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Εισαγωγή

Η Θεωρία Aριθμών μπορεί να διδαχτεί με στοιχειώδη τρόπο, ειδικότερα αν η διδασκαλία της γίνει
σε ένα αρχικό στάδιο. Η διδακτική αυτή προσέγγιση είναι χρήσιμη, γιατί εισάγει τον φοιτητή σε έννοιες
οι οποίες μπορεί να χρησιμοποιηθούν στη συνέχεια, προκειμένου να γίνουν καλύτερα κατανοητές πε-
ρισσότερο αφηρημένες αλγεβρικές έννοιες.

Σε αυτό το βιβλίο (το οποίο απευθύνεται σε φοιτητές που έχουν ήδη παρακολουθήσει ένα πρώτο
μάθημα άλγεβρας) θα ακολουθήσουμε μια προσέγγιση η οποία χρησιμοποιεί περισσότερο προχωρημέ-
νες αλγεβρικές έννοιες προκειμένου να δώσουμε συντομότερες και περισσότερο κομψές αποδείξεις. Αν
και γίνεται προσπάθεια να υπάρξει ορισμός κάθε αλγεβρικής έννοιας που χρησιμοποιούμε, ο αναγνώ-
στης θα μπορούσε και θα έπρεπε να ανατρέξει σε ένα βιβλίο αφηρημένης άλγεβρας για περισσότερες
πληροφορίες.

Η φιλοσοφία αυτής της διδασκαλίας βοηθάει στο να μπορέσει ο φοιτητής να κατανοήσει τη σημασία
αλγεβρικών εννοιών και να δει την εισαγωγική Θεωρία Αριθμών από μια διαφορετική οπτική γωνία.
Άλλωστε, τα προβλήματα της Θεωρίας Αριθμών ήταν μια από τις κινητήριες δυνάμεις για την ανάπτυξη
της αφηρημένης Άλγεβρας.

Οι κλάσεις υπολοίπων Fp := Z/pZ ακέραιων αριθμών modulo έναν πρώτο p αποτελούν παρα-
δείγματα από πεπερασμένα σώματα. Τα πεπερασμένα σώματα όμως δεν περιορίζονται στα σώματα Fp,
αλλά επεκτείνονται και στις αλγεβρικές επεκτάσεις τους. Αναπτύσσουμε λοιπόν και τη θεωρία επεκτά-
σεων σωμάτων, ενώ παρουσιάζουμε και στοιχεία από τη Θεωρία Galois. Ιδιαίτερη έμφαση δίνεται στις
n-στές ρίζες της μονάδας και στην κατασκευή των κυκλοτομικών πολυωνύμων.

Στο πέμπτο κεφάλαιο ορίζουμε βασικούς αλγορίθμους κρυπτογράφησης, ενώ στο επόμενο κεφά-
λαιο αναφέρονται οι αλγόριθμοι ανοιχτού κλειδιού. Αυτοί οι αλγόριθμοι δείχνουν την ανάγκη λύσης
προβλημάτων όπως η παραγοντοποίηση ακέραιων αλλά και το πρόβλημα του διακριτού λογαρίθμου.

Το κεφάλαιο 7 αποτελεί μια εισαγωγή στη Θεωρία των ελλειπτικών καμπυλών οι οποίες βρίσκουν
εφαρμογή και στο επόμενο κεφάλαιο όπου περιγράφονται αλγόριθμοι παραγοντοποίησης.

Τέλος στο τελευταίο κεφάλαιο δίνουμε μερικά στοιχεία σχετικά με την κατασκευή ελλειπτικών
καμπυλών με εκ των προτέρων γνωστή τάξη. Η κατασκευή αυτή είναι απαραίτητη προκειμένου να
κατασκευάσουμε κρυπτοσυστήματα βασισμένα στις ελλειπτικές καμπύλες τα οποία να είναι ανθεκτικά
στις γνωστές επιθέσεις.

Η παραπάνω θεωρία απαιτεί ευχέρεια στην εκτέλεση υπολογισμών, οπότε το βιβλίο είναι γεμάτο
με παραδείγματα βασισμένο στο ανοιχτού κώδικα λογισμικό sage, ενώ στις ηλεκτρονικές εκδόσεις του
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βιβλίου (epub, pdf) ο χρήστης μεταφέρεται σε online διαδραστική εκτέλεση του προγράμματος προκει-
μένου να πειραματιστεί.

Θα θέλαμε να ευχαριστήσουμε θερμά τον κριτικό αναγνώστη, ομότιμο Καθηγητή του τμήματος
Μαθηματικών του ΕΚΠΑ, κ. Δεριζιώτη, για τις εύστοχες και εποικοδομητικές παρατηρήσεις του. Επί-
σης πολλές ευχαριστίες στον γλωσσικό επιμελητή-φιλόλογο, κ. Δημήτρη Καλλιάρα, για όλες τις διορ-
θώσεις του.
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1
Στοιχειώδης Θεωρία Αριθμών

1.1. Θεωρία αριθμών στoυς ακέραιους

Σε αυτό το κεφάλαιο θα δούμε μερικές βασικές ιδιότητες των ακέραιων αριθμών σχετικά με τη
διαίρεση. O αναγνώστης θα μπορούσε να συμβουλευτεί ένα βιβλίο θεωρίας αριθμών για περισσότερες
πληροφορίες όπως τα (Αντωνιάδης και Κοντογεώργης 2015), (Λάκκης 1990) ή το (Stein 2008).

1.1.1 Θεώρημα:
Έστω a,b ∈ Z με b ̸= 0. Υπάρχουν μονοσήμαντα ορισμένα p,q ∈ Z ώστε

a = bq+ r,
με 0 ⩽ r < |b|.

Απόδειξη: Θα υποθέσουμε για απλότητα ότι b > 0. Θεωρούμε το σύνολο

M = {a− bt : t ∈ Z,a− bt > 0}.

Παρατηρούμε ότι το σύνολοM είναι ένα μη κενό σύνολο φυσικών άρα έχει ένα ελάχιστο στοιχείο r.
Το στοιχείο αυτό θα είναι το υπόλοιπο της διαίρεσης, ενώ το q = t στο οποίο αντιστοιχεί το r, θα είναι
το πηλίκο. Είναι σαφές ότι 0 ⩽ r < b, γιατί διαφορετικά θα μπορούσαμε να αφαιρέσουμε ακόμα ένα b
και να καταλήξουμε σε ένα ακόμα μικρότερο στοιχείο τουM, άτοπο.

Για τη μοναδικότητα θεωρούμε δύο διαφορετικές γραφές του a ως

a = bq1 + r1,a = bq2 + r2

τις οποίες και αφαιρούμε για να πάρουμε:

b(q1 − q2) = r2 − r1,

ενώ

−b < r2 − r1 < b⇒ −1 < q1 − q2 < 1

άρα, αφού τα q1 − q2 είναι ακέραιοι, έχουμε ότι q1 = q2 άρα και r1 = r2.
Η περίπτωση b < 0 ανάγεται στην περίπτωση b > 0 πολλαπλασιάζοντας με −1.
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1.1.2 Ορισμός:
Για a,b ∈ Z θα λέμε ότι ο a διαιρεί τον b και θα γράφουμε a | b αν και μόνο υπάρχει ακέραιος αριθμός
c ώστε b = ca. Ισοδύναμα, το υπόλοιπο της διαίρεσης του b με a θα πρέπει να είναι ίσο με 0.

1.1.1. Ιδιότητες διαίρεσης.
1. Αν a | b και a | c, τότε για κάθε x,y ∈ Z a | xa+ yb.

2. Αν a | b και b | c, τότε a | c.

3. Αν a | b και b | c, τότε a = ±b.

1.1.3 Ορισμός:
Ένας φυσικός αριθμός p > 1 θα λέγεται πρώτος αν οι μόνοι θετικοί διαιρέτες του είναι ο εαυτός του και
η μονάδα.

1.1.4 Θεώρημα:
Κάθε θετικός ακέραιος γράφεται ως γινόμενο πρώτων.

Απόδειξη Ας υποθέσουμε ότι το σύνολο των φυσικών αριθμών A που δεν γράφονται ως γινόμενο
πρώτων είναι μη κενό. Τότε το σύνολο αυτό έχει ένα ελάχιστο στοιχείο n.

Αν είναι ήδη πρώτος, τότε γράφεται ως γινόμενο πρώτων με τετριμμένο τρόπο, άρα δεν θα μπορούσε
να είναι στοιχείο του συνόλουM. Αν δεν είναι πρώτος τότε γράφεται ως γινόμενο

n = a · b,

όπου τα a,b είναι μη τετριμμένοι διαιρέτες του n, οπότε 1 ⩽ a,b < n. Όμως, αφού το n είναι το
ελάχιστο στοιχείο τουM, θα έχουμε ότι a,b ̸∈ M και, συνεπώς, τα a,b θα αναλύονται σε γινόμενο
πρώτων. Συνεπώς, το ίδιο θα συμβαίνει για το n, άτοπο.

1.1.5 Θεώρημα:
Ευκλείδη Υπάρχουν άπειροι πρώτοι.

Απόδειξη: Έστω ότι υπήρχαν πεπερασμένοι το πλήθος πρώτοι

{p1,p2, . . . ,pN}.

Τότε, το γινόμενό τους
S = p1 · p2 · · ·pN

θα ήταν ένας φυσικός αριθμός. Ο αριθμός S+ 1 θα έπρεπε να έχει έναν πρώτο διαιρέτη p, ο οποίος θα
ήταν ένας παράγοντας του S. Αφού p | S+ 1 και p | S, θα έχουμε ότι p | 1, άτοπο.

http://en.wikipedia.org/wiki/Euclid
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1.1.6 Ορισμός:
Θεωρούμε τους ακέραιους a,b. Θα ονομάζουμε μέγιστο κοινό διαιρέτη των a,b και θα τον συμβολίζουμε
με (a,b), έναν φυσικό αριθμό d o οποίος ικανοποιεί:

1. d | a και d | b

2. Αν δ | a και δ | b τότε δ | d.

Για τους a,b ∈ Z θεωρούμε το σύνολο

A = {xa+ yb > 0, με x,y ∈ Z} ⊂ N.
To σύνολο αυτό έχει ένα ελάχιστο στοιχείο, το οποίο ταυτίζεται με τον μέγιστο κοινό διαιρέτη των a,b.

Πράγματι, αν το n = x0a+ y0b είναι το ελάχιστο στοιχείο του A, τότε

n = πa+ υ με 0 ⩽ υ < a.
Στην περίπτωση που υ > 0 θα είχαμε:

n− πa = x0a+ y0b− πa = (x0 − π)a+ y0b = υ > 0,
δηλαδή το n − πa είναι στοιχείο του A γνήσια μικρότερο του ελαχίστου n. Άρα υ = 0 και a | n. Με
όμοιο τρόπο b | n. Τέλος, αν δ είναι ένας άλλος κοινός διαιρέτης των a,b, τότε αυτός θα πρέπει να
διαιρεί και το n = x0a+ y0b.

Αποδείξαμε παραπάνω ότι ο μέγιστος κοινός διαιρέτης δύο ακέραιωνa,b γράφεται ωςZ-γραμμικός
συνδυασμός των a,b. Θα δούμε έναν αποτελεσματικό τρόπο εύρεσης των αριθμών x0,y0 ∈ Z ώστε
(a,b) = x0a+ y0b, όταν θα μιλήσουμε για τον αλγόριθμο του Ευκλείδη.

1.1.7 Πρόταση:
Αν ένας πρώτος αριθμός p | ab, τότε p | a είτε p | b.

Απόδειξη: Αν p | a τότε η απόδειξη έχει τελειώσει. Αν όχι τότε (a,p) = 1 συνεπώς υπάρχουν
x,y ∈ Z με xa+ yp = 1. Πολλαπλασιάζουμε με b και έχουμε

ab+ ypb = b,
από όπου προκύπτει το ζητούμενο, αφού ο p διαιρεί και τους δύο προσθετέους.

1.1.8 Θεώρημα:
Η ανάλυση ενός ακέραιου αριθμού σε γινόμενο πρώτων παραγόντων είναι μονοσήμαντη αν δεν ληφθεί
υπόψη η σειρά των παραγόντων.

Απόδειξη: Ας υποθέσουμε ότι

a = ±pν1
1 · · ·pνr

r = ±qν1
1 · · ·qνs

s

είναι δύο διαφορετικές αναλύσεις του n ως γινόμενο πρώτων. Επιπλέον, ας υποθέσουμε ότι r ⩽ s.
Ο πρώτος p1 διαιρεί το γινόμενο qν1

1 · · ·qνs
s άρα o p1 διαιρεί κάποιον qi, και συνεπώς ταυτίζεται με

αυτόν. Στην παραπάνω ισότητα διαγράφουμε τους p1 και q1 και συνεχίζουμε μέχρι να εξαντληθούν οι
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πρώτοι στο αριστερό μέρος. Επειδή το γινόμενο πρώτων δεν μπορεί να είναι μονάδα, ταυτόχρονα θα
εξαντληθούν οι πρώτοι και στο δεξί μέρος, οπότε προκύπτει το ζητούμενο.

1.1.9 Πρόταση:
Αν a = pν1

1 · · ·pνr
r και b = p

µ1
1 · · ·pµr

r είναι οι αναλύσεις των a,b σε γινόμενο πρώτων παραγόντων
τότε

(a,b) = pmax{ν1,µ1}
1 · · ·pmax{νr,µr}

r .

Μπορούμε να ορίσουμε τους πρώτους αριθμούς ως εξής:

1 sage: P = Primes(); P
2 Set of all prime numbers: 2, 3, 5, 7, ...
3 sage: P.cardinality()
4 +Infinity

Αν θέλουμε να πάρουμε τον n-οστό πρώτο δίνουμε

1 sage: P = Primes()
2 sage: P.next(10^20)
3 100000000000000000039

Ενώ μπορούμε να παραγοντοποιήσουμε ως εξής:

1 sage:factor(28397492387492387429387)
2 13 * 2551 * 856300467011198849

Μπορούμε να ελέγξουμε αν ένας αριθμός είναι πρώτος

1 sage: 856300467011198849 in P
2 True

Interactive

1.1.2. Γραμμικές Ισοδυναμίες mod m.

1.1.10 Ορισμός:
Θα λέμε ότι οι αριθμοί a,b είναι ισοδύναμοι modulom και θα το συμβολίζουμε με

a ≡ bmodm

αν και μόνο ανm | b− a.

Η σχέση ≡ είναι μια σχέση ισοδυναμίας δηλαδή ικανοποιεί:

http://users.uoa.gr/~kontogar/kallipos/Chapter1.html
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1. a ≡ amodm

2. a ≡ bmodm⇔ b ≡ amodm

3. Αν a ≡ bmodm και b ≡ cmodm, τότε a ≡ cmodm.

1.1.11 Πρόταση:
Δύο αριθμοί είναι ισοδύναμοι modulοm αν και μόνο αν έχουν το ίδιο υπόλοιπο όταν διαιρεθούν μεm.

Απόδειξη: Γράφουμε a = πam + ua και b = πbm + ub. Παρατηρούμε ότι b − a = m(πb −

πa) + ub − ua, άρα m | b − a αν και μόνο αν m | (ub − ua). Όμως, 0 ⩽ ua,ub < m, συνεπώς
−m < ub − ua < m. Άραm | ub − ua αν και μόνο αν ub = ua.

1.1.12 Πρόταση:
Ισχύει ότι αν a ≡ a ′modm και b ≡ b ′modm, τότε

• a+ b ≡ a ′ + b ′modm

• a · b ≡ a ′ · b ′modm

Απόδειξη: Γράφουμε a = a ′ + km, b = b ′ + lm από όπου έχουμε

a+ b = a ′ + b ′ +m(k+ l)

και
a · b = (a ′ + km)(b ′ + lm) = a ′ · b ′ +m(a ′l+ b ′k) + klm2.

Το σύνολο των κλάσεων ισοδυναμίας της σχέσης ≡ εφοδιάζεται με τη δομή αντιμεταθετικού δα-
κτυλίου. Είναι δε ισόμορφο με τον δακτύλιο Z/mZ, των ακέραιων modulo το κύριο ιδεώδεςmZ.

Θα δούμε πώς μπορούμε να κάνουμε κάνουμε πράξεις στο πρόγραμμα sage:

1 sage:Mod(10,3)+Mod(2,3)
2 0
3 sage:p=P.next(10^10)
4 sage:Mod(2^(p-1),p)
5 1

Interactive

1.1.3. Ο αλγόριθμος του Ευκλείδη. Ο αλγόριθμος του Ευκλείδη είναι μια διαδικασία η οποία
δέχεται ως είσοδο δύο ακέραιους αριθμούς και όταν ολοκληρωθεί δίνει τον μέγιστο κοινό τους διαι-
ρέτη. Θεωρητικά, για τον υπολογισμό του μέγιστου κοινού διαιρέτη θα μπορούσε να χρησιμοποιηθεί
η παραγοντοποίηση των αριθμών. Η μέθοδος αυτή όμως δεν είναι καλή, ιδιαίτερα όταν οι αριθμοί που
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έχουμε να διαχειριστούμε είναι πολύ μεγάλοι αφού, όπως θα δούμε στη συνέχεια, η παραγοντοποίηση
είναι μια ακριβή διαδικασία.

Ξεκινάμε με τους αριθμούς a,b ∈ Z και εκτελούμε τη διαίρεση με πηλίκο και υπόλοιπο.

a = π1b+ u1, 0 ⩽ u1 < |b|

Παρατηρούμε ότι (a,b) = (b,u1) (γιατί;). Στη συνέχεια υπολογίζουμε

b = π2u1 + u2 0 ⩽ u2 < u1.

Και πάλι έχουμε (a,b) = (b,u1) = (u1,u2). Συνεχίζουμε με αυτόν τον τρόπο, σχηματίζοντας μια
ακολουθία υπολοίπων

|b| > u1 > u2 > · · · > un > · · ·
Είναι σαφές ότι μετά από πεπερασμένα το πλήθος βήματα (|b| το πολύ!) η ακολουθία αυτή θα μηδενι-
στεί. Ο μέγιστος κοινός διαιρέτης θα είναι ο τελευταίος μη μηδενικός όρος της ακολουθίας αυτής.

12839 = 7 · 1728 + 743

1728 = 2 · 743 + 242

743 = 3 · 242 + 17

242 = 14 · 17 + 4

17 = 4 · 4 + 1

4 = 4 · 1 + 0
Μπορούμε εκτελώντας ανάποδα τον αλγόριθμο του Ευκλείδη να υπολογίσουμε x,y ∈ Z ώστε

ax+ by = (a,b).
Για παράδειγμα

1 = 17 − 4 · 4 = 17 − 4(242 − 14 · 17) = 57 · 15 − 4 · 242

= (743 − 3 · 242)57 − 4 · 242 = 57 · 743 − 175 · 242 =

= 57 · 743 − 175(1728 − 2 · 743) = 407 · 743 − 175 · 1728 =

= 407(12839 − 7 · 1728) − 175 · 1728 = 407 · 12839 − 3024 · 1728.
Δηλαδή υπολογίσαμε ότι x = 407 και y = −3024 και για την επιλογή αυτών των αριθμών έχουμε

(12839, 1728) = 1 = 407 · 12839 − 3024 · 1728.

Μπορούμε να υπολογίσουμε το παραπάνω στο sage ως

1 d,u,v = xgcd(12839,1728);d;u;v
2 1
3 407
4 -3024

και να επαληθεύσουμε το αποτέλεσμα

1 d == u*12839 + v*1728
2 True
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Interactive

1.1.4. Το Θεώρημα του Κινέζου. Το παρακάτω θεώρημα δίνει μια φυσιολογική διάσπαση του
δακτυλίου των ακέραιων modulom.

1.1.13 Θεώρημα:
Έστωm =

∏n
i=1mi η γραφή ενός φυσικού αριθμού ως γινόμενο αριθμώνmi που είναι ανά δύο πρώτοι

μεταξύ τους. Οι παρακάτω δακτύλιοι είναι ισόμορφοι:

Z
mZ

=

n∏
i=1

Z
miZ

.

Απόδειξη: Θεωρούμε τον ομομορφισμό δακτυλίων

ψ :
Z
mZ

−→
n∏

i=1

Z
miZ

,

xmodm 7→ (xmodm1, . . . , xmodmn).
Παρατηρούμε ότι ker(ψ) = {0}. Πράγματι, αν ένας αριθμός x διαιρείται από τους πρώτους μεταξύ τους
αριθμούςmi, τότε διαιρείται και από τονm. Άρα η συνάρτηση ψ είναι 1-1. Επειδή οι δακτύλιοι έχουν
τον ίδιο πληθάριθμο, η συνάρτηση ψ είναι αναγκαστικά και επί.

Παραδοσιακά στα μαθήματα Θεωρίας Αριθμών το παραπάνω θεώρημα εκφράζεται ως εξής: Το
σύστημα γραμμικών ισοδυναμίων (mi,mj) = 1 για i ̸= j,m = m1 · · ·mn

x ≡ x1modm1

x ≡ x2modm2
...

x ≡ xnmodmn

έχει μοναδική λύσηmodm.

1.1.14 Πρόταση:
Η λύση στο πρόβλημα ισοδυναμιών του Κινέζου υπολογίζεται ως εξής: Υπολογίζουμε τον αριθμό m =

m1 · · ·mn, αλλά και τους αριθμούςMi = m
mi

. Εξ υποθέσεως (Mi,mi) = 1, οπότε υπολογίζουμε μια
λύση bi της εξίσωσης

Miy ≡ 1modmi

To

x0 =

n∑
i=1

xiMibi

είναι μια λύση του συστήματος.

http://users.uoa.gr/~kontogar/kallipos/Chapter1b.html
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ΑπόδειξηΑρκεί να θεωρήσουμε το x0 modulomi και να παρατηρήσουμε ότι οι προσθετέοι xjMjbj
για i ̸= j μηδενίζονται, ενώ ο xiMjbj ≡ ximodm.

Παράδειγμα Να λυθεί το σύστημα:
x ≡ 3mod5

x ≡ 3mod7

x ≡ 8mod9
ΛύσηΥπολογίζουμεm = 5·7·9 = 315,M1 = 63, 2 = 45 καιM3 = 35. Οι ισοτιμίεςMix ≡ 1modmi,
i = 1, 2, 3 γράφονται 63x ≡ 1mod5, 45x ≡ 1mod7 και 35x ≡ 1mod9 και έχουν λύσεις b1 ≡ 2mod5,
b2 ≡ 5mod7 και b3 ≡ 8mod9 αντίστοιχα. Επομένως, η μοναδική λύση του αρχικού συστήματος είναι

x0 ≡ (a1M1b1 + a2M2b2 + a3M3b3)mod315

δηλαδή x0 = 143mod315.
Για να λύσουμε το παραπάνω πρόβλημα στο sage δίνουμε

1 sage:CRT_list([3,3,8], [5,7,9])
2 143

Interactive

1.1.5. Αντιστρέψιμα στοιχεία modulom.
1.1.5.1. Η εξίσωση ax ≡ bmodm. Παρατηρούμε ότι αναγκαία συνθήκη για να έχει λύση η εξί-

σωση
ax ≡ bmodm

είναι (a,m) | b. Η συνθήκη αυτή είναι και ικανή αφού μπορούμε να βρούμε ακέραιους x,y ∈ Z ώστε

ax+ by = (a,b).

Άρα, αν (a,b) | b, τότε m
(a,b) ∈ Z και συνεπώς

ax
m

(a,b) + by
m

(a,b) =
m

(a,b)(a,b) = m,

όπου τα X := x m
(a,b) και Y := y m

(a,b) αποτελούν λύσεις. Αποδείξαμε ότι

1.1.15 Πρόταση:
η εξίσωση ax+ by = d έχει λύσεις αν και μόνο αν (a,b) | m.

1.1.5.2. Αντιστρέψιμα στοιχεία modulom. Η αντιστρεψιμότητα του στοιχείου amodm είναι ισο-
δύναμη με την υπάρξη λύσης της εξίσωσης ax ≡ 1modm. Άρα με βάση την προηγούμενη πρόταση
καταλήγουμε στην
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1.1.16 Πρόταση:
Τα αντιστρέψιμα στοιχείαmodm είναι αυτά τα οποία έχουν μέγιστο κοινό διαιρέτη (m,a) = 1.

Ας υπολογίσουμε τον αντίστροφο του 10mod13

1 sage:Mod(10,13)^(-1)
2 4

Interactive
1.1.5.3. Πλήθος αντιστρέψιμων στοιχείων modulo m. Θα συμβολίζουμε με ϕ(m) το πλήθος των

στοιχείων 0 ⩽ a < m που είναι πρώτα προς τονm, δηλαδή

ϕ(m) =| a ∈ Z : 0 ⩽ a < m, (a,m) = 1 | .

Παρατηρούμε ότι αν ο p είναι πρώτος, τότε

ϕ(p) = p− 1.

Ομοίως, στο σύνολο 0 ⩽ a ⩽ pt υπάρχουν pt−1 αριθμοί που διαιρούνται με p, αφού αυτοί είναι της
μορφής x = pa′, και 0 ⩽ a < pt, αν και μόνο αν 0 ⩽ a′ < pt−1. Συνεπώς

ϕ(pt) = pt − pt−1.

Για να υπολογισουμε την τιμή του ϕ σε σύνθετους αριθμούς χρειαζόμαστε την παρακάτω

1.1.17 Πρόταση:
Αν (m,n) = 1 τότε ισχύει ϕ(m · n) = ϕ(m)ϕ(n).

Απόδειξη: Παρατηρούμε ότι η συνάρτηση ϕ ταυτίζεται με την τάξη της ομάδας των μονάδων
U(Z/mZ) του δακτυλίου Z/mZ. To θεώρημα του Κινέζου εξασφαλίζει ότι

U

(
Z
mZ

)
=

n∏
i=1

U

(
Z
miZ

)
.

Από την παραπάνω σχέση προκύπτει το ζητούμενο αποτέλεσμα.

1.1.18 Πρόταση:
Για κάθε a ∈ Z, (a,m) = 1 ισχυεί ότι

aϕ(m) ≡ 1modm.

Απόδειξη:Η τάξη κάθε στοιχείου στην ομάδαU(Z/mZ) είναι διαιρέτης της τάξης της ομάδας που
είναι ίση με ϕ(m). Το αποτέλεσμα έπεται.
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Ας υπολογίσουμε λίγο με τη συνάρτηση του Euler. Θα την υπολογίσουμε με δύο τρόπους για τον
n = 2015. Η συνάρτηση prime divisors επιστρέφει ως λίστα τους πρώτους διαιρέτες του n. Παρατηρή-
στε τη σύνταξη της εντολής prod που διατρέχει τους πρώτους διαιρέτες του n. Η συνάρτηση euler_phi
είναι η ενσωματωμένη συνάρτηση του sage.

1 sage:n=2015
2 sage:prime_divisors(n)
3 [5, 13, 31]
4 sage:phi = n*prod([1 - 1/p for p in prime_divisors(n)]); phi
5 1440
6 sage:euler_phi(n)
7 1440

Interactive

1.1.6. Αριθμητικές Συναρτήσεις.

1.1.19 Ορισμός:
Μία συνάρτηση f : N → C θα λέγεται αριθμητική συνάρτηση.

Ενδιαφέρουσες αριθμητικές συναρτήσεις είναι οι παρακάτω:

1. d(n) = ο αριθμός των (θετικών) διαιρετών του n.
2. σ(n) = το άθροισμα των θετικών διαιρετών του n.
3. ϕ(n) = o αριθμός των θετικών ακέραιων ⩽ n που είναι πρώτοι προς τον n.
4. ν(n) = ο αριθμός των διακεκριμένων πρώτων παραγόντων του n
5. Ω(n) = ο αριθμός των πρώτων παραγόντων του n

6. µ(n) =
{

0 αν ένα τετράγωνο διαιρεί τον n
(−1)v(n) αν ο n είναι ελεύθερος τετραγώνου

Η ϕ(n) λέγεται συνάρτηση του Euler και η µ(n) συνάρτηση του Möbius.

1.1.20 Θεώρημα:
Θεωρούμε τον φυσικό n > 1 με ανάλυση n =

∏r
i=1 p

ai

i , ai > 0. Τότε

d(n) =

r∏
i=1

(ai + 1).

Απόδειξη Κάθε διαιρέτης του n θα έχει μια παράσταση της μορφής

m = pℓ1
1 p

ℓ2
2 . . .pℓrr ,
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όπου 0 ⩽ ℓi ⩽ ai. Μάλιστα, κάθε διαιρέτης του n εμφανίζεται ακριβώς μία φορά στις παραστάσεις
της παραπάνω μορφής. Επειδή δε κάθε ℓi έχει ai + 1 δυνατότητες, το πλήθος d(n) δίνεται από τον
παραπάνω τύπο.

Παρατήρησεις:
1. Η d(n) μπορεί να γραφεί και ως d(n) =

∑
d|n 1.

2. Ισχύει d(nm) = d(n)d(m) για όλους τους φυσικούς n,m με (n,m) = 1.
Θεωρούμε την ποσότητα σ(n) η οποία εξ ορισμού γράφεται ως

σ(n) =
∑
d|n

d.

Παρατηρούμε ότι όταν το d διατρέχει τους διαιρέτες τουn το ίδιο κάνει και τοn/d, συνεπώς μπορούμε
να γράψουμε:

σ(n) =
∑
d|n

n

d
= n

∑
d|n

1
n

,

δηλαδή καταλήγουμε σε έναν τύπο για το άθροισμα των αντιστρόφων των διαιρετών του n:
σ(n)

n
=

∑
d|n

1
d

.

1.1.21 Πρόταση:
Aν (a,b) = 1, τότε

σ(ab) = σ(a)σ(b).

Απόδειξη Παρατηρούμε ότι

σ(ab) =
∑
d|ab

d =
∑

d1|a,d2|b

d1d2 =

∑
d1|a

d1

∑
d2|b

d2

 = σ(a)σ(b).

1.1.22 Πρόταση:
Αν n =

∏r
i=1 p

ai

i , τότε

σ(n) =

r∏
i=1

p
ai+1
i − 1
pi − 1 .

Απόδειξη Υπολογίζουμε ότι

σ(pi) = 1 + pi + p
2
i + · · ·+ pai

i =
p
ai+1
i − 1
pi − 1 .

Το ζητούμενο προκύπτει από την ιδιότητα

σ(n) =

r∏
i=1

σ(pai

i ).
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1.1.23 Ορισμός:
Μια αριθμητική συνάρτηση f θα λέγεται πολλαπλασιαστική όταν:

1. Υπάρχει n0 ∈ N ώστε f(n0) ̸= 0
2. Αν (m,n) = 1 τότε f(mn) = f(m)f(n).

1.1.24 Θεώρημα:
Αν η f είναι πολλαπλασιαστική, τότε και η g που ορίζεται ως

g(n) =
∑
d|n

f(d)

είναι επίσης πολλαπλασιαστική.

Απόδειξη Αν (m,n) = 1, όταν το d1 διατρέχει τους διαιρέτες του m και το d2 διατρέχει τους
διαιρέτες του n, τότε το d1d2 θα διατρέχει τους διαιρέτες τουmn. Συνεπώς

g(mn) =
∑
d|mn

f(d) =
∑

d1|m,d2|n

f(d1d2) =

=
∑

d1|m,d2|n

f(d1)f(d2) =

=
∑
d1|m

f(d1)
∑
d2|m

f(d2) = g(m)g(n).

Παρατήρηση Θα μπορούσαμε να αποδείξουμε ότι οι συναρτήσεις d,σ είναι πολλαπλασιαστικές
παρατηρώντας ότι οι συναρτήσεις f1(n) = 1 και f2(n) = n είναι πολλαπλασιαστικές και κάνοντας
χρήση της παραπάνω πρότασης.

Η συνάρτηση του Möbius είναι πολλαπλασιαστική αφού η τιμή της σε ένα πρώτο είναι −1 ̸= 0
και αν (n,m) = 1 τότε µ(nm) = µ(n)µ(m). Το τελευταίο ισχύει, διότι αν κάποιος από τους δύο
αριθμούς διαιρείται με το τετράγωνο ακέραιου, τότε µ(n)µ(m) = 0 = µ(nm), ενώ ανm = p1 · · ·pµ,
n = q1 · · ·qs με pi ̸= pj και qi ̸= qj για i ̸= j και αφού (n,m) = 1 έχουμε

µ(nm) = (−1)µ+s = (−1)µ(−1)s = µ(m)µ(n).

1.1.25 Θεώρημα:
Έστω n

∏r
i=1 p

ni

i η ανάλυση ενός φυσικού σε πρώτους παράγοντες. Αν η f είναι πολλαπλασιαστική, τότε
1. ∑

d|n

f(d) =

r∏
i=1

(
1 + f(pi) + · · ·+ f(pni

i )
)

2. ∑
d|n

µ(d)f(d) =

r∏
i=1

(1 − f(pi)).
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Απόδειξη Υπολογίζουμε ότι∑
d|n

f(d) =

n1,...,nr∑
m1,...,mr=0

f(pm1
1 )f(pm2

2 ) · · · f(pmr
r ) =

n1∑
m1=0

f(pm1
1 )

n2∑
m2

f(pm2
2 ) · · ·

nr∑
mr=0

f(pmr
r )

από όπου προκύπτει η πρώτη σχέση.
Η δεύτερη σχέση είναι συνέπεια της πρώτης, αρκεί να παρατηρήσουμε ότι το γινόμενο δύο πολλα-

πλασιαστικών συναρτήσεων είναι πολλαπλασιαστικό και ότι

f(pi)µ(pi) = 0 αν i ⩾ 2,
ενώ

f(p)µ(p) = −f(p).
Παρατήρηση Ισχύει ότι ∑

d|n

µ(d) =

{
0 αν n > 1
1 αν n = 1 .

1.1.26 Θεώρημα:
Έστω f,g αριθμητικές συναρτήσεις. Οι παρακάτω προτάσεις είναι ισοδύναμες:

1. g(n) =
∑

d|n f(d)

2. f(n) =
∑

d|n µ(n/d)g(d)

Απόδειξη Θα αποδείξουμε πρώτα ότι 1 ⇒ 2. Υπολογίζουμε∑
d|n

µ(n/d)g(d) =
∑
d|n

µ(n/d)
∑
t|d

f(t) =
∑
t|d|n

µ(n/d)f(t)

Παρατηρούμε ότι το t διατρέχει όλους τους διαιρέτες του n, ενώ το d διατρέχει όλους τους διαιρέτες
του n για τους οποίους ισχύει t | d. Αυτό είναι ισοδύναμο με n

d
| n
t
. Θέτουμε d ′ := n/d. Ισχύει:∑

t|d|n

µ(n/d)f(t) =
∑
t|n

∑
n
d |nt

µ(n/d) =
∑
t|n

f(t)
∑
d ′|nt

µ(d ′)

= f(n).
Θα δείξουμε τώρα ότι 2 ⇒ 1. Έχουμε∑

d|n

f(d) =
∑
d|n

∑
t|d

µ(d/t)g(t) =

=
∑
t|n

g(t)
∑
n
d |nt

µ(d/t) =

∑
t|n

g(t)
∑
d ′|nt

µ
( n
d ′t

)
=

∑
t|n

g(t)ϵ(n/t) = g(n).
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Με χρήση του νόμου αντιστροφής μπορούμε να αποδείξουμε

1.1.27 Πρόταση:
Αν η αριθμητική συνάρτηση g(n) είναι πολλαπλασιαστική και

g(n) =
∑
d|n

f(d)

για n ⩾ 1, τότε και η f είναι πολλαπλασιαστική.

Απόδειξη Αφού g(n) =
∑

d|n f(d) έχουμε ότι

f(n) =
∑
d|n

µ(d)g(n/d).

1.1.28 Θεώρημα:
Για κάθε θετικό ακέραιο, ισχύει

n =
∑
d|n

ϕ(d).

Απόδειξη Σε κάθε διαιρέτη d του n αντιστοιχίζουμε όλους τους ακέραιους τους μικρότερους ή
ίσους του n, των οποίων ο μέγιστος κοινός διαιρέτης με τον n είναι ακριβώς d. Προφανώς κάθε ακέ-
ραιος ⩽ n αντιστοιχεί σε ακριβώς έναν d.

Σε κάποιον d αντιστοιχούν ακριβώς εκέινοι από τους

d, 2d, . . . , kd, . . . , (n/d)d
για τους οποίους ισχύει (kd,n) = d, δηλαδή οι ακέραιοι για τους οποίους (k,n/d) = 1 και k ⩽
n/d. Σύμφωνα με τον ορισμό της συνάρτησης του Euler το πλήθος αυτών είναι ϕ(n/d). Αν τους
προσθέσουμε θα πρέπει να βρούμε n δηλαδή:

n =
∑
d|n

ϕ(n/d) =
∑
d|n

ϕ(d).

Ας πιστοποιήσουμε τον παραπάνω τύπο στο sage

1 sage:n=24
2 divisors(n)
3 [1, 2, 3, 4, 6, 8, 12, 24]
4 sage:sum([euler_phi(d) for d in divisors(n)])
5 24

Interactive
Παρατήρηση

http://users.uoa.gr/~kontogar/kallipos/Chapter1f.html
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1. Αφού η συνάρτηση n 7→ n είναι πολλαπλασιαστική και η συνάρτηση ϕ είναι.
2. Για κάθε θετικό ακέραιο n ισχύει

ϕ(n) = n
∑
d|n

µ(d)

d
.

Πράγματι αρκεί να γράψουμε

ϕ(n) =
∑
d|n

µ(n/d)g(d) =
∑
d|n

µ(d)g(n/d) =
∑
d|n

nµ(d)

d
= n

∑
d|n

µ(d)

d
.

ΠαρατήρησηΑν έχουμε δύο αριθμητικές συναρτήσεις f,g, τότε σχηματίζουμε τη συνέλιξηDirichlet
η οποία ορίζεται ως

f ∗ g =
∑
d|n

f(d)g
(n
d

)
.

Η παραπάνω πράξη είναι προσεταιριστική

(f ∗ g) ∗ h = f ∗ (g ∗ h)

επιμεριστική ως προς την πρόσθεση
f ∗ g = g ∗ f

έχει ένα ουδέτερο στοιχείο το ϵ που ορίζεται ως

ϵ(1) =
{

1 αν n = 1
0 αν n ̸= 1 ,

και για κάθε συνάρτηση f με f(1) ̸= 0 υπάρχει g ώστε f ∗ g = ϵ.

1.1.29 Ορισμός:
Για μία αριθμητική συνάρτηση ορίζουμε μία σειρά Dirichlet

DG(f; s) =
∞∑

n=1

f(n)

ns
,

η οποία ορίζει μια μιγαδική συνάρτηση για όλα τα s ∈ C στα οποία συγκλίνει.

Ο πολλαπλασιασμός Dirichlet είναι συμβατός με τις σειρές Dirichlet σαν οι σειρές Dirichlet να ήταν
ένας μετασχηματισμός Fourier:

DG(f; s)DG(g; s) = DG(f ∗ g; s).

1.1.7. Το θεώρημα των πρώτων αριθμών. Το θεώρημα των πρώτων αριθμών καθορίζει την ασυμ-
πτωτική κατανομή των πρώτων αριθμών, δηλαδή μία περιγραφή του πώς οι πρώτοι αριθμοί κατανέμο-
νται ανάμεσα στους θετικούς αριθμούς. Το θεώρημα αυτό μας περιγράφει μεταξύ άλλων πόσο πιθανό
είναι αν επιλέξουμε έναν αριθμό μικρότερο του x να είναι ο αριθμός αυτός πρώτος.

Θεωρούμε τη συνάρτηση π(x) η οποία μετράει πόσοι πρώτοι αριθμοί είναι μικρότεροι του x, δη-
λαδή

π(x) = #{p ∈ N : p ⩽ x,p πρώτος}.

1 sage:prime_pi(123456789)
2 7027260

http://en.wikipedia.org/wiki/Dirichlet_convolution
http://en.wikipedia.org/wiki/Dirichlet_series
http://en.wikipedia.org/wiki/Fourier_transform
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Σχήμα 1.1. Γραφική παράσταση της π(x) (μπλέ) και της x/ log(x) (κόκκινο) μέχρι το 1000

1.1.30 Θεώρημα:
Η συνάρηση π(x) είναι ασυμπτωτική στη συνάρτηση x/ log(x), δηλαδή

lim
x→∞ π(x)

x/ log(x) = 1.

Η απόδειξη του παραπάνω θεωρήματος είναι εκτός του σκοπού αυτού του βιβλίου.
Ασκήσεις
1. Θεωρούμε το πολυώνυμο με συντελεστές από το Z της μορφής

f(x) =

n∑
i=0

aix
i.

Δείξτε ότι αν το f(x) έχει ρητή ρίζα q = a/b (a,b) = 1, τότε b | an και a | a0. Να δείξετε
ότι οι αριθμοί 13√3 και 3√5 δεν είναι ρητοί.

2. Να αποδειχτεί ότι ο αριθμός 100m+ n διαιρείται δια του 7, αν ο αριθμός 2m+ n διαιρείται
δια του 7.

3. Να αποδειχτεί ότι ένας αριθμός διαιρείται διά του 3 ή του 9, αν το άθροισμα των ψηφίων του
διαιρείται δια του 3 ή του 9, αντίστοιχα.

4. Να αποδειχτεί ότι ο αριθμός 3n2 + 1, n ∈ N, δεν μπορεί να είναι το τετράγωνο ενός φυσικού
αριθμού.

5. Αν για τους φυσικούς αριθμούς m,n ισχύει m < n να αποδειχτεί ότι 22m + 1 διαιρεί το
22n − 1.

6. Να αποδειχτεί ότι για κάθε φυσικό αριθμό n > 0 ισχύει ότι το 10 δεν διαιρεί το (n− 1)! + 1.
7. Να αποδειχτεί ότι ο αριθμός 24n+2 + 1 δεν είναι πρώτος για n ⩾ 1.
8. Να αποδειχτεί ότι ο αριθμός n4 + 4 δεν είναι πρώτος για n ⩾ 1.
9. Αν pn συμβολίζει τον n-οστό πρώτο αριθμό, να αποδειχτεί ότι pn−1 ⩾ n+ 2 για n ⩾ 5.
10. Πότε ο αριθμός (p− 1)! + 1 είναι δύναμη του p, όπου p πρώτος αριθμός;
11. Να βρεθεί ο μέγιστος κοινός διαιρέτης των αριθμών 625 και 231 και να εκφραστεί ως γραμ-

μικός συνδυασμός με συντελεστές ακέραιους των παραπάνω αριθμών.
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12. Να αποδειχτεί ότι το γινόμενο τεσσάρων διαδοχικών αριθμών διαιρείται διά του 24.
13. Να αποδειχτεί ότι για κάθε φυσικό αριθμό n ισχύει∑

d|n

µ2(d)

ϕ(d)
=

n

ϕ(n)
.

14. Να αποδειχτεί ότι για κάθε φυσικό αριθμό n ισχύει∑
d|n

µ(d)ϕ(d) =
∏
p|n

(2 − p).

15. Να βρεθεί το πλήθος και το άθροισμα των φυσικών διαιρετών του 1440.
16. Να αποδειχτεί ότι για κάθε ακέραιο αριθμό a ισχύει

a2 ≡ 0 ή 1 ή 4mod8.
17. Αν p,q είναι πρώτοι αριθμοί διαφορετικοί μεταξύ τους, να αποδειχτεί ότι

pq−1 + qp−1 ≡ 1modpq.
18. Αν για τον ακέραιο αριθμό a και για τον φυσικό αριθμόm ισχύει (a,m) = 1 και (a−1,m) =

1, να αποδειχτεί ότι ισχύει:
1 + a+ a2 + · · ·+ aϕ(m)−1 ≡ 0modm.

19. Αν 0 < s < p, όπου p πρώτος αριθμός, να αποδειχτεί ότι ισχύει
(s− 1)!(p− s)! + (−1)s−1 ≡ 0modp.

20. Να λυθεί το σύστημα

x ≡ 3mod25, x ≡ 1mod27, x ≡ 4mod11.

Βιβλιογραφία

W. Stein, 2008. Elementary Number Theory: Primes, Congruences, and Secrets: A Computational
Approach. Undergraduate Texts in Mathematics. Springer New York. https://books.google.gr/
books?id=5hYd0yX4mrMC.

Ι. Αντωνιάδης & Α. Κοντογεώργης, 2015. Θεωρία Αριθμών Και Εφαρμογές. Εκδόσεις Κάλλιπος.
Κ. Λάκκης, 1990. Θεωρία Αριθμών. Εκδόσεις Ζήτη.
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2
Στοιχεία Θεωρίας Δακτυλίων

2.1. Βασικοί ορισμοί

Στο πρώτο κεφάλαιο είδαμε βασικά στοιχεία της αριθμητικής του δακτυλίου των ακέραιων Z. Θα
δούμε ότι είναι χρήσιμο να αντικαταστήσουμε τον δακτύλιο Z με έναν γενικότερο δακτύλιο R.

Ο άνθρωπος σκέφτεται αφαιρετικά. Μία από τις πρώτες αφαιρέσεις που μαθαίνει κανείς είναι αυτή
των φυσικών αριθμών. Η έννοια του αριθμού 3 εκφράζει τον πληθικό αριθμό ενός συνόλου και είναι
ανεξάρτητη από τη φύση των στοιχείων που περιέχει το σύνολο με 3 το πλήθος στοιχεία. Το επόμενο
βήμα είναι να απομονώσουμε τις πράξεις από τη φύση των συνόλων στα οποία αναφέρονται και να
μελετήσουμε τις ιδιότητες των πράξεων από μόνες τους.

Ξεκινάμε να δώσουμε μερικούς ορισμούς. Για περισσότερες πληροφορίες ο αναγνώστης μπορεί να
συμβολευτεί ένα οποιοδήποτε βιβλίο άλγεβρας, όπως το (Βάρσος και άλλοι 2012), (Fraleigh 2011).

2.1.1 Ορισμός:
Ένας αντιμεταθετικός δακτύλιος R με μονάδιαίο είναι ένα σύνολο R εφοδιασμένο με δύο πράξεις

+ : R× R→ R

(x,y) 7→ x+ y

και
· : R× R→ R

(x,y) 7→ x · y,
οι οποίες ικανοποιούν (για κάθε x,y, z ∈ R):

x+ (y+ z) = (x+ y) + z

x · (y · z) = (x · y) · z

x(y+ z) = xy+ xz

28
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Επιπλέον, απαιτούμε να υπάρχουν στοιχεία 1, 0 ∈ R, 1 ̸= 0, ώστε
0 + x = 0 1x = x

και για κάθε στοιχείο x ∈ R απαιτούμε να υπάρχει ένα στοιχείο −x ∈ R ώστε x+ (−x) = 0.
x · y = y · x

Παραδείγματα

1. Ο δακτύλιος Z των ακέραιων αριθμών εφοδιασμένος με τις συνηθισμένες πράξεις είναι αντι-
μεταθετικός δακτύλιος με μονάδα.

2. Ο δακτύλιος των πολυωνύμων R[x] με συντελεστές από έναν αντιμεταθετικό δακτύλιο R απο-
τελεί αντιμεταθετικό δακτύλιο με μοναδιαίο. Για παράδειγμα, μπορούμε να θεωρήσουμε τον
δακτύλιο Z[x], αλλά και να συνεχίσουμε επαγωγικά για να ορίζουμε τον δακτύλιο

Z[x,y] = Z[x][y].

Σε έναν δακτύλιο R θέλουμε να δημιουργήσουμε δακτύλιους πηλίκο ως προς κατάλληλες σχέσεις
ισοδυναμίας. Για να το επιτύχουμε χρειαζόμαστε την έννοια του ιδεώδους:

2.1.2 Ορισμός:
Ένα υποσύνολο I ̸= ∅ του δακτύλιου R είναι ιδεώδες αν για κάθε x,y ∈ I ισχύει

x− y ∈ I

και αν για κάθε x ∈ I και r ∈ R ισχύει
rx ∈ I

Παράδειγμα Αν επιλέξουμε ένα στοιχείο f ∈ R μπορούμε να θεωρήσουμε το ιδεώδες fR που
αποτελείται από όλα τα πολλαπλάσια του f. Ιδεώδη αυτής της μορφής θα λέγονται κύρια.

Θα αποδείξουμε στη συνέχεια ότι κάθε ιδεώδες των δακτυλίων Z και F[x], όπου F είναι σώμα, είναι
κύριο. Αντιθέτως στον δακτύλιο F[x,y] το ιδεώδες ⟨x,y⟩ που παράγεται από τα x,y δεν είναι κύριο.

Παρατήρηση Από τις ιδιότητες του δακτυλίου είναι άμεσο ότι 0 · a = 0. Πράγματι
0 · a = (0 + 0)a = 0 · a+ 0 · a άρα 0 · a = 0.
Ένας αντιμεταθετικός δακτύλιος με μοναδιαίο θα λέγεται ακέραια περιοχή αν και μόνο αν
x · y = 0 συνεπάγεται x = 0 ή y = 0.
ΠαράδειγμαOδακτύλιοςZ είναι ακέραια περιοχή. Αντιθέτως, ο δακτύλιοςZ/6Z δεν είναι ακέραια

περιοχή, αφού 2 ̸= 0 και 3 ̸= 0 όμως 2 · 3 ≡ 0modp.

2.1.3 Ορισμός:
Μια ακέραια περιοχή θα λέγεται περιοχή κύριων ιδεωδών όταν κάθε ιδεώδες της είναι κύριο.
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2.1.4 Ορισμός:
Ένα σύνολο G θα λέγεται ομάδα αν είναι εφοδιασμένο με μία πράξη

· : G×G→ G

(g,g ′) 7→ gg ′

ώστε για κάθε g1,g2,g3 να ισχύουν

g1(g2g3) = (g1g2)g3

Υπάρχει στοιχείο e ∈ G ώστε για κάθε g ∈ G

eg = ge = g

Για κάθε στοιχείο g ∈ G υπάρχει g−1 ∈ G ώστε

gg−1 = g−1g = e

Αν επιπλέον για κάθε g,g ′ ∈ G ισχύει
gg ′ = g ′g

τότε η ομάδα λέγεται αντιμεταθετική ή αβελιανή.

Παράδειγματα

1. Η πράξη + σε κάθε δακτύλιο R δίνει στον R δομή αβελιανής ομάδας.
2. Σε κάθε δακτύλιο R μπορούμε να ορίσουμε την ομάδα των μονάδων

U(R) = {x ∈ R για τα οποία υπάρχει x−1 ∈ R ώστε xx−1 = 1}.
Παρατηρούμε ότι U(Z) = {±1}. Επίσης U(R[x]) = R∗. Τέλος ιδιαίτερα ενδιαφέρουσα είναι η

δομή της ομάδας U
(
(Z/nZ)∗

)
η οποία έχει ϕ(n) το πλήθος στοιχεία.

2.1.5 Ορισμός:
Ένας αντιμεταθετικός δακτύλιος R με μοναδιαίο στοιχείο 1R για τον οποίο ισχύει U(R) = R − {0} θα
λέγεται σώμα.

Παρατήρηση Αν ένα ιδεώδες I περιέχει ένα στοιχείο του U(R), τότε I = R. Πράγματι, ένα τέτοιο
ιδεώδες περιέχει το 1 του R και συνεπώς όλο τον δακτύλιο. Αυτό έχει ως συνέπεια ότι κάθε ιδεώδες
ενός σώματος είναι ή μηδενικό ή όλος ο δακτύλιος R.

Παρατήρηση Το Z είναι ακέραια περιοχή αλλά όχι σώμα. Αν όμως έχουμε μια πεπερασμένη ακέ-
ραια περιοχή, τότε αναγκαστικά αυτή είναι σώμα. Πράγματι γράφουμε όλα τα στοιχεία της στη μορφή
a1 = 0,a2 = 1, . . . ,an. Θεωρούμε στη συνέχεια ένα μη μηδενικό στοιχείο a ∈ R και πολλάπλασιά-
ζουμε κάθε στοιχείο με a. Τα στοιχεία

aa1 = 0,aa2, . . . ,aan

είναι ανά δύο διαφορετικά, αφού, αν aai = aaj, τότε a(ai − aj) = 0 άρα αφού έχουμε ακέραια
περιοχή και a ̸= 0 θα έχουμε ai = aj. Άρα με τον πολλαπλασιασμό με a παίρνουμε κάθε στοιχείο του
δακτυλίου R, άρα για κάποιο ai θα πάρουμε aai = 1.
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2.2. Δακτύλιος πηλίκο

Όπως ακριβώς κάναμε στους δακτυλίους Z/mZ ορίζουμε για ένα ιδεώδες I τη σχέση ισοδυναμίας

a ∼ b⇔ b− a ∈ I.
Το ότι το παραπάνω είναι μια σχέση ισοδυναμίας είναι άμεσο από τις ιδιότητες του ιδεώδους. Ως μια
σχέση ισοδυναμίας χωρίζει τον δακτύλιο σε μια ξένη ένωση κλάσεων ισοδυναμίας. Το σύνολο πηλίκο
R/I αποτελείται από αυτές τις κλάσεις ισοδυναμίας.

Ένα τυχαίο στοιχείο του R/I αποτελείται από στοιχεία της μορφής

a+ I = {a+ i, i ∈ I},
ενώ εξ ορισμού a+ I = b+ I αν και μόνο αν a = b+ i για κάποιο i ∈ I.

Θα δείξουμε ότι το R/I μπορεί να εφοδιαστεί με δομή δακτυλίου. Πράγματι, ορίζουμε το άθροισμα
των κλάσεων

(a+ I) + (b+ I) = (a+ b) + I

(a+ I)(b+ I) = ab+ I.
Οι παραπάνω πράξεις ορίστηκαν με βάση τους αντιπροσώπους των κλάσεων. Θα πρέπει να δείξουμε
ότι είναι καλά ορισμένες, δηλαδή ανεξάρτητες των αντιπροσώπων που ορίζουν μια κλάση. Πράγματι,
ας υποθέσουμε ότι a + I = a ′ + I και b + I = b ′ + I, δηλαδή a ′ = a + x, b ′ = b + y για κάποια
στοιχεία x,y ∈ I. Θα πρέπει να δείξουμε ότι a + b ∼ a ′ + b ′ και ότι ab ∼ a ′b ′. Πράγματι, το πρώτο
ισχύει αφού a ′ + b ′ = a+ b+ x+ y και x+ y ∈ I. Για το δεύτερο έχουμε

a ′b ′ = (a+ x)(b+ y) = ab+ xb+ xy+ ay,
και το ζητούμενο ισχύει αφού από τις ιδιότητες του ιδεώδους xb+ xy+ ay ∈ I.

Από τη στιγμή που έχουμε δείξει ότι οι πράξεις είναι καλά ορισμένες οι υπόλοιπες ιδιότητες του
δακτυλίου κληρονομούνται από αυτές του R.

Η μονάδα του δακτυλίου R/I είναι το στοιχείο 1 + I ενώ το μηδενικό είναι το στοιχείο 0 + I.

2.3. Ομομορφισμοί δακτυλίων

Μία συνάρτηση ϕ : R→ S θα λέγεται ομομορφισμός δακτυλίων αν για κάθε x,y ∈ R

ϕ(x+ y) = ϕ(x) + ϕ(y)

και
ϕ(xy) = ϕ(x)ϕ(y).

Ένας ομομορφισμός που είναι επί θα λέγεται επιμορφισμός, ένας ομορφισμός που είναι 1-1 θα λέγεται
μονομορφισμός και ένας μονομορφισμός που είναι ταυτόχρονα και επιμορφισμός θα λέγεται ισομορ-
φισμός.

2.3.1 Ορισμός:
Θα ονομάζουμε πυρήνα ένος ομομορφισμού και θα το συμβολίζουμε με ker(ϕ) το σύνολο:

ker(ϕ) = {x ∈ R : ϕ(x) = 0}.
Θα ονομάζουμε εικόνα ενός ομομορφισμού τον υποδακτύλιο του S που αποτελείται από τα στοιχεία y για
τα οποία υπάρχει x ∈ R ώστε y = ϕ(x). Την εικόνα θα τη συμβολίζουμε με Im(ϕ).
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Παρατήρησεις
1. O πυρήνας ενός ομορφισμού είναι ιδεώδες του δακτυλίου R.
2. Ένας ομομορφισμός ϕ είναι μονομορφισμός αν και μόνο αν kerϕ = {0}.
3. Εξ ορισμού η συνάρτηση

π : R→ R/I

x 7→ x+ I

είναι επιμορφισμός.

2.3.2 Θεώρημα:
Θεωρούμε έναν ομομορφισμό ϕ : R→ S δακτυλίων. Υπάρχει μονομορφισμός

ϕ : R/kerϕ→ Im(ϕ) ⊂ S

ο οποίος ικανοποιεί επιπλέον ϕ ◦ π = ϕ. Οι δακτύλιοι R/ker(ϕ) και Im(ϕ) είναι ισόμορφοι.

Απόδειξη: Θεωρούμε το σύνολο R/I το οποίο αποτελείται από τις κλάσεις x+ ker(ϕ). Ορίζουμε

ϕ(x+ I) = ϕ(x).

Η συνάρτηση αυτή, αν είναι καλά ορισμένη, είναι ομομορφισμός και ικανοποιεί εκ κατασκευής την
ιδιότητα ϕ ◦ π = ϕ.

Χρειάζεται να αποδείξουμε ότι είναι καλά ορισμένη γιατί την ορίσαμε με βάση τον αντιπρόσωπο
της κλάσης και πρέπει να δείξουμε ότι είναι ανεξάρτητη του αντιπροσώπου.

Όμως, αν x+ ker(ϕ) = y+ ker(ϕ), τότε x = y+ h, όπου h ∈ ker(ϕ). Άρα

ϕ(x) = ϕ(x+ h) = ϕ(x) + ϕ(h) = ϕ(x).

Τέλος, για να δείξουμε ότι η ϕ είναι μονομορφισμός παρατηρούμε ότι

ker(ϕ) = {x+ ker(ϕ) : ϕ(x) = 0}

και αυτό σημαίνει ότι x ∈ kerϕ, δηλαδή o πυρήνας της ϕ είναι το μηδενικό στοιχείο του δακτυλίου
R/ker(ϕ). 2

Για τις ανάγκες αυτού του μαθήματος θα χρειαστούμε τους δακτυλίους Z και F[x], όπου το F είναι
ένα σώμα. Οι δακτύλιοι αυτοί μοιράζονται πολλές ιδιότητες και οι ομοιότητές τους ήταν μία από τις
κινητήριες δυνάμεις στην ανάπτυξη της θεωρίας αριθμών και της αριθμητικής γεωμετρίας

Και στους δύο δακτυλίους υπάρχει ένα θεώρημα διαίρεσης με πηλίκο και υπόλοιπο.

2.4. Πολυώνυμα

2.4.1 Ορισμός:
Θεωρούμε την ακέραια περιοχή R. Ορίζουμε τον δακτύλιο R[x] να έχει ως στοιχεία του τα πολυώνυμα,
δηλαδή πεπερασμένα αθροίσματα

f(x) =

n∑
ν=0

aνx
n,

http://en.wikipedia.org/wiki/Glossary_of_arithmetic_and_Diophantine_geometry


2.4. ΠΟΛΥΩΝΥΜΑ 33

όπου aν ∈ R. Το μεγαλύτερο νώστε aν ̸= 0 ονομάζεται βαθμός του πολυωνύμου και θα το συμβολίζουμε
με deg(f).
Το άθροισμα δύο πολυωνύμων f(t) =

∑n
ν=0 aνx

n και g(t) =
∑m

ν=0 bνx
n το ορίζουμε ως

f(t) + g(t) =

n∑
ν=0

(aν + bν)x
n,

όπου αν n < m θέσαμε aν = 0 για τα ν > n.
Το γινόμενο δύο πολυωνύμων ορίζεται ως εξής:

f(t) · g(t) =
n∑

ν=0

m∑
µ=0

aνbµx
ν+µ

=

n+m∑
ν=0

n+m∑
µ=0

aνbn+m−µx
ν

Με F θα συμβολίζουμε ένα σώμα. Η συνάρτηση βαθμού

deg : F[x] − {0} → N,
ικανοποιεί

deg(f+ g) ⩽ max(deg(f), deg(g))
deg(fg) = deg(f) + def(g).

Παρατηρήστε ότι δεν ορίζουμε τον βαθμό του μηδενικού πολυωνύμου.

2.4.2 Θεώρημα:
1. Για κάθε δύο στοιχεία a,b ∈ Z υπάρχουν στοιχεία π,u ∈ Z ώστε a = bπ+u με 0 ⩽ u < |b|.
2. Για κάθε δύο στοιχεία a,b ∈ F[x] υπάρχουν στοιχεία π,u ∈ F[x] ώστε a = bπ + u με u = 0

ή 0 degu < deg(b).

Άμεση εφαρμογή του παραπάνω Θεωρήματος είναι το

2.4.3 Θεώρημα:
Κάθε ιδεώδες του δακτυλίου Z ή F[x] είναι κύριο.

ΑπόδειξηΑν έχουμε ένα ιδεώδες του Z το οποίο είναι μη μηδενικό, τότε έχει ένα στοιχείο που είναι
θετικό. Θεωρούμε το ελάχιστο στοιχείο n του μη κενού συνόλου των θετικών στοιχείων του ιδεώδους
I. Κάθε στοιχείο a του είναι πολλαπλάσιο του n. Αυτό γιατί αν γράψουμε το τυχαίο στοιχείο a ∈ I ως

a = πn+ u, 0 ⩽ u < n,
τότε το u ∈ I και συνεπώς είναι μηδενικό, αλλιώς το n δεν θα ήταν το ελάχιστο θετικό στοιχείο του
ιδεώδους.
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Στην περίπτωση που το δεν είναι μηδενικό ιδεώδες του δακτυλίου F[x] θα έχει ένα στοιχείο g ελα-
χίστου βαθμού. Κάθε στοιχείο a ∈ I είναι αναγκαστικά πολλαπλάσιο του g. Σε διαφορετική περίπτωση
γράφουμε

a = gπ+ u, deg(u) < deg(g)
και αφού το u ∈ I, καταλήγουμε σε άτοπο (το g κατασκευάστηκε να είναι ελαχίστου βαθμού στο
ιδεώδες). 2

2.4.1. Ανάγωγα Πολυώνυμα Κριτήρια Αναγωγισιμότητας.

2.4.4 Ορισμός:
Έστω R μια ακέραια περιοχή. Ένα πολυώνυμο f ∈ R[x] θα λέγεται ανάγωγο αν δεν μπορεί να διασπαστεί
ως γινόμενο δύο πολυωνύμων f = gh με deg(g), deg(h) ⩾ 1.

Παρατήρησεις:
1. Το πολυώνυμο f είναι ανάγωγο αν και μόνο αν το ιδεώδες fR[x] είναι πρώτο.
2. Στην περίπτωση που το R είναι σώμα το πολυώνυμο f είναι ανάγωγο αν και μόνο αν το πηλίκο
R[x]/fR[x] είναι σώμα.

3. Η έννοια της αναγωγισιμότητας εξαρτάται από το σώμα ή τον δακτύλιο συντελεστών. Έτσι
το πολυώνυμο x2 + 1 είναι ανάγωγο στον δακτύλιο R[x] αλλά όχι στον C[x].

2.4.5 Πρόταση:
Ας υποθέσουμε ότι έχουμε ένα ανάγωγο πολυώνυμο f ∈ F[x], και το F είναι σώμα. Τότε ο δακτύλιος
πηλίκο F[x]/fF[x] είναι ένα σώμα που περιέχει το σώμα F στο οποίο το πολυώνυμο f έχει μία ρίζα.

Απόδειξη Αφού το πολυώνυμο f είναι ανάγωγο, το πηλίκο K := F[x]/fF[x] είναι σώμα. Το σώμα
F μπορεί να θεωρηθεί ως υπόσωμα του σώματος K αφού κάθε στοιχείο a ∈ F μπορεί να θεωρηθεί ως
το σταθερό πολυώνυμο.

Στον πολυωνυμικό δακτύλιο F[x] εισαγάγουμε τη μεταβλητή x και όλες τις πολυωνυμικές της εκ-
φράσεις. Τέλος, στο πηλίκο επιβάλλουμε εξ’ ορισμού τον μηδενισμό του f(x), δηλαδή επιβάλλουμε
στο x να είναι ρίζα του πολυωνύμου f. 2

Παράδειγμα Θεωρούμε το ανάγωγο πολυώνυμο f(x) = x2 + 1 ∈ R[x]. Πράγματι το πολυώνυμο
αυτό είναι ανάγωγο αφού είναι βαθμού 2 και δεν έχει πραγματικές ρίζες. Ο δακτύλιος πηλίκοR[x]/⟨x2+
1⟩ είναι εξ ορισμού το σώμα των μιγαδικών αριθμών.

2.4.1.1. Κριτήρια Αναγωγισιμότητας.

2.4.6 Πρόταση:
Ένα πολυώνυμο βαθμού 2 ή 3 στo F[x], όπου F σώμα, δεν είναι ανάγωγο αν και μόνο έχει μία τουλάχιστον
ρίζα.

ΑπόδειξηH ύπαρξη ρίζας ρ του πολυωνύμου f είναι ισοδύναμη με το ότι (x − ρ) | f, άρα, αν
ένα οποιουδήποτε βαθμού ⩾ 2 πολυώνυμο έχει ρίζα, τότε δεν μπορεί να είναι ανάγωγο. Αντιστρόφως,
ένα πολυώνυμο βαθμού αν διασπάται, τότε θα είναι γινόμενο δύο πολυωνύμων βαθμού 1 και αν ένα
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πολυώνυμο βαθμού 3 τότε θα είναι γινόμενο ή τριών πολυωνύμων βαθμού 1 ή ενός πολυωνύμου βαθμού
ένα και ενός πολυωνύμου βαθμού 2. Σε κάθε περίπτωση η ύπαρξη παράγοντα βαθμού ένα εξασφαλίζει
την ύπαρξη ρίζας.

ΠαρατήρησηΜπορεί ένα πολυώνυμο στο F[x] βαθμού⩾ 4 χωρίς να έχει ρίζες στο F να μην είναι
ανάγωγο. Για παράδειγμα στο Q[x] μπορούμε να θεωρήσουμε το (x2 + 1)(x2 − 2).

Στην περίπτωση που θεωρούμε πολυώνυμα στο Q[x] ισχύει το παρακάτω θεώρημα, γνωστό και ως
λήμμα του Gauss:

2.4.7 Θεώρημα:
Ας θεωρήσουμε ένα πολυώνυμο f(x) ∈ Z[x] βαθμού μεγαλύτερου του μηδενός. Αν το f είναι ανάγωγο
στο Z[x] τότε είναι ανάγωγο και στον Q[x]. Επίσης, αν ο μέγιστος κοινός διαιρέτης των συντελεστών του
f είναι μονάδα και το f είναι ανάγωγο στο Q[x], τότε είναι ανάγωγο και στο Z[x].

Απόδειξη Ένα πολυώνυμο f(x) ∈ Z[x] της μορφής

f(x) = a0 + a1x+ · · ·+ anxn

θα λέγεται πρωταρχικό αν ο μέγιστος κοινός διαιρέτης των συντελεστών του είναι 1. Προφανώς κάθε
πολυώνυμο είναι γινόμενο ενός πρωταρχικού πολυωνύμου και ενός στοιχείου του Z.

Παρατηρούμε ότι το γινόμενο δύο πρωταρχικών πολυωνύμων f,g ∈ Z[x] είναι πρωταρχικό πολυώ-
νυμο. Πράγματι, αν ο μέγιστος κοινός διαιρέτης των συντελεστών του γινομένου f · g δεν ήταν μηδέν,
τότε θα υπήρχε ένας πρώτος p που θα τον διαιρούσε. Αυτό σημαίνει ότι το πολυώνυμο f · g θα ήταν
0 στον δακτύλιο Z/pZ[x]. Ο τελευταίος δακτύλιος όμως είναι δακτύλιος πολυωνύμων πάνω από ένα
σώμα, άρα είναι ακέραια περιοχή. Συνεπώς ή όλοι οι συντελεστές του f θα είναι 0 modulo p ή όλοι οι
συντελεστές του g θα είναι 0 modulo p. Και οι δύο δυνατότητες είναι αδύνατες, αφού ξεκινήσαμε από
πρωταρχικά πολυώνυμα.

Ας υποθέσουμε ότι ένα μη σταθερό f ∈ Z[x] αναλύεται σε γινόμενο πολυώνυμων στονQ[x], δηλαδή

f = h1 · h2, h1,h2 ∈ Q[x].

Πολλαπλασιάζοντας με έναν μεγάλο ακέραιο d (για παράδειγμα με το ελάχιστο κοινό πολλαπλάσιο των
παρονομαστών όλων των συντελεστών) μπορούμε να έχουμε ότι:

d · f = h ′
1 · h ′

2,

όπου τα h ′
1,h ′

2 ∈ Z. Τα πολυώνυμα h ′
i τα γράφουμε στη μορφή h

′
i = dih

′′
i , όπου di ∈ Z και τα h ′′

i

είναι πρωταρχικά πολυώνυμα. Επειδή το h ′′
1 · h ′′

2 είναι πρωταρχικό πολυώνυμο, έχουμε ότι d = d1d2
και f = h ′′

1 h
′′
2 το οποίο είναι άτοπο.

Το αντίστροφο είναι προφανές. 2

Το επόμενο κριτήριο είναι γνωστό ως κριτήριο Eisenstein

2.4.8 Θεώρημα:
Έστω p πρώτος. Υποθέτουμε ότι το

f(x) = anx
n + · · ·+ a1x+ a0 ∈ Z[x]

http://en.wikipedia.org/wiki/Gotthold_Eisenstein
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Σχήμα 2.1. G. Eisenstein 1823-1852, Το παρόν έργο αποτελεί κοινό κτήμα (public
domain). Πηγή: Wikimedia Commons

είναι τέτοιο ώστε an ̸= 0, p | ai για όλα τα i = 0, . . . ,n − 1 και o p δεν διαιρεί τα an, ενώ ο p2 δεν
διαιρεί το a0. Τότε το f(x) είναι ανάγωγο στο Q[x].

Απόδειξη Σύμφωνα με το λήμμα του Gauss αρκεί να δείξουμε ότι το f δεν αναλύεται ως γινόμενο
πολυωνύμων με βαθμούς μεγαλύτερους της μονάδας στον δακτύλιο Z[x].

Ας υποθέσουμε ότι είχαμε μια γραφή

f(x) = (btx
t + · · ·b1x+ b0)(csx

s + · · ·+ c1x+ c0),

όπου btcs ̸= 0 και bν, cµ ∈ Z.
Αφού p2 δεν διαιρεί το a0 = b0c0, είναι σαφές ότι το p δεν μπορεί να διαιρεί και το b0 και το c0.

Ας υποθέσουμε ότι ο p διαιρεί το c0 και ότι δεν διαιρεί το b0. Με τον ίδιο τρόπο βλέπουμε ότι αφού ο
p δεν διαιρεί το an έχουμε ότι ο p δεν διαιρεί το bt και ο p δεν διαιρεί το cs. Έστω cr η μικρότερη
τιμή ώστε ο p να μην διαιρεί το cr. Υπολογίζουμε

ar = b0cr + b1cr−1 + · · ·br−ici

για κάποιο 0 ⩽ i < r. Στον παραπάνω τύπο τα cr−1, . . . , ci είναι διαιρετά με p όπως και το ar είναι
διαιρετό με p. Όμως το b0cr δεν είναι,άτοπο. 2

Παραδείγματα

https://commons.wikimedia.org/wiki/File:Gotthold_Eisenstein.jpeg


2.4. ΠΟΛΥΩΝΥΜΑ 37

1. Το πολυώνυμο x2 −a όσο το a δεν είναι τετράγωνο είναι ανάγωγο στοQ[x]. Πράγματι, αφού
το a δεν είναι τετράγωνο υπάρχει p | a και ο p2 δεν διαιρεί το a. To ζητούμενο προκύπτει
από το κριτήριο του Eisenstein.

2. To πολυώνυμο x2015+4x+2 είναι ανάγωγο στοQ[x], όπως βλέπουμε με χρήση του κριτηρίου
του Eisenstein για p = 2.

3. Έστω p πρώτος. Το πολυώνυμο

Φp(x) := x
p−1 + xp−2 + · · ·+ x+ 1

είναι ανάγωγο στο Q[x].
Παρατηρούμε ότι ένα πολυώνυμο f(x) είναι ανάγωγο αν και μόνο αν το f(x + 1) είναι ανάγωγο.

Θεωρούμε λοιπόν το πολυώνυμο

Φp(x+ 1) = (x+ 1)p − 1
(x+ 1) − 1 =

p∑
ν=1

(
p

ν

)
xν−1

το οποίο πληρεί τις προϋποθέσεις του κριτηρίου του Eisenstein.

1 sage:Phi=cyclotomic_polynomial(105,’x’);Phi
2 x^48 + x^47 + x^46 - x^43 - x^42 - 2*x^41 - x^40 -x^39 + x^36
3 +x^35 +x^34 + x^33 + x^32 + x^31 - x^28 - x^26 - x^24 - x^22
4 - x^20 + x^17 +x^16 + x^15 + x^14 + x^13 + x^12 - x^9 - x^8
5 - 2*x^7 - x^6 - x^5 + x^2 +x + 1
6 sage:Phi.is_irreducible()
7 True

Interactive

2.4.2. Χαρακτηριστική δακτυλίου. Παρατήρηση Αν ένα σύνολο Σ παράγει τον δακτύλιο R και
δεν υπάρχουν αλγεβρικές σχέσεις μεταξύ των στοιχείων του Σ, δηλαδή κάθε στοιχείο του R μπορεί
να γραφεί με μοναδικό τρόπο ως αποτέλεσμα των δύο πράξεων του δακτυλίου με πράξεις μεταξύ των
στοιχείων του Σ, τότε κάθε συνάρτηση ϕ : Σ→ S μπορεί να επεκταθεί σε ομομορφισμό ϕ : R→ S.

Περισσότερο συγκεκριμένα ένας μη μηδενικός ομομορφισμόςZ → S προσδιορίζεται μονοσήμαντα
αν γνωρίζουμε το ϕ(1) το οποίο στην περίπτωση που ο S είναι ακέραια περιοχή δεν μπορεί να είναι
άλλο από το μοναδιαίο του S. Πράγματι

ϕ(1Z) = ϕ(1Z · 1Z) = ϕ(1Z)ϕ(1Z)

Δηλαδή
ϕ(1Z)(1S − ϕ(1Z)) = 0

από όπου προκύπτει το ζητούμενο.

2.4.9 Ορισμός:

http://users.uoa.gr/~kontogar/kallipos/Ringa.html
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Έστω S δακτύλιος αντιμεταθετικός με μοναδιαίο θεωρούμε τον ομομορφισμό

ϕ : Z → S

1Z 7→ 1S.
Ο πυρήνας είναι ένα κύριο ιδεωδές του Z, δηλαδή ker(ϕ) = nZ. Τον αριθμό n θα τον λέμε χαρακτηρι-
στική του δακτυλίου S.

Παρατηρήσεις:

1. Αν ο πυρήνας του ϕ είναι μηδενικός, τότε ο δακτύλιος S έχει χαρακτηριστική 0 και σε αυτή
την περίπτωση ο δακτύλιος S είναι άπειρος.

2. Από το θεώρημα ισομορφισμού ο Z/nZ είναι ένας υποδακτύλιος του S. Αν ο S είναι ακέραια
περιοχή, τότε αναγκαστικά n είναι πρώτος αριθμός.

3. Κάθε πεπερασμένο σώμα περιέχει το Z/pZ για κάποιο πρώτο p ως υπόσωμα.

2.4.10 Ορισμός:
Ένα ιδεώδες P του δακτυλίου R θα λέγεται πρώτο αν και μόνο αν για κάθε a,b ∈ R
ab ∈ P συνεπάγεται a ∈ P είτε b ∈ P.
Το ιδεώδεςM θα λέγεται μέγιστο αν κάθε ιδεώδες I του R ώστεM ⊂ I επιβάλλει I = R ή I =M.

2.4.11 Θεώρημα:
Ένα ιδεώδες P είναι πρώτο αν και μόνο αν ο δακτύλιος R/P είναι ακέραια περιοχή.

Απόδειξη Θεωρούμε το γινόμενο (a + P)(b + P) = ab + P. Παρατηρούμε ότι ab ∈ P είναι
ισοδύναμο με το ab + P = 0R/P είναι 0 στον δακτύλιο R/P. Ομοίως a + P = 0R/P (αντίστοιχα
b + P = 0R/P) είναι ισοδύναμο με a ∈ P (αντίστοιχα b ∈ P). Το ζητούμενο είναι σαφές από τον
ορισμό της ακέραιας περιοχής. 2

2.4.12 Θεώρημα:
Ένα ιδεώδεςM είναι μέγιστο αν και μόνο αν ο δακτύλιος R/M είναι σώμα.

Απόδειξη Ας υποθέσουμε ότι τοM είναι ένα μέγιστο ιδεώδες. H κλάση x+M είναι μη μηδενική
κλάση αν και μόνο αν x ̸∈ M. Σε αυτή την περίπτωση το ιδεώδες M + xR, που παράγεται από τα
στοιχεία τουM και το x είναι ένα ιδεώδες που περιέχει γνήσια τοM.

Στην περίπτωση που τοM είναι μέγιστο τοM+ xR είναι όλος ο δακτύλιος R άρα το μοναδιαίο 1R
του δακτυλίου γράφεται ως 1R = m+ xa για κάποια στοιχείαm ∈M και a ∈ R. Aυτό όμως σημαίνει
ότι (a +M)(x +M) = 1 +M, άρα η τυχαία μη μηδενική κλάση x +M είναι αντιστρέψιμη και το
R/M είναι σώμα.
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Αντιστρόφως, έστω ότι R/M είναι σώμα. Αν τοM περιέχεται γνήσια σε ένα ιδεώδες I, τότε το I
περιέχει ένα στοιχείο x ̸∈M, και συνεπώς η κλάση x+M είναι αντιστρέψιμη, δηλαδή υπάρχει a ∈ R
ώστε (x +M)(a +M) = 1 +M. Η τελευταία σχέση είναι ισοδύναμη με το ότι xa = 1R +m για
κάποιο στοιχείοm ∈M. Τότε όμως το 1R = xa−m είναι στοιχείο του I και συνεπώς I = R. 2

Παρατηρήσεις
1. Το ιδεώδες pZ για p πρώτο αριθμό είναι πρώτο και μέγιστο ιδεώδες του Z.
2. Αν f είναι ένα ανάγωγο πολυώνυμο του F[x], τότε το ιδεώδες f(x)F[x] είναι και πρώτο και

μέγιστο.
3. Το μηδενικό ιδεώδες είναι πρώτο αν και μόνο αν ο δακτύλιος R είναι ακέραια περιοχή.
4. Κάθε μέγιστο ιδεώδες είναι πρώτο.
5. Υπάρχουν πρώτα ιδεώδη που δεν είναι μέγιστα όπως το pZ[x] ⊂ Z[x] ή το xF[x,y] ⊂ F[x,y].

2.4.3. Γεωμετρική Θεώρηση. Η θεωρία των δακτυλίων είναι ένας από τους συνδετικούς κρίκους
ανάμεσα στην Άλγεβρα και τη Γεωμετρία. Πράγματι, έγινε αρκετά νωρίς σαφές από την σκοπιά της
Αλγεβρικής Γεωμετρίας ότι πολλές γεωμετρικές ιδιότητες ενός γεωμετρικού αντικειμένου αντανακλώ-
νται στην άλγεβρα των συναρτήσεων που ορίζονται πάνω από το γεωμετρικό αντικείμενο. Ανάλογα
αποτελέσματα υπήρξαν και στην ανάλυση, όπως το θεώρημα των Gelfand-Naimark. Η ιδέα αυτή γενι-
κεύτηκε και χρησιμοποιήθηκε κατόπιν ως εργαλείο επίλυσης προβλημάτων και της Θεωρίας αριθμών
από τον A. Grothendieck.

Σχήμα 2.2. A. Grothendieck 1970, Το παρόν έργο αποτελεί κοινό κτήμα (public
domain). Πηγή: Wikimedia Commons

Ας προσπαθήσουμε να εξηγήσουμε μερικές από τις ιδέες αυτές σε όσο γίνεται περισσότερο απλή
γλώσσα:

Ο δακτύλιος των πολυωνύμων μίας μεταβλητής πάνω από το σώμα των μιγαδικών συναρτήσεων
R := C[x] είναι μια φυσιολογική κλάση συναρτήσεων πάνω στο μιγαδικό επίπεδο. Σε κάθε σημείο a
του επιπέδου μπορούμε να θεωρήσουμε ένα μέγιστο ιδεώδες του R, τοma το οποίο ορίζεται ως

ma = {f ∈ R : f(a) = 0}

http://math.stackexchange.com/questions/268002/gelfand-naimark-theorem
http://en.wikipedia.org/wiki/Alexander_Grothendieck
https://commons.wikimedia.org/wiki/File:Alexander_Grothendieck.jpg
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(Άσκηση: Δείξτε ότι όντως είναι ένα μέγιστο ιδεώδες) Το ιδεώδες αυτό είναι κύριο και παράγεται από
το (x− a). Επιπλέον είναι σαφές ότι η τιμή του πολυωνύμου f στο σημείο a δεν είναι τίποτε άλλο από
την κλάση υπολοίπων της fmodma στον δακτύλιο R/ma.

Πράγματι, αν κάνουμε τη διαίρεση της f με το x− a το υπόλοιπο θα είναι μια σταθερά:

f(x) = (x− a)g(x) + v(x), degv(x) < deg(x− 1) = 1.

Το υπόλοιπο είναι σαφώς ένας αντιπρόσωπος της κλάσης f modma και επιπλέον είναι ίσο με f(a)
όπως εύκολα παρατηρούμε τοποθετώντας το a στην παραπάνω εξίσωση της διαίρεσης.

Παρατηρούμε ότι έχουμε μία 1-1 και επί αντιστοιχία

{Μέγιστα Ιδεώδη τουR} −→ {σημεία τουC}

Σε παρόμοια συμπεράσματα θα καταλήγαμε αν για R θεωρούσαμε τον δακτύλιο των ολόμορφων ή
απειροδιαφορισίμων συναρτήσεων. Αυτό που θα άλλαζε θα ήταν το θεώρημα της διαίρεσης το οποίο
θα έπρεπε να αναπτύξουμε και να αποδείξουμε.

Θα μπορούσαμε να αλλάξουμε το σώμα σε ένα διαφορετικό όπως το Q ή ένα πεπερασμένο σώμα
Fp ακολουθώντας την προτροπή του A. Weil (να κάνουμε γεωμετρία πάνω από οποιοδήποτε σώμα).
Σε αυτή την περίπτωση θα οδηγούμασταν στο να εξετάζουμε τα σημεία του γεωμετρικού αντικειμένου
πάνω από το σώμα.

Σχήμα 2.3. A.Weil (μαζί με την αδελφή του Simone σε εκδρομή στο Βέλγιο). Το παρόν
έργο αποτελεί κοινό κτήμα (public domain) λόγω παρέλευσης 70 ετών από τον θάνατο
του δημιουργού. Πηγή: Apprenticeship of a Mathematician, Courtesy of Sylvie Weil.

Τι θα συμβεί όμως αν αντί για τον δακτύλιο C[x] θεωρούσαμε έναν άλλο δακτύλιο με αριθμητική
σημασία όπως το Z ή το Z[x]; Θα υπήρχε ένα γεωμετρικό αντικείμενο του οποίο το Z να ήταν ο φυ-
σιολογικός δακτύλιος συναρτήσεων; Σύμφωνα με τις ιδέες του Grothendick το αντικείμενο αυτό είναι
το σύνολο των πρώτων ιδεωδών του δακτυλίου το οποίο θα το συμβολίζουμε με Spec(R). Για παρά-
δειγμα, όταν R = Z το σύνολο των πρώτων ιδεωδών δεν είναι άλλο από τους πρώτους αριθμούς, ενώ
όταν R = Z[x] το σύνολο των πρώτων ιδεωδών αποτελείται από τα κύρια ιδεώδη pZ[x] όπου p πρώτος,
τα κύρια ιδεώδη fZ[x], όπου f ανάγωγο πολυώνυμο αλλά και από τα ιδεώδη ⟨p, f⟩ που παράγονται
από έναν πρώτο αριθμό p και ένα ανάγωγο πολυώνυμο. Μάλιστα στην περίπτωση που το πολυώνυμο

http://en.wikipedia.org/wiki/Andr%C3%A9_Weil
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f παραμένει ανάγωγο mod p το ιδεώδες ⟨p, f⟩ είναι μέγιστο αφού
Z[x]
⟨p, f⟩

∼=
Fp[x]

f(x)Fp

το οποίο είναι σώμα. Η πρώτη γραφική παράσταση αυτών των ιδεών εμφανίστηκε πιθανότατα στο
σκίτσο του D. Mumford στο κόκκινο βιβλίο των πολλαπλοτήτων και σχημάτων (Mumford 1999), τη
δεκαετία του 70.

Σχήμα 2.4. Πρώτα ιδεώδη των ακέραιων

Σχήμα 2.5. Πρώτα ιδεώδη των πολυωνύμων με συντελεστές ακέραιους

To πρόβλημα κατά πόσο ένα ανάγωγο πολυώνυμο του Z[x] παραμένει ανάγωγο αν το θεωρήσουμε
modulo p και πώς αναλύεται αν δεν είναι ανάγωγο είναι ένα πρόβλημα θεμελιώδους σημασίας για τη
Θεωρία Αριθμών που έχει τις αρχές του στον τετραγωνικό νόμο αντιστροφής του Gauss.

Ας δούμε τώρα πώς ένα στοιχείο του δακτυλίου μπορεί να θεωρηθεί ως συνάρτηση πάνω στο σύ-
νολο των πρώτων ιδεωδών:

P 7→ f(P) = fmod P ∈ R/P.
Αν ο δακτύλιος R = F[x] είναι ένας δακτύλιος πολυωνύμων πάνω από ένα σώμα, τότε η τιμή της
συνάρτησης ανήκει πάντα στο σώμα F = R/P το οποίο είναι κοινό για όλα τα πρώτα ιδεώδη του R.

Στην περίπτωση που R = Z υπάρχει μια διαφορά. Τα στοιχεία του δακτυλίου δίνουν τιμές σε
διαφορετικά σώματα. Έτσι το 3 ∈ Z στο (σημείο)-πρώτο ιδεώδες 7Z δίνει την τιμή 3 mod 7 η οποία

http://en.wikipedia.org/wiki/David_Mumford


ΒΙΒΛΙΟΓΡΑΦΙΑ 42

ανήκει στο σώμα με 7 στοιχεία ενώ στο (σημείο)-πρώτο ιδεώδες 5Z δίνει την τιμή 3 αλλά στο σώμα με
5 στοιχεία.

Οι ιδέες αυτές έδωσαν τεράστια ώθηση στα Μαθηματικά και στην Θεωρία Αριθμών αφού πρόσθε-
σαν μια γεωμετρική ενόραση των αριθμητικών εννοιών και επέτρεψαν να ορίσουμε πλήρως γεωμετρικά
αντικείμενα όπως ο εφαπτόμενος χώρος, η παραγώγιση κλπ.

Βιβλιογραφία
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3
Νόμος τετραγωνικής Αντιστροφής

3.1. Εισαγωγικά στοιχεία για λύσεις τετραγωνικών εξισώσεων

Είδαμε προηγουμένως ότι μας ενδιαφέρει πότε ένα ανάγωγο πολυώνυμο f ∈ Z[x] παραμένει ανά-
γωγο modulo p. Ένα ενδιαφέρον πρόβλημα είναι να χαρακτηρίσουμε τους πρώτους για τους οποίους
αλλάζει συμπεριφορά η αναγωγισιμότηταmodulo p. Για τετραγωνικά πολυώνυμα αυτό είναι ισοδύναμο
με το αν η διακρίνουσα είναι τετράγωνο ή όχι. Ενώ λοιπόν για πραγματικά πολυώνυμα με συντελεστές
πραγματικούς αυτό είναι σαφές (τετράγωνα δεν είναι οι αρνητικοί αριθμοί) σε ένα σώμα όπως το Z/pZ
τα πράγματα είναι περισσότερο πολύπλοκα. Το εργαλείο που χαρακτηρίζει για ποιους πρώτους ο ακέ-
ραιος a ∈ Z είναι τετράγωνο ή όχι ονομάζεται νόμος της τετραγωνικής αντιστροφής. Περισσότερα
στοιχεία σχετικά με τον νόμο αντιστροφής και τις γενικεύσεις του ο αναγνώστης μπορεί να αναζητήσει
στα (Λάκκης 1990), (Αντωνιάδης και Κοντογεώργης 2015) και στο (Lemmermeyer 2000).

Υποθέτουμε ότι θέλουμε να λύσουμε την τετραγωνική ισοδυναμία

ax2 + bx+ c ≡ 0modm,

με a,b, c ∈ Z,m ∈ N,m > 1. Η λύση εξαρτάται από τη λύση ισοδυναμιών της μορφής

ax2 + bx+ c ≡ 0modps,

όπου p πρώτος οι οποίες ανάγονται σε ισοδυναμίες της μορφής

ax2 + bx+ c ≡ 0modp.

Για μικρές τιμές του p ισοδυναμίες της παραπάνω μορφής μπορούν να λυθούν με τη μέθοδο της δοκιμής
και της επιτυχίας. Για μεγάλο p χρειάζεται μια νέα ιδέα. Υποθέτουμε ότι p είναι περιττός πρώτος και
(a,p) = 1. Εργαζόμαστε λοιπόν στο σώμα Z/pZ και επιλύουμε την τετραγωνική εξίσωση με τον ίδιο
τρόπο όπως θα κάνουμε στο σώμα των πραγματικών ή μιγαδικών αριθμών. Πράγματι, αφού (2,p) = 1
οι λύσεις της

ax2 + bx+ c ≡ 0modp

είναι ισοδύναμες προς τις λύσεις της ισοδυναμίας

4a2x2 + 4abx+ 4ac ≡ modp

δηλαδή της
(2ax+ b)2 ≡ (b2 − 4ac)modp

43
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Η τελευταία ισοδυναμία μπορεί να λυθεί τότε και μόνο τότε όταν μπορούμε να βρούμε κάποιον ακέραιο
x0 ο οποίος να είναι λύση της ισοδυναμίας

2ax+ b ≡ y0modp

και y0 μια λύση της ισοδυναμίας της

y2 ≡ (b2 − 4ac)modp

Αφού (2a,p) = 1 η πρώτη ισοδυναμία έχει πάντα λύση. Το αρχικό πρόβλημα λοιπόν ανάγεται στη
λύση ισοδυναμιών της μορφής

y2 ≡ amodp
Ανa ≡ 0modp, τότε η προηγούμενη ισοδυναμία έχει λύση. Θα εξετάσουμε την περίπτωση p δεν διαιρεί
το a.

Σε ότι ακολουθεί, ο αριθμός p θα είναι ένας περιττός πρώτος.

3.2. Τετραγωνικά υπόλοιπα

3.2.1 Ορισμός:
Έστω p ένας πρώτος αριθμός. Ένας ακέραιος a που δεν είναι πολλαπλάσιο του p, είναι τετραγωνικό
υπόλοιπο του p αν ο a είναι τετράγωνο κάποιου αριθμού modp. Αν ο a δεν είναι τετράγωνο κάποιου
αριθμού modp τότε λέγεται τετραγωνικό μη-υπόλοιπο modp.

Με άλλα λόγια ο a είναι τετραγωνικό υπόλοιπο αν η εξίσωση

x2 ≡ amodp

έχει λύση.
Θα μπορούσαμε (όταν ο πρώτος p είναι μικρός) να υπολογίσουμε όλα τα τετράγωνα και στη συνέ-

χεια να δούμε αν το a είναι τετραγωνικό υπόλοιπο ή όχι.
Έτσι για p = 5 υπολογίζουμε ότι

x 0 1 2 3 4
x2 0 1 4 4 4

Αν το a είναι ή όχι τετραγωνικό υπόλοιπο εξαρτάται από την κλάση του amodp.
Oρίζουμε την απεικόνιση:

ψ : (Z/pZ)∗ → {±1}

ψ : a 7→
(
a

p

)
Η ποσότητα

(
a
p

)
ονομάζεται σύμβολο του Legendre και είναι ίση με 1 αν το a είναι τετραγωνικό υπό-

λοιπο και −1 αν το a δεν είναι τετραγωνικό υπόλοιπο modp. Για χάρη συντομίας του συμβολισμού
ορίζουμε και (

a

p

)
= 0

στην περίπτωση που a ≡ 0modp. Η τελευταία γενίκευση είναι γνωστή στη βιβλιογραφία ως το σύμβολο
του Kronecker.
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Η παραπάνω απεικόνιση είναι ομομορφισμός ομάδων, το οποίο ισοδυναμεί με το ότι ισχύει:(
aβ

p

)
=

(
a

p

)(
β

p

)
.

Πράγματι θα δείξουμε στη συνέχεια ότι η (Z/pZ)∗ = F∗ είναι μία κυκλική ομάδα, άρα υπάρχει g
ώστε η (Z/pZ) να είναι της μορφής:{

g,g2, . . . ,g(p−1)/2,g(p+1)/2, . . . ,gp−1 = 1
}

Αφού ο p− 1 είναι άρτιος, τα τετράγωνα των στοιχείων του (Z/pZ)∗ είναι τα
g2,g4, . . . ,g(p−1)/2·2 = 1,gp+1 = g2, . . . ,g2(2(p−1))

, το οποίο σημαίνει ότι τα τέλεια τετράγωνα του (Z/pZ)∗ είναι τα gi με i : άρτιος και τα μη τέλεια
τετράγωνα είναι τα gi με i: περιττός. Αυτό σημαίνει ότι η ψ είναι ομομορφισμός καθώς: το άθροισμα
δύο περιττών είναι άρτιος, το άθροισμα δύο άρτιων είναι άρτιος και το άθροισμα ενός περιττού με έναν
άρτιο είναι περιττό.

Παρατηρούμε ότι ο πυρήνας τηςψ είναι τα g ∈ (Z/pZ)∗ για τα οποία ισχύει ότιψ(a) = 1, δηλάδη
τα τετραγωνικά υπόλοιπα του p.

Ένα βασικό εργαλείο στον υπολογισμό του συμβόλου του Legendre είναι ο τετραγωνικός νόμος
αντιστροφής ο οποίος έχει την παρακάτω μορφή:

3.2.2 Θεώρημα:
Έστω p,q δύο περιττοί, πρώτοι αριθμοί. Τότε ισχύει(

p

q

)
= (−1)

p−1
2 ·q−1

2

(
q

p

)
Επίσης, (

−1
p

)
= (−1)

p−1
2 και

(
2
p

)
= (−1)

p2−1
8 .

Θα δώσουμε σε λίγο μια απόδειξη του παραπάνω θεωρήματος.

3.2.3 Πρόταση:
Ισχύει ότι (

a

p

)
= a

p−1
2 mod p,

δηλαδή (
a

p

)
= 1 ⇐⇒ a

p−1
2 ≡ 1mod p

Απόδειξη Ισχύει ότι
(
a
p

)
= ±1 και ap−1 ≡ 1modp, οπότε ap−1

2 ≡ ±1modp. Η απεικόνιση

ϕ : (Z/pZ)∗ → (Z/pZ)∗

με
ϕ(a) = a

p−1
2
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είναι ένας ομομορφισμός ομάδων.
Με βάση το σύμβολο του Legendre ορίσαμε την απεικόνιση ψ(a) =

(
a
p

)
. Αν a ∈ kerψ, τότε

a = b2 για κάποιο b ∈ (Z/pZ)∗ οπότε

ϕ(a) = a(p−1)/2 = (b2)(p−1)/2 = bp−1 = 1.
Κατά συνέπεια είναι kerψ ⊆ kerϕ. Θα δείξουμε ότι kerψ = kerϕ. Ο kerψ έχει δείκτη 2 στο

Z/pZ∗. Εφόσον ο πυρήνας ενός ομομορφισμού είναι ομάδα από μόνος του και η τάξη μιας υποομάδας
διαιρεί την τάξη της ομάδας, θα ισχύει είτε ότι kerϕ = kerψ ή ϕ = 1. Αν ϕ = 1 το πολυώνυμο
x(p−1)/2 − 1 έχει p− 1 ρίζες στο σώμα Z/pZ το οποίο είναι άτοπο. Κατά συνέπεια ισχύει ότι kerϕ =

kerψ.

3.3. Αθροίσματα Gauss

3.3.1. m-ρίζες της μονάδας. Υπενθυμίζουμε ότι όλες οιm-ρίζες της μονάδας είναι της μορφής

ζm = cos(2πk/m) + i sin(2πik/m) = exp(2πik/m),
όπου i2 = −1 και 0 ⩽ k ⩽ m− 1, k,m ∈ N.

Οιm ρίζες της μονάδας είναι δυνάμεις μίας πρωταρχικής ρίζας η οποία είναι της μορφής

ζm = cos(2πk/m) + i sin(2πik/m),
με (k,m) = 1.

Ας υποθέσουμε ότι m = p πρώτος αριθμός. Τότε η εξίσωση ορισμού της p-ρίζας της μονάδας
διασπάται ως

xp − 1 = (x− 1)(xp−1 + xp−1 + · · ·+ x+ 1)
και δείξαμε χρησιμοποιώντας το κριτήριο του Eisenstein ότι το πολυώνυμο

(xp−1 + xp−1 + · · ·+ x+ 1)
είναι ένα ανάγωγο πολυώνυμο του Q[x].

Οι n-ρίζες της μονάδας ανήκουν στο λεγόμενο κυκλοτομικό σώμα αριθμών το οποίο ορίζεται ως
το σώμα

Q[ζn] = Q[x]/Φn(x)

όπου Φn(x) είναι ένα ελάχιστο ανάγωγο πολυώνυμο του Q[x] που μηδενίζεται σε μία n-στή ρίζα της
μονάδας. Ένα τέτοιο πολυώνυμο ορίζεται γενικότερα ως εξής: Θεωρούμε έναν αριθμό a ∈ C και τον
ομορφισμό δακτυλίων

ϕ : Q[x] → C
f 7→ f(a)

Ο πυρήνας είναι ένα ιδεώδες του δακτυλίου Q[x] και επειδή τα ιδεώδη του Q[x] είναι όλα κύρια, είναι
της μορφής ker(ϕ) = Φn(x)Q[x]. Η εύρεση του ανάγωγου πολυωνύμου είναι ένα ενδιαφέρον πρό-
βλημα. Στην περίπτωση n = p, όπου p είναι ένας πρώτος αριθμός, το κυκλοτομικό πολυώνυμο είναι
το

Φp(x) = 1 + x+ · · ·+ xp−1

που υπολογίσαμε παραπάνω. Θα επανέλθουμε αργότερα στον υπολογισμό του κυκλοτομικού πολυω-
νύμου για γενικό n.

Ας παρατηρήσουμε ακόμα ότι το θεώρημα ισομορφισμών δακτυλίων εξασφαλίζει ότι

Q[x]/pn(x)Q[x] ∼= Im(ϕ) = Q(ζ).
Συγκεκριμένα τώρα στο sage δίνουμε:
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1 sage:L.<zeta>=CyclotomicField(7);L
2 Cyclotomic Field of order 7 and degree 6
3 sage:zeta^7
4 1
5 sage:1/zeta
6 -zeta^5 - zeta^4 - zeta^3 - zeta^2 - zeta - 1
7 sage:(zeta^4+5*zeta+1).complex_embedding()
8 3.21648014139125 + 3.47527367322259*I

Παρατηρούμε ότι οι πράξεις με το κυκλοτομικό σώμα αριθμών γίνονται ακριβώς στο πρόγραμμα
sage. Μπορούμε να υπολογίσουμε σε κάθε βήμα δεκαδικές προσεγγίσεις των στοιχείων του κυκλο-
τομικού σώματος, αλλά αυτό δεν έχει κανένα πλεονέκτημα. Στην πραγματικότητα οι πράξεις κινητής
υποδιαστολής μειονεκτούν, αφού σε αυτές εμφανίζονται σφάλματα προσέγγισης.

3.3.1 Πρόταση:
Για κάθε a ∈ Z ισχύει ότι

p−1∑
ν=0

ζa·νp =

{
p αν a ≡ 0modp
0 διαφορετικά

.

Επιπλέον αν x,y είναι τυχαίοι ακέραιοι
p−1∑
ν=0

ζ
(x−y)ν
p =

{
p αν x ≡ ymodp
0 διαφορετικά

.

Απόδειξη Αν p | a τότε ζap = 1 και στο άθροισμα μετέχουν p το πλήθος προσθεταίοι ίσοι με 1. Σε
διαφορετική περίπτωση χρησιμοποιούμε τον τύπο άθροισης γεωμετρικής προόδου.

Η δεύτερη ισότητα είναι άμεση συνέπεια της πρώτης.

3.3.2 Ορισμός:
Σταθεροποιούμε έναν πρώτο p ̸= 2. Το άθροισμα Gauss που αντιστοιχεί στον a ∈ Z ορίζεται ως

Ga =

p−1∑
n=1

(
n

p

)
ζa·n.

3.3.3 Πρόταση:
Ισχύει ότι

G0 =

p−1∑
n=0

(
n

p

)
= 0.
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Απόδειξη Έχουμε αποδείξει ότι η συνάρτηση ϕ(n) =
(
n
p

)
είναι μη-τετριμμένος ομομορφισμός

ομάδωνZ∗
p → {±1}. Συνεπώς ο πυρήνας είναι μια υποομάδα δείκτη 2 στηνZ∗

p που έχει p−1 το πλήθος
στοιχεία. Με άλλα λόγια τα μισά στοιχεία είναι τετραγωνικά υπόλοιπα και τα άλλα μισά δεν είναι. Το
ζητούμενο αποτέλεσμα είναι σαφές.

3.3.4 Πρόταση:
Ισχύει ότι

Ga =

(
a

p

)
G1.

Απόδειξη Στην περίπτωση a = 0 το αποτέλεσμα είναι σαφές αφού και τα δύο μέλη της προς
απόδειξη εξίσωσης είναι μηδενικά.

Αν a ̸= 0 τότε έχουμε (
a

p

)
Ga =

(
a

p

) p−1∑
n=0

(
n

p

)
ζa·np

=

p−1∑
n=0

(
an

p

)
ζa·np = G1

Το τελικό αποτέλεσμα προκύπτει πολλαπλασιάζοντας την παραπάνω εξίσωση με
(
a
p

)
.

3.3.5 Θεώρημα:
Για κάθε a ακέραιο, (a,p) = 1 ισχύει

G2
a = (−1)(p−1)/2p.

2

Απόδειξη Υπολογίζουμε ότι

GaG−a =

(
a

p

)
G1

(
−a

p

)
G1

=

(
−1
p

)(
a

p

)2
G2

1

= (−1)(p−1)/2G2
1.

Υπολογίζουμε τώρα ότι
p−1∑
a=0

GaG−a = (p− 1)(−1)(p−1)/2G2
1.

Από την άλλη υπολογίζουμε

GaG−a =

p−1∑
n=0

ζan
(
n

p

) p−1∑
m=0

(
m

p

)
ζ−am.
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=

p−1∑
n=0

p−1∑
m=0

ζa(n−m).

Υπολογίζουμε και πάλι το άθροισμα
p−1∑
a=0

GaG−a =

p−1∑
n=0

p−1∑
m=0

p−1∑
a=0

ζa(n−m).

To τελευταίο άθροισμα (ως προς a) μηδενίζεται, όταν n,m είναι ανισοϋπόλοιπα mod p ενώ όταν n ≡
mmodp δίνει τιμή p.

Άρα καταλήγουμε στο
p−1∑
a=0

GaG−a =

p−1∑
n=0

(
n

p

)2
p = p(p− 1).

Τελικά εξισώνοντας τους δύο διαφορετικούς τρόπους υπολογισμού του
∑p−1

a=0GaG−a καταλή-
γουμε στο

G2
1 = (−1)(p−1)/2p

και τέλος

G2
a =

(
n

p

)2
G2

1 = G2
1 = (−1)(p−1)/2p.

2

Ας ελέγξουμε την αλήθεια των παραπάνω με τη βοήθεια του sage

1 sage:
2 p=7
3 L.<zeta>=CyclotomicField(p)
4 g5=sum(legendre_symbol(n,p)*zeta^(5*n) for n in range(1,p))
5 gn5=sum(legendre_symbol(n,p)*zeta^(-5*n) for n in range(1,p))
6 g1=sum(legendre_symbol(n,p)*zeta^(1*n) for n in range(1,p))
7 g5*gn5==(-1)^((p-1)/2)*g1^2
8 True

Interactive

3.4. Απόδειξη του νόμου τετραγωνικής αντιστροφής

Έστω q ένας περιττός πρώτος και p ̸= q. Θέτουμε p∗ = (−1)(p−1)/2p και έχουμε ότι G1 = p∗.
Έχουμε αποδείξει ότι

(p∗)(q−1)/2 ≡
(
p∗

q

)
modq.

Από την άλλη
G

q−1
1 = (G2

1)
(q−1)/2 = (p∗)(q−1)/2

http://users.uoa.gr/~kontogar/Chapter2a.html


3.4. ΑΠΟΔΕΙΞΗ ΤΟΥ ΝΟΜΟΥ ΤΕΤΡΑΓΩΝΙΚΗΣ ΑΝΤΙΣΤΡΟΦΗΣ 50

και πολλαπασιάζοντας με G1 καταλήγουμε στην εξίσωση

G
q
1 ≡ G

(
p∗

q

)
modqZ[ζ]

Ο δακτύλιος Z[ζ]/qZ[ζ] είναι χαρακτηριστικής q, και συνεπώς ισχύει ότι

(x+ y)q ≡ xq + yqmodq.

Υπολογίζουμε τώρα την

G
q
1 =

(
p−1∑
n=0

(
n

p

)
ζn

)q

=

p−1∑
n=0

(
n

p

)q

ζnq = Gqmodq.

Καταλήγουμε συνεπώς στην (
q

p

)
G1 ≡

(
p∗

q

)
modp.

Πολλαπλασιάζοντας με G1 και αφού G2
1 = p∗ και p ̸= q καταλήγουμε στο(
p∗

q

)
≡
(
p∗

q

)
modq.

Όμως και τα δύο μέλη της παραπάνω ισότητας είναι ±1 και αφού q ̸= 2 καταλήγουμε στην(
q

p

)
=

(
p∗

q

)
Τέλος, το Θεώρημα του Euler δίνει ότι(

p∗

q

)
=

(
−1
q

)(p−1)/2(
p

q

)
= (−1)

(p−1)(q−1)
2

(
p

q

)
και ο νόμος της τετραγωνικής αντιστροφής έχει αποδειχτεί.

3.4.1. Υπολογισμός του συμβόλου Legendre για το p = 2. Για τη μελέτη της περίπτωσης αυτής
θα χρησιμοποιήσουμε μια γεωμετρική μέθοδο. Θα θεωρήσουμε το σύνολο των λύσεων της εξίσωσης

x2 + y2 ≡ 1modp

Δηλαδή τα σημεία (x,y) ∈ Fp τα οποία ικανοποιούν την παραπάνω εξίσωση.
Μία προφανής λύση είναι το σημείο με συντεταγμένες (−1, 0) ∈ Fp. Το σύνολο των ευθειών που

περνούν από αυτό το σημείο είναι το
y = t(x+ 1)

όπου το t διατρέχει τα σημεία του Fp. Καθεμία από τις ευθείες αυτές έχει δύο κοινά σημεία με τον
παραπάνω κύκλο modp. Το ένα είναι το (−1, 0) το άλλο το υπολογίζουμε λύνοντας το σύστημα:

C(Fp) : t
2(x+ 1)2 = x2 = 1 ⇒ (x+ 1)(t2(x+ 1) + x− 1) = 0

από όπου λογαριάζουμε

x =
1 − t2

1 + t2
,y =

2t
1 + t2

.

Παρατηρούμε ότι κάθε λύση της παραπάνω εξίσωσης οδηγεί σε ένα t και κάθε t σε μία λύση. Όμως
δεν μπορούμε να επιτρέψουμε στο 1 + t2 να γίνει 0.
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Ξεχωρίζουμε λοιπόν δύο περιπτώσεις: Η εξίσωση 1 + t2 έχει λύση modp. Αυτό μπορεί να συμβεί
μόνο στην περίπτωση που το −1 είναι τετραγωνικό υπόλοιπο mod p. Όμως έχουμε υπολογίσει ότι(

−1
p

)
= (−1)

p−1
2 .

Για να είναι το−1 τετραγωνικό υπόλοιπο πρέπει και αρκεί το p−1 ≡ 0modp ή ισοδύναμα p ≡ 1mod4.
Σε αυτή την περίπτωση κάθε σημείο t ∈ Fp που δεν είναι τετραγωνική ρίζα του−1 δίνει δύο σημεία της
C(Fp). Συνολικά λοιπόν έχουμε p − 2 σημεία τομής ευθείων. Αυτά μαζί με το αρχικό σημείο (−1, 0)
δίνουν ένα σύνολο από p− 1 σημεία.

Η δεύτερη περίπτωση είναι το −1 να μην είναι τετραγωνικό υπόλοιπο modp. Όμοια με την προη-
γούμενη περίπτωση βλέπουμε ότι αυτό μπορεί να συμβεί ακριβώς στην περίπτωση p ≡ 3mod4. Τώρα
και οι p τιμές του t δίνουν σημεία πάνω στην καμπύλη. Σε αυτά προσθέτουμε και το αρχικό σημείο για
να πάρουμε ότι το C(Fp) έχει p+ 1 σημεία.

Θεωρούμε το σύνολο S των ζευγαριών (a,b) ∈ (Z/pZ)∗ × (Z/pZ)∗ τα οποία ικανοποιούν την
a+ b = 1 και

(
a
p

)
=
(
b
p

)
= 1.

Το σύνολο S σχετίζεται με το C(Fp). Πράγματι, αν θέσουμε a = x2 και b = y2 βλέπουμε ότι κάθε
σημείο (x,y) ∈ C(Fp) διαφορετικό από τα (±1, 0) και (0,±1) απεικονίζεται σε ένα σημείο του S και
μάλιστα η συνάρτηση αυτή είναι 4 προς 1. Δηλαδή

#S = (C(Fp) − 4)/4,

συνεπώς

#S =

{
(p+ 1 − 4)/4 αν p ≡ 3mod4
(p− 1 − 4)/4 αν p ≡ 1mod4

Από τα παραπάνω προκύπτει ότι #S είναι περιττός αν p ≡ ±1mod8.
Η συνάρτηση σ(a,b) = (b,a) είναι μια ενέλιξη του συνόλου S, δηλαδή μια συνάρτηση 1-1 επί

σ : S→ S με την επιπλέον ιδιότητα ότι σ2 = 1. H σ έχει ακριβώς ένα σταθερό σημείο αν και μόνο αν
υπάρχει a ∈ Z/pZ ώστε 2a = 1 και

(
a
p

)
= 1. Επιπλέον η 2a = 1 έχει λύση στο Z/pZ με

(
a
p

)
= 1

αν και μόνο αν
(

2
p

)
= 1. Μία ενέλιξη όμως έχει ένα σταθερό σημείο αν και μόνο αν#S είναι περιττός.

Συνεπώς έχουμε καταλήξει στον τύπο: (
2
p

)
= (−1)

p2−1
2 .

Παρατήρηση O τετραγωνικός νόμος αντιστροφής μάς επιτρέπει να υπολογίζουμε το σύμβολο του
Legendre με τον παρακάτω τρόπο. Καταρχήν ο υπολογισμός του σύμβολου

(
a
p

)
ανάγεται στον υπο-

λογισμό του συμβόλου
(

v
p

)
, όπου v είναι το υπόλοιπο της διαίρεσης του a με p. Συνεπώς μπορούμε

να υποθέσουμε ότι το a < p. Στη συνέχεια παραγοντοποιούμε το a σε γινόμενο πρώτων παραγόντων

a = p1 · · ·ps

και κάθε σύμβολο της μορφής
(
pi

p

)
το αντιστρέφουμε σύμφωνα με τον κανόνα(
pi

p

)
= (−1)

(p−1)(pi−1)
8

(
p

pi

)
.
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Στη συνέχεια, αντί του συμβόλου
(

p
pi

)
, μπορούμε να υπολογίσουμε το

(
ui

pi

)
, όπου ui είναι το υπό-

λοιπο της διαίρεσης του p με το pi και να συνεχίσουμε τη διαδικασία μέχρι τέλους. Τα σύμβολα της

μορφής
(

2
pi

)
αν εμφανιστούν τέτοια τα υπολογίζουμε εύκολα αφού είναι ίσα με (−1)

p2
i
−1
8 .

Μπορούμε να κάνουμε την παραπάνω διαδικασία αποτελεσματικότερη εισαγάγοντας το σύμβολο
του Jacobi, το οποίο γενικεύει το σύμβολο του Legendre και κάνει τη διαδικασία συντομότερη αφού
αποφεύγουμε το στάδιο της παραγοντοποίησης. Η τεχνική αυτή αν και δεν είναι ιδιαίτερα δύσκολη να
περιγραφεί δεν θα μας απασχολήσει εδώ.

Παράδειγμα Να εξετασθεί αν η ισοτιμία

x2 ≡ −154mod163

έχει λύση.
O 163 είναι πρώτος αριθμός ενώ το −154 αναλύεται σε γινόμενο πρώτων παραγόντων −154 =

(−1) · 2 · 7 · 11. Επομένως (
−154
163

)
=

(
−1
163

)(
2

163

)(
7

163

)(
11
163

)
Τώρα (

−1
163

)
= (−1) 163−1

2 = (−1)81 = −1.

Επειδή 163 ≡ 3mod8 έχουμε
( 2

163
)
= −1. Επίσης αφού 7 ≡ 1mod4(

7
163

)
= −

(
163
7

)
= −

(
2
7

)
= (−1)(+1) = −1.

Αφού 11 ≡ 3mod4 (
11
163

)
= −

(
163
11

)
= −

(
9
11

)
= −

(
3
11

)2
= −1.

Τελικά έχουμε (
−154
163

)
= (−1)(−1)(−1)(−1) = +1

και συνεπώς η ισοτιμία έχει λύση.
Στο πρόγραμμα sage o παραπάνω υπολογισμός γίνεται ως εξής: (το σύμβολο Κronecker είναι η

γενίκευση του συμβόλου του Legendre που δίνει τιμή 0 όταν ο αριθμητής είναι διαιρετός με p.)

1 sage:kronecker(-154,163)
2 1

Παράδειγμα Για ποιούς περιττούς πρώτους αριθμούς p η ισοτιμία

x2 ≡ 5modp

έχει λύση;
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H ισοτιμία έχει λύση ακριβώς τότε όταν
(

5
p

)
= 1. Τώρα

(
5
p

)
= 1 αν και μόνο αν

(
p
5
)
= 1. Αν

p ≡ 1, 4mod5, τότε
(
p
5
)
= 1. Αν p ≡ 2, 3mod5, τότε

(
p
5
)
= −1. Συνεπώς έχει λύση ακριβώς τότε

όταν
p ≡ ±1mod5.

Μπορούμε να βρούμε με το sage όλα τα τετραγωνικά υπόλοιπα και όλα τα τετραγωνικά μη υπόλοιπα
ως εξής:

1 sage:R=[x for x in range(63) if kronecker(x,63)==1];R
2 [1, 2, 4, 8, 11, 16, 22, 23, 25, 29, 32, 37, 43, 44, 46,
3 50, 53, 58]
4 sage:NR=[x for x in range(63) if kronecker(x,63)==-1];NR
5 [5, 10, 13, 17, 19, 20, 26, 31, 34, 38, 40, 41, 47, 52, 55,
6 59, 61, 62]

Interactive
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4
Πεπερασμένα Σώματα

4.1. Επεκτάσεις σωμάτων

Θα ξεκινήσουμε εισάγοντας τον αναγνώστη σε μια σειρά από απαραίτητες αλγεβρικές έννοιες.
Περισσότερες πληροφορίες μπορεί να αντληθούν από γενικά βιβλίαΆλγεβρας (Βάρσος και άλλοι 2012),
(Fraleigh 2011) αλλά και από βιβλία Θεωρίας Galois (Stewart 2003).

4.1.1 Ορισμός:
Ας υποθέσουμε ότι K ⊂ L είναι ένας εγκλεισμός σωμάτων. Το L θα λέγεται επέκταση του σώματος K.

ΠαρατήρησηΑν το L είναι επέκταση του K από τις ιδιότητες των πράξεων του σώματος μπορούμε
να αποδείξουμε ότι το L είναι ένας διανυσματικός χώρος υπέρ του σώματος K με τις πράξεις

L× L→ L

(x,y) 7→ x+ y

και
K× L→ L

(λ, x) 7→ λx.
Θα ονομάζουμε βαθμό (και θα το συμβολίζουμε με [L : K]) της επέκτασης L/K τη διάσταση dimKL.

Παράδειγμα Το σώμα των μιγαδικών αριθμών C είναι διδιάστατος R-διανυσματικός χώρος και
συνεπώς [C : R] = 2.

Ας θεωρήσουμε μία επέκταση L/K, ένα στοιχείο a ∈ L και τον ομομορφισμό εκτίμησης

ϕa : K[x] → L

f 7→ ϕa(f) := f(a).
Αν ο πυρήνας της ϕa είναι διαφορετικός του μηδενικού ιδεώδους, τότε το a λέγεται αλγεβρικό. Στην
περίπτωση αυτή αφού ο δακτύλιος K[x] είναι περιοχή κυρίων ιδεωδών ο πυρήνας θα είναι ένα ιδεώδες
της μορφής

ker(ϕa) = g(x)K[x],
για κάποιο κατάλληλο πολυώνυμο g ̸= 0, το οποίο θα το ονομάζουμε το ελάχιστο πολυώνυμο του a.

54
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Διαφορετικά, αν δηλαδή ο πυρήνας της ϕa είναι το μηδενικό ιδεώδες, το στοιχείο a θα ονομάζεται
υπερβατικό.

ΠαρατήρησηΤο ότι το ιδεώδες των πολυωνύμων που μηδενίζονται στοa είναι κύριο και παράγεται
από το ελάχιστο πολυώνυμο g, έχει τη συνέπεια ότι κάθε πολυώνυμο που μηδενίζεται στο a να είναι
διαιρετό με g. Η συμπεριφορά αυτή είναι παρόμοια με τη γνώριμη ιδιότητα του ελαχίστου πολυωνύμου
μιας γραμμικής απεικόνισης από τη γραμμική άλγεβρα.

Παραδείγματα Σε μία επέκταση σωμάτων για παράδειγμαC/Q μπορεί να υπάρχουν και αλγεβρικά
και υπερβατικά στοιχεία. Για παράδειγμα το

√
2 είναι αλγεβρικό αφού ο πυρήνας της συνάρτησης ϕ√

2
είναι το ιδεώδες του δακτυλίου Q[x] που περιέχει κάθε πολυώνυμο που είναι διαιρετό με το x2 − 2.
Τα στοιχεία π, e είναι γνωστό ότι είναι υπερβατικά, αν και μία απόδειξη υπερβαίνει τους στόχους του
βιβλίου αυτού.

4.1.2 Ορισμός:
Θα λέμε μία επέκταση L/K αλγεβρική αν κάθε στοιχείο a ∈ L είναι αλγεβρικό υπέρ του K. Θα λέμε μια
επέκταση L/K πεπερασμένη αν [L : K] <∞.

Είναι σαφές ότι κάθε πεπερασμένη επέκταση είναι αλγεβρική. Πράγματι αν x ∈ L θεωρούμε το
σύνολο των δυνάμεων {1, x, x2, . . . , xn} όπου n = [L : K]. Αυτά είναι n + 1 στοιχεία σε έναν χώρο
διάστασης n, άρα είναι γραμμικά εξαρτημένα. Άρα υπάρχουν στοιχεία ai ∈ K ώστε

a0 + a1x+ · · ·anxn = 0,

δηλαδή το x μηδενίζει ένα πολυώνυμο με συντελεστές από το K και είναι αλγεβρικό.
Από την άλλη υπάρχουν αλγεβρικές επεκτάσεις που δεν είναι πεπερασμένες όπως θα δούμε στη

συνέχεια.

4.1.3 Πρόταση:
ΑνM/L και L/K δύο πεπερασμένες επεκτάσεις, τότε και ηM/K είναι πεπερασμένη και μάλιστα ισχύει:

[M : K] = [M : L] · [L : K].

Απόδειξη Πρόκειται για ένα γνωστό θεώρημα της γραμμικής άλγεβρας της συμπεριφοράς της διά-
στασης σε επέκταση των βαθμωτών. Η απόδειξη βασίζεται στην επιλογή μιας βάσης {v1, . . . , v[M:L]}

του M πάνω από το L και στην επιλογή μιας βάσης {w1, . . . ,w[L:K]} του L πάνω από το K.Τα [M :

L] · [L : K] το πλήθος στοιχεία viwj αποτελούν μία βάση τουM πάνω από το K.

4.1.4 Ορισμός:
Για ένα σώμα K η αλγεβρική κλειστότητα K του K ορίζεται να είναι μια αλγεβρική επέκταση του K ώστε
κάθε πολυώνυμο f ∈ K[x] να έχει όλες τις ρίζες του στο K.

Παρατηρήσεις Η ύπαρξη της αλγεβρικής κλειστότητας ενός τυχαίου σώματος απαιτεί το λήμμα
του Zorn και παραλείπεται. Επίσης μπορεί κανείς να αποδείξει ότι η αλγεβρική κλειστότητα του K είναι
μοναδική μέχρι ισομορφισμού που σταθεροποιεί κάθε στοιχείο του K.

http://en.wikipedia.org/wiki/Zorn%27s_lemma
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Στην περίπτωση του σώματος Q μπορούμε να θεωρήσουμε το σώμα

Q := ∩L∈IL

όπου η τομή λαμβάνεται πάνω στο σύνολο των επεκτάσεων L/K που είναι αλγεβρικά κλειστές και
περιέχουν το Q. Το σύνολο I είναι μη κενό αφού περιλαμβάνει το αλγεβρικά κλειστό σώμα C.

Η επέκτασηQ/Q είναι ένα από τα δυσκολότερα και περισσότερο ενδιαφέροντα θέματα στη μελέτη
της Θεωρίας Αριθμών αλλά και των Μαθηματικών γενικότερα.

Στη συνέχεια του μαθήματος θα μελετήσουμε συστηματικά την επέκταση Fp/Fp.

4.1.5 Πρόταση:
Θεωρούμε ένα ανάγωγο πολυώνυμο f(x) ∈ F[x]. Το σώμα K := F[x]/fF[x] είναι ένας διανυσματικός
χώρος υπέρ του σώματος F και

[K : F] := dimFK = degf.

ΑπόδειξηΠαρατηρούμε ότι χώρος πηλίκο είναι σε ένα προς ένα αντιστοιχία με τα δυνατά υπόλοιπα
της διαίρεσης με f(x) τα οποία είναι όλα τα πολυώνυμα βαθμού γνήσια μικρότερου του d.

Ο τελευταίος χώρος έχει ως βάση τα στοιχεία {1, x, . . . , xd−1} και συνεπώς dimFK = degf.

4.1.6 Θεώρημα:
Θεωρούμε ένα πολυώνυμο f(x) ∈ F[x]. Τότε υπάρχει μια επέκταση K του F, ώστε το f να έχει όλες τις
ρίζες του στο K.

Απόδειξη Με επαγωγή στον βαθμό. Αν deg(f) = 1 τότε K = F. Υποθέτουμε ότι για πολυώνυμα
βαθμού < n και για όλα τα σώματα η πρόταση είναι αληθής. Θεωρούμε ένα πολυώνυμο βαθμού n και
επιλέγουμε έναν ανάγωγο παράγοντα h του f. Υπάρχει σώμα K1 = F[x]/⟨h⟩ στο οποίο το h και άρα
και το f έχει μια ρίζα. Δηλαδή

f(x) = (x− ρ)g(x).

Το αποτέλεσμα προκύπτει από την επαγωγική υπόθεση για το g.

4.2. Στοιχεία θεωρίας Galois

Ας υποθέσουμε ότι έχουμε μία επέκταση L/K σωμάτων. Θεωρούμε το σύνολο των αυτομορφισμών

Gal(L/K) = {σ : L→ L,σ|K = Idk},

δηλαδή των ισομομορφισμών σωμάτων L → L οι οποίοι όταν περιοριστούν στο σώμα K το κρατούν
σταθερό. Το σύνολο Gal(L/K) απότελεί ομάδα με πράξη τη σύνθεση.

Παράδειγμα Η ομάδα Galois της επέκτασης C/R είναι ισόμορφη με την Z/2Z και περιέχει δύο
στοιχεία -τον ταυτοτικό ισομορφισμό και τη μιγαδική συζυγία-. Πράγματι, προκειμένου να περιγρά-
ψουμε έναν ισομορφισμό σ : C → C που αφήνει το σώμα R σταθερό, αρκεί να περιγράψουμε πόσο
κάνει το σ(i) αφού

σ(x+ iy) = x+ σ(i)y,
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για x,y ∈ R. Όμως, i2 = −1 συνεπώς εφαρμόζοντας τον σ έχουμε ότι σ(i)2 = −1, δηλαδή το σ(i)
δεν μπορεί να είναι τίποτε άλλο από μια τετραγωνική ρίζα του −1. Άρα σ(i) = ±i, στη μία περίπτωση
ο σ είναι η ταυτότητα, ενώ στην άλλη ο σ είναι η μιγαδική συζυγία.

4.2.1 Πρόταση:
Αν ο a ∈ L είναι ένα αλγεβρικό στοιχείο και ικανοποιεί μια αλγεβρική σχέση f(a) = 0, όπου το f(x) ∈
K[x], τότε κάθε στοιχείο της Gal(L/K) στέλνει το a σε μία άλλη ρίζα του f(x).

ΑπόδειξηTo θεώρημα αυτό είναι σαφές αφού αν

f(x) = a0 + a1x+ · · ·+ anxn

τότε η σχέση
σ(f(a)) = σ(0) = 0

δίνει ότι
a0 + a1σ(a) + · · ·+ anσ(a)n = 0

δηλαδή το σ(a) είναι επίσης ρίζα του f(x).
Παρατήρηση Το παραπάνω είναι γενίκευση του γνωστού θεωρήματος: οι ρίζες πολυωνύμων με

πραγματικούς συντελεστές εμφανίζονται σε ζευγάρια συζυγών μιγαδικών αριθμών.
Ερώτημα Ας υποθέσουμε ότι έχουμε ένα ανάγωγο πολυώνυμο f στο K[x], και έστω a1, . . . ,an οι

ρίζες του f. Είναι σωστό ότι κάθε μετάθεση των a1, . . . ,an επεκτείνεται σε ένα ισομορφισμό σωμάτων
μιας κατάληλης επέκτασης του L;

Πριν απαντήσουμε ας δούμε μία περίπτωση που αυτό δεν ισχύει. Για p πρώτο, το πολυώνυμο

1 + x+ · · ·+ xp−1

είναι ένα ανάγωγο πολυώνυμο του Q[x]. Οι ρίζες του είναι όλες οι p-ρίζες της μονάδας και όλες είναι
δύναμη μίας τέτοιας, δηλαδή υπάρχει μία ζp ώστε κάθε άλλη p-ρίζα του 1 να είναι της μορφής ζip για
κάποιο 1 ⩽ i ⩽ p− 1.

Σε αυτή την περίπτωση, αν σ(ζ) = ζi0 (δεν θα μπορούσε να είναι τίποτε άλλο παρά μία άλλη p-ρίζα
του 1) τότε αφού ο σ είναι ένας ισομορφισμός σωμάτων θα πρέπει να έχουμε ότι

σ(ζkp) = ζ
ki0
p .

Αυτό σημαίνει ότι αν “προσδιορίσουμε” την εικόνα μίας p-ρίζας του 1 έχουμε προσδιορίσει τις εικόνες
όλων των άλλων ριζών. Συνεπώς δεν εμφανίζονται όλες οι δυνατές μεταθέσεις μεταξύ των ριζών.

Με άλλα λόγια τα στοιχεία της ομάδας Galois είναι συγκεκριμένες μεταθέσεις που πρέπει να σέ-
βονται κάθε αλγεβρική σχέση μεταξύ των ριζών. Η ιδέα για τη σχέση αυτή μεταξύ μεταθέσεων και
αλγεβρικών σχέσεων μεταξύ των ριζών ήταν το εφαλτήριο του E. Galois για την ανάπτυξη της ομώνυ-
μης θεωρίας. Στην περίπτωση που οι ρίζες είναι αρκετά ανεξάρτητες εμφανίζεται ολόκληρη η Sn ως
ομάδα Galois.

Πρόβλημα Δίνεται μία πεπερασμένη ομάδα G. Υπάρχει μια επέκταση L/Q η οποία να έχει ως
ομάδα Galois την ομάδα G;

Αυτό είναι ένα διάσημο βαθύ άλυτο πρόβλημα γνωστό και ως αντίστροφο πρόβλημα της Θεωρίας
του Galois.

Για την επίλυσή του έχουν χρησιμοποιηθεί πλήθος εργαλεία από σχεδόν κάθε περιοχή των μαθη-
ματικών. O J.P. Serre φέρεται να έχει πει ότι το αντιστρόφο πρόβλημα της θεωρίας του Galois μας δίνει
τη δικαιολογία να μελετήσουμε πολλά και διαφορετικά μαθηματικά.

http://en.wikipedia.org/wiki/%C3%89variste_Galois
http://en.wikipedia.org/wiki/Inverse_Galois_problem
http://en.wikipedia.org/wiki/Inverse_Galois_problem
http://en.wikipedia.org/wiki/Jean-Pierre_Serre
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Σχήμα 4.1. Evariste Galois 1811-1832, Το παρόν έργο αποτελεί κοινό κτήμα (public
domain). Πηγή: Wikimedia Commons

Ας υποθέσουμε ότι έχουμε έναν αλγεβρικό αριθμό a ∈ L σε μία επέκταση του L/Q. Μπορούμε να
θεωρήσουμε τον αριθμό a modulo p? Δεν έχει νόημα! Μπορούμε όμως να υπολογίζουμε ένα πολυώ-
νυμο με συντελεστές στο Z που να έχει το a ως ρίζα και να θεωρήσουμε το πολυώνυμο αυτό modulo
p. Πώς θα το υπολογίσουμε αυτό το πολύωνυμο;

Ας δούμε μερικά παραδείγματα:
1. Να βρεθεί ένα πολυώνυμο με ρητούς συντελεστές που να έχει τοa+ibως ρίζα, όπουa,b ∈ R.

Ένα τέτοιο πολυώνυμο είναι το

(x− (a+ ib))(x− (a− ib)) = x2 − 2ax+ (a+ ib)(a− ib)

= x2 − 2ax+ (a2 + b2).
Προφανώς αυτό το πολυώνυμο είναι το ελάχιστο πολυώνυμο του Q[x] που έχει το a+ ib ως
ρίζα, αφού αν έχει το a + ib θα πρέπει να έχει και τη συζυγή ρίζα. Επιπλέον αν το b ̸= 0
το παραπάνω πολυώνυμο είναι ανάγωγο. Παρατηρήστε ότι οι συντελεστές του πολυωνύμου
δίνονται ως συμμετρικές εκφράσεις των ριζών:

(x− ρ1)(x− ρ2) = x
2 − (ρ1 + ρ2)x+ ρ1ρ2.

Επιπλέον μπορούμε να δούμε ότι στην περίπτωση που ρ1 = ρ, ρ2 = ρ, το άθροισμα ρ+ρ και
το γινόμενο των ριζων ρρ είναι αναλλοίωτα στοιχεία κάτω από τη μιγαδική συζυγία.

2. Να βρεθεί ένα πολυώνυμο στοQ[x] το οποίο να έχει ρίζα το a+b
√

2. Θα δουλέψουμε με τον
ίδιο τρόπο με το πολυώνυμο

(x− (a+ b
√

2))(x− (a− b
√

2)) = x2 − 2ax+ (a2 − 2b2).
Και πάλι αν το a+b

√
2 είναι ρίζα και το a−b

√
2 θα πρέπει να είναι ρίζα. Το παραπάνω πολυώνυμο

είναι ανάγωγο, αρκεί το b ̸= 0.

https://commons.wikimedia.org/wiki/File:Evariste_galois.jpg
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Σχήμα 4.2. J.P. Serre, Δημιουργός: R. Schmid, Το παρόν έργο αποτελεί κοινό κτήμα
(public domain). Πηγή: Wikimedia Commons

3. Ας δούμε τώρα κάτι δυσκολότερο: Μπορούμε να βρούμε ένα πολυώνυμο που να έχει ρίζα το√
2 +

√
3; Υπολογίζουμε ότι

(x−
√

2 −
√

3)(x+
√

2 −
√

3)(x−
√

2 +
√

3)(x+
√

2 +
√

3) =

= x4 − 10x+ 1

O παραπάνω υπολογισμός γίνεται στο sage ως εξής:

1 sage:R.<x,y> = PolynomialRing(QQ,2);R
2 Multivariate Polynomial Ring in x, y over Rational Field
3 sage:S.<sq2,sq3> = QuotientRing(R,R.ideal(x^2-2,y^2-3));S
4 Quotient of Multivariate Polynomial Ring in x, y over
5 Rational Field by the ideal (x^2 - 2, y^2 - 3)
6 sage:RR.<X> = PolynomialRing(S);RR
7 (X-sq2-sq3)*(X-sq2+sq3)*(X+sq2-sq3)*(X+sq2+sq3)
8 X^4 - 10*X^2 + 1

Interactive

https://commons.wikimedia.org/wiki/File:Jean-Pierre_Serre.jpg
http://users.uoa.gr/~kontogar/kallipos/FiniteFields-a.html
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Ορίζουμε τον δακτύλιο R ως έναν δακτύλιο δύο μεταβλητών με συντελεστές από τους ρητούς. Στη
συνέχεια ορίζουμε έναν νέο δακτύλιο S, στις μεταβλητές sq2,sq3 στον οποίο επιβάλλουμε (μέσω της
κατασκευής ενός δακτυλίου πηλίκου) να είναι οι τετραγωνικές ρίζες του 2, 3 αντίστοιχα. Κατασκευά-
ζουμε τέλος τον δακτύλιο πολυωνύμων S[X] μέσα στον οποίο εκτελούμε τη ζητούμενη πράξη!

4.3. Πεπερασμένα Σώματα

Η βιβλιογραφία για τα πεπερασμένα σώματα είναι εκτενής. Πέρα από βιβλία γενικής άλγεβρας
μπορούμε να προτείνουμε τα (Lidl and Niederreiter 1997) και (Mullen and Panario 2013).

4.3.1 Θεώρημα:
Κάθε πεπερασμένο F σώμα έχει ph το πλήθος στοιχεία όπου h είναι η διάσταση του F ως διανυσματικού
χώρου υπέρ του Fp.

Απόδειξη Θεωρούμε το F ώς διανυσματικό χώρο υπέρ του σώματος Fp := Z/pZ. Αναγκαστικά η
διάσταση είναι πεπερασμένη. Θεωρούμε μία βάση {e1, . . . , eh} του F. Κάθε στοιχείο του F γράφεται
στη μορφή:

λ1e1 + · · · λheh,
όπου τα λi διατρέχουν το Z/pZ. Προφανώς το F έχει ph στοιχεία, όσες και οι επιλογές των λi ∈ Fp.

Αντιστρόφως, αν δοθεί μια δύναμη πρώτου ph υπάρχει σώμα με ph το πλήθος στοιχεία; Αν το
h = 1 είναι σαφές ότι υπάρχει ένα τέτοιο σώμα το Fp = Z/pZ. Μάλιστα κάθε άλλο σώμα με p το
πλήθος στοιχεία είναι ισόμορφο με το Fp, αφού θα πρέπει να περιέχει ένα σώμα ισόμορφο με το Fp

και αφού έχουν το ίδιο πλήθος στοιχείων είναι ισόμορφα.
Θα χρειαστούμε την παρακάτω

4.3.2 Πρόταση:
Σε κάθε δακτύλιο R χαρακτηριστικής p για κάθε x,y ∈ R ισχύει:

(x+ y)p
h

= xp
h

+ yp
h .

Απόδειξη Θα το αποδείξουμε πρώτα για h = 1. Ισχύει ότι

(x+ y)p =

p∑
ν=0

(
p

ν

)
xνyp−ν.

Ισχύει
(
p
0
)
=
(
p
p

)
= 1.

Οι συντελεστές
(
p
ν

)
1 ⩽ ν ⩽ p− 1 είναι όλοι διαιρετοί με p. Πράγματι,(

p

ν

)
= p

(p− 1)!
i!(p− i)! ∈ Z

Κανείς παράγοντας του παρονομαστή (που είναι όλοι γνήσια μικρότεροι του p) δεν διαιρεί το p. Άρα
διαιρουν το (p− 1)! Συνεπώς (p−1)!

i!(p−i)! ∈ Z και(
p

ν

)
≡ 0modp 1 ⩽ ν ⩽ p− 1.
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Αυτό αποδεικνύει ότι
(x+ y)p = xp + yp.

Η γενική περίπτωση προκύπτει με επαγωγή: Αν ισχύει

(x+ y)p
h−1

= xp
h−1

+ yp
h−1 ,

τότε υψώνουμε στην p και χρησιμοποιούμε την περίπτωση h = 1 για να δείξουμε ότι

(x+ y)p
h

= xp
h

+ yp
h .

Χρειαζόμαστε ένα κριτήριο που θα εξασφαλίζει ότι ένα πολυώνυμο έχει απλές ρίζες. Πρώτα θα
χρειαστεί να αναπτύξουμε μια έννοια παραγώγου σε έναν οποιονδήποτε δακτύλιο. Ο ορισμός μας δεν
θα περιλαμβάνει καθόλου την έννοια του ορίου.

4.3.3 Ορισμός:
Για κάθε σώμα F υπάρχει μια συνάρτηση D : F[x] → F[x], η οποία ικανοποιεί

1. D(f+ g) = D(f) +D(g) για κάθε f,g ∈ F[x].
2. D(fg) = fD(g) +D(f)g

3. D(x) = 1,D(c) = 0 για κάθε c ∈ F.

Απόδειξη Παρατηρούμε ότι η 3η ιδιότητα σε συνδυασμό με τη δεύτερη επιβάλλειD(cf) = cD(f)

για κάθε c ∈ F, δηλαδή η D είναι γραμμική.
Λόγω γραμμικότητας αρκεί να ορίσουμε τη συνάρτησή μας πάνω στα στοιχεία xν, ν ∈ N. Επι-

πλέον, αφού D(x) = 1 έχουμε ότι

D(xn) = D(x)xn−1 + xD(xn−1).

Η παραπάνω σχέση επιβάλει να ορίσουμε D(xn) = nxn−1, όπως μπορούμε να δείξουμε με επαγωγή.

4.3.4 Πρόταση:
Αν p(x) ∈ F[x] πολυώνυμο βαθμούm με συντελεστές από ένα σώμα F τότε η εξίσωση p(x) = 0 έχει το
πολύm διακεκριμένες ρίζες στο F.

ΑπόδειξηΘα εφαρμόσουμε τη μέθοδο της επαγωγής ως προς τον βαθμό του πολυωνύμου p(x). Αν
m = 1 τότε το p(x) = ax+ b, a ̸= 0 και η p(x) έχει ακριβώς μία λύση στο F την x = −b/a.

Ανm ⩾ 2 και η p(x) = 0 δεν έχει καμία λύση τελειώσαμε. Αν η εξίσωση p(x) = 0 έχει μία λύση
a τότε

p(x) = (x− a)g(x)

όπου g(x) ∈ F[x]. Αν έχουμε μια άλλη ρίζα b η οποία είναι διαφορετική από την a τότε επειδή

p(b) = (b− a)g(b) = 0

και b− a ̸= 0 έχουμε ότι g(b) = 0, δηλαδή το b είναι ρίζα του g(x) το οποίο όμως έχει βαθμόm− 1,
οπότε για αυτό μπορούμε να χρησιμοποιήσουμε την επαγωγική υπόθεση.
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Εφαρμογή Ισχύει ότι
(p− 1)! ≡ −1modp

για κάθε πρώτο αριθμό p. H παραπάνω ισότητα είναι γνωστή στη βιβλιογραφία ως θεώρημα τουWilson.
Αν το p = 2, τότε η παραπάνω ισότητα ισχύει. Αν p περιττός πρώτος παρατηρούμε ότι η εξίσωση xp−x
έχει ως ρίζα κάθε στοιχείο του Fp, οπότε το ζητούμενο προκύπτει με σύγκριση του σταθερου όρου των
πολυωνύμων

x(x− 1)(x− 2) · · · (x− (p− 1)) = xp − x.
Παράδειγμα Στον δακτύλιο R[x], όταν το R δεν είναι σώμα, μπορεί ένα πολυώνυμο να έχει περισ-

σότερες λύσεις από τον βαθμό του. Για παράδειγμα η εξίσωση δευτέρου βαθμού

x2 − 1 = 0

στον Z/8Z έχει 4-λύσεις, τις x = 1, 3, 5, 7. Αυτό δεν έρχεται σε αντίθεση με την παραπάνω πρόταση
αφού το Z/8Z δεν είναι σώμα.

4.3.5 Θεώρημα:
Το πολυώνυμο f ∈ F[x] έχει πολλαπλή ρίζα στο ρ ∈ F, δηλαδή είναι διαιρετό με (x − ρ)i για i ⩾ 2 αν
και μόνο αν f(ρ) = D(f)(ρ) = 0.

ΑπόδειξηΑς υποθέσουμε ότι f(x) = (x−ρ)ig(x) και (x−ρ) δεν διαιρεί το g(x). Παραγωγίζουμε
και έχουμε:

Df(x) = (x− ρ)iD(g(x)) + i(x− ρ)i−1g(x).
Το συμπέρασμα είναι άμεσο.

Το παραπάνω αποτέλεσμα μας εξασφαλίζει ότι το πολυώνυμο xp − x έχει απλές ρίζες, αφού
D(xp−x) = −1. Επιπλέον το xp−x έχει ως ρίζα κάθε στοιχείο του Fp, όπως μπορούμε να δείξουμε με
επαγωγή. Πράγματι 1p = 1, υποθέτουμε ότιnp = n και υπολογίζουμε ότι (n+1)p = np+1p = n+1.

Ας θεωρήσουμε το πολυώνυμο gp,h := xp
h
− x. Με βάση το κριτήριο της παραγώγου όλες οι

ρίζες του είναι διαφορετικές. Επιπλέον μπορούμε να αποδείξουμε ότι οι ρίζες έχουν τη δομή σώματος.
Πράγματι, έστω ένα αρκετά μεγάλο σώμα το οποίο να περιέχει όλες τις ρίζες του gp,h. Η ιδιότητα

(a+ b)p
h

= ap
h

+ bp
h

επιβάλλει ότι το άθροισμα και η διαφορά ριζών του gp,h είναι ρίζα του gp,h. Επίσης το γινόμενο ριζών
είναι ρίζα και οι ρίζες του gp,h αποτελούν ένα σώμα.

Θα δείξουμε τώρα ότι κάθε πεπερασμένο σώμα με ph στοιχεία ταυτίζεται με το σώμα ριζών του
gp,h. Πράγματι, έστω ένα σώμα με ph στοιχεία. Αναγράφουμε τα στοιχεία του σώματος

{a1, . . . ,aph}

με a1 = 0, a2 = 1. Έστω ένα μη μηδενικό στοιχείο a. Πολλαπλασιάζουμε όλα τα στοιχεία του σώματος
με a και έχουμε τα

{aa1, . . . ,aaph}.
Ο πολλαπλασιασμός με a διατηρεί τα μη μηδενικά στοιχεία και συνεπώς

ph∏
i=2

ai =

ph∏
i=2

aai,
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άρα το τυχαίο μη μηδενικό στοιχείο ικανοποιεί την εξίσωση

ap
h−1 = 1

με άλλα λόγια είναι ρίζα του πολυωνύμου gp,h. Προφανώς και το 0 είναι ρίζα του gp,h.
Στο πρόγραμμα sage μπορούμε να κατασκευάσουμε πεπερασμένα σώματα ως εξής:

1 sage:k = GF(9, ’a’);k
2 Finite Field in a of size 3^2
3 sage:for i,x in enumerate(k): print i,x
4 0 0
5 1 a
6 2 a + 1
7 3 2*a + 1
8 4 2
9 5 2*a
10 6 2*a + 2
11 7 a + 2
12 8 1

Interactive

4.3.6 Θεώρημα:
Η πολλαπλασιαστική ομάδα ενός πεπερασμένου σώματος είναι μια κυκλική ομάδα.

Απόδειξη 1η Γνωρίζουμε ότι η πολλαπλασιαστική ομάδα G του σώματος είναι αβελιανή με τάξη
pn−1. Από το θεώρημα ταξινόμησης των πεπερασμένων αβελιανών ομάδων αυτή θα είναι της μορφής:

G = Z/n1Z⊕ · · · ⊕ Z/nrZ,

για φυσικούς αριθμούς n1, . . . ,nr των οποίων το γινόμενο είναι pn − 1. Θεωρούμε το ελάχιστο κοινό
πολλαπλάσιο τουςm. Είναι σαφές ότιm ⩽ n1 · · ·nr. Ένα τυχαίο στοιχείο x ∈ G θα είναι της μορφής
x = (x1, . . . , xn) όπου xν ∈ Z/nνZ. Άρα xm = 1. Όμως η εξίσωση xm − 1 σε ένα σώμα έχει το
πολύ m ρίζες άρα m = pn − 1 = |G|. Αυτό σημαίνει ότι (ni,nj) = 1 και συνεπώς η ομάδα G είναι
κυκλική.

4.3.7 Ορισμός:
Κάθε γεννήτορας της κυκλικής ομάδας (Fph)∗ θα λέγεται πρωταρχικό στοιχείο.

Παράδειγμα Στο σώμα με 7 στοιχεία έχουμε F∗
7 = {1, 2, 3, 4, 5, 6}. Παρατηρούμε ότι οι δυνάμεις

του 2 είναι οι {2, 22 = 4, 23 = 8 = 1}, άρα το 2 έχει τάξη 3 και δεν μπορεί να παράγει ολόκληρη την

http://users.uoa.gr/~kontogar/kallipos/FiniteFields-b.html
http://en.wikipedia.org/wiki/Abelian_group#Finite_abelian_groups
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πολλαπλασιαστική ομάδα. Θεωρούμε τώρα τις δυνάμεις του 3. 32 = 9 = 2, άρα το 3 έχει τάξη 6 και
παράγει όλη την ομάδα.

Θα χρειαστούμε μερικά στοιχεία από τη θεωρία των κυκλικών ομάδων.

4.3.8 Πρόταση:
Σε μία κυκλική ομάδα με γεννήτορα T και τάξηm, το στοιχείο T i έχει τάξηm/(m, i).

Απόδειξη Πράγματι αν s είναι η τάξη του T i, τότε T is = 1 και έτσιm | is. Συνεπώςm/(i,m) | s.
Από την άλλη (T i)m/(i,m) = (Tm)i/(i/m) = 1. Άρα s | m/(i,m), συνεπώς s = m/(i,m).

4.3.9 Πρόταση:
Θεωρούμε μια κυκλική ομάδα G = ⟨T⟩ με τάξηm. Για κάθε διαιρέτη δ | m το πλήθος των στοιχείων με
τάξη δ είναι ϕ(δ).

Απόδειξη Σύμφωνα με την παραπάνω πρόταση τα στοιχεία T i με (a, i) = 1 είναι ακριβώς τα
στοιχεία με τάξηm. Αυτά είναι ακριβώς ϕ(m) το πλήθος.

Ένα στοιχείο με τάξη δ | m είναι (πάλι σύμφωνα με την παραπάνω πρόταση) το στοιχείο Tm/δ.
Αυτό γεννά μια κυκλική ομάδα ⟨Tm/δ⟩ η οποία έχει για γεννήτορες τα στοιχεία T (m/δ)j με (j, δ) = 1.
Τα στοιχεία αυτά είναι ϕ(δ) το πλήθος.

4.3.10 Πρόταση:
Για κάθε φυσικό αριθμόm ισχύει

m =
∑
δ|m

ϕ(δ).

Απόδειξη Εδώ θα δώσουμε μια απόδειξη βασισμένη στη θεωρία των κυκλικών ομάδων. Θεωρούμε
την κυκλική ομάδα με τάξη m και διαμερίζουμε τα στοιχεία της ανάλογα με την τάξη τους. Από το
θεώρημα του Lagrange οι δυνατές τάξεις στοιχείων της ομάδας είναι οι διαιρέτες δ | m. Από την
παραπάνω πρόταση ο τύπος είναι σαφής.

Κάνοντας χρήση του τύπου

ϕ(m) =
∑
δ|m

ϕ(δ)

μπορούμε να δώσουμε ακόμα μία απόδειξη ότι η πολλαπλασιαστκή ομάδα ενός πεπερασμένου σώματος
είναι κυκλική. Θα χρειαστούμε το παρακάτω:

4.3.11 Πρόταση:
Μια πεπερασμένη ομάδα G με τάξηm είναι κυκλική αν και μόνο αν για κάθε διαιρέτη δ | m υπάρχει το
πολύ μία κυκλική υποομάδα της G με τάξη δ.

http://en.wikipedia.org/wiki/Lagrange%27s_theorem_%28group_theory%29
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Απόδειξη Αν η G είναι κυκλική, τότε είναι σαφές ότι έχουμε ακριβώς μια υποομάδα με τάξη δ για
κάθε δ | m.

Αντιστρόφως, τα στοιχεία με τάξη δ στην ομάδα G είναι ή 0 ή ϕ(δ). Πράγματι αν δεν υπάρχει
στοιχείο με τάξη δ το πλήθος τους είναι 0 ενώ αν υπάρχει στοιχείο με τάξη δ τότε αυτό θα παράγει μια
κυκλική ομάδα με τάξη δ η οποία θα είναι μοναδική. Αυτό θα έχει ως συνέπεια το πλήθος των στοιχείων
με τάξη δ αν δεν είναι 0 να είναι ϕ(δ). Διαμερίζουμε και πάλι τα στοιχεία της ομάδας με τάξη δ. Από
τον τύπο του αθροίσματος έχουμε ότι∑

δ|m

ϕ(δ) = m =
∑
δ ′|m

ϕ(δ ′)

όπου το αριστερό άθροισμα διατρέχει τους διαιρέτες δ | m ενώ το δεξί τους διαιρέτες δ ′ για τους
οποίους υπάρχει στοιχείο τάξης δ ′ στην ομάδα G. Είναι σαφές (αφού και τα δύο αθροίσματα δίνουν
αποτέλεσμα m) ότι για κάθε διαιρέτη υπάρχει στοιχείο τάξης δ και θεωρώντας δ = m, έχουμε ότι η
ομάδα είναι κυκλική.

Μπορούμε τώρα να δείξουμε ότι η πολλαπλασιαστική ομάδα ενός πεπερασμένου σώματος είναι
κυκλική: Πράγματι, για κάθε δ | ph − 1 = |Fph | τα στοιχεία με τάξη δ είναι ακριβώς οι δ-ρίζες της
μονάδας οι οποίες είναι οι λύσεις της εξίσωσης

xδ − 1 = 0

η οποία έχει ή ακριβώς δ το πλήθος ρίζες ή καμία.

4.3.12 Πρόταση:
Κάθε υπόσωμα του σώματος Fpn έχει pd στοιχεία με d | n. Επιπλέον, για d | n υπάρχει μοναδικό
υπόσωμα του F με pd το πλήθος στοιχεία.

Απόδειξη Έστω K υπόσωμα του Fpn . Η χαρακτηριστική του είναι p άρα έχουμε την παρακάτω
αλυσίδα σωμάτων:

Fp ⊂ K ⊂ Fpn .

O βαθμός της επέκτασης [K : Fp] = d, ενώ ο βαθμός της επέκτασης [Fpn : Fp] = n. Άρα

n = d · [Fpn : K].

Αντιστρόφως αν d | n, τότε (pd − 1) | (pn − 1), αφού:

(pn − 1) = (pd)n/d − 1 = (pd − 1)(1 + pd + p2d + · · ·+ pd(n/d−1)).

Άρα xpd−1 − 1 | xp
n−1 − 1 και συνεπώς xpd

− x | xp
n
− x. To σώμα ριζών του xpd

− x έχει pd
στοιχεία και δεν υπάρχει άλλο τέτοιο σώμα (αφού κάθε μη μηδενικό θα ήταν ρίζα του xd − x.)

Παρατήρηση Αφού η ομάδα Fph είναι κυκλική τάξης ph − 1, υπάρχουν ακριβώς ϕ(ph − 1)
γεννήτορές της (πρωταρχικά στοιχεία).

4.3.13 Πρόταση:
Για κάθε πεπερασμένο σώμα Fpk και κάθε n υπάρχει ένα ανάγωγο πολυώνυμο βαθμού n.
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Απόδειξη Θεωρούμε ένα σώμα E με pnk το πλήθος στοιχεία. Θεωρούμε ένα πρωταρχικό στοιχείο
ζ του E. Ισχύει ότι E = Fpk(ζ). Ο βαθμός της επέκτασης Fpk(ζ)/Fpk είναι n και ταυτίζεται με τον
βαθμό του ανάγωγου πολυώνυμου του ζ. Το ελάχιστο πολυώνυμο του ζ είναι συνεπώς ίσο με n.

4.3.14 Θεώρημα:
Έστω Fpn ένα πεπερασμένο σώμα με pn το πλήθος στοιχεία. Θεωρούμε ένα ανάγωγο πολυώνυμο σ(x) ∈
Fpn [x]. Αν ζ είναι μια ρίζα του πολυωνύμου σ(x), τότε το σώμα ριζών του σ(x) είναι το Fpn(ζ). Με άλλα
λόγια, αν επισυνάψουμε μία ρίζα του αναγώγου πολυωνύμου τότε τις επισυνάπτουμε όλες.

Απόδειξη Το σώμα Fpn(ζ), όπου ζ ρίζα του σ(x) είναι ένα σώμα με pnd στοιχεία, όπου d =

deg(σ(x)). Άρα το Fpn(ζ) είναι το σώμα ριζών του xpnd
− x. Το σ(x) διαιρεί το xpnd

− x. Συνεπώς
όλες οι ρίζες του σ(x) είναι και ρίζες του xpnd

− x.
Παρατήρηση Σε σώματα χαρακτηριστικής 0 το παραπάνω θεώρημα δεν είναι σωστό. Πράγματι

το πολυώνυμο x3 − 2 ∈ Q[x] έχει μια πραγματική ρίζα την 3√2 ∈ R. Το σώμα Q( 3√2) δεν περιέχει τις
άλλες δύο μιγαδικές ρίζες 3√2ω, 3√2ω2 του x3 − 2, όπου ω,ω2 = ω είναι οι μιγαδικές τρίτες ρίζες
της μονάδας.

4.3.15 Πρόταση:
Έστω Fph σώμα με q = ph το πλήθος στοιχεία και σ(x) ανάγωγο πολυώνυμο υπέρ του σώματος Fph

και το οποίο έχει βαθμό d. To σ(x) | (xqn
− x) αν και μόνο αν d | n.

Απόδειξη Έστω ζ μια ρίζα του σ(x). Το σώμα Fq(ζ) είναι ένα σώμα με qd το πλήθος στοιχεία. Αν
σ(x)|xq

n
− x τότε το ζ είναι ρίζα του xqn

− x και συνεπώς το Fq(ζ) με qd το πλήθος στοιχεία είναι
υπόσωμα του Fqn . Το σώμα ριζών του xqn

− x με qn το πλήθος στοιχεία έχει ένα υπόσωμα με qd
στοιχεία αν και μόνο αν d | n.

4.4. O τελεστής του Frobenious

Θεωρούμε τo πεπερασμένο σώμα Fq με q = ph το πλήθος στοιχεία. Θα δείξουμε ότι για κάθε
φυσικό αριθμό d, υπάρχει μοναδικό μέχρι ισομορφισμού σώμα F ώστε [F : Fq] = d. Το σώμα αυτό
είναι το σώμα Fqd .

Ό τελεστής του Frobenious είναι μία συνάρτηση:

Fq : Fqd → Fqd

x 7→ xq.
Παρατηρούμε ότι

Fq(x+ y) = Fq(x) + Fq(y)

και ότι
Fq(xy) = Fq(x) · Fq(y).

Επιπλέον ισχύει ότι x ∈ Fqd είναι στοιχείο του Fq αν και μόνο αν Fq(x) = x.
Πράγματι έχουμε αποδείξει ότι τα στοιχεία του σώματος Fq είναι ακριβώς οι ρίζες του πολυωνύ-

μου xq − x. Αυτό σημαίνει ότι η συνάρτηση του Frobenious είναι γραμμική απεικόνιση του Fqd αν
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θεωρήσουμε το Fqd ως διανυσματικό χώρο υπέρ του σώματος Fq, δηλαδή

Fq(λx+ µy) = λFq(x) + µFq(y),

για κάθε x,y ∈ Fqd και λ,µ ∈ Fq.
Ας θεωρήσουμε την αλγεβρική κλειστότητα Fq του σώματος Fq. Κάθε στοιχείο x του σώματος Fq

είναι αλγεβρικό υπέρ του σώματος Fq, άρα ικανοποιεί ένα ελάχιστο πολυώνυμο βαθμού d για κάποιο d
και συνεπώς είναι στοιχείο του σώματος Fqd για κάποιο d. Μπορούμε σε κάθε περίπτωση να ορίσουμε
τον τελεστή του Frobenious ως συνάρτηση

Fq : Fq → Fq,

x 7→ xq.

Έχουμε αποδείξει ότι

4.4.1 Θεώρημα:
Για κάθε x ∈ Fq

x ∈ Fq αν και μόνο αν Fq(x) = x.
Επίσης το παραπάνω μπορεί να γενικευτεί ως εξής:
Για κάθε x ∈ Fq

x ∈ Fqℓ αν και μόνο αν (Fq)ℓ(x) = Fqℓ(x) = x.

ΠαρατήρησηΟ τελεστής του Frobenious παίζει τον ρόλο της μιγαδικής συζυγίας η οποία είναι μία
συνάρτηση C → C. Είναι γνωστό ότι οι πραγματικοί αριθμοί είναι τα σταθερά στοιχεία της συζυγίας,
δηλαδή ένα x ∈ C ανήκει στο R αν και μόνο αν x = x.

ΠαρατήρησηΤο σώμαFph είναι το υπόσωμα τουFp που σταθεροποιείται από τον τελεστή Fq,q =

ph. Τα υποσώματα του Fq είναι της μορφής Fpℓ που σταθεροποιούνται από τον Fpℓ . Αφού Fpℓ ⊂ Fq o
τελεστής Fq ανήκει στην ομάδα που παράγει ο Fpℓ , άρα Fq = Fs

pℓ για κάποια δύναμη s. Δηλαδή pℓs =

ph. Δηλαδή δείξαμε και με έναν διαφορετικό τρόπο ότι τα υποσώματα του σώματος Fph αντιστοιχούν
στους διαιρέτες του h.

ΠαρατήρησηΜία γνωστή πρόταση σχετικά με τα πραγματικά πολυώνυμα αναφέρει ότι αν ένα πο-
λυώνυμο f(x) ∈ R[x] έχει μία ρίζα τότε θα έχει και τη συζυγή της. Η ανάλογη πρόταση στην περίπτωση
των πεπερασμένων σωμάτων είναι η εξής:

4.4.2 Πρόταση:
Αν a ρίζα του πολυωνύμου f ∈ Fq[x] τότε και όλες οι δυνάμεις Fiq(a) θα είναι ρίζες του f.

Απόδειξη Έστω f(x) =
∑n

ν=0 aνx
ν. Έφαρμόζουμε τον τελεστή Fiq στην εξίσωση

f(a) = 0 ⇔
n∑

ν=0
aνa

ν = 0
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και χρησιμοιποιούμε το γεγονός ότι ο Fiq είναι ομομορφισμός δακτυλίων καθώς και το ότι σταθεροποιεί
τα στοιχεία του σώματος Fq για να καταλήξουμε στην εξίσωση:

n∑
ν=0

aνF
i
q(a)

ν = 0 ⇔ f(Fiq(a)) = 0

Στην πραγματικότητα η ομάδα Galois της επέκτασης Fqd/Fq παράγεται από τον τελεστή του
Frobenious. Καταρχήν ο τελεστής του Frobenious είναι ένας αυτομορφισμός Fqd → Fqd ο οποίος
κρατά σταθερό το σώμα Fq.

Ας είναιFqd = Fq[x]/⟨f(x)⟩ μία γραφή του σώματοςFqd ως πηλίκο ενός πολυωνυμικού δακτυλίου
modulo το κύριο ιδεώδες που παράγεται από ένα ανάγωγο πολυώνυμο f.

Σταθεροποιούμε μία ρίζα a ∈ Fqd του f. Αποδείξαμε ότι οι

a,aq,aq2 ,aq3 . . .
είναι επίσης ρίζες του f(x). Αυτές λέγονται συζυγείς του a. Η ακολουθία έχει πεπερασμένο πλήθος
διακεκριμένων μεταξύ τους στοιχείων. Υποθέτουμε a ̸= 0. Έστω δ ο ελάχιστος θετικός ακέραιος για
τον οποίο υπάρχει j με 0 ⩽ j < δ ώστε aqδ

= aq
j . Τότε

1 = aq
δ−qj

= aq
j

(aq
δ−j−1).

Η τελευταία σχέση μας λέει ότι η τάξη ord(a) του a ως στοιχείο της πολλαπλασιαστικής ομάδας F∗
qd

ικανοποιεί
ord(a) | qj(qδ−j − 1).

Aπό την άλλη μεριά #F∗
qd = qd–1, οπότε ord(a) | qd–1 και συνεπώς (ord(a),qj) = 1, άρα έχουμε

ord(a) | (qδ−j–1) ή
aq

δ−j

= a.
Το δ όμως είναι ο εκθέτης της πρώτης επανάληψης. Συνεπώς θα πρέπει j = 0 οπότε

aq
δ

= a.
Όμως a ∈ Fqd και #Fqd = qd το οποίο σύμφωνα με το θεώρημα του Lagrange δίνει aqd

= a.
Θα αποδείξουμε την παρακάτω:

4.4.3 Πρόταση:

(xm − 1, xn − 1) = x(m,n) − 1.

Πράγματι μπορούμε να υποθέσουμε ότιm > n. Σε αυτή την περίπτωση

xm − 1 − xm−n(xn − 1) = xm−n − 1.
Συνεπώς ένα πολυώνυμο που διαιρεί και το xm− 1 και το xn− 1 θα διαιρεί και το xm−n− 1. Από την
επαγωγική υπόθεση

(xm−n − 1, xn − 1) = x(m−n,n) − 1
όμως

(m,n) = (m− n,n)
συνεπώς

(xm − 1, xn − 1) = (xm−n − 1, xn − 1) = x(m−n,n) − 1 = x(m,n) − 1.
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2

Από την παραπάνω πρόταση παίρνουμε ότι aqd,δ
= a. Αυτό όμως είναι σε κάθε περίπτωση άτοπο,

διότι υποθέσαμε ότι δ είναι η πρώτη επανάληψη της ακολουθίας

a,aq,aq2 ,aq3 . . .
Εκτός αν (δ,d) = δ. Δηλαδή πρέπει το δ | d.

Συμπέρασμα: Το πλήθος των διακεκριμένων συζυγών δ του a είναι ένας διαιρέτης του d. To δ
αυτό θα λέγεται βαθμός του a. Μάλιστα είναι ο ελάχιστος θετικός ακέραιος ώστε

qδ ≡ 1modt,
όπου t = ord(a). Δηλαδή αποδείξαμε το

4.4.4 Θεώρημα:
Το πλήθος των (διακεκριμένων) συζυγών του a, έστω δ, είναι ένας διαιρέτης του d. Ο δ είναι ο ελάχιστος
θετικός ακέραιος που ικανοποιεί την

t = ord(a) | qδ–1.
Ακόμα, αν λ = µδ+ r όπου 0 ⩽ r ⩽ d–1 τότε

aq
λ

= aq
r .

Απόδειξη Θα αποδείξουμε ότι αν λ = µδ+ r όπου 0 ⩽ r ⩽ d–1 τότε

aq
λ

= aq
r .

Παρατηρούμε ότι
aq

λ

= aq
µδ+r

=
(
aq

δ
)µ
aq

r

= aq
r .

2

Το ελάχιστο πολυώνυμο του a θα πρέπει να έχει τουλάχιστον δ ρίζες. Συγκεκριμένα αποδείξαμε
ότι μαζί με το a και οι δυνάμεις

a,aq,aq2 ,aq3 . . .aqδ−1

είναι επίσης ρίζες. Έστω
fa(x) := (x–a)(x–aq) · · · (x− aδ−1)

και f(x) το ελάχιστο πολυώνυμο του f.
Τότε το fa(x) διαιρεί το f(x). Θα αποδείξουμε ότι fa(x) = f(x).
Γράφουμε

fa(x) := (x–a)(x–aq) · · · (x− aδ−1) =
δ∑

ν=0
Aνx

ν,

όπου Ai ∈ Fqd . Υψώνουμε στην q-δύναμη (δηλαδή εφαρμόζουμε τον τελεστή του Frobenious) για να
πάρουμε

fa(x)
q := (x–a)q(x–aq)q · · · (x− aδ−1)q =

δ∑
ν=0

Aq
νx

qν.

Επιπλέον έχουμε ότι (x− b)q = xq − (−1)qbq = xq − bq. Αυτό μας δίνει ότι το

fa(x)
q = fa(x

q) =

δ∑
ν=0

Aνx
νq
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και έτσι καταλήγουμε στην
δ∑

ν=0
Aνx

νq =

δ∑
ν=0

Aq
νx

νq

άρα
A

q
i = Ai

για κάθε i = 1, . . . , δ− 1, συνεπώς Ai ∈ Fq. Αποδείξαμε λοιπόν το ακόλουθο:

4.4.5 Θεώρημα:
Αν Fqd πεπερασμένο σώμα με qd στοιχεία καιK υπόσωμα με με q στοιχεία και a ∈ Fqd , τότε το ελάχιστο
πολυώνυμο του a ως προς το σώμα K είναι το

fa(x) := (x–a)(x–aq) · · · (x− aδ−1),
όπου δ είναι ο ελάχιστος φυσικός τέτοιος ώστε

qδ ≡ 1modord(a).

Παράδειγμα Για q = 2 και d = 4 θεωρούμε την επέκταση
F/K όπου F = F16,K = F2 = {0, 1}

Παρατηρούμε ότι το x4 + x + 1 ∈ F2[X] είναι ανάγωγο. Θα κατασκευάσουμε το σώμα με 16 = 24

στοιχεία μέσω αυτού του πολυωνύμου, δηλαδή θα κατασκευάσουμε το

F16 = F2[x]/⟨x4 + x+ 1⟩.
Ο F16 είναι F2-διανυσματικός χώρος διάστασης 4.

Αν με a συμβολίσουμε το x (modulo x4 + x + 1) τότε, ως διάνυσμα, το a είναι το (0, 0, 1, 0).
Τα στοιχεία του F16 θα αντιστοιχούν σε διατεταγμένες τετράδες (a,b, c,d) όπου τα a,b, c,d είναι οι
συντελεστές του υπολοίπου της διαίρεσης με x4+x+1, το υπόλοιπο δηλαδή θα είναι ax3+bx2+cx+d.

Υπολογίζουμε τις δυνάμεις του a:
a2 → x2 επομένως a2 = (0, 1, 0, 0)
a3 → x3 επομένως a3 = (1, 0, 0, 0)
a4 → x4 (modulo x4 + x+ 1 = a+ 1 επομένως a4 = (0, 0, 1, 1)
a5 = a2 + a επομένως a5 = (0, 1, 1, 0)
a6 = a3 + a2 επομένως a6 = (1, 1, 0, 0)
a7 = a4 + a3 = a3 + a+ 1 επομένως a7 = (1, 0, 1, 1)
a8 = a4 + a2 + a = a2 + 2a+ 1 = a2 + 1 επομένως a8 = (0, 1, 0, 1)
a9 = a4 + a επομένως a9 = (1, 0, 1, 0)
a10 = a4 + a2 = a2 + a+ 1 επομένως a10 = (0, 1, 1, 1)
a11 = a3 + a2 + a επομένως a11 = (1, 1, 1, 0)
a12 = a4 + a3 + a2 = a3 + a2 + a+ 1 επομένως a12 = (1, 1, 1, 1)
a13 = a4 + a3 + a2 + a = a3 + a2 + 2a+ 1 = a3 + a2 + 1 επομένως a13 = (1, 1, 0, 1)
a14 = a4 + a3 + a = a3 + 2a+ 1 = a3 + 1 επομένως a14 = (1, 0, 0, 1)
a15 = a4 + a = 2a+ 1 = 1 επομένως a15 = (0, 1, 0, 1)
Κατασκευάζουμε τον παρακάτω πίνακα:
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Πίνακας 4.1: Δυνάμεις του a, τάξεις και ελάχιστα πολυώνυμα

i ai ord(ai) deg(a) ελάχιστο πολυώνυμο

0 (0001) 1 1 x+ 1
1 (0010) 15 4 (x–a)(x–a2)(x–a4)(a–a8)
2 (0100) 15 4 (x–a)(x–a2)(x–a4)(x–a8)
3 (1000) 5 4 (x–a3)(x–a6)(x–a9)(x–a12)
4 (0011) 15 4 (x–a)(x–a2)(x–a4)(x–a8)
5 (0110) 3 2 (x–a5)(x–a10)
6 (1100) 5 4 (x–a3)(x–a6)(x–a9)(x–a12)
7 (1011) 15 4
8 (0101) 15 4 (x–a)(x–a2)(x–a4)(x–a8)
9 (1010) 5 4 (x–a3)(x–a6)(x–a9)(x–a12)
10 (0111) 3 2 (x–a5)(x–a10)
11 (1110) 15 4
12 (1111) 5 4 (x–a3)(x–a6)(x–a9)(x–a12)
13 (1101) 15 4
14 (1001) 15 4
15 (0001)

Θυμόμαστε ότι ο βαθμός του ai είναι ο ελάχιστος φυσικός d > 0 τέτοιος ώστε
qd ≡ 1(modord(ai)).

Εδώ για το a έχουμε t = 15 και q = 2, οπότε θέλουμε
2d ≡ 1(mod15).

Δηλαδή d = 4. Έχουμε ότι:
(x–a)(x–a2)(x–a4)(x–a8) = (x2–ax–a2x+ a3)(x–a4)(x–a8) =

= (x3–ax2–a2x2 + a3x–a4x2 + a5x+ a6x–a7)(x–a8) =

= (x3–(a+ a2 + a4)x2 + (a3 + a5 + a6)x–a7)(x–a8) =

= x4–(a+a2+a4)x3+(a3+a5+a6)x2–a7x–a8x3+a8(a+a2+a4)x2–a8(a3+a5x2+a6)x+a15 =

= x4 +(a8 +a4 +a2 +a)x3 +(a12 +a10 +a9 +a6 +a5 +a3)x2 +(a14 +a13 +a11 +a7)x+a15 =

= x4 + 0x3 + 0x62 + 1x+ 1 =

= x4 + x+ 1
Αυτό δεν είναι τυχαίο. Είναι το πολυώνυμο απ’ το οποίο ξεκινήσαμε. Τα a2, a4, a8 είναι τα συζυγή

τουa, άρα το ελάχιστο πολυώνυμο και για αυτά είναι το ίδιο με τουa. Αν πάρουμε το (x–a3)(x–a6)(x–a9)(x–a12)
θα βρούμε το x4 + x3 + x2 + x + 1. Θα μπορούσαμε να κάνουμε τον υπολογισμό στο sage, αλλά ας
δούμε ένα διαφορετικό επιχείρημα: Ονομάζουμε b = a3 τότε έχουμε:

1 = (0001)
b = (1000)
b2 = (1100)
b3 = (1010)
b4 = (1111)
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Παρατηρούμε από το δεξί μέρος των παραπάνω εξισώσεων ότι

b4 + b3 + b2 + b+ 1 = 0

Αλλά b = a3 ̸= 1 οπότε b5 = (a3)5 = a15 = 1 Το b είναι μια 5–ρίζα της μονάδας, δηλαδή ρίζα του
πολυωνύμου

x5–1 = (x–1)(x4 + x3 + x2 + x+ 1).

4.5. N-στές ρίζες της μονάδας

Σε ένα σώμα F το x θα λέγεται n-οστή ρίζα της μονάδας αν και μόνο αν είναι ρίζα της εξίσωσης
xn = 1.

Αν το n είναι δύναμη της χαρακτηριστικής, τότε υπάρχει μόνο μια n-στή ρίζα της μονάδας, το 1.
Πράγματι

xp
h

− 1 = 0 είναι ισοδύναμο με (x− 1)ph

= 0
δηλαδή x = 1.

Ομοίως αν n = ph ·m, (m,p) = 1 τότε οι n-στές ρίζες της μονάδας είναι ίδιες με τιςm-ρίζες της
μονάδας αφού

xn − 1 = 0 είναι ισοδύναμο με (xm − 1)ph

= 0.

4.5.1 Ορισμός:
Έστω (n,p) = 1 με En θα συμβολίζουμε το σύνολο των n-οστών ριζών της μονάδας στο σώμα Fp.

Το πλήθος των στοιχείων τoυ En είναι n αφού το πολυώνυμο ορισμού έχει απλές ρίζες (η παράγω-
γός του D(xn − 1) = nxn−1 έχει μοναδική ρίζα το 0 άρα δεν μηδενίζεται σε ρίζα της μονάδας).

Το σύνολο En είναι ομάδα τάξης n η οποία είναι κυκλική, αφού είναι υποομάδα της πολλαπλασια-
στικής ομάδας του σώματος που περιέχει όλες τις ρίζες.

4.5.2 Θεώρημα:
Έστω E το σώμα ριζών του πολυωνύμου xn − 1 υπέρ του πεπερασμένου σώματος Fq. Ο βαθμός [E :

Fq] = s είναι ο ελάχιστος φυσικός ώστε

qs ≡ 1modn.

Απόδειξη Αφού το πλήθος των στοιχείων του E θα είναι qs η ομάδα E∗ θα έχει τάξη qs − 1 και
συνεπώς n | qs − 1, συνεπώς qs ≡ 1modn.

Αντιστρόφως, έστω ότι n | qr − 1 τότε (xn − 1) | (xqr
− 1). Έχουμε αποδείξει ότι το σώμα ριζών

E του xn − 1 περιέχεται στο σώμα με qr στοιχεία αρκεί να ισχύει ότι n | qr − 1. Το ελάχιστο σώμα E
είναι αυτό που εμφανίζεται στον ελάχιστο s για τον οποίο ισχύει n | qs − 1.

4.5.3 Ορισμός:
Ένας γεννήτοραςω της κυκλικής ομάδας En θα λέγεται πρωταρχική n-ρίζα της μονάδας.
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Από τη μία έχουμε τα πρωταρχικά στοιχεία στο σώμα ριζών E του πολυωνύμου xn − 1 τα οποία
γεννούν μια κυκλική ομάδαE∗ με τάξηqs−1 και από την άλλη έχουμε την κυκλική υποομάδαEn < E∗.
Ας υποθέσουμε ότιω είναι ένας γεννήτορας της En. Είναι σαφές ότι

ω = ζℓ,

όπου ζ είναι ένα πρωταρχικό στοιχείο (γεννήτορας της E∗) και ℓ κατάλληλη δύναμη ώστε τοω να έχει
τάξη n.

Είναι γνωστό ότι το στοιχείο ζℓ έχει τάξη

qs − 1
(ℓ,qs − 1) .

Στον παραπάνω τύπο αντικαθιστούμε το qs − 1 = nr και έχουμε

qs − 1
(ℓ,qs − 1) =

nr

(ℓ,nr) .

Απαιτούμε το τελευταίο κλάσμα να είναι ίσο με n το οποίο είναι ισοδύναμο με r = (ℓ,nr), δηλαδή
ℓ = rm = qs−1

n
m με (m,n) = 1. Καταλήγουμε λοιπόν στον παρακάτω χαρακτηρισμό:

4.5.4 Θεώρημα:
Αν ζ είναι ένα πρωταρχικό στοιχείο του σώματος ριζών E του xn − 1 στο F[x], τότε το σύνολο των
πρωταρχικών ριζών του είναι το{

ζ
qs−1

n ·m, 1 ⩽ m < n, (m,n) = 1
}

.

Πώς θα υπολογίσουμε πρωταρχικές ρίζες; Ας θεωρήσουμε ένα σώμα με q το πλήθος στοιχεία, όπου
το q είναι μια δύναμη πρώτου. Αν το πεπερασμένο σώμα είναι μεγάλο τότε τα πράγματα είναι δύσκολα.
Υπάρχει ένας αλγόριθμος, γνωστός ως αλγόριθμος του Gauss που ως έξοδό του δίνει δίνει στοιχεία του
πεπερασμένου σώματος a1, . . . ,ak ώστε

ord(a1) < ord(a2) < · · · < ord(ak) = q− 1.

Επιπλέον ισχύει ότι ord(ai) | ord(ai+1).
Ο αλγόριθμος αυτός δίνεται από τα παρακάτω βήματα:
1. Έστω i = 1 και a1 ∈ F∗ με ord(a1) = t1.
2. Αν ti = q− 1 τελειώσαμε. To ai είναι μία πρωταρχική ρίζα.
3. Αν ord(ai) < q− 1 επιλέγουμε μη-μηδενικό στοιχείο του F (έστω b), ώστε το b να μην είναι

δύναμη του ai που υπολογίσαμε στο προηγούμενο βήμα. Έστω ότι ord(b) = s. Αν s = q− 1
θέτουμε ai+1 = b και τελειώσαμε.

4. Διαφορετικά βρίσκουμε d | ti και e | s τέτοια ώστε (d, e) = 1 και d · e = [ti, s]. Οπότε
θέτουμε

ai+1 = a
ti/d

i bs/e,
ti = [ti, s], i→ i+ 1 και πηγαίνουμε στο δεύτερο βήμα.

Παράδειγμα Ας θεωρήσουμε το σώμα F25 με 25 το πλήθος στοιχεία. Θεωρούμε το πολυώνυμο
x2−2 ∈ F5[x]. Το πολυώνυμο αυτό είναι ανάγωγο ως προς το σώμα F5 αφού είναι βαθμού 2 και κανένα
στοιχείο του F5 δεν είναι ρίζα του. Συνεπώς το σώμα F25 είναι ισόμορφο με το σώμα F5[x]/⟨x2 − 2⟩.
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Ξεκινάμε τον αλγόριθμο του Gauss: Θέτουμε a1 = x και υπολογίζουμε τις δυνάμεις του a1.

a0
1 = 1,a1

1 = x1 = x,a2
1 = x2 = 2, x3 = 2x, x4 = 4, x5 = 4x, x6 = 3, x7 = 3x, x8 = 1.

Η τάξη της κυκλικής ομάδας του F25 είναι 24.
Εφαρμόζουμε το βήμα 2. Διαλέγουμε ένα στοιχείο b το οποίο δεν είναι δύναμη του a1 για παρά-

δειγμα το 1 + x. Υπολογίζουμε τις δυνάμεις του b.

b,b2 = 2x+ 3,b3 = 2,b4 = 2x+ 2

b5 = 4x+ 1,b6 = 4,b7 = 4x+ 4,b8 = 3x+ 2
b9 = 3,b10 = 3x+ 3,b11 = x+ 4,b12 = 1

Το στοιχείο b έχει τάξη 12 και πάλι δεν έχουμε τετραγωνική ρίζα.
Εφαρμόζουμε τώρα το βήμα 4. Ψάχνουμε d, e με d | t1 = 8 και e | s = 12 ώστε (d, e) = 1 και

d ·e = [t1, s] = (8, 12) = 24. Υπολογίζουμε ότι d = 8 και ότι e = 3. Σύμφωνα με το βήμα 4 παίρνουμε

a2 = a
t1/d
1 bs/e.

Δηλαδή
a2 = a

8/8
1 b12/3 = a1b

4 = 2x+ 4.
Σε μία ομάδα με δύο στοιχεία A,B για τα οποία ισχύει AB = BA και τα οποία έχουν τάξειςm,n

με (m,n) = 1 έχουμε ότι η τάξη του γινομένου είναι nm.
Συνεπώς το 2x+ 4 έχει τάξη 24 και είναι μία πρωταρχική ρίζα στο F25.

1 sage:F=FiniteField(5);F
2 Finite Field of size 5
3 sage:R.<x>=PolynomialRing(F);R
4 Univariate Polynomial Ring in x over Finite Field of size
5 sage:I = R.ideal([x^2-2]);I
6 Principal ideal (x^2 + 3) of Univariate Polynomial
7 Ring in x over Finite Field of size 5
8 sage:S=R.quotient_ring(I);S
9 Univariate Quotient Polynomial Ring in xbar
10 over Finite Field of size 5 with
11 modulus x^2 + 3
12 sage:is_field(S)
13 true

Interactive
Ας υπολογίσουμε τις δυνάμεις του x με το sage:

1 for i in range(1,9):
2 i,x^i
3 (1, x)
4 (2, 2)

http://users.uoa.gr/~kontogar/kallipos/FiniteFields-c.html
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5 (3, 2*x)
6 (4, 4)
7 (5, 4*x)
8 (6, 3)
9 (7, 3*x)
10 (8, 1)

Και ας κάνουμε το ίδιο για τις δυνάμεις του 1 + x

1 for i in range(1,13):
2 i,(1+x)^i
3 (1, x + 1)
4 (2, 2*x + 3)
5 (3, 2)
6 (4, 2*x + 2)
7 (5, 4*x + 1)
8 (6, 4)
9 (7, 4*x + 4)
10 (8, 3*x + 2)
11 (9, 3)
12 (10, 3*x + 3)
13 (11, x + 4)
14 (12, 1)

Ας κάνουμε τον ίδιο υπολογισμό για τον γεννήτορα 2x+ 4 που υπολογίσαμε:

1 for i in range(1,25):
2 i,(4+2*x)^i
3 (1, 2*x + 4)
4 (2, x + 4)
5 (3, 2*x)
6 (4, 3*x + 3)
7 (5, 3*x + 4)
8 (6, 3)
9 (7, x + 2)
10 (8, 3*x + 2)
11 (9, x)
12 (10, 4*x + 4)
13 (11, 4*x + 2)
14 (12, 4)
15 (13, 3*x + 1)
16 (14, 4*x + 1)
17 (15, 3*x)
18 (16, 2*x + 2)
19 (17, 2*x + 1)



4.6. ΑΝΑΓΩΓΑ ΠΟΛΥΩΝΥΜΑ ΣΕ ΠΕΠΕΡΑΣΜΕΝΑ ΣΩΜΑΤΑ 76

20 (18, 2)
21 (19, 4*x + 3)
22 (20, 2*x + 3)
23 (21, 4*x)
24 (22, x + 1)
25 (23, x + 3)
26 (24, 1)

Ας υπολογίσουμε τώρα το ελάχιστο πολυώνυμο του στοιχείου 2x+4. Για αυτό θα επιστρατεύσουμε
την ομάδα Galois η οποία είναι τάξης 2 και αποτελείται από δύο στοιχεία: την ταυτότητα Id και τη
συνάρτηση σ η οποία στέλνει το x στο−x. To ελάχιστο πολυώνυμο θα πρέπει να έχει ρίζα τουλάχιστον
το 2x+ 4, σ(2x+ 4) = −2x+ 4. Υπολογίζουμε ότι

(X− (2x+ 4))(X− (−2x+ 4)) = X2 − 8X+ 8 = X2 + 2X+ 5.

Το παραπάνω είναι το ελάχιστο πολυώνυμο του 2x + 4. Η κατασκευή του σώματος με 25 στοιχεία ως
πηλίκο

F25 = F5[a]/⟨a2 + 2x+ 5⟩,
υπερτερεί από την προηγούμενη στην παράσταση των στοιχείων του σώματος.

4.6. Ανάγωγα πολυώνυμα σε πεπερασμένα σώματα

Έστω ένα πεπερασμένο σώμα. Τα πρωταρχικά στοιχεία είναι οι γεννήτορες της κυκλικής ομάδας
K∗. Το ελάχιστο πολυώνυμο ενός πρωταρχικού στοιχείου λέγεται ένα πρωταρχικό πολυώνυμο.

4.6.1 Θεώρημα:
Έστω Fq ένα πεπερασμένο σώμα. Το πολυώνυμο f(x) ∈ Fq[x] είναι πρωταρχικό για κάποια επέκταση
του Fq βαθμού d αν και μόνο αν ισχύει ότι f(x) | xqd−1

−1 και f(x) δεν διαιρεί το xk−1 για k < qd−1.

Απόδειξη Έχουμε ήδη αποδείξει ότι ένα ανάγωγο πολυώνυμο βαθμού d θα πρέπει να διαιρεί το
xq

d−1
− 1. Αν f(x) δεν διαιρεί το xk − 1 και k < qd−1 καμία ρίζα του f δεν έχει τάξη μικρότερη του

qd−1, άρα έχει την σωστή τάξη qd−1.
Αντιστρόφως, αν το πολυώνυμο f(x) είναι πρωταρχικό, τότε θα δείξουμε ότι f(x) δεν διαιρεί το

xk − 1 για k < qd−1. Ας θεωρήσουμε τη ρίζα ζ του f(x). Οι άλλες ρίζες του πολυωνύμου θα είναι οι

ζ, Fq(ζ) = ζq, Fq2(ζ) = ζq
2 , . . . , Fqd−1(ζ) = ζq

d−1

αυτές είναι ανά δύο διαφορετικές και δεν μπορεί να είναι ρίζες του πολυωνύμου xk − 1 βαθμού k <
qd−1.

Αν και είναι δύσκολο να υπολογίσουμε τα ανάγωγα πολυώνυμα του Fq μπορούμε να υπολογίζουμε
το πλήθος τους. Είναι γνωστό ότι

xq
n

− x =
∏
d|n

Vd,

όπου Vd είναι το γινόμενο όλων των μονικών αναγώγων πολυωνύμων του Fq[x] βαθμού d. Αν λοιπόν
Id είναι το πλήθος των διακεκριμένων μονικών πολυωνύμων βαθμού d, τότε συγκρίνοντας βαθμούς
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έχουμε
qn =

∑
d|n

d · Id.

Από τον νόμο αντιστροφής του Mobious που έχουμε αποδείξει προκύπτει ότι

In =
1
n

∑
d|n

µ(d)qn/d.

4.6.1. Κυκλοτομικά Πολυώνυμα. Θα ορίσουμε πρώτα τα κυκλοτομικά πολυώνυμα στον δακτύ-
λιο Z[x].

4.6.2 Ορισμός:
Το n-οστό κυκλοτομικό πολυώνυμο Φn(x) είναι το μοναδικό ανάγωγο πολυώνυμο στο Z[x] το οποίο
διαιρεί το xn − 1 αλλά όχι το xk − 1 για κάθε k < n.

4.6.3 Πρόταση:
Αν ζ είναι μία ρίζα τουΦn τότε και ζd είναι ρίζα τουΦn για κάθε d, (d,n) = 1.

Απόδειξη Θα δώσουμε μια απόδειξη βασισμένη σε αυτή του Schur. Για ένα πλήθος άλλων αποδεί-
ξεων εμπλουτισμένες με ιστορικά στοιχεία παραπέμπουμε στο άρθρο του S. Weintraub.

Θεωρούμε το πολυώνυμο xn − 1 και θέτουμε ∆ τη “διακρίνουσά”, του δηλαδή την ποσότητα

∆ =
∏
i<j

(ζin − ζjn)
2 =

= ±
∏
i ̸=j

(ζin − ζjn) =

= ±
∏
i ̸=j

ζin(1 − ζj−i
n ) =

= ±
∏
i

ζin

∏
k̸=0

(1 − ζkn).

Το γινόμενο ∏
k̸=0

(1 − ζkn) = n.

Πράγματι είναι ίσο με την τιμή x = 1 στο πολυώνυμο

h(x) =
∏
k̸=0

(x− ζkn) =
xn − 1
x− 1 =

= 1 + x+ x2 + · · ·+ xn−1.
Άρα ο υπολογισμός της διακρίνουσας ολοκληρώνεται στον

∆ = ±nn.
Για να δείξουμε ότι ζdn είναι ρίζα του Φn(x), αρκεί να δείξουμε ότι αν ζ ριζα του Φn(x) τότε και

ζp είναι ρίζα για κάθε πρώτο p που δεν διαιρεί το n. Ας υποθέσουμε πως όχι. Το Φn(x) είναι ένας

http://www.lehigh.edu/~shw2/c-poly/several_proofs.pdf
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ανάγωγος παράγοντας (όταν ολοκληρωθεί η απόδειξη θα έχουμε δείξει ότι είναι και μοναδικός) του
πολυωνύμου xn − 1. Συνεπώς θα έχουμε ότι

Φn(x) = (x− ζ1) · · · (x− ζk),

για κάποιες n-στές ρίζες του 1, ζ1 = ζ και που δεν συμπεριλαμβάνουν το ζp. Αυτό σημαίνει ότι το
Φn(ζ

p) αποτελείται από διαφορές n-οστών ριζών της μονάδας και διαιρεί το nn. Από την άλλη, είναι
ένα μη μηδενικό στοιχείο του Q(ζ) = Z[x]/⟨Φn(x)⟩ και έχει μια μορφή

Φn(ζ
p) = a0 + a1ζ+ · · ·+ an−1ζ

n−1.

Αν την παραπάνω έκφραση τη θεωρήσουμε modulo p, καταλήγουμε σε ένα σώμα χαρακτηριστικής p
και έκει έχουμε

Φn(ζ
p) ≡ Φn(ζ)

p = 0modp

Άρα όλοι οι συντελεστές ai είναι διαιρετοί με p και συνεπώς p | nn, άτοπο.

Παρατηρούμε ότι αν d | n, τότε xd−1 διαιρεί το xn−1. Συνεπώς λόγω μοναδικής παραγοντοποί-
ησης στον δακτύλιο K[x] το ελάχιστο κοινό πολλαπλάσιο αντικειμένων που διαιρούν το xn − 1 επίσης
διαιρεί το xn − 1.

Το πολυώνυμο x − a διαιρεί το Φn(x) αν και μόνο αν Φn(a) = 0. Συνεπώς ad = 1 αν και μόνο
αν x − a διαιρεί το xt − 1. Επίσης ο παραπάνω ορισμός δίνει ότι Φn(a) = 0, άρα an = 1 και επίσης
ότι το a δεν είναι ρίζα μικρότερης τάξης γιατί αν at = 1, τότε το x − a διαρεί το xt − 1 με το οποίο
έχουμε διαιρέσει. Μάλιστα το πολυώνυμο xn− 1 έχει απλές ρίζες, άρα τις t ρίζες τις έχουμε αφαιρέσει
ήδη. Συνεπώς το πολυώνυμοΦn(x) έχει ρίζες ακριβώς τάξης n.

4.6.4 Πρόταση:
Ο παραπάνω υπολογισμός μας επιτρέπει να υπολογίσουμε την ομάδα Galois της επέκτασης Q(ζn)/Q.
Έτσι

Gal(Q(ζn)/Q) =

(
Z
nZ

)∗

Για κάθε d, 1 ⩽ d ⩽ n− 1 ορίζουμε τον αυτομορφισμό

σd(ζ) 7→ ζdn

Απόδειξη Πράγματι μόλις δείξαμε ότι το πολυώνυμο Φd έχει ως ρίζες τις πρωταρχικές ρίζες της
μονάδας ζdn. Αυτές είναι και οι δυνατότητες διαφορετικών αυτομορφισμών του σώματος Q(ζn) ∼=
Q[x]/⟨Φn(x)⟩.

Οι ρίζες του Φ(n) είναι οι πρωταρχικές d ρίζες της μονάδας, δηλαδή οι γεννήτορες της ομάδας
των n-οστών ριζών του 1. Μάλιστα αν ζn είναι μια πρωταρχική ρίζα της μονάδας, οποιαδήποτε άλλη
πρωταρχική ρίζα της μονάδας θα είναι ρίζα του Φn(x), δηλαδή

Φn(x) =
∏

1⩽k<n,(k,n)=1
(x− ζkn),

όπου ζn = e2πi/n.
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Ο μέγιστος κοινός διαιρέτης των Φn(x) καιΦm(x) δίνεται:

(Φm,Φn) = 1.

Απόδειξη Έχουμε αποδείξει ότι

(xm − 1, xn − 1) = x(m,n) − 1.

Από την άλλη, ας θεωρήσουμε έναν d κοινό διαιρέτη των n,m και ας υποθέσουμε ότι m > n. Είναι
σαφές ότι ο d ⩽ n < m, συνεπώς ο d είναι γνήσιος διαιρέτης τουm.

Από τον τύπο

Φm(x) =
xm − 1

ΕΚΠ των xd − 1, 0 < d < m,d | m

έχουμε ότι τοΦm(x) διαιρεί το xm−1
xd−1 , αφού ο παρονομαστής που ορίζει τοΦm(x) έχει ίσως και άλλους

διαιρέτες.
Επιπλέον αφού το xm−1 έχει απλές ρίζες, τοΦn(x) δεν έχει κανέναν κοινό διαιρέτη με το xd−1.

Aυτό σημαίνει ότι (Φm,Φn) = 1.

4.6.5 Πρόταση:
Ισχύει

xn − 1 =
∏
d|n

Φd(x).

Απόδειξη Αυτό είναι σαφές ως εξής: Όλες οι n-στές ρίζες της μονάδας μπορούν να χωριστούν
ανάλογα με την τάξη τους σε ρίζες με τάξη ακριβώς d όπου το d | n.

Παρατήρηση Μία ενδιαφέρουσα συνέπεια του παραπάνω τύπου είναι ο αναδρομικός τύπος υπο-
λογισμού πολυωνύμωνΦn:

Φn(x) =
xn − 1∏

d|n,d<nΦd(x)

Παραδείγματα:
• Για p πρώτο το Φ(p) μπορεί να υπολογιστεί και με τη βοήθεια του παραπάνω τύπου

Φp(x) =
xp − 1
x− 1 = 1 + x+ x2 + · · ·+ xp−1

• Για n = 2p έχουμε

Φ2p(x) =
x2p = 1

Φ1(x)Φ2(x)Φp(x)
=

x2p − 1
Φ2(x)(xp − 1) =

xp + 1
x+ 1 =

= xp−1 − xp−2 + xp−3 − · · ·+ x2 − x+ 1.
• Για n = p2 όπου p πρώτος έχουμε

Φp2(x) =
xp

2
− 1

Φ1(x)Φp(x)
=
xp

2
− 1

xp − 1 =

= xp(p−1) + xp(p−2) + · · ·+ xp + 1.
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• Γενικά μπορούμε με επαγωγή να δείξουμε ότι

Φpe(x) = Φp(x
pe−1

) =

= x(p−1)pe−1
+ x(p−2)pe−1

+ · · ·+ x2pe−1
+ xp

e−1
+ 1.

Κάνοντας χρήση του sage μπορούμε να υπολογίσουμε κυκλοτομικά πολυώνυμα με τον αναδρομικό
τύπο αλλά και με την ενσωματωμένη συνάρτηση:

1 sage:cyclotomic_polynomial(5,’x’)
2 x^4 + x^3 + x^2 + x + 1
3 sage:prod(cyclotomic_polynomial(d,’x’) for d in divisors(24))
4 x^24 - 1
5 cyclotomic_polynomial(3^10,’x’)
6 x^39366 + x^19683 + 1

Μπορούμε να καταγράψουμε όλα τα κυκλοτομικά πολυώνυμα

1 sage:for i in range(1,10):
2 cyclotomic_polynomial(i,’x’)
3 x - 1
4 x + 1
5 x^2 + x + 1
6 x^2 + 1
7 x^4 + x^3 + x^2 + x + 1
8 x^2 - x + 1
9 x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
10 x^4 + 1
11 x^6 + x^3 + 1

Interactive
Μπορεί εύκολα να πιστέψει κανείς ότι οι συντελεστές των κυκλοτομικών πολυωνύμων είναι ±1.

Αυτό δεν είναι όμως σωστό αφού το x41 έχει συντελεστή 2 στο Φ105(x):

1 sage:cyclotomic_polynomial(105,’x’)
2 x^48 + x^47 + x^46 - x^43 - x^42 -
3 2*x^41 - x^40 - x^39 + x^36 + x^35 +
4 x^34 + x^33 + x^32 + x^31 - x^28 -
5 x^26 - x^24 - x^22 - x^20 + x^17 +
6 x^16 + x^15 + x^14 + x^13 + x^12 -
7 x^9 - x^8 - 2*x^7 - x^6 - x^5 + x^2 +
8 x + 1

http://users.uoa.gr/~kontogar/kallipos/Cyclotomic.html
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Interactive
Ο τύπος της αντιστροφής του Möbius μας επιτρέπει επίσης να γράψουμε

4.6.6 Θεώρημα:

Φn(x) =
∏
d|n

(xd − 1)µ(n
d )

Απόδειξη Έχουμε αποδείξει τον προσθετικό τύπο αντιστροφής

f(n) =
∑
d|n

g(d) ⇒ g(n) =
∑
d|n

µ(d)f
(n
d

)
.

Με τον ίδιο ακριβώς τρόπο μπορούμε να αποδείξουμε μια πολλαπλασιαστική έκδοση

f(n) =
∏
d|n

g(d) ⇒ g(n) =
∏
d|n

f
(n
d

)µ(d)
.

Θα μπορούσαμε να πάμε από την πολλαπλασιαστική στην εκθετική περίπτωση με χρήση εκθετικών-
λογαρίθμων αλλά μπορούμε να δώσουμε και μία απευθείας απόδειξη:

∏
d�n

f(n/d)µ(d) =
∏
d�n

∏
t|nd

g(t)

µ(d)

=
∏
t�n
g(t)

∑
d�n,t� n

d
µ(d)

=

∏
t�n
g(t)

∑
d� nt µ(d) = g(n)

Παρατήρηση Το Φn(x) είναι πηλίκο δύο μονικών πολυωνύμων με ακέραιους συντελεστές. Στον
αριθμητή είναι οι παράγοντες μεµ(n/d) = +1 και στον παρονομαστή είναι οι παράγοντες μεµ(n/d) =
−1.

Για παράδειγμα

Φ18(x) =
∏
d|18

(xd − 1)µ(18/d) =
(x13 − 1)(x18−1)

(x6 − 1)(x9 − 1) ,

δηλαδή είναι πηλίκο δύο μονικών πολυωνύμων με ακέραιους συντελεστές βαθμών 21 ο αριθμητής και
15 ο παρονομαστής.

Για να διαπιστώσουμε ότιΦ18(x) ∈ Z[x] μπορούμε να κάνουμε τη διαίρεση ή να επιχειρηματολο-
γήσουμε κατά Berlekamp:

ToΦ18(x) είναι πολυώνυμο βαθμούϕ(18) = ϕ(2)ϕ(32) = 6. Αν πάρουμε ένα πολυώνυμοmodulo
x7, επειδή το degΦ18(x) = 6 < 7 δεν χάνουμε τίποτα. Υπολογίζουμε λοιπόν:

Φ18(x) =
(x3 − 1)(−1)
(x6 − 1)(−1) =

1 − x3

1 − x6 modulo x7

http://users.uoa.gr/~kontogar/kallipos/Cyclotomica.html
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Στη συνέχεια υπολογίζουμε

1 − x3

1 − x6 =
(1 − x3)(1 + x6)

(1 − x6)(1 + x6)
=

(1 − x3)(1 + x6)

1 − x12 .

Όμως 1 − x12 ≡ 1modx7. Επομένως

ϕ18(x) = (1 − x3)(1 + x6) = 1 − x3 + x6 mod x7

και τελικά
Φ18(x) = x

6 − x3 + 1.

Ως μία εφαρμογή ας αποδείξουμε μια ειδική περίπτωση του θεωρήματος του Dirichlet σχεικά με
την απειρία των πρώτων αριθμών που εμφανίζονται σε αριθμητικές προόδους:

4.6.7 Θεώρημα:
Υπάρχουν άπειροι πρώτοι της μορφής p ≡ 1modn.

Απόδειξη Το κυκλοτομικό πολυώνυμο Φn(x) είναι ένα μη σταθερό μονικό πολυώνυμο στον δα-
κτύλιο Z[x] και έχει σταθερό συντελεστή ±1.

Ας υποθέσουμε ότι υπήρχαν πεπερασμένοι το πλήθος πρώτοι p1, . . . ,pt ισοδύναμοι με 1modn.
Τότε, για αρκετά μεγάλο ακέραιο ℓ θα είχαμε

N = Φn(ℓnp1 · · ·pt) ⩾ 1

και προφανώς ο N είναι ακέραιος. Συνεπώς για κάθε pi θα είχαμε

N ≡ ±1modpi,

αφού μόνο ο σταθερός όρος επιβιώνει modpi. Άρα για όλα τα pi, pi δεν διαιρεί το N. Ο αριθμός N
όμως έχει πρώτους παράγοντες και έστωp ένας από αυτούς. Αφού δεN = ±1modn έχουμε (N,p) = 1.
Έχουμε ότι

Φn(ℓnp1 · · ·pt) = N ≡ 0mod p
συνεπώς το ℓnp1 · · ·pt έχει τάξη n στην ομάδα U(Fp) η οποία έχει τάξη p− 1, άρα n | p− 1, άτοπο.

4.6.2. Κυκλοτομικά σώματα αριθμών. Αυτά είναι σώματα της μορφής Q(ζn) = Q[x]/Φn(x)

και είναι ιδιαίτερα σημαντικά στην αλγεβρική θεωρία των αριθμών.
Ας δούμε δύο κλασικές εφαρμογές των παραπάνω σωμάτων που μπορεί να γίνουν εύκολα κατα-

νοητές
4.6.2.1. Τα κανονικά πολύγωνα. OGauss απέδειξε ότι ένα κανονικό πολύγωνο με 17 πλευρές είναι

δυνατόν να κατασκευαστεί με κανόνα και διαβήτη. Γενικότερα ισχύει ότι ένα κανονικό p-γωνο μπορεί
να κατασκευαστεί με κανόνα και διαβήτη αν το ϕ(p) = p− 1 είναι δύναμη του 2 ή με άλλα λόγια αν ο
p είναι ένας πρώτος αριθμός του Fermat. Προφανώς ο 17 είναι ένας πρώτος αριθμός του Fermat, αφού
ϕ(17) = 16 = 24.

Είναι σαφές ότι με κανόνα και διαβήτη μπορούμε να υπολογίσουμε σημεία τα οποία βρίσκονται
στην τομή δύο τετραγωνικών καμπυλών άρα οι συντεταγμένες τους είναι σε τετραγωνικές επεκτάσεις
σωμάτων που έχουν ήδη συντεταγμένες σε τετραγωνικές επεκτάσεις του σώματος των ρητών αριθμών.

Το ερώτημα λοιπόν ανάγεται στο εξής: Μπορεί το n-κυκλοτομικό σώμα να κατασκευαστεί ως μια
ακολουθία τετραγωνικών επεκτάσεων;

http://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions
http://en.wikipedia.org/wiki/Fermat_number
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4.6.2.2. Το τελευταίο θεώρημα του Fermat. Δεν χρειάζεται να πούμε πολλά για αυτό το πασίγνωστο
πρόβλημα. Είναι σαφές ότι τα γινόμενα συμπεριφέρονται καλύτερα από τα αθροίσματα αφού έχουμε
μοναδικότητα στην ανάλυση σε πρώτους αλλά δεν υπάρχει ανάλογο αποτέλεσμα για τα αθροίσματα.

Στην προσπάθειά μας να μελετήσουμε τις ακέραιες λύσεις της εξίσωσης

xn + yn = zn

μια φυσιολογική ιδέα είναι να διασπάσουμε το αρχικό άθροισμα δυνάμεων ως

xn + yn = (x+ y)(x+ ζy) · · · (x+ ζn−1y).

Η παραπάνω διάσπαση δεν μπορεί να γίνει στον δακτύλιο των ακέραιων, μπορεί όμως να γίνει στον
δακτύλιο των Z[ζ], ο οποίος είναι ένας υποδακτύλιος του κυκλοτομικού σώματοςQ(ζ), ο οποίος παίζει
για το σώμα Q(ζ) τον ρόλο που παίζει για το σώμα Q ο δακτύλιος Z.

Πολλές αποδείξεις του τελευταίου θεωρήματος του Fermat δόθηκαν, ήταν όμως εσφαλμένες, διότι
ο δακτύλιος Z δεν υπάρχει μονοσήμαντη ανάλυση σε αδιάσπαστα στοιχεία. Αυτή ήταν η αρχή της
αλγεβρικής Θεωρίας αριθμών η οποία κατάφερε να μετρήσει τη μη μονοσήμαντη ανάλυση μέσω της
ομάδας κλάσεωνCln. Έτσι μπορεί πράγματι να δώσει κανείς μια απόδειξη του τελευταίου θεωρήματος
του Fermat για όλους τους πρώτους ώστε p δεν διαιρεί το |Cln|.

Η πλήρης απόδειξη χρειαζόταν μία νέα ιδέα -αυτή των ελλειπτικών καμπυλών- και θα πούμε πε-
ρισσότερα σε επόμενο κεφάλαιο.

4.6.3. Κυκλοτομικά πολυώνυμα. Τα κυκλοτομικά πολυώνυμα είναι ανάγωγα πολυώνυμα στο
Z[x]. Αυτό δεν είναι σωστό πάνω από πεπερασμένα σώματα. Για παράδειγμα:

Φ4(x) = x
2 + 1 =


(x+ 1)2 στο F2

αναγωγο στο F3

(x+ 1)2 στο F4

(x− 2)(x− 3) στο F5

Ισχύει το

4.6.8 Θεώρημα:
Αν p πρώτος p δεν διαιρεί το n τότε για k ⩾ 1 ισχύουν

1. Φnpk(x) = Φnp(x
pk−1

) για σώματα κάθε χαρακτηριστικής

2. Φnpk =
Φn(x

pk)

Φn(xpk−1
)
για σώματα κάθε χαρακτηριστικής

3. Φnpk(x) = Φn(x)
pk−pk−1 μόνο σε σώματα χαρακτηριστικής p, (n,p) = 1.

Απόδειξη Χωρίς απόδειξη.
Παραδείγματα

Φ72(x) = Φ8·32(x) = Φ8·3(x
3) = Φ3·2

(
(x3)23−1

)
= Φ6(x

12) =

(x12)2 − x12 + 1 = x24 − x12 + 1.
Επίσης

Φ72(x) =
Φ8(x9)

Φ8(x3)
=
x36+1

x12 + 1 = x24 − x12 + 1.

http://en.wikipedia.org/wiki/Algebraic_number_theory
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Σε σώμα χαρακτηριστικής 3 ισχύει

Φ72(x) = Φ8(x)
32−3 =

(
Φ8(x)

)6
=

(x4 + 1)6 =
(
(x4 + 1)3)2

= x24 − x12 + 1.
Έστω λοιπόν Fq πεπερασμένο σώμα τάξης q = pl με (p,n) = 1. Υπάρχει φυσικός αριθμός λ με

την ιδιότητα
qλ ≡ 1 mod p

Ας είναιm o ελάχιστος αριθμός με αυτή την ιδιότητα, δηλαδή η τάξη του q στην F∗
p. Ας θεωρήσουμε

το σώμα Fqm με qm στοιχεία.
Επειδή n | qm − 1 από προηγούμενο θεώρημα έχουμε ότι υπάρχει a ∈ Fqm , ώστε ord(a) = n.

Έχουμε
Φd(x) =

∏
0⩽j<h−1ord(aj)=d

=
∏
ord(b)

(x− b),

και
Φn(x) =

∏
d|n

(xd − 1)µ(n/d)

Αυτό σημαίνει ότι τοΦd(x) αναλύεται στο «μεγάλο» σώμα Fqm σε γινόμενο γραμμικών παραγόντων.
Τι γίνεται στο μικρό σώμα Fq; Το ελάχιστο πολυώνυμο του a έχει ρίζες

a,aq, . . . ,aqd−1 .

Δηλαδή υπάρχουν ακριβώς d-συζυγή του a στο σώμα Fq, όπου d ο ελάχιστος φυσικός τέτοιος ώστε
qd ≡ 1modn. Αλλά αυτό εμείς το ορίσαμε και το είπαμεm. Επομένως το Φn(x) έχει έναν ανάγωγο
παράγοντα βαθμούm.

Ποια είναι τα ανάγωγα πολυώνυμα των άλλων ριζών τουΦn(x);
Εξ ορισμού όλα έχουν βαθμό d = m. Με το ίδιο επιχείρημα όπως και προηγουμένως έπεται ότι

υπάρχουν ακριβώς d = m συζυγή.

4.6.9 Θεώρημα:
Αν p πρώτος, p δεν διαιρεί το n και q = pl τότε τοΦn(x) στο Fq = K αναλύεται σε γινόμενο ανάγωγων
πολυωνύμων, βαθμούm, όπουm ο ελάχιστος φυσικός με την ιδιότητα

qm ≡ 1modn.

Παράδειγμα Το Φ7(x) υπέρ του F2 = K. Έχουμε ότι ϕ(7) = 6. Θα πρέπει να βρούμε το m για
q = 2 και n = 7. Δηλαδή τον ελάχιστο φυσικό τέτοιο ώστε 2m ≡ 1mod7. Οπότεm = 3. Επομένως το
Φ7(x) αναλύεται στο F2 σε γινόμενο 6/3 = 2 ανάγωγων (κυκλικών) πολυωνύμων βαθμού 3 το καθένα.

Ας κάνουμε τον υπολογισμό στο sage:

1 sage:Phi=cyclotomic_polynomial(7,’x’);Phi
2 x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
3 sage:Phi.is_irreducible()
4 True
5 sage:R.<t> = PolynomialRing(FiniteField(2));R
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6 Univariate Polynomial Ring in t over Finite Field of
7 size 2 (using NTL)
8 sage:ff = ZZ[x].hom([t]); ff
9 Ring morphism:
10 From: Univariate Polynomial Ring in x over Integer Ring
11 To: Univariate Polynomial Ring in t over Finite Field
12 of size 2 (using NTL)
13 Defn: x |--> t
14 sage:factor(ff(Phi))
15 (t^3 + t + 1) * (t^3 + t^2 + 1)

Interactive
Πρώτα κατασκευάσαμε το Φ7(x) και ελέγξαμε ότι είναι ανάγωγο. Στη συνέχεια κατασκευάσαμε

τον δακτύλιο των πολυωνύμων R = F2[t] και τον ομομρφισμό Z[x] → F2[t] ο οποίος λαμβάνει τους
συντελεστές modulo 2. Τέλος παραγοντοποιήσαμε την εικόνα τουΦ7(x) modulo 2.

Συνεχίζουμε τη θεωρητική προσέγγιση στο ίδιο παράδειγμα. Αν a οποιοδήποτε στοιχείο τάξης 7
στο F = F23 , οι ανάγωγοι παράγωντες του Φ7(x) στο = F2 θα είναι

f1(x) = (x–a)(x–a2)(x− a4)

f3(x) = (x–a3)(x− a6)(x–a5)

To F23 ∼= F2[x]/⟨f(x)⟩, όπου f(x) ανάγωγο μονικό πολυώνυμο του F2[x]. Ένα τέτοιο πολυώνυμο είναι
το x3 + x+ 1, επομένως αν για a πάρουμε μια ρίζα του x3 + x+ 1 θα έχουμε a3 + a+ 1 = 0. Οπότε
a3 = –(a+ 1) ή a3 = a+ 1. Με αυτόν τον τρόπο καταλήγουμε ότι

f1(x) = x
3 + x+ 1 και f3(x) = x3 + x2 + 1.

Παράδειγμα Να παραγοντοποιήσουμε τοΦ180(x) στο F3. Έχουμε ότι 180 = 22 · 32 · 5. Επομένως
Φ180(x) = Φ20(x)

9−3 = Φ20(x)
6.

Συνεπώς θα πρέπει να παραγοντοποιήσουμε το κυκλοτομικό πολυώνυμο Φ20(x) στο F3. Επειδή 34 ≡
1mod20 έχουμε ότιm = 4 και n = 20 με ϕ(n) = ϕ(20) = 8. Άρα το ϕ20(x) είναι ίσο με το γινόμενο
8/4 = 2 αναγώγων πολυωνύμων βαθμού 4 το καθένα. Οπότε, αν a στοιχείο τάξης 20 στο F34 τότε οι
δυο παράγοντες τουΦ20(x) είναι:

f1(x) = (x–a)(x–a3)(x–a9)(x–a7)

f2(x) = (x–a11)(x–a13)(x–a19)(x–a17)

Αν πάλι έχουμε στο F34 ότι και a ρίζα του q(X) μπορούμε να υπολογίσουμε επακριβώς τα f1(x) και
f2(x).

Ας πάμε με ωμή βία να κάνουμε τον ίδιο υπολογισμό στο sage:

1 sage:Phi=cyclotomic_polynomial(180,’x’);Phi
2 x^48 + x^42 - x^30 - x^24 - x^18 + x^6 + 1
3 sage:Phi.is_irreducible()

http://users.uoa.gr/~kontogar/kallipos/Cyclotomicb.html
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4 True
5 sage:R.<t> = PolynomialRing(FiniteField(3));R
6 Univariate Polynomial Ring in t over Finite Field of size 3
7 sage:ff = ZZ[x].hom([t]); ff
8 Ring morphism:
9 From: Univariate Polynomial Ring in x over Integer Ring
10 To: Univariate Polynomial Ring in t over Finite Field
11 of size 3
12 Defn: x |--> t
13 sage:factor(ff(Phi))
14 (t^4 + t^3 + 2*t + 1)^6 * (t^4 + 2*t^3 + t + 1)^6

Interactive
Θα προσπαθήσουμε να ανακαλύψουμε τεχνικές που μας επιτρέπουν να βρούμε τους ανάγωγους

παράγοντες του κυκλοτομικού πολυωνύμου Φn(x) στο Fq επακριβώς. Ως πρώτο βήμα θα προσπαθή-
σουμε να βρούμε κριτήρια για το πότε τοΦn(x) είναι ανάγωγο.

Έχουμε αποδείξει ότι

Φn(x) ανάγωγο στο Fq αν και μόνο αν
{

qϕ(n) ≡ 1modn
qk ̸= 1modn για κάθε k < ϕ(n)

}
Η παραπάνω εξίσωση μας λέει ότι η ομάδα των πρώτων κλάσεων υπολοίπων mod n, η οποία έχει

τάξη ϕ(n), είναι κυκλική και έχει το q ως γεννήτορα. Δηλαδή ότι το q είναι πρωταρχική ρίζα modulo
n.

Από τη Θεωρία Αριθμών όμως γνωρίζουμε ότι οι μοναδικές τιμές του n για τις οποίες υπάρχει
πρωταρχική ρίζα mod n είναι n = 1, 2, 4,ps, 2ps, s ∈ N και p πρώτος, p ̸= 2.

Επομένως, αν το n δεν είναι της παραπάνω μορφής, τότεΦn(x) όχι ανάγωγο στο Fq. Απ’ την άλλη
μεριά, αν το n είναι τέτοιας μορφής, τότε

Φn(x) ανάγωγο στο Fq ⇔ το q είναι πρωταρχική ρίζα mod n.

ΠαράδειγμαΈστωn = 7. Τότε (7) = 6. Παίρνουμε τους πρώτους ως προς 7modulo 7: 1, 2, 3, 4, 5, 6(mod7)
23 ≡ 1mod7 συνεπώς ord7(2) = 3. Επομένως, το 2 δεν είναι πρωταρχική ρίζα mod 7.

31 ≡ 3mod7, 32 ≡ 2mod7), 33 ≡ 6mod7 συναπώς ord7(3) = 6. Tο 3 είναι πρωταρχική ρίζα mod
7. Οι άλλες πρωταρχικές ρίζες προκύπτουν από τις δυνάμεις του 3d με 1 ⩽ d < 6 (d, 6) = 1, δηλαδή
η μοναδική άλλη πρωταρχική ρίζα είναι το 35 ≡ 5mod7

Άρα, Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1 είναι ανάγωγο στο σώμα Fq αν και μόνο αν

q ≡ 3mod7 ή q ≡ 5mod7.

Για παράδειγμα για q = 3, 5, 17, 19, . . . το Φ7(x) είναι ανάγωγο στο Fq.
Ας πάρουμε τώρα n = 8 (αναμένουμε να μην έχει πρωταρχικές ρίζες). Έχουμε ότι ϕ(8) = 4. Οι

πρώτες κλάσεις mod 8 είναι: 1, 3,−3 = 5, 7. 72 ≡ (−3)2 ≡ 32 ≡ 1mod8 και ομοίως (±1)2 ≡ 1mod8,
δηλαδή όλα τα στοιχεία έχουν τάξη 2.

Αυτό σημαίνει ότι το πολυώνυμο Φ8(x) = x4 + 1 δεν είναι ποτέ ανάγωγο στο Fp για κάθε πρώτο
p. Αντιθέτως το Φ8(x) είναι ανάγωγο στο Z.

http://users.uoa.gr/~kontogar/kallipos/Cyclotomicc.html
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Πιο γενικά: Αν f(x) οποιοδήποτε πολυώνυμο τουFq[x] θα περιγράψουμε αλγόριθμο (τουBerlekamp)
παραγοντοποίησης του f(x) σε γινόμενο ανάγωγων παραγόντων.

4.6.10 Θεώρημα:
Αν f(x) μονικό πολυώνυμο με degf(x) = n όπου f(x) ∈ Fq και αν h(x) ∈ Fq[x], τέτοιο ώστε

h(x)q ≡ h(X)modf(X)

τότε
f(x) =

∏
s∈Fq

(f(x),h(x) − s).

(χωρίς απόδειξη)
Παρατήρηση Αν υπάρχει s0 ∈ Fq τέτοιο ώστε

h(X) ≡ s0modf(x),

τότε η παραγοντοποίηση του προηγούμενου θεωρήματος είναι τετριμμένη. Δηλαδή ένας παράγοντας
είναι το f(x) και οι άλλοι είναι 1.

Το επόμενο θεώρημα θα μας δώσει ότι αν f(x) διαιρείται από δυο ή περισσότερα διακεκριμένα
ανάγωγα πολυώνυμα τότε υπάρχει πολυώνυμοh(x) τέτοιο ώστε η παραγοντοποίηση του προηγούμενου
θεωρήματος να μην είναι τετριμμένη.

Θεωρούμε τον δακτύλιο
V(f) := Fq[x]/⟨f(x)⟩

σαν n-διάστατο Fq-διανυσματικό χώρο, όπου n = degf, με βάση τα {1, x, x2, . . . , xn − 1}. Έστω

R(f) = {h(x) ∈ Fq[x] ώστε h(x)q ≡ h(x)modf(x)}.

Το R(f) είναι διανυσματικός υπόχωρος του V(f) διότι(
s1h1(x) + s2h2(x)

)q
= sq1 + h1(x)

q + sq2 h2(x)
q

= s1h1(x) + s2(x)h2(x) mod f(x).

4.6.11 Θεώρημα:
Αν

f(x) =

m∏
i=1

Pi(x)
ℓi ,

όπου Pi(x) διακεκριμένα ανά δύο ανάγωγα μονικά πολυώνυμα, τότε dimFq
R(f) = m.

(χωρίς απόδειξη)
Παρατήρηση: Αν καταφέρουμε να υπολογίσουμε τη διάσταση του χώρουm, τότε γνωρίζουμε το

πλήθος των ανάγωγων παραγόντων του f(x) (Θα είναιm).
Παράδειγμα Έστω

f(x) = x4 + x+ 1
και q = 2 τότε F2. Αν

h(x) = h0 + h1x+ h2x
2 + h3x

3
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τότε η συνθήκη
h(x)q ≡ h(x) mod f(x)

γράφεται

h0 + h1x
2 + h2x

4 + h3x
6 ≡ h0 + h1x+ h2x

2 + h3x
3mod (x4 + x+ 1).

Ισχύει ότι
x4 ≡ x+ 1mod (x4 + x+ 1)

οπότε και
x6 ≡ x3 + x2mod (x4 + x+ 1)

και έχουμε ότι

h(X)2 = h0 + h1x
2 + h2(x+ 1) + h3(x

3 + x2)mod (x4 + x+ 1).

Oπότε αν παραστήσουμε το πολυώνυμο

h(x) = h0 + h1x+ h2x
2 + h3x

3

με το διάνυσμα στήλη (h0,h1,h2,h3)t, τότε

h(X) ∈ R(f) ⇔ h(X)2 ≡ h(X)mod f(X)

ή ισοδύναμα

h0


1
0
0
0

+ h1


0
0
1
0

+ h2


1
1
0
0

+ h3


0
0
1
1

 = h0


1
0
0
0

+ h1


1
0
0
0

+ h2


0
0
1
0

+ h3


0
0
0
1


Δηλαδή το h(X) ∈ R(f) ισοδυναμεί με το ότι το διάνυσμα (h0,h1,h2,h3)t ανήκει στον χώρο μηδενι-
σμού του πίνακα B, όπου

B =


1 0 1 0
0 0 1 0
0 0 1 0
0 1 0 1
0 0 0 1

− Id =


0 0 0 0
0 1 1 0
0 1 1 1
0 0 0 0

 .

Κάνοντας στοιχειώδεις μετασχηματισμούς στον πίνακαB, συγκεκριμένα προσθέτοντας στη γραμμή
2 τη γραμμή 1 και στη γραμμή 3 τη γραμμή 2 φέρνουμε τον B στη μορφή:

B =


0 0 1 0
0 1 0 0
0 0 0 1
0 0 0 0

 .

Παρατηρούμε ότι (h0,h1,h2,h3) ∈ R(f) ⇔ h1 = h2 = h3 = 0. Συνεπώς η διάσταση του
παραπάνω χώρου dim(R(f)) = 1 και το f(x) είναι δύναμη αναγώγου. Όμως f ′(x) = 4x3 + 1 = 1. Άρα
έχει απλές ρίζες και το f είναι ανάγωγο.

Παράδειγμα Έστω ότι θέλουμε να παραγοντοποιήσουμε το

f(x) = x5 + x+ 1

στο F2 Αν
h(x) = h0 + h1x+ h2x

2 + h3x
3 + h4x

4
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τότε θέλουμε να έχουμε
h(x)2 ≡ h(x)mod(x5 + x+ 1).

Θα χρησιμοποιήσουμε τις ισοτιμίες: x5 ≡ x + 1mod (x5 + x + 1), x6 ≡ x2 + xmod (x5 + x + 1) και
x8 ≡ x4 + x3mod (x5 + x+ 1). Η ισοδυναμία

h(x)2 ≡ h(X)mod f(x)

γράφεται ισοδύναμα στο σύστημα
1 0 0 0 0
0 0 0 1 0
0 1 0 1 0
0 0 0 0 1
0 0 1 0 1



h0
h1
h2
h3
h4

 = Id


h0
h1
h2
h3
h4

 ,

δηλαδή στον ιδιοχώρο της ιδιοτιμής 1. Υπολογίζουμε ότι η διάσταση του ιδιοχώρου αυτού είναι 2 και
μία βάση του R(f) είναι τα 1, x+ x3 + x4.

Επομένως το f(x) είναι γινόμενο δύο αναγώγων πολυωνύμων πιθανόν σε κάποια δύναμη το καθένα.
Υπολογίζουμε κατά τα γνωστά τους μέγιστους κοινούς διαιρέτες

(x5 + x+ 1, x4 + x3 + x) = x3 + x2 + 1

(x5 + x+ 1, x4 + x3 + x+ 1) = x2 + x+ 1
Επομένως,

x5 + x+ 1 = (x3 + x2 + 1)(x2 + x+ 1).
Γνωρίζουμε ότι x3 + x2 + x και x2 + x + 1 ανάγωγα στο F2. Άρα η ανάλυση του f(x) σε γινόμενο
ανάγωγων πολυωνύμων είναι

f(x) = x5 + x+ 1 = (x3 + x2 + 1)(x2 + x+ 1).
Ο αλγόριθμος του Berlekamp μπορεί να απλοποιηθεί σημαντικά αν το πολυώνυμο που θέλουμε να

παραγοντοποιήσουμε είναι της μορφής xn–1 όπου (n,q) = 1.

4.6.12 Θεώρημα:
Το πολυώνυμο

h(x) =

n−1∑
i=0

hix
i

επαληθεύει την ισοδυναμία
h(x)q ≡ h(x)mod (xn − 1)

αν και μόνο αν
hiq = hi για κάθε i = 0, 1, 2, . . . ,n− 1

(όπου οι δείκτες θεωρούνται modulo n).

(χωρίς απόδειξη)
Παρατήρηση: Επειδή (n,q) = 1, η απεικόνιση i 7→ qimod n είναι μια μετάθεση του συνόλου

{0, 1, 2, . . . ,n− 1}.
Παράδειγμα: Για q = 2 και n = 5 έχουμε ότι

{0, 1, 2, 3, 4} 7→ {0, 2, 4, 6, 8} ≡ {0, 2, 4, 1, 3}mod 5.
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Δηλαδή έχουμε τη μετάθεση: (
0 1 2 3 4
0 2 4 1 3

)
Παράδειγμα: Για q = 3 και n = 20 η μετάθεση που θα προκύψει σε γινόμενο κύκλων γράφεται:

(0)(1397)(261814)(412168)(515)(10)(11131917).
Συνεπώς κάθε πολυώνυμο h(x) που επαληθεύει την ισοδυναμία

h(x)3 ≡ h(x) mod x20 − 1
θα πρέπει να είναι F3-γραμμικός συνδυασμός των ακολούθων 7 πολυωνύμων:

h0 = 1
h1(x) = x+ x3 + x9 + x7

h2(x) = x2 + x6 + x18 + x14

h4(x) = x
4 + x12 + x16 + x8

h5(x) = x
5 + x15

h10(x) = x10

h11(x) = x
11 + x13 + x19 + x17

Οι κύκλοι των μεταθέσεων i→ qimod n λέγονται κυκλοτομικά cosets.
Μελετάμε το πολυώνυμο f(x) = x20–1 στο σώμα F3. Η τάξη του 3 modulo 20 είναι 4 αφού 34 ≡

1mod 20. Επομένως, αν περάσουμε στο σώμα F34 τότε αυτό θα έχει ένα στοιχείο τάξης 20, δηλαδή

x20–1 =

19∏
j=0

(x− aj),

όπου a ένα στοιχείο τάξης 20 του F34 .
Έχουμε ήδη δει ότι η παραγοντοποίηση του x20–1 στο F3 καθορίζεται από την παραγοντοποίηση

του x20–1 στο F34 . Έστω για παράδειγμα ότι το ελάχιστο πολυώνυμο του a στο σώμα F3 είναι το

f1(x) = (x–a)(x–a3)(x–a9)(x–a7)

Επειδή για κάθε i = 1, 3, 7, 9 έχουμε ότι (i, 20) = 1, έπεται ότι τα στοιχεία ai για κάθε i = 1, 3, 7, 9
είναι επίσης τάξης 20. Επομένως το f1(x) είναι ανάγωγος παράγοντας, όχι μόνο του x20–1 αλλά και
του Φ20(x). Ομοίως αν fi(x) είναι το ελάχιστο πολυώνυμο του ai, τότε το fi(x) είναι και ανάγωγο
πολυώνυμο του Φn/(n,i)(x). Αν τώρα συμβολίσουμε το κυκλοτομικό coset που περιέχει το i με Ci
φτιάχνουμε τον ακόλουθο πίνακα:

Πίνακας 4.2: Πίνακας Κυκλοτoμικών cosets

i Ci |Ci| = degfi(x) 20
(20,i)

0 0 1 1
1 (1, 3, 9, 7) 4 20
2 (2, 6, 18, 14) 4 10
4 (4, 12, 16, 8) 4 5
5 (5, 15) 2 4
10 (10) 1 2
11 (11, 13, 19, 17) 4 20
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Με τη βοήθεια του παραπάνω πίνακα μπορούμε να φτιάξουμε τον πίνακα των παραγόντων του
x20–1 οι οποίοι δίνονται μέσω τον κυκλοτομικών πολυωνύμων Φd(x), όπου d | 20.

Πίνακας 4.3: Παράγοντες του x20 − 1.

d Φd(x) παράγοντες

1 x–1 f1(x) ανάγωγο
2 x+ 1 f10(x) = x–a10 ανάγωγο
4 x2 + 1 f5(x) ανάγωγο
5 x4 + x3 + x2 + x+ 1 f4(x) ανάγωγο
10 x4–x3 + x2–x+ 1 f2(x) ανάγωγο
20 x8–x6 + x4–x2 + 1 f1(x)f11(x)

Μόνο τοΦ20(x) δεν παραγοντοποιείται πλήρως σε γινόμενο αναγώγων για αυτό εφαρμόζουμε και
πάλι τον αλγόριθμο του Berlekamp. Για κάθε hi(x) ισχύει:

x20–1 = (x20–1,hi(x))(x20–1,hi(x) + 1)(x20–1,hi(x) + 2)

ΕπειδήΦ20(x)|x20–1 έπεται ότι
h3(x) ≡ h(x)modΦ20(x).

Οπότε,
Φ20(x) = (Φ20(x),hi(x))(Φ20(x),hi(x) + 1)(Φ20(x),hi(x) + 2) =

| = (x4 + x3 + 2X+ 1)(x4 + 2x3 + x+ 1).
Έτσι παραγοντοποιήσαμε πλήρως το x20–1 σε γινόμενο αναγώγων πολυωνύμων. Στο sage η παρα-

πάνω κατασκευή θα μπορούσε να γίνει ως:

1 sage:Phi20=cyclotomic_polynomial(20,’x’);Phi20
2 sage:R.<t> = PolynomialRing(FiniteField(3))
3 sage:ff = ZZ[x].hom([t]);
4 sage:factor(ff(Phi20))
5 (t^4 + t^3 + 2*t + 1) * (t^4 + 2*t^3 + t + 1)
6 sage:factor(ff(x^20-1))
7 (t + 1) * (t + 2) * (t^2 + 1) * (t^4 + t^3 + 2*t + 1) *
8 (t^4 + t^3 + t^2+ t + 1) * (t^4 + 2*t^3 + t + 1) *
9 (t^4 + 2*t^3 + t^2 + 2*t + 1)

4.7. Ο κυκλοτομικός νόμος αντιστροφής.

Παρατηρούμε ότι ο τετραγωνικός νόμος αντιστροφής δεν είναι τίποτε άλλο παρά μια μέθοδος να
προσδιορίζουμε πότε το ανάγωγο πολυώνυμο x2 − a διασπάται σε γινόμενο πρωτοβάθμιων παραγό-
ντων. Συγκεκριμένα, για να αποφασίσουμε αν το a είναι ή όχι τετραγωνικό υπόλοιπο θα πρέπει να
υπολογίζουμε το σύμβολο του Legendre

(
a
p

)
.

Θα μπορούσαμε να ρωτήσουμε όμως το εξής θέμα: Ορίζουμε το σύνολο

Spl(x2 − a) :=
{
p πρώτοι ώστε το (x2 − a)να διασπάται σε γινόμενο 1-βαθμίων πολ/μων

}
.
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Ας υποθέσουμε για απλότητα ότι το a είναι και αυτό πρώτος. Ο προσδιορισμός του συνόλου
Spl(x2 − a) περιλαμβάνει τον υπολογισμό απείρων συμβόλων του Legendre. Και όμως με τον τετρα-
γωνικό νόμο αντιστροφής αυτό μπορεί να αλλάξει!

Για παράδειγμα αν το q = 17 τότε (
17
p

)
=
( p

17

)
και τώρα οι πρώτοι χωρίζονται ανάλογα με τη συμπεριφορά τους σε κλάσεις modulo 17. Δηλαδή τo 17
είναι τετραγωνικό υπόλοιπο για τους πρώτους οι όποιοι είναι ίσοδύναμοι με

p ≡ 1, 2, 4, 8, 9, 13, 15, 16mod 17
Εντελώς όμοια αποδεικνύεται ότι οι κατασκευή του παραπάνω παραδείγματος ισχύει γενικά και ο

τετραγωνικός νόμος αντιστροφής εκφράζεται ως εξής:

4.7.1 Θεώρημα:
Έστω q περιττός πρώτος. Τότε το σύνολο Spl(x2 − q) ορίζεται μέσω ισοδυναμιών modulo q αν q ≡
1mod4 και μέσω ισοδυναμιών modulo 4q αν q ≡ 3mod4.

Ο νόμος ανάλυσης των κυκλοτομικών πολυωνύμων αποδείξαμε ότι δίνεται ως εξής:

Spl(Φn(x)) = {p πρώτος ώστε p ≡ 1 mod n}
τον οποίο και θα ονομάζουμε κυκλοτομικό νόμο αντιστροφής. Παρατηρούμε και πάλι ότι και αυτός
εκφράζεται μέσω ισοδυναμιών.

Το 9ο πρόβλημα του Hilbert (πρόκειται για μια σειρά προβλημάτων που έθεσε ο Hilbert, σαν τα
βασικά προβλήματα των μαθηματικών που μπαίνουν άλυτα στο κατώφλι του 20ού αιώνα. Η διάλεξη δό-
θηκε στο Παγκόσμιο Συνέδριο Μαθηματικών στα 1900, στο Παρίσι.) ασχολείται με την εύρεση του πε-
ρισσότερο γενικού νόμου αντιστροφής σε κάθε αλγεβρικό σώμα αριθμών. Η λύση του προβλήματος θα
ερχόταν μέσω της θεωρίας κλάσεων σωμάτων, όπως υποστήριζε. Το πρόβλημα λύθηκε για όλες τις αβε-
λιανές επεκτάσεις από τον Artin, ενώ σημαντική συνεισφορά είχαν οι Teiji Takagi, Phillip Furtwängler,
Helmut Hasse, Claude Chevalley και άλλοι.

Τελειώνοντας, θέλουμε να σημειώσουμε ότι υπάρχουν πολλές γενικεύσεις του νόμου αυτού. Μέσω
του θεωρήματος των Kronecker-Weber έγινε σαφές ότι αν θέλουμε να κατανοήσουμε την αριθμητική
των αβελιανών επεκτάσεων του σώματος των ρητών αριθμών αρκεί να κατανοήσουμε την αριθμητική
των κυκλοτομικών σωμάτων.

4.8. Προσθετικά Πολυώνυμα

Στην παράγραφο αυτή θα μελετηθεί η θεωρία των προσθετικών πολυωνύμων, περισσότερα στοιχεία
μπορούν να αναζητηθούν στο (Goss 1997). Θεωρούμε ένα σώμα k πεπερασμένης χαρακτηριστικής και
έστω k η αλγεβρική κλειστότητά του.

4.8.1 Ορισμός:
Θα λέμε ότι ένα πολυώνυμο P(x) ∈ k[x] είναι προσθετικό στο σώμα k αν και μόνο αν ισχύει:

P(a+ b) = P(a) + P(b),

http://en.wikipedia.org/wiki/Hilbert%27s_problems
http://en.wikipedia.org/wiki/Class_field_theory
http://en.wikipedia.org/wiki/Emil_Artin
http://en.wikipedia.org/wiki/Teiji_Takagi
http://en.wikipedia.org/wiki/Philipp_Furtw%C3%A4ngler
http://en.wikipedia.org/wiki/Helmut_Hasse
http://en.wikipedia.org/wiki/Claude_Chevalley
http://en.wikipedia.org/wiki/Kronecker%E2%80%93Weber_theorem
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για οποιαδήποτε στοιχεία a,b ∈ k. Θα λέμε ότι το πολυώνυμο είναι απολύτως προσθετικό αν και μόνο
αν είναι προσθετικό στο σώμα k.

Παρατήρηση: Στη χαρακτηριστική p το πολυώνυμο τp(x) = xp είναι προσθετικό και απολύτως
προσθετικό πολυώνυμο. Επίσης είναι σαφές ότι αν P,G είναι προσθετικά πολυώνυμα και a ∈ k, τότε
P +G, aP, P ◦G είναι επίσης προσθετικά πολυώνυμα.

4.8.2 Ορισμός:
Θα συμβολίζουμε με k{τp} τον υποχώρο του k[x] που παράγεται από τους γραμμικούς συνδυασμούς των
πολυωνύμων τip(x) = xp

i .

Παρατήρηση: Το σύνολο k{τp} εφοδιασμένο με τις πράξεις της πρόσθεσης και της σύνθεσης απο-
τελεί έναν δακτύλιο. Αν k ̸= Fp, τότε ο δακτύλιος αυτός είναι μη αντιμεταθετικός, αφού

τp(a) = a
pτp,

για a ∈ k.
Αν το k είναι ένα σώμα με άπειρο πλήθος στοιχεία, τότε το πολυώνυμοP(x) ∈ k[x] είναι προσθετικό

αν και μόνο αν P(x) ∈ k{τp}. Ιδιαίτερα, το σύνολο των απολύτως προσθετικών πολυωνύμων είναι το
σύνολο k{τp}.

Απόδειξη: Είναι σαφές ότι όλα τα πολυώνυμα στο {τp} είναι προσθετικά.
Αντιστρόφως, έστω ένα προσθετικό πολυώνυμο. Θεωρούμε την τυπική παράγωγό του P ′(x). Δη-

λαδή αν

P(x) =

n∑
ν=0

aνx
ν,

τότε

P ′(x) =

n∑
ν=1

aννx
ν−1.

Παρατηρούμε ότι αν το P είναι προσθετικό τότε για κάθε a ∈ k έχουμε

P(x+ a) − P(x) − P(a)

είναι μηδέν για κάθε τιμή x ∈ k και αφού το k είναι άπειρο αυτό σημαίνει ότι το P(x) θα πρέπει να
είναι μηδενικό. Πράγματι, αν δεν ήταν θα είχε κάποιο πεπερασμένο βαθμό και συνεπώς θα είχε το πολύ
τόσες ρίζες όσες ο βαθμός του.

Συνεπώς

P ′(a) =
d

dx
P(x+ a)

∣∣∣∣
x=0

=
d

dx
(P(x) + P(a))

∣∣∣∣
x=0

= P ′(0).

Άρα και πάλι επειδή το σώμα k έχει άπειρα στοιχεία έχουμε ότι η παράγωγος είναι ένα σταθερό πολυώ-
νυμο:

P ′(x) = P ′(0) = c.
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Δηλαδή,

P(x) = cx+

n∑
j=2

ajx
nj ,

όπου όλοι οι εκθέτες nj είναι διαιρετοί με p. Θα απομονώσουμε τους εκθέτες που είναι διαιρετοί μόνο
με p και θα τους μαζέψουμε σε ένα πολυώνυμο P0(x) και θα μαζέψουμε τους εκθέτες που εκτός από p
είναι διαιρετοί και με άλλους πρώτους. Δηλαδή

P(x) = P0(x) + P1(x).

Θα δείξουμε ότι το P1(x) είναι το μηδενικό πολυώνυμο. Είναι σαφές ότι είναι και αυτό προσθετικό.
Στην αλγεβρική κλειστότητα k του σώματος k η συνάρτηση x→ xp είναι αυτομορφισμός. Για κάθε

στοιχείο y ∈ k υπάρχει μοναδικό x ώστε xp = y. Παρατηρήστε ότι εν γένει σε σώματα χαρακτηριστι-
κής 0 κάθε στοιχείο έχει n το πλήθος n-στές ρίζες, αρκεί να βρούμε μία και να την πολλαπλασιάσουμε
με τις n-στές ρίζες της μονάδας. Στη χαρακτηριστική p όμως υπάρχει μόναδικη p-ρίζα της μονάδας.

Μπορούμε λοιπόν να θεωρήσουμε τη συνάρτηση x 7→ x1/pe , η οποία είναι προσθετική αν και μη
πολυωνυμική. Έστω pe η μεγαλύτερη δύναμη του p η οποία διαιρεί όλους τους εκθέτες του P1(x).
Θεωρούμε το πολυώνυμο:

P2(x) = P1(x)
1/pe ∈ k[x].

Το πολυώνυμο P2(x) είναι προσθετικό, και το προηγούμενο επιχείρημα δείχνει ότι θα πρέπει να είναι
μηδενικό.

4.8.3 Ορισμός:
Θα λέμε ότι το προσθετικό πολυώνυμο P(x) ∈ k[x] είναι Fph-γραμμικό αν και μόνο αν

P(λx) = λP(x)

για κάθε λ ∈ Fph .

Παρατηρούμε ότι τα Fph-γραμμικά πολυώνυμα είναι αυτά που είναι k γραμμικοί συνδυασμοί των
στοιχείων xph .

4.8.4 Θεώρημα:
Θεωρούμε ένα διαχωρίσιμο πολυώνυμο P(x) ∈ k[x] και έστω S := {ρ1, . . . , ρm} το σύνολο των ριζών
του. Το πολυώνυμο P(x) είναι προσθετικό αν και μόνο αν το σύνολο S είναι προσθετική ομάδα. Επιπλέον
το P(x) είναι Fph-γραμμικό αν και μόνο αν το σύνολο Fph-διανυσματικός χώρος.

Απόδειξη: Θα πρέπει να δείξουμε ότι το πολυώνυμο

P(x) =

m∏
i=1

(x− ρi)

είναι προσθετικό. Παρατηρούμε ότι αν ρ ∈ S τότε

P(x+ ρ) = P(x),
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διότι σε μία προσθετική ομάδα S, αν το ρi διατρέχει το S, τότε και το ρ+ρi επίσης διατρέχει το S. Στη
συνέχεια θεωρούμε το πολυώνυμο

G(x) = P(x+ y) − P(x) − P(y) ∈ k[x],

για μια τιμή y ∈ k. Αυτό είναι ένα πολυώνυμο βαθμού degG < degP συνεπώς αν έχει degP ρίζες είναι
ταυτοτικά μηδενικό. Πράγματι παρατηρούμε ότι κάθε ρ ∈ S είναι ρίζα του πολυωνύμου G.

Για τη γραμμικότητα, υποθέτουμε ότι το S είναι ένας Fph-διανυσματικός χώρος. Σε αυτή την περί-
πτωση έχουμε ότι |S| = (phj και ο βαθμός του P είναι ο ίδιος. Θεωρούμε το πολυώνυμο, για λ ∈ Fph

G(x) = P(λx) − λP(x).

Παρατηρούμε ότι degG < degP. Πράγματι, o μεγιστοβάθμιος όρος του G(x) είναι

(λp
hj

− λ)xp
hj ,

και αφού λ ∈ Fph ο όρος αυτός δεν εμφανίζεται.
Από την άλλη G(ρ) = 0 για κάθε ρ ∈ W συνεπώς έχουμε περισσότερες ρίζες από τον βαθμό του

πολυωνύμου, άρα το πολυώνυμο είναι ταυτοτικά ίσο με το μηδέν.

4.8.1. Η ορίζουσα Moore. Είναι γνωστό (ορίζουσα Vandermonde) ότι

det


1 . . . 1
x1 . . . xn
...

...
xn−1

1 . . . xn−1
n

 =
∏
i<j

(xi − xj).

Εδώ θα δώσουμε μια διαφορετική q-έκδοση του παραπάνω τύπου. Έχουμε ένα σώμα Fq με q = ph

το πλήθος στοιχεία, και έστωW ⊂ k ένας Fq-διανυσματικός χώρος.
Ορίζουμε την ορίζουσα Moore να είναι το παρακάτω:

∆(w1, . . . ,wn) = det


w1 . . . wn

w
q
1 . . . w

q
n

...
w

qn−1

1 . . . w
qn−1
n

 .

Το σύνολο {w1, . . . ,wn} είναι Fq-γραμμικά ανεξάρτητο αν και μόνο αν ∆(w1, . . . ,wn) ̸= 0.
Απόδειξη Ας υποθέσουμε πρώτα ότι ∆(w1, . . . ,wn) ̸= 0. Θα δείξουμε ότι σε αυτή την περίπτωση

τα {w1, . . . ,wn} είναι Fq γραμμικά ανεξάρτητα.
Πράγματι αν λi ∈ Fp συντελεστές ώστε

n∑
ν=1

λνwν = 0,

τότε
n∑

ν=1
λq

i

ν w
qi

ν =

n∑
µ=1

λνw
qi

ν ,

για κάθε i = 0, . . . ,n− 1, αφού λi ∈ Fp και συνεπώς λqi = λi.
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Συνεπώς καταλήγουμε σε μία σχέση της μορφής

n∑
ν=1

λν


wν

w
q
ν

...
w

qn−1
ν

 =


0
0
...
0

 .

Αφού δε ∆(w1, . . . ,wn) ̸= 0 η παραπάνω εξίσωση έχει ως λύση μόνο την (λ1, . . . , λn) = 0.
Αντιστρόφως ας υποθέσουμε ότι το σύνολο {w1, . . . ,wn} είναι γραμμικά ανεξάρτητο. Θα δεί-

ξουμε ότι ∆(w1, . . . ,wn) ̸= 0. Θα δουλέψουμε επαγωγικά. Η περίπτωση n = 1 είναι προφανής.
Ας υποθέσουμε ότι για n− 1 οποιαδήποτε γραμμικά ανεξάρτητα στοιχεία {w1, . . . ,wn−1} η ορίζουσα
∆(w1, . . . ,wn−1) ̸= 0. Ας υποθέσουμε ότι ∆(w1, . . . ,wn−1) = 0 και {w1, . . . ,wn} γραμμικά ανε-
ξάρτητα, συνεπώς υπάρχουν στοιχεία λ1, . . . , λn ∈ k για τα οποία να ισχύει:

λ1w1 + · · ·+ λnwn = 0

λ1w
q
1 + · · ·+ λnwq

n = 0
· · ·

λ1w
qn−1

1 + · · ·+ λnwqn−1
n = 0

Μπορούμε χωρίς περιορισμό της γενικότητας να υποθέσουμε ότι το λ1 = 1 (πράγματι κάποιος συντε-
λεστής και υποθέτουμε ο πρώτος είναι μη μηδενικός, στη συνέχεια διαιρούμε όλες τις εξισώσεις με
αυτόν για να υποθέσουμε ότι είναι ίσος με ένα).

Στη συνέχεια υψώνουμε την i-στή εξίσωση στην q-δύναμη και την αφαιρούμε από την i + 1-στη
για όλες τις εξισώσεις για να καταλήξουμε στο σύστημα:

(λ2 − λ
q
2 )w

q
2 + · · ·+ (λn − λqn)w

q
n = 0

· · ·

(λ2 − λ
q
2 )w

qn−1

2 + · · ·+ (λn − λqn)w
qn−1
n = 0

Παρατηρούμε ότι το σύνολο {w
q
2 , . . . ,wq

n} είναι ένα γραμμικά ανεξάρτητο σύνολο υπέρ του Fq συ-
νεπώς ∆(wq

2 , . . . ,wq
n) ̸= 0. Συνεπώς η αρχική εξίσωση έχει συντελεστές στο Fq και το σύνολο

{w1, . . . ,wn} είναι Fq-γραμμικά εξαρτημένο, άτοπο.
Στη συνέχεια θα δώσουμε έναν κλειστό τύπο προκειμένου να εκφράσουμε το προσθετικό πολυώ-

νυμο που αντιστοιχεί σε έναν Fq-διανυσματικό χώροW. Ας θεωρήσουμε {w1, . . . ,wn} μια βάση του
W και ας είναι

Wi = ⟨w1, . . . ,wi⟩.
Θεωρούμε τα πολυώνυμα

PW :=
∏
a∈W

(x− a).

4.8.5 Θεώρημα:
Το πολυώνυμo PW υπολογίζεται ως

PW(x) =
∆(w1, . . . ,wn, x)
∆(w1, . . . ,wn)

.
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Απόδειξη Παρατηρούμε ότι ένα στοιχείο x είναι ρίζα του πολυωνύμου

∆(w1, . . . ,wn, x)

αν και μόνο αν x ∈ ⟨w1, . . . ,wn⟩. Με άλλα λόγια το πολυώνυμο ∆(w1, . . . ,wn, x) έχει ακριβώς ως
ρίζες τα στοιχεία του διανυσματικού χώρουW.

Επίσης αν αναπτύξουμε την ορίζουσα ∆(w1, . . . ,wn, x) ως προς την τελευταία γραμμή βλέπουμε
ότι ο συντελεστής του μεγιστοβάθμιου όρου είναι η ορίζουσα ∆(w1, . . . ,wn) και για να καταλήξουμε
στο μονικό πολυώνυμο PW , θα πρέπει να διαιρέσουμε με αυτόν.

4.9. Το σώμα με ένα στοιχείο

Ας ξεκαθαρίσουμε ότι όλα τα σώματα είναι αντιμεταθετικοί δακτύλιοι με μονάδα και συνεπώς
περιέχουν δύο τουλάχιστον στοιχεία το 0 και το 1. Θα θέλαμε παρόλα αυτά να έχουμε έναν γενικευμένο
ορισμό που θα επιτρέψει να δώσουμε κάποιο νόημα στην οριακή κατάσταση limq→1 Fq = F1.

To σώμα αυτό το οραματίστηκε πρώτος το 1956 ο Jacques Tits, στη μελέτη του σχετικά με τα
buildings. Όπως θα δούμε στο κεφάλαιο των ελλειπτικών καμπυλών ο τελεστής του Frobenious παίζει
πολύ σημαντικό ρόλο στη μέτρηση των σημείων μιας αλγεβρικής καμπύλης ή πολλάπλότητας στον
πύργο σωμάτων Fpℓ . Στην πραγματικότητα αυτό ήταν το βασικό εργαλείο στο να αποδείξει κανείς την
εικασία του Riemann για ζήτα συναρτήσεις ορισμένες σε σώματα συναρτήσεων.

Στην πραγματικότητα πολλοί μαθηματικοί έχουν προτείνει το πώς η απόδειξη για σώματα συναρτή-
σεων θα μπορούσε να μεταφερθεί στη μελέτη της κλασικής εικασίας τουRiemann μέσω ενός κατάλληλα
ορισμένου σώματος με ένα στοιχείο.

Τα παραπάνω είναι δύσκολα να τα αναπτύξουμε στα πλαίσια ενός προπτυχιακού βιβλίου. Μπο-
ρούμε όμως μεταφράζοντας τον Α. Connes να κάνουμε πλάκα με το Fun ακολουθώντας τις ιδέες των
Kapranov-Smirnov σχετικά με το F1 και τις επεκτάσεις του F1n .

Δεν μπορούμε να πούμε τι είναι το F1. Παρόλα αυτά μπορούμε να επιχειρηματολογήσουμε ότι ένας
διανυσματικός V χώρος πάνω από το F1 είναι απλά ένα σύνολο. Η διάσταση του V ως διανυσματικού
χώρου πάνω από το F1 είναι απλά ο πληθικός αριθμός του V .

Προχωρώντας την ιδέα αυτή η GLn(F1) = Sn. Η συνάρτηση ορίζουσας είναι απλά η συνάρτηση
προσήμου sgn : Sn → {±1}, δηλαδή

lim
q→1

GLn(Fq) = Sn.

Έτσι η SLn(F1) δεν είναι άλλη από την An. Δηλαδή, η γραμμική άλγεβρα υπέρ του F1 είναι η συν-
δυαστική θεωρία των πεπερασμένων συνόλων.

Για να το κάνουμε περισσότερο ενδιαφέρον ας αναφέρουμε ότι το σύνολο των διανυσματικών υπο-
χώρων διάστασης k μέσα σε έναν διανυσματικό χώρο διάστασης n είναι ένα γεωμετρικό αντικείμενο
γνωστό ως η πολλαπλότητα Grassmann. Μπορούμε να μετρήσουμε ακριβώς το πλήθος των σημείων
μιας τέτοιας πολλαπλότητας πάνω από ένα πεπερασμένο σώμα και να δούμε ότι

lim
q→1

#G(n, r)(Fq) =

(
n

r

)
,

το οποίο είναι συμβατό με την παραπάνω θεώρηση.
Δεν γνωρίζουμε τι είναι τοF1[t]. Παρόλα αυτά μπορούμε να επιχειρηματολογήσουμε ότι GLd(F1[t])

θα πρέπει να είναι η πλήρης ομάδα κοτσίδων σε d-κλωστές.
Θα τελειώσουμε αυτή την αναλογία αναφέροντας ότι η επέκταση F1n του F1 δεν είναι τίποτε άλλο

από το {0} ∪ µn, όπου µn είναι το σύνολο των n-στών ριζών της μονάδας.

http://en.wikipedia.org/wiki/Jacques_Tits
http://en.wikipedia.org/wiki/Building_(mathematics)
http://en.wikipedia.org/wiki/Riemann_hypothesis
http://en.wikipedia.org/wiki/Alain_Connes
https://www.youtube.com/watch?v=az_0pxm1jrI
http://cage.ugent.be/~kthas/Fun/library/KapranovSmirnov.pdf
http://en.wikipedia.org/wiki/Grassmannian
http://en.wikipedia.org/wiki/Braid_group
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Ελπίζουμε ότι όλα τα παραπάνω θα οδηγήσουν τον αναγνώστη να ανατρέξει για περισσότερες πλη-
ροφορίες στη βιβλιογραφία.
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5
Απλά Κρυπτοσυστήματα

5.1. Κρυπτολογία-Κρυπτογραφία

5.1.1 Ορισμός:
Κρυπτολογία-Κρυπτογραφία είναι η επιστήμη που μελετάει τις μεθόδους με τις οποίες η επικοινωνία αν-
θρώπων να είναι μυστική ώστε κάποιος ανεπιθύμητος να μην μπορεί να αντιληφθεί το περιεχόμενο της
επικοινωνίας.

Η κρυπτογραφία δεν πρέπει να συγχέεται με την κωδικοποίηση που ασχολείται με το πώς μπορούν
να γίνουν αντιληπτά και να διορθωθούν λάθη μετάδοσης.

Η Κρυπτοανάλυση είναι η αντίστροφη προσπάθεια που ασχολείται με το πώς ο ενδιάμεσος μπορεί
να υποκλέψει το περιεχόμενο του μηνύματος.

Οι εφαρμογές είναι πολλές:
• Ηλεκτρονική επικοινωνία-e-mail,

• Μεταφορά χρημάτων-e-banking,

• Βιομηχανική - Στρατιωτική - Διπλωματική ασφάλεια.

5.1.2 Ορισμός:
Ένα κρυπτοσύστημα είναι μια διατεταγμένη πεντάδα (P,C,K,E,D), όπου

• P είναι πεπερασμένο σύνολο των μηνυμάτων που θέλουμε να στείλουμε,

• C είναι πεπερασμένο σύνολο των κρυπτογραφημένων μηνυμάτων (cipher text),

• K είναι πεπερασμένο σύνολο των κλειδιών κωδικοποίησης (Keyspace),

• Για κάθε k ∈ K υπάρχει κανόνας κρυπτογράφησης ek ∈ E και ένας κανόνας αποκρυπτογράφη-
σης dk ∈ D ώστε dk(ek) = x.

5.1.1. Το κρυπτοσύστημα της μεταφοράς. Τα γράμματα μπορούν να μετατραπούν σε αριθμούς:
99
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Πίνακας 5.1: Πίνακας αντιστοιχίας γραμμάτων

A B C D E F G

1 2 3 4 5 6 7

H I J K L M N

8 9 10 11 12 13 14

O P Q R S T U

15 16 17 18 19 20 21

V W X Y Z

22 23 24 25 26

Έχουμε τα σύνολα
P = Z/26 (ακέραιοι modulo 26)
C = Z/26
K = Z/26
Το μήνυμα NUMBER THEORY μεταφράζεται ως

Πίνακας 5.5: Μετάφραση μηνύματος

Ν U M B E R T H E O R Y

14 21 13 2 5 18 20 8 5 15 18 25

5.1.2. Το κρυπτοσύστημα της αντικατάστασης. Στο σύστημα αυτό P = Z/26, K = S26, το
σύνολο των μεταθέσεων σε 26 γράμματα.

Η συνάρτηση κρυπτογράφησης είναι μια μετάθεση:

Πίνακας 5.6: Πίνακας Συνάρτησης κρυπτογράφησης

Α Β C D E F G

d e r y v o h

H I J K L M N

e z x w p t b

O P Q R S T U

g f j q n m u
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V W X Y Z

s k a c i

Το μήνυμα NUMBER THEORY μεταφράζεται ως

Πίνακας 5.10: Μετάφραση μηνύματος

Ν U M B E R T H E O R Y

b u t e v q m e v g q c

Παρατήρηση Ο αριθμός κλειδιών είναι μεγάλος 26!, παρόλα αυτά το σύστημα μπορεί να αποκρυ-
πτογραφηθεί εύκολα με βάση τη στατιστική εμφάνιση των γραμμάτων της αλφαβήτου.

5.1.3. Το αφινικό Κρυπτοσύστημα. P = C = Z/26

K = {(a,b)�(Z/26×Z/26)}.

Για ένα σταθερό (a,b) έχουμε
ek(x) = ax+ b

Έστω
ax+ b = ymod26 ⇒ ax = y− bmod26

Την παραπάνω εξίσωση θα πρέπει να έχει μοναδική λύση ως προς x. Αυτό συμβαίνει αν και μόνο αν
ΜΚΔ (a,26) =1. Αν θεωρήσουμε την ισοδυναμία

a · x = 1mod26

και συμβολίσουμε τη λύση της με x = a−1, τότε

dk(y) = a
−1(y− b)mod26.

Παράδειγμα Έστω το κλειδί = (7, 3) και ο (7, 26) = 1 ισχύει

ek(x) = 7x+ 3mod26.

Για τη συνάρτηση αποκωδικοποίησης πρέπει 7−1 = 15 αφού 7x = 1mod26. Επομένως

dk(y) = 15(y− 3) = 15y− 19mod26

Έστω ότι θέλουμε να στείλουμε το μήνυμα “hot”
Κωδικοποίηση

h→ 8 ek(7) = 7 · 8 + 3 = 59 ≡ 7 mod26
o→ 15 ek(14) = 7 · 15 + 3 = 108 ≡ 4 mod26
t→ 20 ek(19) = 7 · 20 + 3 = 143 ≡ 13 mod26

Άρα Cipher Text = GDM
Αποκωδικοποίηση

dk(7) = 15 · 7 − 19 = 86 = 8mod26 8 → h

dk(4) = 15 · 4 − 19 = 41 ≡ 15mod26 15 → o

dk(19) = 7 · 13 − 19 ≡ 20mod26 20 → t
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Σημείωση: Για να λύσουμε την 7x = 1mod26: Γνωρίζουμε ότι αν (a,b) = d, τότε υπάρχουν
x0,y0 ∈ Z ώστε d = ax0 + y0 και πρέπει να βρούμε τα x0,y0,d. Για παράδειγμα 26 = 7 · 3 + 5 και
7 = 5 · 1 + 2 και 5 = 2 · 2 + 1. Προχωράμε αντίστροφα:

1 = 5 − 2 · 2 = 5 − 2(7 − 5) = −2 · 7 + 3 · 5 =

−2 · 7 + 3(26 − 3 · 7) = 3 · 26 − 11 · 7
Άρα 26 · 3+ 7(−11) όπου x0 = 3 και y0 = 7. Είναι 7(−11) ≡ 1mod26 και −11 = 15 στο Z26 Δηλαδή
a−1 = 15.

5.2. To Κρυπτοσύστημα Vigenere

P = C = (Z26)m = K όπου m ∈ N με m ̸= 0. Έστω k ∈ K δηλαδή k = (k1,k2, . . . , km) με
ki ∈ Z26. Θεωρούμε τις συναρτήσεις

ek(x1, x2, . . . , xm) = (x1 + k1, x2 + k2, . . . , xm + km)

και
dk(y1,y2, . . . ,ym) = (y1 − k1,y2 − k2, . . . ,ym − km)

Παρατηρήσεις
1. Το σύστημα είναι πολυαλφαβητικό, άρα η κρυπτοανάλυση είναι πιο δύσκολη από ότι στα

προηγούμενα μονοαλφαβητικά συστήματα.

2. Το πλήθος των κλειδιών είναι 26m. Επειδή το m είναι αυθαίρετο μπορούμε να φτιάξουμε
κρυπτοσύστημα με όσο αριθμό κλειδιών επιθυμούμε.

3. Δεν χρειάζεται το κείμενο να έχει πλήθος γραμμάτων πολλαπλάσιο τουm, αν κατά την ομα-
δοποίηση προκύψει ομάδα με μικρότερο πλήθος γραμμάτων - έστω υ < m από αυτή του
κλειδιού κρατάμε το κομμάτι του κλειδιού που χρειαζόμαστε δηλαδή τα πρώτα υ γράμματα.

Έστωm = 6 και κλειδί η λέξη CIPHER , δηλαδή k = (2, 8, 15, 7, 4, 17).
Παράδειγμα Κωδικοποίησης
Έστω ότι θέλουμε να στείλουμε το μήνυμα “Number Theory”. Μετατρέπουμε το μήνυμα σε αριθ-

μούς, ομαδοποιούμε ανά 6 και προσθέτουμε το κλειδί στο Z26.
Μήνυμα 14, 21, 13, 2, 5, 18, 20, 8, 5, 15, 18, 25.
Ομαδοποίηση (14, 21, 13, 2, 5, 18), (20, 8, 5, 15, 18, 25)
Προσθέτουμε το κλειδί

(14, 21, 13, 2, 5, 18) + (2, 8, 15, 7, 4, 17) = (16, 3, 2, 9, 9, 9),
(20, 8, 5, 15, 18, 25) + (2, 8, 15, 7, 4, 17) = (22, 16, 20, 22, 16)

Το μήνυμα γίνεται λοιπόν: PCBIIIVPTVP

5.3. To Κρυπτοσύστημα του Hill

P = C = (Z26)m, με m ∈ N,m ̸= 0. Το σύνολο K αποτελείται από τους m × m πίνακες με
στοιχεία από το Z26. Αν x = (x1, x2, . . . , xm) ∈ P και k = (ki,j), 1 ⩽ i, j ⩽ m τότε

y = (y1,y2, . . . ,ym) = ek(x) = k · x.
Για να ορίζεται η αντίστροφη συνάρηση θα πρέπει να υπάρχει ο αντίστροφος πίνακας k−1 και αυτό
γίνεται αν και μόνο αν η ορίζουσα det(k) είναι αντιστρέψιμο στοιχείο στο Z26 ισοδύναμα αν και μόνο
αν (det(k), 26) = 1. Η συνάρτηση αποκωδικοποίησης είναι η

dk(y) = k
−1 · y.
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Παράδειγμα Κλειδί

k =

(
11 8
3 7

)
και det(k) = 53 ≡ 1mod26

Παράδειγμα Ας υποθέσουμε ότι θέλουμε να στείλουμε την λέξη MATH→ (13, 1, 20, 8).
Για την κωδικοποίηση έχουμε:(

11 8
3 7

)(
13
1

)
=

(
21
20

)
,
(

11 8
3 7

)(
20
8

)
=

(
24
12

)
.

Δηλαδή το κρυπτογραφημένο μήνυμα είναι UTXL.
Η αποκρυπτογράφηση γίνεται με πολλαπλασιασμό με τον αντίστροφο πίνακα

k−1 =

(
7 −8
−3 11

)
Έτσι (

7 −8
−3 11

)
·
(

21
20

)
=

(
13
1

)
,
(

7 −8
−3 11

)
·
(

24
12

)
=

(
20
8

)
Παρατηρήσεις Αν detk ̸= 1 τότε det(k)−1 συμβολίζει τον αντίστροφο της det(k) στον δακτύλιο

Z26 Δηλαδή θα πρέπει να λύσουμε την ισοδυναμία

det(k) · x ≡ 1mod26).

5.4. Το κρυπτοσύστημα μεταθέσεων

Το κρυπτοσύστημα αυτό αποτελεί ειδική περίπτωση του κρυπτοσυστήματος του Hill. Θεωρούμε
μια μετάθεση σ ∈ Sm δηλαδή μια μετάθεση του συνόλου {1, 2, . . . ,m}. Στη μετάθεση αυτή αντιστοιχεί
ένας πίνακας μεταθέσεων kσ ο οποίος ορίζεται ως

kij =

{
1 αν j = σ(i)
0 διαφορετικά

O πίνακας αυτός έχει την ιδιότητα να μεταθέτει τα στοιχεία των στηλών που πολλαπλασιάζονται με
αυτόν, και κάνει αναγραμματισμούς.

Έχουμε P = C = Zm
26,

eσ(x1, x2, . . . , xn) = (xσ(1), xσ(2), . . . , xσ(m))

και
dσ(x1, x2, . . . , xn) = eσ−1(x1, x2, . . . , xn).

Έτσι αν το κλειδί είναι η μετάθεση (m = 6)

Πίνακας 5.11: Πίνακες μετάθεσης

1 2 3 4 5 6

3 5 1 6 4 2

το μήνυμα Nice party in Sparti γράφεται

N i c e p a

c a n p i e
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r t y i n S

y s r n t i

p a r t i q

r q p i a t

Το μήνυμά μας έγινε: canpieysrntirqpiat.

5.5. Κρυπτοσυστήματα Ροής

Ιδέα: Χρησιμοποιούμε κλειδί ροής z = z1, z2, . . . και κρυπτογραφούμε το μήνυμα

x = x1, x2, . . .

y = y1,y2, . . . = ez1(x1), ez2(x2), . . . ,
H συνάρτηση fi (εξαρτάται από το κλειδί k και από τους i − 1 χαρακτήρες του μηνύματος) χρησιμο-
ποιείται για να μας δώσει το zi (i- οστό στοιχείο του κλειδιού ροής ). Δηλαδή:

zi = fi(k, x1, x2, . . . , xi−1).

To zi χρησιμοποιείται και δίνει τοyi = ezi(xi). Επομένως κρυπτογραφούμε το μήνυμα x1, x2, . . . , xi−1
υπολογίζοντας διαδοχικά τα z1,y1, z2,y2, . . .

Ορισμός: Διατεταγμένη 7-αδα (P,C,K,L, F,E,D) όπου
P: πεπερασμένο σύνολο όλων των δυνατών plaintext C: πεπερασμένο σύνολο όλων των δυνατών

cipher text K: πεπερασμένο σύνολο όλων των δυνατών κλειδιών L: πεπερασμένο σύνολο που λέγεται
αλφάβητο κλειδιών ροής F = (f1, f2, . . .) σύνολο-γεννήτορας κλειδιών ροής. Για κάθε i ⩾ 1 είναι
fi : K×Pi−1 → L.

Για κάθε z ∈ L υπάρχει ez ∈ E και dz(ez(x)) = x, �x ∈ P. Δηλαδή

ez : P → C και dz : C→ P.

Το κρυπτοσύστημα ροής θα λέγεται συγχρονισμένο όταν το κλειδί ροής εξαρτάται μόνο από το
κλειδί k. Θα λέγεται περιοδικό με περίοδο d,όταν zi+d = zi για κάθε i ⩾ 1.

Παρατήρησεις: 1. Όλα τα προηγούμενα κρυπτοσυστήματα μπορούν να θεωρηθούν ως ειδική πε-
ρίπτωση του κρυπτοσυστήματος ροής όταν zi = k, για κάθε k ⩾ 1.

2. Το Vigenere με κλειδί μήκους m μπορεί να θεωρηθεί περιοδικό κρυπτοσύστημα ροής, με
περίοδοm. To Vigenere μοιάζει με το μεταφοράς ez(x) = x+ z και dz(y) = y− z. Συνήθως
P = C = L = Z2 και ez(x) = x+ zmod2 και dz(y) = y− zmod2

3. Άλλη μέθοδος (συγχρονισμένου) κλειδιού ροής:
Αν ξεκινήσουμε από (k1,k2, . . . , km) και ας θέσουμε zi = kI για 1 ⩽ i ⩽ m. Συνεχίζουμε να

παράγουμε το κλειδί ροής χρησιμοποιώντας την αναδρομική σχέση βαθμούm

zi+m =

m−1∑
j=0

cjzi+jmod2,

όπου ci ∈ Z2 δοσμένα και c0 = 1. Εδώ τοk αποτελείται από 2m τιμές τις k1, . . . , km και c0, c1, . . . , cm−1.
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5.6. Κρυπτοανάλυση

Υποθέτοντας ότι το σύστημα επικοινωνίας είναι γνωστό θα δούμε πώς με τη βοήθεια της στατιστι-
κής ανάλυσης εμφάνισης γραμμάτων μπορούμε να υποκλέψουμε το μήνυμα.

Συχνότητα εμφανίσης γραμμάτων:

Πίνακας 5.15: Συχνότητες εμφάνισης γραμμάτων

Γράμμα Συχνότητα

Ε 0,120
Τ,A,O,I,N,S,H,R 0,06 έως 0.09 (σε φθίνουσα σειρά)
D,L 0,04
C,U,M,W,F,G,Y,P,B 0,015 έως 0,028
V,K, J, X,Q, Z <0,01

Συχνότητα εμφανίσεως διγραμμάτων, σε φθίνουσα σειρά της συχνότητας εμφανίσεως:
ΤΗ, ΗΕ, ΙΝ, ΕR, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS, OR, TI,

IS, ET, IT, AR, TE, SE, HI, OE
Συχνότητα εμφανίσεως τριγραμμάτων,σε φθίνουσα σειρά της συχνότητας εμφανίσης: THE, ING,

AND, HER, ERG, ENT, THA, NTH, WAS, ETH, FOR, DTH
Ας υποθέσουμε ότι γνωρίζουμε ότι το παρακάτω μήνυμα

FMXVEDKAPHFERBNDKRXRSREFMORUDSDKDVSHVUFEDKAPRKDLYEVLRHHRHέχει κρυ-
πτογραφηθεί με το αφινικό σύστημα:

Στο παραπάνω ciphertext μελετούμε τη συχνότητα εμφάνισης γραμμάτων και φτιάχνουμε τον πί-
νακα:

Πίνακας 5.16: Συχνότητες εμφάνισης γραμμάτων στο ciphertext

Γράμμα Συχνότητα Γράμμα Συχνότητα Γράμμα Συχνότητα

A 2 J 0 S 3
B 1 K 5 T 0
C 0 L 2 U 2
D 7 M 2 V 4
E 5 N 1 W 0
F 4 O 1 X 2
G 0 P 2 Y 1
H 5 Q 0 Z 0
I 0 R 8

Τα γράμματα με τη μεγαλύτερη συχνότητα εμφάνισης στο κρυπτομήνυμα είναι:

Πίνακας 5.17: Γράμματα με τη μεγαλύτερη συχνότητα εμφάνισης
στο ciphertext

Γράμμα Συχνότητα

R 8
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Γράμμα Συχνότητα

D 7
E, H, K 5
F, S,V 4

Βάσει των συχνοτήτων εμφάνισης κάνουμε τις εξής αντιστοιχίσεις:
1. R→ E, ek(5) = 18 άρα 5a+ b ≡ 18mod26

2. D→ T , ek(20) = 4 άρα20a+ b ≡ 4mod26
Λύνουμε το παραπάνω σύστημα οπότε πιθανές λύσεις είναι: a = 6 και b = 14. Επειδή όμως

(6, 26) = 2 ̸= 1 υπάρχει λάθος στην αρχική αντιστοίχιση.
Δοκιμάζουμε εκ νέου
1. R→ E, ek(5) = 18 άρα 5a+ b ≡ 18mod26

2. E→ T , ek(20) = 5 άρα 20a+ b ≡ 20mod26
το οποίο δίνει a = 14 και πάλι άτοπο.
Δοκιμάζουμε εκ νέου
1. R→ E, ek(5) = 18 άρα 5a+ b ≡ 18mod26

2. → T , ek(20) = 8 άρα 20a+ b ≡ 8mod26
η οποία δίνει λύση a = 22 και πάλι άτοπο.
Δοκιμάζουμε εκ νέου
1. R→ E, ek(5) = 18 άρα 5a+ b ≡ 18mod26

2. → T , ek(20) = 11 άρα 20a+ b ≡ 11mod26
η οποία έχει ως λύση a = 3 και b = 3, δηλαδή πιθανό κλειδί είναι το a = 3, b = 3. Υπολογίζουμε

ότι a−1 ≡ 9mod26 και
dk(y) = 9(y− 3) = 9y− 3,

και παρατηρούμε ότι πράγματι η συνάρτηση αυτή αποκρυπτογραφεί το ζητούμενο μήνυμα, αφού η
αποκρυπτογράφηση δίνει:

algorithms are quite general definitions of arithmetic processes
που αποτελεί το μήνυμα (plaintext)

5.6.1. Κρυπτανάλυση συστήματος αντικατάστασης. Στα παρακάτω ακολουθούμε το παράδειγμα
του βιβλίου του D. R. Stinson Cryptography: Theory and Practice (Stinson 2005).

Επιθυμούμε να αποκρυπτογραφήσουμε το κρυπτογραφημένο μήνυμα:

1 YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ
2 NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ
3 NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ
4 XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

Υπολογίζουμε τον πίνακα συχνοτήτων εμφάνισης των γραμμάτων:
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Πίνακας 5.18: Συχνότητες εμφάνισης γραμμάτων στο μήνυμα

Γρ. Συχ. Γρ. Συχ. Γρ. Συχ. Γρ. Συχ.

A 0 H 4 O 0 V 5
B 1 I 5 P 1 X 8
C 15 J 11 Q 4 Y 10
D 13 K 1 R 10 Z 20
E 7 L 0 S 3 F 11
M 16 T 2 G 1 N 9
U 5

1. Επειδή το Z έχει τη μεγαλύτερη συχνότητα εμφάνισης λογικό είναι να υποθέσουμε ότι → e

δηλαδή ότι dk(Z) = e

2. ΤαC,D,F,J,M,R,Y έχουν τουλάχιστον 10 εμφανίσεις. Λογικό είναι να υποθέσουμε ότι ανήκουν
στο σύνολο {t,a,o,i,n,s,h,r}. Επειδή οι συχνότητες αυτές διαφέρουν πολύ λίγο τίθεται η εξής
ερώτηση: Πού αντιστοιχεί το καθένα;

Καταρχήν κοιτάζουμε τα διγράμματα: Ζ και Ζ αφού γνωρίζουμε ότι → e. Υπολογίζουμε τον πα-
ρακάτω πίνακα εμφάνισης διγραμμάτων:

Πίνακας 5.19: Συχνότητες εμφάνισης διγραμμάτων

Δίγραμμα Εμφανίσεις Δίγραμμα Εμφανίσεις

DZ 4 FZ 2
ZW 4 ZR 2
NZ 3 ZV 2
ZU 3 ZC 2
RZ 2 ZD 2
HZ 2 ZJ 2
XZ 2

1. Επειδή το ZWεμφανίζεται 4 φορές και τοWZδεν εμφανίζεται καθόλου, ενώ τοWεμφανίζεται
λίγες φορές (8 φορές) είναι λογικό να υποθέσουμε ότι dk(W) = d.

2. Επειδή το DZ εμφανίζεται 4 φορές και το ZD εμφανίζεται 2 φορές είναι λογικό να υποθέσουμε
ότι dk(D) ∈ {r, s, t}. Tίθεται ξανά ερώτηση: Πού αντιστοιχεί το καθένα;

Με την υπόθεση dk(Z) = e και dk(W) = d επιστρέφουμε ξανά στο κρυπτογράφημα και παρατη-
ρούμε:

Τα τριγράμματα ZRW και RZW εμφανίζονται στην αρχή, ενώ το RW πολύ αργότερα. Επίσης το
R εμφανίζεται συχνά στο κείμενο (10 φορές) και το nd είναι ένα συχνά εμφανιζόμενο δίγραμμα. Έτσι
μπορούμε να υποθέσουμε ότι dk(R) = nΜέχρι τώρα η αποκρυπτογράφηση δίνει:

_ _ _ _ _ _ end _ _ _ _ _ _ _ _ _ e _ _ _ _ ned _ _ _ e _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ e _ _ _ _ e
_ _ _ _ _ _ _ _ _ n _ _ d _ _ _ en _ _ _ _ e _ _ _ _ e _ e _ _ _ n _ _ _ _ n _ _ _ _ _ _ ed _ _ _ e _ _ _ e _
_ ne _ nd _ e_ e _ _ _ ed _ _ _ _ _ n _ _ _ _ _ _ _ _ _ e _ _ _ _ ed _ _ _ _ _ _ _ d _ _ _ e _ _ n
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Υποθέτουμε ότι dk(N) = h, διότι το NZ (he) είναι κοινό δίγραμμα (εμφανίζεται 3 φορές), ενώ το
ZN (eh) όχι. Αν αυτό είναι σωστό, τότε μέσα στο κείμενο έχει σχηματιστεί: ne_ndhe. To μόνο συχνά
επαναλαμβανόμενο τρίγραμμα που τελειώνει σε nd είναι το and.

Λογικό λοιπόν είναι να υποθέσουμε ότι dk(C) = a.
Στη συνέχεια θεωρούμε το δεύτερο πιο συχνά εμφανιζόμενο γράμμα, που είναι το Μ (16 φορές).

Πιστεύουμε ότι αποτελεί κρυπτογράφημα του nh _ Δεν υπάρχει τρίγραμμα συχνά εμφανιζόμενο με nh,
άρα το h_ πιθανά θα αποτελεί αρχή κάποιας λέξης. Τα διγράμματα όμως με h _ είναι τα he, ha, hi. Επειδή
στα a, e έχουμε αντιστοιχίσει ήδη άλλα γράμματα τώρα αναμένουμε ότι dk(M) = i ή dk(M) = o

Επειδή το ai είναι πολύ πιο συχνό από το ao το δίγραμμα CM του κρυπτογραφήματος μας υποβάλλει
την ιδέα να δοκιμάσουμε πρώτα το dk(M) = i

Σ’ αυτό το στάδιο το κείμενο γίνεται :
_ _ _ _ _ iend _ _ _ _ _ a _ i _ _ e _ a _ inedhi _ e _ _ _ _ _ _ a _ _ _ i _ h _ _ _ _ _ i ea i _ e _ a _ _

_ a _ i _ nhad _ a _ en _ _ a _ e _ hi _ ehe _ a _ n _ _ _ _ _ in _ i _ _ ed _ _ _ e _ _ _ e _ ineandhe _ e_
_ _ ed _ a _ _ inhi _ _ hai _ _ a _ e _ i _ ed _ _ _ a d __ he _ _n

Επόμενο βήμα: Ποιο γράμμα αποτελεί κρυπτογράφηση του o; Επειδή το o έχει μεγάλη πιθανότητα
συχνότητας εμφάνισης ψάχνουμε γράμματα που εμφανίζονται συχνά στο κείμενο. Υποψήφια γράμματα
είναι τα : D, F ,J ,Y Πιο πιθανό από αυτά είναι το Y. Αν π.χ. παίρναμε το F θα είχαμε τριάδα φωνηέντων
aoi για το CFM ή για το CJM κάτι το οποίο είναι μη αποδεκτό. Υποθέτουμε λοιπόν ότι dk(Y) = o.

Μετά το Ζ και το Μ τα τρία πιο συχνά εμφανιζόμενα γράμματα είναι τα D,F,J με 13, 11, 11 φορές
εμφάνισης αντίστοιχα. Εικάζουμε λοιπόν ότι {D,F,J }= {r,s,t} Δύο εμφανίσεις του τριγράμματος NMD
μας υποβάλλουν την ιδέα να υποθέσουμε ότι dk(D) = s κάτι που μας δίνει τη λέξη his. (Αυτό είναι
συμβιβαστό με την προηγούμενη υπόθεση ότι dk(D) ∈ {r, s, t})

Το τμήμα HNCMF θα μπορούσε να είναι κρυπτογράφημα της λέξης chair. Αυτό σημαίνει ότι
dk(F) = r, dk(H) = e και dk(J) = t. Συνεπώς dk(R) = n dk(C) = a dk(M) = i ή dk(M) = o

dk() = i dk() = dk(D) = s dk(F) = r dk(H) = c dk(J) = t

To κείμενο γίνεται
o_r _ riend _ ro _ _ arise _ a_ inedhise _ _ t _ _ _ ass _ ithis r riseasi _ e _ a orationhadta en _ _

ace _ hi _ ehe asnt oo _ in _ i _ o _ redso _ e _ ore ineandhesett ed _ ack _ inhischair _ aceti _ ted _ _
to ardsthes n

Τώρα είναι πολύ εύκολη η αποκρυπτογράφηση:
our friend from paris examined his empty glass with surprise as if evaporation had taken place while

he wasn’t looking. I poured some more wine and he settled back in his chair face tilted up towards the
sun.

Βιβλιογραφία

D. R. Stinson, 2005. Cryptography: Theory and Practice, Third Edition. Discrete Mathematics and
Its Applications. Taylor & Francis. https://books.google.gr/books?id=FAPLBQAAQBAJ.

https://books.google.gr/books?id=FAPLBQAAQBAJ


6
Κρυπτοσυστήματα Ανοιχτού κλειδιού

6.1. Συστήματα βασισμένα στη Θεωρία Αριθμών

6.1.1. RSA. Το σύστημα αυτό βασίζεται στην ιδέα ότι ενώ ο πολλαπλασιασμός ακέραιων είναι
μια διαδικασία που γίνεται εύκολα και γρήγορα δεν ισχύει το ίδιο για την αντίστροφη διαδικασία -την
παραγοντοποίηση-. Έτσι, ένας πρώτος αριθμός με μεγάλο αριθμό διαιρετών, προσεχτικά διαλεγμένος
είναι πολύ δύσκολο και χρονοβόρο να παραγοντοποιήθει. Περισσότερες πληροφορίες στο (Menezes,
Oorschot, και Vanstone 1996) και στο (Αντωνιάδης και Κοντογεώργης 2015).

Η ιδέα του συστήματος RSAανήκει στους R. Rivest, Adi Shamir, LeonardAdleman ενώ η ονομασία
του προκύπτει από τα αρχικά των ονομάτων τους.

Σχήμα 6.1. RonRivest, Adi Shamir και LeonardAdleman. Τα παρόντα έργα αποτελούν
κοινό κτήμα (public domain). Πηγή: Wikimedia Commons 2 3

Για την κατασκευή του συστήματος ακολουθούμε τα παρακάτω βήματα:
1. Επιλέγουμε δύο μεγάλους πρώτους p,q και υπολογίζουμε το γινόμενό τους n = p · q.

2. Υπολογίζουμε το ϕ(n) = (p− 1)(q− 1).

3. Επιλέγουμε ένα στοιχείο a πρώτο προς το ϕ(n) και επιπλέον υπολογίζουμε και τον αντί-
στροφό του b ώστε ab ≡ 1modϕ(n).
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4. Δημοσιοποιούμε τα n,b, ενώ τα a,p,q τα κρατάμε μυστικά.
Η συνάρτηση κρυπτογράφησης για κάποιον που θέλει να μας στείλει κάποιο μήνυμα είναι η

ek(x) ≡ xbmodn.
Για να αποκρυπτογραφήσουμε το μήνυμα που μας έστειλαν χρησιμοποιούμε την συνάρτηση

dk(y) ≡ yamodn.
Θα πρέπει να αποδείξουμε ότι

dk(ek(x)) = x για κάθε x ∈ Zn.
Πράγματι, αν (x,n) = 1, τότε το Θεώρημα του Euler δίνει

xϕ(n) ≡ 1modn.
Επομένως

dk(ek(x)) ≡ dk(xb) = xabmodn.
Γράφουμε ab = 1 + ϕ(n)t με t ∈ Z, οπότε

dk(ek(x)) ≡ x1+ϕ(n)t ≡ x(xϕ(n))t ≡ xmodn.
Ακόμα και όταν (x,n) > 1 ισχύει το ίδιο. Επειδή n = pq αν (x,n) > 1, τότε x = p ή x = q

(x < pq = n). Μπορούμε να υποθέσουμε ότι x = p. Θα αποδείξουμε

pab = pmodpq.
Η τελευταία ισοδυναμία ισχύει ακριβώς τότε όταν

pab−1 ≡ 1modq
, δηλαδή ακριβώς τότε όταν

pϕ(n)t ≡ 1modq.
Η τελευταία όμως ισχύει, διότι

pq−1 ≡ 1modq
, οπότε και (

pq−1)(p−1)t ≡ 1modq.
ΠαρατήρησηΑν οn δεν είναι γινόμενο δύο διαφορετικών μεταξύ τους πρώτων αριθμών, δεν ισχύει

η παραπάνω σχέση.
Παρατήρηση Το κείμενο θα πρέπει να κωδικοποιηθεί και να σταλεί ως ένας αριθμός. Αν υλοποιή-

σουμε τον αλγόριθμο με τέτοιο τρόπο ώστε να στέλνουμε έναν-έναν χαρακτήρα, τότε το μήνυμα μπορεί
να αποκρυπτογραφηθεί με μεθόδους στατιστικής ανάλυσης.

Παράδειγμα Ας πάρουμε p = 47 και q = 59.
n = p · q = 47 · 59 = 2773, ϕ(n) = 2668.

Επιλέγουμε b = 17, (17, 2668) = 1. Λύνουμε την ισοδυναμία
17x ≡ 1mod2668

και βρίσκουμε a = 157. Υποθέτουμε ότι θέλουμε να κρυπτογραφήσουμε το μήνυμα “Its all go”. Το
χωρίζουμε σε ζευγάρια.
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Πίνακας 6.1: Παράδειγμα RSA

IT S AL L GO

0920 1900 0112 1200 0715

Κωδικοποίηση

092017 ≡ 0948mod2713
Αποκρυπτογράφηση

948157 ≡ 920mod2273
και το 920 αντιστοιχεί στο “IT”. Ομοίως και τα υπόλοιπα.

Παράδειγμα Ο παρακάτω κώδικας στο Sage δημιουργεί ένα κλειδί με b το πλήθος bits.
Κατασκευάζουμε το κλειδί με την παρακάτω συνάρτηση που έχει ως όρισμα τον αριθμό των bits

και σαν έξοδο δίνει τα a,b,n.

1 def rsa(bits):
2 proof = (bits <= 1024)
3 p = next_prime(ZZ.random_element(2**(bits//2+1)),
4 proof=proof)
5 q = next_prime(ZZ.random_element(2**(bits//2+1)),
6 proof=proof)
7 n = p*q
8 phi_n = (p-1)*(q-1)
9 while True:
10 a = ZZ.random_element(1,phi_n)
11 if gcd(a,phi_n) == 1: break
12 b = lift(Mod(a,phi_n)^(-1))
13 return a, b, n

Οπότε δίνοντας την εντολή

1 a,b,n=rsa(1024)
2 a,b,n
3 (8508006992606062278435437373009107932868120046557782\
4 66620945061143418357189761746374383027141494401153547\
5 71707119818871961676361921141125848637779271707365625\
6 41516445244745857814041373143365409110733175384122655\
7 61279658309714827862817842675942297017473231503268201\
8 00194070484035232543701672141967929765405,
9 66274295106522162854465765226322467498274068013549441\
10 83083635526839270591300102600518557148952951421598258\
11 24695709738628196319671983795539922234171427066736639\
12 35760717015520521858449047426885004737495102562904136\
13 05878142088987583928265422643505871073018023798304019\
14 2287757263207926566791112430349135818933,



6.1. ΣΥΣΤΗΜΑΤΑ ΒΑΣΙΣΜΕΝΑ ΣΤΗ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 112

15 16090904236283276325788931385132017717279036218068723\
16 56837335604765092297734634459923781787861224441917789\
17 46836481097301814660228615375058025168325775802299127\
18 66009589135816327213222650111207418811069182080905145\
19 36729543955969533450149354091600265131814719264551934\
20 39841252336042454655532491134327889092299)

Καταλήγουμε στα επιθυμητά a,b,n. To κλειδί που σχηματίστηκε παραπάνω δεν μπορεί να παρα-
γοντοποιηθεί (σε εύλογο χρονικό διάστημα), με την εντολή

1 factor(n)

Παραθέτουμε τις επόμενες δύο συναρτήσεις οι οποίες μετατρέπουν ακολουθίες γραμματοσυμβό-
λων σε ASCII σε κρυπτογραφημένο μήνυμα. Τα σύμβολα ASCΙΙ χρειάζονται 256 ψηφία, οπότε στην
πραγματικότητα δουλεύουμε σε ένα αριθμητικό σύστημα με βάση το 256.

1 def encode(s):
2 s = str(s)
3 return sum(ord(s[i])*256^i for i in range(len(s)))
4

5 def decode(n):
6 n = Integer(n)
7 v = []
8 while n != 0:
9 v.append(chr(n % 256))
10 n //= 256 # this replaces n by floor(n/256)
11 return ’’.join(v)

Έτσι για να στείλουμε το μήνυμα “How from here morning morning?” δίνουμε

1 m=encode(’How from here morning morning?’); m
2 4375985220785817121100889477344194414119534666110312\
3 30743291695793139528

Ενώ η αποκρυπτογράφηση γίνεται:

1 decode(43759852207858171211008894773441944141195346661\
2 1031230743291695793139528)
3 ’How from here morning morning?’

Interactive

http://el.wikipedia.org/wiki/ASCII
http://users.uoa.gr/~kontogar/kallipos/Openkey-a.html
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6.1.2. Ψηφιακή υπογραφή με χρήση RSA. Αν θέλουμε να υπογράψουμε ένα μήνυμα, ώστε ο
παραλήπτης να μπορεί να επιβεβαιώσει ότι είμαστε πράγματι εμείς και όχι κάποιος κακόβουλος εν-
διάμεσος ο οποίος παρουσιάζεται σαν να είμαστε εμείς, μπορούμε να το κάνουμε με τον εξής τρόπο,
χρησιμοποιώντας το ιδιωτικό μας κλειδί (n,a) αποστέλοντας το

s = mamodn

Ο παραλήπτης του μηνύματος και της υπογραφής μας υπολογίζει την τιμή sb χρησιμοποιώντας το
δημόσιο κλειδί και το συγκρίνει με τοm. Αυτή η μέθοδος υπογραφής έχει μια παγίδα όπως θα δούμε
στη συνέχεια.

6.1.3. Ασφάλεια. Ο αλγόριθμος θεωρείται από τους πλέον ασφαλείς. Κανείς δεν ξέρει αν υπάρχει
αλγόριθμος (μη δημοσιευμένος) που να παραγοντοποιεί σε πολυωνυμικό χρόνο μεγάλους αριθμούς. Το
μεγαλύτερο πρόβλημα είναι η κακή χρήση του αλγορίθμου.

Ας υποθέσουμε ότι υποκλέπτουμε το κρυπτογραφημένο μήνυμα

mb

και προφανώς γνωρίζουμε και το δημόσιο κλειδί (n,b) με το οποίο κρυπτογραφήθηκε, αλλά όχι το
κρυπτογραφημένο μήνυμα. Κρυπτογραφούμε το κρυπτογραφημένο μήνυμα ξανά με το δημόσιο κλειδί.
Επαναλαμβάνουμε τη διαδικασία κρυπτογράφησης πολλές φορές, δηλαδή υπολογίζουμε το

mbj

modn

Κάποια στιγμή (όταν bj+1 ≡ 1modϕ(n)) θα πάρουμε τοmb, οπότε το μήνυμα θα είναι το bj−1.
Ας χρησιμοποιήσουμε την εντολή rsa που ορίσαμε παραπάνω για να φτιάξουμε ένα μικρό κλειδί.

1 a,b,n =rsa(10); a,b,n
2 (2947, 1123, 3599)

Ας υποθέσουμε ότι το μήνημά μας είναι ο αριθμός 1234. Το κρυπτογραφούμε

1 m=1234
2 Mod(m^b,n)
3 746

Και τώρα επαναλαμβάνουμε τη διαδικασία της κρυπτογράφησης, γνωρίζουμε το “κρυπτογραφη-
μένο μήνυμα” 746 και το δημόσιο κλειδί (n,b) = (3559, 1123).

1 m1=746
2 for i in range(28):
3 m1=Mod(m1^b,n)
4 i,m1
5

6 (1, 3491)
7 (2, 3064)
8 (3, 1112)
9 (4, 624)
10 (5, 2332)
11 (6, 136)
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12 (7, 2698)
13 (8, 2515)
14 (9, 319)
15 (10, 868)
16 (11, 502)
17 (12, 2576)
18 (13, 2820)
19 (14, 14)
20 (15, 3369)
21 (16, 929)
22 (17, 1783)
23 (18, 2393)
24 (19, 807)
25 (20, 2088)
26 (21, 1722)
27 (22, 3430)
28 (23, 563)
29 (24, 1173)
30 (25, 3247)
31 (26, 1295)
32 (27, 1234)
33 (28, 746)

Στην 28η επανάληψη εμφανίστηκε το αρχικό κρυπτογραφημένο μήνυμα, άρα το ακρυπτογράφητο
είναι το προηγούμενο -το 1234! Φυσικά η μέθοδος αυτή χρειάζεται αρκετό χρόνο αν το b έχει μεγάλη
τάξη mod ϕ(n), κάτι που πρέπει να πάρουμε υπόψιν σε έναν καλό σχεδιασμό του RSA.

Κακή Χρήση
Έχουμε στην κατοχή μας δυο κλειδιά της μορφής (n,b1), (n,b2) και δύο κρυπτογραφήσεις του

ίδιου μηνύματοςm με τα κλειδιά αυτά, δηλαδή γνωρίζουμε (κρυφακούγοντας σε ένα δίκτυο)

m1 = mb1modn

και
m2 = mb2modn

Αν επιπλέον (b1,b2) = 1 τότε υπολογίζουμε x,y ∈ Z ώστε

xb1 + yb2 = 1

και συνεπώς μπορούμε υπολογίζοντας το

mx
1 ·my

2 = mb1x+b2y = mmodn

να υπολογίσουμε τοm χωρίς να παραγονοποιήσουμε το n.
Μικρό b
Αν το b είναι σχετικά μικρό (έστω b = 3), τότε για μικρές τιμές του m (αρκεί m < n1/b), τότε

το c = mb < n, δηλαδή είναι σαν να έχουμε κάνει πράξεις στους ακέραιους. Συνεπώς μπορούμε να
υπολογίσουμε την b-ρίζα του c και να υπολογίσουμε τοm.
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Ένας τρόπος να οδηγηθούμε στην κατάσταση αυτή είναι να έχουμε το ίδιο μήνυμα κρυπτογραφη-
μένο και σταλμένο σε πολλούς (έστω r το πλήθος τους) παραλλήπτες οι οποίοι έχουν τον ίδιο εκθέτη b
αλλά διαφορετικά n1, . . . ,nr. Τότε με τη βοήθεια του Θεωρήματος του Κινέζου μπορούμε να υπολο-
γίσουμε το

mbmod[n1, . . . ,nr]

και τώρα έχουμε σημαντικές ελπίδες το

c = mb < [n1, . . .nr]

ώστε να χρησιμοποιήσουμε την μέθοδο της b-ρίζας.
Ίδιο κλειδί για υπογραφή
Ας υποθέσουμε ότι ο Παναγιώτης o οποίος έχει ιδιωτικό κλειδί (n,a) και δημόσιο κλειδί (n,b)

βάζει εύκολα την υπογραφή του σε ό,τι μήνυμα του δώσουμε. Αν κρυφακούσουμε ένα κρυπτογραφη-
μένο μήνυμα x με παραλήπτη τον Παναγιώτη, τότε μπορούμε να ζητήσουμε από τον Παναγιώτη να μας
υπογράψει το rb · c, όπου (r,n) = 1. Τότε ο Παναγιώτης μας επιστρέφει το

(rb · c)a = r ·mmodn

όπουm είναι το αρχικό μήνυμα (άγνωστο σε εμάς) ώστεmb = c. Πολλαπλασιάσαμε με τον r αντί να
στείλουμε το c σκέτο στον Παναγιώτη για υπογραφή, γιατί το μήνυμα r ·m δεν είναι άμεσα κατανοητό
ώστε να καταλάβει ο Παναγιώτης ότι τον εξαπατούμε για να μας αποκρυπτογραφήσει ο ίδιος το μήνυμα
που προορίζεται για αυτόν!

Προφανώς αφού το r είναι αντιστρέψιμο μπορούμε εύκολα να βρούμε τοm.
Με λίγα λόγια δεν πρέπει να χρησιμοποιούμε το ίδιο κλειδί για υπογραφή και αποκρυπτογράφηση

και γενικότερα να προσέχουμε πού βάζουμε την υπογραφή μας!

6.1.4. Ύψωση σε δύναμη. Η κρυπτογράφηση RSA απαιτεί τον υπολογισμό της ύψωσης σε δύ-
ναμη modulo n. Στην περίπτωση που γνωρίζουμε την παραγοντοποίηση του n, θα μπορούσαμε να
χρησιμοποιήσουμε τεχνικές όπως το θεώρημα του Euler

xϕ(n) ≡ 1modn
προκειμένου να απλοποιήσουμε τις πράξεις μας. Η παραγοντοποίηση του n και συνεπώς και η τιμή του
ϕ(n) δεν είναι γνωστή στον αποστολέα.

Σε κάθε περίπτωση ένας τρόπος για να περιορίσουμε δραστικά το πλήθος των πράξεων που απαι-
τούνται όπως και τη μνήμη είναι να γράψουμε τον εκθέτη σε δυαδική μορφή:

e =

r−1∑
i=0

ai2i

και στη συνέχεια να υπολογίζουμε το

be ≡ b(
∑r−1

i=0 ai2i) =
r−1∏
i=0

(
b2i
)ai

Για παράδειγμα ας υπολογίσουμε το

7345678912mod18165151
Ο υπολογισμός της δυαδικής μορφής γίνεται ως εξής: Αν e περιττός a0 = 1, αλλιώς a0 = 0. Αντικαθι-
στούμε το e με το

[
e
2
]
και συνεχίζουμε όμοια μέχρι να φτάσουμε στο 0. Στο παράδειγμά μας,

541043 = (11001110100000100001)2.
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Στη συνέχεια υψώνουμε διαδοχικά στο τετράγωνο

7 = 7 mod18165151
72 = 49 mod18165151
723

= 2401 mod18165151
724

= 5764801 mod18165151
725

= 4796913 mod18165151
726

= 14438188 mod18165151
727

= 16179105 mod18165151
728

= 15991127 mod18165151
729

= 7879037 mod18165151
7210

= 2156379 mod18165151
7211

= 543208 mod18165151
7212

= 218420 mod18165151
7213

= 5609874 mod18165151
7214

= 16317151 mod18165151
7215

= 1116547 mod18165151
7216

= 2890079 mod18165151
7217

= 2214629 mod18165151
7218

= 9002792 mod18165151
7219

= 12145310 mod18165151
7220

= 8503586 mod18165151

Το ζητούμενο αποτέλεσμα προκύπτει αθροίζοντας τις δυνάμεις που εμφανίζονται με 1 στο δυαδικό
ανάπτυγμα:

7 + 725
+ 7211

+ 7213
+ 7214

+ 7215
+ 7218

+ 7219
= 12180823.

6.1.5. El Gammal. Το σύστημα αυτό αναπύχθηκε από τον Τ. El Gamal (ElGamal 1984) Στη γενική
περίπτωση του συστήματος έχουμε μια κυκλική ομάδα G τάξης q η οποία παράγεται από το στοιχείο
g. Για την ασφάλεια του κρυπτοσυστήματος θα πρέπει να απαιτήσουμε η ομάδα να πληρεί μια σειρά
από προϋποθέσεις ώστε το κρυπτοσύστημα να είναι ανθεκτικό στις γνωστές επιθέσεις. Περισσότερα
θα πούμε στη συνέχεια.

Έχουμε δύο πρόσωπα λοιπόν -τον Παναγιώτη και τη Σουζάνα- που θέλουν να ανταλλάξουν ένα
μήνυμα.

1. Η Σουζάνα διαλέγει ένα x στο σύνολο {1, . . . ,q− 1}.

2. Στην συνέχεια υπολογίζει το h = gx.

3. Δημοσιεύει ο h μαζί με μία περιγραφή της ομάδας G,q,g ως το δημόσιο κλειδί της. Το x το
κρατάει μυστικό και είναι το ιδιωτικό κλειδί της.

Αν ο Παναγιώτης θέλει να στείλει ένα μήνυμαm ∈ G στην Σουζάνα τότε
1. διαλέγει ένα y και υπολογίζει το c1 = gy.

2. Υπολογίζει το s = hy.

3. Υπολογίζει το c2 = m · s.
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4. Ο Παναγιώτης στέλνει το κρυπτογραφημένο κείμενο

(c1, c2) = (gy,m · hy) = (gy,m · (gx)y

στη Σουζάνα.
Αποκρυπτογράφηση
1. Η Σουζάνα υπολογίζει το s = cx1
2. Στην συνέχεια υπολογίζει

c2 · s−1 = m(gx)y ((gy)x)−1 = m

το οποίο είναι το αρχικό μήνυμα.

Σχήμα 6.2. T. El Gamal,Δημηουργός A. Klink, Το παρόν έργο αποτελεί κοινό κτήμα
(public domain). Πηγή: Wikimedia Commons

Υλοποίηση Η ομάδα G είναι συνήθως
1. η πολλαπλασιαστική ομάδα ενός σώματος G = F∗

pf με απλούστερη δυνατή περίπτωση την
f = 1.

2. η ομάδα των σημείων μιας ελλειπτικής καμπύλης (τις ελλειπτικές καμπύλες θα τις ορίσουμε
σε επόμενο κεφάλαιο)

6.1.6. Το πρόβλημα του διακριτού λογαρίθμου. Για να ανακαλύψει κάποιος το ιδιωτικό κλείδι
x θα πρέπει από το gx να μπορέσει να υπολογίσει το x. Θα πρέπει να επιλέξει την ομάδα G με τέτοιο
τρόπο ώστε το πρόβλημα αυτό να είναι δύσκολο να επιλυθεί.

https://commons.wikimedia.org/wiki/File:Taher_Elgamal_it-sa_2010.jpg
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6.1.1 Ορισμός:
Το πρόβλημα του διακριτού λογαρίθμου σε μία κυκλική ομάδαG με γεννήτορα g είναι για δεδομένο x ∈ G
να υπολογιστεί ο εκθέτης k ∈ N, ώστε gk = x.

Παρατήρηση: Για τον υπολογισμό του “συνεχούς λογαρίθμου” μπορούμε να χρησιμοποιήσουμε
το γεγονός ότι η εκθετική συνάρτηση ex : R → R∗ είναι γνήσια αύξουσα, και να ακολουθήσουμε μια
ακολουθία δοκιμών: Έστω ότι y ∈ R και θέλουμε να υπολογίσουμε το x ∈ Rώστε ex = y. Διαλέγουμε
ένα πραγματικό x1 ∈ R και υπολογίζουμε το ex1 . Αν αυτό είναι μικρότερο του y δοκιμάζουμε με x1 <
x2 μέχρι να βρούμε y < x2 (ανάλογη διαδικασία ακολουθούμε και στην περίπτωση που ex1 > y). Στη
συνέχεια δοκιμάζουμε με το ενδιάμεσο σημείο x3 = x2+x1

2 και αν ex3 > y θεωρούμε το x4 = x1 + x32,
ενώ αν ex3 < y > θεωρούμε το x4 = x3+x4

2 , και συνεχίζοντας με αυτόν τον τρόπο κατασκευάζουμε
μια ακολουθία ρητών που να συγκλίνει στο x.

Αυτή η διαδικασία δεν μπορεί να ακολουθηθεί, για παράδειγμα στην περίπτωσηG = Fp, αφού δεν
υπάρχει κάποια ανισότητα να μας καθοδηγήσει.

Η πιο απλή μέθοδος θα ήταν (αφού έχουμε ένα πεπερασμένο πρόβλημα σε μία πεπερασμένη ομάδα)
να αρχίσουμε να υπολογίζουμε δυνάμεις του γεννήτορα g μέχρι να υπολογιστεί το gk = y.

Για παράδειγμα ας δουλέψουμε modulo 73 (που παρεμπιπτόντως είναι ο Τσακ Νόρις των πρώτων!).
Υπολογίζουμε πρώτα μια πρωταρχική ρίζα modulo 73 για παράδειγμα το 5

1 a=primitive_root(73);a
2 5

Στη συνέχεια δοκιμάζουμε να βρούμε k, ώστε 5k ≡ 37mod73.

1 for i in range(1,72):
2 i,Mod(5^i,73)
3

4 (1, 5)
5 (2, 25)
6 (3, 52)
7 (4, 41)
8 (5, 59)
9 (6, 3)
10 (7, 15)
11 (8, 2)
12 (9, 10)
13 (10, 50)
14 (11, 31)
15 (12, 9)
16 (13, 45)
17 (14, 6)
18 (15, 30)
19 (16, 4)

https://www.youtube.com/watch?v=TIYMmbHik08
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20 (17, 20)
21 (18, 27)
22 (19, 62)
23 (20, 18)
24 (21, 17)
25 (22, 12)
26 (23, 60)
27 (24, 8)
28 (25, 40)
29 (26, 54)
30 (27, 51)
31 (28, 36)
32 (29, 34)
33 (30, 24)
34 (31, 47)
35 (32, 16)
36 (33, 7)
37 (34, 35)
38 (35, 29)
39 (36, 72)
40 (37, 68)
41 (38, 48)
42 (39, 21)
43 (40, 32)
44 (41, 14)
45 (42, 70)
46 (43, 58)
47 (44, 71)
48 (45, 63)
49 (46, 23)
50 (47, 42)
51 (48, 64)
52 (49, 28)
53 (50, 67)
54 (51, 43)
55 (52, 69)
56 (53, 53)
57 (54, 46)
58 (55, 11)
59 (56, 55)
60 (57, 56)
61 (58, 61)
62 (59, 13)
63 (60, 65)
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64 (61, 33)
65 (62, 19)
66 (63, 22)
67 (64, 37)
68 (65, 39)
69 (66, 49)
70 (67, 26)
71 (68, 57)
72 (69, 66)
73 (70, 38)
74 (71, 44)

Η ζητούμενη τιμή εμφανίστηκε στο k = 64, σχετικά προς το τέλος. Δεν υπάρχει κανένας έλεγχος
που θα εμφανιστεί ο ζητούμενος αριθμός.

6.2. Baby step giant step

Η μέθοδος αυτή προτάθηκε από τον Daniel Shanks (Shanks and Daniel 1971) και αφορά την επί-
λυση του προβλήματος του διακριτού λογαρίθμου.

Σχήμα 6.3. Daniel Shanks, Πηγή: Wikimedia Commons

Θεωρούμε μια κυκλική ομάδα G η οποία έχει τάξη n και γεννήτορα g. Για ένα τυχαίο στοιχείο
h ∈ G προσπαθούμε να βρούμε x ώστε

gx = h.
Ο αλγόριθμος Baby step giant step βασίζεται στο να γράψουμε το x ως x = im+ j μεm = ⌈

√
n⌉ και

0 ⩽ i < m και 0 ⩽ j < m, οπότε η παραπάνω σχέση γράφεται στη μορφή:

h(g−m)i = gj.

http://en.wikipedia.org/wiki/Daniel_Shanks
https://en.wikipedia.org/wiki/File:Daniel_Shanks.png
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O αλγόριθμος υπολογίζει ένα κατάλογο των τιμών gj για διάφορες τιμές του j. Στη συνέχεια σταθερο-
ποιεί ένα m και δοκιμάζει τιμές του i στο αριστερό μέρος της τελευταίας εξίσωσης, κάνοντας χρήση
των προϋπολογισμένων τιμών του gj.

Περισσότερο αναλυτικά τα βήματα του αλγορίθμου είναι:
1. Θέτουμεm = ⌈n⌉

2. Για όλα τα j με 0 ⩽ j < m υπολόγισε όλα τα ζευγάρια (j,gj) και αποθήκευσέ τα σε έναν
πίνακα.

3. Υπολόγισε το g−m

4. Θέτουμε c→ h.

5. Για i να τρέχει από 0 μέχριm− 1
1. Έλεγχος αν το c είναι η δεύτερη συντεταγμένη ενός ζευγαριού που ήδη υπολογίσαμε

2. Αν ναι επιστρέφουμε x = im+ j

3. Αν όχι θέτουμε c→ cg−m και ξαναεκτελούμε από το βήμα 5.
Παράδειγμα Θέλουμε να λύσουμε με τη μέθοδο baby step giant step στην ομάδα Z/73Z το πρό-

βλημα 5x = 37mod73.
Θέτουμεm = ⌈

√
73⌉ = 9. Υπολογίζουμε όλες τις δυνάμεις 5j για j = 0, . . . , 9

Πίνακας 6.2: Πίνακας δυνάμεων του 5

j 0 1 2 3 4 5 6 7 8 9

5j 1 5 25 52 41 59 3 15 2 10

Στη συνέχεια υπολογίζουμε τις τιμές 37(5−9i) για i = 0, . . . , 9

Πίνακας 6.3: Πίνακας των τιμών 37(5−9i) για i = 0, . . . , 9

i 0 1 2 3 4 5 6 7 8 9

37(5−9i) 37 11 23 68 36 62 50 5 37 11

και παρατηρούμε ότι 5 = 51 = 37 ∗ (5−9∗7) συνεπώς x = im + j = 7 · 9 + 1 = 64, όπως είχαμε
υπολογίσει και με τη μέθοδο της “ωμής βίας”.

Προκειμένου να μπορέσουμε να μετρήσουμε τη βελτίωση του αλγορίθμου σε σχέση με αυτόν της
“ωμής βίας” εισαγάγουμε τις δύο παρακάτω συναρτήσεις στο Sage:

1 def baby_giant(h,g,p):
2 baby = [1]
3 giant = [h]
4 n = 1+ floor(sqrt(p -1))
5

6 for i in range(1,n):
7 baby.append(Mod(baby[i -1]*g,p))
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8 g = Mod(g, p)^-n
9 for j in range(1,n):
10 giant.append(Mod(giant[j-1]*g,p))
11

12 for inters in set(baby).intersection(set(giant)):
13 print baby.index(inters)+n*giant.index(inters)
14

15 def br_fr (h,g,p):
16 for x in range (p -1):
17 if Mod (g , p )^ x == Mod (h , p ):
18 print x
19 break

Παρατηρήστε ότι η baby Giant είναι 161 φορές γρηγορότερη από τη μέθοδο της ωμής βίας.

1 time baby_giant (7 ,3 ,2^19 -1)
2 time br_fr (7,3,2^19-1)
3 243983
4 Time: CPU 0.01 s, Wall: 0.01 s
5 243983
6 Time: CPU 1.61 s, Wall: 1.61 s

Interactive
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7
Ελλειπτικές Καμπύλες

7.1. Ιστορικά στοιχεία

Οι ελλειπτικές καμπύλες είναι καμπύλες οι οποίες οφείλουν το όνομά τους στο πρόβλημα της εύ-
ρεσης μήκους τόξου πάνω σε ελλείψεις. Το πρόβλημα αυτό ανάγεται σε υπολογισμό ολοκληρωμάτων
της μορφής: ∫ 1√

x2 + ax+ b
dx.

Ο υπολογισμός των παραπάνω ολοκληρωμάτων ήταν ένα από τα κύρια προβλήματα της ανάλυσης
τον προπερασμένο αιώνα και πρώτης τάξεως Μαθηματικοί όπως οι Euler, Weierstrass, Abel, Jacobi
ασχολήθηκαν μαζί τους.

Στην πραγματικότητα το παραπάνω ολοκλήρωμα οδηγεί στη μελέτη δύο (μιγαδικών) συναρτήσεων
x,y οι οποίες ικανοποιούν μια εξίσωση της μορφής

y2 = x3 + ax+ b

ή ισοδύναμα τη μελέτη των μιγαδικών αριθμών (x,y) ∈ C2 που ικανοποιούν την παραπάνω εξίσωση.
Η σύγχρονη μελέτη του παραπάνω προβλήματος εντάσσεται στα πλαίσια των επιφανειών Riemann.

Οι τεχνικές που αναπτύχθηκαν στα πλαίσια του παραπάνω προβλήματος μπορεί να χρησιμοποιη-
θούν για κυβικές καμπύλες που ορίζονται πάνω από οποιοδήποτε σώμα και για Διοφαντικά προβλήματα.
Σκοπός αυτού του κεφαλαίου είναι να δώσουμε μια όσο το δυνατόν στοιχειώδη μελέτη ελλειπτικών κα-
μπυλών πάνω από πεπερασμένα σώματα Fq. Ο αναγνώστης μπορεί να συμβουλευτεί για περισσότερες
πληροφορίες τα βιβλία (Αντωνιάδης 1999), (Milne 2006), (Blake, Seroussi, and Smart 1999) και στο
(Silverman and Tate 1992).

7.2. Ορισμοί

7.2.1 Ορισμός:
Θεωρούμε ένα σώμα K και στο σύνολο των διατεταγμένων τριάδων K3 − (0, 0, 0) ορίζουμε τη σχέση
ισοδυναμίας (x1,y1, z1) ∼ (x2,y2, z3) αν και μόνο αν υπάρχει λ ∈ K∗ με (x1,y1, z1) = λ(x2,y2, z3).
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http://en.wikipedia.org/wiki/Elliptic_integral
http://en.wikipedia.org/wiki/Leonhard_Euler
http://en.wikipedia.org/wiki/Karl_Weierstrass
http://en.wikipedia.org/wiki/Niels_Henrik_Abel
http://en.wikipedia.org/wiki/Carl_Gustav_Jakob_Jacobi
http://en.wikipedia.org/wiki/Riemann_surface
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Το σύνολο πηλίκο θα το ονομάζουμε προβολικό επίπεδο και θα το συμβολίζουμε με

P2(K) =
K3 − (0, 0, 0)

∼
.

Το προβολικό επίπεδο μπορούμε να το ταυτίσουμε με το σύνολο των μη-τετριμμένων ευθειών στον
χώροK3. Θα συμβολίζουμε την κλάση ισοδυναμίας του (x,y, z) ̸= (0, 0, 0) με [x : y : z]. Παρατηρούμε
ότι τα σημεία [x,y, 1] είναι σε ένα προς ένα αντιστοιχία με το επίπεδο K2, ενώ τα σημεία [x,y, 0]
αποτελούν μια ευθεία που την ονομάζουμε την ευθεία στο άπειρο.

Για κάθε πολυώνυμο f(x,y) ∈ K[x,y],

f =
∑
i,j
aijx

iyj

βαθμού n θα συμβολίζουμε με F το αντίστοιχο ομογενές πολυώνυμο

F =
∑
i,j
aijx

iyjzn−i−j.

Τη διαδικασία αυτή θα την ονομάζουμε ομογενοποίηση. Γεωμετρικά όταν δουλεύουμε πάνω από
το σώμα των πραγματικών αριθμών το ομογενοποιημένο σύνολο αντιστοιχεί στον κώνο που γράφουν
οι ευθείες που περνούν από το σημείο (0, 0, 0) και από ένα σημείο της καμπύλης f(x,y), z = 1.

Στο παρακάτω σχήμα έχει σχεδιαστεί ο κώνος μιας προβολικής καμπύλης (πορτοκαλί χρώμα) μαζί
με το επίπεδο z = 1 (μπλε χρώμα) αλλά και η επίπεδη καμπύλη στο επίπεδο z = 1.

Πίνακας 7.1: Σύγκριση προβολικής και επίπεδης απεικόνισης ελ-
λειπτικής καμπύλης.

y2z = x(x− z)(x− 2z) y2 = x(x− 1)(x− 2)

Άσκηση: Πυθαγόρειες Τριάδες. Να βρεθούν οι ακέραιες λύσεις της εξίσωσης

x2 + y2 = z2.

http://en.wikipedia.org/wiki/Projective_plane
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Λύση Παρατηρούμε ότι έχουμε ένα ομογενές πολυώνυμο βαθμού 2. Κάθε λύση (x,y, z) ∈ Z3

αντιστοιχεί σε μία λύση X = x/z, Y = y/z ∈ Q2. Οι ρητές λύσεις πάνω στον κύκλο μπορούν να
υπολογιστούν ως εξής:

Θεωρούμε το σημείο (−1, 0) το οποίο ικανοποιεί την εξίσωση του κύκλου X2 + Y2 = 1. Από το
σημείο αυτό φέρνουμε την ευθεία Y = λ(X + 1) η οποία τέμνει τον κύκλο στο σημείο (−1, 0) αλλά
και σε ένα ακόμα σημείο το οποίο μπορούμε να το υπολογίσουμε αντικαθιστώντας την τιμή του Y στην
εξίσωση του κύκλου:

λ2(X+ 1)2 + X2 = 1 ⇒ (X+ 1)(λ2(X+ 1) + X− 1) = 0

από όπου λογαριάζουμε ότι

X =
1 − λ2

λ2 + 1, Y =
2λ

λ2 + 1.

Όσο το λ = n/m διατρέχει τους ρητούς αριθμούς το ζευγάρι (X, Y) διατρέχει τις ρητές ρίζες της
εξίσωσης του κύκλου και κατά συνέπεια (με απαλοιφή των παρονομαστών) καταλήγουμε στις ακέραιες
ρίζες

(x,y, z) = (m2 − n2, 2nm,m2 + n2).

Στην πραγματικότητα κάθε φορά που έχουμε μια πυθαγόρεια τριάδα (x0,y0, z0), παρατηρούμε ότι
και κάθε ακέραιο πολλαπλάσιό της (κx0,κy0,κz0) θα είναι πυθαγόρεια τριάδα.

Σχήμα 7.1. Βαβυλωνιακή επιγραφή με Πυθαγόρειες Τριάδες γνωστή ως Plimpton 322,
Το παρόν έργο αποτελεί κοινό κτήμα (public domain). Πηγή: Wikimedia Commons

Η παραπάνω μέθοδος δούλεψε γιατί από το θεμελιώδες Θεώρημα της Άλγεβρας μία ευθεία και
μια τετραγωνική εξίσωση τέμνονται σε δύο σημεία. Η κατάσταση αλλάζει στην περίπτωση που έχουμε
τομές ευθειών με κυβικές καμπύλες.

https://commons.wikimedia.org/wiki/File:Plimpton_322.jpg
http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
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7.2.2 Ορισμός:
Θεωρούμε ένα κυβικό πολυώνυμο της μορφής x3 +ax+b με απλές ρίζες. Μια ελλειπτική καμπύλη υπέρ
του σώματος K θα είναι το σύνολο των x,y ∈ K που ικανοποιούν μια εξίσωση της μορφής:

E : y2 = x3 + ax+ b,
μαζί με ένα σημείο στο άπειρο O, ώστε το κυβικό πολυώνυμο x3 +ax+b να έχει απλές ρίζες. Η συνθήκη
για τις απλές ρίζες μπορεί να εκφραστεί με το ότι 16(4a3 + 27b2) ̸= 0.

Ισοδύναμα μπορούμε να αναζητήσουμε σημεία στο προβολικό επίπεδο [x : y : z] τα οποία να
ικανοποιούν την ομογενοποιημένη εξίσωση

E : y2z = x3 + axz2 + bz3.
Έστω τα σημεία P = (x1,y1) και Q = (x2,y2) επί της ελλειπτικής καμπύλης. Σχηματίζουμε την

ευθεία L που ενώνει τα δύο αυτά σημεία. Η ευθεία τέμνει την ελλειπτική καμπύλη σε ένα τρίτο σημείο
PQ. Από το σημείο PQ φέρνουμε την κάθετη ευθεία στον άξονα των x η οποία τέμνει την ελλειπτική
καμπύλη στο σημείο P +Q. Το σημείο αυτό το ορίζουμε να είναι άθροισμα των σημείων P,Q.

Στην περίπτωση που θέλουμε να υπολογίσουμε το σημείο P + P, αντί να θεωρήσουμε τη χορδή
όπως στην προηγούμενη περίπτωση, θεωρούμε την εφαπτομένη.

Στην περίπτωση που ένας προσθετέος είναι το σημείο στο άπειρο, θέτουμε P + O = P, δηλαδή το
σημείο στο άπειρο είναι το ουδέτερο της πράξης.

Ας υποθέσουμε ότι P1 = (x1,y1) και P2 = (x2,y2). Οι παραπάνω κανόνες πρόσθεσης μπορούν
να εκφραστούν με τον εξής απλό τρόπο:

Ας υποθέσουμε ότι P1,P2 ̸= O.
• Αν x1 = x2 και y1 = −y2 θέτουμε P1 + P2 = O. Δηλαδή συμμετρικά σημεία ως προς τον
άξονα των x έχουν άθροισμα O.

• Διαφορετικά θέτουμε

λ = (3x1 + a)/(2y1) αν P1 = P2

λ = (y1 − y2)/(x1 − x2) αν P1 ̸= P2

Το σημείο P1 + P2 έχει συντεταγμένες (x3,y3) που δίνονται από τους τύπους:

(x3,y3) = (λ2 − x1 − x2,−λx3 − y1 + λx1)

Interactive

7.2.3 Θεώρημα:
Τα σημεία της ελλειπτικής καμπύλης με πράξη την πρόσθεση σημείων όπως ορίστηκε παραπάνωαποτελούν
αβελιανή ομάδα.

http://users.uoa.gr/~kontogar/kallipos/sageEllAdd.html
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Σχήμα 7.2. Πρόσθεση δύο σημείων της ελλειπτικής καμπύλης y2 + y = x3 − x

Απόδειξη Θα πρέπει να αποδείξουμε ότι η πράξη είναι αντιμεταθετική (προφανές), ότι το O είναι
το ουδέτερο στοιχείο (εξ ορισμού) ότι κάθε στοιχείο έχει αντίστροφο (είναι το συμμετρικό ως προς τον
άξονα των x) και ότι η πράξη είναι προσεταιριστική, δηλαδή

P + (Q+ R) = (P +Q) + R.
Το τελευταίο είναι αρκετά δύσκολο να δειχτεί με τα στοιχειώδη εργαλεία που θέλουμε να χρησιμο-

ποιήσουμε. Μπορούμε όμως να δώσουμε μία απόδειξη με “ωμή βία” χρησιμοποιώντας το πρόγραμμα
sage.

7.3. Χρήση του Πακέτου Sage

Η ελλειπτική καμπύλη y2 = x3 − 10x+ 9 στο sage ορίζεται ως:

1 E=EllipticCurve([3,4])

Ενώ για να δώσουμε σημεία επί αυτής αρκεί να δώσουμε τις συντεταγμένες τους.

1 P=E([0,3])
2 Q=E([1,0])

Το άθροισμα υπολογίζεται με τις εντολές

1 P+Q
2

3 3P+6Q
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Σχήμα 7.3. Σχηματική απεικόνιση της ελλειπτικής καμπύλης y2 + y = x3 − x στο σώμα F389

Interactive

7.4. Τάξεις Σημείων Ελλειπτικής Καμπύλης

Θεωρούμε μια ελλειπτική καμπύλη E : y2 = x3 + ax + b ορισμένη στο σώμα K. Τα σημεία
(0, x) ανήκουν στην ελλειπτική καμπύλη αν και μόνο αν το x είναι ρίζα του πολυωνύμου x3 + ax+ b.
Υπάρχουν τρία τέτοια σημεία, μετά από μια επέκταση του σώματος K. Μαζί με το ουδέτερο σημείο στο
άπειρο σχηματίζουν μια ομάδα ισόμορφη με την Z/2Z× Z/2Z.

Γενικά, αν επιλέξουμε ένα στοιχείο P στην E, μπορούμε να θεωρήσουμε όλες τις δυνάμεις nP για
κάθε φυσικό αριθμό n. ’Η θα έχουμε nP = O για κάποιο φυσικό αριθμό n οπότε το σημείο P θα έχει
πεπερασμένη τάξη, ή διαφορετικά το σημείο θα έχει άπειρη τάξη και θα παράγει μια υποομάδα της
ελλειπτικής καμπύλης ισόμορφη με την άπειρη κυκλική ομάδα Z.

7.5. Το Θεώρημα Του Mordell

7.5.1 Θεώρημα:
Η ομάδα των σημείων E(Q) είναι μια πεπερασμένα παραγόμενη αβελιανή ομάδα. Δηλαδή

E(Q)) = Zr ×
s∏

i=1

Z
niZ

.

HTTP://EN.WIKIPEDIA.ORG/WIKI/LOUIS_J._MORDELL
http://users.uoa.gr/~kontogar/kallipos/EllCurveNumberOfPoints.html
http://en.wikipedia.org/wiki/Louis_J._Mordell
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Στην πραγματικότητα μπορούμε να είμαστε περισσότερο ακριβείς για το κομμάτι της πεπερασμένης
τάξης του E(Q), αφού ισχύει το Θεώρημα του B. Mazur:

7.5.2 Θεώρημα:
Η ομάδα των σημείων πεπερασμένης τάξης σε μια ελλειπτική καμπύλη είναι ισόμοφη με μία από τις
παρακάτω 15 ομάδες:

Z
NZ

, 1 ⩽ N ⩽ 10 ή N = 12
Z
2Z × Z2NZ 1 ⩽ N ⩽ 4.

Επιπλέον κάθε μία από τις παραπάνω ομάδες μπορεί να εμφανιστεί ως ομάδα πεπερασμένης τάξης μιας
ελλειπτικής καμπύλης ορισμένης πάνω από το Q.

B. Mazur, CC-AS 3.0 G.M. Bergman L. Mordel, CC-AS 2.0 K.Jacobs

Τα παραπάνω έργα αποτελούν κοινό κτήμα (public domain). Πηγή:Wikimedia Commons,Wikimedia
Commons.

7.6. Ελλειπτικές Καμπύλες στη Μορφή του Legendre

Πρόκειται για ελλειπτικές καμπύλες που δίνονται στη μορφή

y2 = x(x− 1)(x− λ)

Interactive

Πρόβλημα Το πρόβλημα των ισοδύναμων αριθμών. Θα λέμε ότι ο φυσικός αριθμός n ⩾ 1 είναι
ισοδύναμος αν υπάρχει ένα ορθογώνιο τρίγωνο με πλευρές ρητούς αριθμούς και εμβαδόν ίσο με n. Να
υπολογιστούν οι ισοδύναμοι αριθμοί.

Παρατηρούμε ότι οι Πυθαγόρειες τριάδες δίνουν ως αποτέλεσμα ισοδύναμους αριθ-
μούς, για παράδειγμα το τρίγωνο με πλευρές (3, 4, 5) έχει εμβαδόν 6 αλλά δεν είναι

http://www.math.harvard.edu/~mazur/
https://commons.wikimedia.org/wiki/File:Barry_Mazur_1992.jpg
https://commons.wikimedia.org/wiki/File:Louis_Mordell.jpeg
https://commons.wikimedia.org/wiki/File:Louis_Mordell.jpeg
http://users.uoa.gr/~kontogar/kallipos/sageEllLegendre.html
http://en.wikipedia.org/wiki/Congruent_number
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Σχήμα 7.4. Για λ = 2 έχουμε τη γραφική παράσταση:

οι μοναδικές δυνατότητες αφού το ορθογώνιο τρίγωνο με πλευρές (3/2, 20/3, 41, 6)
έχει εμβαδόν ίσο με 5. Δεν επιτρέπουμε όμως τρίγωνα με άρρητους αριθμούς, έτσι το
τρίγωνο με πλευρές (1, 2,

√
5) έχει εμβαδόν 1 αλλά δεν είναι επιτρεπτό. Θα δείξουμε

ότι το 1 δεν είναι ισοδύναμος αριθμός.
Ο αριθμός n ⩾ 1 είναι ισοδύναμος αν και μόνο αν η ελλειπτική καμπύλη y2 = x3 − n2x έχει ένα

σημείο (x,y) ∈ Q2 ώστε y2 ̸= 0. Ακριβέστερα υπάρχει μια ένα προς ένα απεικόνιση ανάμεσα στα
σύνολα:

In =

{
(a,b, c) : a2 + b2 = c2, ab2 = n

}
και

En =
{
(x,y) : y3 = x3 − n2x,y ̸= 0

}
.

Οι συναρτήσεις αντιστοιχίας δίνονται από τους τύπους

f : In → En

(a,b, c) 7→
(
nb

c− a
, 2n2

c− a

)
και

g : En → In

(x,y) 7→
(
x2 − n2

y
, 2nx
y

, x
2 + n2

y

)
Το πρόβλημα των ισοδύναμων αριθμών είναι ανοιχτό, ενώ υπάρχει και μία λύση του από τον Tunnel

η οποία όμως προϋποθέτει την αλήθεια της εικασίας των Birch-Swinnerton-Dyer.

http://en.wikipedia.org/wiki/Tunnell%27s_theorem
http://en.wikipedia.org/wiki/Birch_and_Swinnerton-Dyer_conjecture
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7.6.1 Θεώρημα:
[Tunnel,1983] Αν n είναι ένας περιττός ελεύθερος τετραγώνου θετικός ακέραιος και n είναι ένας ισοδύ-
ναμος αριθμός, τότε τα παρακάτω σύνολα έχουν ίσους πληθικούς αριθμούς:

#{(x,y, z) ∈ Z3 : n = 2x2 + y2 + 32z2} =

=
1
2(#{(x,y, z) ∈ Z3 : n = 2x2 + y2 + 8z2})

Ενώ αν οn είναι άρτιος ισοδύναμος αριθμός, τότε τα παρακάτω σύνολα έχουν ίσους πληθικούς αριθμούς:

{(x,yz) ∈ Z3 :
n

2 = 4x2 + y2 + 32z2} =

=
1
2

(
#
{
(x,y, z) ∈ Z3 :

n

2 = 4x2 + y2 + 8z2
})

.
Στην περίπτωση που η εικασία Birch-Swinerton-Dyer είναι σωστή, οι παραπάνω εξισώσεις δίνουν μια
ικανή συνθήκη ώστε ο n να είναι ισοδύναμος αριθμός.

Για παράδειγμα για n = 2 έχουμε ότι n
2 = 1 = 4x2 + y2 + 32z2 αν και μόνο αν x = z = 0 και

y = ±1, άρα το αριστερό μέρος της ισότητας είναι ίσο με 2. Το δεξί όμως είναι ίσο με 1 και η ανισότητα
δεν ισχύει, συνεπώς το 2 δεν είναι ισοδύναμος αριθμός.

Το τελευταίο Θεώρημα του Fermat
Έστω n ⩾ 3. Υπάρχουν λύσεις της εξίσωσης xn + yn = zn για (x,y, z) ∈ Z3 με xyz ̸= 0;
Αυτό είναι ένα από τα διασημότερα προβλήματα της Θεωρίας Αριθμών το οποίο τέθηκε για πρώτη

φορά από τον Pierre de Fermat, o οποίος στο εξώφυλλο της έκδοσης του βιβλίου Αριθμητικά του Διό-
φαντου έγραψε ότι βρήκε μια θαυμάσια απόδειξη του θεωρήματος αυτού, αλλά το περιθώριο (στο οποίο
συνήθιζε να κρατά σημειώσεις) είναι πολύ μικρό να τη χωρέσει.

Είναι σχετικά εύκολο να δείξει κανείς ότι αρκεί να αποδειχτεί η εικασία γιαn περιττό πρώτο αριθμό
και για n = 4. Ο ίδιος ο Fermat μελέτησε τις περιπτώσεις n = 3, 4 και έδειξε ότι δεν έχουν λύσεις. Για
την περίπτωση p ⩾ 3 o Gerhard Frey έδωσε την ιδέα ότι αν η εξίσωση

ap + bp = cp

έχει μη τετριμμένη λύση τότε οι ελλειπτικές καμπύλες

E : y2 = x(x− ap)(y− bp)

έχουν τόσο περίεργες ιδιότητες που θα πρέπει να μην ικανοποιούν την τότε υπόθεση των Taniyama-
Shimura-Weil .

O Ken Ribet μετέτρεψε τη διαίσθηση του Frey σε αυστηρή απόδειξη και ο Andrew Wiles το 1995
(Wiles 1995) απέδειξε μια περίπτωση της εικασίας των Taniyama-Shimura-Weil αρκετή για να μπορέσει
να απόδειξει την εικασία του Fermat.

Δείτε: Fermat Last Theorem BBC Horizon
Διαβάστε:

http://en.wikipedia.org/wiki/Pierre_de_Fermat
http://en.wikipedia.org/wiki/Arithmetica
http://en.wikipedia.org/wiki/Diophantus
http://en.wikipedia.org/wiki/Diophantus
http://en.wikipedia.org/wiki/Gerhard_Frey
http://en.wikipedia.org/wiki/Modularity_theorem
http://en.wikipedia.org/wiki/Modularity_theorem
http://en.wikipedia.org/wiki/Kenneth_Alan_Ribet
http://en.wikipedia.org/wiki/Andrew_Wiles
https://vimeo.com/18216532
https://vimeo.com/18216532
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Σχήμα 7.5. Pierre de Fermat, Το παρόν έργο αποτελεί κοινό κτήμα (public domain).
Πηγή: Wikimedia Commons

1. Simon Singh Το τελευταίο Θεώρημα του Fermat Εκδόσεις Τραυλός (Singh 1997).
2. Αριστείδης Κοντογεώργης Ημιευσταθείς Ελλειπικές Καμπύλες και το Τελευταίο Θεώ-

ρημα του Fermat, μεταπτυχιακή εργασία Πανεπιστήμιο Κρήτης 1995 (Κοντογεώργης 1994).

7.7. Πολυώνυμα διαίρεσης

Θεωρούμε την ελλειπτική καμπύλη ορισμένη σε ένα σώμα K της μορφής:

y2 = x3 +Ax+ B.

Με μια προσεκτική ματιά στις αλγεβρικές εκφράσεις που αφορούν τον νόμο ομάδας, είναι φανερό ότι
οι συντεταγμένες του αθροίσματος δύο σημείων P1 + P2 της καμπύλης είναι ρητές συναρτήσεις των
συντεταγμένων των P1,P2. Με επαναληπτική διαδικασία η απεικόνιση

(x,y) → [m](x,y)

https://commons.wikimedia.org/wiki/File:Pierre_de_Fermat.jpg
http://simonsingh.net/
http://users.uoa.gr/~kontogar
http://users.uoa.gr/~kontogar/bibtex/ergasia.pdf
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Σχήμα 7.6. Andrew Wiles, Δημηουργός K. Barner, Το παρόν έργο αποτελεί κοινό
κτήμα (public domain). Πηγή: Wikimedia Commons

μπορεί να εκφρασθεί με όρους ρητών συναρτήσεων των x,y. Πιό συγκεκριμένα έχουμε:
΄Εστω E μια ελλειπτική καμπύλη όπως παραπάνω και έστωm ένας θετικός ακέραιος. Τότε υπάρ-

χουν πολυώνυμα ψm, θm,ωm τέτοια ώστε για P = (x,y) ∈ E(K) με [m]P ̸= 0 έχουμε,

[mP] =

(
θm(x,y)
ψ2

m(x,y) , ωm(x,y)
ψ3

m(x,y)

)

7.7.1 Ορισμός:
To πολυώνυμο ψm(x,y) ονομάζεται το m-οστό πολυώνυμο διαίρεσης της καμπύλης E και μπορεί να
θεωρηθεί ως ένα πολυώνυμο στον δακτύλιο Z[x,y,A,B].

Τα πολυώνυμα διαίρεσης ορίζονται αναδρομικά από τους τύπους:

ψ0 = 0

ψ1 = 1
ψ2 = 2y

ψ3 = 3x4 + 6Ax2 + 12Bx−A2

https://commons.wikimedia.org/wiki/File:Wiles_vor_Sockel.JPG
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ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3)

· · ·

ψ2m+1 = ψm+2ψ
3
m −ψm−1ψ

3
m+1 γιαm ⩾ 2

ψ2m =

(
ψm

2y

)
· (ψm+2ψ

2
m−1 −ψm−2ψ

2
m+1) γιαm ⩾ 3

Τα πολυώνυμα ϕn(x) καιωn(x) δίνονται από τους τύπους:

ϕn(x) = xψ
2
n(x) −ψn+1(x)ψn−1(x),

ωn(x) =
ψn+2(x)ψ2

n−1(x) −ψn−2(x)ψ2
n+1(x)

4y .

7.7.2 Ορισμός:
Η ομάδα τωνm σημείων στρέψης (m-torsion points) ορίζεται να είναι η

E[m] = {P�E(K)|[m]P = O}

Τοm-οστό πολύωνυμο διαίρεσης ψm χαρακτηρίζει ταm − torsion σημεία της E, σύμφωνα με το
παρακάτω:

7.7.3 Θεώρημα:
΄Εστω P σημείο στο E(K)\O κι έστωm ⩾ 1. Τότε P ∈ E[m] εάν και μόνον εάν ψm(P) = 0.

Παρατηρούμε ότι για τον υπολογισμό τωνm − torsion σημείων μπορούμε να χρη- σιμοποιήσουμε
πολυώνυμα μιας μεταβλητής, αντί των πολυωνύμων ψm τα οποία έχουν δύο μεταβλητές x,y.

7.7.4 Ορισμός:

fm = ψm ανm = 2k+ 1,k ∈ N,

fm =
ψm

ψ2
ανm = 2k,k ∈ N.

Παρατηρώντας ότι το y χρησιμοποιείται στον αναδρομικό ορισμό του ψm μόνο μέσω του πολυω-
νύμου ψ2 και ότι το ψ2

2 δεν εξαρτάται από το y, προκύπτει ότι το fm είναι ένα πολυώνυμο το οποίο
εξαρτάται μόνο από το x. Ο βαθμός του fm είναι το πολύ (m2−1)/2, εάν οm είναι περιττός και το πολύ
(m2−4)/2, εάν οm είναι άρτιος (οι βαθμοί είναι ακριβώς ίδιοι εάν η χαρακτηριστική του σώματος δεν
διαιρεί τονm, γιαm περιττό, ή τονm/2, γιαm άρτιο).

Ο χαρακτηρισμός τωνm-torsion points μπορεί να αναδιατυπωθεί με τη βοήθεια των πολυωνύμων
fm ως εξής:
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7.7.5 Θεώρημα:
΄Εστω P = (x,y) σημείο στο E(K) O τέτοιο ώστε [2]P ̸= O κι έστω m ⩾ 2.Τότε P ∈ E[m] εάν και
μόνον εάν fm(x) = 0.

Παρατήρηση Το παραπάνω θεώρημα δεν συμπεριλαμβάνει τα 2 − torsion σημεία. Αυτά τα σημεία
ικανοποιούν την ψ2(P) = 0, με το οποίο διαιρούμε το ψm για να πάρουμε το fm, όταν το m είναι
άρτιος.

7.8. Ελλειπτικές Καμπύλες Ορισμένες Πάνω Από Πεπερασμένα Σώματα

Θεωρούμε μια ελλειπτική καμπύλη ορισμένη πάνω από ένα πεπερασμένο σώμα Fph με ph το πλή-
θος στοιχεία. Είναι σαφές ότι μια τέτοια καμπύλη θα είναι μια πεπερασμένη αβελιανή ομάδα και ένα
προφανές φράγμα της τάξης της είναι το

|E| ⩽ p2h + 1.

Ένα από τα βασικά προβλήματα είναι να υπολογιστεί η τάξη της και στη συνέχεια η δομή της (που θα
είναι ευθύ άθροισμα από κυκλικές ομάδες σύμφωνα με το θεώρημα δομής αβελιανών ομάδων.

O H. Hasse απέδειξε ότι το καλύτερο φράγμα ισχύει

|E| = ph + 1 ± s,

όπου το |s| ⩽ 2
√
ph. O αριθμός s στη βιβλιογραφία είναι γνωστός ως το ίχνος του Frobenious. Θα

αναφέρουμε περισσότερα για αυτό και θα δώσουμε μια απόδειξη του φράγματος του Hasse στη συνέ-
χεια.

Σχήμα 7.7. H. Hasse, Το παρόν έργο αποτελεί κοινό κτήμα (public domain). Πηγή:
Wikimedia Commons

http://en.wikipedia.org/wiki/Finitely-generated_abelian_group
http://en.wikipedia.org/wiki/Helmut_Hasse
https://commons.wikimedia.org/wiki/File:Helmut_Hasse.jpg
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7.9. Θεωρία των Ελλειπτικών καμπυλών πάνω από τους μιγαδικούς αριθμούς.

Ορισμός:Ένα lattice L στο σώμα των μιγαδικών αριθμών είναι το σύνολο που παράγεται από όλους
τους Z-συνδυασμούς από δύο γραμμικά ανεξάρτητα διανύσματα e1, e2 του C.

Σχήμα 7.8. Weierstrass, Το παρόν έργο αποτελεί κοινό κτήμα (public domain). Πηγή:
Wikimedia Commons

O Weierstrass κατασκεύασε μια συνάρτηση (που εξαρτάται από ένα lattice L)

C → C

η οποία ορίζεται από τον τύπο:

℘(z,L) = 1
z2 +

∑
λ∈L−{0}

(
1

(z+ λ)2 −
1
λ2

)
.

Η συνάρτηση του Weierstrass ικανοποιεί τη διαφορική εξίσωση

℘ ′(z)2 = 4℘(z)3 − g2(L)℘(z) − g3(L).

Δηλαδή το ζευγάρι (x,y) = (℘(z),℘ ′(z)) παραμετρίζει την ελλειπτική καμπύλη

y2 = 4x3 − g2(L)x− g3(L).

Παρατήρηση:Οι υπερβατικές συναρτήσεις (x,y) = (sin(x), cos(x)) = (sin(x), sin ′(x))

ικανοποιούν την εξίσωση x2 + y2 = 1 και συνεπώς παραμετρίζουν τον κύκλο.
Η συνάρτηση του Weierstrass είναι περιοδική με περίοδο το laticce L. Δηλαδή

(℘(z+ λ),℘ ′(z+ λ)) = (℘(z),℘ ′(z)).

Σε επίπεδο θεωρίας ομάδων αυτό σημαίνει ότι
C
L

∼= E(C).

https://commons.wikimedia.org/wiki/File:Karl_Weierstrass.jpg
http://en.wikipedia.org/wiki/Karl_Weierstrass
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Από τοπολογικής πλευράς αυτό σημαίνει ότι το εσωτερικό του lattice, δηλαδή το παραλληλόγραμμο
που αποτελείται από τα σημεία

z = ae1 + be2 : με 0 ⩽ a,b < 1

καλύπτει την ελλειπτική καμπύλη ενώ οι απέναντι πλευρές του παραλληλογράμμου ταυτίζονται δίνο-
ντας στο πηλίκο τη δομή του “λουκουμά”.

Σχήμα 7.9. Οι Πλευρές A και B ταυτίζονται στο πηλίκο

Σχήμα 7.10. Λουκουμάς-κολλώντας τις πλευρές παρ/μου, Το παρόν έργο αποτελεί
κοινό κτήμα (public domain). Πηγή: Wikimedia Commons

Οι συναρτήσεις g2(L),g3(L) εξαρτώνται από το lattice L, και δίνονται από τον τύπο:

g2(L) = 60
∑

λ∈L−{0}

1
λ4 g3(L) = 140

∑
λ∈L−{0}

1
λ6 ,

αποτελούν δε παραδείγματα από σειρές Eisenstein.

https://commons.wikimedia.org/wiki/File:Torus_from_rectangle.eps
http://en.wikipedia.org/wiki/Eisenstein_series
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7.10. Αλγεβρική Θεωρία Ελλειπτικών καμπυλών.

Στην παράγραφο αυτή θα μελετήσουμε διάφορες αναλλοίωτες της ελλειπτικής καμπύλης που ορί-
ζεται από την εξίσωση:

y2 = x3 + ax+ b.

Για κάθε πολυώνυμο μιας μεταβλητής f(x) ορίζεται η διακρίνουσά του. Αυτός είναι ένας αριθμός που
γενικεύει τη γνωστή διακρίνουσα δευτεροβάθμιου πολυωνύμου και είναι ίσο με το 0, αν και μόνο αν
το αρχικό πολυώνυμο έχει διπλή ρίζα. Στην περίπτωση του κυβικού πολυωνύμου x3 +ax+b η διακρί-
νουσα δίνεται από τον τύπο:−16(4a3 +27b2). Παρατηρούμε ότι οι ελλειπτικές καμπύλες έχουν πάντα
διακρίνουσα διαφορετική του μηδενός.

Η j-invariant της ελλειπτικής καμπύλης ορίζεται από την εξίσωση:

j(E) =
(4a)3

4a3 + 27b2 = −
4a3

∆(E)
.

Δύο ελλειπτικές καμπύλες ορισμένες πάνω από ένα αλγεβρικά κλειστό σώμα είναι ισόμορφες αν
και μόνο αν έχουν την ίδια j-invariant.

Η πρόταση αυτή δεν είναι σωστή όταν οι ελλειπτικές καμπύλες δεν είναι ορισμένες πάνω από αλγε-
βρικά κλειστό σώμα. Γίνονται ισόμορφες πάνω από μια τετραγωνική επέκταση του σώματος ορισμού.

Για κάθε αριθμό j0 ∈ K υπάρχει ελλειπτική καμπύλη E ορισμένη υπέρ το K που να έχει j-invariant
ίση με j0.

Απόδειξη:
Αν το j είναι διαφορετικό από το 0, 1728, τότε η ελλειπτική καμπύλη με τύπο

E : y2 + xy = x3 −
36

j0 − 1728x−
1

j0 − 1728
έχει διακρίνουσα

∆(E) =
j30

(j0 − 1728)3 και j(E) = j0.

Όταν το j0 = 0 θεωρούμε την ελλειπτική καμπύλη:

E : y2 + y = x3, με ∆(E) = −27 και j = 0

ενώ για j0 θεωρούμε την ελλειπτική καμπύλη:

E : y2 = x3 + x, με ∆(E) = −64 και j = 1728.

Ο αριθμός 1728 αν του προσθέσουμε 1 είναι o δεύτερος Taxicab number δηλαδή είναι ο μικρότερος
αριθμός που μπορεί να γραφεί ως άθροισμα δυο θετικών κύβων με δύο διαφορετικούς τρόπους: 1729 =

1 + 123 = 93 + 103. Η ονομασία αυτή δόθηκε από τον αριθμό του ταξί που μετέφερε τον Hardy στο
νοσοκομείο που νοσηλεύονταν ο Ramanujan. Όπως αναφέρει ο Hardy: “I remember once going to see
him when he was lying ill at Putney. I had ridden in taxi-cab No. 1729, and remarked that the number
seemed to be rather a dull one, and that I hoped it was not an unfavourable omen.”No“, he replied,”it
is a very interesting number; it is the smallest number expressible as the sum of two [positive] cubes in
two different ways.”

Κάθε στοιχείο του Fp είναι j-invariant μιας ελλειπτικής καμπύλης πάνω από το Fp. Όταν το j ̸=
0, 1728 αυτή η ελλειπτική καμπύλη δίνεται από

y2 = x3 + 3kc2x+ 2kc3,

http://en.wikipedia.org/wiki/Discriminant
http://en.wikipedia.org/wiki/Taxicab_number
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όπου k = j/(1728 − j) και το c είναι οποιοδήποτε στοιχείο του Fp. Υπάρχουν δύο μη ισόμορφες
ελλειπτικές καμπύλες E, E ′ υπέρ του Fp που αντιστοιχούν σε διαφορετικές επιλογές του c. Αυτές έχουν
τάξεις

|E| = p+ 1 − t

και
|E| = p+ 1 + t.

ΠαρατήρησηΑπό τον ορισμό της j-invariant προκύπτει ότι οι καμπύλες E,E ′ μοιράζονται την ίδια
j-invariant. Για τις περισσότερες j-invariants j ∈ Fp, υπάρχουν όσον αφορά τον ισομορφισμό, ακριβώς
δύο ελλειπτικές καμπύλες επί του Fp με j(E) = j, Η καμπύλη E και η διαστροφή της. Υπάρχουν όμως
δύο πολύ γνωστές εξαιρέσεις:

j = 0,p = 1(mod3)
j = 1728,p = (1mod4)

όπου στην πρώτη περίπτωση υπάρχουν 6 καμπύλες ενώ στη δεύτερη 4.

7.10.1. Δακτύλιος Ενδομορφισμών. Μια συνάρτηση f : E→ E θα λέμε ότι είναι ενδομορφισμός
της ελλειπτικής καμπύλης αν εκφράζεται μέσω ρητών συναρτήσεων και αν στέλνει το ουδέτερο στοιχείο
στο ουδέτερο στοιχείο. Οι ενδομορφισμοί αποτελούν δακτύλιο όπου η πρόσθεση είναι η πρόσθεση
συναρτήσεων και ο πολλαπλασιασμός η σύνθεση. Τον δακτύλιο αυτόν θα τον συμβολίζουμε μεEnd(E).

Ας σταθεροποιήσουμε έναν ακέραιοn ∈ Z. Μπορούμε να ορίσουμε τον ενδομορφισμό που στέλνει
κάθε P ∈ E στο nP. Με αυτόν τον τρόπο το Z είναι υποδακτύλιος του End(E).

Σε ελλειπτικές καμπύλες ορισμένες πάνω από σώματα χαρακτηριστικής 0 στις περισσότερες περι-
πτώσεις δεν υπάρχουν άλλοι ενδομορφισμοί.

Εάν το d ∈ Z<0 δηλώνει τη διακρίνουσα μιας τετραγωνικής τάξης έχουμε,

End(E) ∼= Z[δ] = Z+ δZ

όπου,

δ =

√
d

2 ,d = 2k,k ∈ Z<0

δ =
1 +

√
d

2 ,d = 2k+ 1,k ∈ Z<0

Παρατήρηση Οι ελλειπτικές καμπύλες E,E ′ έχουν ισόμορφο ενδομορφισμό δακτυλίων.
Εάν p = 1(mod3), οι 6 καμπύλες με j = 0 όλες έχουν τον ενδομορφισμό δακτυλίου τους ισόμορφο

με τον Z[(1 +
√
−3)/2] ενώ οι 4 καμπύλες με j = 1728, όλες έχουν End(E) = Z[i].

Σε ελλειπτικές καμπύλες ορισμένες πάνω από ένα πεπερασμένο σώμα Fq υπάρχει πάντα και ένας
επιπλέον ενδομορφισμός, ο ενδομορφισμός του Frobenious, ο οποίος ορίζεται ως εξής: Το σημείο P
με συντεταγμένες (x,y) απεικονίζεται στο σημείο ϕ(P) με συντεταγμένες (xq,yq). Ο ενδομορφισμός
αυτός έχει ενδιαφέρον γιατί είναι γνωστό ότι ένα στοιχείο x ∈ Fq ανήκει στο Fq αν και μόνο αν xq = x.
Με άλλα λόγια τα σημεία που παραμένουν σταθερά από τη δράση του Frobenious είναι ακριβώς τα
σημεία της ελλειπτικής καμπύλης πάνω από το πεπερασμένο σώμα Fq.

Αυτή η παρατήρηση μας επιτρέπει να μετρήσουμε το ίχνος του Frobenious όπως αυτό εμφανίζεται
στον τύπο του Hasse.

O ενδομορφισμός του Frobenious ικανοποιεί τη σχέση:

ϕ2 − tϕ+ q = 0.

Γενικά είναι γνωστό ότι οποιοσδήποτε επιπλέον ενδομορφισμός σε ελλειπτική καμπύλη E ικανο-
ποιεί μια παρόμοια σχέση.
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Αν υπάρχουν επιπλέον ενδομορφισμοί ϕ τότε αυτοί ικανοποιούν μια τετραγωνική εξίσωση της
μορφής:

ϕ2 + aϕ+ b = 0,
της οποίας η διακρίνουσα είναι αρνητική (εδώ οφείλεται και το όνομα μιγαδικός πολλαπλασιασμός).

Παρατήρηση: Το φράγμα του Hasse είναι ισοδύναμο με το ότι η τετραγωνική εξίσωση που ικανο-
ποιεί ο Frobenious έχει αρνητική διακρίνουσα.

7.11. Ελλειπτικά Κρυπτοσυστήματα

Το σύστημα ElGamal το οποίο χρησιμοποιήσαμε για την κυκλική ομάδα G = F∗
p μπορεί να χρη-

σιμοποιηθεί με πολύ καλά αποτελέσματα και στην περίπτωση των ελλειπτικών καμπυλών.
Η βασική ιδέα του ElGamal έχει ήδη περιγραφεί, οπότε θα παρουσιάσουμε μια υλοποίησή του

περιγράφοντας το σύστημα Digital Rights Management που χρησιμοποιούσε η Microsoft στις αρχές
του 2000 καθώς και τον τρόπο με τον οποίο εσπασε από τον hacker Beale Streamer ακολουθώντας την
περιγραφή του W. Stein.

Θα δουλέψουμε πάνω από μια ελλειπτική καμπύλη E ορισμένη στο σώμα Fp, όπου

p = 785963102379428822376694789446897396207498568951
η οποία δίνεται από την εξίσωση:

y2 = x3 + 317689081251325503476317476413827693272746955927x

+79052896607878758718120572025718535432100651934.
Η παραπάνω ελλειπτική καμπύλη είναι ισόμορφη με μια κυκλική ομάδα τάξης

785963102379428822376693024881714957612686157429,
ενώ ένας γεννήτορας δίνεται από το σημείο

B = (771507216262649826170648268565579889907769254176,

390157510246556628525279459266514995562533196655).
Το σύστημα της Microsoft, όταν ο χρήστης εγκαθιστούσε το DRM λογισμικό στο μηχάνημά του παρή-
γαγε ένα ιδιωτικό κλειδί:

n = 670805031139910513517527207693060456300217054473
το οποίο γραφόταν σε διάφορα αρχεία του υπολογιστή. Προκειμένου ο χρήστης να μπορέσει να ακούσει
ένα μουσικό κομμάτι θα έπρεπε, (αφού έστελνε τον αριθμό της πιστωτικής κάρτας του) να κατεβάσει
ένα αρχείο άδειας (licence file), το οποίο θα του επέτρεπε να ακούσει το μουσικό κομμάτι.

Στην πραγματικότητα ο χρήστης δημοσιεύε ως δημόσιο κλειδί το (p,E,B,nB). Το μήνυμα προς
τον χρήστη από τη Microsoft αποθηκεύεται ως ένα στοιχείο P της ελλειπτικής καμπύλης. Επιλέγοντας
έναν τυχαίο πρώτο η Microsoft έστελνε στον χρήστη τα σημεία

(rB,P + rnB) = (A,B).
Για να παραλάβει το σημείο P ο χρήστης που θα του επιτρέψει να ξεκλειδώσει το μουσικό αρχείο θα
πρέπει να υπολογίσει το

P = B− nA = P + rnB− n(rB).
Το αρχείο της άδειας είναι ένα μήνυμα που ο χρήστης στέλνει στον εαυτό του. Περιέχει το ζευγάρι

των σημείων (rB,P + r(nB)), όπου

rB = (179671003218315746385026655733086044982194424660,

http://cryptome.org/ms-drm.htm
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697834385359686368249301282675141830935176314718)

και
P + r(nB) = (137851038548264467372645158093004000343639118915,

110848589228676224057229230223580815024224875699).

Όταν ο υπολογιστής του χρήστη θέλει να παίξει ένα συγκεκριμένο αρχείο, τότε διαβάζει το μυστικό
κλειδί

n = 670805031139910513517527207693060456300217054473

και υπολογίζει το

n(rB) = (328901393518732637577115650601768681044040715701,

586947838087815993601350565488788846203887988162).

Αφαιρώντας το από το P + r(nB) παίρνει το

P = (14489646124220757767,

669337780373284096274895136618194604469696830074).

Η x-συντεταγμένη 14489646124220757767 είναι το κλειδί που ξεκλειδώνει το μουσικό αρχείο. Αν ο
χρήστης γνώριζε το ιδιωτικό κλειδί n που ο υπολογιστής του παρήγαγε θα μπορούσε να παράγει το P,
να ξεκλειδώσει το μουσικό αρχείο και να το μοιραστεί με οποιονδήποτε.

Αν και η παραπάνω μέθοδος είναι πολύ δύσκολο να αντιμετωπιστεί λύνοντας το πρόβλημα του δια-
κριτού λογαρίθμου, το παραπάνω σύστημα “έσπασε” από τον Beale Screamer γιατί η implementation
του αλγορίθμου ήταν φτωχή. Σε κάθε περίπτωση το ιδιωτικό κλειδί ήταν αποθηκευμένο στον υπολογι-
στή του χρήστη. Πώς μπορεί το software να το χρησιμοποιεί χωρίς να το γνωρίζει ο χρήστης;

1 p = 785963102379428822376694789446897396207498568951
2 E = EllipticCurve(GF(p), \
3 [317689081251325503476317476413827693272746955927,
4 79052896607878758718120572025718535432100651934])
5 E.cardinality()
6 785963102379428822376693024881714957612686157429
7 E.cardinality().is_prime()
8 True
9 B = E([
10 771507216262649826170648268565579889907769254176,
11 390157510246556628525279459266514995562533196655])
12 n=670805031139910513517527207693060456300217054473
13 r=70674630913457179596452846564371866229568459543
14 P = E([14489646124220757767,
15 669337780373284096274895136618194604469696830074])
16 encrypt = (r*B, P + r*(n*B))
17 encrypt[1] - n*encrypt[0] == P # decrypting works
18 True
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7.11.1. Το πρόβλημα του διακριτού λογαρίθμου για Ελλειπτικές Καμπύλες. Δίνεται μία ελλει-
πτική καμπύλη E ορισμένη πάνω από ένα πεπερασμένο σώμα Fq. Το πρόβλημα του διακριτού λογα-
ρίθμου είναι το εξής: Αν

Q = nP,
ζητείται να βρεθεί το n. Το πρόβλημα αυτό μπορεί να ορίστει σε κάθε αβελιανή ομάδα G, και είδαμε
διάφορους τρόπους να το αντιμετωπίσουμε όταν G = F∗

p. Η πρακτική ένδειξη είναι το πρόβλημα του
διακριτού λογαρίθμου σε ελλειπτικές καμπύλες, όπως και τα κρυπτοσυστήματα που προκύπτουν όπως
το ElGamal είναι δυσκολότερο να επιλυθούν από τα αντίστοιχα συστήματα στην πολλαπλασιαστική
υποομάδα ενός πεπερασμένου σώματος.
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8
Μέθοδοι Παραγοντοποίησης

8.1. Κριτήρια ελέγχου πρώτων αριθμών

Προκειμένου να κατασκευάσουμε αποτελεσματικά κρυπτοσυστήματα βασισμένα στη θεωρία αριθ-
μών χρειαζόμαστε να κατασκευάσουμε πρώτους, και περισσότερο συγκεκριμένα, χρειαζόμαστε τεχνι-
κές για να ελέγξουμε άν ένας δεδομένος φυσικός αριθμός είναι πρώτος ή όχι. Η γνώση και οι τεχνι-
κές από τη θεωρία αριθμών είναι απαραίτητες και για περισσότερες λεπτομέρειες παραπέμπουμε στο
(Αντωνιάδης και Κοντογεώργης 2015).

Μία αφελής μέθοδος ελέγχου πρώτων αριθμών θα ήταν να δοκιμάζουμε πιθανούς διαιρέτες. Κα-
ταρχήν μπορούμε να ελέγξουμε το μέγεθος των πρώτων διαιρετών ενός φυσικού:

8.1.1 Πρόταση:
Αν ο φυσικός αριθμός n είναι σύνθετος, τότε έχει έναν πρώτο παράγοντα p, p ⩽

√
n.

Απόδειξη Αφού ο n είναι σύνθετος, έχει τουλάχιστον μία ανάλυση της μορφής:

n = a · b με 1 < a ⩽ b < n.

Ένα τουλάχιστον από τα a,b είναι μικρότερο ή ίσο της
√
n, διότι αν a >

√
n και b >

√
n θα είχαμε

n = a · b >
√
n ·

√
n = n, άτοπο. Επειδή το a > 1 έχει, έναν τουλάχιστον πρώτο διαιρέτη p.

Ο πρώτος αυτός είναι διαιρέτης του n και p ⩽ a ⩽
√
n.

Παρατήρηση Η παραπάνω πρόταση μας δίνει ένα κριτήριο ελέγχου πρώτων αριθμών. Έτσι για
παράδειγμα ο φυσικός αριθμός n = 179 είναι πρώτος. Αν ήταν σύνθετος θα είχε έναν πρώτο διαιρέτη
p ⩽

√
179 < 14. Οι πρώτοι οι μικρότεροι του 14 είναι οι 2, 3, 5, 7, 11 και 13. Κανένας τους δεν διαιρεί

το 179. Συνεπώς ο 179 δεν είναι σύνθετος, άρα είναι πρώτος. Φυσικά το κριτήριο δεν είναι εφαρμόσιμο
για μεγάλους φυσικούς αριθμούς.

Παρατήρηση Αν γνωρίζαμε ότι ένας σύνθετος αριθμός n περιέχει ℓ-το πλήθος διαιρέτες τότε ένας
τουλάχιστον από αυτούς θα είναι μικρότερος από την ℓ

√
n. Σε διαφορετική περίπτωση, αν δηλαδή και

οι ℓ διαιρέτες ήταν γνήσια μεγαλύτεροι του ℓ
√
n τότε το γινόμενο θα ήταν γνήσια μεγαλύτερο του n.

Η κρυπτογραφία βασίζεται στη δυσκολία να παραγοντοποιήσουμε έναν σύνθετο αριθμό σε γινό-
μενο πρώτων. Από την παραπάνω παρατήρηση προκύπτει ότι δυσκολεύουμε περισσότερο την παραγο-
ντοποίηση του αριθμού n, αν αυτός είναι γινόμενο δύο πρώτων που είναι περιπού ίδιου μεγέθους κοντά
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στην
√
n. Από την άλλη το να είναι το n γινόμενο δύο πρώτων παραγόντων είναι η “κερκόπορτα” του

αλγορίθμου Fermat, που θα αναπτύξουμε παρακάτω.

8.1.1. Το κόσκινο του Ερατοσθένη. Σύμφωνα με τη μέθοδο αυτή, αν θέλουμε να βρούμε όλους
τους πρώτους μέχρι τον φυσικό αριθμό n, γράφουμε όλους τους ακέραιους από το 2 μέχρι τον φυσικό
αριθμό n και διαγράφουμε διαδοχικά όλα τα πολλαπλάσια του 2 του 3, του 5 κλπ. Οι αριθμοί που
απομένουν είναι πρώτοι.

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 60

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99100

Σχήμα 8.1. Το κόσκινο του Ερατοσθένη

8.1.2. Ψευδοπρώτοι. Ένα κριτήριο ελέγχου πρώτων είναι το θεώρημα του Fermat το οποίο ανα-
φέρει ότι για πρώτους αριθμούς p και (a,p) = 1 ισχύει

ap ≡ amodp

. Αν έχουμε λοιπόν έναν φυσικό αριθμό και θέλουμε να δούμε αν είναι πρώτος ή όχι μπορούμε να
δοκιμάσουμε να υπολογίσουμε αν ισχύει για κάποιο a

an ≡ amodn

Αν στην παραπάνω εξίσωση δεν έχουμε ισότητα, τότε είμαστε σίγουροι ότι ο αριθμός n δεν είναι πρώ-
τος. Έτσι ο αριθμός 10 δεν είναι πρώτος αφού

210 ≡ 4mod10.

Τι γίνεται όμως αν βρούμε ισότητα για παράδειγμα (2, 341) = 1, ο 341 = 11 · 31 δεν είναι πρώτος και
όμως έχουμε

2341 ≡ 2mod341

8.1.2 Ορισμός:
Ο αριθμός n θα λέγεται ψευδοπρώτος ως προς τη βάση a αν ισχύει

an ≡ amodn
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Είναι σαφές ότι στο παραπάνω κριτήριο δοκιμάζουμε μόνο μία βάση ενώ ένας πρώτος θα πρέπει
να είναι ψευδοπρώτος για κάθε βάση (a,n) = 1. Αυτό οδηγεί στον επόμενο

8.1.3 Ορισμός:
Ο σύνθετος ακέραιος n > 1 θα λέγεται αριθμός Carmichael όταν

an ≡ amodn

για κάθε ακέραιο a, (a,n) = 1.

Είναι σαφές ότι υπάρχουν σύνθετοι αριθμοί Carmichael όπως ο 561 = 3 · 11 · 17, όπως μπορούμε
να τσεκάρουμε στο sage:

1 def IsCarmichael(a):
2 R = Zmod(a)
3 L = R.list_of_elements_of_multiplicative_group();
4 Carmichael=True;
5 for j in L:
6 if Mod(j^a-j,a) <> Mod(0,a):
7 Carmichael=False;
8 return Carmichael
9

10 IsCarmichael(561)
11 True

Μπορούμε να προχωρήσουμε ψάχνοντας όλους τους αριθμούς Carmichael σε ένα συγκεκριμένο
διάστημα:

1 [n for n in range(1,2000) if IsCarmichael(n)]
2 [1, 561, 1105, 1729]

Μπορείτε να συνεχίσετε το ψάξιμο όρων της ακολουθίας ή να την αναζητήσετε στη λίστα του
Sloane

Interactive
Ενδιαφέρον είναι ότι το 1729 είναι ένας Hardy-Ramanujan αριθμός “Ταξί”.
Διαβάστε
Άρθρο του S. Singh στο BBC news

8.1.3. Το κριτήριοMiller-Rabin. Παρατηρούμε ότι αν το p είναι πρώτος αριθμός τότε η εξίσωση

x2 ≡ 1modp

http://oeis.org/A002997
http://users.uoa.gr/~kontogar/kallipos/Factoring-a.html
http://en.wikipedia.org/wiki/1729_(number)
http://en.wikipedia.org/wiki/Simon_Singh
http://www.bbc.com/news/magazine-24459279
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έχει μοναδικές λύσεις x ≡ ±1modp, αφού αυτές είναι πάντα λύσεις και σε ένα σώμα μια εξίσωση έχει
το πολύ τόσες ρίζες όσες ο βαθμός του πολυωνύμου. Στην περίπτωση που η εξίσωση

x2 ≡ 1modn,

έχει και άλλες λύσεις, τότε το n είναι σύνθετος.

8.1.4 Ορισμός:
Ένας αλγόριθμος Monte-Carlo είναι ένας πιθανοθεωρητικός αλγόριθμος του οποίου η απάντηση “Ναι”
σε κάποιο πρόβλημα είναι πάντα σωστή, αλλά η απάντηση “όχι” μπορεί να είναι και λάθος.
Θα λέμε ότι ο αλγόριθμος Monte-Carlo έχει πιθανότητα λάθους ε, όταν σε περιπτώσεις που η απάντηση
θα έπρεπε να είναι είναι “ναι”, o αλγόριθμος δίνει τη λάθος απάντηση με πιθανότητα το πολύ ε.

Ο αλγόριθμός Miller-Rabin είναι ένας Monte-Carlo αλγόριθμος στον οποίο η απάντηση “ναι” ση-
μαίνει ότι ο n είναι σύνθετος.

Θεωρούμε έναν περιττό φυσικό n, n > 1 τον οποίο γράφουμε στη μορφή:

n− 1 = 2k ·m,

με (m, 2) = 1 περιττός καιk ⩾ 1. Το κριτήριοMiller-Rabin δίνεται με τον αλγόριθμο, που περιγράφεται
στα παρακάτω βήματα:

1. Επιλέγουμε τυχαία έναν ακέραιο a ∈ Z, 1 ⩽ a ⩽ n− 1.
2. Υπολογίζουμε το b := ammodn. Αν b ≡ 1modn, τότε η απάντηση είναι: “o n είναι πρώτος”

και σταματάμε.
3. Σε διαφορετική περίπτωση υπολογίζουμε διαδοχικά τις δυνάμεις

b,b2 = a2m,b4 = a22m, . . . ,b2k−1mmodn

Αν σε κάποιο βήμα βρούμε ότι a2im ≡ −1modn, τότε και πάλι απαντούμε ότι “o n είναι
πρώτος”. Αν δεν βρούμε ποτέ a2im ≡ −1modn απαντούμε ότι “o n είναι σύνθετος”.

Θα αποδείξουμε ότι η απάντηση για τον n ότι είναι σύνθετος είναι σίγουρη, ενώ η απάντηση ότι
είναι πρώτος είναι επισφαλής. Υπάρχουν, σύνθετοι ακέραιοι που μασκαρεύονται σε πρώτους.

Έστω ότι ο αλγόριθμός δίνει απάντηση “Ναι, ο n είναι σύνθετος”, για κάποιο πρώτο αριθμό n, και
θα καταλήξουμε σε άτοπο.

Από την απάντηση που πήραμε συμπεραίνουμε ότι

am ̸= 1modn.

Επίσης ο αλγόριθμος ελέγχει τις τιμές

am,a2m, . . . ,a2k−1mmodn.

Και πάλι, αφού η απάντηση είναι ότι “ο n είναι σύνθετος” έχουμε

a2im ̸= −1modn,

για κάθε i = 0, 1, 2, . . . ,k − 1. Αν όμως, όπως έχουμε υποθέσει, ο n είναι πρώτος, το θεώρημα του
Fermat δίνει

an−1 ≡ 1modn,
δηλαδή

a2km ≡ 1modn
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Αν x := a2k−1m η ισοδυναμία γράφεται

x2 ≡ 1modn.
Λόγω της υπόθεσης, ότι ο n είναι πρώτος έπεται ότι η ισοδυναμία έχει μοναδικές λύσεις x = ±1modn.
Εμείς όμως έχουμε

x = a2k−1m ̸= −1modn.
Επομένως, αναγκαστικά θα ισχύει:

x = a2k−1m ≡ 1modn.
Αν τώρα y := a2k−2m, έχουμε

y2 ≡ 1modn,
οπότε, όπως και παραπάνω, καταλήγουμε στο συμπέρασμα ότι

y = a2k−2m ≡ 1modn.
Συνεχίζουμε επαγωγικά και καταλήγουμε στο συμπέρασμα ότι και

am ≡ 1modn,
άτοπο. Άρα ο n είναι σύνθετος.

8.1.5 Ορισμός:
Αν ένας σύνθετος πρώτος δεν αναγνωριστεί ως τέτοιος από το κριτήριο των Miller-Rabin, ως προς τη
βάση b, θα λέγεται ισχυρός ψευδο-πρώτος ως προς τη βάση b.

Θα αναφέρουμε το παρακάτω κριτήριο ελέγχου πρώτων:

8.1.6 Πρόταση:
Αν n σύνθετος θετικός ακέραιος τότε ο n περνάει το Miller-Rabin test το πολύ για n−1

4 -βάσεις b, 1 ⩽
b ⩽ n− 1.

Eπομένως, αν ένας φυσικός περάσει το test για περισσότερες από n−1
4 βάσεις, τότε είναι πρώτος.

Ο αναγνώστης καλείται να πειραματιστεί με τον υπολογισμό των ισχυρών ψευδοπρώτων στο Sage:

Interactive
Ο κώδικας υπολογισμού προέρχεται από τη σελίδα του F. Chamizo.
Για το κριτήριο των Miller-Rabin ο αναγνώστης καλείται να πειραματιστεί με το Sage στον παρα-

κάτω σύνδεσμο:

Interactive

http://users.uoa.gr/~kontogar/kallipos/Factoring-b.html
http://www.uam.es/personal_pdi/ciencias/fchamizo/english/english.html
http://users.uoa.gr/~kontogar/kallipos/Factoring-c.html
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Αποτυπώνουμε την έξοδο του προγράμματος παρακάτω: Με την παράμετρο secur=1 βλέπουμε μια
λίστα των περιττών αριθμών 3 < n < 50000 που περνάνε το test, ενώ είναι σύνθετοι. Αλλάζοντας την
παράμετρο σε secur =2 ο αλγόριθμος γίνεται ντετερμινιστικός.

1 secur = 1
2 for n in range(3,50000,2):
3 if (is_prime(n)==False)and\
4 (miller_rabin(n,secur)==’likely prime’):
5 print n, ’passes the test but is not prime’, factor(n)
6

7 2047 passes the test but is not prime 23 * 89
8 3277 passes the test but is not prime 29 * 113
9 4033 passes the test but is not prime 37 * 109
10 4681 passes the test but is not prime 31 * 151
11 8321 passes the test but is not prime 53 * 157
12 15841 passes the test but is not prime 7 * 31 * 73
13 29341 passes the test but is not prime 13 * 37 * 61
14 42799 passes the test but is not prime 127 * 337
15 49141 passes the test but is not prime 157 * 313

8.2. Παραγοντοποίηση

Η δυσκολία του συστήματος RSA βασίζεται στη δυσκολία παραγοντοποίησης. Για την κρυπτανά-
λυση τέτοιων συστημάτων χρειαζόμαστε αποτελεσματικούς αλγόριθμους παραγοντοποίησης.

8.2.1. Απλή δοκιμή. Πρόκειται για τον απλούστερο δυνατό αλγόριθμο για να παραγοντοποιή-
σουμε τον φυσικό n, και στον οποίο δοκιμάζουμε όλους τους πρώτους μικρότερους του

√
n

1 def FactorTrial(n):
2 primes=prime_range(sqrt(n))
3 factors = []
4 for p in primes:
5 e = 0
6 while n % p == 0:
7 e = e + 1
8 n = n // p
9 if e > 0:
10 factors.append((p, e))
11 if n == 1:
12 break
13 return (Factorization(factors), n)
14

15 FactorTrial(382736482736)
16 (2^4 * 317, 75460663)
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Interactive

8.2.2. Αλγόριθμος παραγοντοποίσης του Fermat. Η μέθοδος στηρίζεται στην ακόλουθη

8.2.1 Πρόταση:
Για κάθε περιττό φυσικό αριθμό n, n > 1 υπάρχει μία αμφιμονοσήμαντη αντιστοιχία μεταξύ των παρα-
γοντοποιήσεων του n, σε γινόμενο δύο θετικών ακέραιων n = ab, a ⩾ b > 0 και παραστάσεων του n,
ως διαφορά τετραγώνων n = t2 − s2, όπου s και t φυσικοί αριθμοί.
Η αντιστοιχία δίνεται από τις ισότητες

t =
a+ b

2 , s = a− b

2 a = t+ s, b = t− s.

ΑπόδειξηΑνn = a·b =
(
a+b

2
)2
−
(
a−b

2
)2

= t2−s2. Αν πάλιn = t2−s2 = (t−s)(t+s) = a·b,
όπου a = t− s και b = t+ s, δηλαδή t = a+b

2 και s = a−b
2

Η ιδέα του Fermat ήταν, αν n = a · b και a, b δύο περιττοί ακέραιοι, περίπου του ίδιου μεγέθους,
τότε ο s = a−b

2 είναι σχετικά μικρός και ο t λίγο μεγαλύτερος της
√
n. Επομένως, θα μπορούσαμε να

υπολογίσουμε τους a και b δοκιμάζοντας διάφορες τιμές του t στις [
√
n] + 1, [

√
n] + 2, . . . , μέχρι να

βρούμε κάποιο t για το οποίο το t2 − n = s2, είναι τέλειο τετράγωνο.
Παράδειγμα Να παραγοντοποιηθεί ο φυσικός αριθμός n = 200819.
Ο [

√
n] + 1 = [

√
200819] + 1 = 449. Για t = 449 υπολογίζουμε 4492 − 200819 = 782, το οποίο

δεν είναι τέλειο τετράγωνο.
Παίρνουμε t = 450, 4502 − 200819 = 1681 = 412. Επομένως 200819 = 4502 − 412 = (450 +

41)(450 − 41) = 491 · 409.
Αν οι ακέραιοι a και b δεν είναι του ίδιου μεγέθους για κάθε παραγοντοποίηση του n = ab, τότε

είναι πιθανόν η μέθοδος Fermat να ανακαλύψει τους παράγοντες a, b μετά από αρκετές δοκιμές. Στην
περίπτωση είναι πιο βολικό να χρησιμοποιούμε την ακόλουθη γενίκευση.

Επιλέγουμε ένα μικρό φυσικό αριθμό k και θέτουμε t = k[
√
n] + 1, k[

√
n] + 2, . . . μέχρι να

επιτύχουμε παράσταση της μορφής t2 − k · n η οποία είναι τέλειο τετράγωνο,

t2 − k · n = s2

Όταν τα επιτύχουμε αυτό έχουμε (t+ s)(t− s) = kn. Αυτό σημαίνει ότι οι t+ s και n έχουν κάποιο,
μη-τετριμμένο, κοινό παράγοντα ο οποίος ευρίσκεται από τον υπολογισμό του (t+ s, n).

Παράδειγμα Να παραγοντοποιηθεί ο 14167.
Αν προσπαθήσουμε με την κλασική παραγοντοποίηση Fermat, θα πρέπει να θέσουμε t = 377, 378, . . .

και να…κουραστούμε θέτοντας διάφορες τιμές του t. Αν όμως θέσουμε t = [
√

3n+1] = 652, 653, 654, 655,
βρίσκουμε

6552 − 3 · 141467 = 682

και υπολογίζουμε τον (655 + 68, 141467) = 241.
Τελικά μια παραγοντοποίηση του αριθμού 14167 είναι 241 · 587.
Η απάντηση στο ερώτημα γιατί δούλεψε η μέθοδος για k = 3 είναι ότι στην παραγοντοποίηση του

n = a · b = 241 · 587 το b = 587 είναι κοντά στο 3a = 3 · 241 = 723.

http://users.uoa.gr/~kontogar/kallipos/Factoring-d.html
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Από τα παραπάνω φαίνεται ότι χρειαστήκαμε 4 μόνο τιμές του t, ενώ αν εφαρμόζαμε τη μέθοδο
για k = 1 θα χρειαζόμασταν 38 τιμές του t.

Στο sage ορίζουμε τη συνάρτηση παραγοντοποίησης:

1 def Ferfac(m):
2 if m <= 0: return [m]
3 if is_even(m): return [2,m/2]
4 a = ceil(sqrt(m))
5 while not is_square(a^2-m):
6 a = a + 1
7 b = sqrt(a^2-m)
8 return [a - b,a + b]

Την παραπάνω συνάρτηση χρησιμοποιούμε ως εξής:

1 p=next_prime(10^20)
2 q=next_prime(p+10^3)
3 p,q,p*q,Ferfac(p*q)
4 (100000000000000000039,
5 100000000000000001071,
6 10000000000000000111000000000000000041769,
7 [100000000000000000039, 100000000000000001071])

Interactive

8.2.3. Αλγόριθμος παραγοντοποίησης του Dixon.

8.2.2 Πρόταση:
Αν x,y ακέραιοι και x2 ≡ y2modn και x ̸= ±y, τότε ο φυσικός d = (x − y,n) είναι μη-τετριμμένος
παράγοντας του n.

Απόδειξη Έχουμε n | x2 − y2 = (x− y)(x+ y), ενώ n δεν διαιρεί το (x− y) και n δεν διαιρεί το
(x+ y). Είναι φανερό ότι d | n. Θα αποδείξουμε ότι 1 < d < n.

Αν d = n, θα είχαμε n | (x−y), άτοπο. Αν d = 1 τότε αφού n = (x+y)(x−y) και (x−y,n) = 1
έπεται ότι n | (x+ y), πάλι άτοπο. 2

Παράδειγμα Υπολογίζουμε ότι 102 ≡ 322mod77, 10 ̸= 32mod77, 10 ̸= −32mod77. Επομένως ο
77 και ένας γνήσιος παράγοντας αυτού είναι ο (10 − 32, 77) = 11.

Υπάρχουν αρκετές παραλαγές του αλγορίθμου αυτού στο πώς θα υπολογίζουμε τους ακέραιους x,y
ώστε x2 ≡ y2modn. Ας εξετάσουμε μία:

Διαλέγουμε ένα φράγμα B και θεωρούμε τους πρώτους p1, . . . ,pn που είναι μικρότεροι ή ίσοι του
B. Στη συνέχεια ψάχνουμε θετικούς ακέραιους z ώστε z2modN να έχει παράγοντες στο σύνολο των

http://users.uoa.gr/~kontogar/kallipos/Factoring-e.html
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P = {p1, . . . ,pn}. Μπορούμε λοιπόν να γράψουμε

z2 ≡
∏
pi∈P

p
ai

i mod.

Όταν έχουμε αρκετές από τις παραπάνω σχέσεις (αρκεί να έχουμε περισσότερες από το πλήθος του P),
τότε μπορούμε να χρησιμοποιήσουμε τη μέθοδο της απαλοιφής του Gauss προκειμένου να πολλαπλα-
σιάσουμε τις σχέσεις αυτές ώστε το πλήθος των παραγόντων στο αριστερό μέλος της εξίσωσης να είναι
άρτιος, δηλαδή:

z2
1z

2
2 · · · z2

k ≡
∏
pi∈P

p
ai,1+ai,2+···+ai,k
i modN

όπου
ai,1 + ai,2 + · · ·+ ai,k ≡ 0mod2.

Πράγματι #P + 1 σχέσεις της μορφής

z2
j ≡

∏
pi∈P

p
ai,j
i mod,

μπορούν να αποτυπωθούν ως ένας πίνακας στο σώμα F2 με #P+ 1 γράμμες και #P στήλες, από όπου
μπορούμε να βρούμε μια σχέση γραμμικής F2-εξάρτησης.

Ας κάνουμε ένα παράδειγμα: έστω n = 3439. Θεωρούμε ως P = {2, 3, 5, 7} και έχουμε τις παρα-
κάτω σχέσεις:

x x2 − n

59 42 = 2 · 3 · 7
62 405 = 33 × 5
67 1050 = 2 × 3 × 52 × 7
73 1890 = 2 × 33 × 5 × 7
143 17010 = 2 × 35 × 5 × 7

Οι εκθέτες απομονώνονται ως:

αριθμός εκθέτης

42 (1,1,0,1)
405 (0,4,1,0)
1050 (1,1,2,1)
1890 (1,3,1,1)
17010 (1,5,1,1)

οι οποίοι modulo 2 δίνουν τον πίνακα:

αριθμός εκθέτης

42 (1,1,0,1)
405 (0,0,1,0)
1050 (1,1,0,1)
1890 (1,1,1,1)
17010 (1,1,1,1)
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Για να βρούμε έναν κατάλληλο πολλαπλασιασμό θεωρούμε τον 5 × 4 πίνακα με στοιχεία από τον
F2

=


1 1 0 1
0 0 1 0
1 1 0 1
1 1 1 1
1 1 1 1


και κάθε στοιχείο του πυρήνα θα μας δώσει τη σχέση που θέλουμε. Για παράδειγμα, το (1, 0, 1, 0, 0) ∈
kerA μας δίνει τον πολλαπλασιασμό:

39532 = (59 × 67) ≡ (2 × 3 × 5 × 7)2modn.
Αφού δε 3953 ± 210 ̸= 0modn καταλήγουμε στο (3953 − 210,n) = 19, 3953 + 210,n) = 181.

Με αυτόν τον τρόπο έχουμε καταλήξει σε μία σχέση τετραγώνων της μορφής x2 ≡ y2modN όπως
θέλαμε.

Η υλοποίηση στο sage είναι αρκετά πολύπλοκη, αφού χρειαζόμαστε σειρά από αλγορίθμους να
χειριστούν κάθε κομμάτι της διαδικασίας. Ακολουθούμε τον κώδικα από το Blog του F. Kraiem και ο
αναγνώστης καλείται να πειραματιστεί στους παρακάτω συνδέσμους:

Interactive
Στην παραπάνω υλοποίηση κατασκευάζεται μία υπορουτίνα παραγοντοποίησης ενός ακέραιου ως

προς ένα σύνολο πρώτων P η trial(n,primes), μία υπορουτίνα αναγνώρισης αριθμών που διαιρούνται
μόνο από πρώτους στο P, η smooth(n,fbase). Αν η είσοδος διαιρείται μόνο από πρώτους στο σύνολο
P επιστρέφει τη λίστα των εκθετών, σε διαφορετική περίπτωση δεν επιστρέφει τίποτα. Επιπλέον υλο-
ποιείται μια υπορουτίνα η dixonfact(n,primes) που βρίσκει έναν μη-τετριμμένο παράγοντα.

8.2.4. O p-1-αλγόριθμος παραγοντοποίησης του Pollard. Υποθέτουμε ότι μας δίνεται ο φυσικός
αριθμός n για τον οποίο υποψιαζόμαστε ότι είναι σύνθετος και θέλουμε να τον παραγοντοποίησουμε.
Επιλέγουμε έναν ακέραιο B, ως φράγμα εργασίας.

1. Θέτουμε a = 2
2. Υπολογίζουμε τις δυνάμεις α = ajmodn για j = 2, 3, . . . ,B
3. Υπολογίζουμε το d = (α− 1,n)
4. Αν 1 < d < n, τότε ο d είναι ένας γνήσιος παράγοντας του n (επιτυχία), αλλιώς δεν βρήκαμε

γνήσιο παράγοντα του n (αποτυχία).
Αν τώρα p πρώτος διαιρέτης του n και υποθέτουμε ότι κάθε δύναμη πρώτου διαιρέτη του p − 1,

έστω q, είναι μικρότερη ή ίση του B θα έχουμε (p− 1) | B!
Για το τελικό α που θα βρούμε στο δεύτερο βήμα του αλγορίθμου ισχύει

α ≡ 2B!modn

και κατ’ επέκταση
α ≡ 2B!modp,

για όλους τους διαιρέτες του n. Επειδή (p− 1) | ! έπεται ότι B! = (p− 1)t με t ∈ Z και συνεπώς

2B! ≡ (2p−1)tmodp

Επειδή 2p−1 ≡ 1modp, τελικά προκύπτει ότι α ≡ 2B! ≡ 1modp.

http://blog.fkraiem.org/2013/12/08/factoring-integers-dixons-algorithm/
http://users.uoa.gr/~kontogar/kallipos/Factoring-g.html
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Επειδή p | (α − 1) και p | n, έπεται ότι p | (α − 1,n) =: d και συνεπώς 1 < p ⩽ d. Αν d = n,
θα είχαμε n | (α − 1). Όμως το α − 1 < n οπότε θα έπρεπε α = 1. Επομένως, βρίσκουμε έναν
μη-τετριμμένο παράγοντα d του n και συνεχίζουμε την προσπάθεια παραγοντοποίησης των d και n/d.

Παράδειγμα:Θεωρούμε τον φυσικόn = 540143. ΕπιλέγουμεB = 8. Επομένως k := [1, 2, . . . , 8] =
840. Θέτουμε a = 2 και υπολογίζουμε

2840 ≡ 53047modn

Επίσης (53047,n) = 421 συνεπώς 540143 − 421 · 1283.
Παρατήρηση: Αν το B που επιλέξαμε δεν αρκεί για το σκοπό του επιλέγουμε κάποιον άλλο μεγα-

λύτερο του αρχικού και επαναλαμβάνουμε τη διαδικασία.
Μερικές φορές ο αλγόριθμος δεν λειτουργεί για a = 2, οπότε μπορούμε να δοκιμάσουμε για a = 3

και αν πάλι δεν λειτουργεί να δοκιμάσουμε με μεγαλύτερες τιμές του a.
Παράδειγμα Επιθυμούμε να παραγοντοποιήσουμε τον n = 187. Επιλέγουμε B = 15. Επομένως

k = [1, 2, . . . , 15] = 360360. Για a = 2 ο (2360360 − 1, 187) = 187 και δεν καταφέρνουμε να τον
παραγοντοποιήσουμε.

Για a = 3 έχουμε 3360360 − 1 ≡ 66mod187 και επομένως (3360360 − 1, 187) = (66, 187) = 11.
Συνεπώς 187 = 11 · 17.

Παράδειγμα Ο παρακάτω κώδικας sage υλοποιεί τον αλγόριθμο του Pollard:

1 def EKP(B):
2 return prod([p^int(math.log(B)/math.log(p))
3 for p in prime_range(B+1)])
4 N=3*13*37
5 print ”N=”,N
6 B=10
7 print ”B=”,B
8 m=EKP(B)
9 print ”EKP=”,m
10 a=2
11 print gcd(a^m-1,N)
12 a=3
13 print gcd(a^m-1,N)

Θεωρούμε τον αριθμό = 1443. Το ελάχιστο κοινό πολλαπλάσιο των αριθμών από 1 μέχρι 10
υπολογίζεται να είναιm = 2520. Ο μέγιστος κοινός διαιρέτης (2m− 1,N) = 1443) και η μέθοδος του
Pollard αποτυγχάνει στην περίπτωση αυτή. Όμως (3m − 1,N) = 481 που είναι ένας μη τετριμμένος
διαιρέτης του . Μπορείτε να δοκιμάστε παραδείγματα στο sage στον σύνδεσμο:

Interactive

8.2.5. Ο αλγόριθμος παραγοντοποίησης ρ του Pollard. Η ιδέα του αλγορίθμου είναι η εξής:
Έστω n σύνθετος ακέραιος και p o ελάχιστος πρώτος παράγοντας του n. Αν μπορούμε να βρούμε

ακέραιους
x0, x1, x2, . . . , xℓ

http://users.uoa.gr/~kontogar/kallipos/Pollard.html
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τέτοιους ώστε για κάποιους δείκτες i, j ∈ {0, 1, 2, . . . , ℓ} να ισχύουν

xi ≡ xjmodp και xi ̸= xjmodn

, τότε ο (xi − xj,n) είναι ένας γνήσιος διαιρέτης του n αφού p | (xi − xj,n) | n και (xi − xj,n) ̸= n.
Τα ερωτήματα που προκύπτουν είναι πώς θα επιλέξουμε τα xi και στη συνέχεια με ποιον σύντομο

τρόπο θα διαπιστώσουμε την ύπαρξη ενός κατάλληλου ζευγαριού με τις παραπάνω ιδιότητες. Είναι
φανερό ότι ο υπολογισμός του (xi − xj,n) για όλους τους δείκτες 0 ⩽ i, j ⩽ ℓ είναι μια αρκετά
χρονοβόρα διαδικασία.

Η ακολουθία x0, x1, . . . , xℓ θα πρέπει να είναι κατά το δυνατόν τυχαία (random) ακολουθία. Επι-
λέγουμε τυχαία το x0 = 2 και μια πολυωνυμική συνάρτηση f(x) με ακέραιους συντελεστές και υπολο-
γίζουμε αναδρομικά τους υπόλοιπους όρους της ακολουθίας

xi+1 ≡ f(xi)modn, 0 ⩽ xi+1 < n.

Για να επαναλαμβάνονται οι όροι της ακολουθίας (modp) μετά από λογικό αριθμό βημάτων θα πρέπει
να επιλέξουμε κατάλληλη πολυωνυμική συνάρτηση f(x). Δεν θέλουμε να υπάρχει κάποιος ακέραιος
amodp τέτοιος ώστε η ακολουθία

x1 = f(a), x2 = f(x1) = f(f(a)) = f
(2)(a), . . . , xℓ = f(ℓ)(a)

να δίνει για μεγάλο ℓ διαφορετικές τιμές modp.
Ας ονομάσουμε ((ρ-αριθμό)) μιας τέτοιας ακολουθίας xi ως προς τον πρώτο αριθμό p τον μεγαλυ-

τερο ακέραιοm για τον οποίο υπάρχει ένα amodp τέτοιο ώστε όλοι οι όροι της ακολουθίας

f(a), . . . , f(m)(a)

να είναι ανά δύο διαφορετικοί modp. Εμείς θέλουμε ακολουθίες με μικρό ρ-αριθμό. Επομένως δεν
μπορούμε να επιλέξουμε πρωτοβάθμια πολυωνωμική συνάρτηση

f(x) = aX+ b.

Αυτό διότι, όταν a ̸= 1modp, τότε ο ((ρ-αριθμός)) είναι η τάξη του amodp και αυτός είναι συνήθως
ένας μεγάλος διαιρέτης του p− 1.

Αν a ≡ 1modp και b ̸= 0modp, τότε f(X) = X + b και ο ρ-αριθμός είναι ακριβώς p, αφού
f(x1) ≡ f(x2)modp αν και μόνο αν x1 ≡ x2modp.

Θα πρέπει επομένως να επιλέξουμε μία πολυωνυμική συνάρτηση δευτέρου βαθμού φαίνεται ότι
μια καλή επιλογή είναι η πολυωνυμική συνάρτηση f(X) = X2 + 1.

Τώρα είναι φανερό ότι αν xi ≡ xjmodp, τότε και xi+1 ≡ f(xi) ≡ f(xj) ≡ xj+1modp. Αυτό ση-
μαίνει ότι η ακολουθία γίνεται από ένα σημείο και πέρα, περιοδική (modp) με περίοδο (i− j). Συνεπώς,
αν r ⩾ i, t ⩾ i, kai r ≡ tmod(i− j) τότε

xr ≡ xtmodp.

Αν λοιπόν s είναι το ελάχιστο πολλαπλάσιο του (i− j) το οποίο είναι ⩾ i, έχουμε

x2s ≡ xsmodp.

Υπολογίζουμε επομένως πολύ λιγότερους μέγιστους κοινούς διαιρέτες από τους συνδυασμούς ανά δύο.
Συγκεκριμένα υπολογίζουμε τους

(x2s − xs,n) με s = 1, 2, 3, . . .

μέχρι να βρούμε κάποιον διάφορο του 1 και του n.
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Παράδειγμα Έστω n = 2047. Για x0 = 2 και f(x) = x2 + 1 υπολογίζουμε τους όρους της
ακολουθίας

xi+1 = f(xi)modn

x0 = 2 x1 = 5 x2 = 26 x3 = 677
x4 = 1849 x5 = 312 x6 = 1136 x7 = 887
x8 = 722 x9 = 1347 x10 = 768 x11 = 289 x12 = 1642

Στη συνέχεια υπολογίζουμε τους

(x2s − xs,n), για s = 1, 2, 3, 4, 5, 6

(26 − 5, 2047) = 1
(1849 − 26, 2047) = 1
(1136 − 677, 2047) = 1
(722 − 1842, 2047) = 1
(768 − 312, 2047) = 1

(1642 − 1136, 2047) = 23
Επομένως 2047 = 23 · 89.

Στο παράδειγμά μας έχουμε

x1 ≡ 5mod23 x2 ≡ 3mod23 x3 ≡ 10mod23
x4 ≡ 9mod23 x5 ≡ 13mod23 x6 ≡ 9mod23
x7 ≡ 13mod23 x8 ≡ 9mod23 x9 ≡ 13mod23
x10 ≡ 9mod23 x11 ≡ 13mod23 x12 ≡ 9mod23

xi+1

��
x4 = 9

��
x5 = 13]] xi = xj

22

xi+2

x3 = 10

OO

xi−1

OO

xj−1

XX

x2 = 3

OO

x1

x1 = 5

OO

x0

OO

x0 = 2

OO

Σχήμα 8.2. Σχήμα ρ

Παρατήρηση Όταν γνωρίζουμε το xi προκειμένου να υπολογίσουμε το x2i δεν χρειάζεται να υπο-
λογίσουμε όλους τους ενδιάμεσους όρους

xi+1, xi+2, . . . , x2i−1, x2i.
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Αν yi = x2i παρατηρούμε ότι

y1 = x2 = f(x1) = f(f(x0)) = f(f(y0)),

y2 = x4 = f(x3)f(f(x2)) = f(f(y1))

και γενικότερα
yi = x2i = f(f(yi−1)).

Επομένως σε κάθε βήμα υπολογίζουμε

xi = f(xi−1)modn

yi = f(f(yi−1))modn

8.2.6. Παραγοντοποίηση με ελλειπτικές καμπύλες. Όπως είδαμε σε προηγούμενο κεφάλαιο, η
μέθοδος RSA βασίζεται στη δυσκολία να παραγοντοποιήσουμε μεγάλους ακέραιους αριθμούς. Στο κε-
φάλαιο αυτό θα περιγράψουμε τη μέθοδο του Lenstra (Lenstra 1987), η οποία χρησιμοποιεί ελλειπτικές
καμπύλες για την παραγοντοποίηση.

Σχήμα 8.3. “Hendrik Lenstra MFO” Δημιουργός: George M. Bergman, Το παρόν έργο
αποτελεί κοινό κτήμα (public domain). Πηγή: Wikimedia Commons

8.2.7. Από τη μέθοδο του Pollard στη μέθοδο του Lenstra. Σταθεροποιούμε έναB όπως και στη
μέθοδο του Pollard. ΑνN = pq με p,q πρώτοι ώστε οι p− 1 και q− 1 να μην είναι B-ομαλοί, τότε η
μέθοδος του Pollard θα αποτύχει.

Η μέθοδος του Pollard δουλεύει στην ουσία στην κυκλική ομάδα F∗
p η οποία έχει σταθερή τάξη

p − 1. Οι ελλειπτικές καμπύλες δίνουν μια οικογένεια ομάδων που σχετίζονται με το p, αλλά η τάξη
τους μπορεί να πάρει τις τιμές

#E(Fp) = p+ 1 ± s,
όπου το s μπορεί να πάρει τιμές στο διάστημα 0 ⩽ s ⩽ 2√p σύμφωνα με το θεώρημα του Hasse.
Υπάρχει λοιπόν πολύ μεγαλύτερη επιλογή στις τάξεις της ομάδας. Ο αριθμός p−1 μπορεί να μην είναι
B-ομαλός αλλά να είναι B-ομαλός ο p− 2.

Περιγραφή της Μεθόδου

http://en.wikipedia.org/wiki/Hendrik_Lenstra
https://commons.wikimedia.org/wiki/File:Hendrik_Lenstra_MFO.jpg
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1. Διαλέγουμε το B.

2. Υπολογίζουμε το ελάχιστο κοινό πολλαπλάσιο των αριθμών 1, . . . ,B.

3. Διαλέγουμε μια τυχαία ελλειπτική καμπύλη στον δακτύλιο Z/NZ και ένα σημείο επί αυτής.
Για παράδειγμα αν διαλέξουμε ένα τυχαίο a ∈ Z/NZ ώστε 4a3 + 27 δεν είναι διαιρετό μεN
τότε το σημείο P = (0, 1) είναι σημείο πάνω στην ελλειπτική καμπύλη y2 = x3 + ax+ 1.

4. Επιχειρούμε να υπολογίζουμε τις δυνάμειςmP. Αν κάπου αποτύχουμε να υπολογίσουμε μια
δύναμη αυτό θα οφείλεται στο ότι κάποιος παρονομαστήςΠ στους τύπους πρόσθεσης σημείων
είναι διαιρετός με N. Αν ο μέγιστος κοινός διαιρέτης (Π,N) < N, τότε το (Π,N) είναι ένας
μη-τετριμμένος διαιρέτης του N και η μέθοδος έχει ολοκληρωθεί. Διαφορετικά δοκιμάζουμε
με διαφορετική ελλειπτική καμπύλη.

Ο παρακάτω κώδικας είναι από το βιβλίο (Stein 2008) Elementary Number Theory

1 def ecm(N, B=10^3, trials=10):
2 m = prod([p^int(math.log(B)/math.log(p))
3 for p in prime_range(B+1)])
4 R = Integers(N)
5 R.is_field = lambda : True
6 for _ in range(trials):
7 while True:
8 a = R.random_element()
9 if gcd(4*a.lift()^3 + 27, N) == 1: break
10 try:
11 m * EllipticCurve([a, 1])([0,1])
12 except ZeroDivisionError, msg:
13 # msg: ”Inverse of <int> does not exist”
14 return gcd(Integer(str(msg).split()[2]), N)
15 return 1
16

17 N=5959
18 ecm(N, B=20)

Interactive 1 Interactive 2
Lenstra Jr., H. W. (1987). “Factoring integers with elliptic curves”. Annals of Mathematics 126 (3):

649–673. JSTOR 1971363. MR 89g:11125

8.2.8. Η πρόκληση παραγοντοποίησης της RSA. Τα εργαστήρια της RSA, μιας εταιρίας που
ιδρύθηκε από τους εφευρέτες του ομώνυμου αλγορίθμου έχουν δημοσιεύσει μια λίστα από σύνθετους
αριθμούς, για τους οποίους μέχρι το 2007 έδιναν και χρηματικά έπαθλα για την παραγοντοποίησή τους.
Κάποιοι από αυτούς παραγοντοποιήθηκαν άμεσα, ενώ ο μεγαλύτερος από αυτούς (για τον οποίο υπήρχε
και ένα έπαθλο 200.000 δολλαρίων) θα αργήσει πολύ να παραγοντοποιηθεί.

http://users.uoa.gr/~kontogar/kallipos/Lenstra.html
http://users.uoa.gr/~kontogar/kallipos/Lenstra2.html
http://en.wikipedia.org/wiki/RSA_Security
http://en.wikipedia.org/wiki/RSA_numbers
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1 RSA-2048 = 25195908475657893494027183240048398571
2 42928212620403202777713783604366202070
3 75955562640185258807844069182906412495
4 15082189298559149176184502808489120072
5 84499268739280728777673597141834727026
6 18963750149718246911650776133798590957
7 00097330459748808428401797429100642458
8 69181719511874612151517265463228221686
9 99875491824224336372590851418654620435
10 76798423387184774447920739934236584823
11 82428119816381501067481045166037730605
12 62016196762561338441436038339044149526
13 34432190114657544454178424020924616515
14 72335077870774981712577246796292638635
15 63732899121548314381678998850404453640
16 23527381951378636564391212010397122822
17 120720357
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9
Κατασκευή Ελλειπτικών καμπυλών με δεδομένη τάξη

Σε αυτό το κεφάλαιο αντιμετωπίζουμε τα παρακάτω προβλήματα:
1. Δοσμένης μιας ελλειπτικής καμπύλης E ορισμένης πάνω από ένα πεπερασμένο σώμα Fq πώς

μπορούμε να μετρήσουμε την τάξη της ομάδας #E(Fp);

2. Αν δοθεί ένας αριθμός μπορούμε να κατασκευάσουμε μια ελλειπτική καμπύλη που να έχει
τάξη ίση με N;

Τα παραπάνω προβλήματα σχετίζονται άμεσα με την ασφάλεια των αλγορίθμων που παράγονται
από μια δεδομένη ελλειπτική καμπύλη. Προκειμένου ένα ελλειπτικό κρυπτοσύστημα να είναι ασφαλές
στις γνωστές επιθέσεις θα πρέπει η τάξη της ελλειπτικής καμπύλης να πληροί μια σειρά από ιδιότητες.
Για περισσότερες πληροφορίες σχετικά με τις μεθόδους που χρησιμοποιούμε παραπέμπουμε στο (Blake,
Seroussi, and Smart 1999). Για μια περισσότερο θεωρητική προσέγγιση της θεωρίας των ελλειπτικών
καμπυλών παραπέμπουμε στο (Αντωνιάδης 1999), (Milne 2006) και (Silverman 1986).

9.1. Αλγόριθμοι μέτρησης σημείων

9.1.1. Ο Αλγόριθμός του Shanks. O αλγόριθμος αυτός ξεκινάει με ένα τυχαίο σημείο P ∈ E(Fp)

και υπολογίζει έναν ακέραιοm στο διάστημα (p+1−2√p,p+1+2√p), τέτοιον ώστε [m]P = 0. Εάν
ο m είναι ο μόνος ακέραιος με αυτή την ιδιότητα, τότε σύμφωνα με το φράγμα του Hasse προκύπτει
ότι

m = #E(Fp).

Για να βρει το σημείο εκκίνησης P = (x,y) ∈ E(Fp), ο αλγόριθμος διαλέγει τυχαίες τιμές του x ώσπου
το

x3 + ax+ b

να είναι τετράγωνο στο Fp. Τότε υπολογίζει μία τετραγωνική ρίζα y του x3 + ax+ b.
Ο αριθμός m υπολογίζεται σύμφωνα με τη στρατηγική baby step giant step που μελετήσαμε στο

πρόβλημα του διακριτού λογαρίθμου. Ο αλγόριθμος δίνεται από τα παρακάτω βήματα:
1. Επιλέγουμε τυχαίο σημείο P ∈ E(Fp) και θέτουμε k = ⌈2 4

√
p⌉.

2. Υπολογίζουμε τα i · P για τις τιμές i = 0, . . . , k− 1. Αν για κάποιο i υπολογίσουμε i · P = 0
τότε επιστρέφουμε στο βήμα 1 και επιλέγουμε ένα νέο σημείο P.

3. Θέτουμε Q = k · P.
159
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4. Υπολογίζουμε το
Rj = ⌊p+ 1 − 2√p⌋ · P + j ·Q.

για τις τιμές j = 1, . . . ,k και ελέγχουμε αν Rj = i · P για κάποιο i. Αν βρούμε μόνο ένα
ζευγάρι (i, j) με Rj = i · P τότε η τάξη της ομάδας είναι

#E(Fp) = ⌊p+ 1 − 2√p⌋+ k · j− i

και ο αλγόριθμος τερματίζεται. Σε διαφορετική περίπτωση αν βρούμε δύο τέτοια ζευγάρια
(i, j) και (i ′, j ′) μπορούμε να υπολογίσουμε την τάξη του σημείου P από τη σχέση

|P| = |k(j− j ′) − (i− i ′)|.

Στην περίπτωση που |P| <
√
p − 1, επιστρέφουμε στο βήμα 1. και διαλέγουμε ένα άλλο

σημείο.

5. Υπολογίζουμε ένα δεύτερο τυχαίο σημείο P ′ ∈ E(Fp). Με τα βήματα 2-4 υπολογίζουμε την
τάξη του. Υπολογίζουμε την τάξη του P ′ στην ομάδα πηλίκο E(Fp)/⟨P⟩, δηλαδή τον ελάχιστο
διαιρέτη του d ′ του |P ′| ώστε d ′ · P ′ ∈ ⟨P⟩. Αυτό πάλι μπορεί να γίνει με τη βοήθεια μιας
baby-step giant step μεθόδου. Αν d = |P| · d ′ < 4√p, τότε επιστρέφουμε στο βήμα 5.

6. Προσδιορίζουμε το ελάχιστο πολλαπλάσιο x του d στο διάστημα [p+1−2√p,p+1+2√p].
Τότε το #E(Fp) = x και ο αλγόριθμος τερματίζεται.

Θα περιγράψουμε τώρα γιατί ο παραπάνω αλγόριθμος δίνει αποτελέσματα. Η συνθήκη τερματισμού
στο βήμα 4 είναι σωστή γιατί η τάξη της ομάδας βρίσκεται στο διάστημα του Hasse. Από την άλλη, η
τάξη είναι πολλαπλάσιο της τάξης του P και υπάρχει μόνο ένα πολλαπλάσιο του P στο διάστημα Hasse
αφού εξασφαλίσαμε ότι |P| ⩾ 4√p και αυτό πρέπει να είναι η τάξη της ομάδας.

Επιπλέον γνωρίζουμε ότι πάνω από το Fp η δομή της ομάδας E(Fp) είναι η

E(Fp) ∼=
Z
mZ

× Z
nZ

,

όπου χωρίς περιορισμό της γενικότητας μπορούμε να υποθέσουμε ότιm ⩾ n ⩾ 1. Ανm ⩾ 4√p τότε
μπορεί να αποδειχτεί ότι ένα σχετικά μεγάλο μέρος των σημείων της E έχει τάξη ⩾ 4√p. Αν βρεθεί
ένα τέτοιο σημείο τότε ο αλγόριθμος τερματίζεται στο βήμα 4.

Σε κάθε περίπτωση #E(Fp) ⩾ (
√
p− 1)2 και συνεπώςm√

p− 1. Συνεπώς, είναι πολύ πιθανό το
βήμα 1. να επιλέξει ένα τέτοιο σημείο μετά από επαναλήψεις των βημάτων 1-4. Για να ολοκληρωθεί
ο υπολογισμός θα πρέπει να βρεθεί ένα σημείο P ′ με τάξη ⩾ 5 στην ομάδα E(Fp/⟨P⟩). Όμως αν
m < 4√p, τότε ένα τέτοιο σημείο θα βρεθεί σχετικά γρήγορα.

Για μία τυχαία καμπύλη ο αλγόριθμος θα τερματιστεί σύντομα στο βήμα 4. Όμως υπάρχουν για
παράδειγμα καμπύλες με p = k2 + 1 και

E(Fp) ∼=
Z
pZ

× Z
pZ

.

Για τις καμπύλες αυτές απαιτούνται τα επιπλέον βήματα.

9.1.2. O Αλγόριθμός του J. F. Mestre. Ο αλγόριθμός δίνει μια εναλλακτική αντιμετώπιση στην
περίπτωση που ο αλγόριθμος του Shanks δεν τερματίζεται στα βήματα 1-4.

Χρησιμοποιεί την έννοια της “τετραγωνικής διαστροφής” (quadratic twist!) μιας ελλειπτικής κα-
μπύλης. Συνοπτικά αν η ελλειπτική καμπύλη E εκφράζεται από την εξίσωση

y2 = x3 + ax+ b,
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τότε η διεστραμμένη καμπύλη E ′ δίνεται από τον τύπο

gy2 = x3 + ax+ b

για κάποιο μη τετραγωνικό υπόλοιπο g ∈ F∗
p. Η κλάση ισομορφισμού αυτής της καμπύλης δεν εξαρ-

τάται από την επιλογή του g. Η εξίσωση του Weierstrass για την καμπύλη E ′ είναι,

y2 = x3 + ag2x+ bg3.

Οι δύο καμπύλες έχουν τάξεις που ικανοποιούν τη σχέση

#E(Fp) + #E ′(Fp) = 2(p+ 1),

οπότε για τον υπολογισμό του #E(Fp) μπορούμε να υπολογίσουμε το #E ′(Fp). Επιπλέον θα δούμε
ότι αν ο εκθέτης της μιας καμπύλης είναι μικρός τότε ο εκθέτης της άλλης δεν είναι.

Μπορούμε να χρησιμοποιήσουμε αυτή την παρατήρηση ως εξής: εάν για την ελλειπτική καμπύλη
E ο αλγόριθμος του Shanks απέτυχε για κάποιον αριθμό σημείων P, επειδή κάθε φορά περισσότερες
από μία τιμές τουm βρέθηκαν ώστε [m]P = O, τότε αντικαθιστούμε την E με την E ′ και προσπαθούμε
ξανά.

Η ομάδα E(Fp) είναι ακριβώς ο πυρήνας του ενδομορφισμού F−Id ο οποίος αφήνεται να δρασει
στην ομάδα E(Fp). Συνεπώς, o εκθέτης της E(Fp) είναι (p+1−t)/n όπου n είναι ο μέγιστος ακέραιος
τέτοιος ώστε η E(Fp) να περιέχει μια υποομάδα ισομορφική με το Z/nZ×Z/nZ. Ισοδύναμα o n είναι
ο μέγιστος ακέραιος για τον οποίο F ≡ 1(modn) στον End(E).

9.1.1 Θεώρημα:
΄Εστω p > 457 πρώτος κι έστω E μία ελλειπτική καμπύλη επί του Fp. Τότε είτε η E είτε η διαστροφή της
E ′, περιέχει ένα Fp-ρητό σημείο τάξης το λιγότερο 4

√
p.

Απόδειξη Οι δακτύλιοι ενδομορφισμών των E, � είναι ισόμορφοι με την ίδια τετραγωνική τάξη O

διακρίνουσας d. ΄Εστω F ο ενδομορφισμός του Frobenious της E. ΄Εστω ακόμη n ο μέγιστος ακέραιος
τέτοιος ώστε F ≡ 1(modn) στο End(E) καιN = (p+1−t)/n να είναι o εκθέτης της E(Fp). ΄Εχουμε
τότε ότι,

Z[F] ⊂ Z
[
F− 1
n

]
⊂ O

από όπου προκύπτει ότι το n διαιρεί τον δείκτη [O : Z[F]]. Αφού [O : Z[F]]2 είναι ίσο με το πηλίκο
των διακρινουσών των τάξεων O και Z έχουμε ότι ο n2 διαιρεί τον (t2 − 4p)/d, όπου t2 − 4p είναι η
διακρίνουσα τάξης του Z[F].

Ομοίως, έστωm ο μέγιστος ακέραιος τέτοιος ώστε −F ≡ 1(modm) στον End(E) κι έστωM =

(p+ 1−t)/m ο εκθέτης της ′. Τότε,

Z[F] ⊂ Z
[
F− 1
m

]
⊂ O

Οπότε οm2 επίσης διαιρεί τον (t2−4p)/d.
Αφού οn διαιρεί τον F−1 και οm διαιρεί τον F+1 παρατηρούμε ότι ο (n,m) διαιρεί τον (F−1, F+

1) ο οποίος διαιρεί το 2. Οπότε έχουμε,

n2m2|4t
2−4p
d

.
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Επειδή |d| ⩾ 3 αυτό σημαίνει ότι

(nm)2�44p−t2
d

.

Εάν N,M < 4
√

2, έχουμε ότι,

((p+ 1)2−t2)2 = (nNmM)2 < (4√p)4 · 44p−t2
3

οπότε,

p4 + 4p3 < (p+ 1)4 46

3 p
3 − t4 −

(
45

3 − 2(p+ 1)2
)
t2 ⩽ 46

3 p
3

το οποίο σημαίνει ότι p < 1362. Εάν εξετάσουμε όλες τις περιπτώσεις για p ⩽ 457 θα δούμε πως το
θεώρημα ισχύει.

Για να είναι σίγουρος κανείς ότι ο αλγόριθμος του Shanks θα δουλέψει για μία ελλειπτική καμπύλη
E, δεν χρειάζεται να βρει ένα ρητό σημείο αυτής, τάξης το λιγότερο 4√p. Αυτό που χρειάζεται είναι
ένα σημείο P της καμπύλης με την ιδιότητα όπως περιγράφεται στο επόμενο

9.1.2 Θεώρημα:
΄Εστω p > 229 πρώτος κι έστω E μία ελλειπτική καμπύλη επί του Fp. Τότε είτε η E είτε η διαστροφή της
E ′ περιέχει ένα Fp-ρητό σημείο P, με την ιδιότητα ότι ο μόνος ακέραιοςm ∈ (p+1−2√p,p+1+2√p)
για τον οποίο ισχύει [m]P = O, είναι η τάξη της ομάδας των σημείων της ελλειπτικής καμπύλης.

Απόδειξη Από την απόδειξη του αποτελέσματος του J. F. Mestre το θεώρημα ισχύει για p > 457.
΄Ενας υπολογισμός για κάθε περίπτωση ξεχωριστά μας δείχνει ότι ισχύει για κάθε p > 229.

9.1.3. Ο Αλγόριθμός του Schoof. Το θεώρημα του Hasse εξασφαλίζει ότι

#E(Fq) = q+ 1−t, |t| ⩽ 2√q.

Η κύρια ιδέα του αλγόριθμου είναι ο καθορισμός του t modulo ενός συνόλου πρώτων αριθμών l, με
l ⩽ lmax, όπου lmax είναι ο ελάχιστος πρώτος τέτοιος ώστε,∏

2⩽l⩽lmax

l > 4√q.

Τότε εύκολα υπολογίζεται από το Κινέζικο Θεώρημα Υπολοίπων η τιμή του t, οπότε καθορίζεται και η
τάξη της ομάδας.

Αρχικά παρατηρούμε ότι εύκολα βρίσκουμε την τιμή του t όταν l = 2 για κάθε μία περίπτωση
σώματος επί του οποίου βρισκόμαστε.

Για την περίπτωση της περιττής χαρακτηριστικής έχουμε ότι t = #E(Fq)modulo 2, οπότε εύκολα
προκύπτει ότι

#E(Fq) ≡ 1(mod2)
αν και μόνο αν το x3 + ax+ b ανάγωγο επί του Fq. Η τελευταία σχέση είναι ισοδύναμη με την

(x3 + ax+ b, xq−x) = 1.

Για σώματα χαρακτηριστικής 2, επειδή η καμπύλη είναι non-supersingular έχουμε ότι t ≡ 1 modulo 2.
Για l περιττό τώρα. O ενδομορφισμός του Frobenious ικανοποιεί την εξίσωση,

F2 − [t]F+ [q] = 0.
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Αυτό θα το χρησιμοποιήσουμε για τα σημεία στο E[l]∗ = E[l]\{O}. ΄Εστω,

ql = q(modl)

και

tl = t(modl)

όπου οι ελάχιστοι μη αρνητικοί αντιπρόσωποι της κλάσης υπολοίπων είναι ο ql και ο tl. Εάν κάποια
τιμή του τ ∈ {0, 1, . . . , l−1} βρεθεί ώστε για κάποιο σημείο P = (x,y) ∈ E[l]∗ να έχουμε,

(xq
2 ,yq2

) + [ql](x,y) = [τ](xq,yq),

τότε προκύπτει ότι τ = tl, δηλαδή βρίσκουμε το t modulo l. Το τ το οποίο ικανοποιεί την εξίσωση
είναι μοναδικό αφού το l είναι πρώτος και P ̸= O.

Για τον καθορισμό της τιμής του τ, ισχυριζόμαστε προς το παρόν ότι όλες οι τιμές του τ ∈ {0, 1, . . . , l−1}
δοκιμάζονται. Πρώτα υπολογίζονται οι x-συντεταγμένες και στα δύο μέλη της παραπάνω εξίσωσης, για
τον δοσμένο πρώτο l και την τιμή του τ το οποίο εξετάζουμε, τα οποία είναι ρητές συναρτήσεις των x,y,
οι οποίες περιέχουν τα πολυώνυμα διαίρεσης. Στη συνέχεια με την πράξη της πρόσθεσης ελλειπτικών
καμπυλών υπολογίζεται το

(xq
2 ,yq2

) + [ql](x,y)

Με απαλοιφή παρανομαστών κι εάν είναι απαραίτητο μειώνοντας όσες δυνάμεις του y είναι μεγαλύτε-
ρες της μονάδας modulo στην εξίσωση της καμπύλης προκύπτει μία εξίσωση της μορφής

a(x) + yb(x) = 0 → y =
a(x)

b(y)
.

Η εξίσωση της καμπύλης με βάση κάποια από τις παραπάνω δύο εξισώσεις, έχει ως μεταβλητή πλέον
μόνο το x, οπότε γράφεται ως,

hX(x) = 0.

Για να ελέγξουμε εάν η hX(x) = 0 έχει λύση για την x-συντεταγμένη του σημείου που ανήκει στο
E[l]∗ υπολογίζουμε τον μέγιστο κοινό διαιρέτη (hX, fl). Εάν, (hX, fl) = 1, τότε δεν υπάρχει λύση στο
E[l]∗ η οποία να ικανοποιεί τη ζητούμενη εξίσωση, οπότε δοκιμάζουμε την επόμενη τιμή του τ. Εάν,
(hX, fl) ̸= 1, τότε υπάρχει σημείο στο E[l]∗ τέτοιο ώστε,

(xq
2 ,yq2

) + [ql](x,y) = [τ](xq,yq) = ±[τ](xq,yq).

Το πρόσημο του σημείου του δεξιού μέλους της παραπάνω εξίσωσης δεν είναι προκαθορισμένο, διότι το
πρόσημο της x-συντεταγμένης είναι το ίδιο για κάθε πρόσημο. Για να το καθορίσουμε, ισχυριζόμαστε
αρχικά ότι είναι +. Υπολογίζουμε την y-συντεταγμένη και στα δύο μέλη της εξίσωσης, όπου όπως με
την x-συντεταγμένη, μετά απο την απαλοιφή παρανομαστών και την αντικατάσταση της y μεταβλητής,
προκύπτει μια εξίσωση της μορφής,

hY(x) = 0

όπου το hY έχει αναχθεί στον βαθμό O(l2)
΄Ομοια, εάν (hY , fl) ̸= 1 τότε υπάρχει ένα σημείο που ικανοποιεί την εξίσωση και το πρόσημο

είναι +. Εάν, (hX, fl) = 1 τότε το πρόσημο είναι −.
Παρατηρούμε ότι για δοσμένο τ η διαδικασία στην πραγματικότητα ελέγχει τα ±τ, οπότε είναι

επαρκές το τ να ανήκει στο 0 ⩽ τ ⩽ l−2
2 .
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9.2. Κατασκευή ελλειπτικών καμπυλών

9.2.1. ΜιγαδικήΠροσέγγιση ξανά. Σε αυτή την παράγραφο θεωρούμε τα lattices παράγονται από
τα 1, τ, όπου το τ = a + ib είναι ένας μιγαδικός αριθμός με b > 0. To σύνολο των αριθμών που είναι
επιτρεπτές για το τ ονομάζεται υπερβολικό επίπεδο και συμβολίζεται με H. Έτσι, σε αυτή τη θεώρηση
οι σειρές Eisenstein που ορίστηκαν παραπάνω είναι συναρτήσεις του τ. Ομοίως η διακρίνουσα και η
j-invariant επίσης μπορούν να γραφούν ως συναρτήσεις του τ.

Οι συναρτήσεις g2,g3,∆, j ως συναρτήσεις του τ ∈ H παραμένουν αναλλοίωτες κάτω από μετα-
σχηματισμούς της μορφής:

τ 7→ aτ+ b

cτ+ d
,
(
a b

c d

)
∈ SL(2,Z).

Ειδικότερα, οι παραπάνω συναρτήσεις (που στη βιβλιογραφία ονομάζονται modular) είναι περιοδι-
κές. Αυτό επιτρέπει να θεωρήσουμε το ανάπτυγμα Fourier τους, μέσα στο οποίο “κρύβεται” αριθμητική
πληροφορία.

Για παράδειγμα το ανάπτυγμα Fourier της j-invariant δίνεται από τον τύπο:

j(τ) =
1
q
+ 744 + 196884q+ 21493760q2 + 864299970q3 + · · · ,

όπου q = e2πiτ.

9.2.2. Παιχνίδια με την j-invariant. Ας υπολογίσουμε την τιμή της j-invariant στο 1+
√
−163
2 .

Αυτό μπορεί να γίνει με το ανάπτυγμα Fourier. Παρατηρούμε ότι για μικρές τιμές του q η συνεισφορά
στο ανάπτυγμα Fourier δίνεται από το 1/q. Έτσι με ακρίβεια 100 δεκαδικών ψηφίων υπολογίζουμε ότι

1 t=(1+sqrt(-163))/2
2 = 1/2 +6.3835726674...936*I
3

4 1/exp(2*Pi*I*t)= -262537412640768743.9999999999992500/
5 72597198185688879353856337336990862707537410378210647/
6 9101186073129-3.4341081892578555727736403824665146438/
7 19410392802921231010082353528515643600406171384239278/
8 930629331 E-88*I

Αυτό σημαίνει ότι το j
(

1+
√
−163
2

)
= 1/q + 744 + · · · είναι ίσο με 262537412640768000 όπως

υπολογίζει κανείς και με

1 ellj(t)= -262537412640768000.00000000000000

Παρατήρηση:Ο αριθμός 1/q που χρησιμοποιήσαμε για να υπολογίσουμε μια προσέγγιση του j(τ)
είναι υπερβατικός αφού

1/q = eπ
√

163,
και το θεώρημα Gelfond-Schneider εξασφαλίζει ότι ο eπa είναι υπερβατικός, αν ο a είναι αλγεβρικός.
Το j(τ) γίνεται ακέραιος, χάρη στη συνεισφορά των υπόλοιπων άπειρων προσθετέων του αναπτύγματος
Fourier.

Παρατήρηση: Γενικά, οι υπολογισμοί κινητής υποδιαστολής σχετικά με την j-invariant είναι πολύ
απαιτητικοί και χρησιμοποιούνται σειρά από “έξυπνα κόλπα” για να γίνουν όσο το δυνατόν αποτελε-
σματικότεροι. Μια αποτελεσματική αντιμετώπιση βρίσκεται στις βιβλιοθήκες του gp-pari το οποίο και
χρησιμοποιήσαμε στους παραπάνω υπολογισμούς.

http://en.wikipedia.org/wiki/Modular_form
http://en.wikipedia.org/wiki/Fourier_series
http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/PARI/GP
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Οι συντελεστές τoυ αναπτύγματος Fourier σχετίζονται με τη θεωρία αναπαραστά-
σεων μιας ομάδας που ονομάζεται στη βιβλιογραφία το τέρας και είναι μια τεράστια
απλή ομάδα με τάξη:

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71.

Ηπαραπάνω αναπάντεχη συσχέτιση παρατηρήθηκε από τον JohnConway και Simon
Norton το 1979. Αποδείχτηκε το 1992 από τον R. Borcherds το 1992. Τόσο η από-
δειξη όσο και μετέπειτα εργασίες δίνουν επιπλέον αναπάντεχες συνδέσεις με τη
conformal field theory αλλά και με τη θεωρία χορδών από τη Φυσική.

Διαβάστε:

1. What is the Monster
2. The mathematical Work of 1998 Fields Medalist
3. Ματίνα Μάντζαρη:Monstrous Moonshine, τo τέρας και οι περίεργες φιλίες του Πτυχιακή ερ-

γασία Παν. Αιγαίου 2010

9.3. Ελλειπτικές Καμπύλες με μιγαδικό Πολλ/σμό

Υπενθυμίζουμε ότι αν μια ελλειπτική καμπύλη έχει ως δακτύλιο ενδομορφισμών έναν δακτύλιο
που είναι μεγαλύτερος από τον δακτύλιο Z, δηλαδή περιέχει ενδομορφισμούς ϕ ̸∈ Z, τότε αυτοί ικα-
νοποιούν μια σχέση

ϕ2 + aϕ+ b = 0,

της οποίας η διακρίνουσα είναι αρνητική (εδώ οφείλεται και το όνομα μιγαδικός πολλαπλασιασμός).
Έστω τώρα ένα τ ∈ H, για παράδειγμα αυτό που ικανοποιεί τη σχέση τ2 − tτ + q = 0 για μια

αρνητική διακρίνουσα D. To θεώρημα του μιγαδικού πολλαπλασίασμου εξασφαλίζει ότι το j(τ) είναι
ικανοποιεί μια αλγεβρική εξίσωση με συντελεστές στο Z και ότι η ελλειπτική καμπύλη με Eτ, έχει j-
invariant j(τ) και δακτύλιο End(Eτ) = Z[τ]. Επιπλέον αν θεωρήσουμε την εξίσωση που ικανοποιεί το
j(τ) modulo p, τότε καταλήγουμε σε μια j-invariant που δίνει ελλειπτική καμπύλη πάνω από το σώμα
Fp με ενδομορφισμό Frobenious να ικανοποιεί το ίδιο πολυώνυμο ϕ2 − tϕ+ q = 0.

9.4. Τετραγωνικές μορφές διακρίνουσας D

O K.F. Gauss στο έργο του Disquisitiones Arithmeticae μελέτησε τις τετραγωνικές μορφές διακρί-
νουσας D

ax2 + bxy+ cy2;b2 − 4ac = −D,a,b, c ∈ Z (a,b, c) = 1,

μέχρι μια σχέση ισοδυναμίας. Σε σύγχρονη γλώσσα η σχέση ισοδυναμίας αυτή εκφράζεται ως: Θα
λέμε ότι δυο τετραγωνικές μορφές είναι ισοδύναμες αν υπάρχει μετασχηματισμός της SL(2,Z) που να
στέλνει τη μία στην άλλη.

Ένα πλήρες σύστημα αντιπροσώπων CL(D) των κλάσεων είναι τα (a,b, c) ώστε

|b| ⩽ a ⩽
√
D

3 ,a ⩽ c, (a,b, c) = 1,b2 − 4ac = −D

αν |b| = a ή a = c τότε b ⩾ 0.

http://en.wikipedia.org/wiki/Monster_group
http://en.wikipedia.org/wiki/John_Horton_Conway
http://en.wikipedia.org/wiki/Simon_P._Norton
http://en.wikipedia.org/wiki/Simon_P._Norton
http://en.wikipedia.org/wiki/Richard_Borcherds
http://en.wikipedia.org/wiki/Conformal_field_theory
http://en.wikipedia.org/wiki/String_theory
http://www.ams.org/notices/200209/what-is.pdf
http://www.ams.org/notices/200209/what-is.pdf
http://users.uoa.gr/~kontogar/kallipos/Mantzari.pdf
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/Disquisitiones_Arithmeticae
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Σχήμα 9.1. K.F. Gauss, Το παρόν έργο αποτελεί κοινό κτήμα (public domain). Πηγή:
Wikimedia Commons

9.4.1 Θεώρημα:
Θεωρούμε το τ ∈ H το οποίο ικανοποιεί ένα μονικό τετραγωνικό πολυώνυμο στο Z[x]. Θεωρούμε την
ελλειπτική καμπύλη Eτ = C/(Z + τZ) η οποία έχει j-invariant j(τ). Ο αριθμός j(τ) ικανοποιεί μια
αλγεβρική εξίσωση που δίνεται από:

HD(x) =
∏

[a,b,c]∈CL(D)

(
x− j

(
−b+

√
−D

2a

))
∈ Z[x].

Επιπλέον μια ρίζα της αναγωγής του πολυωνύμου HD(x) modulo p οδηγεί στην κατασκευή μίας ελλει-
πτικής με Frobenious που έχει το ίδιο χαρακτηριστικό πολυώνυμο με το τ.

Παράδειγμα: Για D = 491 έχουμε ότι
CL(D) = [1, 1, 123], [3,±1, 41], [9,±7, 15], [5,±3, 25], [11,±9, 3].

Για κάθε μία από τις παραπάνω τριάδες [a,b, c] υπολογίζουμε τη ρίζα

ρ =
−b+ i

√
491

2s ,

που έχει θετικό φανταστικό μέρος.
Έτσι καταλήγουμε στον πίνακα:

https://commons.wikimedia.org/wiki/File:Carl_Friedrich_Gauss.jpg
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[a,b, c] ρίζα j-invariant

[a,b, c] ρίζα j-invariant

[1, 1, 123] ρ1 = (−1 + i
√

491)/2 -1.7082855 E30
[3, 1, 41] ρ2 = (−1 + i

√
491)/6 5.977095 E9 + 1.0352632 E10I

[3,−1, 41] ρ3 = (1 + i
√

491)/6 5.9770957 E9 - 1.0352632 E10I
[9, 7, 15] ρ4 = (−7 + i

√
491)/18 -1072.7816 + 1418.3793I

[9,−7, 15] ρ5 = (7 + i
√

491)/18 -1072.7816 - 1418.3793I
[5, 3, 25] ρ6 = (−3 + i

√
491)/10) -343205.38 + 1058567.0I

[5,−3, 25] ρ7 = (3 + i
√

491)/10 -343205.38 - 1058567.0I
[11, 9, 13] ρ8 = (−9 + i

√
491)/22 6.0525190 + 170.50800I

[11,−9, 13] ρ9 = (9 + i
√

491)/22 6.0525190 - 170.50800I

Υπολογίζουμε το πολυώνυμο

f(x) =

9∏
i=1

(x− j(ρi))

με ακρίβεια 100 δεκαδικών ψηφίων και καταλήγουμε στο

1 x^9 + (1708285519938293560711165050880.00000+ 0.E-105*I)*x^8 +
2 (-20419995943814746224552691418802908299264.
3 00000000000000000000000000000000000000000000000000000000000 +
4 5.527147875260444561 E-76*I)*x^7 +
5 (244104497665432748158715313783583130211556702289920.
6 0000000000000000000000000000000000000000000000000 -
7 3.203247249195215313 E-66*I)*x^6 +
8 (168061099707176489267621705337969352389335280404863647744.
9 0000000000000000000000000000000000000000000 -
10 8.477642883414348322 E-61*I)*x^5
11 + (3026634062287103399933567774259389848844332816036989\
12 34574743552.0000000000000000000000000000000000000 +
13 1.1797555025677485282 E-53*I)*x^4 +
14 (6454859000856167849263547860355811089209236971883759493\
15 95393249280.0000000000000000000000000000000000 +
16 5.552991534850878913 E-50*I)*x^3 +
17 (9570411380463978709655208085765529491988856657381836437\
18 50394920697856.0000000000000000000000000000000 -
19 1.5307563300801091721 E-47*I)*x^2 +
20 (7322862871033784419236596129273250845529108502221762556\
21 507445472002048.000000000000000000000000000000 +
22 4.458155165749933023 E-45*I)*x +
23 (2783136594325388804312897721610699944422813986505575145\
24 7267582234307592192.00000000000000000000000000
25 - 3.587324068671531702 E-43*I)
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.. το οποίο με μαγικό τρόπο είναι ένα πολυώνυμο με ακέραιους συντελεστές. Στο παραπάνω υπο-
θέτουμε ότι οι μιγαδικοί συντελεστές οι οποίοι πολλαπλασιάζονται με έναν αριθμό 10−40 ή μικρότερο,
είναι μηδενικοί.

9.5. Γενική μέθοδος κατασκευής ελλειπτικών καμπυλών

Θέλουμε να κατασκευάσουμε μια ελλειπτική καμπύλη πάνω από το πεπερασμένο σώμα Fp που να
έχει p+ 1 −m το πλήθος στοιχεία.

1. Αρκεί να κατασκευάσουμε το j ∈ Fp.
2. To φράγμα του Hasse μας εξασφαλίζει ότιZ := 4p−(p+1−m)2 ⩾ 0. Γράφουμε τοZ = Dv2

ως ένα τετράγωνο v2 επί έναν αριθμό D που δεν είναι διαιρετός με τετράγωνο.
3. H εξίσωση 4p = u2 +Dv2 για κάποιο u ικανοποιεί τηνm = p+1±u. Ο αρνητικός αριθμός

−D λέγεται CM διακρίνουσα για τον πρώτο p.
4. x2 − tr(F)x+ p 7→ ∆ = tr(F)2 − 4p = −Dv2.

Αλγόριθμος:
1. Διαλέγουμε έναν πρώτο p. Διαλέγουμε τη μικρότερη D μαζί με u, v ∈ Z ώστε να έχει λύση

η 4p = u2 +Dv2.
2. Αν μία από τις τιμές p + 1 − u, p + 1 + u έχει τάξη πρώτο αριθμό τότε προχωράμε στην

κατασκευή της ελλειπτικής καμπύλης. Αν όχι δοκιμάζουμε άλλο p.
3. Υπολογίζουμε το πολυώνυμο Hilbert HD(x) ∈ Z[x] με χρήση των τιμών της j-invariant.
4. Στη συνέχεια υπολογίζουμε το πολυώνυμο HD(x)modp. Μία λύση του είναι η j-invariant

που ψάχνουμε. Η ελλειπτική καμπύλη με αυτή την j-invariant j ̸= 0, 1728 είναι η

y2 = x3 + 3kc2x+ 2kc3,k = j/(1728 − j), c ∈ Fp.
Για διαφορετικές τιμές του c αντιστοιχούν οι δύο διαφορετικές ελλειπτικές καμπύλες E,E ′ οι οποίες

έχουν τάξεις p+ 1 ± t. Η μία είναι η

y2 = x3 + ax+ b

και η άλλη η
y2 = x3 + ac2x+ bc3,

όπου το c είναι ένα μη-τετραγωνικό υπόλοιπο στο Fp.
Για να επιλέξουμε αυτή με τη σωστή τάξη, διαλέγουμε ένα σημείο P και υπολογίζουμε την τάξη

του n ώστε nP = O. Το n θα διαιρεί το p+ 1 − t ή το p+ 1 + t.

Βιβλιογραφία
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Cambridge University Press. https://books.google.gr/books?id=0/_vegzgyqGMC.

J. S. Milne, 2006. Elliptic Curves. BookSurge Publishers.
J.H. Silverman, 1986. The Arithmetic of Elliptic Curves. Applications of Mathematics. https:

//books.google.fr/books?id=6y/_SmPc9fh4C.
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Παράρτημα

9.6. Το πρόγραμμα Sage

Το πρόγραμμα Sage είναι ένα ελεύθερο ανοιχτού κώδικα σύστημα λογισμικού, το οποίο βασίστηκε
στον συνδυασμό πολλών υπαρχόντων συστημάτων για υπολογιστικά μαθηματικά και ο σκοπός του
είναι να αποτελέσει μια ανοιχτού λογισμικού εναλλακτική λύση για πακέτα όπως το Magma, Maple,
Mathematica και Matlab.

Ας δούμε μερικά παραδείγματα:

1 sage: 2 + 2
2 4
3 factor(-2015)
4 -1 * 5 * 13 * 31

Μπορούμε να πάρουμε πρώτους αριθμούς

1 prime_range(100)
2 [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
3 59, 61, 67, 71, 73, 79, 83, 89, 97]

ή να μετρήσουμε το πλήθος των πρώτων που είναι μικρότεροι του 106.

1 prime_pi(10^6)
2 78498

Το πρόγραμμα μπορεί επίσης να χειριστεί έννοιες από τον απειροστικό λογισμό, όπως αόριστα και
ορισμένα ολοκληρώματα:

1 integrate(1 + x + x^2, x)
2 1/3*x^3 + 1/2*x^2 + x
3 numerical_integral(1 + x + x^2, 0, 3)[0]
4 16.500000000000004
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http://www.sagemath.org/
http://magma.maths.usyd.edu.au/magma/
http://www.maplesoft.com/
http://www.wolfram.com/mathematica/
http://www.mathworks.com/products/matlab/
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Και να κάνει γραφικές παραστάσεις συναρτήσεων και όχι μόνο.
Το πρόγραμμα sage αποτελεί μια πλήρη γλώσσα προγραμματισμού με δομή όπως η python. Μπο-

ρούμε να εκτελέσουμε βρόγχους (loops) πάνω στα αντικείμενά του. Έτσι μπορούμε να υπολογίσουμε
τα τετράγωνα όλων των πρώτων που είναι μικρότεροι του 1000 με τον παρακάτω κώδικα:

1 sum=0
2 for i in prime_range(1000):
3 sum=sum+i^2
4 print sum
5 49345379

9.6.1. Χειρισμός πολυωνύμων. Ας ορίσουμε πρώτα τον πολυωνυμικό δακτύλιο Q[t]

1 sage: R = PolynomialRing(QQ, ’t’)
2 sage: R
3 Univariate Polynomial Ring in t over Rational Field

Οι παραπάνω εντολές δηλώνουν στο sage ότι η αλφαριθμητική μεταβλητή (string) ‘t’ συμβολίζει
τη μεταβλητή του δακτυλίου στην εμφάνιση στην οθόνη. Αυτό δεν ορίζει το σύμβολο t για χρήση
στο Sage, δηλαδή δεν μπορούμε να το χρησιμοποιήσουμε για να εισαγάγουμε ένα πολυώνυμο όπως το
t2 + 2t+ 1.

Θα μπορούσαμε εναλλακτικά να δώσουμε

1 sage: S = QQ[’t’]
2 sage: S == R
3 True

Στον παραπάνω ορισμό ορίσαμε τον δακτύλιο S και ρωτήσαμε (η έκφραση με τα δύο == έχει την
έννοια της ερώτησης) αν οι δακτύλιοι S,R ταυτίζονται, και πήραμε θετική (true) απάντηση. Και αυτός
ο τρόπος ορισμού έχει το ίδιο πρόβλημα στη χρήση της μεταβλητής t.

Ένας πολύ βολικότερος τρόπος είναι να δώσουμε

1 sage: R.<t> = PolynomialRing(QQ)

ή

1 sage: R.<t> = QQ[’t’]
2 <div>

ή

1 sage: R.<t> = QQ[]

Οι παραπάνω ορισμοί ορίζουν τη μεταβλητή να είναι η μεταβλητή του πολυωνυμικού δακτυλίου,
οπότε μπορούμε εύκολα να ορίσουμε στοιχεία του δακτυλίου:

https://www.python.org/
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1 sage: poly = (t+1) * (t+2); poly
2 t^2 + 3*t + 2
3 sage: poly in R
4 True

Στο παραπάνω ο τελεστής ‘in’ έδωσε θετική απάντηση (true), αφού πράγματι το πολυώνυμο είναι
στοιχείο του δακτυλίου R.

Σε κάθε περίπτωση θα μπορούσαμε να βρούμε τον γεννήτορα του πολυωνυμικού δακτυλίου ως
εξής:

1 sage: R = PolynomialRing(QQ, ’t’)
2 sage: t = R.0
3 sage: t in R
4 True

Οι πραγματικοί και οι μιγαδικοί αριθμοί είναι δομές κινητής υποδιαστολής και οι πράξεις δεν γί-
νονται με ακριβή τρόπο. Ιδιαίτερα οι μιγαδικοί αριθμοί θεωρούνται ότι παράγονται πάνω από τους
πραγματικούς με το σύμβολο i

1 sage: CC
2 Complex Field with 53 bits of precision
3 sage: CC.0 # 0th generator of CC
4 1.00000000000000*I

Ας κάνουμε μερικά παραδείγματα στον δακτύλιο Q[t]

1 sage: R, t = QQ[’t’].objgen()
2 sage: f = 2*t^7 + 3*t^2 - 15/19
3 sage: f^2
4 4*t^14 + 12*t^9 - 60/19*t^7 + 9*t^4 - 90/19*t^2 + 225/361
5 sage: cyclo = R.cyclotomic_polynomial(7); cyclo
6 t^6 + t^5 + t^4 + t^3 + t^2 + t + 1
7 sage: g = 7 * cyclo * t^5 * (t^5 + 10*t + 2)
8 sage: g
9 7*t^16 + 7*t^15 + 7*t^14 + 7*t^13 + 77*t^12 + 91*t^11 +
10 91*t^10 + 84*t^9+ 84*t^8 + 84*t^7 + 84*t^6 + 14*t^5
11 sage: F = factor(g); F
12 (7) * t^5 * (t^5 + 10*t + 2) *
13 (t^6 + t^5 + t^4 + t^3 + t^2 + t + 1)
14 sage: F.unit()
15 7
16 sage: list(F)
17 [(t, 5), (t^5 + 10*t + 2, 1), (t^6 + t^5 + t^4 + t^3 + t^2
18 + t + 1, 1)]

Παρατηρούμε ότι η παραγοντοποίηση καταγράφει και τη μονάδα του δακτυλίου.

http://en.wikipedia.org/wiki/Floating_point


9.6. ΤΟ ΠΡΟΓΡΑΜΜΑ SAGE 172

Η διαίρεση δύο πολυωνύμων δίνει αποτέλεσμα στον δακτύλιο πηλίκων, τον οποίο το sage ορίζει
αυτόματα:

1 sage: x = QQ[’x’].0
2 sage: f = x^3 + 1; g = x^2 - 17
3 sage: h = f/g; h
4 (x^3 + 1)/(x^2 - 17)
5 sage: h.parent()
6 Fraction Field of Univariate Polynomial Ring in x over
7 Rational Field

Αν ορίσουμε τη μεταβλητή με διαφορετικό όνομα έχουμε έναν διαφορετικό πολυωνυμικό δακτύλιο
για το sage

1 sage: R.<x> = PolynomialRing(QQ)
2 sage: S.<y> = PolynomialRing(QQ)
3 sage: x == y
4 False
5 sage: R == S
6 False
7 sage: R(y)
8 x
9 sage: R(y^2 - 17)
10 x^2 - 17

Ο δακτύλιος προσδιορίζεται από τη μεταβλητή. Ορίζοντας έναν δακτύλιο με άλλο όνομα αλλά την
ίδια μεταβλητή δεν καταλήγουμε σε διαφορετικούς δακτυλίους.

1 sage: R = PolynomialRing(QQ, ”x”)
2 sage: T = PolynomialRing(QQ, ”x”)
3 sage: R == T
4 True
5 sage: R is T
6 True
7 sage: R.0 == T.0
8 True

Μπορούμε να ορίσουμε πολυωνυμικούς δακτυλίους πάνω από οποιονδήποτε δακτύλιο βάσης.

1 sage: R.<T> =PolynomialRing(GF(7)); R
2 Univariate Polynomial Ring in T over Finite Field of size 7

Ας δούμε ένα παράδειγμα ενός αθροίσματος όπου κάθε όρος έχει και διαφορετικό όνομα:
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1 sage: f = sum(1/var(’n%s’%i)^i for i in range(10))
2 1/n1 + 1/n2^2 + 1/n3^3 + 1/n4^4 + 1/n5^5 + 1/n6^6 +
3 1/n7^7 + 1/n8^8 + 1/n9^9 + 1

Σε αυτό το βιβλίο θα χρησιμοποιήσουμε τη δυνατότητα του να τρέξει σε cloud server, ώστε ο χρή-
στης να έχει πρόσβαση σε αυτό μέσα από μια σελίδα του φυλλομετρητή του χωρίς να χρειαστεί να το
εγκαταστήσει στον υπολογιστή του.



Γλωσσάριο

Αγγλικά Ελληνικά

keyspace σύνολο κλειδιών κωδικοποίησης
ciphertext κρυπτογραφημένο μήνυμα

quadratic twist τετραγωνική διαστροφή
loop βρόγχος
string αλφαριθμητική μεταβλητή
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