.

Step 4 By Girsanov’s theorem,

1
α

(
E((F◦ταg)G)−E(FG)

)
= E

(
F

1
α

(
(G◦τ−αg) exp

(
αB(h)− 1

2α
2‖h‖2

H
)−G

))
.

Moreover, we have, almost surely and in Lp(Ω) for any p ≥ 1,

lim
α→0

1
α

(
(G ◦ τ−αg) exp

(
αB(h) − 1

2α
2‖h‖2

H
) −G

)
=

d
dα

(
(G ◦ τ−αg) exp

(
αB(h) − 1

2α
2‖h‖2

H
))∣∣∣∣∣
α=0

= B(h)G − 〈DG, h〉H = δ(Gh).

Taking into account (4.17), this implies that

E(D̃gFG) = lim
α→0

1
α

E((F ◦ ταg − F)G) = E(Fδ(Gh)),

which concludes the proof of (4.16). �

Exercises

4.1 Show that, for all n,m ≥ 1, f ∈ L2(Rn
+), and g ∈ L2(Rm

+ ),

E(In( f )Im(g)) = n!〈 f̃ , g̃〉L2(Rn
+)1{n=m}.

4.2 Using Itô’s formula, show that, for any f , g ∈ L2
s (R2
+),

I2( f )I2(g) =
2∑

r=0

r!
(
2
r

)(
2
r

)
I4−2r( f ⊗r g).

4.3 Check that the Hermite polynomials satisfy

exp
(
tx − t2

2

)
=

∞∑
n=0

tn

n!
hn(x). (4.18)



Exercises 73

4.4 Use (4.18) to show the following properties of the Hermite polynomials:

h′n(x) = nhn−1(x), (4.19)

hn+1(x) = xhn(x) − nhn−1(x), (4.20)

hn(−x) = (−1)nhn(x).

4.5 For every n we define the extended Hermite polynomial hn(x, λ) by

hn(x, λ) = λn/2hn

( x√
λ

)
, for x ∈ R and λ > 0.

Check that

exp
(
tx − t2λ

2

)
=

∞∑
n=0

tn

n!
hn(x, λ).

Show that, for any g ∈ L2(R+),

In(g⊗n) = hn(B(g), ‖g‖2
L2(R+)).

4.6 Show that the process (hn(Bt, t))t≥0 is a martingale.
4.7 Show that if F ∈ D∞,2 then the kernels in the Wiener chaos expansion of F

satisfy the following formula:

fn =
1
n!

E(DnF).

4.8 Let F = exp
(
B(h) − 1

2

∫
R+

h2(s)ds
)
, h ∈ H. Compute the iterated derivatives

of F and the kernels of the Wiener chaos expansion.
4.9 Compute the Wiener chaos expansions of the following random variables:

eBT−T/2, B5
T ,

∫ 1

0
(t3B3

t + 2tB2
t )dBt,

∫ 1

0
teBt dBt.

4.10 Let F ∈ D1,2 be a random variable such that E(F−2) < ∞. Show that P(F >
0) is zero or one.
Hint: Using the duality relation, compute E(sign(F)δ(u)), where u is an ar-
bitrary bounded process in the domain of δ, using an approximation of the
sign function.
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Ornstein–Uhlenbeck Semigroup

In this chapter we describe the main properties of the Ornstein–Uhlenbeck
semigroup and its generator. We then give the relationship between the
Malliavin derivative, the divergence operator, and the Ornstein–Uhlenbeck
semigroup generator. This will lead to an important integration-by-parts
formula that is crucial in applications. In particular, we present an explicit
formula for the density of a centered random variable, which is a conse-
quence of this integration-by-parts formula and can be used to derive upper
and lower bounds for the density.

5.1 Mehler’s Formula

Let B = (Bt)t≥0 be a Brownian motion on a probability space (Ω,F , P)
such that F is generated by B. Let F be a random variable in L2(Ω) with
the Wiener chaos decomposition F =

∑∞
n=0 In( fn), fn ∈ L2

s(R
n
+).

Definition 5.1.1 The Ornstein–Uhlenbeck semigroup is the one-parameter
semigroup (Tt)t≥0 of operators on L2(Ω) defined by

Tt(F) =
∞∑

n=0

e−ntIn( fn).

An alternative and useful expression for the Ornstein–Uhlenbeck semi-
group is Mehler’s formula:

Proposition 5.1.2 Let B′ = (B′
t)t≥0 be an independent copy of B. Then,

for any t ≥ 0 and F ∈ L2(Ω), we have

Tt(F) = E′(F(e−tB +
√

1 − e−2tB′)), (5.1)

where E′ denotes the mathematical expectation with respect to B′.

Proof Both Tt in Definition 5.1.1 and the right-hand side of (5.1) give
rise to linear contraction operators on Lp(Ω), for all p ≥ 1. For the first
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operator, this is clear. For the second, using Jensen’s inequality it follows
that, for any p ≥ 1,

E(|Tt(F)|p) = E(|E′(F(e−tB +
√

1 − e−2tB′))|p)

≤ E(E′(|F(e−tB +
√

1 − e−2tB′)|p)) = E(|F|p).

Thus, it suffices to show (5.1) for random variables of the form
F = exp

(
λB(h) − 1

2λ
2
)
, where B(h) =

∫
R+

htdBt, h ∈ H, is an element
of norm one, and λ ∈ R. We have, using formula (4.4),

E′
(

exp
(
e−tλB(h) +

√
1 − e−2tλB′(h) − 1

2λ
2
))

= exp
(
e−tλB(h) − 1

2 e−2tλ2
)
=

∞∑
n=0

e−nt λ
n

n!
hn (B(h)) = TtF,

because

F =
∞∑

n=0

λn

n!
hn (B(h))

and hn(B(h)) = In(h⊗n) (see Proposition 4.1.2). This completes the proof.
�

Mehler’s formula implies that the operator Tt is nonnegative. Moreover,
Tt is symmetric, that is,

E(GTt(F)) = E(FTt(G)) =
∞∑

n=0

e−ntE(In( fn)In(gn)),

where F =
∑∞

n=0 In( fn) and G =
∑∞

n=0 In(gn).
The Ornstein–Uhlenbeck semigroup has the following hypercontractiv-

ity property, which is due to Nelson (1973). We provide below a proof
of this property using Itô’s formula, according to the approach of Neveu
(1976).

Theorem 5.1.3 Let F ∈ Lp(Ω), p > 1, and q(t) = e2t(p − 1) + 1 > p,
t > 0. Then

‖TtF‖q(t) ≤ ‖F‖p.

Proof Let q′ be such that 1/q + 1/q′ = 1. It suffices to show that

|E((TtF)G)| ≤ ‖F‖p‖G‖q′ , (5.2)

for any F ∈ Lp(Ω) and G ∈ Lq′(Ω). Because the operator Tt satisfies |TtF| ≤
|F|, we can assume that the random variables F and G are nonnegative. By
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an approximation argument, we can also assume that 0 < a ≤ F,G ≤ b <
∞. Let B and B̃ be independent Brownian motions and set B̂ = e−tB +√

1 − e−2t B̃. Then, using Mehler’s formula (5.1),

E((TtF)G) = E(Ẽ(F(B̂))G) = E(F(B̂)G),

and inequality (5.2) follows from Exercise 2.15. �

As a consequence of the hypercontractivity property, for any 1 < p <
q < ∞ the norms ‖ · ‖p and ‖ · ‖q are equivalent on any Wiener chaos Hn. In
fact, putting q = e2t(p−1)+1 > p with t > 0, we obtain, for every F ∈ Hn,

e−nt‖F‖q = ‖TtF‖q ≤ ‖F‖p,

which implies that

‖F‖q ≤
(

q − 1
p − 1

)n/2

‖F‖p. (5.3)

Moreover, for any n ≥ 1 and 1 < p < ∞, the orthogonal projection onto
the nth Wiener chaos Jn is bounded in Lp(Ω), and

‖JnF‖p ≤
⎧⎪⎪⎨⎪⎪⎩ (p − 1)n/2‖F‖p if p > 2,

(p − 1)−n/2‖F‖p if p < 2.
(5.4)

In fact, suppose first that p > 2 and let t > 0 be such that p− 1 = e2t. Using
the hypercontractivity property with exponents p and 2, we obtain

‖JnF‖p = ent‖Tt JnF‖p ≤ ent‖JnF‖2 ≤ ent‖F‖2 ≤ ent‖F‖p.

If p < 2, we have

‖JnF‖p = sup
‖G‖q≤1

E((JnF)G) ≤ ‖F‖p sup
‖G‖q≤1

‖JnG‖q ≤ ent‖F‖p,

where q is the conjugate of p, and q − 1 = e2t.
As an application we can establish the following lemma.

Lemma 5.1.4 Fix an integer k ≥ 1 and a real number p > 1. Then, there
exists a constant cp,k such that, for any random variable F ∈ Dk,2,

‖E(DkF)‖H⊗k ≤ cp,k‖F‖p.

Proof Suppose that F =
∑∞

n=0 In( fn). Then, by Stroock’s formula (4.6),
E(DkF) = k! fk. Therefore,

‖E(DkF)‖H⊗k = k!‖ fk‖H⊗k =
√

k!‖JkF‖2.
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From (5.3) we obtain

‖JkF‖2 ≤ (
(p − 1) ∧ 1

)−k/2‖JkF‖p.

Finally, applying (5.4) we get

‖JkF‖p ≤ (p − 1)sign(p−2)k/2‖F‖p,

which concludes the proof. �

The next result can be regarded as a regularizing property of the Ornstein–
Uhlenbeck semigroup.

Proposition 5.1.5 Let F ∈ Lp(Ω) for some p > 1. Then, for any t > 0, we
have that TtF ∈ D1,p and there exists a constant cp such that

‖DTtF‖Lp(Ω;H) ≤ cpt−1/2‖F‖p. (5.5)

Proof Consider a sequence of smooth and cylindrical random variables
Fn ∈ S which converges to F in Lp(Ω). We know that TtFn converges to
TtF in Lp(Ω). We have TtFn ∈ D1,p, and using Mehler’s formula (5.1), we
can write

D(Tt(Fn − Fm)) = D
(
E′((Fn − Fm)(e−tB +

√
1 − e−2t)B′)

)
=

e−t

√
1 − e−2t

E′ (D′((Fn − Fm)(e−tB +
√

1 − e−2t)B′))
)
.

Then, Lemma 5.1.4 implies that

‖D(Tt(Fn − Fm))‖Lp(Ω;H) ≤ cp,1
e−t

√
1 − e−2t

‖Fn − Fm‖p.

Hence, DTtFn is a Cauchy sequence in Lp(Ω; H). Therefore, TtF ∈ D1,p

and DTtF is the limit in Lp(Ω; H) of DTtFn. The estimate (5.5) follows by
the same arguments. �

With the above ingredients, we can show an extension of Corollary 4.2.5
to any p > 1.

Proposition 5.1.6 Let Fn ∈ D1,p be a sequence of random variables con-
verging to F in Lp(Ω) for some p > 1. Suppose that

sup
n
‖Fn‖1,p < ∞.

Then F ∈ D1,p.
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Proof The assumptions imply that there exists a subsequence (Fn(k))k≥1

such that the sequence of derivatives (DFn(k))k≥1 converges in the weak
topology of Lq(Ω; H) to some element α ∈ Lq(Ω; H), where 1/p+1/q = 1.
By Proposition 5.1.5, for any t > 0, we have that TtF belongs to D1,p and
DTtFn(k) converges to DTtF in Lp(Ω; H). Then, for any β ∈ Lq(Ω; H), we
can write

E(〈DTtF, β〉H) = lim
k→∞

E(〈DTtFn(k), β〉H) = lim
k→∞

e−tE(〈TtDFn(k), β〉H)

= lim
k→∞

e−tE(〈DFn(k), Ttβ〉H) = e−tE(〈α, Ttβ〉H)

= E(〈e−tTtα, β〉H).

Therefore, DTtF = e−tTtα. This implies that DTtF converges to α as t ↓ 0
in Lp(Ω; H). Using that D is a closed operator, we conclude that F ∈ D1.p

and DF = α. �

5.2 Generator of the Ornstein–Uhlenbeck Semigroup

The generator of the Ornstein–Uhlenbeck semigroup in L2(Ω) is the oper-
ator given by

LF = lim
t↓0

TtF − F
t
,

and the domain of L is the set of random variables F ∈ L2(Ω) for which
the above limit exists in L2(Ω). It is easy to show (see Exercise 5.2) that a
random variable F =

∑∞
n=0 In( fn), fn ∈ L2

s(R
n
+), belongs to the domain of L

if and only if
∞∑

n=1

n2‖In( fn)‖2
2 < ∞;

and, in this case, LF =
∑∞

n=1 −nIn( fn). Thus, Dom L coincides with the
space D2,2.

We also define the operator L−1, which is the pseudo-inverse of L, as
follows. For every F ∈ L2(Ω), set

LF = −
∞∑

n=1

1
n

In( fn).

Note that L−1 is an operator with values in D2,2 and that LL−1F = F−E(F),
for any F ∈ L2(Ω), so L−1 acts as the inverse of L for centered random
variables.
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Consider now the operator C = −√−L defined by

CF = −
∞∑

n=1

√
nIn( fn).

The operator C is the infinitesimal generator of the Cauchy semigroup of
operators given by

QtF =
∞∑

n=0

e−
√

ntIn( fn).

Observe that Dom C = D1,2, as, for any F ∈ Dom C, we have

E(|CF|2) =
∞∑

n=1

n‖In( fn)‖2
2 = E(‖DF‖2

H).

The next proposition explains the relationship between the operators D,
δ, and L.

Proposition 5.2.1 Let F ∈ L2(Ω). Then, F ∈ Dom L if and only if F ∈
D

1,2 and DF ∈ Dom δ and, in this case, we have

δDF = −LF.

Proof Let F =
∑∞

n=0 In( fn). Suppose first that F ∈ D1,2 and DF ∈ Dom δ.
Then, for any random variable G = Im(gm), we have, using the duality
relationship (Proposition 3.2.3),

E(GδDF) = E(〈DG,DF〉H) = mm!〈gm, fm〉L2(Rm
+ ) = E(GmIm( fm)).

Therefore, the projection of δDF onto the mth Wiener chaos is equal to
mIm( fm). This implies that the series

∑∞
n=1 nIn( fn) converges in L2(Ω) and

its sum is δDF. Therefore, F ∈ Dom L and LF = −δDF.
Conversely, suppose that F ∈ Dom L. Clearly, F ∈ D1,2. Then, for any

random variable G ∈ D1,2 with Wiener chaos expansion G =
∑∞

n=0 In(gn),
we have

E(〈DG,DF〉H) =
∞∑

n=1

nn!〈gn, fn〉L2(Rn
+) = −E(GLF).

As a consequence, DF belongs to the domain of δ and δDF = −LF. �

The operator L behaves as a second-order differential operator on smooth
random variables.
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Proposition 5.2.2 Suppose that F = (F1, . . . , Fm) is a random vector
whose components belong to D2,4. Let ϕ be a function in C2(Rm) with
bounded first and second partial derivatives. Then, ϕ(F) ∈ Dom L and

L(ϕ(F)) =
m∑

i, j=1

∂2ϕ

∂xi∂x j
(F)〈DFi,DF j〉H +

m∑
i=1

∂ϕ

∂xi
(F)LFi.

Proof By the chain rule (see Proposition 3.3.2), ϕ(F) belongs to D1,2 and

D(ϕ(F)) =
m∑

i=1

∂ϕ

∂xi
(F)DFi.

Moreover, by Proposition 5.2.1, ϕ(F) belongs to Dom L and L(ϕ(F)) =
−δ(D(ϕ(F))). Using Exercise 3.7 yields the result. �

In the finite-dimensional case (Ω = Rn equipped with the standard Gaus-
sian law), L = Δ − x · ∇ coincides with the generator of the Ornstein–
Uhlenbeck process (Xt)t≥0 in Rn, which is the solution to the stochastic
differential equation

dXt =
√

2dBt − Xtdt,

where (Bt)t≥0 is an n-dimensional Brownian motion.

5.3 Meyer’s Inequality

The next theorem provides an estimate for the Lp(Ω)-norm of the diver-
gence operator for any p > 1. Its proof if due to Pisier (1988) and is based
on the boundedness in Lp(Ω) of the Riesz transform.

Theorem 5.3.1 For any p > 1, there exists a constant cp > 0 such that
for any u ∈ D1,p(H),

E(|δ(u)|p) ≤ cp

(
E(‖Du‖p

L2(R2
+)

) + ‖E(u)‖p
H

)
. (5.6)

Proof We can assume that E(u) = 0. Indeed, if ũ = u − E(u) then

‖δ(u)‖p ≤ ‖δ(ũ)‖p + ‖δ(E(u))‖p,

and, δ(E(u)) = I1(E(u)) being a Gaussian random variable, we have

‖δ(E(u))‖p = cp‖δ(E(u))‖2 = cp‖E(u)‖H .

Let G ∈ S be a smooth and cylindrical random variable such that ‖G‖q ≤ 1,



5.3 Meyer’s Inequality 81

where 1/p + 1/q = 1. Then

E(δ(u)G) = E(〈u,DG〉H) = −
∫ ∞

0
E(〈LTtu,DG〉H)dt

=

∫ ∞

0
E(〈δDTtu,DG〉H)dt =

∫ ∞

0
E

(
〈DTtu,D2G〉H⊗2

)
dt

=

∫ ∞

0
e−tE

(
〈TtDu,D2G〉H⊗2

)
dt

=

∫ ∞

0
e−tE

(
〈Du, TtD2G〉H⊗2

)
dt

≤ ‖Du‖Lp(Ω;H⊗2)

∥∥∥∥∥ ∫ ∞

0
e−tTtD2Gdt

∥∥∥∥∥
Lq(Ω;H⊗2)

.

By Mehler’s formula (5.1),

TtD2G = Ẽ
(
(D2G)(e−tB +

√
1 − e−2t B̃)

)
=

1
1 − e−2t Ẽ

(
D̃2(G(e−tB +

√
1 − e−2t B̃))

)
.

Therefore∫ ∞

0
e−tTtD2Gdt =

∫ ∞

0

e−t

1 − e−2t Ẽ
(
D̃2(G(e−tB +

√
1 − e−2t B̃))

)
dt

=

∫ 1

0

1
1 − x2 Ẽ

(
D̃2(G(xB +

√
1 − x2B̃))

)
dx

=

∫ π/2

0

1
sin θ

Ẽ
(
D̃2(G(Rθ(B, B̃))

)
dθ,

where Rθ(B, B̃) = (cos θ)B + (sin θ)B̃. Since G is a smooth and cylindrical
random variable, we can write∫ ∞

0
e−tTtD2Gdt = 1

2 Ẽ
(
D̃2

( ∫ π/2

−π/2

1
sin θ

(
G(Rθ(B, B̃)) −G(R−θ(B, B̃))

)
dθ

))
.

From Lemma 5.1.4, we can write∥∥∥∥∥ ∫ ∞

0
e−tTtD2Gdt

∥∥∥∥∥q

H⊗2

≤ 2−qcq
q,2 Ẽ

(∣∣∣∣∣ ∫ π/2

−π/2

1
sin θ

(
G(Rθ(B, B̃)) −G(R−θ(B, B̃))

)
dθ

∣∣∣∣∣q),
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which implies that

E
(∥∥∥∥∥ ∫ ∞

0
e−tTtD2Gdt

∥∥∥∥∥q

H⊗2

)
≤ 2−qcq

q,2 EẼ
(∣∣∣∣∣ ∫ π/2

−π/2

1
sin θ

(
G(Rθ(B, B̃)) −G(R−θ(B, B̃))

)
dθ

∣∣∣∣∣q).
Since the function 1/ sin θ − 1/θ is integrable in [0, π/2], we have

EẼ
(∣∣∣∣∣ ∫ π/2

−π/2

(
1

sin θ
− 1
θ

) (
G(Rθ(B, B̃)) −G(R−θ(B, B̃))

)
dθ

∣∣∣∣∣q) ≤ cqE(|G|q).

Therefore, it suffices to study the term

EẼ
(∣∣∣∣∣ ∫ π/2

−π/2

1
θ

(
G(Rθ(B, B̃)) −G(R−θ(B, B̃))

)
dθ

∣∣∣∣∣q).
For any ξ ∈ R we define the transformation

Tξ(B, B̃) =
(

cos ξ sin ξ
− sin ξ cos ξ

) (
B
B̃

)
,

which preserves the law of (B, B̃). Moreover, Rθ(Tξ(B, B̃)) = Rθ+ξ(B, B̃).
Therefore,

EẼ
(∣∣∣∣∣ ∫ π/2

−π/2

1
θ

(
G(Rθ(B, B̃)) −G(R−θ(B, B̃))

)
dθ

∣∣∣∣∣q)
=

1
π

EẼ
( ∫ π/2

−π/2

∣∣∣∣∣ ∫ π/2

−π/2

1
θ

(
G(Rξ+θ(B, B̃)) −G(Rξ−θ(B, B̃)

)
dθ

∣∣∣∣∣qdξ
)
,

which is bounded by a constant times E(|G|q), owing to the boundedness in
Lq(R) of the Hilbert transform. �

As a consequence of Theorem 5.3.1, the divergence operator is continu-
ous from D1,p(H) to Lp(Ω), and so we have Meyer’s inequality:

E(|δ(u)|p) ≤ cp

(
E(‖Du‖p

L2(R2
+)

) + E(‖u‖p
H)

)
= cp‖u‖p

1,p,H . (5.7)

Meyer’s inequality was first proved in Meyer (1984). It can be extended as
follows (see Nualart, 2006, Proposition 1.5.7).

Theorem 5.3.2 For any p > 1, k ≥ 1, and u ∈ Dk,p(H),

‖δ(u)‖k−1,p ≤ ck,p

(
E(‖Dku‖p

L2(Rk+1
+ )

) + E(‖u‖p
H)

)
= ck,p‖u‖p

k,p,H .

This implies that the operator δ is continuous from Dk,p(H) into Dk−1,p(H).
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5.4 Integration-by-Parts Formula

The following integration-by-parts formula will play an important role in
the applications of Malliavin calculus to normal approximations.

Proposition 5.4.1 Let F ∈ D1,2 with E(F) = 0. Let f be a continuously
differentiable function with bounded derivative. Then

E( f (F)F) = E
(

f ′(F)〈DF,−DL−1F〉H

)
. (5.8)

Proof By Proposition 5.2.1,

F = LL−1F = −δ(DL−1F).

Then, using the duality relationship (Proposition 3.2.3) and the chain rule
(Proposition 3.3.2), we can write

E( f (F)F) = −E
(

f (F)δ(DL−1F)
)

= −E
(
〈D( f (F)),DL−1F〉H

)
= E

(
f ′(F)〈DF,−DL−1F〉H

)
.

This completes the proof. �

If F belongs to the Wiener chaos Hq, with q ≥ 1, then DL−1F =
−(1/q)DF and

E( f (F)F) =
1
q

E
(

f ′(F)‖DF‖2
H

)
.

Define, for (P ◦ F−1)-almost all x, the function gF as follows:

gF(x) = E
(
〈DF,−DL−1F〉H

∣∣∣F = x
)
. (5.9)

Then, for any f ∈ C1
b(R), we have

E( f (F)F) = E( f ′(F)gF(F)). (5.10)

Moreover, gF(F) ≥ 0 almost surely. Indeed, taking f (x) =
∫ x

0
ϕ(y)dy,

where ϕ is smooth and nonnegative, we obtain

E
(
E

(
〈DF,−DL−1F〉H

∣∣∣F)
ϕ(F)

)
≥ 0,

because x f (x) ≥ 0.
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5.5 Nourdin–Viens Density Formula

As a consequence of the integration-by-parts formula (5.10), we have the
following formula for the density of a centered random variable, obtained
by Nourdin and Viens (2009).

If p is a probability density on R, we define the support of p as the
closure of the set {x ∈ R : p(x) > 0}.
Theorem 5.5.1 Let F ∈ D1,2 with E(F) = 0. Then, the law of F has
density p if and only if gF(F) > 0 a.s., where gF(F) is the function defined
in (5.9). In this case, the support of p is a closed interval containing zero
and, for almost all x in the support of p,

p(x) =
E(|F|)
2gF(x)

exp
(
−

∫ x

0

y
gF(y)

dy
)
. (5.11)

Proof We will show only that if F has density p and support R then
gF(F) > 0 a.s., and formula (5.11) holds. For the general case and the con-
verse statement see Nourdin and Viens (2009). Let φ ∈ C∞

0 (R) and Φ′ = φ.
Then, by (5.10),

E(φ(F)gF(F)) = E(Φ(F)F) =
∫
R

Φ(x)xp(x)dx

=

∫
R

( ∫ x

−∞
φ(y)dy

)
xp(x)dx

=

∫
R

φ(y)
( ∫ ∞

y
xp(x)dx

)
dy =

∫
R

φ(y)ϕ(y)dy,

where ϕ(y) =
∫ ∞

y
xp(x)dx. This implies that a.e.

ϕ(x) = p(x)gF(x)

and gF(x) > 0 a.e. Taking into account that ϕ′(x) = −xp(x), we obtain

ϕ′(x)
ϕ(x)

= − x
gF(x)

.

Using that ϕ(0) = 1
2 E (|F|), and solving the above differential equation, we

get

ϕ(x) = 1
2 E (|F|) exp

(
−

∫ x

0

y
gF(y)

dy
)
,

which completes the proof. �

Corollary 5.5.2 If there exist σ2
min, σ

2
max > 0 such that

σ2
min ≤ gF(F) ≤ σ2

max (5.12)
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a.s., then F has density p. Moreover, the support of p is all R and, for
almost all x in R,

E(|F|)
2σ2

max
exp

(
− x2

2σ2
min

)
≤ p(x) ≤ E(|F|)

2σ2
min

exp
(
− x2

2σ2
max

)
.

Proof The fact that the support of p is all R was proved by Nourdin and
Viens (2009, Corollary 3.3). The bounds for p follow from (5.11). �

The random variable gF(F) can be computed using Mehler’s formula
(Proposition 5.1.2) and the fact that −DL−1F =

∫ ∞
0

e−tTt(DF)dt (see Exer-
cise 5.5). In this way, we obtain

gF(F) =
∫ ∞

0
e−t E

(〈
DF,E′ (DF(e−tB +

√
1 − e−2tB′)

)〉
H

∣∣∣F)
dt. (5.13)

Then Corollary 5.5.2 can be applied if we have uniform upper and lower
bounds for 〈DF,E′(DF(e−tB+

√
1 − e−2tB′))〉H , as is illustrated in the next

example.

Example 5.5.3 Consider the centered random variable

F = max
t∈[a,b]

Xt − E
(

max
t∈[a,b]

Xt

)
,

where 0 < a < b < ∞ and (Xt)t≥0 is a continuous centered Gaussian process
(see Example 3.5.2).

It was shown by Kim and Pollard (1990, Lemma 2.6) that if E(Xt−Xs)2 �
0 for all s � t then Xt attains its maximum in [a, b] almost surely at a
unique random point τ (see Lemma 1.8.4 for the Brownian motion case).
Moreover, by Exercise 3.4, F ∈ D1,2 and DrF = 1[0,τ](r).

Therefore, applying formula (5.13), we get

gF(F) =
∫ ∞

0
e−tE (XτXτ′) dt,

where τ′ is the random point where the process e−tXt +
√

1 − e−2tX′
t attains

its maximum in [a, b]. Thus, if there exist σ2
min, σ

2
max > 0 such that

σ2
min ≤ E (XsXt) ≤ σ2

max, (5.14)

for all s, t ∈ [a, b], then condition (5.12) of Corollary 5.5.2 holds.
For example, if Xt is a fractional Brownian motion BH

t with Hurst pa-
rameter H ≥ 1/2 (see Example 3.5.3) then (5.14) holds with σmin = aH and
σmax = bH. In fact,

E(BH
s BH

t ) ≤
√

E((BH
s )2)

√
E((BH

t )2) = (st)H ≤ b2H
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and

E(BH
s BH

t ) = H(2H − 1)
∫ s

0

∫ t

0
|v − u|2H−2dudv

≥ H(2H − 1)
∫ a

0

∫ a

0
|v − u|2H−2dudv = E((BH

a )2) = a2H.

Exercises

5.1 Show that (Tt)t≥0 is the semigroup of transition probabilities of a Markov
process, with values in C(R+), whose invariant measure is the Wiener mea-
sure. This process can be expressed in terms of a Wiener sheet W as follows:

Xt,τ =
√

2
∫ t

−∞

∫ τ

0
e−(t−s)W(dσ, ds), τ, t ≥ 0.

5.2 Show that a random variable F =
∑∞

n=0 In( fn), fn ∈ L2
s (Rn
+), belongs to the

domain of L if and only if
∞∑

n=1

n2‖In( fn)‖2
2 < ∞,

and, in this case, LF =
∑∞

n=1 −nIn( fn).
5.3 Let F = exp

(
B(h) − 1

2

∫
R+

h2(s)ds
)
, h ∈ H. Show that

LF = −
(
B(h) −

∫
R+

h2(s)ds
)
F.

5.4 Show that the operator (I − L)−α is a contraction in Lp(Ω), for any p ≥ 1,
where α > 0.
Hint: Use the equation (1 + n)−α = (Γ(α))−1

∫ ∞
0 e−(n+1)ttα−1dt.

5.5 Let F ∈ L2(Ω) with E(F) = 0. Show that

L−1F = −
∫ ∞

0
Tt(F)dt.

5.6 Let (Xt)t∈[0,T ] be a continuous centered Gaussian process such that there ex-
ists constants σ2

min, σ
2
max > 0 satisfying

σ2
min ≤ E(XsXt) ≤ σ2

max,

for all s, t ∈ [0, T ]. Let f ∈ C1(R) be such that there exist constants α, β > 0
satisfying α ≤ f ′(x) ≤ β for all x ∈ R. Show that the random variable

F =
∫ T

0 f (Xs)ds − E
(∫ T

0 f (Xs)ds
)

has density p satisfying, a.e. in R,

E(|F|)
2β2σ2

maxT 2
exp

(
− x2

2α2σ2
minT 2

)
≤ p(x) ≤ E(|F|)

2α2σ2
minT 2

exp
(
− x2

2β2σ2
maxT 2

)
.
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Stochastic Integral Representations

This chapter deals with the following problem. Given a random variable
F in L2(Ω), with E(F) = 0, find a stochastic process u in Dom δ such
that F = δ(u). We present two different answers to this question, both
integral representations. The first is the Clark–Ocone formula, given in
Ocone (1984), in which u is required to be adapted. Therefore, the pro-
cess u is unique and its expression involves a conditional expectation of
the Malliavin derivative of F. The second uses the inverse of the Ornstein–
Uhlenbeck generator. We then present some applications of these integral
representations.

6.1 Clark–Ocone formula

Let B = (Bt)t≥0 be a Brownian motion on a probability space (Ω,F , P) such
that F is generated by B, equipped with its Brownian filtration (Ft)t≥0. The
next result expresses the integrand of the integral representation theorem
of a square integrable random variable (Theorem 2.9.1) in terms of the
conditional expectation of its Malliavin derivative.

Theorem 6.1.1 (Clark–Ocone formula) Let F ∈ D1,2∩L2(Ω,FT , P). Then
F admits the following representation:

F = E(F) +
∫ T

0
E(DtF|Ft)dBt.

Proof By Theorem 2.9.1, there exists a unique process u ∈ L2
T (P) such

that F ∈ L2(Ω,FT , P) admits the stochastic integral representation

F = E(F) +
∫ T

0
utdBt.

It suffices to show that ut = E(DtF|Ft) for almost all (t, ω) ∈ [0, T ] × Ω.
Consider a process v ∈ L2

T (P). On the one hand, the isometry property

87
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yields

E(δ(v)F) =
∫ T

0
E(vsus)ds.

On the other hand, by the duality relationship (Proposition 3.2.3), and tak-
ing into account that v is progressively measurable,

E(δ(v)F) = E
( ∫ T

0
vtDtFdt

)
=

∫ T

0
E(vsE(DtF|Ft))dt.

Therefore, ut = E(DtF|Ft) for almost all (t, ω) ∈ [0, T ] × Ω, which con-
cludes the proof. �

Consider the following simple examples of the application of this for-
mula.

Example 6.1.2 Suppose that F = B3
t . Then DsF = 3B2

t 1[0,t](s) and

E(DsF|Fs) = 3E((Bt − Bs + Bs)2|Fs) = 3(t − s + B2
s).

Therefore

B3
t = 3

∫ t

0
(t − s + B2

s)dBs. (6.1)

This formula should be compared with Itô’s formula,

B3
t = 3

∫ t

0
B2

sdBs + 3
∫ t

0
Bsds. (6.2)

Notice that equation (6.1) contains only a stochastic integral but it is not a
martingale, because the integrand depends on t, whereas (6.2) contains two
terms and one is a martingale. Moreover, the integrand in (6.1) is unique.

Example 6.1.3 Let F = supt∈[0,1] Bt. By Exercise 3.4, F ∈ D1,2 and DtF =
1[0,τ](t), where τ is the unique random point in [0, 1] where B attains its
maximum almost surely (see Lemma 1.8.4). By the reflection principle
(Theorem 1.8.2),

E(1[0,τ](t)|Ft) = E
(
1{supt≤s≤1(Bs−Bt)≥ sup0≤s≤t(Bs−Bt)}

∣∣∣Ft

)
= 2 − 2Φ

(sup0≤s≤t(Bs − Bt)√
1 − t

)
,

whereΦ denotes the cumulative distribution of the standard normal. There-
fore

F = E(F) +
∫ 1

0

(
2 − 2Φ

(sup0≤s≤t(Bs − Bt)√
1 − t

))
dBt.
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Example 6.1.4 Consider the Brownian motion local time (Lx
t )t≥0,x∈R de-

fined in Section 2.5. For any ε > 0, we set

pε(x) = (2πε)−1/2e−x2/(2ε).

We have that, as ε → 0,

Fε =
∫ t

0
pε(Bs − x)ds

L2(Ω)−→ Lx
t . (6.3)

In fact, by (2.17),

Fε − Lx
t =

∫
R

pε(y − x)(Ly
t − Lx

t )dy.

The continuity of the local time in (t, x) implies that Fε − Lx
t converges

almost surely to zero as ε → 0 for all (t, x). Moreover, by Tanaka’s formula
(Corollary 2.5.2), for any p > 2,

sup
x∈R

‖Lx
t ‖p < ∞.

Therefore the convergence is also in L2(Ω), which shows (6.3). Applying
the derivative operator yields

DrFε =
∫ t

0
p′ε(Bs − x)DrBsds =

∫ t

r
p′ε(Bs − x)ds.

Thus

E(DrFε |Fr) =
∫ t

r
E(p′ε(Bs − Br + Br − x)|Fr)ds

=

∫ t

r
p′ε+s−r(Br − x)ds.

As a consequence, taking the limit as ε → 0, we obtain the following
integral representation of the Brownian local time:

Lx
t = E(Lx

t ) +
∫ t

0
ϕ(t − r, Br − x)dBr,

where

ϕ(r, y) =
∫ r

0
p′s(y)ds.

In the last part of this section we will discuss how to derive a Clark–
Ocone formula after a change of measure. Consider an adapted process
θ = (θt)t∈[0,T ] satisfying Novikov’s condition (2.24). Define

ZT = exp
(
−

∫ T

0
θsdBs − 1

2

∫ T

0
θ2sds

)
.
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Consider the probability Q on FT given by the density dQ/dP = ZT . Set

B̃t = Bt +

∫ t

0
θsds, t ∈ [0, T ].

By Girsanov’s theorem (Theorem 2.10.3), under Q, B̃ = (B̃t)t∈[0,T ] is a
Brownian motion.

In general F B̃
T ⊂ F B

T , with a strict inclusion. Can we represent an F B
T -

measurable random variable as a stochastic integral with respect to the Q-
Brownian motion B̃ using the Clark–Ocone formula? The following theo-
rem provides an answer to this question.

Theorem 6.1.5 Suppose that F ∈ D1,2, θ ∈ D1,2(L2([0, T ])), and

• E(Z2
T F2) + E(Z2

T ‖DF‖2
H) < ∞,

• E
(
Z2

T F2
∫ T

0

(
θt +

∫ T

t
DtθsdBs +

∫ T

t
θsDtθsds

)2

dt
)
< ∞.

Then

F = EQ(F) +
∫ T

0
EQ

(
DtF + F

∫ T

t
DtθsdB̃s

∣∣∣∣∣Ft

)
dB̃t.

We refer to Karatzas and Ocone (1991) for a proof of this result with
extension to a multidimensional case and applications to hedging in a gen-
eralized Black–Scholes model.

6.2 Modulus of Continuity of the Local Time

As a consequence of the Clark–Ocone formula (Theorem 6.1.1), we have
the following central limit theorem for the L2-modulus of continuity of the
local time.

Theorem 6.2.1 For each fixed t > 0, as h tends to zero we have the
following convergence in law:

h−3/2
( ∫
R

(Lx+h
t − Lx

t )2dx − 4th
) L−→ 8

√
αt

3
η,

where

αt =

∫
R

(Lx
t )2dx (6.4)

and η is an N(0, 1) random variable that is independent of B.
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Theorem 6.2.1 was proved by Chen et al. (2010) using the method of
moments. We give below the main ideas of a proof, based on the Clark–
Ocone formula, due to Hu and Nualart (2009).

We make use of the notation, for t, h > 0,

Gt,h =

∫
R

(Lx+h
t − Lx

t )2dx.

We first establish some preliminary results on the stochastic integral rep-
resentation of the random variable Gt,h, obtained using the Clark–Ocone
formula.

The random variable αt appearing in (6.4) can be expressed in terms of
the self-intersection local time of Brownian motion. In fact,

αt =

∫
R

( ∫ t

0
δx(Bs)ds

)2

dx = 2
∫ t

0

∫ v

0
δ0(Bv − Bu)dudv.

In the same way,

Gt,h = −2
∫ t

0

∫ v

0

(
δ(Bv − Bu + h) + δ(Bv − Bu − h) − 2δ(Bv − Bu)

)
dudv.

Applying the Clark–Ocone formula (Theorem 6.1.1), we can derive the
following stochastic integral representation for Gt,h.

Proposition 6.2.2 We have

Gt,h = E(Gt,h) − 4
∫ t

0
ut,h(r)dBr − 4

∫ t

0
Ψh(r)dBr, (6.5)

where

ut,h(r) =
∫ r

0

∫ h

0
(pt−r(Br − Bu + y) − pt−r(Br − Bu − y))dydu

and

Ψh(r) =
∫ r

0
(1[0,h](Br − Bu) − 1[0,h](Bu − Br))du.
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Proof Let ε > 0. For u < r < v, we have

E
(
Dr(pε(Bv − Bu + h) + pε(Bv − Bu − h) − 2pε(Bv − Bu))

∣∣∣Fr
)

= E
(
p′ε(Bv − Bu + h) + p′ε(Bv − Bu − h) − 2p′ε(Bv − Bu)

∣∣∣Fr

)
= p′ε+v−r(Br − Bu + h) + p′ε+v−r(Br − Bu − h) − 2p′ε+v−r(Br − Bu)

=

∫ h

0

(
p′′ε+v−r(Br − Bu + y) − p′′ε+v−r(Br − Bu − y)

)
dy

= 2
∫ h

0

(
∂pε+v−r

∂v
(Br − Bu + y) − ∂pε+v−r

∂v
(Br − Bu − y)

)
dy,

where pε = (2πε)−1/2 exp(−x2/(2ε)). Integrating in u and v and letting ε →
0 yields the result. �

Proof of Theorem 6.2.1 The proof will be carried out in several steps.

Step 1 It was proved by Chen et al. (2010, Lemma 8.1) that E(Gt,h) =
4th + O(h2). Therefore, it suffices to show that, as h tends to zero,

h−3/2(Gt,h − E(Gt,h))
L−→ 8

√
αt

3
η, (6.6)

where η is an N(0, 1) random variable that is independent of B.

Step 2 The stochastic integral
∫ t

0
ut,h(r)dBr appearing in (6.5) makes no

contribution to the limit (6.6). That is,

h−3/2
∫ t

0
ut,h(r)dBr

converges in L2(Ω) to zero as h tends to zero. This follows from the esti-
mate

E
( ∫ t

0
|ut,h(r)|2dr

)
≤ Ch4, (6.7)

for all h > 0.
Proof of (6.7) We can write

E
(
|ut,h(r)|2

)
=

∫ r

0

∫ r

0

∫ h

0

∫ h

0

∫ η1

−η1

∫ η2

−η2

E(p′t−r(Br − Bu1 + ξ1)

× p′t−r(Br − Bu2 + ξ2)) dξ1dξ2dη1dη2du1du2.

By a symmetry argument, it suffices to integrate over the region 0 < u1 <
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u2 < r. In this region,

E(p′t−r(Br − Bu1 + ξ1)p′t−r(Br − Bu2 + ξ2))

= E
(
p′t−r+u2−u1

(Br − Bu2 + ξ1)p′t−r(Br − Bu2 + ξ2)
)

≤ ‖pr−u2‖p1‖p′t−r+u2−u1
‖p2‖p′t−r‖p3 ,

where 1/p1 + 1/p2 + 1/p3 = 1. It is easy to see that

‖pr−u2‖p1 ≤ C(r − u2)−1/2+1/(2p1),

‖p′t−r+u2−u1
‖p2 ≤ C(t − r + u2 − u1)−1+1/(2p2) ≤ C(u2 − u1)−1+1/(2p2),

‖p′t−r‖p3 ≤ C(t − r)−1+1/(2p3) ,

for some constant C > 0. Thus

E
(
|ut,h(r)|2

)
≤ C

∫ r

0

∫ u2

0

∫ h

0

∫ h

0

∫ η1

−η1

∫ η2

−η2

(r − u2)−1/2+1/(2p1)

× (u2 − u1)−1+1/(2p2)(t − r)−1+1/(2p3)dξ1dξ2dη1dη2du1du2

≤ Ch4,

which concludes the proof of (6.7).

Step 3 Consider the martingale

Mh
t = h−3/2

∫ t

0
Ψh(r)dBr.

In order to show Theorem 6.2.1, it suffices to prove the following conver-
gence in law as h tends to zero:

Mh
t

L−→ 2η
√
αt

3
,

where η is a standard normal random variable that is independent of B.
From the asymptotic version of the Ray–Knight theorem (see Revuz and

Yor, 1999, Theorem (2.3), p. 524) it suffices to show that, for any t ≥ 0,

〈Mh〉t = h−3
∫ t

0
Ψh(r)2dr

L2(Ω)−→ 4
3αt (6.8)

and

sup
0≤s≤t

|〈Mh, B〉s| = sup
0≤s≤t

h−3/2
∣∣∣∣∣ ∫ s

0
Ψh(r)dr

∣∣∣∣∣ L2(Ω)−→ 0. (6.9)

In fact, (6.8) and (6.9) imply that (B, βh) converges in law to (B, β), where
β is a Brownian motion that is independent of B, and βh is such that Mh

t =

βh(〈Mh〉t) (the asymptotic version of the Ray–Knight theorem).
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Proof of (6.8) By the occupation formula (2.17), we have

Ψh(r) =
∫
R

(1[0,h](Br − x) − 1[0,h](x − Br))Lx
r dx

=

∫ h

0

(
LBr−y

r − LBr+y
r

)
dy.

Tanaka’s formula (Theorem 2.5.1) for the Brownian motion {Br − Bs, 0 ≤
s ≤ r} yields

LBr−y
r − LBr+y

r = −2y − 2(Br − y)+ + 2(Br + y)+

+ 2
∫ r

0
1{y>|Br−Bs |}d̂Bs,

where d̂Bs denotes the backward Itô stochastic integral (see Section 2.8).
Then

Ψh(r) = − h2 + 2
∫ h

0

[
(Br + y)+ − (Br − y)+

]
dy

+ 2
∫ r

0
(h − Br − Bs|)+d̂Bs. (6.10)

Therefore, it suffices to show that

4h−3
∫ t

0

( ∫ r

0
(h − |Br − Bs|)+d̂Bs

)2

dr
L2(Ω)−→ 4

3αt.

By Itô’s formula (Theorem 2.4.3), we can write( ∫ r

0
(h − |Br − Bs|)+d̂Bs

)2

= 2
∫ r

0

( ∫ r

s
(h − |Br − Bu|)+d̂Bu

)
(h − |Br − Bs|)+d̂Bs

+

∫ r

0
((h − |Br − Bs|)+)2ds

= I1(r, h) + I2(r, h).

It is not difficult to show that the term I1(r, h) does not contribute to the
above limit. Therefore, we need only to show that

h−3
∫ t

0

∫ r

0
((h − |Br − Bs|)+)2dsdr

L2(Ω)−→ 1
3αt.

This follows from

αt = 2
∫ t

0

∫
R

Lx
r Lx

drdx = 2
∫ t

0
LBr

r dr,
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0

∫ r

0
((h − |Br − Bs|)+)2dsdr =

∫ t

0

∫
R

((h − |Br − x|)+)2Lx
r dxdr,

and ∫
R

((h − |x|)+)2

h3 dx = 2
3 .

This concludes the proof of (6.8).
Proof of (6.9) In view of (6.10) it suffices to show that

sup
0≤t≤t1

∣∣∣∣∣h−3/2
∫ t

0

( ∫ r

0
(h − |Br − Bs|)+d̂Bs

)
dr

∣∣∣∣∣
converges to zero in L2(Ω) as h tends to zero, for any t1 > 0. For any p ≥ 2
and any 0 ≤ s < t, we can write, by Fubini’s theorem and the Burkholder–
Davis–Gundy inequality (Theorem 2.2.3),

E
(∣∣∣∣∣ ∫ t

s

( ∫ r

0
(h − |Br − Bv|)+d̂Bv

)
dr

∣∣∣∣∣p)
≤ cp

{
E

(∣∣∣∣∣ ∫ s

0

( ∫ t

s
(h − |Br − Bv|)+dr

)2

dv
∣∣∣∣∣p/2)

+E
(∣∣∣∣∣ ∫ t

s

( ∫ t

v
(h − |Br − Bv|)+dr

)2

dv
∣∣∣∣∣p/2)}

= cp(I1 + I2).

The term I1 can be expressed using the occupation formula (2.17) as fol-
lows:

I1 = E
(∣∣∣∣∣ ∫ s

0

( ∫
R

(h − |x − Bv|)+(Lx
t − Lx

s)dx
)2

dv
∣∣∣∣∣p/2)

≤ sp/2h2pE
(

sup
x
|Lx

t − Lx
s |p

)
.

By the inequalities for local time proved, for instance, in Barlow and Yor
(1981), we obtain

I1 ≤ cph2p|t − s|p/2.
Similarly,

I2 = E
(∣∣∣∣∣ ∫ t

s

( ∫
R

(h − |x − Bv|)+(Lx
t − Lx

v)dx
)2

dv
∣∣∣∣∣p/2)

≤ h2p|t − s|p/2 sup
s≤v≤t

E
(

sup
x
|Lx

t − Lx
v |p

)
≤ cph2p|t − s|p.
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Finally, a standard application of the Garsia–Rodemich–Rumsey lemma
(see Garsia et al., 1970/71) allows us to conclude the proof of (6.9).

The proof of Theorem 6.2.1 is now completed. �

Theorem 6.2.1 can be extended to the third moment. In fact, the Clark–
Ocone formula applied to h−2

∫
R
(Lx+h

t − Lx
t )3dx gives the following central

limit theorem for the third integrated moment of the local time; this was
proved by Hu and Nualart (2010).

Theorem 6.2.3 As h tends to zero,

h−2
∫
R

(Lx+h
t − Lx

t )3dx
L−→ 8

√
3
( ∫
R

(Lx
t )3dx

)1/2

η,

where η is an N(0, 1) random variable that is independent of B.

6.3 Derivative of the Self-Intersection Local Time

In this section we obtain a stochastic integral representation formula for the
derivative of the self-intersection local time of a Brownian motion, defined
as the following limit in L2(Ω):

γt := lim
ε→0

∫ t

0

∫ s

0
p′ε(Bs − Bu)duds. (6.11)

This limit can also be interpreted as the value of the following derivative at
zero:

γt = − d
dx

( ∫ t

0

∫ s

0
δx(Bs − Bu)duds

)∣∣∣∣∣
x=0
.

Proposition 6.3.1 The limit (6.11) exists in L2(Ω), and

γt = 2
∫ t

0

( ∫ r

0
pt−r(Br − Bu)du − LBr

r

)
dBr.

Proof Set γεt =
∫ t

0

∫ s

0
p′ε(Bs − Bu)duds. Then

Drγ
ε
t =

∫ t

0

∫ s

0
p′′ε (Bs − Bu)1[u,s](r)duds

=

∫ t

r

∫ r

0
p′′ε (Bs − Bu)duds
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and

E(Drγ
ε
t |Fr) =

∫ t

r

∫ r

0
p′′ε+s−r(Br − Bu)duds

= 2
∫ t

r

∫ r

0

∂pε+s−r

∂u
(Br − Bu)duds

= 2
∫ r

0

(
pε+t−r(Br − Bu) − pε(Br − Bu)

)
du.

As ε tends to zero, this converges in L2(Ω × [0, t]) to∫ r

0
pt−r(Br − Bu)du − LBr

r ,

which implies the result. �

The process γt is a Dirichlet process (it has zero quadratic variation and
infinite total variation). This process was studied by Rogers and Walsh
(1994) and Rosen (2005). The following theorem is due to Rogers and
Walsh (1994).

Theorem 6.3.2 The process γ has a 4/3-variation in L2(Ω) given by

〈γ〉4/3,t = K
∫ t

0

(
LBr

r

)2/3
dr,

where K = E(|B1|4/3)E
(( ∫
R
(Lz

1)2dz
)2/3)

.

The proof is based on Gebelein’s inequality for Gaussian random vari-
ables. An alternative proof by Hu et al. (2014a) uses the integral represen-
tation and ideas from fractional martingales.

6.4 Application of the Clark–Ocone Formula in Finance

Assume that the price of a risky asset (S t)t∈[0,T ] follows the Black–Scholes
model under a risk-neutral probability P:

dS t = rS tdt + σS tdBt, t ∈ [0, T ],

where r > 0 is the constant interest rate and σ > 0 is the volatility. By Itô’s
formula (Theorem 2.4.3), this is equivalent to saying that

S t = S 0 exp
(
σBt +

(
r − σ

2

2

)
t
)
.

Fix a time T > 0, and consider a payoff H ≥ 0 which is FT -measurable
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and such that E(H2) < ∞. Applying the integral representation theorem
(Theorem 2.9.1) to e−rT H yields

e−rT H = E(e−rT H) +
∫ T

0
utdBt,

where u ∈ L2
T (P). As a consequence, we can show that H can be replicated;

that is, there exists a self-financing portfolio with value Xt satisfying XT =

H. This implies that this market is complete. A self-financing portfolio
is characterized by the value at 0 and by the amount Δt of shares in the
portfolio at any time t ∈ [0, T ]. Its value is given by the equation

dXt = ΔtdS t + r(Xt − ΔtS t)dt.

Then, to construct such a portfolio it suffices to take X0 = E(e−rT H) and
Δt = ertut/(σS t). Indeed, the process Xt = ert

(
E(H) +

∫ t

0
usdBs

)
satisfies

dXt = ertutdBt + rertXtdt

= Δt(dS t − rS tdt) + rXtdt.

As a consequence of the Clark–Ocone formula we have the following
result.

Proposition 6.4.1 The hedging portfolio of a derivative security with pay-
off H ∈ L2(Ω,FT , P) is given by

Δt =
e−r(T−t)

σS t
E(DtH|Ft).

Proof The Clark–Ocone formula implies that ut = e−rT E(DtH|Ft) and the
result then follows from the previous computations. �

In the case of a “vanilla” option, which by definition has the form H =
ϕ(S T ), where ϕ is a differentiable function such that ϕ and its derivative ϕ′

have polynomial growth, we have DtH = ϕ′(S T )DtS T = ϕ
′(S T )σS T and

Δt =
e−r(T−t)

S t
E(ϕ′(S T )S T |Ft).

By the Markov property (Theorem 1.6.1), this expression can be written in
the form F(t, S t), where

F(t, x) = e−r(T−t)E
(
ϕ′

(
x

S T

S t

)S T

S t

)
.

Then, one can use the techniques of Malliavin calculus to remove the



6.5 Second Integral Representation 99

derivative. This would require one to apply an integration-by-parts formula
that will be proved in Chapter 7 (see Proposition 7.2.4). We obtain

F(t, x) =
e−r(T−t)

xσ(T − t)
E

(
ϕ
(
x

S T

S t

)
(BT − Bt)

)
.

This expression is well suited for Monte Carlo simulations (see Fournier
et al., 1999, and Kohatsu-Higa and Montero, 2004). By the Markov prop-
erty, the price of the security is of the form v(t, S t), where

v(t, x) = e−r(T−t)E
(
ϕ
(
x

S T

S t

))
,

and, in that case, Δt = F(t, S t) = vx(t, S t).

6.5 Second Integral Representation

Recall that L is the generator of the Ornstein–Uhlenbeck semigroup intro-
duced in Chapter 5.

Proposition 6.5.1 Let F be in D1,2 with E(F) = 0. Then the process

u = −DL−1F

belongs to Dom δ and satisfies F = δ(u). Moreover u ∈ L2(Ω; H) is unique
among all square integrable processes with a chaos expansion

ut =

∞∑
q=0

Iq( fq(t))

such that fq(t, t1, . . . , tq) is symmetric in all q + 1 variables t, t1, . . . , tq.

Proof By Proposition 5.2.1,

F = LL−1F = −δ(DL−1F).

Clearly, the process u = −DL−1F has a Wiener chaos expansion with
functions symmetric in all their variables. To show uniqueness, let v ∈
L2(Ω; H) with a chaos expansion vt =

∑∞
q=0 Iq(gq(t)), such that the function

gq(t, t1, . . . , tq) is symmetric in all q + 1 variables t, t1, . . . , tq and such that
δ(v) = F. Then, there exists a random variable G ∈ D1,2 such that DG = v.
Indeed, it suffices to take

G =
∞∑

q=0

1
q + 1

Iq+1(gq).
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We claim that G = −L−1F. This follows from LG = −δDG = −δ(v) = −F.
The proof is now complete. �

It is important to notice that, unlike the Clark–Ocone formula, which re-
quires that the underlying process is a Brownian motion, the representation
provided in Proposition 6.5.1 holds in the context of a general Gaussian
isonormal process.

6.6 Proving Tightness Using Malliavin Calculus

In this section we summarize an application of the second representation
proved in Proposition 6.5.1 to derive tightness in the asymptotic behavior
of the self-intersection local time of a fractional Brownian motion. Let d ≥
2. The d-dimensional fractional Brownian motion BH = (BH

t )t≥0 with Hurst
parameter H ∈ (0, 1) is a mean-zero Gaussian process with covariance

E
(
BH,i

t BH, j
s

)
= 1

2δi j(t2H + s2H − |t − s|2H).

That is, the components of BH are independent fractional Brownian mo-
tions with Hurst parameter H (see Example 3.5.3).

The self-intersection local time of BH on [0, T ] is heuristically defined
by

IT =

∫ T

0

∫ t

0
δ0(BH

t − BH
s )dsdt.

Notice that

E(IT ) =
∫ T

0

∫ t

0
E
(
δ0(BH

t − BH
s )

)
dsdt

= (2π)−d/2
∫ T

0

∫ t

0
|t − s|−Hddsdt < ∞ ⇐⇒ Hd < 1.

This informal computation predicts that the self-intersection local time will
exist only if Hd < 1. In the Brownian motion case (that is, H = 1/2) this
means d = 1.

A rigorous definition of IT is obtained by taking the limit in L2(Ω) as
ε → 0 of the approximation

IT,ε =

∫ T

0

∫ t

0
pε(BH

t − BH
s )dsdt,

where pε(x) = (2πε)−d/2 exp(−|x|2/(2ε)). Then, it can be proved that IT,ε

converges in L2(Ω) if and only if Hd < 1. When Hd > 1, we introduce
the so-called Varadhan renormalization, which consists of subtracting the
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expectation E(IT,ε); the latter is the divergent term. Then, for 1/d ≤ H <
3/(2d),

IT,ε − E(IT,ε)
L2(Ω)−→ ĨT ,

and ĨT is called the renormalized self-intersection local time (see Hu and
Nualart, 2005). For Brownian motion (that is, H = 1/2) this happens when
d = 2.

When H ≥ 3/(2d), with proper normalization we can establish a central
limit theorem.

Theorem 6.6.1 (Hu and Nualart, 2005) Let BH be a d-dimensional frac-
tional Brownian motion with Hurst parameter H. Assume that d ≥ 2. Then,
if 3/(2d) < H < 3/4, we have the convergence in law

εd/2−3/(4H) (IT,ε − E(IT,ε)
) L−→ N(0, Tσ2

H,d) (6.12)

as ε ↓ 0.

The case H = 3/(2d) was addressed as well in Hu and Nualart (2005),
where it was shown that the sequence (log(1/ε))−1/2(IεT − E(IεT )) converges
in law to a centered Gaussian distribution with variance Tσ2

log as ε → 0,
where the constant σ2

log is given by equation (42) in Hu and Nualart (2005).
Theorem 6.6.1 was proved in Hu and Nualart (2005) using the Wiener

chaos expansion of IT,ε and applying Theorem 8.4.1 below. The variance
limit is given by

σ2
H,d = (2π)−d

∫
0<s<t<T

0<s′<t′<T

(
(λρ − μ2)−d/2 − (λρ)−d/2)dsdtds′dt′, (6.13)

with the notation λ = |t− s|2H, ρ = |t′ − s′|2H, and μ = E((BH,1
t −BH,1

s )(BH,1
t′ −

BH,1
s′ )). To show that σ2

H,d < ∞ we need to estimate the double integral
appearing in (6.13) over essentially three types of region: [s′, t′] ⊂ [s, t],
[s′, t′] ∩ [s, t] = ∅, and s < s′ < t < t′ (the intervals overlap).

A natural extension of Theorem 6.6.1 is the following functional version,
established in Jaramillo and Nualart (2018).

Theorem 6.6.2 Let BH be a d-dimensional fractional Brownian motion
with Hurst parameter H. Assume that d ≥ 2 and 3/(2d) < H < 3/4 . Then(

εd/2−3/(4H)(IT,ε − E(IT,ε))
)

T≥0

L−→ (σH,dBT )T≥0, (6.14)

in the space C([0,∞)) endowed with the topology of uniform convergence
on compact sets, where B is a standard Brownian motion.



102 Stochastic Integral Representations

The proof of the convergence of the finite-dimensional distributions fol-
lows using the same approach as in Theorem 6.6.1. Then, the main diffi-
culty in establishing the convergence (6.14) is to show the tightness prop-
erty of the laws. From the Billingsley criterion (see Billingsley, 1999, The-
orem 12.3), the tightness property can be derived by showing that there
exists p > 2 such that, for every 0 ≤ S ≤ T ,

E(|ΦT,ε − ΦS ,ε |p) ≤ Cp,d,H|T − S |p/2, (6.15)

for some constant C > 0 independent of S , T and ε, where

ΦT,ε = ε
d/2−3/(4H)(IT,ε − E(IT,ε)). (6.16)

The problem in finding a bound of the type (6.15) comes from the fact
that the smallest even integer p > 2 is p = 4, and, in view of the above
comments for p = 2, a direct computation of the moment of order four,
E(|ΦT,ε − ΦS ,ε |4), is too complicated to be handled. To overcome this diffi-
culty, a new approach to prove tightness based on the techniques of Malli-
avin calculus has been developed in Jaramillo and Nualart (2018). We de-
scribe the main ingredients of this approach in the next proposition.

Proposition 6.6.3 With the above notation, for all 2 < p < 4Hd/3 we
have, for all 0 ≤ S ≤ T,

E(|ΦT,ε − ΦS ,ε |p) ≤ Cp,d,H|T − S |p/2,
Proof Fix S ≤ T and define Zε = ΦT,ε − ΦS ,ε , where ΦT,ε was defined
in (6.16). The representation established in Proposition 6.5.1 applied to the
centered random variable Zε yields

Zε = −δDL−1Zε .

Using that E(DL−1Zε) = 0 and Meyer’s inequality (see (5.7)), we obtain

‖Zε‖p ≤ cp‖D2L−1Zε‖Lp(Ω;(Hd)⊗2),

where H is the Hilbert space associated with the covariance of the frac-
tional Brownian motion. We know that on the one hand

Zε = εd/2−3/(4H)
∫

s<t
S<t<T

(
pε(BH

t − BH
s ) − E

(
pε(BH

t − BH
s )

))
dsdt.

On the other hand, for any centered random variable F we have

L−1F = −
∫ ∞

0
TθFdθ,



Exercises 103

where (Tθ)θ≥0 is the Ornstein–Uhlenbeck semigroup (see Exercise 5.5). As
a consequence, from Mehler’s formula (5.1) we can write

D2L−1Zε = −
∫ ∞

0
D2TθZεdθ

= −
∫ ∞

0

∫
s<t

S<t<T

D2Tθ(pε(BH
t − BH

s ))dsdtdθ

= −
∫ ∞

0

∫
s<t

S<t<T

D2Ẽ
(
pε(e−θ(BH

t − BH
s ) +

√
1 − e−2θ(B̃H

t − B̃H
s ))

)
dsdtdθ

= −
∫ ∞

0

∫
s<t

S<t<T

D2 pε+(1−e−2θ)(t−s)2H (e−θ(BH
t − BH

s ))dsdtdθ

= −
∫ ∞

0

∫
s<t

S<t<T

e−2θp′′ε+(1−e−2θ)(t−s)2H (e−θ(BH
t − BH

s ))1⊗2
[s,t]dsdtdθ,

where p′′ denotes the Hessian matrix of p. Finally, using Minkowski’s in-
equality we obtain

‖Zε‖2
p ≤ c2

p‖D2L−1Zε‖2
Lp(Ω;(Hd)⊗2) = c2

p‖‖DL−1Zε‖2
(Hd)⊗2)‖p/2

≤ c2
p

∫
R

2
+

∫
s<t

S<t<T

∫
s′<t′

S<t′<T

e−2θ−2βμ2‖p′′ε+(1−e−2θ)(e
−θ(BH

t′ − BH
s′ ))‖p

× ‖p′′ε+(1−e−2β)(e
−β(BH

t − BH
s ))‖pdsdtds′dt′dθdβ.

Performing some Gaussian computations (see Jaramillo and Nualart, 2018,
for the details) we arrive at the estimate

‖Zε‖2
p ≤ Kp,d,H|T − S |p,

where

Kp.d.H =

∫
0<s<t<T

0<s′<t′<T

μ2

λρ
((1 + λ)(1 + ρ) − μ2)−d/pdsdtds′dt′ < ∞,

where λ, ρ, and μ are the functions of s, t, s′, t′ appearing in the double inte-
gral (6.13) and K is a constant depending on p, d,H. Then, using arguments
similar to those in the proof of σ2

H,d < ∞, one can show that Kp,d,H < ∞
provided that 2 < p < 4Hd/3 (see Jaramillo and Nualart, 2018, for the
details). This completes the proof. �

Exercises

6.1 Using the Clark–Ocone formula find the stochastic integral representation of
the random variables in Exercise 2.13.
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6.2 Let F = In( f ), f ∈ L2
s ([0, T ]n), and for any A ⊂ B(R) consider the σ-field

FA = σ{B(1D),D ⊂ A}. Show that

E(F|FA) = In( fn1⊗n
A ).

6.3 Let F = In( f ), f ∈ L2
s ([0, T ]n). Use the Clark–Ocone formula to show that

F = δ(u), where ut = nIn−1( f (·, t)1[0,t]). Deduce that ut = E(DtF|Ft). Ap-
ply this approach to prove the Clark–Ocone formula via the Wiener chaos
expansion.

6.4 Let F ∈ L2(Ω,F[a,b], P). Show that F admits the following representation:

F = E(F|F[a,t]c ) +
∫ b

a
E(DtF|F[a,t]c )dBt.



7

Study of Densities

In this chapter we apply Malliavin calculus to derive explicit formulas for
the densities of random variables on Wiener space and to establish criteria
for their regularity. We apply these criteria to the proof of Hörmander’s
hypoellipticity theorem.

7.1 Analysis of Densities in the One-Dimensional Case

We recall that B = (Bt)t≥0 is a Brownian motion on a probability space
(Ω,F , P) such that F is generated by B. The topological support of the
law of a random variable F is defined as the set of points x ∈ R such that
P(|x − F| < ε) > 0 for all ε > 0.

Our first result says that if a random variable F belongs to the Sobolev
space D1,2 then the topological support of the law of F is a closed interval.

Proposition 7.1.1 Let F ∈ D1,2. Then, the topological support of the law
of F is a closed interval.

Proof Clearly the topological support of the law of F is a closed set.
Then, it suffices to show that it is connected. We show this by contradiction.
If the topological support of the law of F is not connected, there exists a
point a ∈ R and ε > 0 such that P(a − ε < F < a + ε) = 0, P(F ≥
a + ε) < 1, and P(F ≤ a − ε) < 1. Let ϕ : R → R be an infinitely
differentiable function such that ϕ(x) = 0 if x ≤ a − ε and ϕ(x) = 1 if
x ≥ a + ε. By Proposition 3.3.2, ϕ(F) ∈ D1,2 but, almost surely, ϕ(F) =
1{F≥a+ε}. Therefore, by Proposition 4.2.6, we must have P(F ≥ a + ε) = 0
or P(F ≥ a + ε) = 1, which leads to a contradiction. �

If a random variable F belongs to D1,2, and its derivative is not degener-
ate, then F has a density. A simple proof of this result was given by Nualart
and Zakai (1986).

Proposition 7.1.2 Let F be a random variable in the space D1,2 such that
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‖DF‖H > 0 almost surely. Then, the law of F is absolutely continuous with
respect to the Lebesgue measure on R.

Proof Replacing F by arctan F, we may assume that F takes values in
(−1, 1). It suffices to show that, for any measurable function g : (−1, 1) →
[0, 1] such that

∫ 1

−1
g(y)dy = 0, we have E(g(F)) = 0. We can find a se-

quence of continuous functions gn : (−1, 1) → [0, 1] such that, as n tends
to infinity, gn(y) converges to g(y) for almost all y with respect to the mea-
sure P ◦ F−1 + �, where � denotes the Lebesgue measure on R. Set

ψn(x) =
∫ x

−∞
gn(y)dy.

Then, ψn(F) converges to 0 almost surely and in L2(Ω) because gn con-
verges almost everywhere to g, with respect to the Lebesgue measure,
and

∫ 1

−1
g(y)dy = 0. Furthermore, by the chain rule (Proposition 3.3.2),

ψn(F) ∈ D1,2 and

D(ψn(F)) = gn(F)DF,

which converges almost surely and in L2(Ω) to g(F)DF. Because D is
closed, we conclude that g(F)DF = 0. Our hypothesis ‖DF‖H > 0 im-
plies that g(F) = 0 almost surely, and this finishes the proof. �

The following result is an expression for the density of a random variable
in the Sobolev space D1,2, assuming that ‖DF‖H > 0 a.s.

Proposition 7.1.3 Let F be a random variable in the space D1,2 such
that ‖DF‖H > 0 a.s. Suppose that DF/‖DF‖2

H belongs to the domain of
the operator δ in L2(Ω). Then the law of F has a continuous and bounded
density, given by

p(x) = E
(
1{F>x}δ

( DF
‖DF‖2

H

))
. (7.1)

Proof Let ψ be a nonnegative function in C∞
0 (R), and set ϕ(y) =

∫ y

−∞ ψ(z)dz.

Then, by the chain rule (Proposition 3.3.2), ϕ(F) belongs to D1,2 and we
can write

〈D(ϕ(F)),DF〉H = ψ(F)‖DF‖2
H .

Using the duality formula (Proposition 3.2.3), we obtain

E(ψ(F)) = E
(〈

D(ϕ(F)) ,
DF

‖DF‖2
H

〉
H

)
= E

(
ϕ(F) δ

( DF
‖DF‖2

H

))
. (7.2)
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By an approximation argument, equation (7.2) holds for ψ(y) = 1[a,b](y),
where a < b. As a consequence, we can apply Fubini’s theorem to get

P(a ≤ F ≤ b) = E
(( ∫ F

−∞
ψ(x)dx

)
δ
( DF
‖DF‖2

H

))
=

∫ b

a
E

(
1{F>x}δ

( DF
‖DF‖2

H

))
dx,

which implies the desired result. �

Remark 7.1.4 Equation (7.1) still holds under the hypotheses F ∈ D1,p

and DF/‖DF‖2
H ∈ D1,p′(H) for some p, p′ > 1. Sufficient conditions for

these hypotheses are F ∈ D2,α and E(‖DF‖−2β) < ∞ with 1/α + 1/β < 1.

Example 7.1.5 Let F = B(h). Then DF = h and

δ
( DF
‖DF‖2

H

)
= B(h)‖h‖−2

H .

As a consequence, formula (7.1) yields

p(x) = ‖h‖−2
H E

(
1{F>x}F

)
,

which is true because p(x) is the density of the distribution N(0, ‖h‖2
H) (Ex-

ercise 7.1).

Applying equation (7.1) we can derive density estimates. Notice first
that (7.1) holds if 1{F>x} is replaced by 1{F<x}, because the divergence has
zero expectation. Fix p and q such that 1/p + 1/q = 1. Then, by Hölder’s
inequality, we obtain

p(x) ≤ (P(|F| > |x|))1/q
∥∥∥∥∥δ ( DF

‖DF‖2
H

) ∥∥∥∥∥
p
, (7.3)

for all x ∈ R. Applying (7.3) and Meyer’s inequality (5.7), we can deduce
the following result (see Nualart, 2006, Proposition 2.1.3). The proof is left
as an exercise (Exercise 7.2).

Proposition 7.1.6 Let q, α, β be three positive real numbers such that
1/q + 1/α + 1/β = 1. Let F be a random variable in the space D2,α, such
that E(‖DF‖−2β

H ) < ∞. Then, the density p(x) of F can be estimated as
follows:

p(x) ≤ cq,α,β (P(|F| > |x|))1/q

×
(
E(‖DF‖−1

H ) +
∥∥∥D2F

∥∥∥
Lα(Ω;L2(R2

+))

∥∥∥‖DF‖−2
H

∥∥∥
β

)
. (7.4)
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7.2 Existence and Smoothness of Densities for Random Vectors

Let F = (F1, . . . , Fm) be such that Fi ∈ D1,2 for i = 1, . . . ,m. We define
the Malliavin matrix of F as the random symmetric nonnegative definite
matrix

γF = (〈DFi,DF j〉H)1≤i, j≤m. (7.5)

In the one-dimensional case, γF = ‖DF‖2
H . The following theorem is a

multidimensional version of Proposition 7.1.2.

Theorem 7.2.1 If det γF > 0 a.s. then the law of F is absolutely continu-
ous with respect to the Lebesgue measure on Rm.

This theorem was proved by Bouleau and Hirsch (1991) using the coarea
formula and techniques of geometric measure theory, and we omit the
proof. As a consequence, the measure (det γF×P)◦F−1 is always absolutely
continuous; that is,

P(F ∈ B , det γF > 0) = 0,

for any Borel set B ∈ B(Rm) of zero Lebesgue measure.

Definition 7.2.2 We say that a random vector F = (F1, . . . , Fm) is non-
degenerate if Fi ∈ D1,2 for i = 1, . . . ,m and

E((det γF)−p) < ∞,
for all p ≥ 2.

Set ∂i = ∂/∂xi and, for any multi-index α ∈ {1, . . . ,m}k, k ≥ 1, we denote
by ∂α the partial derivative ∂k/(∂xα1 · · · ∂xαk ).

Lemma 7.2.3 Let γ be an m × m random matrix such that γi j ∈ D1,∞ for
all i, j and E (| det γ|−p) < ∞ for all p ≥ 2. Then,

(
γ−1

)i j
belongs to D1,∞ for

all i, j, and

D
(
γ−1

)i j
= −

m∑
k,�=1

(
γ−1

)ik (
γ−1

)� j
Dγk�. (7.6)

Proof We know that P(det γ > 0) is zero or one (see Exercise 4.10). So,
we can assume that det γ > 0 almost surely. For any ε > 0, we define
γ−1
ε = (det γ + ε)−1A(γ), where A(γ) is the adjoint matrix of γ. Then, the

entries of γ−1
ε belong to D1,∞ and converge in Lp(Ω), for all p ≥ 2, to those

of γ−1 as ε tends to zero. Moreover, the entries of γ−1
ε satisfy

sup
ε∈(0,1]

‖(γ−1
ε )i j‖1,p < ∞,
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for all p ≥ 2. Therefore, by Proposition 5.1.6 the entries of γ−1
ε belong to

D
1,p for any p ≥ 2. Finally, from the expression γ−1

ε γ = (det γ/(det γ +
ε))Im, where Im denotes the identity matrix of order m, we deduce (7.6) on
applying the derivative operator and letting ε tend to zero. �

The following result can be regarded as an integration-by-parts formula
and plays a fundamental role in the proof of the regularity of densities.

Proposition 7.2.4 Let F = (F1, . . . , Fm) be a nondegenerate random vec-
tor. Fix k ≥ 1 and suppose that Fi ∈ Dk+1,∞ for i = 1, . . . ,m. Let G ∈ D∞
and let ϕ ∈ C∞

p (Rm). Then, for any multi-index α ∈ {1, . . . ,m}k, there exists
an element Hα(F,G) ∈ D∞ such that

E(∂αϕ(F)G) = E(ϕ(F)Hα(F,G)), (7.7)

where the elements Hα(F,G) are recursively given by

H(i)(F,G) =
m∑

j=1

δ
(
G

(
γ−1

F

)i j
DF j

)
and, for α = (α1, . . . , αk), k ≥ 2, we set

Hα(F,G) = Hαk (F,H(α1,...,αk−1)(F,G)).

Proof By the chain rule (Proposition 3.3.2), we have

〈D(ϕ(F)),DF j〉H =

m∑
i=1

∂iϕ(F)〈DFi,DF j〉H =

m∑
i=1

∂iϕ(F)γi j
F

and, consequently,

∂iϕ(F) =
m∑

j=1

〈D(ϕ(F)),DF j〉H(γ−1
F ) ji.

Taking expectations and using the duality relationship (Proposition 3.2.3)
yields

E(∂iϕ(F)G) = E(ϕ(F)H(i)(F,G)),

where H(i) =
∑m

j=1 δ
(
G

(
γ−1

F

)i j
DF j

)
. Notice that Meyer’s inequality (Theo-

rem 5.3.1) and Lemma 7.2.3 imply that H(i) belongs to Lp(Ω) for any p ≥ 2.
We finish the proof with a recurrence argument. �

One can show that, for any p > 1, there exist constants β, γ > 1 and
integers n, m such that

‖Hα(F,G)‖p ≤ cp,q

∥∥∥det γ−1
F

∥∥∥m

β
‖DF‖n

k,γ ‖G‖k,q . (7.8)
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The proof of this inequality is based on Meyer’s and Hölder’s inequalities
and it is left as an exercise (Exercise 7.4).

The following result is a multidimensional version of the density for-
mula (7.1).

Proposition 7.2.5 Let F = (F1, . . . , Fm) be a nondegenerate random vec-
tor such that Fi ∈ Dm+1,∞ for i = 1, . . . ,m. Then F has a continuous and
bounded density given by

p(x) = E(1{F>x}Hα(F, 1)), (7.9)

where α = (1, 2, . . . ,m).

Proof Recall that, for α = (1, 2, . . . ,m)

Hα(F, 1)

=

m∑
j1,..., jm=1

δ
(
(γ−1

F )1 j1 DF j1δ
(
(γ−1

F )2 j2 DF j2 · · · δ
(
(γ−1

F )m jm DF jm
)
· · ·

))
.

Then, equality (7.7) applied to the multi-index α = (1, 2, . . . ,m) yields, for
any ϕ ∈ C∞

p (Rm),

E(∂αϕ(F)) = E(ϕ(F)Hα(F, 1)).

Notice that

ϕ(F) =
∫ F1

−∞
· · ·

∫ Fm

−∞
∂αϕ(x)dx.

Hence, by Fubini’s theorem we can write

E(∂αϕ(F)) =
∫
Rm
∂αϕ(x)E(1{F>x}Hα(F, 1))dx. (7.10)

Given any function ψ ∈ C∞
0 (Rm), we can take ϕ ∈ C∞

p (Rm) such that ψ =
∂αϕ, and (7.10) yields

E(ψ(F)) =
∫
Rm
ψ(x)E(1{F>x}Hα(F, 1))dx,

which implies the result. �

The following theorem is the basic criterion for the smoothness of den-
sities.

Theorem 7.2.6 Let F = (F1, . . . , Fm) be a nondegenerate random vector
such that Fi ∈ D∞ for all i = 1, . . . ,m. Then the law of F possesses an
infinitely differentiable density.
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Proof For any multi-index β and any ϕ ∈ C∞
p (Rm), we have, taking α =

(1, 2, . . . ,m),

E
(
∂β∂αϕ(F)

)
= E

(
ϕ(F)Hβ(F,Hα(F, 1)))

)
=

∫
Rm
∂αϕ(x) E

(
1{F>x}Hβ(F,Hα(F, 1))

)
dx.

Hence, for any ξ ∈ C∞
0 (Rm),∫

Rm
∂βξ(x)p(x)dx =

∫
Rm
ξ(x) E

(
1{F>x}Hβ(F,Hα(F, 1))

)
dx.

Therefore, p(x) is infinitely differentiable and, for any multi-index β, we
have

∂βp(x) = (−1)|β| E
(
1{F>x}Hβ(F, (Hα(F, 1))

)
.

This completes the proof. �

7.3 Density Formula using the Riesz Transform

In this section we present a method for obtaining a density formula using
the Riesz transform, following the methodology introduced by Malliavin
and Thalmaier (2005) and extensively studied by Bally and Caramellino
(2011, 2013). In contrast with (7.9), here we only need two derivatives,
instead of m + 1.

Let Qm be the fundamental solution to the Laplace equation ΔQm = δ0

on Rm, m ≥ 2. That is,

Q2(x) = a−1
2 ln

1
|x| , Qm(x) = a−1

m |x|2−m, m > 2,

where am is the area of the unit sphere in Rm. We know that, for any 1 ≤
i ≤ m,

∂iQm(x) = −cm
xi

|x|m , (7.11)

where cm = 2(m − 2)/am if m > 2 and c2 = 2/a2. Notice that any function
ϕ in C1

0(Rm) can be written as

ϕ(x) = ∇ϕ ∗ ∇Qm(x) =
m∑

i=1

∫
Rm
∂ϕ(x − y)∂iQm(y)dy. (7.12)

Indeed,

∇ϕ ∗ ∇Qm(x) = ϕ ∗ ΔQm(x) = ϕ(x).
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Theorem 7.3.1 Let F be an m-dimensional nondegenerate random vector
whose components are in D2,∞. Then, the law of F admits a continuous and
bounded density p given by

p(x) =
m∑

i=1

E(∂iQm(F − x)H(i)(F, 1)),

where

H(i)(F, 1) =
m∑

j=1

δ
(
(γ−1

F )i jDF j
)
.

Proof Let ϕ ∈ C1
0(Rm). Applying (7.12), we can write

E(ϕ(F)) =
m∑

i=1

E
( ∫
Rm
∂iQm(y)(∂iϕ(F − y))dy

)
.

Assume that the support of ϕ is included in the ball BR(0) for some R > 1.
Then, using (7.11) we obtain

E
( ∫
Rm
|∂iQm(y)∂iϕ(F − y)| dy

)
≤ ‖∂iϕ‖∞E

( ∫
{y:|F|−R≤|y|≤|F|+R}

|∂iQm(y)|dy
)

≤ cmVol(B1(0))‖∂iϕ‖∞E
( ∫ |F|+R

|F|−R

r
rm rm−1dr

)
= 2cmVol(B1(0))‖∂iϕ‖∞RE(|F|) < ∞.

As a consequence, Fubini’s theorem and (7.7) yield

E(ϕ(F)) =
m∑

i=1

∫
Rm
∂iQm(y)E(∂iϕ(F − y))dy

=

m∑
i=1

∫
Rm
∂iQm(y)E(ϕ(F − y)H(i)(F, 1))dy

=

m∑
i=1

∫
Rm
ϕ(y)E(∂iQm(F − y)H(i)(F, 1))dy.

This completes the proof. �

The approach based on the Riesz transform can also be used to obtain
the following uniform estimate for densities, due to Stroock.

Lemma 7.3.2 Under the assumptions of Theorem 7.3.1, for any p > m
there exists a constant c depending only on m and p such that

‖p‖∞ ≤ c
(
max
1≤i≤m

‖H(i)(F, 1)‖p

)m
.
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Proof From

p(x) =
m∑

i=1

E(∂iQm(F − x)H(i)(F, 1)),

applying Hölder’s inequality with 1/p + 1/q = 1 and the estimate (see
(7.11))

|∂iQm(F − x)| ≤ cm|F − x|1−m

yields

p(x) ≤ mcmA
(
E

(
|F − x|(1−m)q

))1/q
, (7.13)

where A = max1≤i≤m ‖H(i)(F, 1)‖p.
Suppose first that p is bounded and let M = supx∈R p(x). We can write,

for any ε > 0,

E(|F − x|(1−m)q) ≤ ε(1−m)q +

∫
|z−x|≤ε

|z − x|(1−m)q p(x)dx

≤ ε(1−m)q +Cm,pε
(p−m)/(p−1)M. (7.14)

Therefore, substituting (7.14) into (7.13), we get

M ≤ Amcm

(
ε1−m +C1/q

m,pε
(p−m)/pM1/q

)
.

Now we minimize with respect to ε and obtain M ≤ ACm,pM1−1/m, for
some constant Cm,p, which implies that M ≤ Cm

m,pAm. If p is not bounded,
we apply the procedure to p ∗ ψδ, where ψδ is an approximation of the
identity, and let δ tend to zero at the end. �

7.4 Log-Likelihood Density Formula

The next result gives an expression for the derivative of the logarithm of
the density of a random vector. It is inspired by the concept of a covering
vector field introduced in Malliavin and Thalmaier (2005, Definition 4.4).

Definition 7.4.1 Let F be an m-dimensional random vector whose com-
ponents are in D1,2. An m-dimensional process u = (uk(t))t≥0,1≤k≤m is called
a covering vector field of F if, for any k = 1, . . . ,m, uk ∈ Dom δ and

∂kϕ(F) = 〈D(ϕ(F)), uk〉H

for any ϕ ∈ C1
0(Rm).



114 Study of Densities

For instance, u = γF DF is a covering vector field of F, where γF is
the Malliavin matrix of F introduced in (7.5). Observe that, by the duality
relationship (Proposition 3.2.3), if u is a covering vector field of F then the
following integration-by-parts formula holds:

E(∂kϕ(F)) = E(ϕ(F)δ(uk)). (7.15)

Moreover, we have an expression for the derivative of the logarithm of the
density.

Proposition 7.4.2 Consider an m-dimensional nondegenerate random
vector F whose components are in D∞. Suppose that p(x) > 0 a.e., where
p denotes the density of F. Then, for any covering vector field u and all
k ∈ {1, . . . ,m},

∂k log p(y) = −E(δ(uk)|F = y) a.e. (7.16)

Proof First observe that by Theorem 7.2.6 p is in C∞(Rm). Using (7.15)
we get, for any ϕ ∈ C∞

0 (Rm),∫
Rm
ϕ(y)∂k p(y)dy = −

∫
Rm
ϕ(y)E(δ(uk)|F = y)p(y)dy,

and the desired result follows. �

We next derive a formula for the log-likelihood function of a statisti-
cal observation in a parametric statistical model using the techniques of
Malliavin calculus. This application of the Malliavin calculus to paramet-
ric statistical models was initiated by Gobet (2001, 2002) in order to obtain
asymptotic results for parametric diffusion models. See also Corcuera and
Kohatsu-Higa (2011).

Let Θ ⊂ R be an open interval. A statistical observation is described
by an n-dimensional random vector Fθ = (Fθ,1, . . . , Fθ,n), depending on an
unknown parameter θ ∈ Θ defined on a probability space (Ω,F , P). We
denote by Pθ the probability distribution of Fθ and by Eθ the expectation
with respect to Pθ. We call (Fθ)θ∈Θ a parametric statistical model.

We are going to impose the existence of a log-likelihood density func-
tion for Pθ that satisfies some smoothness conditions. These conditions are
included in the notion of a regular model (see Ibragimov and Has’minskii
(1981) for an extended exposition of statistical estimation).

Definition 7.4.3 A parametric statistical model (Fθ)θ∈Θ is said to be reg-
ular if:

(i) There exists a σ-finite measure μ on Rn such that, for all θ ∈ Θ, the
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probability measures Pθ = P ◦ F−1
θ are absolutely continuous with

respect to μ, and the density

p(x, θ) =
dPθ
dμ

(x) (7.17)

is positive and continuous in Θ for μ-almost-all x ∈ Rn. The measure
μ is called the dominating measure of the model.

(ii) The density p(x, θ) is differentiable in Θ for μ-almost-all x ∈ Rn, and
the derivative of p1/2(x, θ) belongs to L2(μ). That is, the function

ϕ(x, θ) = ∂θp1/2(x, θ) =
1
2

1
p1/2(x, θ)

∂θp(x, θ)

satisfies that, for all θ ∈ Θ,∫
Rn
|ϕ(x, θ)|2μ(dx) < ∞.

(iii) The function ϕ(·, θ) is L2(μ)-continuous in Θ. That is, for all θ ∈ Θ,∫
Rn
|ϕ(x, θ + h) − ϕ(x, θ)|2μ(dx) −→ 0 as h → 0.

Remark 7.4.4 Assumption (ii) can be replaced by the fact that the func-
tion p1/2(x, θ) is L2(μ)-differentiable in Θ, but the above condition is easier
to check in practice.

Example 7.4.5 Assume that the components of F are independent and
N(θ, 1) random variables. This model is regular with, as dominating mea-
sure, the Lebesgue measure in Rn.

Example 7.4.6 Consider a Brownian motion with drift on [0, 1],

Xt = Bt +

∫ t

0
b(s, θ)ds,

where, for all θ ∈ Θ, b(·, θ) is a continuously differentiable function in
[0, 1]. We denote by (Pθ)θ∈Θ the law of the process X = (Xt)t∈[0,1] on the
canonical space (C([0, 1]),B([0, 1])), and we assume that we have observed
the process Xt during the whole time interval [0, 1]. The definition of a para-
metric statistical regular model can be extended to this family of probability
measures. In this case, the dominating measure μ is the law of Brownian
motion on (C([0, 1]),B([0, 1])). In fact, by Girsanov’s theorem (Theorem
2.10.3),

dPθ
dμ

(X) = exp
( ∫ 1

0
b(t, θ)dXt − 1

2

∫ 1

0
b2(t, θ)dt

)
=: p(X, θ).
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Moreover, this model is regular with L2(μ)-continuous derivative given by

ϕ(X, θ) = p1/2(X, θ)
(

1
2

∫ 1

0
∂θb(t, θ)dXt − 1

2

∫ 1

0
b(t, θ)∂θb(t, θ)dt

)
.

The functions p(x, θ) and log p(x, θ) are called, respectively, the likeli-
hood and log-likelihood functions. The following is a consequence of the
regularity condition. See Ibragimov and Has’minskii (1981, Lemma 7.2)
for a proof of this result.

Lemma 7.4.7 Let (Fθ)θ∈Θ be a regular parametric statistical model. Let
f : Rn → Θ be a measurable function such that E(| f (Fθ)|2) is bounded in
Θ. Then the function E( f (Fθ)) is continuously differentiable in Θ and

∂θE( f (Fθ)) = ∂θ

∫
Rn

f (x)p(x, θ)μ(dx) =
∫
Rn

f (x)∂θp(x, θ)μ(dx).

We now assume that (Ω,F , P) is a probability space, where there exists
a Brownian motion B such that F is generated by B. We next derive a
formula for the derivative of the log-likelihood density log p(x, θ) that is
analogous to (7.16).

Proposition 7.4.8 Let (Fθ)θ∈Θ be a regular parametric statistical model,
where the components of the the n-dimensional random vector Fθ belong
to D1,2. Let (ut)t≥0 be a process in Dom δ such that, for all j ∈ {1, . . . , n},

〈DFθ, j, u〉H = ∂θFθ, j. (7.18)

Moreover, assume that E
(
|∂θFθ, j|p

)
is uniformly bounded on Θ for some

p > 1. Then

∂θ log p(x, θ) = E(δ(u)|Fθ = x),

for Pθ-almost-all x.

Proof Let ϕ ∈ C∞
0 (Rn). By the chain rule (Proposition 3.3.2) and the du-

ality relationship (Proposition 3.2.3), we obtain

∂θE(ϕ(Fθ)) =
n∑

j=1

E
(
∂ jϕ(Fθ)∂θFθ, j

)
=

n∑
j=1

E
(
∂ jϕ(Fθ)〈DFθ, j, u〉H

)
= E(〈D(ϕ(Fθ)), u〉H) = E(ϕ(Fθ)δ(u)). (7.19)

Observe that the fact that E
(
|∂θFθ, j|p

)
is uniformly bounded on Θ implies

the uniform integrability of the family (∂θFθ, j)θ∈Θ. Therefore, we can inter-
change the derivative and the expectation in (7.19).
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Furthermore, by Lemma 7.4.7,

∂θE(ϕ(Fθ)) =
∫
Rn
ϕ(x)∂θp(x, θ)μ(dx)

=

∫
Rn
ϕ(x)∂θ log p(x, θ)p(x, θ)μ(dx)

= E(ϕ(Fθ) ∂θ log p(Fθ, θ)),

which concludes the proof. �

Example 7.4.9 Assume that Fθ, j = ε j + θ for j = 1, . . . , n, where the ε j

are independent N(0, 1) random variables. Consider orthonormal elements
e j ∈ H = L2(R+), j = 1, . . . , n. We can assume that B(e j) = ε j for j =
1, . . . , n. Then 〈e j, ek〉H = E(ε jεk) = δ jk, and DFθ, j = e j. Let u =

∑n
j=1 e j; u

clearly satisfies (7.18) since ∂θFθ, j = 1. Moreover,

δ(u) =
n∑

j=1

B(e j) =
n∑

j=1

ε j =

n∑
j=1

Fθ, j − nθ.

By Proposition 7.4.8, we obtain ∂θ log p(x, θ) =
∑n

j=1 x j − nθ.

Example 7.4.10 Let X(n) = (Xt1 , . . . , Xtn ), 0 < t1 < · · · < tn < T , be
observations of the Ornstein–Uhlenbeck process

dXt = −θXtdt + dBt, X0 = 0,

where B is a Brownian motion on [0, T ]. To simplify, we have omitted the
dependence of X(n) on θ. We have

Xt =

∫ t

0
e−θ(t−s)dBs.

Therefore DsXt = e−θ(t−s)1[0,t](s). Moreover, the process ∂θXt satisfies

d ∂θXt = −Xtdt − θ∂θXtdt, ∂θX0 = 0.

Thus,

∂θXt = −
∫ t

0
e−θ(t−s)Xsds = −

∫ T

0
XsDsXtds = −〈X,DXt〉L2([0,T ]).

Then, by Proposition 7.4.8, taking u = X we obtain

∂θ log p(x, θ) = −E(δ(X)|X(n) = x) = −E
( ∫ T

0
XsdBs

∣∣∣∣∣X(n) = x
)

= −E
( ∫ T

0
XsdXs + θ

∫ T

0
X2

s ds
∣∣∣∣∣X(n) = x

)
.
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In particular, the maximum likelihood estimator of θ is given by

θ̂ = −
E

(∫ T

0
XsdXs

∣∣∣X(n)
)

E
(∫ T

0
X2

s ds
∣∣∣X(n)

) .
These formulas are used in Gobet (2001, 2002) to derive asymptotic results
for this parametric model and more general ones.

7.5 Malliavin Differentiability of Diffusion Processes

Suppose that B = (Bt)t≥0, with Bt = (B1
t , . . . , B

d
t ), is a d-dimensional Brow-

nian motion. Consider the m-dimensional stochastic differential equation

dXt =

d∑
j=1

σ j(Xt)dBj
t + b(Xt)dt, (7.20)

with initial condition X0 = x0 ∈ Rm, where the coefficients σ j, b : Rm →
R

m, 1 ≤ j ≤ d are measurable functions.
By definition, a solution to equation (7.20) is an adapted process X =

(Xt)t≥0 such that, for any T > 0 and p ≥ 2,

E
(

sup
t∈[0,T ]

|Xt|p
)
< ∞

and X satisfies the integral equation

Xt = x0 +

d∑
j=1

∫ t

0
σ j(Xs)dBj

s +

∫ t

0
b(Xs)ds. (7.21)

The following result is well known (see, for instance, Karatzas and Shreve,
1998).

Theorem 7.5.1 Suppose that the coefficients σ j, b : Rm → Rm, 1 ≤ j ≤ d,
satisfy the Lipschitz condition: for all x, y ∈ Rm,

max
j

(
|σ j(x) − σ j(y)|, |b(x) − b(y)|

)
≤ K|x − y|. (7.22)

Then there exists a unique solution X to Equation (7.21).

When the coefficients in equation (7.20) are continuously differentiable,
the components of the solution are differentiable in the Malliavin calculus
sense.
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Proposition 7.5.2 Suppose that the coefficients σ j, b are in C1(Rm;Rm)
and have bounded partial derivatives. Then, for all t ≥ 0 and i = 1, . . . ,m,
Xi

t ∈ D1,∞, and for r ≤ t and j = 1, . . . , d,

Dj
rXt =σ j(Xr) +

m∑
k=1

d∑
�=1

∫ t

r
∂kσ�(Xs)Dj

rXk
s dB�s

+

m∑
k=1

∫ t

r
∂kb(Xs)Dj

rXk
s ds. (7.23)

Proof To simplify, we assume that b = 0. Consider the Picard approxi-
mations given by X(0)

t = x0 and

X(n+1)
t = x0 +

d∑
j=1

∫ t

0
σ j(X(n)

s )dBj
s,

if n ≥ 0. We will prove the following claim by induction on n:

Claim: X(n),i
t ∈ D1,∞ for all i = 1, . . . ,m, t ≥ 0. Moreover, for all p > 1 and

t ≥ 0,

ψn(t) := sup
0≤r≤t

E
(

sup
s∈[r,t]

|DrX(n)
s |p

)
< ∞ (7.24)

and, for all T > 0 and t ∈ [0, T ],

ψn+1(t) ≤ c1 + c2

∫ t

0
ψn(s)ds, (7.25)

for some constants c1, c2 depending on T .

Clearly, the claim holds for n = 0. Suppose that it is true for n. Applying
property (3.6) of the divergence operator and the chain rule (Proposition
3.3.2), for any r ≤ t, i = 1, . . . ,m , and � = 1, . . . , d, we get

D�rX(n+1),i
t = D�r

( m∑
j=1

∫ t

0
σi

j(X
(n)
s )dBj

s

)
=

m∑
j=1

(
δ�, jσ

i
�(X

(n)
r ) +

∫ t

r
D�r

(
σi

j(X
(n)
s )

)
dBj

s

)
=

m∑
j=1

(
δ�, jσ

i
�(X

(n)
r ) +

m∑
k=1

∫ t

r
∂kσ j(X(n)

s )D�rX(n),k
s dBj

s

)
.

From these equalities and condition (7.24) we see that X(n+1),i
t ∈ D1,∞ and
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we obtain, using the Burkholder–David–Gundy inequality (Theorem 2.2.3)
and Hölder’s inequality,

E
(

sup
r≤s≤t

|DrX(n+1)
s |p

)
≤ cp

(
γp + T (p−1)/2K p

∫ t

r
E

(|Dj
rX(n)

s |p)ds
)
, (7.26)

where

γp = sup
n, j

E
(

sup
0≤t≤T

|σ j(X
(n)
t )|p

)
< ∞.

So (7.24) and (7.25) hold for n + 1 and the claim is proved.
We know that

E
(

sup
s≤T

|X(n)
s − Xs|p

)
−→ 0

as n tends to infinity. By Gronwall’s lemma applied to (7.25) we deduce
that the derivatives of the sequence X(n),i

t are bounded in Lp(Ω; H) uni-
formly in n for all p ≥ 2. This implies that the random variables Xi

t belong
to D1,∞. Finally, applying the operator D to equation (7.21) we deduce the
linear stochastic differential equation (7.23) for the derivative of Xi

t .
This completes the proof of the proposition. �

Example 7.5.3 Consider the diffusion process in R

dXt = σ(Xt)dBt + b(Xt)dt, X0 = x0,

where σ and b are globally Lipschitz functions in C1(R). Then, for all
t > 0, Xt belongs to D1,∞ and the Malliavin derivative (DrXt)r≤t satisfies
the following linear equation:

DrXt = σ(Xr) +
∫ t

r
σ′(Xs)Dr(Xs)dBs +

∫ t

r
b′(Xs)Dr(Xs)ds.

Therefore, by Itô’s formula (Theorem 2.4.3),

DrXt = σ(Xt) exp
( ∫ t

r
σ′(Xs)dBs +

∫ t

r
(b(Xs) − 1

2 (σ′)2(Xs))ds
)
.

Consider the m × m matrix-valued process defined by

Yt = Im +

d∑
l=1

∫ t

0
∂σ�(Xs)YsdB�s +

∫ t

0
∂b(Xs)Ysds,

where Im denotes the identity matrix of order m and ∂σ� denotes the m×m
Jacobian matrix of the function σ�; that is,

(∂σ�)i
j = ∂ jσ

i
�.
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In the same way, ∂b denotes the m × m Jacobian matrix of b. If the coeffi-
cients of equation (7.21) are of class C1+α, α > 0, then there is a version of
the solution Xt(x0) to this equation that is continuously differentiable in x0

(see Kunita, 1984), and for which Yt is the Jacobian matrix ∂Xt/∂x0:

Yt =
∂Xt

∂x0
.

Proposition 7.5.4 For any t ∈ [0, T ] the matrix Yt is invertible. Its inverse
Zt satisfies

Zt = Im −
d∑
�=1

∫ t

0
Zs∂σ�(Xs)dB�s

−
∫ t

0
Zs

(
∂b(Xs) −

d∑
�=1

∂σ�(Xs)∂σ�(Xs)
)
ds.

Proof By means of Itô’s formula (Theorem 2.4.3), one can check that
ZtYt = YtZt = Im, which implies that Zt = Y−1

t . In fact,

ZtYt = Im +

d∑
�=1

∫ t

0
Zs ∂σ�(Xs)YsdB�s +

∫ t

0
Zs∂b(Xs)Ysds

−
d∑
�=1

∫ t

0
Zs∂σl(Xs)YsdB�s

−
∫ t

0
Zs

(
∂b(Xs) −

d∑
�=1

∂σ�(Xs)∂σ�(Xs)
)
Ysds

−
∫ t

0
Zs

( d∑
�=1

∂σ�(Xs)∂σ�(Xs)
)
Ysds = Im.

Similarly, we can show that YtZt = Im. �

Lemma 7.5.5 The m × d matrix (DrXt)i
j = Dj

rXi
t can be expressed as

DrXt = YtY−1
r σ(Xr), (7.27)

where σ denotes the m × d matrix with columns σ1, . . . , σd.

Proof It suffices to check that the process Φt,r := YtY−1
r σ(Xr), t ≥ r satis-

fies

Φt,r = σ(Xr) +
d∑
�=1

∫ t

r
∂σ�(Xs)Φs,rdB�s +

∫ t

r
∂b(Xs)Φs,rds.
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In fact,

σ(Xr) +
d∑
�=1

∫ t

r
∂σ�(Xs)(YsY−1

r σ(Xr))dB�s

+

∫ t

r
∂b(Xs)(YsY−1

r σ(Xr))ds

= σ(Xr) + (Yt − Yr)Y−1
r σ(Xr) = YtY−1

r σ(Xr).

This completes the proof. �

Consider the Malliavin matrix of Xt, denoted by γXt := Qt and given by

Qi, j
t =

d∑
�=1

∫ t

0
D�sX

i
t D
�
sX

j
t ds.

That is, Qt =
∫ t

0
(DsXt)(DsXt)T ds. Equation (7.27) leads to

Qt = YtCtYT
t , (7.28)

where

Ct =

∫ t

0
Y−1

s σσ
T (Xs)(Y−1

s )T ds.

Taking into account that Yt is invertible, the nondegeneracy of the matrix
Qt will depend only on the nondegeneracy of the matrix Ct, which is called
the reduced Malliavin matrix.

7.6 Absolute Continuity under Ellipticity Conditions

Consider the stopping time defined by

S = inf{t > 0 : detσσT (Xt) � 0}.
Theorem 7.6.1 (Bouleau and Hirsch, 1986) Let (Xt)t≥0 be a diffusion pro-
cess with C1+α and Lipschitz coefficients. Then, for any t > 0, the law
of Xt conditioned by {t > S } is absolutely continuous with respect to the
Lebesgue measure on Rm.

Proof It suffices to show that det Ct > 0 a.s. on the set {S < t}. Suppose
that t > S . For any u ∈ Rm with |u| = 1 we can write

uTCtu =
∫ t

0
uT Y−1

s σσ
T (Xs)(Y−1

s )T uds

≥
∫ t

0
inf
|v|=1

(
vTσσT (Xs)v

)
|(Y−1

s )T u|2ds.
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Notice that inf |v|=1

(
vTσσT (Xs)v

)
is the smallest eigenvalue of σσT (Xs),

which is strictly positive in an open interval contained in [0, t] by the defi-
nition of the stopping time S and because t > S .

Furthermore, |(Y−1
s )T u| ≥ |u| |Ys|−1. Therefore we obtain

uTCtu ≥ k|u|2,
for some positive random variable k > 0, which implies that the matrix Ct

is invertible. This completes the proof. �

Example 7.6.2 Assume that σ(x0) � 0 in Example 7.5.3. Then, for any
t > 0, the law of Xt is absolutely continuous with respect to the Lebesgue
measure in R.

7.7 Regularity of the Density under Hörmander’s Conditions

We need the following regularity result, whose proof is similar to that of
Proposition 7.5.2 and is thus omitted.

Proposition 7.7.1 Suppose that the coefficients σ j, 1 ≤ j ≤ m, and b of
equation (7.20) are infinitely differentiable with bounded derivatives of all
orders. Then, for all t ≥ 0 and i = 1, . . . ,m, Xi

t belong to D∞.

Consider the following vector fields on Rm:

σ j =

m∑
i=1

σi
j(x)
∂

∂xi
, j = 1, . . . , d,

b =
m∑

i=1

bi(x)
∂

∂xi
.

The Lie bracket between the vector fields σ j and σk is defined by

[σ j, σk] = σ jσk − σkσ j = σ
∇
j σk − σ∇kσ j,

where

σ∇j σk =

m∑
i,�=1

σ�j∂�σ
i
k
∂

∂xi
.

Set

σ0 = b − 1
2

d∑
�=1

σ∇� σ�.
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The vector field σ0 appears when we write the stochastic differential equa-
tion (7.21) in terms of the Stratonovich integral (see Section 2.7) instead of
Itô’s integral:

Xt = x0 +

d∑
j=1

∫ t

0
σ j(Xs) ◦ dBj

s +

∫ t

0
σ0(Xs)ds.

Let us introduce the nondegeneracy condition required for the smooth-
ness of the density.

(HC) Hörmander’s condition: The vector space spanned by the vector
fields

σ1, . . . , σd, [σi, σ j], 0 ≤ i ≤ d, 1 ≤ j ≤ d, [σi, [σ j, σk]], 0 ≤ i, j, k ≤ d, . . .

at the point x0 is Rm.
For instance, if m = d = 1, σ1

1(x) = a(x) and σ1
0(x) = a0(x); then

Hörmander’s condition means that a(x0) � 0 or an(x0)a0(x0) � 0 for some
n ≥ 1.

Theorem 7.7.2 Assume that Hörmander’s condition holds. Then, for any
t > 0, the random vector Xt has an infinitely differentiable density.

This result can be considered as a probabilistic version of Hörmander’s
theorem on the hypoellipticity of second-order differential operators. In
fact, the density pt of Xt satisfies the Fokker–Planck equation(

− ∂
∂t
+ L∗

)
pt = 0,

where

L =
1
2

m∑
i, j=1

(σσT )i j ∂
2

∂xi∂x j
+

m∑
i=1

bi ∂

∂xi
.

Then, pt ∈ C∞(Rm) means that ∂/∂t − L∗ is hypoelliptic (Hörmander’s
theorem).

For the proof of Theorem 7.7.2 we need several technical lemmas.

Lemma 7.7.3 Let C be an m×m symmetric nonnegative definite random
matrix. Assume that the entries Ci j have moments of all orders and that for
any p ≥ 2 there exists ε0(p) such that, for all ε ≤ ε0(p),

sup
|v|=1

P
(
vTCv ≤ ε

)
≤ ε p.

Then E((det C)−p) < ∞ for all p ≥ 2.
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Proof Let λ = inf |v|=1 vTCv be the smallest eigenvalue of C. We know that
λm ≤ det C. Thus, it suffices to show that E(λ−p) < ∞ for all p ≥ 2. Set

|C| =
(∑m

i, j=1(Ci j)2
) 1

2 . Fix ε > 0, and let v1, . . . , vN be a finite set of unit
vectors such that the balls with their center in these points and radius ε2/2
cover the unit sphere S m−1. Then, we have

P(λ < ε) = P
(

inf
|v|=1

vTCv < ε
)

≤ P
(

inf
|v|=1

vTCv < ε, |C| ≤ 1
ε

)
+ P

(
|C| > 1

ε

)
. (7.29)

Assume that |C| ≤ 1/ε and vT
k Cvk ≥ 2ε for any k = 1, . . . ,N. For any unit

vector v, there exists a vk such that |v − vk| ≤ ε2/2 and we can deduce the
following inequalities:

vTCv ≥ vT
k Cvk − |vTCv − vT

k Cvk|
≥ 2ε − (|vTCv − vTCvk| + |vTCvk − vT

k Cvk|)
≥ 2ε − 2|C| |v − vk| ≥ ε.

As a consequence, (7.29) implies that

P(λ < ε) ≤ P
( N⋃

k=1

{vT
k Cvk < 2ε}

)
+ P

(
|C| > 1

ε

)
≤ N(2ε)p+2m + ε pE(|C|p)

if ε ≤ 1
2ε0(p + 2m). The number N depends on ε but is bounded by a

constant times ε−2m. Therefore, we obtain P(λ < ε) ≤ Cε p for all ε ≤ ε1(p)
and for all p ≥ 2. This implies that λ−1 has moments of all orders, which
completes the proof of the lemma. �

Lemma 7.7.4 Let (Zt)t≥0 be a real-valued, adapted, continuous process
such that Z0 = z0 � 0. Suppose that there exist α > 0 and t0 > 0 such that,
for all p ≥ 1 and t ∈ [0, t0],

E
(

sup
0≤s≤t

|Zs − z0|p
)
≤ Cptpα.

Then, for all p ≥ 1 and t ≥ 0,

E
(( ∫ t

0
|Zs|ds

)−p)
< ∞.
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Proof We can assume that t ∈ [0, t0]. For any 0 < ε < t|z0|/2, we have

P
(∫ t

0
|Zs|ds < ε

)
≤ P

( ∫ 2ε/|z0 |

0
|Zs|ds < ε

)
≤ P

(
sup

0≤s≤2ε/|z0 |
|Zs − z0| > |z0|

2

)
≤ 2pCp

|z0|p
( 2ε
|z0|

)pα

,

which implies the desired result. �

The next lemma was proved by Norris (1986), following the ideas of
Stroock (1983), and is the basic ingredient in the proof of Theorem 7.7.2.

Lemma 7.7.5 (Norris’s lemma) Consider a continuous semimartingale
of the form

Yt = y +
∫ t

0
asds +

d∑
i=1

∫ t

0
ui

sdBi
s,

where

a(t) = α +
∫ t

0
βsds +

d∑
i=1

∫ t

0
γi

sdBi
s

and c = E
(
sup0≤t≤T (|βt| + |γt| + |at| + |ut|)p

)
< ∞ for some p ≥ 2.

Fix q > 8. Then, for all r < (q − 8)/27 there exists an ε0 such that, for
all ε ≤ ε0, we have

P
( ∫ T

0
Y2

t dt < εq,
∫ T

0
(|at|2 + |ut|2)dt ≥ ε

)
≤ c1ε

rp.

Proof of Theorem 7.7.2 The proof will be carried out in several steps:

Step 1 We need to show that, for all t > 0 and all p ≥ 2, E((det Qt)−p) <
∞, where Qt is the Malliavin matrix of Xt. Taking into account that

E
(
| det Y−1

t |p + | det Yt|p
)
< ∞,

it suffices to show that E((det Ct)−p) < ∞ for all p ≥ 2.

Step 2 Fix t > 0. Using Lemma 7.7.3, the problem reduces to showing
that, for all p ≥ 2, we have

sup
|v|=1

P
(
vTCtv ≤ ε

)
≤ ε p,
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for any ε ≤ ε0(p), where the quadratic form associated with the matrix Ct

is given by

vTCtv =
d∑

j=1

∫ t

0
〈v, Y−1

s σ j(Xs)〉2ds. (7.30)

Step 3 Fix a smooth function V and use Itô’s formula to compute the
differential of Y−1

t V(Xt):

d
(
Y−1

t V(Xt)
)
= Y−1

t

d∑
k=1

[σk,V](Xt)dBk
t

+ Y−1
t

(
[σ0,V] + 1

2

d∑
k=1

[σk, [σk,V]]
)
(Xt)dt. (7.31)

Step 4 We introduce the following sets of vector fields:

Σ0 = {σ1, . . . , σd},
Σn = {[σk,V], k = 0, . . . , d,V ∈ Σn−1} if n ≥ 1,

Σ = ∪∞
n=0Σn

and

Σ′0 = Σ0,

Σ′n =
{
[σk,V], k = 1, . . . , d,V ∈ Σ′n−1;

[σ0,V] + 1
2

d∑
j=1

[σ j, [σ j,V]],V ∈ Σ′n−1

}
if n ≥ 1,

Σ′ = ∪∞
n=0Σ

′
n.

We denote by Σn(x) (resp. Σ′n(x)) the subset of Rm obtained by freezing
the variable x in the vector fields of Σn (resp. Σ′n). Clearly, the vector spaces
spanned by Σ(x0) or by Σ′(x0) coincide and, under Hörmander’s condition,
this vector space is Rm. Therefore, there exists an integer j0 ≥ 0 such
that the linear span of the set of vector fields

⋃ j0
j=0 Σ

′
j(x) at point x0 has

dimension m.
As a consequence there exist constants R > 0 and c > 0 such that

j0∑
j=0

∑
V∈Σ′j

〈v,V(y)〉2 ≥ c, (7.32)
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for all v and y with |v| = 1 and |y − x0| < R.

Step 5 For any j = 0, 1, . . . , j0 we put m( j) = 2−4 j and define the set

E j =

{ ∑
V∈Σ′j

∫ t

0
〈v, Y−1

s V(Xs)〉2ds ≤ εm( j)
}
.

Notice that {vTCtv ≤ ε} = E0 because m(0) = 1. Consider the decomposi-
tion

E0 ⊂ (E0 ∩ Ec
1) ∪ (E1 ∩ Ec

2) ∪ · · · ∪ (E j0−1 ∩ Ec
j0 ) ∪ F,

where F = E0 ∩ E1 ∩ · · · ∩ E j0 . Then, for any unit vector v, we have

P(vTCtv ≤ ε) = P(E0) ≤ P(F) +
j0−1∑
j=0

P(E j ∩ Ec
j+1).

We will now estimate each term in this sum.

Step 6 Let us first estimate P(F). By the definition of F we obtain

P(F) ≤ P
( j0∑

j=0

∑
V∈Σ′j

∫ t

0
〈v, Y−1

s V(Xs)〉2ds ≤ ( j0 + 1)εm( j0)
)
.

Then, taking into account (7.32), we can apply Lemma 7.7.4 to the process

Zs = inf
|v|=1

j0∑
j=0

∑
V∈Σ′j

〈v, Y−1
s V(Xs)〉2,

and we obtain

E
(∣∣∣∣∣ inf
|v|=1

j0∑
j=0

∑
V∈Σ′j

∫ t

0
〈v, Y−1

s V(Xs)〉2ds
∣∣∣∣∣−p)
< ∞.

Therefore, for any p ≥ 1, there exists ε0 such that

P(F) ≤ ε p

for any ε < ε0.

Step 7 For any j = 0, . . . , j0, the probability of the event E j ∩ Ec
j+1 is

bounded by the sum with respect to V ∈ Σ′j of the probability that the two
following events happen:∫ t

0
〈v, Y−1

s V(Xs)〉2ds ≤ εm( j)
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and
d∑

k=1

∫ t

0
〈v, Y−1

s [σk,V](Xs)〉2ds

+

∫ t

0

〈
v, Y−1

s

(
[σ0,V] + 1

2

d∑
j=1

[σ j, [σ j,V]]
)
(Xs)

〉2

ds >
εm( j+1)

n( j)
,

where n( j) denotes the cardinality of the set Σ′j.
Consider the continuous semimartingale (〈v, Y−1

s V(Xs)〉)s≥0. From (7.31)
we see that the quadratic variation of this semimartingale is equal to

d∑
k=1

∫ s

0
〈v, Y−1

r [σk,V](Xr)〉2dr,

and the bounded variation component is∫ s

0

〈
v, Y−1

r

(
[σ0,V] + 1

2

d∑
j=1

[σ j, [σ j,V]]
)
(Xr)

〉
dr.

Taking into account that 8m( j + 1) < m( j), from Norris’s lemma (Lemma
7.7.5) applied to the semimartingale Ys = vT Y−1

s V(Xs), we get that, for any
p ≥ 1, there exists an ε0 > 0 such that

P(E j ∩ Ec
j+1) ≤ ε p,

for all ε ≤ ε0. The proof of the theorem is now complete. �

Exercises

7.1 Let F be a random variable with the law N(0, σ2). Show that the density p(x)
of F satisfies

p(x) = σ−2E
(
1{F>x}F

)
.

7.2 Derive (7.4) applying (7.3) and Meyer’s inequality (5.7).
7.3 Set Mt =

∫ t
0 usdBs, where u = (ut)t∈(0,T ] is a process in L2

T (P) such that, for
all t ∈ [0, T ], |ut | ≥ ρ > 0 for some constant ρ, ut ∈ D2,p, and

λ := sup
s,t∈[0,T ]

E(|Dsut |p) + sup
r,s∈[0,T ]

E
(( ∫ T

0
|D2

r,sut |2dt
)p/2)

< ∞,

for some p > 3. Applying Proposition 7.1.6 show that the density of Mt,
denoted by pt(x), satisfies

pt(x) ≤ c√
t
P(|Mt | > |x|)1/q,
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for all t ∈ [0, T ], where q > p/(p − 3) and the constant c depends on λ, ρ,
and p.
Hint: Use a lower bound of the form

‖DMt‖2
H =

∫ t

0

(
us +

∫ t

s
DsurdBr

)2
ds ≥

∫ t

t(1−h)

(
us +

∫ t

s
DsurdBr

)2
ds

and choose h small enough.
7.4 Show inequality (7.8).
7.5 Consider the parametric model Fθ, j = θε j, j = 1, . . . , n, where the ε j are

independent N(0, 1) random variables. With the same notation as in Example
7.4.5 and using Proposition 7.4.8, derive an expression for ∂θ log p(x, θ).

7.6 Consider the stochastic differential equation

dX1
t = dB1

t + sin X2
t dB2

t ,

dX2
t = 2X1

t dB1
t + X1

t dB2
t ,

with initial condition x0 = 0. Show that the vector fields σ1 and [σ1, σ2] at
x = 0 span R2 and that Hörmander’s condition holds. Deduce that Xt has a
C∞(R2) density for any t > 0.
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Normal Approximations

In this chapter we present the application of Malliavin calculus, combined
with Stein’s method (see Chen et al., 2011), to normal approximations. We
refer the reader to the book by Nourdin and Peccati (2012) for a detailed
account of this topic.

8.1 Stein’s Method

The following lemma is a characterization of the standard normal distribu-
tion on the real line.

Lemma 8.1.1 (Stein’s lemma) A random variable X such that E(|X|) < ∞
has the standard normal distribution N(0, 1) if and only if, for any function
f ∈ C1

b(R), we have

E( f ′(X) − f (X)X) = 0. (8.1)

Proof Suppose first that X has the standard normal distribution N(0, 1).
Then, equality (8.1) follows integrating by parts and using that the density
p(x) = (1/

√
2π) exp(−x2/2) satisfies the differential equation

p′(x) = −xp(x).

Conversely, let ϕ(λ) = E(eiλX), λ ∈ R, be the characteristic function of
X. Because X is integrable, we know that ϕ is differentiable and ϕ′(λ) =
iE(XeiλX). By our assumption, this is equal to −λϕ(λ). Therefore, ϕ(λ) =
exp(−λ2/2), which concludes the proof. �

If the expectation E( f ′(X) − f (X)X) is small for functions f in some
large set, we might conclude that the distribution of X is close to the nor-
mal distribution. This is the main idea of Stein’s method for normal ap-
proximations and the goal is to quantify this assertion in a proper way. To
do this, consider a random variable X with the N(0, 1) distribution and fix

131
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a measurable function h : R→ R such that E(|h(X)|) < ∞. Stein’s equation
associated with h is the linear differential equation

f ′h(x) − x fh(x) = h(x) − E(h(X)), x ∈ R. (8.2)

Definition 8.1.2 A solution to equation (8.2) is an absolutely continuous
function fh such that there exists a version of the derivative f ′h satisfying
(8.2) for every x ∈ R.

The next result provides the existence of a unique solution to Stein’s
equation.

Proposition 8.1.3 The function

fh(x) = ex2/2
∫ x

−∞
(h(y) − E(h(X)))e−y2/2dy (8.3)

is the unique solution of Stein’s equation (8.2) satisfying

lim
x→±∞ e−x2/2 fh(x) = 0. (8.4)

Proof Equation (8.2) can be written as

ex2/2 d
dx

(
e−x2/2 fh(x)

)
= h(x) − E(h(X)).

This implies that any solution to equation (8.2) is of the form

fh(x) = cex2/2 + ex2/2
∫ x

−∞
(h(y) − E(h(X)))e−y2/2dy,

for some c ∈ R. Taking into account that

lim
x→±∞

∫ x

−∞
(h(y) − E(h(X)))e−y2/2dy = 0,

the asymptotic condition (8.4) is satisfied if and only if c = 0. �

Notice that, since
∫
R
(h(y) − E(h(X)))e−y2/2dy = 0, we have∫ x

−∞
(h(y) − E(h(X)))e−y2/2dy = −

∫ ∞

x
(h(y) − E(h(X)))e−y2/2dy. (8.5)

Let us go back to the problem of approximating the law of a random
variable F by the N(0, 1) law. Consider a measurable function h : R → R
such that E(|h(X)|) < ∞ and E(|h(F)|) < ∞, where X is a random variable
with law N(0, 1). Let fh be the unique solution to the Stein equation (8.2)
given by (8.3). Substituting x by a random variable F in (8.3) and taking
the expectation, we obtain

E(h(F) − E(h(X))) = E( f ′h(F) − F fh(F)). (8.6)
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We are going to consider measurable functions h belonging to a separating
class of functions H , which means that if two random variables F and G
are such that h(F), h(G) ∈ L1(Ω) and E(h(F)) = E(h(G)), for all h ∈ H ,
then F and G have the same law.

Definition 8.1.4 Let H be a separating class and let F and G be two
random variables such that h(F) and h(G) are in L1(Ω) for any h ∈ H .
Then, we define

dH (F,G) = sup
h∈H

(|E(h(F)) − E(h(G))|).

Notice that dH (F,G) depends only on the laws of the random variables
F and G, and we can also write dH (F,G) = dH (P ◦ F−1, P ◦ G−1). It can
be proved that dH is a distance in the class of probability measures ν on R
such h ∈ L1(ν) for any h ∈ H . The following are important examples of
separating classes of functions H and their associated distances.

(1) When H is the class of functions of the form h = 1B, where B is a
Borel set in R, the distance dH is the total variation distance, denoted by

dTV(F,G) = sup
B∈B(R)

|P(F ∈ B) − P(G ∈ B)|.

(2) When H is the class of functions of the form h = 1(−∞,z], for some
z ∈ R, the distance dH is the Kolmogorov distance, denoted by

dKol(F,G) = sup
z∈R

|P(F ≤ z) − P(G ≤ z)|.

(3) When H = Lip(1) is the class of functions h such that

‖h‖Lip := sup
x�y

|h(x) − h(y)|
|x − y| ≤ 1,

the distance dH is the Wasserstein distance, denoted by

dW(F,G) = sup
h∈Lip(1)

|E(h(F)) − E(h(G))|.

Then, from (8.6), we deduce the following result.

Proposition 8.1.5 Let F, X be two random variables such that X has
the N(0, 1) distribution. If H is a separating class of functions such that
E(|h(X)|) < ∞ and E(|h(F)|) < ∞ for every h ∈ H then

dH (F, X) ≤ sup
h∈H

|E( f ′h(F) − F fh(F))|. (8.7)
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In order to control these distances, we need estimates on the supremum
norm of fh and its derivative, when h belongs to one of the above classes.
These will be obtained in the following propositions.

Proposition 8.1.6 Let h : R → [0, 1] be a measurable function. Then the
solution to Stein’s equation fh given by (8.3) satisfies

‖ fh‖∞ ≤
√
π

2
and ‖ f ′h‖∞ ≤ 2. (8.8)

Proof Taking into account that |h(x) − E(h(X))| ≤ 1, where X has law
N(0, 1), we obtain

| fh(x)| ≤ ex2/2
∫ ∞

|x|
e−y2/2dy =

√
π

2
,

because the function x → ex2/2
∫ ∞
|x| e−y2/2dy attains its maximum at x = 0.

To prove the second estimate, observe that, in view of (8.5), we can write

f ′h(x) = h(x) − E(h(X)) + xex2/2
∫ x

−∞
(h(y) − E(h(X)))e−y2/2dy

= h(x) − E(h(X)) − xex2/2
∫ ∞

x
(h(y) − E(h(X)))e−y2/2dy,

for every x ∈ R. Therefore

| f ′h(x)| ≤ 1 + |x|ex2/2
∫ ∞

|x|
e−y2/2dy = 2.

This completes the proof. �

For the class {1(−∞,z], z ∈ R} we can improve the estimate (8.8) slightly,
as follows. For any z ∈ R, set fz = fh, where h = 1(−∞,z]. In this case,

fz(x) =

⎧⎪⎪⎨⎪⎪⎩
√

2πex2/2Φ(x)(1 − Φ(z)) if x ≤ z,√
2πex2/2Φ(z)(1 − Φ(x)) if x ≥ z,

where Φ(x) = P(X ≤ x), and X has law N(0, 1). The proof of the following
estimate is left as an exercise (see Exercise 8.1).

Proposition 8.1.7 For any z ∈ R, ‖ fz‖∞ ≤ √
2π/4 and ‖ f ′z ‖∞ ≤ 1.

Finally, the following results will be useful in obtaining an upper bound
for the Wasserstein distance.
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Proposition 8.1.8 Let h ∈ Lip(1). Then the function fh given in (8.3)
admits the representation

fh(x) = −
∫ ∞

0

e−t

√
1 − e−2t

E
(
h
(
xe−t +

√
1 − e−2tX

)
X
)

dt. (8.9)

Moreover fh is continuously differentiable and ‖ f ′h‖∞ ≤ √
2/π.

Proof The fact that fh ∈ C1(R) follows immediately from equation (8.3).
Denote by f̃h(x) the right-hand side of equation (8.9). By the dominated
convergence theorem, we have

f̃ ′h(x) = −
∫ ∞

0

e−2t

√
1 − e−2t

E
(
h′

(
xe−t +

√
1 − e−2tX

)
X
)

dt. (8.10)

Taking into account that |h′(x)| ≤ 1, we obtain the estimate ‖ f̃ ′h‖∞ ≤ √
2/π.

Then, it suffices to show that f̃h = fh. Applying Lemma 8.1.1 yields

f̃h(x) = −
∫ ∞

0
e−tE

(
h′

(
xe−t +

√
1 − e−2tX

))
dt. (8.11)

Then, from (8.10) and (8.11) we obtain

f̃ ′h(x) − x f̃h(x) = −
∫ ∞

0

d
dt

E
(
h
(
xe−t +

√
1 − e−2tX

))
dt = h(x) − E(h(X)).

Moreover, limx→±∞ e−x2/2 f̃h(x) = 0 because f̃ ′h has linear growth. By the
uniqueness of the solution to Stein’s equation, this implies that f̃h = fh,
and the proof is complete. �

The estimate (8.7) together with Propositions 8.1.6, 8.1.7, and 8.1.8 lead
to the following Stein bounds for the total variation and the Kolmogorov
and Wasserstein distances between an integrable random variable F and a
random variable X with N(0, 1) law:

dTV(F, X) ≤ sup
f∈FTV

|E( f ′(F) − F f (F))|, (8.12)

dKol(F, X) ≤ sup
f∈FKol

|E( f ′(F) − F f (F))|, (8.13)

dW(F, X) ≤ sup
f∈FW

|E( f ′(F) − F f (F))|, (8.14)
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where

FTV =

{
f ∈ C1(R) : ‖ f ‖∞ ≤ √

π/2, ‖ f ′‖∞ ≤ 2
}
,

FKol =

{
f ∈ C1(R) : ‖ f ‖∞ ≤ √

2π/4, ‖ f ′‖∞ ≤ 1
}
,

FW =

{
f ∈ C1(R) : ‖ f ′‖∞ ≤ √

2/π
}
.

Notice that for dTV and dKol we can take the supremum over f ∈ C1, be-
cause for any function h such that ‖h‖∞ ≤ 1 we can find a sequence of
continuous functions hn, bounded by 1, such that hn converges to h almost
everywhere with respect to the measure � + (P ◦ F−1), where � denotes the
Lebesgue measure.

8.2 Stein Meets Malliavin

Suppose that again B = (Bt)t≥0 is a Brownian motion defined on a prob-
ability space (Ω,F , P) such that F is generated by B. Combining Stein’s
method with Malliavin calculus leads to the following result, due to Nour-
din and Peccati (2012).

Theorem 8.2.1 Suppose that F ∈ D1,2 satisfies F = δ(u), where u belongs
to Dom δ. Let X be an N(0, 1) random variable. Let H be a separating
class of functions such that E(|h(X)|) < ∞ and E(|h(F)|) < ∞ for every
h ∈ H . Then,

dH (F, X) ≤ sup
h∈H

‖ f ′h‖∞E(|1 − 〈DF, u〉H |).

Proof Using the duality relationship between D and δ (Proposition 3.2.3)
and applying (5.8), we can write

|E( f ′h(F) − F fh(F))| = |E( f ′h(F) − 〈D( fh(F)), u〉H)|
= |E( f ′h(F)(1 − 〈DF, u〉H))|
≤ sup

h∈H
‖ f ′h‖∞E(|1 − 〈DF, u〉H |),

which gives the estimate. �

Now, applying the estimates (8.12)–(8.14), we obtain for F = δ(u) ∈
D

1,2 and X an N(0, 1) random variable,

dTV(F, X) ≤ 2E(|1 − 〈DF, u〉H |),
dKol(F, X) ≤ E(|1 − 〈DF, u〉H |),
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and

dW(F, X) ≤
√

2
π

E(|1 − 〈DF, u〉H |).

Heuristically, this means that if 〈DF, u〉H is close to 1 in L1(Ω) then the law
of F is close to the N(0, 1) law.

Possible choices of u for the representation F = δ(u) are given in Theo-
rem 6.1.1 and Proposition 6.5.1.

Example 8.2.2 Suppose that F =
∫ T

0
usdBs, where u is a progressively

measurable process in D1,2(H). Then

DtF = ut +

∫ T

t
DtusdBs

and

〈u,DF〉H = ‖u‖2
H +

∫ T

0

( ∫ T

t
DtusdBs

)
utdt.

As a consequence,

dTV(F, X) ≤ 2E(|1 − ‖u‖2
H |) + 2E

(∣∣∣∣∣ ∫ T

0

( ∫ T

t
DtusdBs

)
utdt

∣∣∣∣∣)
≤ 2E(|1 − ‖u‖2

H |) + 2
(
E

( ∫ T

0

( ∫ s

0
utDtusdt

)2

ds
))1/2

.

Therefore, a sequence Fn =
∫ T

0
u(n)

s dBs, where u(n) ∈ D1,2(H), converges in
total variation to X, which has law N(0, 1), if:

(i) ‖u(n)‖2
H → 1 in L1(Ω), and

(ii) E
∫ T

0

(∫ s

0
u(n)

t Dtu
(n)
s dt

)2
ds → 0.

Now let F ∈ D1,2 be such that E(F) = 0. Let X be an N(0, 1) random
variable. Taking u = −DL−1F, Theorem 8.2.1 gives

dH (F, X) ≤ sup
h∈H

‖ f ′h‖∞E(|1 − 〈DF,−DL−1F〉H |). (8.15)

In some examples it is more convenient to compare the law of F with
the law N(0, σ2), where σ2 > 0. In that case, the previous results can be
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easily extended to the case where X has the N(0, σ2) law, and we obtain

dTV(F, X) ≤ 2
σ2 E(|σ2 − 〈DF, u〉H |), (8.16)

dKol(F, X) ≤ 1
σ2 E(|σ2 − 〈DF, u〉H |),

dW(F, X) ≤ 1
σ2

√
2
π

E(|σ2 − 〈DF, u〉H |).

8.3 Normal Approximation on a Fixed Wiener Chaos

In this section we will focus on the normal approximation when the random
variable F belongs to a fixed Wiener chaos of order q ≥ 2. To simplify the
presentation we will consider only the total variation distance. First, we
nprove the following result.

Proposition 8.3.1 Suppose that F ∈ Hq for some q ≥ 2, and E(F2) = σ2.
Let X be an N(0, σ2) random variable. Then

dTV(F, X) ≤ 2
qσ2

√
Var(‖DF‖2

H).

Proof We have L−1F = −(1/q)F. Taking into account that E(‖DF‖2
H) =

qσ2, we obtain

E(|σ2 − 〈DF,−DL−1F〉H |) = E
(∣∣∣σ2 − 1

q
‖DF‖2

H

∣∣∣) ≤ 1
q

√
Var(‖DF‖2

H).

Then the desired estimate follows from (8.16). �

The next proposition shows that the variance of ‖DF‖2
H is equivalent to

E(F4) − 3σ4.

Proposition 8.3.2 Suppose that F = Iq( f ) ∈ Hq, q ≥ 2, and E(F2) = σ2.
Then

Var(‖DF‖2
H) ≤ (q − 1)q

3
(E(F4) − 3σ4) ≤ (q − 1)Var(‖DF‖2

H).

Proof The proof will be done in several steps. First we will derive two
formulas for the variance of ‖DF‖2

H and for E(F4) − 3σ4.

Step 1 We claim that

Var(‖DF‖2
H) =

q−1∑
r=1

r2(r!)2
(
q
r

)4

(2q − 2r)!‖ f ⊗̃r f ‖2
H⊗(2q−2r) . (8.17)
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In fact, applying Proposition 4.2.1, we have DtF = qIq−1( f (·, t)). Then,
using the product formula for multiple stochastic integrals (see (4.2)), we
obtain

‖DF‖2
H = q2

∫ ∞

0
Iq−1( f (·, t))2dt

= q2
q−1∑
r=0

r!
(
q − 1

r

)2

I2q−2r−2( f ⊗̃r+1 f )

= q2
q∑

r=1

(r − 1)!
(
q − 1
r − 1

)2

I2q−2r( f ⊗̃r f )

= qq!‖ f ‖2
H⊗q + q2

q−1∑
r=1

(r − 1)!
(
q − 1
r − 1

)2

I2q−2r( f ⊗̃r f ). (8.18)

Taking into account that E(‖DF‖2
H) = qq!‖ f ‖2

H⊗q , and using the isometry
property of multiple integrals (4.1), we show formula (8.17).

Step 2 We claim that

E(F4) − 3σ4 =
3
q

q−1∑
r=1

r(r!)2
(
q
r

)4

(2q − 2r)!‖ f ⊗̃r f ‖2
H⊗(2q−2r) . (8.19)

Indeed, using that −L−1F = (1/q)F and L = −δD we first write

E(F4) = E(F × F3) = E((−δDL−1F)F3) = E(〈−DL−1F,D(F3)〉H)

=
1
q

E(〈DF,D(F3)〉H) =
3
q

E(F2‖DF‖2
H). (8.20)

By the product formula for multiple integrals (4.2),

F2 = Iq( f )2 = q!‖ f ‖2
H⊗q +

q∑
r=1

r!
(
q
r

)2

I2q−2r( f ⊗̃r f ). (8.21)

Using the isometry property for multiple integrals (4.1), and expressions
(8.18) and (8.21), we can compute E(F2‖DF‖2

H); substituting its value into
(8.20), we get formula (8.19).

Step 3 Comparing formulas (8.17) and (8.19) yields the desired esti-
mates. �

In summary, we have proved the following result.
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Proposition 8.3.3 Let q ≥ 2 and F = Iq( f ). Set E(F2) = σ2 > 0. Then, if
X is a random variable with law N(0, σ2),

dTV(F, X) ≤ 2
σ2q

√
Var(‖DF‖2

H) ≤ 2
σ2

√
q − 1

3q
(E(F4) − 3σ4).

These results can be applied to derive the so-called fourth-moment the-
orem, proved by Nualart and Peccati (2005) (see also Nualart and Ortiz-
Latorre, 2007), which represents a drastic simplification of the method of
moments.

Theorem 8.3.4 Fix q ≥ 2. Consider a sequence of multiple stochastic
integrals of order q, Fn = Iq( fn) ∈ Hq, n ≥ 1, such that

lim
n→∞ E(F2

n) = σ2.

The following conditions are equivalent:

(i) Fn
L−→ N(0, σ2) as n → ∞;

(ii) E(F4
n) → 3σ4 as n → ∞;

(iii) ‖DFn‖2
H → qσ2 in L2(Ω) as n → ∞;

(iv) for all 1 ≤ r ≤ q − 1, fn ⊗r fn → 0 as n → ∞.

Proof First notice that (i) implies (ii) because, for any p > 2, the hy-
percontractivity property of the Ornstein–Uhlenbeck semigroup (see (5.3))
implies that

sup
n
‖Fn‖p ≤ (p − 1)q/2 sup

n
‖Fn‖2 < ∞.

The equivalence of (ii) and (iii) follows from Proposition 8.3.2, and these
two conditions imply (i), with convergence in total variation. Moreover,
(iv) implies (ii) and (iii), in view of formulas (8.17) and (8.19), because

‖ fn⊗̃r fn‖H⊗(2q−2r) ≤ ‖ fn ⊗r fn‖H⊗(2q−2r) .

Finally, it remains to show that (ii) implies (iv). From (8.21), using the
isometry property of multiple stochastic integrals, we obtain

E(F4
n) =

q∑
r=0

(r!)2
(
q
r

)2

(2q − 2r)!‖ fn⊗̃r fn‖2
H⊗(2q−2r)

= (q!)2‖ fn‖4
H⊗q + (2q)!‖ fn⊗̃ fn‖2

H⊗2q

+

q−1∑
r=1

(r!)2
(
q
r

)2

(2q − 2r)!‖ fn⊗̃r fn‖2
H⊗(2q−2r) .
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Then one can show that (2q)!‖ fn⊗̃ fn‖2
H⊗2q equals 2(q!)2‖ fn‖4

H⊗q plus a linear
combination of the terms ‖ fn⊗r fn‖2

H⊗(2q−2r) , where 1 ≤ r ≤ q−1, with strictly
positive coefficients. Therefore, E(F4

n) can be expressed as 3(q!)2‖ fn‖4
H⊗q =

3σ4 plus a linear combination with strictly positive coefficients of contrac-
tions ‖ fn ⊗r fn‖2

H⊗(2q−2r) and symmetric contractions ‖ fn⊗̃r fn‖2
H⊗(2q−2r) , where

1 ≤ r ≤ q − 1. By (ii), all these contractions must converge to zero. This
completes the proof. �

The following multidimensional extension of the fourth-moment theo-
rem was proved in Peccati and Tudor (2005). Notice that the convergence
of the marginal distributions to normal random variables implies automat-
ically the joint convergence to a Gaussian random vector with independent
components.

Theorem 8.3.5 Let d ≥ 2 and 1 ≤ q1 < · · · < qd. Consider a sequence
of random vectors whose components are multiple stochastic integrals of
orders q1, . . . , qd; that is,

Fn = (F1
n , . . . , F

d
n) = (Iq1 ( f 1

n ), . . . , Iqd ( f d
n )), n ≥ 1,

where f i
n ∈ L2

s(R
qi ). Suppose that, for any 1 ≤ i ≤ d,

lim
n→∞ E((Fi

n)2) = σ2
i . (8.22)

Then, the following two conditions are equivalent:

(i) Fn
L−→ Nd(0,Σ), where Σ is a d×d diagonal matrix such that Σii = σ

2
i

for each i = 1, . . . , d;

(ii) for every i = 1, . . . , d, Fi
n

L−→ N(0, σ2
i ).

Proof It suffices to show that (ii) implies (i). The sequence of random
vectors (Fn)n≥1 is tight by condition (8.22). Then it suffices to show that
the limit in distribution of any converging subsequence is Nd(0,Σ). We can
then assume that the sequence (Fn)n≥1 converges in law to some random
vector F∞, and it only remains to show that the law of F∞ is Nd(0,Σ). For
every n and t ∈ Rd, define ϕn(t) = E(ei〈t,Fn〉). Let ϕ(t) be the characteristic
function of the random vector F∞. We know that, for all j = 1, . . . , d,

∂ϕn

∂t j
(t) = iE

(
F j

nei〈t,Fn〉
)
→

n→∞ iE
(
F j
∞ei〈t,F∞〉

)
=
∂ϕ

∂t j
(t). (8.23)

Moreover, using the definition of the operator L, Proposition 5.2.1, and the
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duality relation between D and δ we have

E
(
F j

nei〈t,Fn〉
)
= − 1

qj
E

(
LF j

nei〈t,Fn〉
)
= − 1

qj
E

(
−δD(F j

n)ei〈t,Fn〉
)

=
1
qj

E
(
〈DF j

n,D(ei〈t,Fn〉)〉H

)
=

i
q j

d∑
h=1

thE
(
ei〈t,Fn〉γ jh

Fn

)
,

where γFn is the Malliavin matrix of the random vector Fn, introduced in
(7.5). Therefore,

∂ϕn

∂t j
(t) = − 1

qj

d∑
h=1

thE
(
ei〈t,Fn〉γ jh

Fn

)
. (8.24)

We claim that the following convergences hold in L2(Ω) for all 1 ≤ j, h ≤ d,
as n tends to infinity:

γ
jh
Fn
→ 0, j � h, (8.25)

and

γ
j j
Fn
→ qjσ

2
j . (8.26)

In fact, (8.26) follows from condition (iii) in Theorem 8.3.4 and the fact
that γ j j

Fn
= ‖DF j

n‖2
H . Furthermore, using the product formula for multiple

stochastic integrals and assuming that j < h yields

E
(
〈DF j

n,DFh
n〉2

H

)
= q2

jq
2
hE

(( ∫ ∞

0
Iq j−1( f j

n (·, t))Iqh−1( f h
n (·, t))dt

)2)
= q2

jq
2
hE

(( q j−1∑
r=0

(
qj − 1

r

)(
qh − 1

r

)
r!Iq j+qh−2−2r( f j

n ⊗r+1 f h
n )

)2)

= q2
jq

2
h

q j−1∑
r=0

(
qj − 1

r

)2(qh − 1
r

)2

(r!)2(qj + qh − 2 − 2r)!‖ f j
n ⊗̃r+1 f h

n ‖2
H⊗(q j+qh−2−2r)

≤ q2
jq

2
h

q j∑
r=1

(
qj − 1
r − 1

)2(qh − 1
r − 1

)2

((r − 1)!)2(qj + qh − 2r)!‖ f j
n ⊗r f h

n ‖2
H⊗(q j+qh−2r) .

Then, to show (8.25) it suffices to check that ‖ f j
n ⊗r f h

n ‖2
H⊗(q j+qh−2r) converges

to zero for all 1 ≤ r ≤ qj. This follows from

‖ f j
n ⊗r f h

n ‖2
H⊗(q j+qh−2r) = 〈 f j

n ⊗q j−r f j
n , f h

n ⊗qh−r f h
n 〉H⊗2r

≤ ‖ f j
n ⊗q j−r f j

n ‖H⊗2r‖ f h
n ⊗qh−r f h

n ‖H⊗2r

and the fact that ‖ f h
n ⊗qh−r f h

n ‖H⊗2r converges to zero by condition (iv) in
Theorem 8.3.4, because 1 ≤ qh − r ≤ qh − 1. Finally, (8.25) and (8.26)
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allow us to take the limit as n → ∞ on the right-hand side of (8.24) and, in
view of (8.23), we obtain

∂ϕ

∂t j
(t) = −t jσ

2
jϕ(t),

for j = 1, . . . , d. As a consequence, ϕ is the characteristic function of the
law Nd(0,Σ). �

8.4 Chaotic Central Limit Theorem

When the random variables are not in a fixed chaos, we can establish the
following result proved in Hu and Nualart (2005).

Theorem 8.4.1 Consider a sequence of centered square integrable ran-
dom variables (Fn)n≥1 with Wiener chaos expansions Fn =

∑∞
q=1 Iq( fq,n).

Suppose that:

(i) for all q ≥ 1, limn→∞ q!‖ fq,n‖2
H⊗q = σ

2
q;

(ii) for all q ≥ 2 and 1 ≤ r ≤ q − 1, fq,n ⊗r fq,n → 0 as n → ∞;
(iii) limN→∞ lim supn→∞

∑∞
q=N+1 q!‖ fq,n‖2

H⊗q = 0.

Then, as n tends to infinity,

Fn
L−→ N(0, σ2),

where σ2 =
∑∞

q=1 σ
2
q.

Proof Let ξq, q ≥ 1, be independent centered Gaussian random variables
with variances σ2

q. For every N ≥ 1, set FN
n =

∑N
q=1 Iq( fq,n) and ξN =∑N

q=1 ξq. By Theorems 8.3.4 and 8.3.5, for each fixed N we have that FN
n

converges in law to ξN as n tends to infinity. Define also ξ =
∑∞

q=1 ξq. Let f
be a C1

b(R) function such that ‖ f ‖∞ and ‖ f ′‖∞ are bounded by one. Then

|E( f (Fn)) − E( f (ξ))| ≤ |E( f (Fn)) − E( f (FN
n ))|

+ |E( f (FN
n )) − E( f (ξN))| + |E( f (ξN)) − E( f (ξ))|

≤
( ∞∑

q=N+1

q!‖ fq,n‖2
H⊗q

)1/2

+ |E( f (FN
n )) − E( f (ξN))|

+ |E( f (ξN)) − E( f (ξ))|.
Taking first the limit as n tends to infinity, and then the limit as N tends to
infinity, and applying conditions (i) and (iii), we finish the proof.

�
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Taking into account Theorem 8.3.5 and assuming condition (i), condi-
tion (ii) is equivalent to

(iia) limn→∞ E(Iq( fq,n)4) = 3σ4
q, q ≥ 2,

or
(iib) limn→∞ ‖D(Iq( fq,n))‖2

H → qσ2
q in L2(Ω), q ≥ 2.

Theorem 8.4.1 implies the convergence in law of the whole sequence
(Iq( fq,n))q≥1 to an infinite-dimensional Gaussian vector with independent
components, and it can be regarded as a chaotic central limit theorem.

As an application we are going to present a simple proof of the clas-
sical Breuer–Major theorem (see Breuer and Major, 1983). A function
f ∈ L2(R, γ), where γ = N(0, 1), has Hermite rank d ≥ 1 if f has a se-
ries expansion in L2(R, γ) of the form

f (x) =
∞∑

q=d

aqhq(x),

where hq is the qth Hermite polynomial, introduced in (4.3), and ad � 0.
For instance, f (x) = |x|p − ∫

R
|x|pdγ(x) has Hermite rank 2 if p ≥ 1.

Let Y = (Yk)k∈Z be a centered Gaussian stationary sequence with unit
variance. Set ρ(v) = E(Y0Yv) for v ∈ Z.

Theorem 8.4.2 Let f ∈ L2(R, γ) with Hermite rank d and assume that∑
v∈Z

|ρ(v)|d < ∞.

Then

Vn :=
1√
n

n∑
k=1

f (Yk)
L−→ N(0, σ2)

as n → ∞, where σ2 =
∑∞

q=d q!a2
q
∑

v∈Z ρ(v)q.

Proof There exists a sequence (ek)k≥1 in H = L2([0,∞)) such that

〈ek, e j〉H = ρ(k − j).

The sequence (B(ek))k≥1 has the same law as (Yk)k≥1, and we can replace Vn

by

Gn =
1√
n

n∑
k=1

∞∑
q=d

aqhq(B(ek)) =
∞∑

q=d

Iq( fq,n),
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where

fq,n =
aq√

n

n∑
k=1

e⊗q
k .

Then it suffices to show that the kernels fq,n satisfy conditions (i), (ii), and
(iii) of Theorem 8.4.1 with σ2

q = q!a2
q
∑

v∈Z ρ(v)q.

Step 1 First we show condition (i). We can write

q!‖ fn,q‖2
H⊗q =

q!a2
q

n

n∑
i, j=1

ρ(i − j)q = q!a2
q

∑
v∈Z
ρ(v)q

(
1 − |v|

n

)
1{|v|<n} (8.27)

and, by the dominated convergence theorem,

E(F2
n) = q!‖ fn,q‖2

H⊗q → q!a2
q

∑
v∈Z
ρ(v)q = σ2

q

as n tends to infinity, which implies condition (i).

Step 2 We need to show that, for r = 1, . . . , q − 1 and q ≥ 2,

fq,n ⊗r fq,n =
a2

q

n

n∑
k, j=1

ρ(k − j)re⊗(q−r)
k ⊗ e⊗(q−r)

j → 0.

We have

‖ fq,n ⊗r fq,n‖2
H⊗(2q−2r) =

a4
q

n2

n∑
i, j,k,�=1

ρ(k − j)rρ(i − �)rρ(k − i)q−rρ( j − �)q−r.

Using |ρ(k − j)rρ(k − i)q−r | ≤ |ρ(k − j)|q + |ρ(k − i)|q, we obtain

‖ fq,n ⊗r fq,n‖2
H⊗(2q−2r) ≤ 2a4

q

∑
k∈Z

|ρ(k)|q
(
n−1+r/q

∑
|i|≤n

|ρ(i)|r
)

×
(
n−1+(q−r)/q

∑
| j|≤n

|ρ( j)|q−r
)
.

Then it remains to show that, for r = 1, . . . , q − 1,

n−1+r/q
∑
|i|≤n

|ρ(i)|r → 0.

This follows from Hölder’s inequality. Indeed, for a fixed δ ∈ (0, 1), we
have the estimates

n−1+r/q
∑
|i|≤[nδ]

|ρ(i)|r ≤ n−1+r/q(2[nδ] + 1)1−r/q
(∑

i∈Z
|ρ(i)|q

)r/q

≤ cδ1−r/q
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and

n−1+r/q
∑

[nδ]<|i|≤n

|ρ(i)|r ≤
( ∑

[nδ]<|i|≤n

|ρ(i)|q
)r/q

.

The first term converges to zero as δ tends to zero and the second converges
to zero for fixed δ as n → ∞.

Step 3 Finally, condition (iii) is an immediate consequence of (8.27).
This concludes the proof. �

8.5 Applications to Fractional Brownian Motion

In this section we apply the theorems established in the previous sections
to derive several results on the asymptotic behavior of functionals of frac-
tional Brownian motion. Fractional Brownian motion BH = (BH

t )t∈R is a
mean-zero Gaussian process with covariance given by (see (3.7) for the
case t ≥ 0):

E(BH
s BH

t ) = 1
2

(
|s|2H + |t|2H − |t − s|2H

)
, s, t ∈ R,

where H ∈ (0, 1) is the Hurst parameter.
Fractional Brownian motion BH has stationary increments. More pre-

cisely, the sequence YH
n = BH

n+1 − BH
n , n ∈ Z (called fractional noise), is

Gaussian, stationary, with mean zero, unit variance, and covariance given
by

ρH(n) = E(YH
0 YH

n ) = 1
2

(
|n + 1|2H + |n − 1|2H − 2|n|2H

)
. (8.28)

In the next proposition we show that fractional Brownian motion has finite
1/H-variation. For q > 0 we put cq = E(|X|q), X being an N(0, 1) random
variable.

Proposition 8.5.1 Let BH be a fractional Brownian motion with Hurst
parameter H. Fix T > 0 and set ti = iT/n for 1 ≤ i ≤ n. Define ΔBH

ti =

BH
ti − BH

ti−1
. Then, as n → ∞,

n∑
i=1

|ΔBH
ti |1/H

L2(Ω),a.s.−→ c1/HT.

Proof By the self-similarity of fractional Brownian motion, the random
variable

∑n
i=1 |ΔBH

ti |1/H has the same law as

T
n

n∑
i=1

|BH
i − BH

i−1|1/H.
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The sequence (YH
i = BH

i − BH
i−1)i≥1 is stationary and ergodic. Therefore, the

ergodic theorem implies the desired convergence. �

The covariance (8.28) satisfies ρH(|n|) ∼ H(2H − 1)|n|2H−2 as |n| → ∞.
This implies that, for any integer q ≥ 2 such that H < 1 − 1/(2q), we have∑

v∈Z
|ρH(v)|q < ∞.

As a consequence, Theorem 8.4.2 implies the following asymptotic result
for the Hermite variations:

1√
n

n∑
k=1

hq(BH
k − BH

k−1)
L−→ N(0, σ2

H,q),

for each q ≥ 2, where σ2
H,q = q!

∑
v∈Z ρH(v)q.

More generally, the Breuer–Major theorem (Theorem 8.4.2) leads to the
following convergence, taking into account that |x|q − cq has Hermite rank
1 when q > 0 is not an even integer.

Theorem 8.5.2 Suppose that H < 1
2 and q ≥ 1 is not an even integer. As

n → ∞, we have

1√
n

n∑
k=1

(
nqH|Δk,nBH|q − cq

) L−→ N(0, σ̃2
H,q),

where Δk,nBH = BH
k/n − BH

(k−1)/n and σ̃2
H,q =

∑∞
q=1 q!a2

q
∑
ν∈Z ρH(ν)q.

In the case of a quadratic variation, Proposition 8.3.1 allows us to deduce
the rate of convergence in the total variation distance. Define, for n ≥ 1,

S n =

n∑
k=1

(Δk,nBH)2.

Then, from Proposition 8.5.1,

n2H−1S n
L2(Ω),a.s.−→ 1

as n tends to infinity. To study the asymptotic normality associated with
this almost sure convergence, consider

Fn =
1
σn

n∑
k=1

(
n2H(Δk,nBH)2 − 1

) L
=

1
σn

n∑
k=1

(
(BH

k − BH
k−1)2 − 1

)
,

where σn is such that E(F2
n) = 1. With this notation, we have the following

result.
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Theorem 8.5.3 Assume H < 3
4 and let X be an N(0, 1) random variable.

Then, limn→∞ σ2
n/n = 2

∑
r∈Z ρ2

H(r) and

dTV(Fn, X) ≤ cH ×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n−1/2 if H ∈ (0, 5

8 ),
n−1/2(log n)3/2 if H = 5

8 ,

n4H−3 if H ∈ ( 5
8 ,

3
4 ).

Proof There exists a sequence (ek)k≥1 in L2([0,∞)) such that

〈ek, e j〉H = ρH(k − j).

The sequence (B(ek))k≥1 has the same law as (BH
k − BH

k−1)k≥1, and we may
replace Fn by

Gn =
1
σn

n∑
k=1

(B(ek)2 − 1) = I2( fn),

where

fn =
1
σn

n∑
k=1

ek ⊗ ek.

By the isometry property of multiple integrals,

1 = E(G2
n) = 2‖ fn‖2

L2([0,∞)2) =
2
σ2

n

n∑
k, j=1

ρ2
H(k − j) =

2n
σ2

n

∑
|r|<n

(
1 − |r|

n

)
ρ2

H(r).

Since
∑

r∈Z ρ2
H(r) < ∞, because H < 3

4 we can deduce that limn→∞ σ2
n/n =

2
∑

r∈Z ρ2
H(r).

We can write Dr(I2( fn)) = 2I1( fn(·, r)) and

‖D(I2( fn))‖2
H = 4

(
I2( fn ⊗1 fn) + ‖ fn‖2

H

)
= 4I2( fn ⊗1 fn) + 2.

Therefore

Var
(
‖D(I2( fn))‖2

H

)
= 16E

(
(I2( fn ⊗1 fn))2

)
= 32‖ fn ⊗1 fn‖2

L2([0,∞)2)

=
32
σ 4

n

n∑
k, j,i,�=1

ρH(k − j)ρH(i − �)ρH(k − i)ρH( j − �)

≤ 32
σ 4

n

n∑
i,�=1

(ρn ∗ ρn)(i − �)2

≤ 32n
σ 4

n

∑
k∈Z

(ρn ∗ ρn)(k)2 =
32n
σ 4

n
‖ρn ∗ ρn‖2

�2(Z),
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where ρn(k) = |ρH(k)|1{|k|≤n−1}. Applying Young’s inequality yields

‖ρn ∗ ρn‖2
�2(Z) ≤ ‖ρn‖4

�4/3(Z),

so that

Var
(
‖D(I2( fn))‖2

H

)
≤ 32n
σ 4

n

(∑
|k|<n

|ρH(k)|4/3
)3

.

Thus,

dTV(Fn, X) ≤ 4
√

2n
σ2

n

(∑
|k|<n

|ρH(k)|4/3
)3/2

,

and the result follows from ρH(k) ∼ H(2H − 1)|k|2H−2 as |k| → ∞. �

As a consequence, we have established the following convergence in
law:

√
n(n2H−1S n − 1)

L−→ N
(
0, 2

∑
r∈Z
ρ2(r)

)
.

These results on the quadratic variation can be applied to the estimation
of the Hurst parameter. Consider the estimator of H from the observations
BH

k/n, 1 ≤ k ≤ n, given by

Ĥn =
1
2
− log S n

2 log n
.

Then, Ĥn is strongly consistent; that is, it satisfies Ĥn
a.s.→ H and is asymp-

totically normal. In other words,

√
n log n(Ĥn − H)

L−→ N
(
0,

1
2

∑
r∈Z
ρ2

H(r)
)
.

In Nourdin and Peccati (2015) the following optimal version of the
fourth-moment theorem was derived.

Theorem 8.5.4 Consider a sequence of random variables (Fn)n≥1 in the
chaos Hq, where q ≥ 2. Suppose that E(F2

n) = 1. Let X be an N(0, 1)
random variable. Then there exist positive constants c and C such that

cM(Fn) ≤ dTV(Fn, X) ≤ CM(Fn),

where M(Fn) = max(|E(F3
n)|,E(F4

n) − 3).
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As a an application of Theorem 8.5.4, it was shown in Biermé et al.
(2012) that the sequence Fn = σ

−1
n

∑n
k=1

(
(BH

k − BH
k−1)2 − 1

)
satisfies

dTV(Fn, X) ≤ cH ×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n−1/2 if H ∈ (0, 2

3 ),
n−1/2(log n)2 if H = 2

3 ,

n6H−9/2 if H ∈ ( 2
3 ,

3
4 ).

8.6 Convergence of Densities

The total variation distance between the laws of two absolutely continu-
ous random variables F and G is equivalent to the L1(R) distance of the
densities, and we have the identity

dTV(F,G) =
∫
R

|pF(x) − pG(x)|dx,

where pF and pG are the densities of the random variables F and G, re-
spectively. Therefore, Proposition 8.3.3 implies the convergence in L1(R)
of the density of a random variable in a fixed chaos to the standard Gaus-
sian density. Under nondegeneracy conditions on the norm of the Malliavin
derivative (similar to the conditions imposed to ensure the existence and
regularity of densities), one can estimate the uniform distance between the
densities. This is the content of the next result, proved by Hu et al. (2014b).

Theorem 8.6.1 Let F ∈ Hq, q ≥ 2, such that E(F2) = 1 and E(‖DF‖−6
H ) ≤

M. Then

sup
x∈R

|pF(x) − φ(x)| ≤ CM,q

√
E(F4) − 3,

where φ is the density of the law N(0, 1).

Using the notion of the Fisher information, Nourdin and Nualart (2016)
provided a proof of this theorem under the weaker assumption
E(‖DF‖−4−ε

H ) ≤ M for some ε > 0.

Proof of Theorem 8.6.1 Using the density formula (7.1), property (3.5),
and δDF = qF, we can write

pF(x) = E
(
1{F>x}δ

( DF
‖DF‖2

H

))
= E

(
1{F>x}

qF
‖DF‖2

H

)
− E

(
1{F>x}〈DF,D(‖DF‖−2

H )〉H

)
= E(1{F>x}F) + E

(
q‖DF‖−2

H − 1
)
− E

(
1{F>x}〈DF,D(‖DF‖−2

H )〉H

)
.
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The quantities E(|q‖DF‖−2
H − 1|) and E(|〈DF,D(‖DF‖−2

H )〉H |) can be esti-
mated by a constant times

√
E(F4) − 3. Taking into account that

φ(x) = E(1{X>x}X),

where X has the N(0, 1) distribution, it suffices to estimate the difference

E(1{F>x}F) − E(1{X>x}X),

which can be done by Stein’s method and the Malliavin calculus. We omit
the details of the proof of these two estimations. �

Example 8.6.2 Let q = 2 and F =
∑∞

i=1 λi(B(ei)2 − 1), where (ei)i≥1 is
a complete orthonormal system in H = L2([0,∞)) and λi is a decreasing
sequence of positive numbers such that

∑∞
i=1 λ

2
i < ∞. Suppose that E(F2) =

1. Then, if λN � 0 for some N > 4, we obtain

sup
x∈R

|pF(x) − φ(x)| ≤ CN,λN

√√ ∞∑
i=1

λ4
i .

We can also establish the uniform convergence of densities in the frame-
work of the Breuer–Major theorem. Fix q ≥ 2 and consider the sequence

Vn =
1√
n

n∑
k=1

q∑
j=d

a jh j(Yk), ad � 0,

where Y = (Yk)k∈Z is a centered Gaussian stationary sequence with unit
variance and covariance ρ(v). The following result was proved by Hu et al.
(2015).

Theorem 8.6.3 Suppose that the spectral density fρ of Y satisfies log( fρ) ∈
L1([−π, π]). Assume that

∑
v∈Z |ρ(v)|d < ∞. Set σ2 := q!a2

q
∑

v∈Z ρ(v)q ∈
(0,∞). Then, for any p ≥ 1, there exists an n0 such that

sup
n≥n0

E
(
‖DVn‖−p

H

)
< ∞. (8.29)

Therefore, if q = d and Fn = Vn/
√

E(V2
n ), we have

sup
x∈R

|pFn (x) − φ(x)| ≤ c
√

E(F4
n) − 3.

Sketch of the proof of Theorem 8.6.3 From the non-causal representation
Yk =

∑∞
j=0 ψ jwk− j, where w = (wk)k∈Z is a discrete Gaussian white noise, it

follows that

‖DVn‖2
H ≥ 1

n

n∑
m=1

( n∑
k=m

q∑
j=d

a jh′j(Yk)ψk−m

)2

:= Kn.
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Fix N and consider a block decomposition Kn =
∑N

i=1 Ki
n, where Ki

n is the
sum of n/N squares. We use the estimate

K−p/2
n ≤

N∏
i=1

(Ki
n)−p/(2N),

and apply the Carbery–Wright inequality (see Carbery and Wright, 2001)
to control the expectation of (Ki

n)−p/(2N) if p/(2N) is small enough. This
inequality says that there is a universal constant c > 0 such that, for any
polynomial Q : Rn → R of degree at most d and any α > 0, we have

E(Q(X1, . . . , Xn)2)1/(2d)P(|Q(X1, . . . , Xn)| ≤ α) ≤ cdα1/d,

where X1, . . . , Xn are independent random variables with law N(0, 1). �

This theorem can be applied to the increments of a fractional Brownian
motion with Hurst parameter H ∈ (0, 1); that is, Yk = BH

k − BH
k−1, k ≥

1. In this case, the spectral density satisfies the required conditions. As a
consequence, we obtain the uniform convergence of densities to φ for the
sequence of Hermite variations Fn = Vn/E(V2

n ), where

Vn =
1√
n

n∑
k=1

hq(nHΔk,nBH), q ≥ 2,

for 0 < H < 1 − 1/(2q), where Δk,nBH = BH
k/n − BH

(k−1)/n. In the particular
case q = 2, we need H ∈ (0, 3

4 ) and we have

sup
x∈R

|pFn (x) − φ(x)| ≤ c
√

E(F4
n) − 3 ≤ cH

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n−1/2 if H ∈ (0, 5

8 ),
n−1/2(log n)3/2 if H = 5

8 ,

n4H−3 if H ∈ ( 5
8 ,

3
4 ).

The following further results on the uniform convergence of densities
were also proved by Hu et al. (2014b).

(i) One can show the uniform approximation of the mth derivative of
pF by the corresponding mth derivative of the Gaussian density φ(m),
under the stronger assumption E(‖DF‖−βH ) < ∞, for some β > 6m +
6 (�m/2� ∨ 1).

(ii) Consider a d-dimensional vector F, whose components are in a fixed
chaos and which is such that E((det γF)−p) < ∞ for all p, where γF

denotes the Malliavin matrix of F. In this case, for any multi-index
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β = (β1, . . . , βk), 1 ≤ βi ≤ d, one can show that

sup
x∈Rd

∣∣∣∂β fF(x) − ∂βφd(x)
∣∣∣ ≤ c

(
|C − Id |1/2 +

d∑
j=1

√
E(F4

j ) − 3(E(F2
j ))2

)
where C is the covariance matrix of F, Id is the identity matrix of
order d, φd is the standard d-dimensional normal density, and ∂β =
∂k/(∂xβ1 · · · ∂xβk ).

8.7 Noncentral Limit Theorems

In this section we present some results on convergence in distribution to a
mixture of normal densities, using the techniques of Malliavin calculus.

Definition 8.7.1 Let (Fn)n≥1 be a sequence of random variables defined on
a probability space (Ω,F , P). Let F be a random variable defined on some
extended probability space (Ω′,F ′, P′). We say that Fn converges stably to
F if

(Fn, Y)
L−→ (F, Y) (8.30)

as n → ∞, for every bounded F -measurable random variable Y .

Suppose that B is a Brownian motion defined on a probability space
(Ω,F , P) such that F is generated by B.

Theorem 8.7.2 (Nourdin and Nualart, 2010) Let Fn = δ(un), where un ∈
D

2,2(H). Suppose that supn E(|Fn|) < ∞ and there exists a nonnegative
random variable S such that:

(i) 〈un,DFn〉H
L1

−→ S 2 as n → ∞; and,

(ii) for all h ∈ H, 〈un, h〉H
L1

−→ 0 as n → ∞.

Then Fn converges stably to ηS , where η is an N(0, 1) random variable
independent of B.

Proof It suffices to show that

ξn := (Fn, B)
L−→ ξ := (F∞, B),

where F∞ satisfies, for any λ ∈ R,

E(eiλF∞ |B) = e−λ
2S 2/2. (8.31)

Since Fn is bounded in L1(Ω), the sequence ξn is tight. Assume that ξ is
the limit in law of a certain subsequence of ξn, denoted also by ξn. Then
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ξ = (F∞, B) and it suffices to show that (8.31) holds. Fix h1, . . . , hn ∈ H, let
Y = ϕ(B(h1), . . . , B(hm)), with ϕ ∈ C∞

b (Rm), and set

φn(λ) = E(eiλFn Y).

We will compute the limit of φ′n(λ) in two different ways:

1. Using that Fn is bounded in L1(Ω) and the convergence in law of ξn, we
obtain

φ′n(λ) = iE(eiλFn FnY) → iE(eiλF∞F∞Y). (8.32)

2. Using Malliavin calculus we can write

φ′n(λ) = iE(eiλFn FnY) = iE(eiλFnδ(un)Y)

= iE(〈D(eiλFn Y), un〉H)

= −λE(eiλFn〈un,DFn〉HY) + iE(eiλFn〈un,DY〉H).

Then, conditions (i) and (ii) of the theorem imply that

φ′n(λ) = iE(eiλFn FnY) → iE(eiλF∞S 2Y). (8.33)

As a consequence, from (8.32) and (8.33) we get

iE(eiλF∞F∞Y) = −λE(eiλF∞S 2Y).

This leads to a linear differential equation satisfied by the conditional char-
acteristic function of F∞,

∂

∂λ
E(eiλF∞ |B) = −S 2λE(eiλF∞ |B),

and we obtain (8.31), which completes the proof. �

It turns out that

〈un,DFn〉H = ‖un‖2
H + 〈un, δ(Dun)〉H .

Therefore, a sufficient condition for (i) to hold is:

(i′) ‖un‖2
H

L1

−→ S 2 and 〈un, δ(Dun)〉H
L1

−→ 0.

This result should be compared with the asymptotic Ray–Knight theorem
for Brownian martingales (see Revuz and Yor, 1999, Theorem (2.3), p.
524):

Proposition 8.7.3 If un = (un(t))t∈[0,T ], n ≥ 1, is a sequence of square
integrable adapted processes then Fn = δ(un) =

∫ T

0
un(s)dBs and the stable

convergence of Fn to N(0, S 2) is implied by the following conditions:
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(i)
∫ t

0
un(s)ds

P→ 0, uniformly in t;

(ii)
∫ T

0
un(s)2ds → S 2 in L1(Ω).

Theorem 8.7.2 can be extended to multiple divergences. The proof is
similar and is therefore omitted.

Theorem 8.7.4 (Nourdin and Nualart, 2010) Fix an integer q ≥ 1. Let
Fn = δ

q(un), where un is a symmetric element in D2q,2q(H⊗q). Suppose that
supn ‖Fn‖q,p < ∞ for any p ≥ 2 and

(i) 〈un,DqFn〉H⊗q
L1

−→ S 2,
(ii) 〈un, h〉H⊗q → 0 in L1 for any h ∈ H⊗q, and un ⊗ j D jFn → 0 in L2 for

all j = 1, . . . , q − 1.

Then Fn converges stably to ηS , where η is an N(0, 1) random variable
independent of B.

Stein’s method does not seem to work in the case of a random variance.
Nevertheless, it is possible to derive rates of convergence using different
approaches. The next result provides a rate of convergence in the context
of a mixture of normal laws, and its proof is based on the interpolation
method.

Theorem 8.7.5 (Nourdin et al., 2016a) Let F = δ(u), where u ∈ D2,2(H).
Let S ≥ 0 be a random variable such that S 2 ∈ D1,2, and let η be an N(0, 1)
random variable independent of B. Then, for any ϕ ∈ C3

b(R),

|E(ϕ(F)) − E(ϕ(S η))| ≤ 1
2‖ϕ′′‖∞E(|〈u,DF〉H − S 2|)
+ 1

3‖ϕ′′′‖∞E(|〈u,DS 2〉H |).
Proof Notice that S is not necessarily in D1,2. However, if we fix ε > 0
and set S ε =

√
S 2 + ε then S ε ∈ D1,2. Let g(t) = E(ϕ(

√
tF +

√
1 − tS εη)),

t ∈ [0, 1]. Then

E(ϕ(F)) − E(ϕ(S εη)) = g(1) − g(0) =
∫ 1

0
g′(t)dt.

Integrating by parts using F = δ(u) yields

g′(t) = 1
2 E

(
ϕ′(

√
tF +

√
1 − tS εη)

( F√
t
− S εη√

1 − t

))
= 1

2 E
(
ϕ′′(

√
tF +

√
1 − tS εη)

×
(
〈u,DF〉H +

√
1 − t√

t
η〈u,DS ε〉H − S 2

ε

))
.
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Integrating again by parts with respect to the law of η yields

g′(t) = 1
2 E

(
ϕ′′(

√
tF +

√
1 − tS εη)

(
〈u,DF〉H − S 2

ε

) )
+

1 − t

4
√

t
E

(
ϕ′′′(

√
tF +

√
1 − tS εη)〈u,DS 2〉H

)
,

where we have used the fact that S εDS ε = 1
2 DS 2

ε =
1
2 DS 2. Finally, inte-

grating over t yields

|E(ϕ(F)) − E(ϕ(S εη))| ≤ 1
2 ‖ϕ′′‖∞ E

(|〈u,DF〉H − S 2 − ε|)
+ ‖ϕ′′′‖∞ E

(|〈u,DS 2〉H |) ∫ 1

0

1 − t

4
√

t
dt,

and the conclusion follows because∫ 1

0

1 − t

4
√

t
dt =

1
3
.

�

Noncentral limit theorems arise in a wide range of asymptotic problems,
and the techniques of Malliavin calculus have proved to be useful to show
the convergence in law to a mixture of Gaussian laws and to analyze the
rate of convergence. For instance, we mention the following:

1. the asymptotic behavior of weighted Hermite variations of a fractional
Brownian motion (see Nourdin et al., 2010a; Nourdin and Nualart, 2010;
Nourdin et al., 2016b);

2. the approximation by Riemann sums of symmetric integrals with respect
to fractional Brownian motions for critical values of the Hurst parame-
ter and Itô’s formulas in law (see Burdzy and Swanson, 2010; Nour-
din et al., 2010b; Harnett and Nualart, 2012, 2013, 2015; Binotto et al.,
2018);

3. the fluctuation of the error in numerical approximation for stochastic
differential equations (see Hu et al., 2016).

Exercises

8.1 Show Proposition 8.1.7.
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8.2 Let X1 and X2 two random variables with laws N(0, σ2
1) and N(0, σ2

2), re-
spectively, where σ1 > 0, σ2 > 0, and σ1 ≥ σ2. Show that

dTV(X1, X2) ≤ 2
σ2

1

|σ2
1 − σ2

2|,

dKol(X1, X2) ≤ 1
σ2

1

|σ2
1 − σ2

2|,

dW(X1, X2) ≤
√

2/π
σ2

1

|σ2
1 − σ2

2|.

8.3 Show that the sequence F(n) =
∫ 1

0 u(n)
t dBt where B is a Brownian motion and

u(n)
t =

√
2ntn exp(Bt(1 − t)), 0 ≤ t ≤ 1,

converges in law to the distribution N(0, 1).
8.4 Let B = (Bt)t≥0 be a standard Brownian motion. Consider the sequence of

Itô integrals

Fn =
√

n
∫ 1

0
tnBtdBt, n ≥ 1.

Show that the sequence Fn converges stably to ηS as n → ∞, where η is a
random variable independent of B with law N(0, 1) and S = |B1|/

√
2.

8.5 Let BH = (BH
t )t≥0 be a fractional Brownian motion with Hurst parameter

H > 1
2 . Consider the sequence of random variables Fn = δ(un), n ≥ 1, where

un(t) = nHtnBt1[0,1](t).

Show that, as n → ∞, the sequence Fn converges stably to ηS, where η is a
random variable that is independent of B with law N(0, 1) and S = cH|BH

1 |,
with cH =

√
H(2H − 1)Γ(2H − 1).

8.6 In Exercises 8.4 and 8.5 find the rates of convergence to zero of |E(ϕ(Fn)) −
E(ϕ(S η))|, where ϕ ∈ C3

b(R).
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Jump Processes

In this chapter we introduce Lévy processes and Poisson random measures.
We construct a stochastic calculus, with respect to a Poisson random mea-
sure associated with a Lévy process, which includes Itô’s formula, the in-
tegral representation theorem, and Girsanov’s theorem. Finally, we define
multiple stochastic integrals and prove the Wiener chaos decomposition
for general Poisson random measures. For more detailed accounts of these
topics we refer to Sato (1999) and Appelbaum (2009).

9.1 Lévy Processes

A stochastic process X = (Xt)t≥0 is said to have càdlàg paths if almost all
its sample paths are càdlàg, that is, continuous from the right with limits
from the left.

Definition 9.1.1 A real-valued process L = (Lt)t≥0 defined on a proba-
bility space (Ω,F , P) is called a Lévy process if it satisfies the following
conditions.

(i) Almost surely L0 = 0.
(ii) For all 0 ≤ t1 < · · · < tn the increments Ltn − Ltn−1 , . . . , Lt2 − Lt1 are

independent random variables.
(iii) L has stationary increments; that is, if s < t, the increment Lt − Ls has

the same law as Lt−s.
(iv) L is continuous in probability.
(v) L has càdlàg paths.

Properties (ii) and (iii) imply that for any t > 0 the random variable Lt

is infinitely indivisible. Moreover, the characteristic function of Lt has the
following Lévy–Khintchine representation:

E(exp(iuLt)) = exp(tψ(u)), for all u ∈ R, (9.1)

158
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where ψ is the characteristic exponent of the random variable L1 and is
given by

ψ(u) = iβu − α
2u2

2
+

∫
R

(eiuz − 1 − iuz1{|z|≤1})ν(dz). (9.2)

Here β ∈ R, α2 ≥ 0, and ν is the Lévy measure of L, which is a σ-finite
measure on B(R) satisfying ν({0}) = 0 and∫

R

(1 ∧ |z|2)ν(dz) < ∞.

We call (β, α2, ν) the characteristic triplet of L. Moreover, β is called the
drift term and α the diffusion coefficient.

Conversely, it can be proved that given a triplet (β, α2, ν), with β ∈ R,
α2 ≥ 0, and ν a Lévy measure, there exists a unique (in law) Lévy process
L such that (9.1) and (9.2) hold (see Sato, 1999, Theorems 7.10 and 8.1).

Example 9.1.2 (Brownian motion with drift) The process Xt = αBt + βt
is a Lévy process with continuous trajectories and characteristic triplet
(β, α2, 0). Moreover, any Lévy process with continuous trajectories is a
Brownian motion with drift.

Example 9.1.3 (Poisson process) Let (τi)i≥1 be a sequence of independent
exponential random variables with parameter λ > 0, and let Tn =

∑n
i=1 τi.

Then, the process N = (Nt)t≥0 defined by

Nt =
∑
n≥1

1{t≥Tn}

is called a Poisson process with intensity λ. For any t > 0, the random vari-
able Nt follows a Poisson distribution with parameter λt (see Exercise 9.1).
The Poisson process is a Lévy process with characteristic triplet (0, 0, ν),
where ν = λδ1 and δ1 is the Dirac measure supported on {1}. Observe that
the trajectories of N are piecewise constant with jumps of size 1.

Example 9.1.4 (Compound Poisson process) The compound Poisson pro-
cess with jump intensity λ > 0 and jump size distribution μ is a stochastic
process (Xt)t≥0 defined by

Xt =

Nt∑
i=1

Yi,

where (Yi)i≥1 is a sequence of independent random variables with law μ
and N is a Poisson process with intensity λ and independent of (Yi)i≥1.
By convention, Xt = 0 if Nt = 0. In other words, a compound Poisson
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process is a piecewise constant process which jumps at the jump times of
a Poisson process and whose jump sizes are i.i.d. random variables with a
given law. This defines a Lévy process with characteristic triplet (0, 0, ν),
where ν = λμ.

9.2 Poisson Random Measures

Let (Z,Z,m) be a measure space, where Z is a complete separable metric
space, Z is the Borel σ-field of Z, and m is a σ-finite atomless measure.
Consider the class Zm = {A ∈ Z : m(A) < ∞}.

A Poisson random measure is defined as the following integer-valued
random measure.

Definition 9.2.1 A Poisson random measure with intensity m is a collec-
tion of random variables M = {M(A), A ∈ Zm}, defined on some probabil-
ity space (Ω,F , P), such that:

(i) for every A ∈ Zm, M(A) has a Poisson distribution with parameter
m(A);

(ii) for every A1, . . . , An ∈ Zm, pairwise disjoint, M(A1), . . . ,M(An) are
independent.

We then define the compensated Poisson random measure as

M̂ = {M̂(A) = M(A) − m(A), A ∈ Zm}.
The following result concerns the construction of Poisson random mea-

sures in such a way that they are point measures on a finite or countable
number of different points.

Theorem 9.2.2 Let m be a σ-finite atomless measure on a complete sep-
arable metric space (Z,Z,m). Then there exists a Poisson random measure
M with intensity m. Moreover, M has the form

M(A) =
N∑

j=1

δX j (A), A ∈ Zm, (9.3)

where Xj, j = 1, . . . ,N, are random points, N ≤ ∞ is a random variable,
and almost surely Xj � Xk for j � k.

Proof First assume that m(Z) < ∞. In this case, we can consider a se-
quence of independent random variables N, X1, X2, . . . , where N has a Pois-
son distribution with intensity m(Z) and P(Xj ∈ A) = m(A)/m(Z), for all
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j ≥ 1 and A ∈ Zm. For all A ∈ Zm, we set

M(A) =
N∑

j=1

1A(Xj).

Clearly, M satisfies (9.3) and has exactly N atoms because m is atomless.
We next compute the finite-dimensional distributions of M.

By conditioning first on N, we find that, for every collection of pairwise
disjoint sets A1, . . . , Ak ∈ Zm and ξ1, . . . , ξk ∈ R,

E
(

exp
(
i

k∑
j=1

ξ jM(Aj)
))
= E

( N∏
�=1

exp
(
i

k∑
j=1

ξ j1Aj (X�)
))

= E
((

E
(

exp
(
i

k∑
j=1

ξ j1Aj (X1)
)))N)

.

Because the Aj are pairwise disjoint, the indicator function of (A1∪· · ·∪Ak)c

is equal to 1 −∑k
j=1 1Aj and hence, for all z ∈ Z,

exp
(
i

k∑
j=1

ξ j1Aj (z)
)
=

k∑
j=1

1Aj (z)eiξ j + 1 −
k∑

j=1

1Aj (z)

= 1 +
k∑

j=1

1Aj (z)(eiξ j − 1).

Therefore

E
(

exp
(
i

k∑
j=1

ξ j1Aj (X1)
))
= 1 +

k∑
j=1

(
m(Aj)/m(Z)

)
(eiξ j − 1),

and hence

E
(

exp
(
i

k∑
j=1

ξ jM(Aj)
))
= E

((
1 +

k∑
j=1

(
m(Aj)/m(Z)

)
(eiξ j − 1)

)N)
.

Finally, using the fact that E(rN) = exp(−m(Z)(1 − r)), for all r ∈ R, we
conclude that

E
(

exp
(
i

k∑
j=1

ξ jM(Aj)
))
= exp

(
−

k∑
j=1

m(Aj)(1 − eiξ j )
)
.

This implies that the random variables M(Aj), 1 ≤ j ≤ k, are independent
and have Poisson distributions with parameter m(Aj). So, the desired result
follows in the case where m(Z) < ∞. In the general case, we can find
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pairwise disjoint sets Z1, Z2, . . . ∈ Z such that Z = ∪∞
j=1Zj and m(Zj) < ∞

for all j ≥ 1. We can then construct independent Poisson random measures
M1,M2, . . . , as in the preceding construction, where each Mj is based only
on subsets of Zj. Then, we set M(A) =

∑∞
j=1 Mj(A ∩ Zj) for all A ∈ Zm.

Because a sum of independent Poisson random variables has a Poisson
distribution, it follows that M is a Poisson random measure with intensity
m. Moreover, M has the form (9.3) with N = ∞. This concludes the proof.

�

Definition 9.2.3 The canonical probability space (Ω,F , P) of a Poisson
random measure is called the Poisson space and is defined as follows:

• Ω is the set of nonnegative integer-valued measures on Z, that is,

Ω =

{
ω =

n∑
j=0

δz j , n ∈ N ∪ {∞}, z j ∈ Z
}
; (9.4)

• P is the unique probability measure such that the canonical mapping

M(A)(ω) = ω(A), A ∈ Zm,

is a Poisson random measure;
• F is the P-completion of the σ-field generated by the canonical map-

ping.

By taking the law of the Poisson random measure constructed in Theo-
rem 9.2.2, we deduce that the Poisson space exists and that

P(ω ∈ Ω : ∃ z ∈ Z : ω({z}) > 1) = 0. (9.5)

In the next chapter the Poisson space will play an important role in the
construction of the Malliavin calculus with respect to a Poisson random
measure. For the rest of this chapter, we assume that (Ω,F , P) is an arbi-
trary probability space.

Example 9.2.4 (Jump measure of a Lévy process) Let L = (Lt)t≥0 be a
Lévy process with Lévy measure ν. Set R0 = R \ {0} and consider the set

Aν = {A ∈ B(R0) : ν(A) < ∞}.
For any 0 ≤ s ≤ t and A ∈ Aν, define

N([s, t], A) =
∑
s≤r≤t

1A(ΔLr), (9.6)

where ΔLt = Lt − Lt−. By convention, L0− = 0.
The random variable N counts the number of jumps of the Lévy process
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L between s and t such that their sizes fall into A. One can show (see
Sato, 1999, Theorem 19.2) that N can be extended to a Poisson random
measure in (R+ × R0,B(R+ × R0)) with intensity dt ν(dz) and, for all A ∈
Aν, ν(A) = E(N([0, 1], A)). We write N(t, A) for N([0, t], A). The measure
N̂(t, A) = N(t, A)−ν(A)t is the corresponding compensated Poisson random
measure.

For any t ≥ 0, we denote by Ft the σ-field generated by the random
variables {N̂(s, A), A ∈ Aν, s ≤ t} and the P-null sets of F . We call (Ft)t≥0

the natural filtration of N. Then, for any A ∈ Aν, the process (N̂(t, A))t≥0 is
an Ft-martingale (see Exercise 9.2).

9.3 Integral with respect to a Poisson Random Measure

Consider a Poisson random measure M on a complete separable metric
space (Z,Z,m), where m is a σ-finite atomless measure. In this section we
define the integral of functions in L2(Z) with respect to the compensated
Poisson random measure M̂.

We consider the set S of simple functions

h(z) =
n∑

j=1

aj1Aj (z), (9.7)

where n ≥ 1 is an integer, a1, . . . , an ∈ R, and A1, . . . , An ∈ Zm. We define
the integral of a simple function h ∈ S of the form (9.7), with respect to M̂,
by ∫

Z
h(z)M̂(dz) =

n∑
j=1

ajM̂(Aj),

and we denote it by M̂(h). This defines a linear mapping h → M̂(h) from
S ⊂ L2(Z) into L2(Ω) with the following properties:

E(M̂(h)) = 0, E(M̂(h)2) = ‖h‖2
L2(Z) =

∫
Z

h2(z)m(dz).

As S is dense in L2(Z), we can extend the definition of the integral as a
linear isometry from L2(Z) to L2(Ω). In particular, the following isometric
relation holds for every h, g ∈ L2(Z):

E(M̂(h)M̂(g)) =
∫

Z
h(z)g(z)m(dz).
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Moreover, for every h ∈ L2(Z), the random variable M̂(h) has an in-
finitely divisible law, with Lévy–Khinchine characteristic exponent

ψ(u) = log E
(
eiuM̂(h)

)
=

∫
Z
(eiuh(z) − 1 − iuh(z))m(dz), for all u ∈ R.

Example 9.3.1 Consider the jump measure N associated with a Lévy
process L with characteristic triplet (β, α2, ν). Since

∫
{|z|≤1} z2ν(dz) < ∞, we

can consider the integral ∫ t

0

∫
{|z|≤1}

z N̂(ds, dz).

Then we have the following representation of the Lévy process (see Sato,
1999, Chapter 4, and Appelbaum, 2009, Theorem 2.4.16):

Lt = βt + αBt +

∫ t

0

∫
{|z|≤1}

z N̂(ds, dz) +
∫ t

0

∫
{|z|>1}

z N(ds, dz), (9.8)

where B is a Brownian motion independent of N and∫ t

0

∫
{|z|>1}

z N(ds, dz) =
∑
0≤r≤t

ΔLr1{|z|>1}(ΔLr),

which is well defined since
∫
{|z|>1} ν(dz) < ∞.

9.4 Stochastic Integrals with respect to the Jump Measure of a

Lévy Process

In this section we consider the Poisson random measure N associated with
a Lévy process, and we define a stochastic integral with respect to the com-
pensated Poisson random measure N̂ for the class of predictable and square
integrable processes defined below. We recall that (Ft)t≥0 denotes the natu-
ral filtration of N.

A stochastic process u = {u(t, z), t ≥ 0, z ∈ R0} is called adapted if u(t, z)
is Ft-measurable for all t ≥ 0 and z ∈ R0. Moreover, u is called predictable
if it is measurable with respect to the σ-field generated by the sets

{B × (s, t] × A, B ∈ Fs, 0 ≤ s < t, A ∈ B(R0)} .
Notice that any adapted and left-continuous process (in t) is predictable.

We denote by L2(P) the set of stochastic processes u : Ω×R+ ×R0 → R
that are predictable and satisfy∫

R+

∫
R0

E(u2(t, z))ν(dz)dt < ∞.
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Let E denote the set of elementary and predictable processes of the form

u(t, z) =
m∑

j=1

n−1∑
i=0

Fi, j1(ti,ti+1](t)1Aj (z), (9.9)

where 0 ≤ t0 < · · · < tn, all Fi, j belong to Fti and are bounded, and
A1, . . . , Am are pairwise disjoint subsets of Aν.

We define the integral of u ∈ E of the form (9.9) with respect to N̂ by∫
R+

∫
R0

u(t, z)N̂(dt, dz) =
m∑

j=1

n−1∑
i=0

Fi, jN̂((ti, ti+1], Aj). (9.10)

This defines a linear functional with the following properties:

Lemma 9.4.1 For any u ∈ E,

E
( ∫
R+

∫
R0

u(t, z)N̂(dt, dz)
)
= 0 (9.11)

and

E
( ∫
R+

∫
R0

u(t, z)N̂(dt, dz)
)2

=

∫
R+

∫
R0

E(u2(t, z))ν(dz)dt. (9.12)

Proof By the definition of N̂, for each j = 1, . . . ,m and i = 0, . . . , n − 1,

E(N̂((ti, ti+1], Aj)) = 0.

Hence, using the linearity of the expectation and the fact that N̂((ti, ti+1], Aj)
is independent of Fti , we obtain (9.11).

In order to prove (9.12) we use again the linearity of the expectation, to
write

E
( ∫
R+

∫
R0

u(t, z)N̂(dt, dz)
)2

=

m∑
j,�=1

n−1∑
i,p=0

E
(
Fi, jN̂((ti, ti+1], Aj)Fp,�N̂((tp, tp+1], A�)

)
.

Observe that, for any indices i, j, �, and p < i, since N̂((ti, ti+1], Aj) is inde-
pendent of Fti we have

E
(
Fi, jN̂((ti, ti+1], Aj)Fp,�N̂((tp, tp+1], A�)

)
= E

(
Fi, jFp,�N̂((tp, tp+1], A�)

)
E

(
N̂((ti, ti+1], Aj)

)
= 0,
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and similarly for p > i. Therefore,

E
( ∫
R+

∫
R0

u(t, z)N̂(dt, dz)
)2

=

m∑
j,�=1

n−1∑
i=0

E
(
Fi, jN̂((ti, ti+1], Aj)Fi,�N̂((ti, ti+1], A�)

)
.

Then, using property (ii) of a Poisson random measure (see Definition
9.2.1), we get

E
( ∫
R+

∫
R0

u(t, z)N̂(dt, dz)
)2

=

m∑
j=1

n−1∑
i=0

E(F2
i, j)E

(
N̂((ti, ti+1], Aj)2

)
=

m∑
j=1

n−1∑
i=0

E(F2
i, j)(ti+1 − ti)ν(Aj),

which concludes the proof. �

The set E is dense in L2(P) (see Appelbaum, 2009, Lemma 4.1.1). There-
fore, using the isometry property (9.12), we can extend the stochastic inte-
gral to the class L2(P) in such a way that it is a linear isometry from L2(P)
into L2(Ω) satisfying (9.11) and (9.12).

We denote by L2
∞(P) the set of stochastic processes u : Ω×R+×R0 → R

that are predictable and satisfy∫ t

0

∫
R0

E(u2(s, z))ν(dz)ds < ∞,

for all t > 0. For any process u ∈ L2
∞(P), by considering the restriction of

u to each interval [0, t], we can define the indefinite integral process{ ∫ t

0

∫
R0

u(s, z)N̂(ds, dz), t ≥ 0
}
.

This process is an Ft-martingale (see Appelbaum, 2009, Theorem 4.2.3).
We next extend the stochastic integral to the set L2

loc(P) of stochastic
processes u : Ω × R+ × R0 → R that are predictable and satisfy

P
( ∫ t

0

∫
R0

u2(s, z)ν(dz)ds < ∞
)
= 1,

for all t > 0. The extension of the stochastic integral is based on the fol-
lowing result.
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Proposition 9.4.2 Let u ∈ E. Then, for all T,K, δ > 0, we have

P
(∣∣∣∣∣ ∫ T

0

∫
R0

u(t, z)N̂(dt, dz)
∣∣∣∣∣ ≥ K

)
≤ δ

K2 + P
( ∫ T

0

∫
R0

u2(t, z)ν(dz)dt ≥ δ
)
.

Proof Let u ∈ E be of the form (9.9) with 0 ≤ t0 < · · · < tn = T . Fix δ > 0
and let nδ be the largest integer less than or equal to n for which

m∑
j=1

nδ−1∑
i=0

F2
i, j(ti+1 − ti)ν(Aj) ≤ δ.

Consider the process

uδ(t, z) =
m∑

j=1

n−1∑
i=0

Fi, j1{i≤nδ−1}1(ti,ti+1](t)1A j (z).

Observe that the event {i ≤ nδ−1} is Fti -measurable, so the process uδ is
predictable and elementary. Then, using Chebyshev’s inequality, we obtain

P
(∣∣∣∣∣ ∫ T

0

∫
R0

u(t, z)N̂(dt, dz)
∣∣∣∣∣ ≥ K

)
= P

(∣∣∣∣∣ ∫ T

0

∫
R0

u(t, z)N̂(dt, dz)
∣∣∣∣∣ ≥ K, nδ = n

)
+ P

(∣∣∣∣∣ ∫ T

0

∫
R0

u(t, z)N̂(dt, dz)
∣∣∣∣∣ ≥ K, nδ � n

)
≤ P

(∣∣∣∣∣ ∫ T

0

∫
R0

uδ(t, z)N̂(dt, dz)
∣∣∣∣∣ ≥ K

)
+ P(nδ � n)

≤
E

(∫ T

0

∫
R0

uδ(t, z)2ν(dz)dt
)

K2 + P
( ∫ T

0

∫
R0

u2(t, z)ν(dz)dt ≥ δ
)

≤ δ
K2 + P

( ∫ T

0

∫
R0

u2(t, z)ν(dz)dt ≥ δ
)
.

�

Now let u ∈ L2
loc(P). Then we can find a sequence of processes u(n) in E

(see Exercise 9.3) such that, for all T > 0, the sequence∫ T

0

∫
R0

|u(t, x) − u(n)(t, z)|2ν(dz)dt

converges to zero in probability. By Proposition 9.4.2, for any m, n ∈ N,
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K, δ > 0,

P
(∣∣∣∣∣ ∫ T

0

∫
R0

(
u(m)(t, x) − u(n)(t, z)

)
N̂(dt, dz)

∣∣∣∣∣ ≥ K
)

≤ δ
K2 + P

( ∫ T

0

∫
R0

|u(m)(t, x) − u(n)(t, z)|2ν(dz)dt ≥ δ
)
.

Therefore, the sequence ∫ T

0

∫
R0

u(n)(t, z)N̂(dt, dz)

is Cauchy in probability, and thus converges in probability. We denote the
limit by ∫ T

0

∫
R0

u(t, z)N̂(dt, dz)

and call it the (extended) stochastic integral. The process (Mt)t≥0 defined
by Mt =

∫ t

0

∫
R0

u(s, z)N̂(ds, dz) is a local martingale (see Appelbaum, 2009,
Theorem 4.2.12).

As a consequence of Proposition 9.4.2, we have the following result.

Corollary 9.4.3 Let u ∈ L2
loc(P). Then

lim
n→∞

∫ T

0

∫
{|z|≥1/n}

u(s, z)N̂(ds, dz) =
∫ T

0

∫
R0

u(s, z)N̂(ds, dz),

in probability.

Proof By Exercise 9.4, Proposition 9.4.2 extends to all u ∈ L2
loc(P). Then,

for all δ, ε > 0, we have

P
(∣∣∣∣∣ ∫ T

0

∫
{0<|z|<1/n}

u(t, z)N̂(dt, dz)
∣∣∣∣∣ ≥ ε)

≤ δ
ε2
+ P

( ∫ T

0

∫
{0<|z|<1/n}

u2(t, z)ν(dz)dt ≥ δ
)
,

from which the desired result follows. �

9.5 Itô’s Formula

We next give Itô’s formula for jump processes. We assume that L = (Lt)t≥0

is a Lévy process with the representation (9.8), where B is the associated
Brownian motion and N is the Poisson random measure defined by the
jumps of L. In this section (Ft)t≥0 is the filtration generated by B and N.
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Motivated by the representation (9.8), we define the following class of
processes.

Definition 9.5.1 We say that a stochastic process X = (Xt)t≥0 is an Itô–
Lévy process if it can be written in the form

Xt = X0 +

∫ t

0
σsdBs +

∫ t

0
bsds +

∫ t

0

∫
R0

c(s, z)N̂(ds, dz), (9.13)

where σ : Ω × R+ → R, b : Ω × R+ → R, and c : Ω × R+ × R0 → R are
predictable processes such that, for all t > 0,∫ t

0

(
σ2

s + |bs| +
∫
R0

c2(s, z)ν(dz)
)
ds < +∞ a.s.,

and X0 is an F0-measurable random variable.

The next result gives Itô’s formula for an Itô–Lévy process.

Theorem 9.5.2 (Itô’s formula) Let f : R+ ×R→ R be a function of class
C1,2. Suppose that X is an Itô–Lévy process of the form (9.13). Then, the
process Yt = f (t, Xt) is also an Itô–Lévy process with representation

Yt = f (0, X0) +
∫ t

0

∂ f
∂t

(s, Xs)ds +
∫ t

0

∂ f
∂x

(s, Xs−)dXs

+
1
2

∫ t

0

∂2 f
∂x2 (s, Xs)σ2

sds

+
∑

0≤s≤t

(
f (s, Xs) − f (s, Xs−) − ΔXs

∂ f
∂x

(s, Xs−)
)
, (9.14)

which holds a.s. for all t ≥ 0.

Proof For simplicity, we assume that f does not depend on time. The
time-dependent case could be proved using similar arguments. The proof
is divided into different steps.

Step 1 We first assume that X has the form

Xt = X0 +

∫ t

0

∫
{|z|≥1}

c(s, z)N(ds, dz),

where c : Ω × R+ × R0 → R is a predictable process and f is a function
in C(R). Let Zt =

∫
{|z|≥1} z N(t, dz). The jump times of the process Z can be

defined recursively as T0 = 0 and, for each integer n ≥ 1,

Tn = inf {t > Tn−1 : |ΔZt| ≥ 1} ,
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where ΔZt = Zt − Zt−. Then, we can write

f (Xt) − f (X0) =
∑

0≤s≤t

f (Xs) − f (Xs−) =
∞∑
j=0

f (Xt∧T j+1 ) − f (Xt∧T j )

=

∞∑
j=0

f
(
Xt∧T j+1− + c(t ∧ T j+1,ΔZt∧T j+1 )

)
− f (Xt∧T j+1−).

Hence, we obtain the formula

f (Xt) = f (X0) +
∫ t

0

∫
|z|≥1

( f (Xs− + c(s, z)) − f (Xs−)) N(ds, dz), (9.15)

which coincides with (9.14).

Step 2 We next consider the case where X can be written as

Xt = X0 +

∫ t

0
σsdBs +

∫ t

0
bsds +

∫ t

0

∫
{|z|≥1}

c(s, z)N(ds, dz),

where c is as in Step 1 and b and σ are as above. Let f ∈ C2(R). Using the
stopping times introduced in Step 1, we get

f (Xt) − f (X0) =
∞∑
j=0

(
f (Xt∧T j+1 ) − f (Xt∧T j )

)
=

∞∑
j=0

(
f (Xt∧T j+1−) − f (Xt∧T j )

)
+

∞∑
j=0

(
f (Xt∧T j+1 ) − f (Xt∧T j+1−)

)
.

Observe that, when t ∈ (T j, T j+1), the increment that appears in the first sum
involves only the continuous part of the process, while the second involves
only the jump part. Then, applying Itô’s formula for the continuous case
(Theorem 2.4.3) to the first sum and formula (9.15) to the second, we obtain

f (Xt) = f (X0) +
∫ t

0
f ′(Xs)σsdBs +

∫ t

0
f ′(Xs)bsds + 1

2

∫ t

0
f ′′(Xs)σ2

sds

+

∫ t

0

∫
{|z|≥1}

( f (Xs− + c(s, z)) − f (Xs−)) N(ds, dz), (9.16)

which again gives us (9.14).

Step 3 Suppose now that X is an Itô–Lévy process of the form (9.13).
Let f ∈ C2(R) with bounded first and second derivatives. Notice that (9.16)
holds if we replace {|z| ≥ 1} by {|z| ≥ 1/n} for each n ≥ 1.
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Consider the sequence of processes (X(n)
t )n≥0 defined by

X(n)
t = X0 +

∫ t

0
σsdBs +

∫ t

0
bsds +

∫ t

0

∫
{|z|≥1/n}

c(s, z)N̂(ds, dz).

Observe that

X(n)
t = X0 +

∫ t

0
σsdBs +

∫ t

0

(
bs −

∫
{|z|≥1/n}

c(s, z)ν(dz)
)
ds

+

∫ t

0

∫
{|z|≥1/n}

c(s, z)N(ds, dz).

Then, by formula (9.16), for each n ≥ 1,

f (X(n)
t ) = f (X0) +

∫ t

0
f ′(X(n)

s )σsdBs +

∫ t

0
f ′(X(n)

s )bsds

−
∫ t

0

∫
{|z|≥1/n}

f ′(X(n)
s− )c(s, z)ν(dz)ds + 1

2

∫ t

0
f ′′(X(n)

s )σ2
sds

+

∫ t

0

∫
{|z|≥1/n}

(
f (X(n)

s− + c(s, z)) − f (X(n)
s− )

)
N(ds, dz).

We can rewrite the last expression as

f (X(n)
t ) − f (X0)

=

∫ t

0
f ′(X(n)

s )σsdBs +

∫ t

0
f ′(X(n)

s )bsds + 1
2

∫ t

0
f ′′(X(n)

s )σ2
sds

+

∫ t

0

∫
{|z|≥1/n}

(
f (X(n)

s− + c(s, z)) − f (X(n)
s− )

)
N̂(ds, dz)

+

∫ t

0

∫
{|z|≥1/n}

(
f (X(n)

s− + c(s, z)) − f (X(n)
s− ) − f ′(X(n)

s− )c(s, z)
)
ν(dz)ds.

By Corollary 9.4.3, we have that X(n)
t → Xt in probability, and hence there

exists a subsequence that converges to Xt almost surely. Taking the limit
along this subsequence, we obtain

f (Xt) − f (X0)

=

∫ t

0
f ′(Xs)σsdBs +

∫ t

0
f ′(Xs)bsds + 1

2

∫ t

0
f ′′(Xs)σ2

sds

+

∫ t

0

∫
R0

( f (Xs− + c(s, z)) − f (Xs−))N̂(ds, dz)

+

∫ t

0

∫
R0

( f (Xs− + c(s, z)) − f (Xs−) − f ′(Xs−)c(s, z))ν(dz)ds,
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which implies (9.14). By an approximation argument, this formula also
holds for f ∈ C2(R). This concludes the proof. �

9.6 Integral Representation Theorem

In this section we assume that (Ω,F , (Ft)t≥0, P) is the filtered probability
space of the jump random measure N of a Lévy process. For any T > 0,
we denote by L2

T (P) the restriction of L2(P) to the interval [0, T ].
As a consequence of Itô’s formula, we have the following representation

theorem for square integrable FT -measurable random variables.

Theorem 9.6.1 (Integral representation theorem) Fix T > 0, and let F be
a random variable in L2(Ω,FT , P). Then there exists a unique process u in
L2

T (P) such that

F = E(F) +
∫ T

0

∫
R0

u(s, z)N̂(ds, dz).

Proof Suppose first that F = YT , where Y = (Yt)t∈[0,T ] is given by

Yt = exp
( ∫ t

0

∫
R0

hsz1[0,R](z)N̂(ds, dz)

−
∫ t

0

∫
R0

(
exp

(
hsz1[0,R](z)

) − 1 − hsz1[0,R](z)
)
ν(dz)ds

)
,

where h ∈ C([0, T ]) and R > 0. The random variable YT is called the
Doléans–Dade exponential. By Itô’s formula (Theorem 9.5.2), it is easy to
obtain (see Exercise 9.5)

dYt = Yt−

∫
R0

(
exp

(
htz1[0,R](z)

) − 1
)
N̂(dt, dz).

Hence

F = 1 +
∫ T

0

∫
R0

Ys−
(

exp
(
hsz1[0,R](z)

) − 1
)
N̂(ds, dz),

which implies the desired representation because E(F) = 1 and the process
u(s, z) = Ys−(exp(hsz1[0,R](z)) − 1) belongs to L2

T (P). By linearity, the rep-
resentation holds for linear combinations of Doléans–Dade exponentials.

In the general case, any random variable F ∈ L2(Ω,FT , P) can be ap-
proximated in L2(Ω) by a sequence Fn of linear combinations of Doléans–
Dade exponentials. Then we have

Fn = E(Fn) +
∫ T

0

∫
R0

u(n)(s, z)N̂(ds, dz),
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for some sequence u(n) in L2
T (P). By the isometry of the stochastic integral,

E((Fn − Fm)2) ≥ E
(( ∫ T

0

∫
R0

(u(n)(s, z) − u(m)(s, z))N̂(ds, dz)
)2)

= E
( ∫ T

0

∫
R0

(u(n)(s, z) − u(m)(s, z))2ν(dz)ds
)
.

Hence, u(n) is a Cauchy sequence in L2
T (P) and it converges to a process

u in L2
T (P). Again applying the isometry property, and taking into account

that E(Fn) converges to E(F), we obtain

F = lim
n→∞ Fn = lim

n→∞

(
E(Fn) +

∫ T

0

∫
R0

u(n)(s, z)N̂(ds, dz)
)

= E(F) +
∫ T

0

∫
R0

u(s, z)N̂(ds, dz).

Finally, uniqueness follows also from the isometry property. �

Example 9.6.2 Consider the process Xt =
∫ t

0

∫
R0

z N̂(ds, dz), t ∈ [0, T ].
We want to find the integral representation of F = X2

T . By Itô’s formula
(Theorem 9.5.2),

X2
t =

∫ t

0

∫
R0

(
(Xs− + z)2 − X2

s− − 2Xs−z
)
ν(dz)ds

+

∫ t

0

∫
R0

(
(Xs− + z)2 − X2

s−
)
N̂(ds, dz)

= t
∫
R0

z2ν(dz) +
∫ t

0

∫
R0

z(2Xs− + z)N̂(ds, dz).

Therefore, we obtain the representation

F = T
∫
R0

z2ν(dz) +
∫ T

0

∫
R0

z(2Xs− + z)N̂(ds, dz). (9.17)

Corollary 9.6.3 (Martingale representation theorem) Let (Mt)t≥0 be a
square integrable martingale with respect to (Ft)t≥0. Then there exists a
unique process u in L2(P) such that

Mt = E(M0) +
∫ t

0

∫
R0

u(s, z)N̂(ds, dz),

for all t ≥ 0.
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9.7 Girsanov’s Theorem

Assume that (Ω,F , (Ft)t≥0, P) is the filtered probability space of the jump
random measure N of a Lévy process. We next present Girsanov’s theorem
for the Poisson random measure N (see Lépingle and Mémin, 1978, and
Di Nunno et al., 2009, Theorem 12.21).

Let c : Ω × [0, T ] × R0 → R be a predictable process satisfying
c(s, z) > −1, for all s ∈ [0, T ] and z ∈ R0, and∫ T

0

∫
R0

(| log(1 + c(s, z)) |2 + c2(s, z)
)
ν(dz)ds < ∞ a.s. (9.18)

For all t ∈ [0, T ], set

Zt = exp
( ∫ t

0

∫
R0

log(1 + c(s, z))N̂(ds, dz)

+

∫ t

0

∫
R0

(log(1 + c(s, z)) − c(s, z))ν(dz)ds
)
.

By Itô’s formula (Theorem 9.5.2), it is easy to obtain that (see Exercise
9.7) Zt is the unique solution to the stochastic differential equation

dZt = Zt−

∫
R0

c(t, z)N̂(dt, dz), Z0 = 1.

Theorem 9.7.1 Let c : Ω × [0, T ] × R0 → R be a predictable process
satisfying c(s, z) > −1, for all s ∈ [0, T ] and z ∈ R0, and (9.18). Assume
that

E
(

exp
( ∫ T

0

∫
R0

(
(1 + c(s, z)) log(1 − c(s, z)) − c(s, z)

)
ν(dz)ds

))
< ∞.

Then, for all t ∈ [0, T ], E(Zt) = 1 and (Zt)t∈[0,T ] is a positive martingale.

By Theorem 9.7.1, the following defines a probability measure Q on
(Ω,FT ):

dQ
dP

(ω) = ZT (ω), ω ∈ Ω.
We next define the stochastic process

N̂Q(t, A) = N̂(t, A) − ν(t, A), A ∈ Aν,
where

ν(t, A) =
∫ t

0

∫
A

c(s, z)ν(dz)ds.
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Theorem 9.7.2 (Girsanov’s theorem) Under the probability measure Q,
the stochastic process {N̂Q(t, A), A ∈ Aν, t ∈ [0, T ]} is a compensated Pois-
son random measure.

9.8 Multiple Stochastic Integrals

Consider a Poisson random measure M on a complete separable metric
space (Z,Z,m), where m is a σ-finite atomless measure.

Fix n ≥ 2. We denote by L2(Zn) the space of real-valued measurable
functions on Zn that are square integrable with respect to mn. We write
L2

s(Z
n) to indicate the subspace of L2(Zn) composed of symmetric func-

tions. We define the symmetrization h̃ of h in L2(Zn) by

h̃(z1, . . . , zn) =
1
n!

∑
σ

h(zσ(1), . . . , zσ(n)),

where the sum runs over all permutations σ of {1, . . . , n}. By Jensen’s in-
equality, we have

‖h̃‖L2(Zn) ≤ ‖h‖L2(Zn). (9.19)

We next define the multiple stochastic integral of a function h in L2(Zn)
with respect to the compensated Poisson random measure M̂.

Let In be the vector space generated by the set of elementary functions
on Zn of the form

h(z1, . . . , zn) =
k∑

j1,..., jn=1

aj1,..., jn 1A1×···×An (z1, . . . , zn), (9.20)

where each aj1,..., jn ∈ R is zero whenever at least two indices j1, . . . , jn

coincide and A1, . . . , An ∈ Z are pairwise disjoints.

Definition 9.8.1 If h is a function in In of the form (9.20) we define the
multiple stochastic integral of h with respect to the compensated Poisson
random measure M̂ by

In(h) =
k∑

j1,..., jn=1

aj1,..., jn M̂(A1) · · · M̂(An),

It is easy to check that the mapping h → In(h) is linear. Moreover, for
each h ∈ In, we have In(h) = In(h̃) (see Exercise 9.8). Therefore, it suffices
to restrict ourselves to the case of symmetric functions. Given h ∈ In of the
form (9.20), it is easy to check that h is symmetric if and only if, for each
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permutation σ of {1, . . . , n} and 1 ≤ j1, . . . , jn ≤ k, aj1,..., jn = ajσ(1),..., jσ(n) . We
denote by Is

n the set of functions in In that are symmetric.
The multiple stochastic integral has the following isometry property (see

Appelbaum, 2009, Theorem 5.4.4).

Theorem 9.8.2 Let h ∈ Is
n and g ∈ Is

k, n, k ≥ 1. Then E(In(h)) = 0 and

E(In(h)Ik(g)) = n!〈h, g〉L2(Zn)1{n=k}. (9.21)

Now, since the vector space In is dense in L2(Zn) (see Appelbaum, 2009,
Appendix 5.9), if h ∈ L2(Zn) then there exists a sequence (h�)�≥1 ∈ In that
converges to h in L2(Zn) as � → ∞. Using the above isometry property
(Theorem 9.8.2) and inequality (9.19), we obtain

E((In(hp) − In(hq))2) = n!‖h̃p − h̃q‖2
L2(Zn) ≤ n!‖hp − hq‖2

L2(Zn) → 0,

as p, q → ∞. Therefore, the sequence (In(h�))�≥1 is Cauchy in L2(Ω) and is
thus convergent. The multiple stochastic integral of h in L2(Zn) is the limit
of the sequence {In(h�)}�≥1 in L2(Ω) and is denoted

In(h) =
∫

Zn
h(z1, . . . , zn) M̂(dz1) · · · M̂(dzn).

We observe that I1(h) = M̂(h). Moreover, Theorem 9.8.2 also holds for
all h ∈ L2(Zn) and g ∈ L2(Zk).

The next result shows that the multiple stochastic integral of the jump
measure of a Lévy process coincides with the iterated integral.

Proposition 9.8.3 (Appelbaum, 2009, Theorem 5.4.5) Let N be the jump
measure of a Lévy process. Then, for any h ∈ L2((R+ × R0)n),

In(h) = n!
∫
R+

∫
R0

· · ·
∫ t2−

0

∫
R0

h(t1, z1, . . . , tn, zn)N̂(dt1, dz1) · · · N̂(dtn, dzn).

We next give a formula for the product of two multiple stochastic in-
tegrals that was proved by, for example, Kabanov (1975) and Surgailis
(1984). Let f ∈ L2

s(Z
n) and g ∈ L2

s(Z
k). For any r = 0, . . . , n ∧ k and

� = 1, . . . , r, we define the modified contraction f ��r g of f and g to be the
element of Zn+k−r−� given by(

f ��r g
)

(γ1, . . . , γr−�, t1, . . . , tn−r, s1, . . . , sk−r)

=

∫
Z�

f (z1, . . . , z�, γ1, . . . , γr−�, t1, . . . , tn−r)

× g(z1, . . . , z�, γ1, . . . , γr−�, s1, . . . , sk−r)m�(dz1 · · · dz�)
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and, for � = 0,(
f �0

r g
)

(γ1, . . . , γr, t1, . . . , tn−r, s1, . . . , sk−r)

= f (γ1, . . . , γr, t1, . . . , tn−r)g(γ1, . . . , γr, s1, . . . , sk−r),

so that
(

f �0
0 g

)
(t1, . . . , tn, s1, . . . , sk) = f (t1, . . . , tn)g(s1, . . . , sk).

When � = r, f �r
r g belongs to L2(Zn+k−2r). Otherwise, there are cases

where the integrals are not even well defined. We denote by f �̃�rg the sym-
metrization of f ��r g. Then, the product of two multiple stochastic integrals
satisfies the following formula: suppose that, for all r = 0, . . . , n ∧ k and
� = 1, . . . , r, f ��r g belongs to L2(Zn+k−r−�). Then

In( f )Ik(g) =
n∧k∑
r=0

r!
(
n
r

)(
k
r

) r∑
�=0

(
r
�

)
In+k−r−�

(
f �̃�rg

)
. (9.22)

9.9 Wiener Chaos for Poisson Random Measures

Consider a Poisson random measure M on a complete separable metric
space (Z,Z,m), where m is a σ-finite atomless measure. Recall that M̂ de-
notes the compensated Poisson random measure. We assume in this section
that F is the σ-field generated by N and the P-null sets.

Definition 9.9.1 The nth Wiener chaos associated with M̂ is denoted Hn

and defined as the Hilbert space of random variables of the type In(h),
where n ≥ 1 and h ∈ L2

s(Z
n); that is, Hn = In(L2

s(Z
n)). Moreover, we

define H0 as R.

Note that H1 = {M̂(h), h ∈ L2(Z)}. Observe that, by the isometry prop-
erty, for all n ≥ 1, Hn is a closed linear subspace of L2(Ω) and the Hn are
all orthogonal. The following chaotic representation property is due to Itô
(1956, Theorem 2).

Theorem 9.9.2 We have that L2(Ω) = ⊕n≥0Hn; that is, any random vari-
able F ∈ L2(Ω) admits the following unique decomposition

F =
∞∑

n=0

In(hn), (9.23)

where h0 = E(F), I0 is the identity mapping on constants and hn ∈ L2
s(Z

n).

Proof The proof is divided into different steps.
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Step 1 First observe that the set of simple random variables

S =
{
ϕ(M(A1), . . . ,M(An)), n ≥ 1, ϕ ∈ Cb(Rn), Ai ∈ Zm pairwise disjoint

}
is dense in L2(Ω).

Step 2 Next we show that the set

P =
{
M(A1)p1 · · · M(An)pn , n ≥ 1, pi ≥ 0, Ai ∈ Zm pairwise disjoint

}
is dense in L2(Ω). First observe that any element in this set belongs to
L2(Ω) since it has a finite norm. Now, by Step 1, it suffices to show that if
F belongs to S and E(FG) = 0 for all G ∈ P then F = 0 a.s. Let F be in S
and, to simplify the exposition, we assume that n = 1; that is, F = ϕ(M(A)),
ϕ ∈ Cb(R). Let σ denote the Poisson distribution with parameter m(A), and
assume that, for all p ≥ 0,

E(FM(A)p) =
∫
R

ϕ(x)xpσ(dx) = 0.

Furthermore, for all t ∈ R,∫
R

e|tx||ϕ(x)|σ(dx) ≤
( ∫
R

e2|tx| σ(dx)
)1/2( ∫

R

|ϕ(x)|2 σ(dx)
)1/2

,

which is finite. Thus, our assumption implies that, for all t ∈ R,∫
R

eitxϕ(x)σ(dx) = 0,

from which we conclude that ϕ(M(A)) = 0 a.s.

Step 3 Next consider the set

Q =
{
M(A1) · · · M(An), n ≥ 1, Ai ∈ Zm pairwise disjoint

}
.

We claim that Q is dense in L2(Ω). By Step 2, it suffices to show that any
element in P belongs to the closed linear span of the family Q. Let M ∈ P
be of the form M(A1)p1 · · · M(An)pn , n ≥ 1, pi ≥ 0, with the Ai ∈ Zm

pairwise disjoint. Consider a subdivision {B1, . . . , Bk} of {A1, . . . , An} such
that m(Bi) < min(ε/m(B1 ∪ · · · ∪ Bk), 1) for some ε > 0. Then,

M =
∑

M(Bi1 )
j1 · · · M(Bir )

jr ,

with i1 < · · · < ir. Since M(Bi) takes only nonnegative integer values, we
have

M ≥
∑

M(Bi1 ) · · · M(Bir ) = Mε
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and

P(M � Mε) = P(M(Bi) > 2 for some i)

≤
k∑

i=1

P(M(Bi) ≥ 2) ≤
k∑

i=1

m(Bi)2 < ε.

Therefore Mε converges to M in probability as ε goes to 0. Furthermore,
we have 0 ≤ Mε ≤ M and M ∈ L2(Ω). Therefore, Mε converges to M in
L2(Ω) as ε goes to 0, and the claim is proved.

Step 4 Finally, it suffices to check that, for any n ≥ 1 and A1, . . . , An ∈
Zm pairwise disjoint,

M(A1) · · · M(An) = m(A1) · · ·m(Am) + I1(h1) + · · · + In(hn),

for some hi ∈ L2
s(Z

i). Consider the function

h(z1, . . . , zn) = 1A1×···×An (z1, . . . , zn).

Then

In(h) = M̂(A1) · · · M̂(An) = (M(A1) − m(A1)) · · · (M(An) − m(An))

= M(A1) · · · M(An) + R + m(A1) · · ·m(Am),

where R is a linear combination of elements of the form M(Ai1 ) · · · M(Aip ),
with 1 ≤ p < n. Thus the result follows by induction on n ≥ 1. �

Example 9.9.3 Consider the process Xt =
∫ t

0

∫
R0

z N̂(ds, dz), t ∈ [0, T ].
By (9.17) and Proposition 9.8.3,

X2
T = T

∫
R0

z2ν(dz) +
∫ T

0

∫
R0

z(2Xs− + z)N̂(ds, dz)

= T
∫
R0

z2ν(dz) +
∫ T

0

∫
R0

z2N̂(ds, dz)

+

∫ T

0

∫
R0

∫ t2−

0

∫
R0

2z1z2N̂(ds1, dz1)N̂(ds2, dz2)

=

2∑
n=0

In(hn),

where h0 = T
∫
R0

z2ν(dz), h1(s1, z1) = z1 and h2(s1, z1, s2, z2) = z1z2.
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Exercises

9.1 Let (τi)i≥1 be a sequence of independent exponential random variables with
parameter λ > 0. Set Tn =

∑n
i=1 τi and Nt =

∑
n≥1 1{t≥Tn}. Show that for any

t > 0, Nt has a Poisson distribution with parameter λt.
9.2 Let N be a Poisson random measure associated with a Lévy process. Show

that the process (N̂(t, A))t≥0 is an Ft-martingale, for any A ∈ Aν.
9.3 Let u ∈ L2

loc(P). Show that there exists a sequence of processes u(n) in E such
that, for all T > 0, the sequence∫ T

0

∫
R0

|u(t, x) − u(n)(t, z)|2ν(dz)dt

converges to zero in probability.
9.4 Show that Proposition 9.4.2 is also true for all u ∈ L2

loc(P).
9.5 Consider the process Y = (Yt)t∈[0,T ] given by

Yt = exp
( ∫ t

0

∫
R0

hszN̂(ds, dz)

−
∫ t

0

∫
R0

(
ehsz − 1 − hsz

)
ν(dz)ds

)
,

where h ∈ L2([0, T ]) and is càdlàg. Show that

dYt = Yt−
∫
R0

(
ehtz − 1

)
N̂(dt, dz).

In particular, Y is a local martingale.
9.6 Consider the process Xt =

∫ t
0

∫
R0

z N̂(ds, dz), t ∈ [0, T ]. Find the integral
representation of the following random variables:

X3
T , eXT , sin XT ,

∫ T

0
Xtdt.

9.7 Let c : Ω × [0, T ] × R0 → R be a predictable process satisfying c(s, z) < 1,
for all s ∈ [0, T ] and z ∈ R0, and also satisfying∫ T

0

∫
R0

(| log(1 − c(s, z)) |2 + c2(s, z)
)
ν(dz)ds < +∞ a.s.

For all t ∈ [0, T ], set

Zt = exp
( ∫ t

0

∫
R0

log(1 − c(s, z))N̂(ds, dz)

+

∫ t

0

∫
R0

(log(1 − c(s, z)) + c(s, z))ν(dz)ds
)
.

Show that

dZt = Zt−
∫
R0

c(t, z)N̂(dt, dz), Z0 = 1.
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9.8 Show that, for all h ∈ In, we have In(h) = In(h̃), where h̃ denotes the sym-
metrization of h.

9.9 Find the chaos expansion of the random variable YT , where Y is as in Exer-
cise 9.5.

9.10 Find the chaos expansion of the random variables in Exercise 9.6.
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Malliavin Calculus for Jump Processes I

In this chapter we develop the Malliavin calculus in the Poisson framework
using the Wiener chaos decomposition. We start by defining the Malliavin
derivative, which in this case is a closed operator satisfying a chain rule
different from that obtained for Brownian motion. We then define the di-
vergence operator and show that, when acting on square integrable and
predictable processes, it coincides with the stochastic integral with respect
to the Poisson random measure associated with a Lévy process. As in the
Wiener case, we define the Ornstein–Uhlenbeck semigroup and its gener-
ator. Then we present the jump version of the Clark–Ocone formula. Fi-
nally, we combine Stein’s method with Malliavin calculus to study normal
approximations in the Poisson framework.

10.1 Derivative Operator

Consider a Poisson random measure M on a complete separable metric
space (Z,Z,m), where m is a σ-finite atomless measure. Let L2

s(Z
n) be the

space of symmetric square integrable functions on Zn. Given h ∈ L2
s(Z

n)
and fixed z ∈ Z, we write h(·, z) to indicate the function on Zn−1 given by
(z1, . . . , zn−1) → h(z1, . . . , zn−1, z).

Definition 10.1.1 We denote by D1,2 the set of random variables F in
L2(Ω) with a chaotic decomposition F =

∑∞
n=0 In(hn), hn ∈ L2

s(Z
n), satisfy-

ing ∑
n≥1

nn!‖hn‖2
L2(Zn) < ∞. (10.1)

Then, if F ∈ D1,2, we define the Malliavin derivative D of F as the L2(Z)-
valued random variable given by

DzF =
∑
n≥1

nIn−1(hn(·, z)), z ∈ Z.

182
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For example, if F = I1(h) then DF = h and if F = I2(h) then DzF =
2I1( f (·, z). Observe that if F belongs to D1,2 then

E
(
‖DF‖2

L2(Z)

)
=

∑
n≥1

nn!‖hn‖2
L2(Zn).

It is easy to see thatD1,2 is a Hilbert space with respect to the scalar product

〈F,G〉1,2 = E(FG) + E(〈DF,DG〉L2(Z)),

where

〈DF,DG〉L2(Z) =

∫
Z

DzFDzG m(dz);

this defines the following seminorm in D1,2

‖F‖1,2 =
(
E(|F|2) + E

(
‖DF‖2

L2(Z)

))1/2
.

We identify the space L2(Ω; L2(Z)) with L2(Ω × Z). The next result
shows that D is a closed operator from D1,2 ⊂ L2(Ω) into L2(Ω × Z).

Proposition 10.1.2 Let (Fk)k≥1 be a sequence of random variables in D1,2

that converges to F in L2(Ω) and is such that the sequence (DFk)k≥1 con-
verges to u in L2(Ω × Z). Then F belongs to D1,2 and DF = u.

Proof Set F =
∑∞

n=0 In(hn) and Fk =
∑∞

n=0 In(hk
n), with hn, hk

n ∈ L2
s(Z

n).
Then hk

n converges to hn in L2(Zn). Furthermore, by Fatou’s lemma,

lim
k→∞

∞∑
n=1

nn!‖hk
n − hn‖2

L2(Zn) ≤ lim
k→∞

lim inf
j→∞

∞∑
n=1

nn!‖hk
n − hj

n‖2
L2(Zn) = 0,

which implies the desired statement. �

Given z ∈ Z fixed, and a point measure ω in Ω, we define the map

ϕz(ω) = ω + δz.

Observe that the map ϕz is well defined from Ω to Ω. By (9.5), if we set
Ω0 = {ω ∈ Ω : ω({α}) ≤ 1,∀α ∈ Z} then P(Ω0) = 1. Moreover, because
P(ω : ω({z}) = 1) = 0, we have that ϕz(Ω0) ⊂ Ω0 a.s. for every fixed z ∈ Z.
The map ϕz induces a transformation on random variables F : Ω → R

defined by

(ϕz(F))(ω) = F(ω + δz) − F(ω).

The next result gives a product rule for the map ϕz, and it will be used
later.
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Lemma 10.1.3 Let F,G : Ω→ R be random variables. Then

ϕz(FG) = Fϕz(G) +Gϕz(F) + ϕz(F)ϕz(G).

Proof We have

ϕz(FG) = F(ω + δz)G(ω + δz) − F(ω)G(ω)

= F(ω + δz)G(ω + δz) − F(ω + δz)G(ω) + F(ω + δz)G(ω) − F(ω)G(ω)

= F(ω + δz)ϕz(G) + ϕz(F)G(ω)

= (F(ω + δz) − F(ω))ϕz(G) + ϕz(F)G + Fϕz(G)

= Fϕz(G) +Gϕz(F) + ϕz(F)ϕz(G),

which concludes the proof. �

The next result shows that ϕz and Dz coincide.

Theorem 10.1.4 Let F be a random variable in L2(Ω). Then F belongs
to D1,2 if and only if there exists a version of F such that the stochastic
process z → ϕz(F) belongs to L2(Ω × Z). In this case

DzF = ϕz(F), (10.2)

for almost all (ω, z) ∈ Ω × Z.

Proof We divide the proof into different steps.

Step 1 Assume first that F = I1(h). Then DzF = h(z). Thus, (10.2) is just
a consequence of the following relation:

Fz − F =
∫

Z
h(α)(M̂(dα) + δz) −

∫
Z

h(α)M̂(dα) =
∫

Z
h(α)δz = h(z).

Step 2 Consider now an elementary function h of the form (9.20). Then

Dz(In(h)) =
m∑

j1,..., jn=1

aj1,..., jn

n∑
i=1

M̂(A1) · · · 1Ai (z) · · · M̂(An).

Moreover,

ϕz(In(h)) =
m∑

j1,..., jn=1

aj1,..., jn

(
(M̂ + δz)(A1) · · · (M̂ + δz)(An)

− M̂(A1) · · · M̂(An)
)
.
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Now, observe that if z � Ai for all i = 1, . . . , n then ϕz(In(h)) = 0, while if
z ∈ Ai for some i = 1, . . . , n then

ϕz(In(h)) =
m∑

j1,..., jn=1

aj1,..., jn M̂(A1) · · · M̂(Ai−1)M̂(Ai+1) · · · M̂(An).

Therefore, (10.2) holds if F = In(h), where h is of the form (9.20), that is,
h ∈ In.

Step 3 Consider a random variable F of the form In(h) where h is in
L2(Zn). Then F is the limit in L2(Ω) of a sequence Fk = In(hk), where
the hk belong to In. Therefore F is the almost sure limit of a subsequence
(Fkj ) j≥0. Consequently, ϕz(F) is the almost sure limit of ϕz(Fk j ) for almost
every z. Moreover, DFk j converges to DF in L2(Ω × Z) as j → ∞, and
(9.20) holds.

Step 4 We now assume that F ∈ L2(Ω) with chaotic decomposition
(9.23). Then F is the limit in L2(Ω) of the sequence of partial sums Fk =∑k

n=0 In(hn). Thus, again F is the a.s. limit of a subsequence (Fkj ) j≥0 and
ϕz(F) is the a.s. limit of ϕz(Fk j ) as j → ∞ for almost all z. Since D is
closed, the desired statement follows. �

In Nualart and Vives (1990), the authors studied the derivative and di-
vergence operators in terms of the Wiener chaos in an arbitrary Fock space
associated with a Hilbert space. In particular, they considered the Wiener
and Poisson spaces. The next example is taken from there.

Example 10.1.5 As an application of Theorem 10.1.4, we will compute
the Malliavin derivative of the jump times of a Poisson process. Let Z =
[0, 1] and let T1, . . . ,Tn be the jump times of a Poisson process (Nt)t∈[0,1].
We need to compute the transformation ϕt(Ti) = Ti(ω + δt) − Ti(ω) for all
i = 1, . . . , n. We have ϕt(Ti) = 0 if t > Ti, ϕ(Ti) = t − Ti if Ti−1 < t < Ti,
and ϕt(Ti) = Ti−1 − Ti if t < Ti−1. Therefore

ϕt(Ti) = Ti−11{t<Ti} + t1{Ti−1<t<Ti} − Ti1{t<Ti}.

For example for i = 1, ϕt(T1) = (t − T1)1[0,T1](t).

Remark 10.1.6 Observe that the Malliavin derivative D is not a local
operator as in the Brownian motion case (see Lemma 3.4.1). For example,
with the notation of Example 10.1.5, let F be a random variable in D1,2

that is equal to zero over the set {N1/2 = N1} and takes the value 1 on the
complementary set. Then, for all t > 1/2, DtF = 1.
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As a consequence of Lemma 10.1.3, we have the following product rule
for the Malliavin derivative.

Lemma 10.1.7 Let F,G ∈ D1,2. Suppose that FG ∈ L2(Ω) and (F +
DF)(G + DG) ∈ L2(Ω × Z). Then the product FG also belongs to D1,2 and

D(FG) = FDG +GDF + DFDG.

We can also prove the following chain rule (see Di Nunno et al., 2009).

Proposition 10.1.8 Let F be a random variable in D1,2 and let ϕ be a
real continuous function such that ϕ(F) belongs to L2(Ω) and ϕ(F + DF)
belongs to L2(Ω × Z). Then ϕ(F) belongs to D1,2 and

Dϕ(F) = ϕ(F + DF) − ϕ(F).

Proof First assume that ϕ has compact support and F is bounded. Recall
that, from the Fourier inversion theorem,

ϕ(F) =
1√
2π

∫
R

eiyF ϕ̂(y)dy,

where ϕ̂ denotes the Fourier transform of ϕ, that is,

ϕ̂(y) =
1√
2π

∫
R

e−ixyϕ(x)dx.

Then, using Proposition 10.1.2 and Exercise 10.1, we get

Dϕ(F) =
1√
2π

∫
R

∞∑
n=0

1
n!

(iy)n((F + DF)n − Fn)ϕ̂(y)dy

=
1√
2π

∫
R

(
eiy(F+DF) − eiyF

)
ϕ̂(y)dy

= ϕ(F + DF) − ϕ(F).

Hence, the result holds in this case. For a general continuous function ϕ
and random variables F satisfying the assumptions of the proposition, the
result follows by approximation and using the fact that D is closed. �

Example 10.1.9 Consider the process Xt =
∫ t

0

∫
R0

z N̂(ds, dz), t ∈ [0, T ].
By Example 9.9.3,

Dt,zX2
T = z2 + 2I1(h2(·, t, z)) = z2 + 2XT z. (10.3)

Furthermore, since Dt,zXT = z, using Proposition 10.1.8 we obtain

Dt,zX2
T = (XT + z)2 − X2

T = z2 + 2XT z,

which coincides with (10.3).
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10.2 Divergence Operator

Observe that, owing to the chaotic representation (9.23), every stochastic
process u in L2(Ω × Z) admits a unique representation of the form

u(z) =
∑
n≥0

In(hn(·, z)), (10.4)

where, for each z ∈ Z, the function hn(·, z) belongs to L2
s(Z

n) and

‖u‖2
L2(Ω×Z) =

∑
n≥0

n!‖hn‖2
L2(Zn+1) < ∞.

Definition 10.2.1 The domain of the divergence operator δ, denoted by
Dom δ, is defined as the set of stochastic processes u in L2(Ω×Z) such that
the chaotic expansion (10.4) verifies the condition∑

n≥0

(n + 1)!‖hn‖2
L2(Zn+1) < ∞. (10.5)

If u belongs to Dom δ, then the random variable δ(u) is defined as

δ(u) =
∑
n≥0

In+1(h̃n),

where h̃n stands for the symmetrization of h as a function in n+1 variables.

For instance, if u(z) = h(z) is a deterministic function in L2(Z) then
δ(u) = I1(h). If u(z) = I1(h(·, z)), with h ∈ L2

s(Z
2), then δ(u) = I2(h).

The following result characterizes δ as the adjoint of D.

Proposition 10.2.2 If u ∈Dom δ, then δ(u) is the unique element of L2(Ω)
such that, for all F ∈ D1,2,

E(〈DF, u〉L2(Z)) = E(Fδ(u)).

Conversely, if u is a stochastic process in L2(Ω × Z) such that, for some
G ∈ L2(Ω) and for all F ∈ D1,2,

E(〈DF, u〉L2(Z)) = E(FG),

then u belongs to Dom δ and δ(u) = G.

Proof Let F =
∑

n≥0 In(gn) and u(z) =
∑

n≥0 In(hn(·, z)), where gn ∈ L2
s(Z

n)



188 Malliavin Calculus for Jump Processes I

and, for each z ∈ Z, hn(z, ·) ∈ L2
s(Z

n). Then

E(〈DF, u〉L2(Z)) = E
( ∫

Z

∑
n≥1

nIn−1(gn(·, z))
∑
n≥0

In(hn(·, z)) m(dz)
)

=

∫
Z

E
(∑

n≥0

(n + 1)In(gn+1(·, z))In(hn(·, z))
)

m(dz)

=

∫
Z

∑
n≥0

(n + 1)n!〈gn+1(·, z), hn(·, z)〉L2(Zn) m(dz)

=
∑
n≥0

(n + 1)!〈gn+1, hn〉L2(Zn+1) =
∑
n≥1

n!〈gn, h̃n−1〉L2(Zn).

Moreover, if u ∈ Dom δ then

E(Fδ(u)) = E
(∑

n≥0

In(gn)
∑
n≥0

In+1(h̃n)
)
= E

(∑
n≥0

In+1(gn+1)In+1(h̃n)
)

=
∑
n≥1

n!〈gn, h̃n−1〉L2(Zn).

Finally, uniqueness follows since D1,2 is dense in L2(Ω). The second part
of the proposition can be proved by similar arguments. �

Proposition 10.2.2 implies that δ is the adjoint operator of D and it is
clear that Dom δ is dense in L2(Ω × Z) and that δ is a closed operator.

We next introduce the space of differentiable processes.

Definition 10.2.3 The space L1,2 is the set of processes u in L2(Ω × Z)
such that u(z) belongs to D1,2 for almost all z and there exists a measurable
version of the two-parameter process Du such that

E
(
‖Du‖2

L2(Z2)

)
< ∞. (10.6)

The next result shows that L1,2 is included in Dom δ.

Lemma 10.2.4 We have that L1,2 ⊂ Dom δ.

Proof Let u be a stochastic process in L1,2 with representation

u(z) =
∑
n≥0

In(hn(·, z)),

where, for each z ∈ Z, the function hn(·, z) belongs to L2
s(Z

n). Observe that
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(10.6) can be written as

E
(
‖Du‖2

L2(Z2)

)
= E

( ∫
Z2

(Dαu(z))2 m(dα)m(dz)
)

= E
( ∫

Z2

(∑
n≥1

nIn−1(hn(·, z, α))
)2

m(dα)m(dz)
)

=

∫
Z2

∑
n≥1

n2(n − 1)!‖hn(·, z, α))‖2
L2(Zn−1) m(dα)m(dz)

=
∑
n≥1

(n + 1)2n!‖hn‖2
L2(Zn+1) < ∞,

which implies (10.5), and thus u belongs to Dom δ. �

We next compute the Malliavin derivative of the divergence operator.

Proposition 10.2.5 Consider a stochastic process u in L1,2 such that, for
almost all z ∈ Z, the process Dzu is in Dom δ and such that there exists a
version of the process (δ(Dzu(·)))z∈Z that belongs to L2(Ω × Z). Then δ(u)
belongs to D1,2 and

Dz(δ(u)) = u(z) + δ(Dzu) (10.7)

for almost all z ∈ Z.

Proof Suppose that u has the representation (10.4). Then

Dz(δ(u)) =
∞∑

n=0

(n + 1)In(h̃n(·, z))

= u(z) +
∞∑

n=0

In

( n∑
i=1

hn(zi, z1, . . . , zi−1, z, zi+1, . . . , zn)
)

= u(z) +
∞∑

n=0

nIn(gn(·, z, ·)),

where gn(·, z, ·) is the symmetrization of the function

(z1, . . . , zn) → hn(z1, . . . , zn−1, z, zn).

Moreover,

δ(Dzu) = δ
( ∞∑

n=1

nIn−1(hn(·, z, ·))
)
=

∞∑
n=0

nIn(gn(·, z, ·)),

which shows the desired result. �

The divergence operator δ satisfies the following product rule.
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Proposition 10.2.6 Let F ∈ D1,2 and u ∈ Dom δ be such that the product
uDF belongs to Dom δ and the right-hand side of (10.8) below belongs to
L2(Ω). Then Fu ∈ Dom δ and

δ(Fu) = Fδ(u) − 〈DF, u〉L2(Z) − δ(uDF). (10.8)

Proof Let G be a bounded random variable in D1,2. Then, using Lemma
10.1.7 and Proposition 10.2.2, we obtain

E(〈Fu,DG〉L2(Z)) = E(〈u,D(FG) −GDF − DFDG〉L2(Z))

= E(FGδ(u)) − E(G〈DF, u〉L2(Z)) − E(Gδ(uDF))

= E(G(Fδ(u) − 〈DF, u〉L2(Z) − δ(uDF)).

Finally, the result follows from Proposition 10.2.2. �

We next consider the Poisson random measure N associated with a Lévy
process. The next result shows that the divergence operator coincides with
the stochastic integral with respect to the compensated measure N̂ when it
acts on predictable and square integrable processes.

Theorem 10.2.7 Let u be a process in L2(P). Then u belongs to Dom δ
and

δ(u) =
∫
R+

∫
R0

u(t, z)N̂(dt, dz).

Proof First assume that u is an elementary and predictable process of
the form (9.9), where the Fi, j belong to D1,2. We plan to apply Propo-
sition 10.2.2 to the random variables Fi, j and the processes ui, j(t, z) =
1(ti,ti+1](t)1Aj (z). Clearly ui, j belongs to Dom δ. Furthermore, since the Fi, j

are Fti -measurable for all t > ti and ω ∈ Ω, we have

Dt,zFi(ω) = Fi, j(ω + δ(t,z)) − Fi, j(ω) = 0,

which implies that Dt,zFi, j1(ti,ti+1](t)1Aj (z) = 0. Thus, by Proposition 10.2.6,
we obtain

δ(u) =
m∑

j=1

n−1∑
i=0

(
Fi, jN̂((ti, ti+1], Aj)

−
∫ ti+1

ti

∫
Aj

Dt,zFi, j ν(dz)dt − δ(DFi, j1(ti,ti+1]×Aj )
)

=

m∑
j=1

n−1∑
i=0

Fi, jN̂((ti, ti+1], Aj), (10.9)

which coincides with the integral of u with respect to N̂ (see (9.10)).
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Next, assume that u is of the form (9.9), where the Fi, j belong to Fi and
are bounded. Then, since D1,2 is dense in L2(Ω), there exists a sequence
Fk

i, j in D1,2 that converges to Fi, j in L2(Ω). The corresponding sequence uk

converges to u in L2(Ω × R+ × R0) and (10.9) holds true for this sequence.
Finally, since δ is a closed operator, we obtain that u belongs to Dom δ
and that δ(u) is the limit in L2(Ω) of δ(uk), which also coincides with the
integral of u with respect to N̂.

Finally, the general case follows since the set E is dense in L2(P) and δ
is a closed operator. �

10.3 Ornstein–Uhlenbeck Semigroup

As in the Wiener case, we can define the Ornstein–Uhlenbeck semigroup
and its generator. Let F ∈ L2(Ω) be a random variable with chaos de-
composition F =

∑∞
n=0 In(hn), hn ∈ L2

s(Z
n). Then the Ornstein–Uhlenbeck

semigroup is defined as

Tt(F) =
∞∑

n=1

e−ntIn(hn).

We denote by L the generator of the Ornstein–Uhlenbeck semigroup. The
domain of L, denoted Dom L, is given by those F ∈ L2(Ω) such that

∞∑
n=1

n2n!‖hn‖2
L2(Zn) < ∞.

If F ∈ Dom L, the random variable LF is given by

LF = −
∞∑

n=1

nIn(hn).

Note that E(LF) = 0.
We also consider the pseudo-inverse L−1 of L. This is a bounded oper-

ator on the space of centered random variables in L2(Ω). For every F =∑∞
n=1 In(hn), we have

LF = −
∞∑

n=1

1
n

In(hn).

The relationship between the operators D, δ, and L follows easily, as in
the Wiener case (Proposition 5.2.1), on applying the duality relationship
(Proposition 10.2.2) and chaos expansions.
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Proposition 10.3.1 F ∈ Dom L if and only if F ∈ D1,2 and DF ∈ Dom δ.
Moreover, in this case,

δDF = −LF.

10.4 Clark–Ocone Formula

Consider the Poisson random measure N associated with a Lévy process in
the filtered probability space (Ω,F , (Ft)t≥0, P). We next present the jump
version of the Clark–Ocone formula.

Theorem 10.4.1 Let F be an FT -measurable random variable in D1,2.
Then F admits the following representation:

F = E(F) +
∫ T

0

∫
R0

E(Dt,zF|Ft)N̂(dt, dz), (10.10)

where we have chosen a predictable version of the conditional expectation
process E(Dt,zF|Ft).

Proof By Theorem 9.6.1, because F is FT -measurable and belongs to
L2(Ω), it admits the representation

F = E (F) +
∫ T

0

∫
R0

u(t, z)N̂(dt, dz),

for some predictable process u in L2(P).
We now consider another predictable stochastic process ũ in L2(P). The

isometry property implies that on the one hand

E(δ(ũ)F) =
∫ T

0

∫
R0

E
(
ũ(t, z)u(t, z)

)
ν(dz)dt. (10.11)

On the other hand, by the duality relationship, we obtain

E(δ(ũ)F) = E
( ∫ T

0

∫
R0

ũ(t, z)Dt,zFν(dz)dt
)

=

∫ T

0

∫
R0

E
(
ũ(t, z)E(Dt,zF|Ft)

)
ν(dz)dt. (10.12)

Finally, (10.11) and (10.12) imply the desired result. �

Example 10.4.2 Let F = u3
T , where uT =

∫ T

0

∫
R0

z N̂(dt, dz). Then Dt,zuT =

z1[0,T ](t). Moreover, by Exercise 10.1,

Dt,zF = (uT + z1[0,T ](t))3 − u3
T = 1[0,T ](t)(z3 + 3zu2

T + 3z2uT ).
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Therefore

E(Dt,zF|Ft) = 1[0,T ](t)
(
z3 + 3z

(
(T − t)

∫
R0

z2ν(dz) + u2
t

)
+ 3z2ut

)
and

F = E(F) +
∫ T

0

∫
R0

(
z3 + 3z

(
(T − t)

∫
R0

z2ν(dz) + u2
t

)
+ 3utz2

)
N̂(dt, dz).

10.5 Stein’s Method for Poisson Functionals

In this section we combine Stein’s method, introduced in Section 8.1, with
the Malliavin calculus for Poisson random measures developed above, fol-
lowing Peccati et al. (2010).

Let M be a Poisson random measure on a complete separable metric
space (Z,Z,m), where m is a σ-finite atomless measure. With the notation
of Section 8.1, we have the following analogs of Theorem 8.2.1 and (8.15)
in the Poisson case.

Theorem 10.5.1 Let F ∈ D1,2 be such that E(F) = 0. Let X be an
N(0, 1) random variable. Let H be a separating class of functions such
that E(|h(X)|) < ∞ and E(|h(F)|) < ∞ for every h ∈ H . Then

dH (F, X) ≤ sup
h∈H

‖ f ′h‖∞E
(∣∣∣1 − 〈DF,−DL−1F〉L2(Z)

∣∣∣)
+ 1

2 sup
h∈H

‖ f ′′h ‖∞
∫

Z
E

(
|DzF|2|DzL−1F|

)
m(dz).

Proof By Proposition 8.1.5, it suffices to bound

sup
h∈H

|E( f ′h(F) − F fh(F))|.

Using Theorem 10.1.4 twice, together with a second-order Taylor expan-
sion, we get that, for all ω ∈ Ω and z ∈ Z,

Dz fh(F)(ω) = fh(F(ϕz(ω))) − fh(F(ω))

= f ′h(F(ω))(F(ϕz(ω)) − F(ω)) + R(F(ϕz(ω)) − F(ω))2

= f ′h(F(ω))DzF(ω) + R(DzF(ω))2, (10.13)

where R := R(ω, z) satisfies |R| ≤ 1
2 suph∈H ‖ f ′′h ‖∞.

Now, Propositions 10.2.2 and 10.3.1 with u = DL−1F and G = fh(F)
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yield

E(F fh(F)) = E
(
LL−1F fh(F)

)
= −E

(
δ(DL−1F) fh(F)

)
= E

(
〈D fh(F),−DL−1F〉L2(Z)

)
.

According to (10.13), we have

E
(
〈D fh(F),−DL−1F〉L2(Z)

)
= E

(
f ′h(F)〈DF,−DL−1F〉L2(Z)

)
+ E

(
R〈(DF)2,−DL−1F〉L2(Z)

)
.

It follows that

|E( f ′h(F) − F fh(F))| ≤ ∣∣∣E (
f ′h(F)(1 − 〈DF,−DL−1F〉L2(Z))

)∣∣∣
+

∣∣∣E (
R〈(DF)2,−DL−1F〉L2(Z)

)∣∣∣.
The result follows immediately. �

We are interested in the case where the class H = Lip(1), which cor-
responds to Wasserstein’s distance. For any h ∈ Lip(1), by Proposition
8.1.8, ‖ f ′h‖∞ ≤ √

2/π ≤ 1 and, by Stein (1986, Lemma 3, eq. (47), p. 25),
‖ f ′′h ‖∞ ≤ 2. Therefore, for any F ∈ D1,2 such that E(F) = 0, Theorem
10.5.1 yields

dW(F, X) ≤ E
(
|1 − 〈DF,−DL−1F〉L2(Z)|

)
+

∫
Z

E
(
|DzF|2|DzL−1F|

)
m(dz).

(10.14)

10.6 Normal Approximation on a Fixed Chaos

Suppose that F = Iq( f ) ∈ Hq, q ≥ 1, and f ∈ L2
s(Z

q). By the definition of
L−1, we can write

〈DF,−DL−1F〉L2(Z) =
1
q
‖DF‖2

L2(Z)

and ∫
Z

E
(
|DzF|2|DzL−1F|

)
m(dz) =

1
q

∫
Z

E
(
|DzF|3

)
m(dz).

As a consequence, from (10.14) we obtain

dW(F, X) ≤ E
(
|1 − q−1‖DF‖2

L2(Z)|
)
+

1
q

∫
Z

E
(
|DzF|3

)
m(dz). (10.15)
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The Case q = 1

We now fix h ∈ L2(Z). Then I1(h) = M̂(h) belongs to D1,2 and DM̂(h) =
h. Moreover, −L−1M̂(h) = M̂(h). Therefore, (10.15) yields the following
result.

Corollary 10.6.1 Let h ∈ L2(Z) and let X be an N(0, 1) random variable.
Then the following bound holds:

dW(M̂(h), X) ≤ ∣∣∣1 − ‖h‖2
L2(Z)

∣∣∣ + ∫
Z
|h(z)|3m(dz). (10.16)

As a consequence, if m(Z) = ∞ and the sequence (hk)k≥1 ⊂ L2(Z)∩L3(Z)
satisfies, as k → ∞,

‖hk‖L2(Z) → 1 and ‖hk‖L3(Z) → 0

then we have the central limit theorem

M̂(hk)
L−→ X

and inequality (10.16) provides an explicit upper bound for the Wasserstein
distance.

Example 10.6.2 Consider a Poisson random measure M̂ on Z = R+,
with measure m equal to the Lebesgue measure. Then the random variable
k−1/2M̂([0, k]) = M̂(hk), where hk = k−1/21[0,k], is an element of the first
Wiener chaos associated with M̂. Since the random variables M̂((i − 1, i]),
i = 1, . . . , k, are iid centered Poisson with unit variance, a standard applica-

tion of the central limit theorem yields that, as k → ∞, M̂(hk)
L→ X where

X is an N(0, 1) random variable. Moreover, M̂(hk) belongs to D1,2 for every
k, and DM̂(hk) = hk. Since

‖hk‖L2(Z) = 1 and
∫

Z
|hk(z)|3m(dz) =

1
k1/2 ,

one deduces from Corollary 10.6.1 that

dW(M̂(h), X) ≤ 1
k1/2 ,

which is consistent with the usual Berry–Esséen estimates.

The Case q ≥ 2

Let f ∈ L2
s(Z

q). We consider an operator Gq
p that transforms a function of q

variables into a function of p variables, as follows. When p = 0, we set

Gq
0 f = q!‖ f ‖2

L2(Zq)
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and, for every p = 1, . . . , 2q, we set

(Gq
p f )(z1, . . . , zp) =

q∑
r=0

r∑
�=0

1{2q−r−�=p}r!
(
q
r

)2(r
�

) (
f �̃�r f

)
(z1, . . . , zp).

This operator allows us to give a more compact representation of the prod-
uct formula of two multiple integrals (9.22) when f = g. In fact, if f ��r f ∈
L2(Z2q−r−�) for all r = 0, . . . , q and � = 1, . . . , r then one has that

Iq( f )2 =

2q∑
p=0

Ip(Gq
p f ).

From now on, we assume that every contraction of the type f ��r f is well
defined and finite for every r = 0, . . . , q and � = 1, . . . , r.

When m(Z) = ∞, we consider the following technical condition, which
is needed to justify a Fubini argument: for every p = 1, . . . , 2(q − 1),∫

Z

( ∫
Zp

(Gq−1
p f (z, ·))2dmp

)1/2

m(dz) < ∞. (10.17)

Finally, we set

Ĝq
p f (·) =

∫
Z

Gq−1
p f (z, ·)m(dz).

We have the following Wasserstein bounds on a fixed chaos, proved by
Peccati et al. (2010, Theorem 4.2).

Theorem 10.6.3 Let X be an N(0, 1) random variable. Fix q ≥ 2, and let
f ∈ L2

s(Z
q) such that:

(i) whenever m(Z) = ∞, condition (10.17) is satisfied;
(ii) the kernel f (z, ·) ��r f (z, ·) belongs to L2(Z2(q−1)−r−�), for dm-almost-

every z ∈ Z, r = 1, . . . , q − 1 and � = 0, . . . , r − 1.

Then

dW(Iq( f ), X)

≤
( (

1 − q!‖ f ‖2
L2(Zq)

)2
+ q2

2(q−1)∑
p=1

p!
∫

Zp

(
Ĝq

p f
)2

dmp
)1/2

+ q2
(
(q − 1)!‖ f ‖2

L2(Zq)

2(q−1)∑
p=1

p!
∫

Z

( ∫
Zp

(Gq−1
p f (z, ·))2dmp

)
m(dz)

)1/2

.

(10.18)
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Moreover,( (
1 − q!‖ f ‖2

L2(Zq)

)2
+ q2

2(q−1)∑
p=1

p!
∫

Zp

(
Ĝq

p f
)2

dmp
)1/2

≤ ∣∣∣1 − q!‖ f ‖2
L2(Zq)

∣∣∣ + q
q∑

t=1

t∧(q−1)∑
s=1

1{2≤t+s≤2q−1}((2q − t − s)!)1/2

× (t − 1)!
(
q − 1
t − 1

)2(t − 1
s − 1

)
‖ f �s

t f ‖L2(Z2q−t−s).

(10.19)

Furthermore, if

f �q
q−b f ∈ L2(Zb) for all b = 1, . . . , q − 1 (10.20)

then ( 2(q−1)∑
p=0

p!
∫

Z

( ∫
Zp

(Gq−1
p f (z, ·))2dmp

)
m(dz)

)1/2

≤
q∑

b=1

b−1∑
a=0

1{1≤a+b≤2q−1}((a + b − 1)!)1/2(q − a − 1)!

×
(

q − 1
q − a − 1

)2(q − a − 1
q − b

)
‖ f �a

b f ‖L2(Z2q−a−b). (10.21)

Example 10.6.4 Consider a double integral I2( f ), where f ∈ L2
s(Z

2) sat-
isfies (10.17). Since in this case G1

1 f (z, ·)(x) = f 2(z, x) and G2
1 f (z, ·)(x, y) =

f (z, x) f (z, y), we obtain that (10.17) holds if and only if∫
Z

( ∫
Z

f 4(z, x)m(dx)
)1/2

m(dz) < ∞.

We assume the following conditions:

E(I2( f )2) = 1, f �1
2 f ∈ L2(Z), and f ∈ L4(Z2). (10.22)

Then, assumptions (ii) and (10.20) of Theorem 10.6.3 are satisfied, since
f (z, ·) �0

1 f (z, ·)(x) = f 2(z, x), which is square integrable. Therefore, from
(10.18)–(10.21), we obtain that the Wasserstein distance between the law
of I2( f ) and the law of an N(0, 1) random variable X satisfies the following
bound:

dW(I2( f ), X) ≤ 2
(√

2‖ f �1
1 f ‖L2(Z2) + ‖ f �1

2 f ‖L2(Z2)

)
+
√

8
(√

2‖ f �0
1 f ‖L2(Z3) + ‖ f �0

2 f ‖L2(Z2) + ‖ f �1
2 f ‖L2(Z)

)
.
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We now use the equalities

‖ f �0
1 f ‖L2(Z3) = ‖ f �1

2 f ‖L2(Z)

and

‖ f �0
2 f ‖L2(Z2) = ‖ f ‖2

L4(Z2),

which follow from a Fubini argument, to conclude that

dW(I2( f ), X) ≤ √
8‖ f �1

1 f ‖L2(Z2) + (2 +
√

8(1 +
√

2))‖ f �1
2 f ‖L2(Z2)

+
√

8‖ f ‖2
L4(Z2).

We thus have the following central limit theorem for multiple integrals
of arbitrary order, due to Peccati et al. (2010, Theorem 5.1).

Theorem 10.6.5 Suppose that m(Z) = ∞. Fix q ≥ 2, and consider a
sequence of multiple stochastic integrals of order q, Fn = Iq( fn) ∈ Hq,
n ≥ 1, such that

lim
n→∞ E(F2

n) = 1.

Assume moreover that the following conditions hold:

(i) fn satisfies (10.17) for any n ≥ 1.
(ii) fn �

�
r fn ∈ L2(Z2q−r−�), for any r = 1, . . . , q and � = 0, . . . , r ∧ (q − 1),

and ‖ fn �
�
r fn‖L2(Z2q−r−�) → 0 as n → ∞.

(iii) fn ∈ L4(Zq), for any n ≥ 1, and ‖ fn‖L4(Zq) → 0 as n → ∞.

Then, as n → ∞, Fn
L−→ N(0, 1).

Proof Assumption (ii) implies that assumptions (ii) and (10.20) in the
statement of Theorem 10.6.3 hold for any fn, n ≥ 1. Then relations (10.18)–
(10.21) imply that dW(Fn, X) → 0 as n → ∞. Since convergence in the
Wasserstein distance implies convergence in law, the conclusion holds. �

Example 10.6.6 We consider a sequence of double integrals (I2( fn))n≥1,
where the fn satisfy the same conditions as f of Example 10.6.4. Then,
according to Theorem 10.6.5, the sufficient conditions in order that, as n →
∞, we have

I2( fn)
L−→ N(0, 1) (10.23)

are that ‖ fn‖L4(Zq) → 0,

‖ fn �
1
2 fn‖L2(Z) → 0, and ‖ fn �

1
1 fn‖L2(Z2) → 0. (10.24)
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A counterpart of this last example is the following result, proved by
Peccati and Taqqu (2008).

Proposition 10.6.7 Consider a sequence of double integrals (I2( fn))n≥1,
where the fn satisfy conditions (10.22) of Example 10.6.4. Assume also that
as n → ∞, ‖ fn‖L4(Zq) → 0. Then,

(i) If Fn ∈ L4(Ω) for every n ≥ 1, a sufficient condition for (10.24) to
hold is that

E(F4
n) → 3. (10.25)

(ii) If the sequence Fn is uniformly integrable, conditions (10.23), (10.24),
and (10.25) are equivalent.

We end this section by presenting the analog of the fourth-moment the-
orem in the Poisson framework. A first proof of this result was given by
Döbler and Peccati (2018) with the additional condition that the processes
ϕ(F), Fϕ(F), (ϕ(F))4, and F3ϕ(F) belong to L1(Ω× Z). Then, Döbler et al.
(2018) were able to remove this condition and extend the theorem to the
multidimensional case.

Theorem 10.6.8 Fix q ≥ 1 and let F = Iq( f ) be a multiple stochastic
integral with E(F2) = σ2 > 0. Then, if X is an N(0, σ2) random variable,

dW(F, X) ≤
( 1
σ

√
2
π
+

4
3σ

) √
E(F4) − 3σ4.

Corollary 10.6.9 For each n ≥ 1, let qn ≥ 1 and let Fn = Iqn ( fn) ∈ Hqn ,
fn ∈ L2

s(Z
qn ), be a sequence of multiple stochastic integrals satisfying

lim
n→∞ E(F2

n) = 1 and lim
n→∞ E(F4

n) = 3.

Then, as n → ∞, Fn
L−→ N(0, 1).

We refer to Peccati and Reitzner (2016) for geometric applications, such
as to random graphs, of the results in this section.

Exercises

10.1 Show by induction that if F belongs to D1,2 then

D(Fn) = (F + DF)n − Fn.
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10.2 Consider the process Y = (Yt)t∈[0,T ] given by

Yt = exp
( ∫ t

0

∫
R0

hszN̂(ds, dz)

−
∫ t

0

∫
R0

(
ehsz − 1 − hsz

)
ν(dz)ds

)
,

where h ∈ L2([0, T ]) is càdlàg. Compute the Malliavin derivative of YT using
the chaos expansion obtained in Exercise 9.9.

10.3 Consider the process Xt =
∫ t

0

∫
R0

z N̂(ds, dz), t ∈ [0, T ]. Using the chaos
expansion obtained in Exercise 9.10, compute the Malliavin derivative of
the following random variables:∫ T

0
Xtdt, X3

T , eXT , sin XT .

10.4 Compute the Malliavin derivative of the random variables eXT and sin(XT )
in Exercise 10.3 using the chain rule (Proposition 10.1.8).

10.5 Using the Clark–Ocone formula, find integral representations for the random
variables in Exercise 10.3.
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Malliavin Calculus for Jump Processes II

In this chapter we define a derivative operator for cylindrical functionals
of the Poisson random measure associated with a Lévy process. This dif-
ferential operator is different from the one introduced in Chapter 10 via
the chaos expansion. The Malliavin calculus for jump processes presented
in this chapter follows ideas from Bichteler and Jacod (1983) in the case
where f (z) = 1{|z|≤1} in (11.3) below (see also Bichteler et al., 1987, for the
multidimensional case), where f is the density of the Lévy measure. This
approach was extended by Fournier (2000) for a general f as in (11.3).
The derivative operator defined in this chapter satisfies the usual chain
rule. Although we will not consider the adjoint operator, we derive the
integration-by-parts formula (11.11), that allows us to obtain a criterion for
the existence of the density of a random variable in the Wiener–Poisson
framework. We apply this criterion to a diffusion with jumps.

11.1 Derivative Operator

Let L = (Lt)t≥0 be a pure-jump Lévy process with characteristic triplet
(0, 0, ν) defined on a complete probability space (Ω,F , P) such that F is
generated by L. Consider the Poisson random measure N associated with L,
and its compensated random measure N̂. We will make use of the notation

N(h) =
∫
R+

∫
R0

h(t, z)N(dt, dz),

for h ∈ L1(R+ × R0, � × ν). We denote by C0,2
0 (R+ × R0) the set of contin-

uous functions h : R+ × R0 → R that have compact support and are twice
differentiable on R0.

We consider the set S of cylindrical random variables of the form

F = ϕ(N(h1), . . . ,N(hm)), (11.1)

where ϕ ∈ C2
0(Rm) and hi ∈ C0,2

0 (R+ × R0) for 1 ≤ i ≤ m.

201
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It is easy to show that the set S is dense in L2(Ω).

Definition 11.1.1 The Malliavin derivative of a simple random variable
F in S of the form (11.1) is defined as the two parameter process

Dt,zF =
m∑

k=1

∂ϕ

∂xk
(N(h1), . . . ,N(hm))∂zhk(t, z), (t, z) ∈ R+ × R0. (11.2)

In particular, D(N(h)) = ∂zh.

Remark 11.1.2 Let F ∈ S be of the form (11.1). Then, there exist T > 0
and K a compact subset of R0 such that [0,T ] × K contains the supports of
all the hi. Let (Ti, Yi)1≤i≤M denote the points of [0, T ]×K that belong to the
support of N with T1 < · · · < TM (if there are no such points, M = 0). Then
M is a Poisson random variable with parameter Tν(K), and conditionally
on M and T1, . . . ,TM, the random variables (Yi)1≤i≤M are independent and
have distribution ν/ν(K) over K.

From now on we assume the following hypothesis:
(H1) There exists a strictly positive function f in C1(R0) such that the

Lévy measure satisfies

ν(dz) = f (z)dz. (11.3)

For any F in S of the form (11.1), we consider the operator given by

LF = 1
2

m∑
k=1

∂ϕ

∂xk
(N(h1), . . . ,N(hm))N

(
∂2

z hk +
f ′

f
∂zhk

)
+ 1

2

m∑
k, j=1

∂2ϕ

∂xk∂x j
(N(h1), . . . ,N(hm))N

(
∂zhk∂zh j

)
.

Consider the measure νN on R+ × R0 given by

νN(A) = E
( ∫
R+

∫
R0

1A(s, z)N(ds, dz)
)
, for A ∈ B(R+ × R0).

Given random elements u, ũ in L2(νN) := L2(R+ × R0, νN), we define the
random scalar product and norm

〈u, ũ〉N =

∫
R+

∫
R0

u(s, z)ũ(s, z)N(ds, dz) and ‖u‖2
N = 〈u, u〉N .

Notice that L2(P) ⊂ L2(νN) and, for any u ∈ L2(P), we have (Exercise 11.1)

E(‖u‖2
N) =

∫
R+

∫
R0

E(u2(s, z))ν(dz)ds. (11.4)
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The following result, whose proof is an immediate consequence of the
definition of the operators D and L, shows the relationship between these
operators (see Exercise 11.2).

Lemma 11.1.3 For any F,G ∈ S, we have

〈DF,DG〉N = L(FG) − FLG −GLF.

Let F be an element of S of the form (11.1). By Remark 11.1.2

F = Φ((Ti, Yi)1≤i≤M),

where

Φ((ti, yi)1≤i≤M) = ϕ
( M∑

i=1

h1(ti, yi), . . . ,
M∑

i=1

hm(ti, yi)
)
.

For any 1 ≤ i ≤ M and λ ∈ R, define

Fi,λ = Φ((T1, Y1), . . . , (Ti, Yi + λ), . . . , (TM, YM)). (11.5)

The next lemma provides an alternative representation of LF (see Exercise
11.3).

Lemma 11.1.4 Let F ∈ S be of the form (11.1). Then

LF = 1
2

M∑
i=1

1
f (Yi)

d
dλ

(
f (Yi + λ)

dFi,λ

dλ

)∣∣∣∣∣
λ=0
,

where Fi,λ is given by (11.5).

As a consequence, if F = 0, conditioning on T1, . . . ,TM and M, we have

Φ((Ti, yi)1≤i≤M) = 0

for all y1, . . . , yM ∈ R0. This implies that Fi,λ = 0 and, therefore, F = 0 and
‖DF‖N = 0.

Remark 11.1.5 Assume that Ω is the canonical space (9.4) with Z =
R+ ×R0. Then, for any F in S and ω ∈ Ω, if (t, z) is in the support of ω and
λ ∈ R is such that z + λ � 0,

Dt,zF(ω) =
∂

∂λ
F(ω − δ(t,z) + δ(t,z+λ))

∣∣∣
λ=0
.

The next integration-by-parts formula is due to Bichteler et al. (1987,
Proposition 9.3d).
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Lemma 11.1.6 For any F,G ∈ S, it holds that

E(FLG) = E(GLF) = − 1
2 E(〈DF,DG〉N).

Proof Let F = ϕ(N(h1), . . . ,N(hm)) and G = ψ(N(g1), . . . ,N(gq)). Let
T > 0, and let K be a compact subset of R0 such that [0, T ] × K contains
the supports of all hi and gi, as in Remark 11.1.2. Let (Ti, Yi)1≤i≤M denote
the points of [0,T ]×K that belong to the support of N with T1 < · · · < TM.
We denote by G the σ-field generated by M and T1, . . . ,TM.

We will show that

E
(
FLG + 1

2 〈DF,DG〉N

∣∣∣∣∣G)
= 0,

which implies that E(FLG) = − 1
2 E (〈DF,DG〉N). We can deduce the other

equality by the symmetry between F and G.
Let M and the Ti be fixed, and set hj

i (z) = hi(T j, z) and gj
i (z) = gi(T j, z).

Then, FLG + 1
2 〈DF,DG〉N = Ψ(Y1, . . . ,YM), where

Ψ(z1, . . . , zM)

= 1
2ϕ

( M∑
�=1

h�1(z�), . . . ,
M∑
�=1

h�m(z�)
)

×
( q∑

k=1

∂ψ

∂xk

( M∑
�=1

g�1(z�), . . . ,
M∑
�=1

g�q(z�)
) M∑
�=1

(
∂2

z g�k(z�) +
f ′(z�)
f (z�)

∂zg�k(z�)
)

+

q∑
k, j=1

∂2ψ

∂xk∂x j

( M∑
�=1

g�1(z�), . . . ,
M∑
�=1

g�q(z�)
) M∑
�=1

∂zg�k(z�)∂zg�j(z�)
)

+ 1
2

m∑
k, j=1

∂ϕ

∂xk

( M∑
�=1

h�1(z�), . . . ,
M∑
�=1

h�m(z�)
)
∂ψ

∂x j

( M∑
�=1

g�1(z�), . . . ,
M∑
�=1

g�q(z�)
)

×
M∑
�=1

∂zh�k(z�)∂zg�j(z�).

Then, if μK denotes the restriction of ν to K, it suffices to show that∫
KM
Ψ(z1, . . . , zM)μK(dz1) · · · μK(dzM) = 0. (11.6)

Let 1 ≤ � ≤ M and ẑ� = {z j}1≤ j≤M, j��. Then, one can easily check that

Ψ(z1, . . . , zM) = 1
2

M∑
�=1

1
f (z�)
∂z�Q

�
ẑ� (z�),
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where

Q�ẑ� (z�) = ϕ
( M∑

i=1

hi
1(zi), . . . ,

M∑
i=1

hi
m(zi)

)
×

q∑
k=1

∂ψ

∂xk

( M∑
i=1

gi
1(zi), . . . ,

M∑
i=1

gi
q(zi)

)
f (z�)∂zg�k(z�).

Since Q�ẑ� = 0 on the boundary of K, we deduce that, for all � and ẑ�,∫
K

1
f (z)
∂zQ�ẑ� (z)μK(dz) =

∫
K
∂zQ�ẑ� (z)dz = 0,

from which we conclude (11.6). �

11.2 Sobolev Spaces

As a consequence of Lemma 11.1.6, we will show that the operator D is
closable.

Lemma 11.2.1 Let Fk be a sequence of random variables in S that con-
verges to zero in L2(Ω). Assume that there exists a process u in L2(νN) such
that E(‖DFk − u‖2

N) converges to zero. Then E(‖u‖2
N) = 0.

Proof Let F ∈ S. Then,

E(〈u,DF〉N) = lim
k→∞

E(〈DFk,DF〉N).

Thanks to Lemma 11.1.6, E(〈DFk,DF〉N) = −2E (FkLF). Since Fk con-
verges to zero in L2(Ω), we deduce that E(〈u,DF〉N) = 0. We then apply
this with F = Fk and let k go to ∞. �

We denote by D1,N the closure of S with respect to the seminorm

‖F‖1,N =
(
E(|F|2) + E(‖DF‖2

N)
)1/2
.

Notice that to show that a random variable F in L2(Ω) belongs to D1,N and
that, for some process u in L2(νN), DF = u it suffices to find a sequence Fk

in S such that

E(|F − Fk|2) + E(‖u − DFk‖2
N)

converges to zero as k goes to infinity. Observe also that D1,N is a Hilbert
space with scalar product

〈F,G〉1,N = E(FG) + E(〈DF,DG〉N).



206 Malliavin Calculus for Jump Processes II

The next result is the chain rule for the Malliavin derivative in the Pois-
son framework, which can be proved as in the Brownian motion case (see
Proposition 3.3.2).

Proposition 11.2.2 Let ϕ be a function in C1(R) with bounded derivative,
and let F be a random variable in D1,N. Then, ϕ(F) belongs to D1,N and

D(ϕ(F)) = ϕ′(F)DF.

Denote by C0,1
b (R+× R0) the set of continuous functions h : R+× R0 → R

that are differentiable on R0 with∫
R+

∫
R0

(
h2(t, z) + (∂zh(t, z))2

)
ν(dz)dt < ∞.

Proposition 11.2.3 If h ∈ C0,1
b (R+ × R0) then N(h) and N̂(h) belong to

D
1,N and

DN(h) = DN̂(h) = ∂zh.

Proof The result is clearly true if h ∈ C0,2
0 (R+ × R0). The general case

will follow from an approximation argument. For any ε > 0, consider a
nonnegative function in C2(R0) such that

Kε(z) =

⎧⎪⎪⎨⎪⎪⎩ 1 if |z| < 1/ε,
0 if |z| > 1/ε + 2,

|Kε(z)| ≤ 1, and |K′
ε(z)| ≤ 1. Consider also a C(R+) nonegative function

such that

Mε(t) =

⎧⎪⎪⎨⎪⎪⎩ 1 if t ≤ 1/ε,
0 if t ≥ 1 + 1/ε,

and |Mε(t)| ≤ 1. Set

hε(t, z) = (h ∗ ϕε)(t, z)Kε(z)Mε(t),

where h ∈ C0,1
b (R+ × R0) and ϕε is an approximation of the identity on R0.

Then, for all ε > 0, hε belongs to C0,2
0 (R+×R0). Therefore, N(hε) and N̂(hε)

belong to D1,N , and

DN(hε) = DN̂(hε) = ∂zhε = (∂zh ∗ ϕε)KεMε + (h ∗ ϕε)K′
εMε .

Finally, one can easily check that, as ε tends to 0, hε converges to h in
L1(� × ν) and L2(� × ν), N(hε) and N̂(hε) converge to N(h) and N̂(h) in
L2(Ω), respectively, and E(‖∂zh − ∂zhε‖2

N) converges to 0. This concludes
the proof. �
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We now introduce the space of adapted differentiable random processes
in the Malliavin sense. Denote by Ea the space of elementary and pre-
dictable processes of the form

u(t, z) =
m∑

j=1

n−1∑
i=0

Fi, j1(ti,ti+1](t)hj(z),

where 0 ≤ t0 < · · · < tn, all Fi, j belong to S and are Fti -measurable, and
hj ∈ C1

0(R).

Definition 11.2.4 We define the space L1,N
a as the space of predictable

processes u = (u(t, z))t≥0,z∈R0 such that, for almost all (t, z), we have that
u(t, z) ∈ D1,N , ∂zu(t, z) exists, and

‖u‖2
1,N :=

∫
R+

∫
R0

(
E(|u(s, z)|2) + E(|∂zu(s, z)|2)

+ E(‖Du(s, z)‖2
N)

)
ν(dz)ds < ∞.

The following proposition, whose proof is left as an exercise (Exercise
11.4), ensures that Ea is dense in L1,N

a .

Proposition 11.2.5 The space Ea is dense in L1,N
a .

If u ∈ L1,N
a , the stochastic integral

∫
R+

∫
R0

Du(t, z)N̂(dt, dz) exists as the
limit in L2(Ω) of the stochastic integral of a sequence of approximating
processes in Ea. Moreover, we have the isometry property

E
(∥∥∥∥∥ ∫

R+

∫
R0

Du(t, z)N̂(dt, dz)
∥∥∥∥∥2

N

)
=

∫
R+

∫
R0

E(‖Du(s, z)‖2
N)ν(dz)ds.

(11.7)

Proposition 11.2.6 If u belongs to L1,N
a then the stochastic integral

I :=
∫
R+

∫
R0

u(t, z)N̂(dt, dz)

belongs to D1,N and, for almost all (τ, α) ∈ R+ × R0,

Dτ,αI = ∂zu(τ, α) +
∫
R+

∫
R0

Dτ,αu(t, z)N̂(dt, dz). (11.8)

Proof By Proposition 11.2.5, the process u ∈ L1,N
a can be approximated in

the norm ‖ · ‖1,N by a sequence uk of elementary and predictable processes
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of the form

uk(t, z) =
mk∑
j=1

nk−1∑
i=0

Fk
i, j1(tk

i ,t
k
i+1](t)h

k
j(z),

where Fk
i, j belongs to S and is Fti -measurable and hk

j ∈ C1
0(R). Set

Ik :=
∫
R+

∫
R0

uk(t, z)N̂(dt, dz).

Clearly, E(|I − Ik|2) converges to zero as k → ∞. Then, by (11.2),

Dτ.αIk = Dτ,α
( mk∑

j=1

nk−1∑
i=0

Fk
i, j

∫
(ti,ti+1]×R0

hk
j(z)N̂(dt, dz)

)
=

∫
R+

∫
R0

Dτ,αuk(t, z)N̂(dt, dz) + ∂zuk(τ, α).

We know that E
(∫
R+

∫
R0
|∂zu(t, z) − ∂zuk(t, z)|2ν(dz)dt

)
converges to zero as

k → ∞. Furthermore, using the isometry property (11.7) we deduce that

E
(∥∥∥∥∥ ∫

R+

∫
R0

(Duk(t, z) − Du(t, z))N̂(dt, dz)
∥∥∥∥∥2

N

)
=

∫
R+

∫
R0

E(‖Duk(t, z) − Du(t, z)‖2
N)ν(dz)dt → 0,

as k → ∞. Therefore, I ∈ D1,N and (11.8) holds. �

11.3 Directional Derivative

Assume that Ω is the canonical space (9.4) associated with the Poisson
random measure N, with Z = R+ × R0. Remark 11.1.5 suggests defining
a derivative in the direction of the jump parameter as follows. For each
λ ∈ (−1, 1), and any Borel set A ⊂ R+ × R0 with (� × ν)(A) < ∞, we
consider the measure

Nλ(A) =
∫
R+

∫
R0

1A(s, z + λ)N(ds, dz)

and the shift θλ on Ω given by

N ◦ θλ(ω) = Nλ(ω), ω ∈ Ω.
Set

yλ(z) =
f (z + λ)

f (z)
.
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Then, for any Borel set A ⊂ R+ × R0 with (� × ν)(A) < ∞,∫
R+

∫
R0

1A(s, z + λ)yλ(z)ν(dz)ds =
∫
R+

∫
R0

1A(s, z′)ν(dz′)ds.

Next, assume that the function f satisfies the following hypothesis:
(H2) Hypothesis (H1) holds and, for all λ ∈ (−1, 1),∫

R0

(yλ(z) − 1)2 f (z)dz < ∞,∫
R0

log(yλ(z)) f (z)dz < ∞,

and ∫
R0

(
yλ(z) log(2 − yλ(z)) + 1 − yλ(z)

)
f (z)dz < ∞.

Fix T > 0 and let (Gλt )t∈[0,T ] be the unique solution to the stochastic
differential equation

dGλt = Gλt−

∫
R0

(yλ(z) − 1)N̂(dt, dz), Gλ0 = 1.

By Theorem 9.7.1, (Gλt )t∈[0,T ] is a positive martingale and, by Itô’s formula
(Theorem 9.5.2),

Gλt = exp
( ∫ t

0

∫
R0

log(yλ(z))N̂(ds, dz)

+

∫ t

0

∫
R0

(
log(yλ(z)) − yλ(z) + 1

)
ν(dz)ds

)
.

Furthermore, the following defines a probability measure on (Ω,FT ):

dPλ

dP
(ω) = GλT (ω), ω ∈ Ω.

Moreover, thanks to Girsanov’s theorem (Theorem 9.7.2), the law of Nλ

under Pλ coincides with that of N under P.
In particular, if F is an FT -measurable random variable then for any

bounded measurable function ϕ,

E(ϕ(F(θλ))GλT ) = E(ϕ(F)). (11.9)

Therefore, if we can differentiate (11.9) with respect to λ at λ = 0, we
obtain the following integration-by-parts formula.
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Proposition 11.3.1 Assume that f satisfies hypothesis (H2) and that∫
R0

( f ′(z))2

f (z)
dz < ∞. (11.10)

Let F be an FT -measurable random variable such that, for any λ ∈ (−1, 1),
F(θλ) belongs to L2(Ω), and there exists a random variable D̃F in L2(Ω)
such that

1
λ

(F(θλ) − F) − D̃F

tends to zero in L2(Ω) as λ → 0. Then, for any function ϕ ∈ C1
b(R), the

following integration-by-parts formula holds:

E(ϕ′(F)D̃F) = −E(ϕ(F)JT ), (11.11)

where

JT :=
∫ T

0

∫
R0

f ′(z)
f (z)

N̂(dt, dz).

Proof It suffices to show that JT is the derivative of GλT with respect to λ
at λ = 0 in L2(Ω); that is, that

1
λ

(GλT − 1) − JT

tends to zero in L2(Ω) as λ → 0. Indeed, this implies that we can differen-
tiate equation (11.9) with respect to λ at λ = 0 under the expectation sign,
which gives formula (11.11).

In order to prove the claim, first observe that

E(|Gλt − 1|2) =
∫ t

0

∫
R0

(yλ(z) − 1)2E(|Gλs |2) f (z)dzds

≤ 2tg(λ) + 2g(λ)
∫ t

0
E(|Gλs − 1|2)ds,

where g(λ) :=
∫
R0

(yλ(z) − 1)2 f (z)dz < ∞. Thus, by Gronwall’s lemma,

E(|Gλt − 1|2) ≤ 2tg(λ)e2tg(λ). (11.12)

We now return to our goal and write

E(|GλT − 1 − λJT |2) ≤ I1 + I2,
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where

I1 = 2g(λ)
∫ T

0
E(|Gλs − 1|2)ds,

I2 = 2T
∫
R0

(
yλ(z) − 1 − λ f ′(z)

f (z)

)2

f (z)dz.

Using (11.12), we get

I1 ≤ 4T 2g2(λ)e2Tg(λ).

Then, using the mean-value theorem and Fatou’s lemma, we obtain

lim
λ→0

g2(λ)
λ2 ≤ lim

λ→0
λ2

( ∫
R0

( f ′(z))2

f (z)
dz

)2

= 0,

which implies that

lim
λ→0

I1

λ2 = 0.

For the term I2, we again use the mean-value theorem and Fatou’s lemma
to conclude that

lim
λ→0

I2

λ2 ≤
∫
R0

lim
λ→0

(
∫ 1

0
f ′(z + λx)dx − f ′(z))2

f (z)
dz = 0,

which proves the claim. �

Corollary 11.3.2 Under the hypotheses of Proposition 11.3.1, if D̃F � 0
a.s. then the law of F is absolutely continuous with respect to the Lebesgue
measure.

Proof Let ϕ ∈ C∞
b (R). Then, by Proposition 11.3.1,

|E(ϕ′(F)D̃F)| ≤ E(|JT |)‖ϕ‖∞.
Therefore, by Nualart (2006, Lemma 2.1.1), the law of F under the mea-
sure Q(dω) = P(dω)D̃F(ω) is absolutely continuous with respect to the
Lebesgue measure. Since D̃F � 0 a.s., Q and P are equivalent measures
and the result follows. �

The next result gives the relationship between the directional derivative
D̃F and the Malliavin derivative DF.

Proposition 11.3.3 For any random variable F in S,

D̃F = N(DF) =
∫ T

0

∫
R0

Dt,zFN(dt, dz), a.s.



212 Malliavin Calculus for Jump Processes II

Proof Let F ∈ S of the form (11.1). Then, by Definition 11.1.1, we have
on the one hand

N(DF) =
m∑

k=1

∂ϕ

∂xk
(N(h1), . . . ,N(hm))N(∂zhk).

On the other hand,

F(θλ) = ϕ(Nλ(h1), . . . ,Nλ(hm)),

where Nλ(hi) =
∫ T

0

∫
R0

hi(s, z + λ)N(ds, dz). Therefore

D̃F =
∂

∂λ
F(θλ)

∣∣∣∣∣
λ=0
=

m∑
k=1

∂ϕ

∂xk
(N(h1), . . . ,N(hm))

∂

∂λ
Nλ(hk)

∣∣∣∣∣
λ=0
,

from which the result follows, since for any ω ∈ Ω,

∂

∂λ
Nλ(hk)(ω)

∣∣∣∣∣
λ=0
=
∂

∂λ
ω(θλ(hk))

∣∣∣∣∣
λ=0
= ω(∂zhk) = N(∂zhk)(ω).

�

11.4 Application to Diffusions with Jumps

Suppose that N is the Poisson random measure on R+ ×R0 associated with
a pure jump Lévy process L = (Lt)t≥0. Let B = (Bt)t≥0 be a d-dimensional
Brownian motion that is independent of L. In this section, (Ft)t≥0 refers to
the filtration generated by the processes L and B.

We consider the set S of cylindrical random variables of the form

F = ϕ(B(g1), . . . , B(gk),N(h1), . . . ,N(hm)),

where ϕ ∈ C2
0(Rm+k), gi ∈ L2(R+;Rd), and hi ∈ C0,2

0 (R+ × R0).
The set S is dense in L2(Ω). If F belongs to S, we define the Malli-

avin derivatives DBF and DN F, considering the random variables N(hi)
and B(gi), respectively, as constants. That is, for almost all (t, z) ∈ R+ × R0

and j = 1, . . . , d,

DB, j
t F =

k∑
i=1

∂ϕ

∂xi
(B(g1), . . . , B(gk),N(h1), . . . ,N(hm))gj

i (t)

and

DN
t,zF =

k+m∑
i=k+1

∂ϕ

∂xi
(B(g1), . . . , B(gk),N(h1), . . . ,N(hm))∂zhi(t, z).
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We define the operator LN F similarly. Assume that hypothesis (H1) holds.
Proposition 3.3.1 and Lemma 11.2.1 can be extended to this framework.
As a consequence, the operators DB and DN are closable and thus they can
be extended to the space D2 defined as the closure of S with respect to the
seminorm

|‖F‖|2 =
(
E(|F|2) + E(‖DBF‖2

H) + E(‖DN F‖2
N)

)1/2
.

Observe that D2 is a Hilbert space with scalar product

〈F,G〉D2 = E(FG) + E(〈DBF,DBG〉H) + E(〈DN F,DNG〉N).

Since both derivative operators DB and DN satisfy the chain rule (see
Propositions 3.3.2 and 11.2.2), the criterion of Proposition 7.1.2 extends to
the space D2 as follows.

Proposition 11.4.1 Let F be a random variable in the space D2 such
that ‖DBF‖H + ‖DN F‖N > 0 almost surely. Then, the law of F is absolutely
continuous with respect to the Lebesgue measure.

We next consider a process X = (Xt)t≥0, the solution to the following
stochastic differential equation with jumps in Rm:

dXt = b(Xt)dt +
d∑

j=1

σ j(Xt)dBj
t +

∫
R0

c(Xt−, z)N̂(dt, dz),

with initial condition X0 = x0 ∈ Rm. The coefficients σ j, b : Rm → R
m

and c : Rm × R0 → Rm are measurable functions satisfying the following
Lipschitz and linear growth conditions: for all x, y ∈ Rm,

max
j

(
|σ j(x) − σ j(y)|2, |b(x) − b(y)|2,

∫
R0

|c(x, z) − c(y, z)|2ν(dz)
)
≤ K|x − y|2

(11.13)
and

max
j

(
|σ j(x)|2, |b(x)|2,

∫
R0

|c(x, z)|2ν(dz)
)
≤ K(1 + |x|2). (11.14)

The following existence and uniqueness result is well known (see e.g.
Ikeda and Watanabe, 1989, Theorem 9.1).

Theorem 11.4.2 There exists a unique càdlàg, adapted, and Markov pro-
cess X on (Ω,F , (Ft)t≥0, P) satisfying the integral equation

Xt = x0 +

∫ t

0
b(Xs)ds +

d∑
j=1

∫ t

0
σ j(Xs)dBj

s +

∫ t

0

∫
R0

c(Xs−, z)N̂(ds, dz).

(11.15)
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Moreover, for any T > 0,

E
(

sup
t∈[0,T ]

|Xt|2
)
< ∞.

We next give sufficient conditions on the coefficients for the solution to
be differentiable in the Malliavin sense.

Theorem 11.4.3 Assume that σ, b, and c(·, z) are in C1(Rm;Rm) for all
z ∈ R0, that σ and b have bounded partial derivatives, and that, for all
x ∈ Rm, ∫

R0

|∂xc(x, z)|2ν(dz) ≤ K.

Assume also that, for all x ∈ Rm, c(x, ·) belongs to C1(R0;Rm) and∫
R0

|∂zc(x, z)|2ν(dz) ≤ K(1 + |x|2).

Then Xi
t belongs to D2, for all t ≥ 0 and i = 1, . . . ,m, and the Malliavin

derivatives (DB
r Xt)r≤t and (DN

r,ξXt)r≤t,ξ∈R0 satisfy the following linear equa-
tions for all j = 1, . . . , d:

DB, j
r Xt = σ j(Xr) +

m∑
k=1

d∑
�=1

∫ t

r
∂kσ�(Xs)DB, j

r (Xk
s )dB�s

+

m∑
k=1

∫ t

r
∂kb(Xs)DB, j

r (Xk
s )ds

+

m∑
k=1

∫ t

r
∂xk c(Xs−, z)DB, j

r (Xk
s−)N̂(ds, dz)

and

DN, j
r,ξ Xt = ∂zc(Xr, ξ) +

m∑
k=1

d∑
�=1

∫ t

r
∂kσ�(Xs)D

N, j
r,ξ (Xk

s )dB�s

+

m∑
k=1

∫ t

r
∂kb(Xs)D

N, j
r,ξ (Xk

s )ds

+

m∑
k=1

∫ t

r
∂xk c(Xs−, z)DN, j

r,ξ (Xk
s−)N̂(ds, dz).

Proof To simplify, we assume that b = 0. Consider the Picard approxi-
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mations given by X(0)
t = x0 and

X(n+1)
t = x0 +

d∑
j=1

∫ t

0
σ j(X(n)

s )dBj
s +

∫ t

0

∫
R0

c(X(n)
s− , z)N̂(ds, dz),

if n ≥ 0. We will prove the following claims by induction on n:

Claim 1 X(n),i
t ∈ D1,2, for all i = 1, . . . ,m, t ≥ 0. Moreover, for all t ≥ 0,

ψn(t) := sup
0≤r≤s≤t

E
(
|DB

r X(n)
s |2

)
< ∞

and, for all T > 0 and t ∈ [0, T ],

ψn+1(t) ≤ c1 + c2

∫ t

0
ψn(s)ds,

for some positive constants c1, c2 depending on T .

Claim 2 X(n),i
t ∈ D1,N , for all i = 1, . . . ,m, t ≥ 0. Moreover, for all t ≥ 0,

ϕn(t) := sup
s∈[0,t]

E
(
‖DN X(n)

s ‖2
N

)
< ∞

and, for all T > 0 and t ∈ [0, T ],

ϕn+1(t) ≤ c3 + c4

∫ t

0
ϕn(s)ds,

for some positive constants c3, c4 depending on T .

We start by proving Claim 2. Clearly, the claim holds for n = 0. As-
sume it is true for n. First, we study the derivative with respect to N of the
stochastic integral

Gn(t) =
∫ t

0

∫
R0

c(X(n)
s , z)N̂(ds, dz).

The process X(n)
s is a weak version of the process X(n)

s− , in the sense that
X(n)

s (ω) = X(n)
s− (ω), dPds-a.e. In that sense, we can write∫ t

0

∫
R0

c(X(n)
s , z)N̂(ds, dz) =

∫ t

0

∫
R0

c(X(n)
s− , z)N̂(ds, dz) a.e.

By the chain rule (Proposition 11.2.2) and the induction hypothesis, we
have that, for all s ∈ [0, T ] and z ∈ R0, c(X(n)

s , z) ∈ D1,N and

DN
r,ξc(X(n)

s , z) =
d∑

k=1

∂xk c(X(n)
s , z)DN

r,ξ(X
(n),k
s )1{r≤s}.
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Therefore, by the induction hypothesis and the assumptions on c, we obtain
that the process (c(X(n)

s , z))s∈[0,T ],z∈R0 belongs to L1,N
a . Extending Proposition

11.2.6 to an integral with respect to a Poisson random measure, we deduce
that the stochastic integral Gn(t) belongs to D1,N and that

DN
r,ξGn(t) = ∂zc(X(n)

r , ξ) +
d∑

k=1

∫ t

r
∂xk c(X(n)

s , z)DN
r,ξ(X

(n),k
s )N̂(ds, dz).

Moreover, by (11.4), the isometry property (11.7), the induction hypothe-
sis, and the hypotheses on c, we conclude that

sup
s∈[0,t]

E
(
‖DNGn(s)‖2

N

)
≤ c1 + c2

∫ t

0
ϕn(s)ds.

The derivative with respect to N of the Itô stochastic integral follows along
the same lines. This completes the proof of Claim 2.

We next prove Claim 1. Clearly, the claim holds for n = 0. Assume that
it is true for n. We first study the derivative with respect to B of the stochas-
tic integral Gn(t). By the chain rule (Proposition 3.3.2) and the induction
hypothesis, for all s ∈ [0, T ] and z ∈ R0, c(X(n)

s , z) belongs to D1,2 and

DB
r c(X(n)

s , z) =
d∑

k=1

∂xk c(X(n),k
s , z)DB

r (X(n),k
s )1{r≤s}.

Using Proposition 3.4.3 we deduce that the random variable Gn(t) belongs
to D1,2 and that

DB
r Gn(t) =

d∑
k=1

∫ t

r
∂xk c(X(n)

s− , z)DB
r (X(n),k

s− )N̂(ds, dz).

Moreover, by the isometry property of the stochastic integral (see (9.12))
and the assumption on c, we obtain

sup
0≤r≤s≤t

E
(
|DB

r Gn(s)|2
)
≤ c3 + c4

∫ t

0
ψn(s)ds.

The derivative with respect to B of the Itô stochastic integral follows along
the same lines. This completes the proof of Claim 1. The rest of the proof
follows as in Proposition 7.5.2. �

Consider now the one-dimensional version of equation (11.15), that is,

Xt = x0+

∫ t

0
σ(Xs)dBs+

∫ t

0
b(Xs)ds+

∫ t

0

∫
R0

c(Xs−, z)N̂(ds, dz), (11.16)

where x0 ∈ R and σ j, b : R → R and c : R × R0 → R are measurable
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functions satisfying the Lipschitz and linear growth conditions (11.13) and
(11.14), which ensure the existence of a unique càdlàg-adapted process
X = (Xt)t≥0 as a solution to (11.16) (see Theorem 11.4.2). Then, under
the hypotheses of Theorem 11.4.3, Xt belongs to D2 for all t ≥ 0, and the
Malliavin derivatives (DB

r Xt)r≤t and (DN
r,ξXt)r≤t,ξ∈R0 satisfy the linear equa-

tions

DB
r Xt = σ(Xr) +

∫ t

r
σ′(Xs)DB

r (Xs)dBs +

∫ t

r
b′(Xs)DB

r (Xs)ds

+

∫ t

r

∫
R0

∂xc(Xs−, z)DB
r (Xs)N̂(ds, dz).

and

DN
r,ξXt = ∂zc(Xr, ξ) +

∫ t

r
σ′(Xs)DN

r,ξ(Xs)dBs +

∫ t

r
b′(Xs)DN

r,ξ(Xs)ds

+

∫ t

r

∫
R0

∂xc(Xs−, z)DN
r,ξ(Xs−)N̂(ds, dz).

We next apply a one-dimensional criterion for the existence of the den-
sity given in Proposition 11.4.1.

Theorem 11.4.4 Let X be the unique solution to (11.16), and assume
that the coefficients σ, b, and c satisfy the hypotheses of Theorem 11.4.3
and that 1 + ∂xc(x, z) � 0 for all x ∈ R and z ∈ R0. Suppose also that one
of the following two conditions holds:

(C1) for all x ∈ R, σ(x) � 0;

(C2) for all x ∈ R, ∫
R0

1{∂zc(x,z)�0}ν(dz) = ∞.

Then, for all t > 0, Xt has a density with respect to the Lebesgue measure.

Proof By Proposition 11.4.1, it suffices to show that if either hypothesis
(C1) or hypothesis (C2) holds then, for all t > 0 a.s.∫ t

0
|DB

r Xt|2 dr +
∫ t

0

∫
R0

|DN
r,ξXt|2N(dr, dξ) > 0.

Observe that by Itô’s formula (Theorem 9.5.2), the solutions to the linear
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equations satisfied by the Malliavin derivatives are given by

DB
r Xt = σ(Xr) exp

( ∫ t

r
σ′(Xs)dBs +

∫ t

r
(b′(Xs) − 1

2 (σ′(Xs))2)ds

+

∫ t

r

∫
R0

log(1 + ∂xc(Xs−, z))N̂(ds, dz)

+

∫ t

r

∫
R0

(log(1 + ∂xc(Xs−, z)) − ∂xc(Xs−, z))ν(dz)ds
)
.

and

DN
r,ξXt = ∂zc(Xr−, ξ) exp

( ∫ t

r
σ′(Xs)dBs

+

∫ t

r
(b′(Xs) − 1

2 (σ′(Xs))2)ds

+

∫ t

r

∫
R0

log(1 + ∂xc(Xs−, z))N̂(ds, dz)

+

∫ t

r

∫
R0

(log(1 + ∂xc(Xs−, z)) − ∂xc(Xs−, z))ν(dz)ds
)
.

We first assume that hypothesis (C1) holds. In this case, clearly, for all t > 0
a.s., ∫ t

0
|DB

r Xt|2 dr > 0.

Second, we assume that hypothesis (C2) holds. Then, it suffices to show
that, for every t > 0 a.s.,∫ t

0

∫
R0

1{∂zc(Xr−,ξ)�0}N(dr, dξ) > 0.

To this end, consider the stopping time

R = inf
{
s > 0 :

∫ s

0

∫
R0

1{∂zc(Xr−,ξ)�0}N(dr, dξ) > 0
}
.

Then it suffices to show that R = 0 a.s. Since X is adapted and N is a
counting measure,

E
( ∫ R

0

∫
R0

1{∂zc(Xr−,ξ)�0}N(dr, dξ)
)
= E

( ∫ R

0

∫
R0

1{∂zc(Xr−,ξ)�0}ν(dξ)dr
)
≤ 1,

which implies that a.s.∫ R

0

∫
R0

1{∂zc(Xr−,ξ)�0}ν(dξ)dr < ∞.
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This contradicts hypothesis (C2) unless R = 0 a.s., and so the theorem is
proved under hypothesis (C2). �

We end this chapter by providing a different proof of Theorem 11.4.4
under hypothesis (C2) and assuming σ = 0, using the criterion of Corollary
11.3.2. See Bichteler et al. (1987) for its extension to the multidimensional
case. Observe that, in order to apply Corollary 11.3.2, we need to assume
that ν has a density satisfying the hypotheses of Proposition 11.3.1, so this
alternative proof of Theorem 11.4.4 needs these additional hypotheses.

Consider the perturbed process Xλt = Xt ◦ θλ. Then Xλt satisfies the equa-
tion

Xλt = x0 +

∫ t

0
b(Xλs ) ds +

∫ t

0

∫
R0

c(Xλs−, z + λ)N̂(ds, dz)

+

∫ t

0

∫
R0

(c(Xλs−, z + λ) − c(Xλs−, z))ν(dz)ds.

For all λ ∈ (−1, 1), this equation has a unique solution in L2(Ω). We are
going to compute the process D̃Xt defined in Proposition 11.3.1. Notice
that the derivative Yλt = ∂λX

λ
t satisfies the equation

Yλt =
∫ t

0
b′(Xλs )Yλs ds +

∫ t

0

∫
R0

∂xc(Xλs−, z + λ)Y
λ
s−N̂(ds, dz)

+

∫ t

0

∫
R0

(∂xc(Xλs−, z + λ) − ∂xc(Xλs−, z))Yλs−ν(dz)ds

+

∫ t

0

∫
R0

∂zc(Xλs−, z + λ)N(ds, dz).

Therefore, D̃Xt satisfies the equation

D̃Xt =

∫ t

0
b′(Xs)D̃Xsds +

∫ t

0

∫
R0

∂xc(Xs−, z)D̃Xs−N̂(ds, dz)

+

∫ t

0

∫
R0

∂zc(Xs−, z)N(ds, dz).

Using the method of variation of constants,

D̃Xt =

∫ t

0
D̃XsdKs + Ht, (11.17)

where

Kt =

∫ t

0
b′(Xs)ds +

∫ t

0

∫
R0

∂xc(Xs−, z)N̂(ds, dz)
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and

Ht =

∫ t

0

∫
R0

∂zc(Xs−, z)N(ds, dz).

By Itô’s formula (Theorem 9.5.2), the solution to equation (11.17) is given
by

D̃Xt = E(Kt)
∫ t

0
E(Ks)−1 ∂zc(Xs−, z)

1 + ∂xc(Xs−, z)
N(ds, dz),

where E(Kt) is the Doléans–Dade exponential of Kt, given by

E(Kt) = exp
( ∫ t

0
(b′(Xs))2ds +

∫ t

0

∫
R0

log(1 + ∂xc(Xs−, z))N̂(ds, dz)

+

∫ t

0

∫
R0

(log(1 + ∂xc(Xs, z)) − ∂xc(Xs, z))ν(dz)ds
)
.

Hypothesis (C2) implies that D̃Xt � 0 a.s., and thus Corollary 11.3.2
implies that the law of Xt has a density.

Exercises

11.1 Show formula (11.4) for any u ∈ L2(P).
11.2 Show that for any F,G ∈ S, we have

〈DF,DG〉N = L(FG) − FLG −GLF.

11.3 Show Lemma 11.1.4.
11.4 Show Proposition 11.2.5.
11.5 Show the isometry property (11.7), first for elementary processes in the

space Ea and then in the general case.



Appendix A

Basics of Stochastic Processes

A.1 Stochastic Processes

A real-valued continuous-time stochastic process is a collection of real-
valued random variables (Xt)t≥0 defined on a probability space (Ω,F , P).
The index t represents time, and one thinks of Xt as the state or the posi-
tion of the process at time t. We will also consider processes with values
in Rd (d-dimensional processes). In this case, for each t ≥ 0, Xt is a d-
dimensional random vector. For every fixed ω ∈ Ω, the mapping t → Xt(ω)
is called a trajectory or sample path of the process.

Let (Xt)t≥0 be a real-valued stochastic process and let 0 ≤ t1 < · · · < tn

be fixed. Then the probability distribution Pt1,...,tn = P ◦ (Xt1 , . . . , Xtn )
−1 of

the random vector

(Xt1 , . . . , Xtn ) : Ω→ Rn

is called the finite-dimensional marginal distribution of the process.
The following theorem establishes the existence of a stochastic process

associated with a given family of finite-dimensional distributions satisfying
a consistency condition.

Theorem A.1.1 (Kolmogorov’s extension theorem) Consider a family of
probability measures{

Pt1,...,tn , t1 < · · · < tn, n ≥ 1, ti ≥ 0
}

such that:

(i) Pt1,...,tn is a probability on Rn;
(ii) (consistency condition) if {tk1 < · · · < tkm} ⊂ {t1 < · · · < tn}

then Ptk1 ,...,tkm
is the marginal of Pt1,...,tn , corresponding to the indexes

k1, . . . , km.

Then there exists a real-valued stochastic process (Xt)t≥0 defined in some

221
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probability space (Ω,F , P) which has as finite-dimensional marginal dis-
tributions the family {Pt1,...,tn}.
Example A.1.2 Let X and Y be independent random variables. Consider
the stochastic process

Xt = tX + Y, t ≥ 0.

The sample paths of this process are lines with random coefficients. The
finite-dimensional marginal distributions are given by

P(Xt1 ≤ x1, . . . , Xtn ≤ xn) =
∫
R

FX

(
min
1≤i≤n

xi − y
ti

)
PY(dy),

where FX denotes the cumulative distribution function of X.

A.2 Gaussian Processes

A real-valued process (Xt)t≥0 is called a second-order process provided that
E(X2

t ) < ∞ for all t ≥ 0. The mean and the covariance function of a second-
order process are defined by

mX(t) = E(Xt),

ΓX(s, t) = Cov(Xs, Xt) = E((Xs − mX(s))(Xt − mX(t)).

A real-valued stochastic process (Xt)t≥0 is said to be Gaussian or nor-
mal if its finite-dimensional marginal distributions are multidimensional
Gaussian laws. The mean mX(t) and the covariance function ΓX(s, t) of a
Gaussian process determine its finite-dimensional marginal distributions.
Conversely, suppose that we are given an arbitrary function m : R+ → R
and a symmetric function Γ : R+ × R+ → R which is nonnegative definite;
that is,

n∑
i, j=1

Γ(ti, t j)aia j ≥ 0

for all ti ≥ 0, ai ∈ R, and n ≥ 1. Then there exists a Gaussian process
with mean m and covariance function Γ. This result is an immediate con-
sequence of Kolmogorov’s extension theorem (Theorem A.1.1).

Example A.2.1 Let X and Y be random variables with joint Gaussian
distribution. Then the process Xt = tX + Y , t ≥ 0, is Gaussian with mean
and covariance functions

mX(t) = tE(X) + E(Y),

ΓX(s, t) = stVar(X) + (s + t)Cov(X, Y) + Var(Y).
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A.3 Equivalent Processes

Two processes, X, Y , are equivalent (or X is a version of Y) if, for all t ≥ 0,

P(Xt = Yt) = 1.

Two equivalent processes may have quite different trajectories. For exam-
ple, the processes Xt = 0 for all t ≥ 0 and

Yt =

⎧⎪⎪⎨⎪⎪⎩ 0 if ξ � t,
1 if ξ = t,

where ξ ≥ 0 is a continuous random variable, are equivalent because P(ξ =
t) = 0, but their trajectories are different.

Two processes X and Y are said to be indistinguishable if

Xt(ω) = Yt(ω)

for all t ≥ 0 and for all ω ∈ Ω∗, with P(Ω∗) = 1. Two equivalent processes
with right-continuous trajectories are indistinguishable.

A.4 Regularity of Trajectories

In order to show that a given stochastic process has continuous sample
paths it is enough to have suitable estimates for the moments of the incre-
ments of the process. The following continuity criterion of Kolmogorov
provides a sufficient condition of this type.

Theorem A.4.1 (Kolmogorov’s continuity theorem) Suppose that X =
(Xt)t∈[0,T ] satisfies

E(|Xt − Xs|β) ≤ K|t − s|1+α,
for all s, t ∈ [0, T ] and for some constants β, α,K > 0. Then there exists a
version X̃ of X such that, if γ < α/β,

|X̃t − X̃s| ≤ Gγ|t − s|γ

for all s, t ∈ [0, T ], where Gγ is a random variable. The trajectories of X̃
are Hölder continuous of order γ for any γ < α/β.

A.5 Markov Processes

A filtration (Ft)t≥0 is an increasing family of sub-σ-fields of F . A process
(Xt)t≥0 is Ft-adapted if Xt is Ft-measurable for all t ≥ 0.
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Definition A.5.1 An adapted process (Xt)t≥0 is a Markov process with
respect to a filtration (Ft)t≥0 if, for any s ≥ 0, t > 0, and any measurable
and bounded (or nonnegative) function f : R→ R,

E( f (Xs+t)|Fs) = E( f (Xs+t)|Xs) a.s.

This implies that (Xt)t≥0 is also an (F X
t )t≥0-Markov process, where

F X
t = σ{Xu, 0 ≤ u ≤ t}.

The finite-dimensional marginal distributions of a Markov process are char-
acterized by the transition probabilities

p(s, x, s + t, B) = P(Xs+t ∈ B|Xs = x), B ∈ B(R).

A.6 Stopping Times

Consider a filtration (Ft)t≥0 on a probability space (Ω,F , P) that satisfies
the following conditions:

1. if A ∈ F is such that P(A) = 0 then A ∈ F0;
2. the filtration is right-continuous; that is, for every t ≥ 0,

Ft = ∩n≥1Ft+1/n.

Definition A.6.1 A random variable T : Ω → [0,∞] is a stopping time
with respect to this filtration if

{T ≤ t} ∈ Ft for all t ≥ 0.

The basic properties of stopping times are the following.

1. T is a stopping time if and only if {T < t} ∈ Ft for all t ≥ 0.
2. S ∨ T and S ∧ T are stopping times.
3. Given a stopping time T ,

FT = {A : A ∩ {T ≤ t} ∈ Ft, for all t ≥ 0}
is a σ-field.

4. If S ≤ T then FS ⊂ FT .
5. Let (Xt)t≥0 be a continuous and adapted process. The hitting time of a

set A ⊂ R is defined by

TA = inf{t ≥ 0 : Xt ∈ A}.
Then, whether A is open or closed, TA is a stopping time.
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6. Let Xt be an adapted stochastic process with right-continuous paths and
let T < ∞ be a stopping time. Then the random variable

XT (ω) = XT (ω)(ω)

is FT -measurable.

A.7 Martingales

Definition A.7.1 An adapted process M = (Mt)t≥0 is called a martingale
with respect to a filtration (Ft)t≥0 if

(i) for all t ≥ 0, E(|Mt|) < ∞,
(ii) for each s ≤ t, E(Mt|Fs) = Ms.

Property (ii) can also be written as:

E(Mt − Ms|Fs) = 0.

The process Mt is a supermartingale (or submartingale) if property (ii)
is replaced by E(Mt|Fs) ≤ Ms (or E(Mt|Fs) ≥ Ms).

The basic properties of martingales are the following.

1. For any integrable random variable X, (E(X|Ft))t≥0 is a martingale.
2. If Mt is a submartingale then t → E(Mt) is nondecreasing.
3. If Mt is a martingale and ϕ is a convex function such that E(|ϕ(Mt)|) < ∞

for all t ≥ 0 then ϕ(Mt) is a submartingale. In particular, if Mt is a
martingale such that E(|Mt|p) < ∞, for all t ≥ 0 and for some p ≥ 1,
then |Mt|p is a submartingale.

An adapted process (Mt)t≥0 is called a local martingale if there exists a
sequence of stopping times τn ↑ ∞ such that, for each n ≥ 1, (Mt∧τn )t≥0 is a
martingale.

The next result defines the quadratic variation of a local martingale.

Theorem A.7.2 Let (Mt)t≥0 be a continuous local martingale such that
M0 = 0. Let π = {0 = t0 < t1 < · · · < tn = t} be a partition of the interval
[0, t]. Then, as |π| → 0, we have

n−1∑
j=0

(Mt j+1 − Mt j )
2 P−→ 〈M〉t,

where the process (〈M〉t)t≥0 is called the quadratic variation of the local
martingale. Moreover, if (Mt)t≥0 is a martingale then the convergence holds
in L1(Ω).
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The quadratic variation is the unique continuous and increasing process
satisfying 〈M〉0 = 0, and the process

M2
t − 〈M〉t

is a local martingale.

Definition A.7.3 Let (Mt)t≥0 and (Nt)t≥0 be two continuous local martin-
gales such that M0 = N0 = 0. We define the quadratic covariation of the
two local martingales as the process (〈M,N〉t)t≥0 defined as

〈M,N〉t =
1
4 (〈M + N〉t − 〈M − N〉t).

Theorem A.7.4 (Optional stopping theorem) Suppose that (Mt)t≥0 is a
continuous martingale and let S ≤ T ≤ K be two bounded stopping times.
Then

E(MT |FS ) = MS .

This theorem implies that E(MT ) = E(MS ). In the submartingale case
we have E(MT |FS ) ≥ MS . As a consequence, if T is a bounded stopping
time and (Mt)t≥0 is a (sub)martingale then the process (Mt∧T )t≥0 is also a
(sub)martingale.

Theorem A.7.5 (Doob’s maximal inequalities) Let (Mt)t∈[0,T ] be a con-
tinuous local martingale such that E(|MT |p) < ∞ for some p ≥ 1. Then, for
all λ > 0, we have

P
(

sup
0≤t≤T

|Mt| > λ
)
≤ 1
λp E(|MT |p). (A.1)

If p > 1 then

E
(

sup
0≤t≤T

|Mt|p
)
≤

( p
p − 1

)p

E(|MT |p). (A.2)

Theorem A.7.6 (Burkholder–David–Gundy inequality) Let (Mt)t∈[0,T ] be
a continuous local martingale such that E(|MT |p) < ∞ for some p > 0.
Then there exist constants c(p) < C(p) such that

c(p)E
(
〈M〉p/2

T

)
≤ E

(
sup

0≤t≤T
|Mt|p

)
≤ C(p)E

(
〈M〉p/2

T

)
.

Moreover, if (Mt)t∈[0,T ] is a continuous local martingale, with values in a
separable Hilbert space H, such that E(|MT |p) < ∞ for some p > 0 then

E
(
‖Mt‖p

H

)
≤ cpE

(
〈M〉p/2

T

)
, (A.3)
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where

〈M〉T =

∞∑
i=1

〈〈M, ei〉H〉T ,

with {ei, i ≥ 1} a complete orthonormal system in H.
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bilités XVII. Volume 986 of Lecture Notes in Mathematics, pp. 132–157. Springer.

Bichteler, K., Gravereaux, J. B., and Jacod, J. 1987. Malliavin Calculus for Processes
with Jumps. Volume 2 of Stochastic Monographs, Gordon and Breach.
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Döbler, C., Vidotto, A., and Zheng, G. 2018. Fourth moment theorems on the Poisson
space in any space dimension. Preprint.

Durrett, R. 2010. Probability: Theory and Examples, Fourth Edition. Cambridge Uni-
versity Press.

Dvoretzky, A., Erdös, P., and Kakutani, S. 1961. Nonincrease everywhere of the Brow-
nian motion process. In: Proc. 4th Berkeley Symp. Math. Statist. Probab., vol. 2, pp.
103–116.

Dynkin, E. B., and Yushkevich, A. A. 1956. Strong Markov processes. Theory Prob.
Appl., 1, 134–139.

Einstein, A. 1905. Uber die von der molekularkinetischen Theorie der Wärme
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pp. 1–52. K. Itô, Kinokuniya/North-Holland.

Ikeda, N., and Watanabe, S. 1989. Stochastic Differential Equations and Diffusion
Processes, Second Edition. North-Holland/Kodansha.

Ishikawa, Y. 2016. Stochastic Calculus of Variations for Jump Processes, Second Edi-
tion. Volume 54 of De Gruyter Studies in Mathematics, De Gruyter.
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Itô, K. 1951. Multiple Wiener integral. J. Math. Soc. Japan, 3, 157–169.
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solution, 132
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