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25.3 Generalized likelihood ratio tests

When a UMP test does not exist, we usually use a generalikelihibod ratio
test to verifyH, : 9 € ©* againstd; : ¥ € ©\O*. It can be used whe# is
composite, which none of the above methods can.

The generalized likelihood ratio test has rejection regoe- {y : A(y) < a},
where

maxyco+ L(9|y)

Ay) = maxyeco L(9|y)

is thegeneralized likelihood rati@nda is a constant chosen to give significance

level o, that is such that

PANY) <a|lHy) =«

If we let 9 denote the maximum likelihood estimatefand Ietf§0 denote the
value ofd which maximises the likelihood over all values d@fin ©*, then we
may write

The quantity{% is called theestricted maximum likelihood estimate of 1 under
H,.

Example2.37. Suppose that; ~ N(u, ) and consider testingly : p = po
againstH; : yu # ug. Then the |Ike|lh00d is

L(p,o%|y) = (2m0®) ™% exp {—% Z(yz- - M)Q} :

The maximum likelihood estimate of = (i, 0%)7t is 9 = (1, O/‘\Q)T, wherei =7

ands? = Y0 (i — 9)/n.

Similarly, the restricted maximum likelihood estimatetbf= (11, 0)T underH,
is ¥y = ([, 02%) ", wherefiy = 119 andag = i, (y; — p0)?/n.
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Thus, the generalized likelihood ratio is

L2y Crod) Fexp {3 YL, (5 — no)?}
L(fi,0%y) (2762) 3 exp {5tz >y (i — 1)}

(Z) oo {pElol szl i)

(&)

AMy) =

Since the rejection region B = {y : A(y) < a}, we rejectH, if
Z@—l(yi - 7)° }’5 Zﬂ—l(yi —7)°

e <a= i <b,
{Zi:1(yi — Ho)? > i1 (Yi — 1o)?

wherea andb are constants chosen to give significance leveNow, we may
write

Z(yi — 1) = Z{(yz — ) + (T — o)}

So we rejectH if
Z?:l(yi -7)° <b
Do (Wi =9+ (@ — po)® T
Thus, rearranging, we rejeél; if

1+

= _ 2 = 2
B ) SR U ot ) P
iy —7) 1 e (Wi =)
wherec andd are constants chosen to give significance leveilhat is we can
write

a=P\Y)<alHy) =P (@ > d|H0) )

whereS? = LS (V; — V)2

1=
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To getd we need to work out the distribution @3‘7;2—“0)2 under the null hypothesis.
ForY; ~ N (i, o?) we have
2
Y ~N (u, U—)
n
and so, undef,,

2 Y —
7~/\/’<,u0,%) and MNN(O,D.

Vo
This gives
n(Y — p)? 2
T T
Also ( )52
n—1 9
2 Xn—1-

Now we may use the fact thatif andV” are independent rvs such that~ x2,

andV ~ \2, then g;;; ~ Fpn-

Here,U = nV—p0)’ gndy — (”‘0712)52 Hence, ifH, is true, we have

o2

U/1 n(Y — pp)?
F p— p— ~Y f n—1-
V/(n—1) 52 bt
Therefore, we reject, at a significance level if
= 2
n(y721u0) 2 Fl,n—l,om
S

whereF ,,_1 o is such thatP(F > Fi,,_14) = .

Equivalently, we rejecH, if

77— 2
”(ysiz‘m) > tys,
that is, if
Y — o
Of course, this is the usual two-sidetest. 0

In fact, many of the standard tests in situations with nomistributions are gen-
eralized likelihood ratio tests.
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254 Wilks theorem

In more complex cases, we have to use the following appraixamao find the
rejection region. The result is stated without proof.

Theorem 2.9. Wilks’ theorem.

Assume that the joint distribution ®f, . . . , Y;, depends op unknown parameters
and that, undei{, the joint distribution depends gr unknown parameters. Let
v = p — pp. Then, under some regularity conditions, when the null byggis is
true, the distribution of the statistie2log{\(Y)} converges to a: distribution
as the sample size — o, i.e., whenH, is true andn is large,

—2log{\(Y)} ~ .

approzx.

Thus, for largen, the rejection region for a test with approximate significan
levela is

R ={y: —2log{\y)} > x.}.
O

Example2.38 Suppose thay; ~ Poisson(A) and consider testingly : A = \g
againstH; : A #£ \g.

Then we have seen that no UMP test exists in this case. Nowk#idood is
AL izt Yip—nA
H?:l Y;! .
The maximum likelihood estimate of is A\ = 7 and the restricted maximum

likelihood estimate of\ underH, is 5\0 = \g. Thus, the generalized likelihood
ratio is

L(Aly) =

CLly) AT e T w!
)\(y)_ IS - n N _ZTL Vi 1T
L(Aly) I y! gr=vies
i1 Y
- () e,
Y

It follows that

—2log{\(y)} = -2 {nylog (%) +n(y — Ao)}

= 2n {ylog (/\i) + o —y} .
0
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Here,p = 1 andp, = 0, and sar = 1. Therefore, by Wilks’ theorem, whekH, is

true andn is large,
_ Y _
2n {Ylog <)\—) + Ao — Y} ~ X
0

Hence, for a test with approximate significance levele rejectH, if and only

if
2n {ylog (—y ) + Ao —y} > 2
)\0 ’

Example2.39 Suppose that;, i = 1,...,n, are iid random variables with the
probability mass function given by

U

0, otherwise,

P(Yzy)z{

whered; are unknown parameters such thigt-vJ,+9J; = 1 andd; > 0. Consider
testing
HO : 191 = 192 == 193
against H, : Hy is not true

We will use the Wilks’ theorem to derive the critical regioor testing this hy-
pothesis at an approximate significance level

Here the full parameter spaéeis two-dimensional because there are only two
free parameters, i.el; =1 — v, — 9, and

@ = {’19 = (191,792,193)T . 193 = 1 —191 —792,193' 2 0}
Hencep = 2.

The restricted parameter space is zero-dimensional, beaauder the null hy-
pothesis all the parameters are equal and as they sum upheylall must be

equal tol /3. Hence
111\
O ={9=|(===
{ (3’3’3) }

and sop, = 0 (zero unknown parameters). That is the number of degrees of
freedom of they? distribution isv = p — py = 2.

To calculate\(Y') we need to find the MLE?) in © and in the restricted spac¥.
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MLE(Y) in ©:
The likelihood function is

L(’197 y) = ’19?1’(932(1 — ’191 — ’(92)713,

wheren; is the number of responses equaljtoj = 1,2,3. Then, the log-
likelihood is

[(9;y) = nylog(V) + nylog(vs) + nzlog(l — ¥y — vy).
Forj = 1,2 we have,

ol n; n3

SN R L ——
0, 0, T T=o —dp Y

When compared to zero, this gives

v; U3
Uz

ns

Now, since@l + 52 + 53 = 1 we obtainy = % wheren = n; + ny + n3. Then
the estimates of the parameters éye=n;/n, j = 1,2, 3.

The second derivatives are

Pl my ms

o~ R 0
021 o

av,0; 02

The determinant of the second derivatives is positive flof @nd the elemerg%
1
is negative for alk?, so also fory. Hence, there is a maximum-#étand
nj

n

wow=(3) () ()

Thatisd, = (1,1, %)T Now, we can calculata(y):

Ag) = L(®oy) _ (1%)”1 (i)m (%n_):g _ (L)" ( n )n (L)"

toy @) e e ) ) G

MLE () in ©*:
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That is ,
n
—2log{\(y)} = —2 an log <3—) .
j=1 "

We rejectH, at an approximate significance levelif the observed sample be-
longs to the critical regiofk, where

3
3n.
R = {y: 2anlog (%) zxg;a}.
j=1
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2.5.5 Contingency tables

We now show that the usual test for association in contingéaigles is a gen-
eralized likelihood ratio test and that its asymptoticilsttion is an example of
Wilks’ theorem.

Suppose that we have arx c contingency table in which there arg individuals
classified in rowi and columry, when/N individuals are classified independently.

Let 9,; be the corresponding probability that an individual is sifed in row:
and columny, so that);; > 0and) >/, >°7_, ¥y = 1.

Then the variable¥;; have amultinomialdistribution with parameterd” and?;
fori=1,2,...,randj =1,2,...,c.

Example2.40 In an experiment 150 patients were allocated to three grofips
45, 45 and 60 patients each. Two groups were given a new duiffexent dose
levels and the third group received placebo. The respomsessdollows:

Improved| No difference| Worse | r; = ijl Yij
Placebo 16 20 9 45
Half dose 17 18 10 45
Full dose 26 20 14 60
Cj = Z::l Yij 59 58 33 N =150

We are interested in testing the hypothesis that the regsporithe drug does not
depend on the dose level. 0

The null hypothesis is that the row and column classificatiare independent,
and the alternative is that they are dependent.

More precisely, the null hypothesisig, : ¥;; = a;b; for somea; > 0 andb; > 0,
with >0 a; = 1and) 7_, b; = 1, and the alternative i&, : J;; # a;b; for at
least one paifi, j) .

The usual test statistic is given by

X2 — ZT: ZC: (Y ;fijy,

i=1 j=1
where
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R, = 25:1 YijandC; =, Y.

For largeN, X? ~ x{._,)._,, approximately wherfi, is true, and so we reject
H, at the level of significance if X? > x7._ ). .-

Now consider the generalized likelihood ratio test. Thenlikelihood is

o) = gy T = ATTTT o

=1 j=1 =1 j=1

where the coefficient is the number of ways that’ subjects can be divided in
rc groups withy;; in theij-th group.

The log-likelihood is

((9;y) =log(A) + Z Z vi; log(v;;)

=1 j=1

We have to maximize this, subject to the constraiift, > _, v;; = 1.

Let ¥’ represent the sum over all paiis;j) except(r, ¢). Then we may write
((I)y) = log(A) + X'yi;log(di;) + yrelog (1 — X'0;5) .
Thus, for(, j) # (r, ¢), solving the equation

O Wy _ _ WYe Y _ Y

yleldS’é”/y” = férc/yrc =7, Say.

Since)_, Z;zlz@j = D i1 2.;-1 Y7 = 1, we havey = 1/N, so that the
maximum likelihood estimate af;; is @ij =y;;/Nfori =12 ... randj =
1,2,...¢

It follows that

((Dy) = log(A +ZZy” log <y”>

i=1 j=1
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Now, underH,, we havey;; = a;b; and so

(¥ly) = log(A)+ > > yy{logla;) +log(b;)}

i=1 j=1
= log(A) + Z rilog(a;) + Z c;log(b;).
i=1 j=1

Now, we maximize this subject to the constraipts_, a; = L and7_ b; = 1
That is, we maximize

((9y) = log(A) + X'r;log(a;) + 1, log(a,) + X'¢c;log(b;) + ¢ log(b.)
=log(A) + X'r;log(a;) + 1, 1og(1 — X'a;) + X'c;log(bj) + c.log(1 — X'b;).

Then,
ol T Ty

da; a; a,
which, when compared to zero gives

T Ty
a;, a,
or R R
a; Ay
T Ty
However,
T T
“Ya=Yra=m
i=1 i=1
Hence,y = 1/N and so
- T
i ]\’].

Similarly, we obtain the ML estimates foy asgj =¢;/N.

Thus, the restricted maximum likelihood estimatelgfunderH, is

fori=1,2,...,randj =1,2,...,c.
It follows that

((Boly) = log(4) + D> uislog (2)

i=1 j=1
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Hence, we obtain

~

~2log{A(y)} = ~2log { LL(ng’)’} = 2{(@uly) T} =230 Y o

Here,p =rc—1landpy = (r—1)+(c—1) =r+c—2,andsa = (r—1)(c—1).
Therefore, by Wilks’ theorem, wheH, is true andV is large,

222 jlog ( ) o Xir—1ie1)-

=1 j=1

The test statisticst? and —2log{\(y)} are asymptotically equivalent, that is,
they differ by quantities that tend to zero &s— ~c.

To see this, first note that; — e,; is small relative tay;; ande;; whenN is large.

Thus, sincey;; = e;; + (yi; — e;;), we may write (by Taylor series expansion of
log(1 + x) aroundz, cut after second order term)

i — € i — €5 1 (yi; — €;:)?
log Yij — log 1+?/J Cij 2(?/] ej)__(y] ej).
€ij €ij 2 62

ij ij

Hence, we have

Yi (yiy —eiy)  1(yiy — eqy)’
ymlOg( j) =~ {6ij+(yij_€ij)}{ ]6” ’ 3 ST
ij

]

Ly —ew)®

~ (Y —eij) + SR

Sinced "7, Y%, (yi; — €;5) = 0, it follows that

—2log{A(y)} ~ ZZ y” )’

i=1 j=1
So we now see why we use the test statistic.
Example2.41 continued.

Now we will test the hypothesis from the previous examplee Eible ofe,; values
is following
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Improved| No difference| Worse
Placebo 17.7 17.4 9.9
Half dose| 17.7 17.4 9.9
Full dose 23.6 23.2 13.2

This gives
T C 2
X2 = Wi —e5)” _ 4 447
obs. ; ; eij

The critical value is(7,, s = 9.488, hence there is no evidence to reject the null
hypothesis saying that the different responses are indiemeiof the levels of the
new drug and placebo.

We obtain the same conclusion using the critical regionvedrirom the Wilks’
theorem, which is

T C yl
R — {y 233 g, log (_) > X}
i=1 j=1 K

Here

2 Z Z y; log (Z—j) —1.42.

i=1 j=1



