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System Models, Differential Equations, and
Initial-Value Problems

1.1 Introduction

The dynamical behavior of systems can be understood by studying their math-
ematical descriptions. The flight path of an airplane subject to certain engine
thrust, rudder and elevator angles, and particular wind conditions, or the be-
havior of an automobile on cruise control when climbing a certain hill, can be
predicted using mathematical descriptions of the pertinent behavior. Math-
ematical equations, typically differential or difference equations, are used to
describe the behavior of processes and to predict their responses to certain
inputs. Although computer simulation is an excellent tool for verifying pre-
dicted behavior, and thus for enhancing our understanding of processes, it is
certainly not an adequate substitute for generating the information captured
in a mathematical model, when such a model is available.

This chapter develops mathematical descriptions for linear continuous-
time and linear discrete-time finite-dimensional systems. Since such systems
are frequently the result of a linearization process of nonlinear systems, or
the result of the modeling process of physical systems in which the nonlinear
effects have been suppressed or neglected, the origins of these linear systems
are frequently nonlinear systems. For this reason, here and in Chapter 4,
when we deal with certain qualitative aspects (such as existence, uniqueness,
continuation, and continuity with respect to parameters of solutions of system
equations, stability of an equilibrium, and so forth), we consider linear as
well as nonlinear system models, although the remainder of the book deals
exclusively with linear systems.

In this chapter, mathematical models and classification of models are dis-
cussed in the remainder of this Introduction, Section 1.1. In Section 1.2, we
provide some of the notation used and recall certain facts concerning continu-
ous functions. In Section 1.3 we present the initial-value problem and we give
several specific examples in Section 1.4. In Section 1.5 we present results that
ensure the existence, continuation, and uniqueness of solutions of initial-value
problems and results that ensure that the solutions of inital-value problems
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depend continuously on initial conditions and system parameters. In this sec-
tion we also present the Method of Successive Approximations to determine
solutions of intial-value problems. The results in Section 1.5 pertain to dif-
ferential equations that in general are nonlinear. In Section 1.6 we address
linearization of such equations and we provide several specific examples.

We utilize the results of Section 1.5 to establish in Section 1.7 conditions for
the existence, uniqueness, continuation, and continuity with respect to initial
conditions and parameters of solutions of initial-value problems determined
by linear ordinary differential equations.

In Section 1.8 we determine the solutions of linear ordinary differential
equations and introduce for the first time the notions of state and state tran-
sition matrix. We also present the variations of constants formula for solving
linear nonhomogeneous ordinary differential equations, and we introduce the
notions of homogeneous and particular solutions.

Summarizing, the purpose of Sections 1.3 to 1.8 is to provide material
dealing with ordinary differential equations and initial-value problems that
is essential in the study of continuous-time finite-dimensional systems. This
material will enable us to introduce the state-space equations representation
of continuous-time finite-dimensional systems. This introduction will be ac-
complished in the next chapter.

Physical Processes, Models, and Mathematical Descriptions

A systematic study of (physical) phenomena usually begins with a modeling
process . Examples of models include diagrams of electric circuits consisting of
interconnections of resistors, inductors, capacitors, transistors, diodes, voltage
or current sources, and so on; mechanical circuits consisting of interconnec-
tions of point masses, springs, viscous dampers (dashpots), applied forces,
and so on; verbal characterizations of economic and societal systems; among
others. Next, appropriate laws or principles are invoked to generate equations
that describe the models (e.g., Kirchhoff’s current and voltage laws, Newton’s
laws, conservation laws, and so forth). When using an expression such as “we
consider a system described by ordinary differential equations,” we will have
in mind a phenomenon described by an appropriate set of ordinary differential
equations (not the description of the physical phenomenon itself).

A physical process (physical system) will typically give rise to several dif-
ferent models, depending on what questions are being asked. For instance, in
the study of the voltage-current characteristics of a transistor (the physical
process), one may utilize a circuit (the model) that is valid at low frequencies
or a circuit (a second model) that is valid at high frequencies; alternatively, if
semiconductor impurities are of interest, a third model, quite different from
the preceding two, is appropriate.

Over the centuries, a great deal of progress has been made in develop-
ing mathematical descriptions of physical phenomena (using models of such
phenomena). In doing so, we have invoked laws (or principles) of physics,
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chemistry, biology, economics, and so on, to derive mathematical expressions
(usually equations) that characterize the evolution (in time) of the variables
of interest. The availability of such mathematical descriptions enables us to
make use of the vast resources offered by the many areas of applied and pure
mathematics to conduct qualitative and quantitative studies of the behav-
ior of processes. A given model of a physical process may give rise to several
different mathematical descriptions. For example, when applying Kirchhoff’s
voltage and current laws to the low-frequency transistor model mentioned
earlier, one can derive a set of differential and algebraic equations, a set con-
sisting of only differential equations, or a set of integro-differential equations,
and so forth. This process of mathematical modeling, “from a physical phe-
nomenon to a model to a mathematical description,” is essential in science
and engineering. To capture phenomena of interest accurately and in tractable
mathematical form is a demanding task, as can be imagined, and requires a
thorough understanding of the physical process involved. For this reason, the
mathematical description of complex electrical systems, such as power sys-
tems, is typically accomplished by electrical engineers, the equations of flight
dynamics of an aircraft are derived by aeronautical engineers, the equations
of chemical processes are arrived at by chemists and chemical engineers, and
the equations that characterize the behavior of economic systems are provided
by economists. In most nontrivial cases, this type of modeling process is close
to an art form since a good mathematical description must be detailed enough
to accurately describe the phenomena of interest and at the same time simple
enough to be amenable to analysis. Depending on the applications on hand,
a given mathematical description of a process may be further simplified be-
fore it is used in analysis and especially in design procedures. For example,
using the finite element method, one can derive a set of first-order differential
equations that describe the motion of a space antenna. Typically, such math-
ematical descriptions contain hundreds of differential equations. Whereas all
these equations are quite useful in simulating the motion of the antenna, a
lower order model is more suitable for the control design that, for example,
may aim to counteract the effects of certain disturbances. Simpler mathemati-
cal models are required mainly because of our inability to deal effectively with
hundreds of variables and their interactions. In such simplified mathematical
descriptions, only those variables (and their interactions) that have significant
effects on the phenomena of interest are included.

A point that cannot be overemphasized is that the mathematical descrip-
tions we will encounter characterize processes only approximately. Most often,
this is the case because the complexity of physical systems defies exact mathe-
matical formulation. In many other cases, however, it is our own choice that a
mathematical description of a given process approximate the actual phenom-
ena by only a certain desired degree of accuracy. As discussed earlier, this is
done in the interest of mathematical simplicity. For example, in the descrip-
tion of RLC circuits, one could use nonlinear differential equations that take
into consideration parasitic effects in the capacitors; however, most often it
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suffices to use linear ordinary differential equations with constant coefficients
to describe the voltage-current relations of such circuits, since typically such
a description provides an adequate approximation and since it is much easier
to work with linear rather than nonlinear differential equations.

In this book it will generally be assumed that the mathematical description
of a system in question is given. In other words, we assume that the modeling
of the process in question has taken place and that equations describing the
process are given. Our main objective will be to present a theory of an im-
portant class of systems—finite-dimensional linear systems—by studying the
equations representing such systems.

Classification of Systems

For our purposes, a comprehensive classification of systems is not particularly
illuminating. However, an enumeration of the more common classes of sys-
tems encountered in engineering and science may be quite useful, if for no
other reason than to show that the classes of systems considered in this book,
although very important, are quite specialized.

As pointed out earlier, the particular set of equations describing a given
system will in general depend on the effects one wishes to capture. Thus, one
can speak of lumped parameter or finite-dimensional systems and distributed
parameter or infinite-dimensional systems ; continuous-time and discrete-time
systems ; linear and nonlinear systems ; time-varying and time-invariant sys-
tems ; deterministic and stochastic systems ; appropriate combinations of the
above, called hybrid systems ; and perhaps others.

The appropriate mathematical settings for finite-dimensional systems are
finite-dimensional vector spaces, and for infinite-dimensional systems they
are most often infinite-dimensional linear spaces. Continuous-time finite-
dimensional systems are usually described by ordinary differential equations
or certain kinds of integral equations, whereas discrete-time finite-dimensional
systems are usually characterized by ordinary difference equations or discrete-
time counterparts to those integral equations. Equations used to describe
infinite-dimensional systems include partial differential equations, Volterra
integro-differential equations, functional differential equations, and so forth.
Hybrid system descriptions involve two or more different types of equations.
Nondeterministic systems are described by stochastic counterparts to those
equations (e.g., Ito differential equations).

In a broader context, not addressed in this book, most of the systems
described by the equations enumerated generate dynamical systems. It has
become customary in the engineering literature to use the term “dynamical
system” rather loosely, and it has even been applied to cases where the original
definition does not exactly fit. (For a discussion of general dynamical systems,
refer, e.g., to Michel et al [5].) We will address in this book dynamical systems
determined by ordinary differential equations or ordinary difference equations,
considered next.
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Finite-Dimensional Systems

The dynamical systems we will be concerned with are continuous-time and
discrete-time finite-dimensional systems—primarily linear systems. However,
since such systems are frequently a consequence of a linearization process, it
is important when dealing with fundamental qualitative issues that we have
an understanding of the origins of such linear systems. In particular, when
dealing with questions of existence and uniqueness of solutions of the equations
describing a class of systems, and with stability properties of such systems,
we may consider nonlinear models as well.

Continuous-time finite-dimensional dynamical systems that we will con-
sider are described by equations of the form

ẋi = fi(t, x1, . . . , xn, u1, . . . , um), i = 1, . . . , n, (1.1a)
yi = gi(t, x1, . . . , xn, u1, . . . , um), i = 1, . . . , p, (1.1b)

where ui, i = 1, . . . ,m, denote inputs or stimuli ; yi, i = 1, . . . , p, denote
outputs or responses ; xi, i = 1, . . . , n, denote state variables ; t denotes time;
ẋi denotes the time derivative of xi; fi, i = 1, . . . , n, are real-valued functions
of 1 + n + m real variables; and gi, i = 1, . . . , p, are real-valued functions of
1 + n+m real variables. A complete description of such systems will usually
also require a set of initial conditions xi(t0) = xi0, i = 1, . . . , n, where t0
denotes initial time. We will elaborate later on restrictions that need to be
imposed on the fi, gi, and ui and on the origins of the term “state variables.”

Equations (1.1a) and (1.1b) can be represented in vector form as

ẋ = f(t, x, u), (1.2a)
y = g(t, x, u), (1.2b)

where x is the state vector with components xi, u is the input vector with
components ui, y is the output vector with components yi, and f and g are
vector-valued functions with components fi and gi, respectively. We call (1.2a)
a state equation and (1.2b) an output equation.

Important special cases of (1.2a) and (1.2b) are the linear time-varying
state equation and output equation given by

ẋ = A(t)x +B(t)u, (1.3a)
y = C(t)x +D(t)u, (1.3b)

where A,B,C, and D are real n × n, n × m, p × n, and p × m matrices,
respectively, whose elements are time-varying. Restrictions on these matrices
will be provided later.

Linear time-invariant state and output equations given by

ẋ = Ax +Bu, (1.4a)
y = Cx +Du (1.4b)
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constitute important special cases of (1.3a) and (1.3b), respectively.
Equations (1.3) and (1.4) may arise in the modeling process, or they may

be a consequence of linearization of (1.1).
Discrete-time finite-dimensional dynamical systems are described by equa-

tions of the form

xi(k + 1) = fi(k, x1(k), . . . , xn(k), u1(k), . . . , um(k)) i = 1, . . . , n, (1.5a)
yi(k) = gi(k, x1(k), . . . , xn(k), u1(k), . . . , um(k)) i = 1, . . . , p, (1.5b)

or in vector form,

x(k + 1) = f(k, x(k), u(k)), (1.6a)
y(k) = g(k, x(k), u(k)), (1.6b)

where k is an integer that denotes discrete time and all other symbols are
defined as before. A complete description of such systems involves a set of ini-
tial conditions x(k0) = xk0 , where k0 denotes initial time. The corresponding
linear time-varying and time-invariant state and output equations are given
by

x(k + 1) = A(k)x(k) +B(k)u(k), (1.7a)
y(k) = C(k)x(k) +D(k)u(k) (1.7b)

and

x(k + 1) = Ax(k) +Bu(k), (1.8a)
y(k) = Cx(k) +Du(k), (1.8b)

respectively, where all symbols in (1.7) and (1.8) are defined as in (1.3) and
(1.4), respectively.

This type of system characterization is called state-space description or
state-variable description or internal description of finite-dimensional sys-
tems. Another way of describing continuous-time and discrete-time finite-
dimensional dynamical systems involves operators that establish a relationship
between the system inputs and outputs. Such characterization is called input–
output description or external description of a system. In Chapter 2, we will
address both the state-variable description and the input–output description
of finite-dimensional systems. Before we can do this, however, we will require
some background material concerning ordinary differential equations.

1.2 Preliminaries

We will employ a consistent notation and use certain facts from the calcu-
lus, analysis, and linear algebra. We will summarize this type of material, as
needed, in various sections. This is the first such section.
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1.2.1 Notation

Let V and W be sets. Then V ∪W,V ∩W,V −W , and V ×W denote the union,
intersection, difference, and Cartesian product of V and W , respectively. If V
is a subset of W , we write V ⊂ W ; if x is an element of V , we write x ∈ V ;
and if x is not an element of V , we write x �∈ V . We let V ′, ∂V, V̄ , and int V
denote the complement, boundary, closure, and interior of V , respectively.

Let φ denote the empty set, R the real numbers, R+ = {x ∈ R : x ≥ 0}
(i.e., R+ denotes the set of nonnegative real numbers), Z the integers, and
Z+ = {x ∈ Z : x ≥ 0}.

We will let J ⊂ R denote open, closed, or half-open intervals. Thus, for
a, b ∈ R, a ≤ b, J may be of the form J = (a, b) = {x ∈ R : a < x < b},
J = [a, b] = {x ∈ R : a ≤ x ≤ b}, J = [a, b) = {x ∈ R : a ≤ x < b}, or
J = (a, b] = {x ∈ R : a < x ≤ b}.

Let Rn denote the real n-space. If x ∈ Rn, then

x =

⎡
⎢⎣
x1

...
xn

⎤
⎥⎦

and xT = (x1, . . . , xn) denotes the transpose of the vector x. Also, let Rm×n

denote the set of m× n real matrices. If A ∈ Rm×n, then

A = [aij ] =

⎡
⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n

am1 am2 · · · amn

⎤
⎥⎥⎦

and AT = [aji] ∈ Rn×m denotes the transpose of the matrix A.
Similarly, we let Cn denote the set of n-vectors with complex components

and Cm×n denote the set of m× n matrices with complex elements.
Let f : V → W denote a mapping or function from a set V into a set W ,

and denote by D(f) and R(f) the domain and the range of f , respectively.
Also, let f−1 : R(f) → D(f), if it exists, denote the inverse of f .

1.2.2 Continuous Functions

First, let J ⊂ R denote an open interval and consider a function f : J → R.
Recall that f is said to be continuous at the point t0 ∈ J if limt→t0 f(t) = f(t0)
exists; i.e., if for every ε > 0 there exists a δ > 0 such that |f(t) − f(t0)| < ε
whenever |t − t0| < δ and t ∈ J . The function f is said to be continuous on
J , or simply continuous, if it is continuous at each point in J .

In the above definition, δ depends on the choice of t0 and ε; i.e., δ = δ(ε, t0).
If at each t0 ∈ J it is true that there is a δ > 0, independent of t0 [i.e., δ = δ(ε)],
such that |f(t) − f(t0)| < ε whenever |t− t0| < δ and t ∈ J , then f is said to
be uniformly continuous (on J).
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Let
C(J,R) � {f : J → R | f is continuous on J}.

Now suppose that J contains one or both endpoints. Then continuity is in-
terpreted as being one-sided at these points. For example, if J = [a, b], then
f ∈ C(J,R) will mean that f ∈ C((a, b), R) and that limt→a+ f(t) = f(a) and
limt→b− f(t) = f(b) exist.

With k any positive integer, and with J an open interval, we will use the
notation

Ck(J,R) �{f : J → R | the derivative f (j) exists on J and

f (j) ∈ C(J,R) for j = 0, 1, . . . , k, where f (0) � f}

and we will call f in this case a Ck-function. Also, we will call f a piecewise
Ck-function if f ∈ Ck−1(J,R) and f (k−1) has continuous derivatives for all
t ∈ J , with the possible exception of a finite set of points where f (k) may have
jump discontinuities. As before, when J contains one or both endpoints, then
the existence and continuity of derivatives is one-sided at these points.

For any subset D of the n-space Rn with nonempty interior, we can define
C(D,R) and Ck(D,R) in a similar manner as before. Thus, f ∈ C(D,R)
indicates that at every point x0 = (x10, . . . , xn0)T ∈ D, limx→x0 f(x) = f(x0)
exists, or equivalently, at every x0 ∈ D it is true that for every ε > 0 there
exists a δ = δ(ε, x0) > 0 such that |f(x) − f(x0)| < ε whenever |x1 − x10| +
· · · + |xn − xn0| < δ and x ∈ D. Also, we define Ck(D,R) as

Ck(D,R) �{f : D → R

∣∣∣∣
∂jf

∂xi11 . . . ∂xinn
∈ C(D,R), i1 + · · · + in = j,

j = 1, . . . , k, and f ∈ C(D,R)}
(i.e., i1, . . . , in take on all possible positive integer values such that their sum is
j). When D contains its boundary (or part of its boundary), then the continu-
ity of f and the existence and continuity of partial derivatives of f, ∂jf

∂x
i1
1 ...∂x

in
n

,

i1 + · · · + in = j, j = 1, . . . , k, will have to be interpreted in the appropriate
way at the boundary points.

Recall that if K ⊂ Rn, K �= φ, and K is compact (i.e., K is closed and
bounded), and if f ∈ C(K,R), then f is uniformly continuous (on K) and f
attains its maximum and minimum on K.

Finally, let D be a subset of Rn with nonempty interior and let f : D →
Rm. Then f = (f1, . . . , fm)T where fi : D → R, i = 1, . . . ,m. We say that
f ∈ C(D,Rm) if fi ∈ C(D,R), i = 1, . . . ,m, and that for some positive
integer k, f ∈ Ck(D,Rm) if fi ∈ Ck(D,R), i = 1, . . . ,m.

1.3 Initial-Value Problems

In this section we make precise the meaning of several concepts that arise in
the study of continuous-time finite-dimensional dynamical systems.
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1.3.1 Systems of First-Order Ordinary Differential Equations

Let D ⊂ Rn+1 denote a domain, i.e., an open, nonempty, and connected
subset of Rn+1. We call Rn+1 the (t, x)-space, and we denote elements of
Rn+1 by (t, x) and elements of Rn by x = (x1, . . . , xn)T . Next, we consider
the functions fi ∈ C(D,R), i = 1, . . . , n, and if xi is a function of t, we let
x

(n)
i = dnxi

dtn denote the nth derivative of xi with respect to t (provided that
it exists). In particular, when n = 1, we usually write

x
(1)
i = ẋi =

dxi
dt
.

We call the system of equations given by

ẋi = fi(t, x1, . . . , xn), i = 1, . . . , n, (1.9)

a system of n first-order ordinary differential equations. By a solution of the
system of equations (1.9), we shall mean n continuously differentiable func-
tions φ1, . . . , φn defined on an interval J = (a, b) [i.e., φ ∈ C1(J,Rn)] such
that (t, φ1(t), . . . , φn(t)) ∈ D for all t ∈ J and such that

φ̇i(t) = fi(t, φ1(t), . . . , φn(t)), i = 1, . . . , n,

for all t ∈ J .
Next, we let (t0, x10, . . . , xn0) ∈ D. Then the initial-value problem associ-

ated with (1.9) is given by

ẋi = fi(t, x1, . . . , xn),
xi(t0) = xi0,

i = 1, . . . , n,
i = 1, . . . , n.

(1.10)

A set of functions {φ1, . . . , φn} is a solution of the initial-value problem (1.10)
if {φ1, . . . , φn} is a solution of (1.9) on some interval J containing t0 and if
(φ1(t0), . . . , φn(t0)) = (x10, . . . , xn0).

In Figure 1.1 the solution of a hypothetical initial-value problem is depicted
graphically when n = 1. Note that φ̇(τ) = f(τ, x̃) = tanα, where α is the slope
of the line L that is tangent to the plot of the curve φ(t) vs. t, at the point
(τ, x̃).

In dealing with systems of equations, we will utilize the vector nota-
tion x = (x1, . . . , xn)T , x0 = (x10, . . . , xn0)T , φ = (φ1, . . . , φn)T , f(t, x) =
(f1(t, x1, . . . , xn), . . . , fn(t, x1, . . . , xn))T = (f1(t, x), . . . , fn(t, x))T , ẋ =
(ẋ1, . . . , ẋn)T , and

∫ t
t0
f(s, φ(s))ds = [

∫ t
t0
f1(s, φ(s))ds, . . . ,

∫ t
t0
fn(s, φ(s))ds]T .

With the above notation we can express the system of first-order ordinary
differential equations (1.9) by

ẋ = f(t, x) (1.11)

and the initial-value problem (1.10) by
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Figure 1.1. Solution of an initial-value problem when n = 1

ẋ = f(t, x), x(t0) = x0. (1.12)

We leave it to the reader to prove that the initial-value problem (1.12) can be
equivalently expressed by the integral equation

φ(t) = x0 +
∫ t

t0

f(s, φ(s))ds, (1.13)

where φ denotes a solution of (1.12).

1.3.2 Classification of Systems of First-Order Ordinary
Differential Equations

Systems of first-order ordinary differential equations have been classified in
many ways. We enumerate here some of the more important cases.

If in (1.11), f(t, x) ≡ f(x) for all (t, x) ∈ D, then

ẋ = f(x). (1.14)

We call (1.14) an autonomous system of first-order ordinary differential equa-
tions.

If (t + T, x) ∈ D whenever (t, x) ∈ D and if f(t, x) = f(t + T, x) for all
(t, x) ∈ D, then (1.11) assumes the form

ẋ = f(t, x) = f(t+ T, x). (1.15)

We call such an equation a periodic system of first-order differential equations
with period T . The smallest T > 0 for which (1.15) is true is called the least
period of this system of equations.

When in (1.11), f(t, x) = A(t)x, where A(t) = [aij(t)] is a real n × n
matrix with elements aij that are defined and at least piecewise continuous
on a t-interval J , then we have

ẋ = A(t)x (1.16)



1.3 Initial-Value Problems 11

and refer to (1.16) as a linear homogeneous system of first-order ordinary
differential equations.

If for (1.16), A(t) is defined for all real t, and if there is a T > 0 such that
A(t) = A(t+ T ) for all t, then we have

ẋ = A(t)x = A(t+ T )x. (1.17)

This system is called a linear periodic system of first-order ordinary differential
equations.

Next, if in (1.11), f(t, x) = A(t)x+g(t), where A(t) is as defined in (1.16),
and g(t) = [g1(t), . . . , gn(t)]T is a real n-vector with elements gi that are
defined and at least piecewise continuous on a t-interval J , then we have

ẋ = A(t)x + g(t). (1.18)

In this case we speak of a linear nonhomogeneous system of first-order
ordinary differential equations.

Finally, if in (1.11), f(t, x) = Ax, where A = [aij ] ∈ Rn×n, then we have

ẋ = Ax. (1.19)

This type of system is called a linear, autonomous, homogeneous system of
first-order ordinary differential equations.

1.3.3 nth-Order Ordinary Differential Equations

Thus far we have been concerned with systems of first-order ordinary differ-
ential equations. It is also possible to characterize initial-value problems by
means of nth-order ordinary differential equations. To this end we let h be
a real function that is defined and continuous on a domain D of the real
(t, y, . . . , yn)-space [i.e., D ⊂ Rn+1, D is a domain, and h ∈ C(D,R)]. Then

y(n) = h(t, y, y(1), . . . , y(n−1)) (1.20)

is an nth-order ordinary differential equation.
A solution of (1.20) is a function φ ∈ Cn(J,R) that satisfies (t, φ(t), φ(1)(t),

. . . , φ(n−1)(t)) ∈ D for all t ∈ J and

φ(n)(t) = h(t, φ(t), φ(1)(t), . . . , φ(n−1)(t))

for all t ∈ J , where J = (a, b) is a t-interval.
Now for a given (t0, x10, . . . , xn0) ∈ D, the initial -value problem for (1.20)

is

y(n) = h(t, y, y(1), . . . , y(n−1)),

y(t0) = x10, . . . , y
(n−1)(t0) = xn0.

(1.21)
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A function φ is a solution of (1.21) if φ is a solution of (1.20) on some interval
containing t0 and if φ(t0) = x10, . . . , φ

(n−1)(t0) = xn0.
As in the case of systems of first-order ordinary differential equations, we

can point to several important special cases. Specifically, we consider equations
of the form

y(n) + an−1(t)y(n−1) + · · · + a1(t)y(1) + a0(t)y = g(t), (1.22)

where ai ∈ C(J,R), i = 0, 1, . . . , n− 1, and g ∈ C(J,R). We refer to (1.22) as
a linear nonhomogeneous ordinary differential equation of order n.

If in (1.22) we let g(t) ≡ 0, then

y(n) + an−1(t)y(n−1) + · · · + a1(t)y(1) + a0(t)y = 0. (1.23)

We call (1.23) a linear homogeneous ordinary differential equation of order n.
If in (1.23) we have ai(t) ≡ ai, i = 0, 1, . . . , n− 1, then

y(n) + an−1y
(n−1) + · · · + a1y

(1) + a0y = 0, (1.24)

and we call (1.24) a linear, autonomous, homogeneous ordinary differential
equation of order n.

As in the case of systems of first-order ordinary differential equations, we
can define periodic and linear periodic ordinary differential equations of order
n in the obvious way.

It turns out that the theory of nth-order ordinary differential equations
can be reduced to the theory of a system of n first-order ordinary differential
equations. To demonstrate this, we let y = x1, y

(1) = x2, . . . , y
(n−1) = xn in

(1.21). We now obtain the system of first-order ordinary differential equations

ẋ1 = x2

ẋ2 = x3

...
ẋn = h(t, x1, . . . , xn)

(1.25)

that is defined for all (t, x1, . . . , xn) ∈ D. Assume that φ = (φ1, . . . , φn)T is a
solution of (1.25) on an interval J . Since φ2 = φ̇1, φ3 = φ̇2, . . . , φn = φ

(n−1)
1 ,

and since

h(t, φ1(t), . . . , φn(t)) = h(t, φ1(t), φ
(1)
1 (t), . . . , φ(n−1)

1 (t))

= φ
(n)
1 (t),

it follows that the first component φ1 of the vector φ is a solution of
(1.20) on the interval J . Conversely, if φ1 is a solution of (1.20) on J ,
then the vector (φ, φ(1), . . . , φ(n−1))T is clearly a solution of (1.25). More-
over, if φ1(t0) = x10, . . . , φ

(n−1)
1 (t0) = xn0, then the vector φ satisfies

φ(t0) = x0 = (x10, . . . , xn0)T .
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1.4 Examples of Initial-Value Problems

We now give several specific examples of initial-value problems.

Example 1.1. The mechanical system of Figure 1.2 consists of two point
masses M1 and M2 that are acted upon by viscous damping forces (deter-
mined by viscous damping constants B,B1, and B2), spring forces (specified
by the spring constants K,K1, and K2), and external forces f1 and f2. The
initial displacements of M1 and M2 at t0 = 0 are given by y1(0) and y2(0), re-
spectively, and their initial velocities are given by ẏ1(0) and ẏ2(0). The arrows
in Figure 1.2 indicate positive directions of displacement for M1 and M2.

Figure 1.2. An example of a mechanical circuit

Newton’s second law yields the following coupled second-order ordinary
differential equations that describe the motions of the masses in Figure 1.2
(letting y(2) = d2y/dt2 = ÿ),

M1ÿ1 + (B +B1)ẏ1 + (K +K1)y1 −Bẏ2 −Ky2 = f1(t)
M2ÿ2 + (B +B2)ẏ2 + (K +K2)y2 −B1ẏ1 −Ky1 = −f2(t)

(1.26)

with initial data y1(0), y2(0), ẏ1(0), and ẏ2(0).
Letting x1 = y1, x2 = ẏ1, x3 = y2, and x4 = ẏ2, we can express (1.26)

equivalently by the system of first-order ordinary differential equations
⎡
⎢⎢⎣
ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0 0
−(K1+K)

M1

−(B1+B)
M1

K
M1

B
M1

0 0 0 1
K
M2

B
M2

−(K+K2)
M2

−(B+B2)
M2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0
1
M1
f1(t)
0

−1
M2
f2(t)

⎤
⎥⎥⎦ (1.27)

with initial data given by x(0) = (x1(0), x2(0), x3(0), x4(0))T .
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Example 1.2. Using the node voltages v1, v2, and v3 and applying Kirch-
hoff’s current law, we can describe the behavior of the electric circuit given
in Figure 1.3 by the system of first-order ordinary differential equations

⎡
⎣
v̇1
v̇2
v̇3

⎤
⎦ =

⎡
⎢⎢⎣
− 1
C1

(
1
R1

+ 1
R2

)
1

R2C1
0

− 1
C1

(
1
R1

+ 1
R2

)
−
(
R2
L − 1

R2C1

)
R2
L

1
R2C2

− 1
R2C2

0

⎤
⎥⎥⎦

⎡
⎣
v1
v2
v3

⎤
⎦+

⎡
⎣

v
R1C1
v

R1C1

0

⎤
⎦ . (1.28)

To complete the description of this circuit, we specify the initial data at
t0 = 0, given by v1(0), v2(0), and v3(0).

L

v2v1R1 R2

v

+

–
v3

C2

C1

Figure 1.3. An example of an electric circuit

Example 1.3. Figure 1.4 represents a simplified model of an armature voltage-
controlled dc servomotor consisting of a stationary field and a rotating arma-
ture and load. We assume that all effects of the field are negligible in the
description of this system. The various parameters and variables in Figure 1.4
are ea = externally applied armature voltage, ia = armature current, Ra =
resistance of the armature winding, La = armature winding inductance, em
= back-emf voltage induced by the rotating armature winding, B = viscous
damping due to bearing friction, J = moment of inertia of the armature
and load, and θ = shaft position. The back-emf voltage (with the polarity as
shown) is given by

em = Kθθ̇, (1.29)

where Kθ > 0 is a constant, and the torque T generated by the motor is given
by

T = KT ia. (1.30)

Application of Newton’s second law and Kirchhoff’s voltage law yields

Jθ̈ +Bθ̇ = T (t) (1.31)

and
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Figure 1.4. An example of an electro-mechanical system circuit

La
dia
dt

+Raia + em = ea. (1.32)

Combining (1.29) to (1.32) and letting x1 = θ, x2 = θ̇, and x3 = ia yields the
system of first-order ordinary differential equations

⎡
⎣
ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣
0 1 0
0 −B/J KT /J
0 −Kθ/La −Ra/La

⎤
⎦
⎡
⎣
x1

x2

x3

⎤
⎦+

⎡
⎣

0
0

ea/La

⎤
⎦ . (1.33)

A suitable set of initial data for (1.33) is given by t0 = 0 and
(x1(0), x2(0), x3(0))T = (θ(0), θ̇(0), ia(0))T .

Example 1.4. A much studied ordinary differential equation is given by

ẍ+ f(x)ẋ + g(x) = 0, (1.34)

where f ∈ C1(R,R) and g ∈ C1(R,R).
When f(x) ≥ 0 for all x ∈ R and xg(x) > 0 for all x �= 0, then (1.34)

is called the Lienard Equation. This equation can be used to represent, e.g.,
RLC circuits with nonlinear circuit elements.

Another important special case of (1.34) is the van der Pol Equation given
by

ẍ− ε(1 − x2)ẋ+ x = 0, (1.35)

where ε > 0 is a parameter. This equation has been used to represent certain
electronic oscillators.

If in (1.34), f(x) ≡ 0, we obtain
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ẍ+ g(x) = 0. (1.36)

When xg(x) > 0 for all x �= 0, then (1.36) represents various models of so-
called “mass on a nonlinear spring.” In particular, if g(x) = k(1 + a2x2)x,
where k > 0 and a2 > 0 are parameters, then g represents the restoring
force of a hard spring. If g(x) = k(1 − a2x2)x, where k > 0 and a2 > 0
are parameters, then g represents the restoring force of a soft spring. Finally,
if g(x) = kx, then g represents the restoring force of a linear spring. (See
Figures 1.5 and 1.6.)

Figure 1.5. Mass on a nonlinear spring

Figure 1.6. Mass on a nonlinear spring

For another special case of (1.34), let f(x) ≡ 0 and g(x) = k sinx, where
k > 0 is a parameter. Then (1.34) assumes the form

ẍ+ k sinx = 0. (1.37)

This equation describes the motion of a point mass moving in a circular path
about the axis of rotation normal to a constant gravitational field, as shown in
Figure 1.7. The parameter k depends on the radius l of the circular path, the
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gravitational acceleration g, and the mass. The symbol x denotes the angle
of deflection measured from the vertical. The present model is called a simple
pendulum.

Figure 1.7. Model of a simple pendulum

Letting x1 = x and x2 = ẋ, the second-order ordinary differential equation
(1.34) can be represented by the system of first-order ordinary differential
equations given by

ẋ1 = x2,

ẋ2 = −f(x1)x2 − g(x1).
(1.38)

The required initial data for (1.38) are given by x1(0) and x2(0).

1.5 Solutions of Initial-Value Problems: Existence,
Continuation, Uniqueness, and Continuous Dependence
on Parameters

The following examples demonstrate that it is necessary to impose restric-
tions on the right-hand side of equation (1.11) to ensure the existence and
uniqueness of solutions of the initial-value problem (1.12).

Example 1.5. For the initial-value problem,

ẋ = g(x), x(0) = 0, (1.39)
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where x ∈ R, and

g(x) =

{
1, x = 0,
0, x �= 0,

there exists no differentiable function φ that satisfies (1.39). Hence, no solution
exists for this initial-value problem (in the sense defined in this chapter).

Example 1.6. The initial-value problem

ẋ = x1/3, x(t0) = 0, (1.40)

where x ∈ R, has at least two solutions given by φ1(t) = [23 (t − t0)]3/2 and
φ2(t) = 0 for t ≥ t0.

Example 1.7. The initial-value problem

ẋ = ax, x(t0) = x0, (1.41)

where x ∈ R, has a unique solution given by φ(t) = ea(t−t0)x(t0) for t ≥ t0.

The following result provides a set of sufficient conditions for the existence
of solutions of initial-value problem (1.12).

Theorem 1.8. Let f ∈ C(D,Rn). Then for any (t0, x0) ∈ D, the initial-value
problem (1.12) has a solution defined on [t0, t0 + c) for some c > 0. �

For a proof of Theorem 1.8, which is called the Cauchy–Peano Existence
Theorem, refer to [1, Section 1.6].

The next result provides a set of sufficient conditions for the uniqueness
of solutions for the initial-value problem (1.12).

Theorem 1.9. Let f ∈ C(D,Rn). Assume that for every compact set K ⊂ D,
f satisfies the Lipschitz condition

‖ f(t, x) − f(t, y) ‖≤ LK ‖ x− y ‖ (1.42)

for all (t, x), (t, y) ∈ K where LK > 0 is a constant depending only on K.
Then (1.12) has at most one solution on any interval [t0, t0 + c), c > 0. �

For a proof of Theorem 1.9, refer to [1, Section 1.8]. In particular, if f ∈
C1(D,Rn), then the local Lipschitz condition (1.42) is automatically satisfied.

Now let φ be a solution of (1.11) on an interval J . By a continuation or
extension of φ, we mean an extension φ0 of φ to a larger interval J0 in such
a way that the extension solves (1.11) on J0. Then φ is said to be continued
or extended to the larger interval J0. When no such continuation is possible,
then φ is called noncontinuable.
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Example 1.10. The scalar differential equation

ẋ = x2 (1.43)

has a solution φ(t) = 1
1−t defined on J = (−1, 1). This solution is continuable

to the left to −∞ and is not continuable to the right.

Example 1.11. The differential equation

ẋ = x1/3, (1.44)

where x ∈ R, has a solution ψ(t) ≡ 0 on J = (−∞, 0). This solution is
continuable to the right in more than one way. For example, both ψ1(t) ≡ 0
and ψ2(t) = (2t

3 )3/2 are solutions of (1.44) for t ≥ 0.

In the next result, ∂D denotes the boundary of a domainD and ∂J denotes
the boundary of an interval J .

Theorem 1.12. If f ∈ C(D,Rn) and if φ is a solution of (1.11) on an open
interval J , then φ can be continued to a maximal open interval J∗ ⊃ J in
such a way that (t, φ(t)) tends to ∂D as t → ∂J∗ when ∂D is not empty
and |t| + |φ(t)| → ∞ if ∂D is empty. The extended solution φ∗ on J∗ is
noncontinuable. �

For a proof of Theorem 1.12, refer to [1, Section 1.7].
When D = J×Rn for some open interval J and f satisfies a Lipschitz con-

dition there (with respect to x), we have the following very useful continuation
result.

Theorem 1.13. Let f ∈ C(J × Rn, Rn) for some open interval J ⊂ R and
let f satisfy a Lipschitz condition on J×Rn (with respect to x). Then for any
(t0, x0) ∈ J ×Rn, the initial-value problem (1.12) has a unique solution that
exists on the entire interval J . �

For a proof of Theorem 1.13, refer to [1, Section 1.8].
In the next result we address initial-value problems that exhibit depen-

dence on some parameter λ ∈ G ⊂ Rm given by

ẋ = f(t, x, λ),
x(τ) = ξλ,

(1.45)

where f ∈ C(J × Rn × G,Rn), J ⊂ R is an open interval, and ξλ depends
continuously on λ.
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Theorem 1.14. Let f ∈ C(J×Rn×G,Rn), where J ⊂ R is an open interval
and G ⊂ Rm. Assume that for each pair of compact subsets J0 ⊂ J and G0 ⊂
G, there exists a constant L = LJ0,G0 > 0 such that for all (t, λ) ∈ J0 × G0,
x, y ∈ Rn, the Lipschitz condition

‖ f(t, x, λ) − f(t, y, λ) ‖≤ L ‖ x− y ‖ (1.46)

is true. Then the initial-value problem (1.45) has a unique solution φ(t, τ, λ),
where φ ∈ C(J × J × G,Rn). Furthermore, if D is a set such that for all
λ0 ∈ D there exists ε > 0 such that [λ0 − ε, λ0 + ε] ∩D ⊂ D, then φ(t, τ, λ) →
φ(t, τ0, λ0) uniformly for t0 ∈ J0 as (τ, λ) → (τ0, λ0), where J0 is any compact
subset of J . (Recall that the upper bar denotes closure of a set.) �

For a proof of Theorem 1.14, refer to [1, Section 1.9].
Note that Theorem 1.14 applies in the case of Example 1.7 and that the

solution φ(t) of (1.41) depends continuously on the parameter a and the initial
conditions x(t0) = x0.

When Theorem 1.9 is satisfied, it is possible to approximate the unique
solutions of the initial-value problem (1.12) arbitrarily closely, using the
method of successive approximations (also known as Picard iterations). Let
f ∈ C(D,Rn), let K ⊂ D be a compact set, and let (t0, x0) ∈ K. Successive
approximations for (1.12), or equivalently for (1.13), are defined as

φ0(t) = x0,

φm+1(t) = x0 +
∫ t

t0

f(s, φm(s))ds, m = 0, 1, 2, . . .
(1.47)

for t0 ≤ t ≤ t0 + c, for some c > 0.

Theorem 1.15. If f ∈ C(D,Rn) and if f is Lipschitz continuous on some
compact set K ⊂ D with constant L (with respect to x), then the successive
approximations φm,m = 0, 1, 2, . . . given in (1.47) exist on [t0, t0 + c], are
continuous there, and converge uniformly, as m→ ∞, to the unique solution
φ of (1.12). (Thus, for every ε > 0 there exists N = N(ε) such that for all
t ∈ [t0, t0 + c], ‖ φ(t) − φm(t) ‖< ε whenever m > N(ε).) �

For the proof of Theorem 1.15, refer to [1, Section 1.8].

1.6 Systems of Linear First-Order Ordinary Differential
Equations

In this section we will address linear ordinary differential equations of the
form

ẋ = A(t)x+ g(t) (1.48)

and
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ẋ = A(t)x (1.49)

and
ẋ = Ax+ g(t) (1.50)

and
ẋ = Ax, (1.51)

where x ∈ Rn, A(t) = [aij(t)] ∈ C(R,Rn×n), g ∈ C(R,Rn), and A ∈ Rn×n.
Linear equations of the type enumerated above may arise in a natural

manner in the modeling process of physical systems (see Section 1.4 for specific
examples) or in the process of linearizing equations of the form (1.11) or (1.14)
or some other kind of form.

1.6.1 Linearization

We consider the system of first-order ordinary differential equations given by

ẋ = f(t, x), (1.52)

where f : R×D → Rn and D ⊂ Rn is some domain.

Linearization About a Solution φ

If f ∈ C1(R × D,Rn) and if φ is a given solution of (1.52) defined for all
t ∈ R, then we can linearize (1.52) about φ in the following manner. Define
δx = x− φ(t) so that

d(δx)
dt

� δẋ = f(t, x) − f(t, φ(t))

= f(t, δx+ φ(t)) − f(t, φ(t))

=
∂f

∂x
(t, φ(t))δx + F (t, δx), (1.53)

where ∂f
∂x (t, x) denotes the Jacobian matrix of f(t, x) = (f1(t, x), . . . , fn(t, x))T

with respect to x = (x1, . . . , xn)T ; i.e.,

∂f

∂x
(t, x) =

⎡
⎢⎣
∂f1
∂x1

(t, x) · · · ∂f1
∂xn

(t, x)
...

...
∂fn

∂x1
(t, x) · · · ∂fn

∂xn
(t, x)

⎤
⎥⎦ (1.54)

and
F (t, δx) � [f(t, δx+ φ(t)) − f(t, φ(t)] − ∂f

∂x
(t, φ(t))δx. (1.55)

It turns out that F (t, δx) is o(‖ δx ‖) as ‖ δx ‖→ 0 uniformly in t on compact
subsets of R; i.e., for any compact subset I ⊂ R, we have
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lim
‖δx‖→0

(
sup
t∈I

‖ F (t, δx) ‖
‖ δx ‖

)
= 0.

For a proof of this assertion, we refer the reader to [1, Section 1.11].
Letting

∂f

∂x
(t, φ(t)) = A(t),

we obtain from (1.53) the equation

d(δx)
dt

� δẋ = A(t)δx+ F (t, δx). (1.56)

Associated with (1.56) we have the linear differential equation

ż = A(t)z, (1.57)

called the linearized equation of (1.52) about the solution φ.
In applications, the linearization (1.57) of (1.52), about a given solution

φ, is frequently used as a means of approximating a nonlinear process by a
linear one (in the vicinity of φ). In Chapter 4, where we will study the sta-
bility properties of equilibria of (1.52) [which are specific kinds of solutions of
(1.52)], we will show under what conditions it makes sense to deduce qualita-
tive properties of a nonlinear process from its linearization.

Of special interest is the case when in (1.52), f is independent of t, i.e.,

ẋ = f(x) (1.58)

and φ is a constant solution of (1.58), say, φ(t) = x0 for all t ∈ R. Under these
conditions we have

d(δx)
dt

� δẋ = Aδx+ F (δx), (1.59)

where

lim
‖δx‖→0

‖ F (δx) ‖
‖ δx ‖ = 0 (1.60)

and A denotes the Jacobian ∂f
∂x (x0). Again, associated with (1.59) we have

the linear differential equation

ż = Az,

called the linearized equation of (1.58) about the solution φ(t) ≡ x0.

Linearization About a Solution φ and an Input ψ

We can generalize the above to equations of the form

ẋ = f(t, x, u), (1.61)
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where f : R × D1 × D2 → Rn and D1 ⊂ Rn, D2 ⊂ Rm are some domains.
If f ∈ C1(R ×D1 ×D2, R

n) and if φ(t) is a given solution of (1.61) that we
assume to exist for all t ∈ R and that is determined by the initial condition
x0 and the given specific function ψ ∈ C(R,Rm), i.e.,

φ̇(t) = f(t, φ(t), ψ(t)), t ∈ R,

then we can linearize (1.61) in the following manner. Define δx = x−φ(t) and
δu = u− ψ(t). Then

d(δx)
dt

= δẋ = ẋ− φ̇(t) = f(t, x, u) − f(t, φ(t), ψ(t))

= f(t, δx+ φ(t), δu + ψ(t)) − f(t, φ(t), ψ(t))

=
∂f

∂x
(t, φ(t), ψ(t))δx +

∂f

∂u
(t, φ(t), ψ(t))δu

+ F1(t, δx, u) + F2(t, δu), (1.62)

where

F1(t, δx, u) = f(t, δx+ φ(t), u) − f(t, φ(t), u) − ∂f

∂x
(t, φ(t), ψ(t))δx

is o(||δx||) as ‖ δx ‖→ 0, uniformly in t on compact subsets ofR for fixed u [i.e.,
for fixed u and for any compact subset I ⊂ R, lim

‖δx‖→0

(
supt∈I

‖F1(t,δx,u)‖
‖δx‖

)
=

0], where

F2(t, δu) = f(t, φ(t), δu+ ψ(t)) − f(t, φ(t), ψ(t)) − ∂f

∂u
(t, φ(t), ψ(t))δu

is o(‖ δu ‖) as ‖ δu ‖→ 0, uniformly in t on compact subsets of R [i.e., for any
compact subset I ⊂ R, lim‖δu‖→0

(
supt∈I

‖F2(t,δu)‖
‖δu‖

)
= 0], and where ∂f

∂x (·)
and ∂f

∂u (·) denote the Jacobian matrix of f with respect to x and the Jacobian
matrix of f with respect to u, respectively.

Letting

∂f

∂x
(t, φ(t), ψ(t)) = A(t) and

∂f

∂u
(t, φ(t), ψ(t)) = B(t),

we obtain from (1.62),

d(δx)
dt

= δẋ = A(t)δx +B(t)δu + F1(t, δx, u) + F2(t, δu). (1.63)

Associated with (1.63), we have

ż = A(t)z +B(t)v. (1.64)

We call (1.64) the linearized equation of (1.61) about the solution φ and the
input function ψ.
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As in the case of the linearization of (1.52) by (1.49), the linearization
(1.64) of system (1.61) about a given solution φ and a given input ψ is often
used in attempting to capture the qualitative properties of a nonlinear process
by a linear process (in the vicinity of φ and ψ). In doing so, great care must
be exercised to avoid erroneous conclusions.

The motivation of linearization is of course very obvious: much more is
known about linear ordinary differential equations than about nonlinear ones.
For example, the explicit forms of the solutions of (1.51) and (1.50) are known;
the structures of the solutions of (1.49), (1.48), and (1.64) are known; the
qualitative properties of the solutions of linear equations are known; and so
forth.

1.6.2 Examples

We now consider some specific cases.

Example 1.16. We consider the simple pendulum discussed in Example 1.4
and described by the equation

ẍ+ k sinx = 0, (1.65)

where k > 0 is a constant. Letting x1 = x and x2 = ẋ, (1.65) can be expressed
as

ẋ1 = x2,

ẋ2 = −k sinx1. (1.66)

It is easily verified that φ1(t) ≡ 0 and φ2(t) ≡ 0 is a solution of (1.66).
Letting f1(x1, x2) = x2 and f2(x1, x2) = −k sinx1, the Jacobian of f(x1, x2) =
(f1(x1, x2), f2(x1, x2))T evaluated at (x1, x2)T = (0, 0)T is given by

J(0) � A =
[

0 1
−k cosx1 0

]
[
x1=0
x2=0

] =
[

0 1
−k 0

]
.

The linearized equation of (1.66) about the solution φ1(t) ≡ 0, φ2(t) ≡ 0 is
given by [

ż1
ż2

]
=
[

0 1
−k 0

] [
z1
z2

]
.

Example 1.17. The system of equations

ẋ1 = ax1 − bx1x2 − cx2
1,

ẋ2 = dx2 − ex1x2 − fx2
2 (1.67)
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describes the growth of two competing species (e.g., two species of small fish)
that prey on each other (e.g., the adult members of one species prey on the
young members of the other species, and vice versa). In (1.67) a, b, c, d, e, and
f are positive parameters and it is assumed that x1 ≥ 0 and x2 ≥ 0. For
(1.67), φ1(t) = φ1(t, 0, 0) ≡ 0 and φ2(t) = φ2(t, 0, 0) ≡ 0, t ≥ 0, is a solution
of (1.67). A simple computation yields

A =
∂f

∂x
(0) =

[
a 0
0 d

]
,

and thus the system of equations
[
ż1
ż2

]
=
[
a 0
0 d

] [
z1
z2

]

constitutes the linearized equation of (1.67) about the solution φ1(t) =
0, φ2(t) = 0, t ≥ 0.

Example 1.18. Consider a unit mass subjected to an inverse square law force
field, as depicted in Figure 1.8. In this figure, r denotes radius and θ denotes
angle, and it is assumed that the unit mass (representing, e.g., a satellite) can
thrust in the radial and in the tangential directions with thrusts u1 and u2,
respectively. The equations that govern this system are given by

r̈ = rθ̇2 − k

r2
+ u1,

θ̈ =
−2θ̇ṙ
r

+
1
r
u2.

(1.68)

m = 1
r

θ

u1

u2

Figure 1.8. A unit mass subjected to an inverse square law force field

When r(0) = r0, ṙ(0) = 0, θ(0) = θ0, θ̇(0) = ω0, and u1(t) ≡ 0, u2(t) ≡ 0
for t ≥ 0, it is easily verified that the system of equations (1.68) has as a
solution the circular orbit given by
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r(t) ≡ r0 = constant,

θ̇(t) = ω0 = constant
(1.69)

for all t ≥ 0, which implies that

θ(t) = ω0t+ θ0, (1.70)

where ω0 = (k/r30)
1/2.

If we let x1 = r, x2 = ṙ, x3 = θ, and x4 = θ̇, the equations of motion
(1.68) assume the form

ẋ1 = x2,

ẋ2 = x1x
2
4 −

k

x2
1

+ u1,

ẋ3 = x4,

ẋ4 = −2x2x4

x1
+
u2

x1
.

(1.71)

The linearized equation of (1.71) about the solution (1.70) [with u1(t) ≡
0, u2(t) ≡ 0] is given by

⎡
⎢⎢⎣
ż1
ż2
ż3
ż4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
3ω2

0 0 0 2r0ω0

0 0 0 1
0 −2ω0

r0
0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
z1
z2
z3
z4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 0
1 0
0 0
0 1
r0

⎤
⎥⎥⎦
[
v1
v2

]
.

Example 1.19. In this example we consider systems described by equations
of the form

ẋ+Af(x) +Bg(x) = u, (1.72)

where x ∈ Rn, A = [aij ] ∈ Rn×n, B = [bij ] ∈ Rn×n with aii > 0, bii > 0,
1 ≤ i ≤ n, f, g ∈ C1(Rn, Rn), u ∈ C(R+, Rn), and f(x) = 0, g(x) = 0 if and
only if x = 0.

Equation (1.72) can be used to model a great variety of physical sys-
tems. In particular, (1.72) has been used to model a large class of inte-
grated circuits consisting of (nonlinear) transistors and diodes, (linear) ca-
pacitors and resistors, and current and voltage sources. (Figure 1.9 gives a
symbolic representation of such circuits.) For such circuits, we assume that
f(x) = [f1(x1), . . . , fn(xn)]T .

If u(t) = 0 for all t ≥ 0, then φi(t) = 0, t ≥ 0, 1 ≤ i ≤ n, is a solution of
(1.72).

The system of equations (1.72) can be expressed equivalently as

ẋi = −
n∑
j=1

[
aij

fj(xj)
xj

+ bij
gj(xj)
xj

]
xj + ui, (1.73)
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Figure 1.9. Integrated circuit

i = 1, . . . , n. The linearized equation of (1.73) about the solution φi(t) = 0,
and the input ui(t) = 0, t ≥ 0, i = 1, . . . , n, is given by

żi = −
n∑
j=1

[
aijf

′
j(0) + bijg

′
j(0)

]
zj + vi, (1.74)

where f ′
j(0) = dfj

dxj
(0) and g′j(0) = dgj

dxj
(0), i = 1, . . . , n.

1.7 Linear Systems: Existence, Uniqueness,
Continuation, and Continuity with Respect to
Parameters of Solutions

In this section we address nonhomogeneous systems of first-order ordinary
differential equations given by

ẋ = A(t)x + g(t), (1.75)

where x ∈ Rn, A(t) = [aij(t)] is a real n × n matrix and g is a real n-vector-
valued function.

Theorem 1.20. Suppose that A ∈ C(J,Rn×n) and g ∈ C(J,Rn), where J is
some open interval. Then for any t0 ∈ J and any x0 ∈ Rn, equation (1.75)
has a unique solution satisfying x(t0) = x0. This solution exists on the entire
interval J and is continuous in (t, t0, x0).

Proof. The function f(t, x) = A(t)x + g(t) is continuous in (t, x), and more-
over, for any compact subinterval J0 ⊂ J , there is an L0 ≥ 0 such that

‖ f(t, x) − f(t, y) ‖1 =‖ A(t)(x − y) ‖1≤‖ A(t) ‖1‖ x− y ‖1

≤
(

n∑
i=1

max
1≤j≤n

|aij(t)|
)

‖ x− y ‖1≤ L0 ‖ x− y ‖1

for all (t, x), (t, y) ∈ J0×Rn, where L0 is defined in the obvious way. Therefore,
f satisfies a Lipschitz condition on J0 ×Rn.
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If (t0, x0) ∈ J0 × Rn, then the continuity of f implies the existence of
solutions (Theorem 1.8), whereas the Lipschitz condition implies the unique-
ness of solutions (Theorem 1.9). These solutions exist for the entire interval
J0 (Theorem 1.13). Since this argument holds for any compact subinterval
J0 ⊂ J , the solutions exist and are unique for all t ∈ J . Furthermore, the
solutions are continuous with respect to t0 and x0 (Theorem 1.14 modified for
the case where A and g do not depend on any parameters λ). �

For the case when in (1.75) the matrix A and the vector g depend con-
tinuously on parameters λ and μ, respectively, it is possible to modify Theo-
rem 1.20, and its proof, in the obvious way to show that the unique solutions
of the system of equations

ẋ = A(t, λ)x + g(t, μ) (1.76)

are continuous in λ and μ as well. [Assume that A ∈ C(J × Rl, Rn×n) and
g ∈ C(J × Rm, Rn) and follow a procedure that is similar to the proof of
Theorem 1.20.]

1.8 Solutions of Linear State Equations

In this section we determine the specific form of the solutions of systems of
linear first-order ordinary differential equations. We will revisit this topic in
much greater detail in Chapter 3.

Homogeneous Equations

We begin by considering linear homogeneous systems

ẋ = A(t)x, (1.77)

where A ∈ C(R,Rn×n). By Theorem 1.20, for every x0 ∈ Rn, (1.77) has
a unique solution that exists for all t ∈ R. We will now use Theorem 1.15
to derive an expression for the solution φ(t, t0, x0) for (1.77) for t ∈ R with
φ(t0, t0, x0) = x0. In this case the successive approximations given in (1.47)
assume the form

φ0(t, t0, x0) = x0,

φ1(t, t0, x0) = x0 +
∫ t

t0

A(s)x0ds,

φ2(t, t0, x0) = x0 +
∫ t

t0

A(s)φ1(s, t0, x0)ds,

· · ·

φm(t, t0, x0) = x0 +
∫ t

t0

A(s)φm−1(s, t0, x0)ds,
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or

φm(t, t0, x0) = x0 +
∫ t

t0

A(s1)x0ds1 +
∫ t

t0

A(s1)
∫ s1

t0

A(s2)x0ds2ds1 + · · ·

+
∫ t

t0

A(s1)
∫ s1

t0

A(s2) · · ·
∫ sm−1

t0

A(sm)x0dsm · · · ds1

=
[
I +

∫ t

t0

A(s1)ds1 +
∫ t

t0

A(s1)
∫ s1

t0

A(s2)ds2ds1 + · · ·

+
∫ t

t0

A(s1)
∫ s1

t0

A(s2) · · ·
∫ sm−1

t0

A(sm)dsm · · · ds1
]
x0,

(1.78)

where I denotes the n × n identity matrix. By Theorem 1.15, the sequence
{φm},m = 0, 1, 2, . . . determined by (1.78) converges uniformly, as m → ∞,
to the unique solution φ(t, t0, x0) of (1.77) on compact subsets of R. We thus
have

φ(t, t0, x0) = Φ(t, t0)x0, (1.79)

where

Φ(t, t0) = I +
∫ t

t0

A(s1)ds1 +
∫ t

t0

A(s1)
∫ s1

t0

A(s2)ds2ds1

+
∫ t

t0

A(s1)
∫ s1

t0

A(s2)
∫ s2

t0

A(s3)ds3ds2ds1 + · · ·

+
∫ t

t0

A(s1)
∫ s1

t0

A(s2) . . .
∫ sm−1

t0

A(sm)dsmdsm−1 · · ·ds1 + · · · .

(1.80)

Expression (1.80) is called the Peano–Baker series.
From expression (1.80) we immediately note that

Φ(t, t) = I. (1.81)

Furthermore, by differentiating expression (1.80) with respect to time and-
substituting into (1.77), we obtain that

Φ̇(t, t0) = A(t)Φ(t, t0). (1.82)

From (1.79) it is clear that once the initial data are specified and once the
n× n matrix Φ(t, t0) is known, the entire behavior of system (1.77) evolving
in time t is known. This has motivated the state terminology: x(t0) = x0

is the state of the system (1.77) at time t0, φ(t, t0, x0) is the state of the
system (1.77) at time t, the solution φ is called the state vector of (1.77),
the components of φ are called the state variables of (1.77), and the matrix
Φ(t, t0) that maps x(t0) into φ(t, t0, x0) is called the state transition matrix
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for (1.77). Also, the vector space containing the state vectors is called the
state space for (1.77).

We can specialize the preceding discussion to linear systems of equations

ẋ = Ax. (1.83)

In this case the mth term in (1.80) assumes the form

∫ t

t0

A(s1)
∫ s1

t0

A(s2)
∫ s2

t0

A(s3) . . .
∫ sm−1

t0

A(sm)dsm · · · ds1

= Am
∫ t

t0

∫ s1

t0

∫ s2

t0

. . .

∫ sm−1

t0

1dsm · · · ds1 =
Am(t− t0)m

m!
,

and expression (1.78) for φm assumes now the form

φm(t, t0, x0) =

[
I +

m∑
k=1

Ak(t− t0)k

k!

]
x0.

We conclude once more from Theorem 1.15 that {φm} converges uniformly as
m→ ∞ to the unique solution φ(t, t0, x0) of (1.83) on compact subsets of R.
We have

φ(t, t0, x0) =

[
I +

∞∑
k=1

Ak(t− t0)k

k!

]
x0

= Φ(t, t0)x0 � Φ(t− t0)x0, (1.84)

where Φ(t − t0) denotes the state transition matrix for (1.83). [Note that by
writing Φ(t, t0) = Φ(t − t0), we have used a slight abuse of notation.] By
making the analogy with the scalar ea = 1 +

∑∞
k=1

ak

k! , usage of the notation

eA = I +
∞∑
k=1

Ak

k!
(1.85)

should be clear. We call eA a matrix exponential. In Chapter 3 we will explore
several ways of determining eA for a given A.

Nonhomogeneous Equations

Next, we consider linear nonhomogeneous systems of ordinary differential
equations

ẋ = A(t)x + g(t), (1.86)

where A ∈ C(R,Rn×n) and g ∈ C(R,Rn). Again, by Theorem 1.20, for
every x0 ∈ Rn, (1.86) has a unique solution that exists for all t ∈ R. In-
stead of deriving the complete solution of (1.86) for a given set of initial data
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x(t0) = x0, we will guess the solution and verify that it indeed satisfies (1.86).
To this end, let us assume that the solution is of the form

φ(t, t0, x0) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, s)g(s)ds, (1.87)

where Φ(t, t0) denotes the state transition matrix for (1.77).
To show that (1.87) is indeed the solution of (1.86), we first let t = t0. In

view of (1.81) and (1.87), we have φ(t0, t0, x0) = x0. Next, by differentiating
both sides of (1.87) and by using (1.81), (1.82), and (1.87), we have

φ̇(t, t0, x0) = Φ̇(t, t0)x0 + Φ(t, t)g(t) +
∫ t

t0

Φ̇(t, s)g(s)ds

= A(t)Φ(t, t0)x0 + g(t) +
∫ t

t0

A(t)Φ(t, s)g(s)ds

= A(t)[Φ(t, t0)x0 +
∫ t

t0

Φ(t, s)g(s)ds] + g(t)

= A(t)φ(t, t0, x0) + g(t);

i.e., φ(t, t0, x0) given in (1.87) satisfies (1.86). Therefore, φ(t, t0, x0) is the
unique solution of (1.86). Equation (1.87) is called the variation of constants
formula, which is discussed further in Chapter 3. In the exercise section of
Chapter 3 (refer to Exercise 3.13), we ask the reader (with hints) to derive
the variation of constants formula (1.87), using a change of variables.

We note that when x0 = 0, (1.87) reduces to

φ(t, t0, 0) � φp(t) =
∫ t

t0

Φ(t, s)g(s)ds (1.88)

and when x0 �= 0 but g(t) = 0 for all t ∈ R, (1.87) reduces to

φ(t, t0, x0) � φh(t) = Φ(t, t0)x0. (1.89)

Therefore, the total solution of (1.86) may be viewed as consisting of a compo-
nent that is due to the initial conditions (t0, x0) and another component that
is due to the forcing term g(t). This type of separation is in general possible
only in linear systems of differential equations. We call φp a particular solution
of the nonhomogeneous system (1.86) and φh the homogeneous solution.

From (1.87) it is clear that for given initial conditions x(t0) = x0 and given
forcing term g(t), the behavior of system (1.86), summarized by φ, is known
for all t. Thus, φ(t, t0, x0) specifies the state vectorof (1.86) at time t. The
components φi of φ, i = 1, . . . , n, represent the state variables for (1.86), and
the vector space that contains the state vectors is the state space for (1.86).

Before closing this section, it should be pointed out that in applications
the matrix A(t) and the vector g(t) in (1.86) may be only piecewise continu-
ous rather than continuous, as assumed above [i.e., A(t) and g(t) may have
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(at most) a finite number of discontinuities over any finite time interval]. In
such cases, the derivative of x with respect to t [i.e., the right-hand side in
(1.86)] will be discontinuous at a finite number of instants over any finite time
interval; however, the state itself, x, will still be continuous at these instants
[i.e., the solutions of (1.86) will still be continuous over R]. In such cases, all
the results presented concerning existence, uniqueness, continuation of solu-
tions, and so forth, as well as the explicit expressions of solutions of (1.86), are
either still valid or can be modified in the obvious way. For example, should
g(t) experience a discontinuity at, say, t1 > t0, then expression (1.87) will be
modified to read as follows:

φ(t, t0, x0) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, s)g(s)ds, t0 ≤ t < t1, (1.90)

φ(t, t1, x1) = Φ(t, t1)x1 +
∫ t

t1

Φ(t, s)g(s)ds, t ≥ t1, (1.91)

where x1 = limt→t−1
φ(t, t0, x0).

1.9 Summary and Highlights

• Initial-value problem

ẋ = f(t, x), x(t0) = x0 (1.12)

or

φ(t) = x0 +
∫ t

t0

f(s, φ(s))ds, (1.13)

where φ(t) is a solution of (1.12).
• Successive approximations

φ0(t) = x0,

φm+1(t) = x0 +
∫ t

t0

f(s, φm(s))ds, m = 0, 1, 2, . . . .
(1.47)

Under certain conditions (see Theorem 1.15) φm, m = 1, 2, converges
uniformly (on compact sets) as m→ ∞ to the unique solution of (1.12).

• Linearization
Given is ẋ = f(t, x) and a solution φ. The Jacobian matrix is

∂f

∂x
(t, x) =

⎡
⎢⎣
∂f1
∂x1

(t, x) · · · ∂f1
∂xn

(t, x)
...

...
∂fn

∂x1
(t, x) · · · ∂fn

∂xn
(t, x)

⎤
⎥⎦ . (1.54)

For A(t) = ∂f
∂x (t, φ(t)),

ż = A(t)z (1.57)

is the linearized equation about the solution φ.
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• Existence and uniqueness of solutions of

ẋ = A(t)x + g(t). (1.75)

See Theorem 1.20.
• The solution of

ẋ = A(t)x + g(t), (1.86)

with x(t0) = x0, is given by the variation of constants formula

φ(t, t0, x0) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, s)g(s)ds, (1.87)

where the state transition matrix Φ(t, t0) is given by

Φ(t, t0) = I +
∫ t

t0

A(s1)ds1 +
∫ t

t0

A(s1)
∫ s1

t0

A(s2)ds2ds1 + · · · (1.80)

the Peano–Baker series.
• In the time-invariant case ẋ = Ax,

φ(t, t0, x0) =

[
I +

∞∑
k=1

Ak(t− t0)k

k!

]
x0

= Φ(t, t0)x0 � Φ(t− t0)x0

= eA(t−t0)x0,

(1.84)

where

eA = I +
∞∑
k=1

Ak

k!
. (1.85)

1.10 Notes

For a classic reference on ordinary differential equations, see Coddington and
Levinson [3]. Other excellent sources include Brauer and Nohel [2], Hartman
[4], and Simmons [7]. Our treatment of ordinary differential equations in this
chapter was greatly influenced by Miller and Michel [6].
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Exercises

1.1. (Hamiltonian dynamical systems) Conservative dynamical systems, also
called Hamiltonian dynamical systems, are those systems that contain no
energy-dissipating elements. Such systems with n degrees of freedom can
be characterized by means of a Hamiltonian function H(p, q), where qT =
(q1, . . . , qn) denotes n generalized position coordinates and pT = (p1, . . . , pn)
denotes n generalized momentum coordinates. We assume that H(p, q) is of
the form

H(p, q) = T (q, q̇) +W (q), (1.92)

where T denotes the kinetic energy and W denotes the potential energy of
the system. These energy terms are obtained from the path-independent line
integrals

T (q, q̇) =
∫ q̇

0

p(q, ξ)Tdξ =
∫ q̇

0

n∑
i=1

pi(q, ξ)dξi, (1.93)

W (q) =
∫ q

0

f(η)Tdη =
∫ q

0

n∑
i=1

fi(η)dηi, (1.94)

where fi, i = 1, . . . , n, denote generalized potential forces.
For the integral (1.93) to be path-independent, it is necessary and sufficient

that
∂pi(q, q̇)
∂q̇j

=
∂pj(q, q̇)
∂q̇i

, i, j = 1, . . . , n. (1.95)

A similar statement can be made about (1.94).
Conservative dynamical systems are described by the system of 2n ordi-

nary differential equations

q̇i =
∂H

∂pi
(p, q), i = 1, . . . , n,

ṗi = −∂H
∂qi

(p, q), i = 1, . . . , n. (1.96)

Note that if we compute the derivative of H(p, q) with respect to t for (1.96)
[along the solutions qi(t), pi(t), i = 1, . . . , n], then we obtain, by the chain
rule,
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dH

dt
(p(t), q(t)) =

n∑
i=1

∂H

∂pi
(p, q)ṗi +

n∑
i=1

∂H

∂qi
(p, q)q̇i

=
n∑
i=1

−∂H
∂pi

(p, q)
∂H

∂qi
(p, q) +

n∑
i=1

∂H

∂qi
(p, q)

∂H

∂pi
(p, q)

= −
n∑
i=1

∂H

∂pi
(p, q)

∂H

∂qi
(p, q) +

n∑
i=1

∂H

∂pi
(p, q)

∂H

∂qi
(p, q) ≡ 0.

In other words, in a conservative system (1.96), the Hamiltonian, i.e., the total
energy, will be constant along the solutions (1.96). This constant is determined
by the initial data (p(0), q(0)).

(a) In Figure 1.10, M1 and M2 denote point masses; K1,K2,K denote spring
constants; and x1, x2 denote the displacements of the masses M1 and M2.
Use the Hamiltonian formulation of dynamical systems described above
to derive a system of first-order ordinary differential equations that char-
acterize this system. Verify your answer by using Newton’s second law of
motion to derive the same system of equations. Assume that x1(0), ẋ1(0),
x2(0), and ẋ2(0) are given.

Figure 1.10. Example of a conservative dynamical system

(b) In Figure 1.11, a point mass M is moving in a circular path about the
axis of rotation normal to a constant gravitational field (this is called the
simple pendulum problem). Here l is the radius of the circular path, g is the
gravitational acceleration, and θ denotes the angle of deflection measured
from the vertical. Use the Hamiltonian formulation of dynamical systems
described above to derive a system of first-order ordinary differential equa-
tions that characterize this system. Verify your answer by using Newton’s
second law of motion to derive the same system of equations. Assume that
θ(0) and θ̇(0) are given.

(c) Determine a system of first-order ordinary differential equations that char-
acterizes the two-link pendulum depicted in Figure 1.12. Assume that
θ1(0), θ2(0), θ̇1(0), and θ̇2(0) are given.

1.2. (Lagrange’s equation) If a dynamical system contains elements that dis-
sipate energy, such as viscous friction elements in mechanical systems and
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Figure 1.11. Simple pendulum

mθ 1

1

1

g

g

θ
m2

2

2

Figure 1.12. Two link pendulum

resistors in electric circuits, then we can use Lagrange’s equation to describe
such systems. (In the following, we use some of the same notation used in
Exercise 1.1.) For a system with n degrees of freedom, this equation is given
by

d

dt

(
∂L

∂q̇i
(q, q̇)

)
− ∂L

∂q
(q, q̇) +

∂D

∂q̇i
(q̇) = fi, i = 1, . . . , n, (1.97)

where qT = (q1, . . . , qn) denotes the generalized position vector. The function
L(q, q̇) is called the Lagrangian and is defined as

L(q, q̇) = T (q, q̇) −W (q),

i.e., the difference between the kinetic energy T and the potential energy W .
The function D(q̇) denotes Rayleigh’s dissipation function, which we shall

assume to be of the form

D(q̇) =
1
2

n∑
i=1

n∑
j=1

βij q̇iq̇j ,
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where [βij ] is a positive semidefinite matrix (i.e., [βij ] is symmetric and all of
its eigenvalues are nonnegative). The dissipation function D represents one-
half the rate at which energy is dissipated as heat. It is produced by friction
in mechanical systems and by resistance in electric circuits.

Finally, fi in (1.97) denotes an applied force and includes all external forces
associated with the qi coordinate. The force fi is defined as being positive
when it acts to increase the value of the coordinate qi.

(a) In Figure 1.13, M1 and M2 denote point masses; K1,K2,K denote spring
constants; y1, y2 denote the displacements of masses M1 and M2, respec-
tively; and B1, B2, B denote viscous damping coefficients. Use the La-
grange formulation of dynamical systems described above to derive two
second-order differential equations that characterize this system. Trans-
form these equations into a system of first-order ordinary differential equa-
tions. Verify your answer by using Newton’s second law of motion to derive
the same system equations. Assume that y1(0), ẏ(0), y2(0), and ẏ(0) are
given.

Figure 1.13. An example of a mechanical system with energy dissipation

(b) Consider the capacitor microphone depicted in Figure 1.14. Here we have
a capacitor constructed from a fixed plate and a moving plate with mass
M . The moving plate is suspended from the fixed frame by a spring with
a spring constant K and has some damping expressed by the damping
constant B. Sound waves exert an external force f(t) on the moving plate.
The output voltage vs, which appears across the resistor R, will reproduce
electrically the sound-wave patterns that strike the moving plate.
When f(t) ≡ 0 there is a charge q0 on the capacitor. This produces a
force of attraction between the plates that stretches the spring. When
sound waves exert a force on the moving plate, there will be a resulting
motion displacement x that is measured from the equilibrium position.
The distance between the plates will then be x0 − x, and the charge on
the plates will be q0 + q.
When displacements are small, the expression for the capacitance is given
approximately by
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C =
εA

x0 − x

with C0 = εA/x0, where ε > 0 is the dielectric constant for air and A is
the area of the plate.
Use the Lagrange formulation of dynamical systems to derive two second-
order ordinary differential equations that characterize this system. Trans-
form these equations into a system of first-order ordinary differential equa-
tions. Verify your answer by using Newton’s laws of motion and Kirchhoff’s
voltage/current laws. Assume that x(0), ẋ(0), q(0), and q̇(0) are given.

Figure 1.14. Capacitor microphone

(c) Use the Lagrange formulation to derive a system of first-order differential
equations for the system given in Example 1.3.

1.3. Find examples of initial-value problems for which (a) no solutions exist;
(b) more than one solution exists; (c) one or more solutions exist, but cannot
be continued for all t ∈ R; and (d) unique solutions exist for all t ∈ R.

1.4. (Numerical solution of ordinary differential equations—Euler’s method)
An approximation to the solution of the scalar initial-value problem

ẏ = f(t, y), y(t0) = y0 (1.98)

is given by Euler’s method ,

yk+1 = yk + hf(tk, yk), k = 0, 1, 2, . . . , (1.99)

where h = tk+1 − tk is the (constant) integration step. The interpretation of
this method is that the area below the solution curve is approximated by a
sequence of sums of rectangular areas. This method is also called the forward
rectangular rule (of integration).
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(a) Use Euler’s method to determine the solution of the initial-value problem

ẏ = 3y, y(t0) = 5, t0 = 0, t0 ≤ t ≤ 10.

(b) Use Euler’s method to determine the solution of the initial-value problem

ÿ = t(ẏ)2 − y2, y(t0) = 1, ẏ(t0) = 0, t0 = 0, t0 ≤ t ≤ 10.

Hint: In both cases, use h = 0.2. For part (b), let y = x1, ẋ1 = x2, ẋ2 =
tx2

2 − x2
1, and apply (1.99), appropriately adjusted to the vector case. In both

cases, plot yk vs. tk, k = 0, 1, 2, . . . .
Remark:. Euler’s method yields arbitrarily close approximations to the solu-
tions of (1.98), by making h sufficiently small, assuming infinite (computer)
word length. In practice, however, where truncation errors (quantization) and
round-off errors (finite precision operations) are a reality, extremely small val-
ues of h may lead to numerical instabilities. Therefore, Euler’s method is of
limited value as a means of solving initial-value problems numerically.

1.5. (Numerical solution of ordinary differential equations—Runge–Kutta
methods) The Runge–Kutta family of integration methods are among the
most widely used techniques to solve initial-value problems (1.98). A simple
version is given by

yi+1 = yi + k,

where
k =

1
6
(k1 + 2k2 + 2k3 + k4)

with

k1 = hf(ti, yi),

k2 = hf(ti +
1
2
h, yi +

1
2
k1),

k3 = hf(ti +
1
2
h, yi +

1
2
k2),

k4 = hf(ti + h, yi + k3),

and ti+1 = ti + h, y(t0) = y0.
The idea of this method is to probe ahead (in time) by one-half or by a

whole step h to determine the values of the derivative at several points, and
then to form a weighted average.

Runge–Kutta methods can also be applied to higher order ordinary dif-
ferential equations. For example, after a change of variables, suppose that a
second-order differential equation has been changed to a system of two first-
order differential equations, say,

ẋ1 = f1(t, x1, x2), x1(t0) = x10,

ẋ2 = f2(t, x1, x2), x2(t0) = x20.
(1.100)
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In solving (1.100), a simple version of the Runge–Kutta method is given by

yi+1 = yi + k,

where
yi = (x1i, x2i)T and k = (k, l)T

with
k =

1
6
(k1 + 2k2 + 2k3 + k4), l =

1
6
(l1 + 2l2 + 2l3 + l4)

and

k1 = hf1(ti, x1i, x2i), l1 = hf2(ti, x1i, x2i),

k2 = hf1(ti + 1
2h, x1i + 1

2k1, x2i + 1
2 l1), l2 = hf2(ti + 1

2h, x1i + 1
2k1, x2i + 1

2 l1),

k3 = hf1(ti + 1
2h, x1i + 1

2k2, x2i + 1
2 l2), l3 = hf2(ti + 1

2h, x1i + 1
2k2, x2i + 1

2 l2),
k4 = hf1(ti + h, x1i + k3, x2i + l3), l4 = hf2(ti + h, x1i + k3, x2i + l3).

Use the Runge–Kutta method described above to obtain numerical solu-
tions to the initial-value problems given in parts (a) and (b) of Exercise 1.4.
Plot your data.
Remark: Since Runge–Kutta methods do not use past information, they con-
stitute attractive starting methods for more efficient numerical integration
schemes (e.g., predictor–corrector methods) . We note that since there are no
built-in accuracy measures in the Runge–Kutta methods, significant compu-
tational efforts are frequently expended to achieve a desired accuracy.

1.6. (Numerical solution of ordinary differential equations—Predictor–
Corrector methods) A common predictor–corrector technique for solving
initial-value problems determined by ordinary differential equations, such as
(1.98), is the Milne method, which we now summarize. In this method, ẏi−1

denotes the value of the first derivative at time ti−1, where ti is the time for
the ith iteration step, ẏi−2 is similarly defined, and yi+1 represents the value
of y to be determined. The details of the Milne method are:

1. yi+1,p = yi−3 + 4h
3 (2ẏi−2 − ẏi−1 + 2ẏi) (predictor)

2. ẏi+1,p = f(ti+1, yi+1,p)
3. yi+1,c = yi−1 + h

3 (ẏi−1 + 4ẏi + ẏi+1,p) (corrector)
4. ẏi+1,c = f(ti+1, yi+1,c)
5. yi+1,c = yi−1 + h

3 (ẏi−1 + 4ẏi + ẏi+1,c) (iterating corrector)

The first step is to obtain a predicted value of yi+1 and then to substitute
yi+1,p into the given differential equation to obtain a predicted value of ẏi+1,p,
as indicated in the second equation above. This predicted value, ẏi+1,p is then
used in the second equation, the corrector equation, to obtain a corrected
value of yi+1. The corrected value, yi+1,c is next substituted into the differen-
tial equation to obtain an improved value of ẏi+1, and so on. If necessary, an
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iteration process involving the fourth and fifth equations continues until suc-
cessive values of yi+1 differ by less than the value of some desirable tolerance.
With yi+1 determined to the desired accuracy, the method steps forward one
h increment.

A more complicated predictor–corrector method that is more reliable than
the Milne method is the Adams–Bashforth–Moulton method, the essential
equations of which are

yi+1,p = yi +
h

24
(55ẏi − 59ẏi−1 + 37ẏi−2 − 9ẏi−3),

yi+1,c = yi +
h

24
(9ẏi+1 + 19ẏi − 5ẏi−1 + ẏi−2),

where in the corrector equation, ẏi+1 denotes the predicted value.
The application of predictor–corrector methods to systems of first-order

ordinary differential equations is straightforward. For example, the application
of the Milne method to the second-order system in (1.100) yields from the
predictor step

xk,i+1,p = xk,i−3 +
4h
3

(2ẋk,i−2 − ẋk,i−1 + 2ẋk,i), k = 1, 2.

Then
ẋk,i+1,p = fk(ti+1, x1,i+1,p, x2,i+1,p), k = 1, 2,

and the corrector step assumes the form

xk,i+1,c = xk,i−1 +
h

3
(ẋk,i−1 + 4ẋk,i + ẋk,i+1), k = 1, 2,

and
ẋk,i+1,c = fk(ti+1, x1,i+1,c, x2,i+1,c), k = 1, 2.

Use the Milne method and the Adams–Bashforth–Moulton method de-
scribed above to obtain numerical solutions to the initial-value problems given
in parts (a) and (b) of Exercise 1.4. To initiate the algorithm, refer to the Re-
mark in Exercise 1.5.

Remark. Derivations and convergence properties of numerical integration
schemes, such as those discussed here and in Exercises 1.4 and 1.5, can be
found in many of the standard texts on numerical analysis.

1.7. Use Theorem 1.15 to solve the initial-value problem ẋ = ax+t, x(0) = x0

for t ≥ 0. Here a ∈ R.

1.8. Consider the initial-value problem

ẋ = Ax, x(0) = x0, (1.101)

where x ∈ R2 and A ∈ R2×2. Let λ1, λ2 denote the eigenvalues of A; i.e.,
λ1 and λ2 are the roots of the equation det(A − λI) = 0, where det denotes
determinant, λ is a scalar, and I denotes the 2 × 2 identity matrix. Make
specific choices of A to obtain the following cases:



42 1 System Models, Differential Equations, and Initial-Value Problems

1. λ1 > 0, λ2 > 0, and λ1 �= λ2

2. λ1 < 0, λ2 < 0, and λ1 �= λ2

3. λ1 = λ2 > 0
4. λ1 = λ2 < 0
5. λ1 > 0, λ2 < 0
6. λ1 = α+ iβ, λ2 = α− iβ, i =

√
−1, α > 0

7. λ1 = α+ iβ, λ2 = α− iβ, α < 0
8. λ1 = iβ, λ2 = −iβ

Using t as a parameter, plot φ2(t, 0, x0) vs. φ1(t, 0, x0) for 0 ≤ t ≤ tf for
every case enumerated above. Here [φ1(t, t0, x0), φ2(t, t0, x0)]T = φ(t, t0, x0)
denotes the solution of (1.101). On your plots, indicate increasing time t by
means of arrows. Plots of this type are called trajectories for (1.101), and
sufficiently many plots (using different initial conditions and sufficiently large
tf ) make up a phase portrait for (1.101). Generate a phase portrait for each
case given above.

1.9. Write two first-order ordinary differential equations for the van der Pol
Equation (1.35) by choosing x1 = x and x2 = ẋ1. Determine by simulation
phase portraits (see Exercise 1.8) for this example for the cases ε = 0.05 and
ε = 10 (refer also to Exercises 1.5 and 1.6 for numerical methods for solving
differential equations). The periodic solution to which the trajectories of (1.35)
tend to is an example of a limit cycle.

1.10. Consider a system whose state-space description is given by

ẋ = −k1k2

√
x+ k2u(t),

y = k1

√
x.

Linearize this system about the nominal solution

u0 ≡ 0, 2
√
x0(t) = 2

√
k − k1k2t,

where x0(0) = k.

1.11. For (1.36) consider the hard, linear, and soft spring models given by

g(x) = k(1 + a2x2)x,
g(x) = kx,

g(x) = k(1 − a2x2)x,

respectively, where k > 0 and a2 > 0. Write two first-order ordinary differen-
tial equations for (1.36) by choosing x1 = x and x2 = ẋ. Pick specific values
for k and a2. Determine by simulation phase portraits (see Exercise 1.8) for
this example for the above three cases.
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1.12. (a) Show that xT = (0, 0) is a solution of the system of equations

ẋ1 = x2
1 + x2

2 + x2 cosx1,

ẋ2 = (1 + x1)x1 + (1 + x2)x2 + x1 sinx2.

Linearize this system about the point xT = (0, 0). By means of computer
simulations, compare solutions corresponding to different initial conditions
in the vicinity of the origin of the above system of equations and its lin-
earization.

(b) Linearize the (bilinear control) system

ẍ+ (3 + ẋ2)ẋ+ (1 + x+ x2)u = 0

about the solution x = 0, ẋ = 0, and the input u(t) ≡ 0. As in part
(a), compare (by means of computer simulations) solutions of the above
equation with corresponding solutions of its linearization.

(c) In the circuit given in Figure 1.15, vi(t) is a voltage source and the non-
linear resistor obeys the relation iR = 1.5v3

R [vi(t) is the circuit input and
vR(t) is the circuit output]. Derive the differential equation for this circuit.
Linearize this differential equation for the case when the circuit operates
about the point vi = 14.

+

–
1 F v

+

–

R (t)vi (t)

1 Ω
iR(t)

Figure 1.15. Nonlinear circuit

1.13. (Inverted pendulum) The inverted pendulum on a moving carriage sub-
jected to an external force μ(t) is depicted in Figure 1.16.

The moment of inertia with respect to the center of gravity is J , and the
coefficient of friction of the carriage (see Figure 1.16) is F . From Figure 1.17
we obtain the following equations for the dynamics of this system
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(Center of gravity)

(Pivot)
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Figure 1.16. Inverted pendulum
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Figure 1.17. Force diagram of the inverted pendulum

m
d2

dt2
(S + L sinφ) � H, (1.102a)

m
d2

dt2
(L cosφ) � Y −mg, (1.102b)

J
d2φ

dt2
= LY sinφ− LH cosφ, (1.102c)

M
d2S

dt2
= μ(t) −H − F

dS

dt
. (1.102d)

Assuming that m << M , (1.102d) reduces to

M
d2S

dt2
= μ(t) − F

dS

dt
. (1.102e)

Eliminating H and Y from (1.102a) to (1.102c), we obtain

(J +mL2)φ̈ = mgL sinφ−mLS̈ cosφ. (1.102f)
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Thus, the system of Figure 1.16 is described by the equations

φ̈− (g/L′) sinφ+ (1/L′)S̈ cosφ = 0,

MS̈ + FṠ = μ(t),
(1.102g)

where

L′ =
J +mL2

mL

denotes the effective pendulum length.
Linearize system (1.102g) about φ = 0.

1.14. (Simple pendulum) A system of first-order ordinary differential equa-
tions that characterize the simple pendulum considered in Exercise 1.1b is
given by [

ẋ1

ẋ2

]
=
[

x2

− g
l sinx1

]
,

where x1 � θ and x2 � θ̇ with x1(0) = θ(0) and x2(0) = θ̇(0) specified. A
linearized model of this system about the solution x = [0, 0]T is given by

[
ẋ1

ẋ2

]
=
[

0 1
− g
l 0

] [
x1

x2

]
.

Let g = 10 (m/sec2) and l = 1 (m).

(a) For the case when x(0) = [θ0, 0]T with θ0 = π/18, π/12, π/6, and π/3,
plot the states for t ≥ 0 for the nonlinear model.

(b) Repeat (a) for the linear model.
(c) Compare the results in (a) and (b).


