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Response of Continuous- and Discrete-Time
Systems

3.1 Introduction

In system theory it is important to clearly understand how inputs and initial
conditions affect the response of a system. Many reasons exist for this. For
example, in control theory, it is important to be able to select an input that
will cause the system output to satisfy certain properties [e.g., to remain
bounded (stability) or to follow a given trajectory (tracking)]. This is in stark
contrast to the study of ordinary differential equations, where it is usually
assumed that the forcing function (input) is given.

The goal of this chapter is to study the response of linear systems in
greater detail than was done in Chapter 2. To this end, solutions of linear
ordinary differential equations are reexamined, this time with an emphasis
on characterizing all solutions using bases (of the solution vector space) and
on determining such solutions. For convenience, certain results from Chap-
ter 2 are repeated. We will find it convenient to treat continuous-time and
discrete-time cases separately. Whereas in Chapter 2, certain fundamental is-
sues that include input–output system descriptions, causality, linearity, and
time-invariance are emphasized, here we will address in greater detail impulse
(and pulse) response and transfer functions for continuous-time systems and
discrete-time systems.

In Chapters 1 and 2 we addressed linear as well as nonlinear systems that
may be time-varying or time-invariant. We considered this level of general-
ity since this may be mandated during the modeling process of the systems.
However, in the analysis and synthesis of such systems, simplified models
involving linear time-invariant systems usually suffice. Accordingly, in the re-
mainder of this book, we will emphasize linear, time-invariant continuous-time
and discrete-time systems.

In this chapter, in Section 3.2, we further study linear systems of ordinary
differential equations with constant coefficients. Specifically, in this section,
we develop a general characterization of the solutions of such equations and
we study the properties of the solutions by investigating the properties of
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fundamental matrices and state transition matrices. In Section 3.3 we address
several methods of determining the state transition matrix and we study the
asymptotic behavior of the solutions of such systems. In Sections 3.4 and
3.5, we further investigate the properties of the state representations and
the input–output representations of continuous-time and discrete-time finite-
dimensional systems. Specifically, in these sections we study equivalent repre-
sentations of such systems, we investigate the properties of transfer function
matrices, and for the discrete-time case we also address sampled data systems
and the asymptotic behavior of the system response of time-invariant systems.

3.2 Solving ẋ = Ax and ẋ = Ax+ g(t): The State
Transition Matrix Φ(t, t0)

In this section we consider systems of linear homogeneous ordinary differential
equations with constant coefficients.

ẋ = Ax (3.1)

and linear nonhomogeneous ordinary differential equations

ẋ = Ax+ g(t). (3.2)

In Theorem 1.20 of Chapter 1 it was shown that these systems of equations,
subject to initial conditions x(t0) = x0, possess unique solutions for every
(t0, x0) ∈ D, where D = {(t, x) : t ∈ J = (a, b), x ∈ Rn} and where it
is assumed that A ∈ Rn×n and g ∈ C(J,Rn). These solutions exist over
the entire interval J = (a, b), and they depend continuously on the initial
conditions. Typically, we will assume that J = (−∞,∞). We note that φ(t) ≡
0, for all t ∈ J , is a solution of (3.1), with φ(t0) = 0. We call this the trivial
solution. As in Chapter 1 (refer to Section 1.8), we recall that the preceding
statements are also true when g(t) is piecewise continuous on J .

In the sequel, we sometimes will encounter the case where A is in Jordan
canonical form that may have entries in the complex plane C. For this reason,
we will allow D = {(t, x) : t ∈ J = (a, b), x ∈ Rn (or x ∈ Cn)} and A ∈ Rn×n

[or A ∈ Cn×n], as needed. For the case of real vectors, the field of scalars for
the x-space will be the field of real numbers (F = R), whereas for the case of
complex vectors, the field of scalars for the x-space will be the field of complex
numbers (F = C). For the latter case, the theory concerning the existence and
uniqueness of solutions for (3.1), as presented in Chapter 1, carries over and
can be modified in the obvious way.

3.2.1 The Fundamental Matrix

Solution Space

In our first result we will make use of several facts concerning vector spaces,
bases, and linear spaces, which are addressed in the appendix.
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Theorem 3.1. The set of solutions of (3.1) on the interval J forms an n-
dimensional vector space.

Proof. Let V denote the set of all solutions of (3.1) on J . Let α1, α2 ∈ F
(F = R or F = C), and let φ1, φ2 ∈ V . Then α1φ1 +α2φ2 ∈ V since d

dt [α1φ1+
α2φ2] = α1

d
dtφ1(t)+α2

d
dtφ2(t) = α1Aφ1(t)+α2Aφ2(t) = A[α1φ1(t)+α2φ2(t)]

for all t ∈ J . [Note that in this time-invariant case, it can be assumed without
loss of generality, that J = (−∞,∞).] This shows that V is a vector space.

To complete the proof of the theorem, we must show that V is of dimension
n. To accomplish this, we must find n linearly independent solutions φ1, . . . , φn
that span V . To this end, we choose a set of n linearly independent vectors
x1

0, . . . , x
n
0 in the n-dimensional x-space (i.e., in Rn or Cn). By the existence

results in Chapter 1, if t0 ∈ J , then there exist n solutions φ1, . . . , φn of (3.1)
such that φ1(t0) = x1

0, . . . , φn(t0) = xn0 . We first show that these solutions are
linearly independent. If on the contrary, these solutions are linearly dependent,
there exist scalars α1, . . . , αn ∈ F , not all zero, such that

∑n
i=1 αiφi(t) = 0 for

all t ∈ J . This implies in particular that
∑n
i=1 αiφi(t0) =

∑n
i=1 αix

i
0 = 0. But

this contradicts the assumption that {x1
0, . . . , x

n
0 } is a linearly independent

set. Therefore, the solutions φ1, . . . , φn are linearly independent.
To conclude the proof, we must show that the solutions φ1, . . . , φn span

V . Let φ be any solution of (3.1) on the interval J such that φ(t0) = x0. Then
there exist unique scalars α1, . . . , αn ∈ F such that

x0 =
n∑
i=1

αix
i
0,

since, by assumption, the vectors x1
0, . . . , x

n
0 form a basis for the x-space. Now

ψ =
n∑
i=1

αiφi

is a solution of (3.1) on J such that ψ(t0) = x0. But by the uniqueness results
of Chapter 1, we have that

φ = ψ =
n∑
i=1

αiφi.

Since φ was chosen arbitrarily, it follows that φ1, . . . , φn span V . �

Fundamental Matrix and Properties

Theorem 3.1 enables us to make the following definition.

Definition 3.2. A set of n linearly independent solutions of (3.1) on J ,
{φ1, . . . , φn}, is called a fundamental set of solutions of (3.1), and the n× n
matrix
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Φ = [φ1, φ2, . . . , φn] =

⎡
⎢⎢⎢⎣

φ11 φ12 · · · φ1n

φ21 φ22 · · · φ2n

...
...

...
φn1 φn2 · · · φnn

⎤
⎥⎥⎥⎦

is called a fundamental matrix of (3.1). �

We note that there are infinitely many different fundamental sets of solu-
tions of (3.1) and, hence, infinitely many different fundamental matrices for
(3.1). Clearly [φ1, φ2, . . . , φn] is a basis of the solution space. We now study
some of the basic properties of a fundamental matrix.

In the next result, X = [xij ] denotes an n× n matrix, and the derivative
of X with respect to t is defined as Ẋ = [ẋij ]. Let A be the n×n matrix given
in (3.1). We call the system of n2 equations

Ẋ = AX (3.3)

a matrix differential equation.

Theorem 3.3. A fundamental matrix Φ of (3.1) satisfies the matrix equation
(3.3) on the interval J .

Proof. We have

Φ̇ = [φ̇1, φ̇2, . . . , φ̇n] = [Aφ1, Aφ2, . . . , Aφn] = A[φ1, φ2, . . . , φn] = AΦ.

�

The next result is called Abel’s formula.

Theorem 3.4. If Φ is a solution of the matrix equation (3.3) on an interval
J and τ is any point of J , then

detΦ(t) = detΦ(τ) exp
[∫ t

τ

trAds

]

for every t ∈ J . [ trA = tr[aij ] denotes the trace of A; i.e., trA =
∑n

j=1 ajj.]
�

The proof of Theorem 3.4 is omitted. We refer the reader to [1] for a proof.
Since in Theorem 3.4 τ is arbitrary, it follows that either detΦ(t) �= 0 for

all t ∈ J or detΦ(t) = 0 for each t ∈ J . The next result provides a test on
whether an n× n matrix Φ(t) is a fundamental matrix of (3.1).

Theorem 3.5. A solution Φ of the matrix equation (3.3) is a fundamental
matrix of (3.1) if and only if its determinant is nonzero for all t ∈ J .
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Proof. If Φ = [φ1, φ2, . . . , φn] is a fundamental matrix for (3.1), then the
columns of Φ, φ1, . . . , φn, form a linearly independent set. Now let φ be a
nontrivial solution of (3.1). Then by Theorem 3.1 there exist unique scalars
α1, . . . , αn ∈ F , not all zero, such that φ =

∑n
j=1 αjφj = Φa, where aT =

(α1, . . . , αn). Let t = τ ∈ J . Then φ(τ) = Φ(τ)a, which is a system of n linear
algebraic equations. By construction, this system of equations has a unique
solution for any choice of φ(τ). Therefore, detΦ(τ) �= 0. It now follows from
Theorem 3.4 that detΦ(t) �= 0 for any t ∈ J .

Conversely, let Φ be a solution of (3.3) and assume that detΦ(t) �= 0 for
all t ∈ J . Then the columns of Φ are linearly independent for all t ∈ J . Hence,
Φ is a fundamental matrix of (3.1). �

It is emphasized that a matrix may have identically zero determinant over
some interval, even though its columns are linearly independent. For example,
the columns of the matrix

Φ(t) =

⎡
⎣

1 t t2

0 1 t
0 0 0

⎤
⎦

are linearly independent, and yet detΦ(t) = 0 for all t ∈ (−∞,∞). In accor-
dance with Theorem 3.5, the above matrix cannot be a fundamental solution
of the matrix equation (3.3) for any matrix A.

Theorem 3.6. If Φ is a fundamental matrix of (3.1) and if C is any nonsin-
gular constant n× n matrix, then ΦC is also a fundamental matrix of (3.1).
Moreover, if Ψ is any other fundamental matrix of (3.1), then there exists a
constant n× n nonsingular matrix P such that Ψ = ΦP .

Proof. For the matrix ΦC we have d
dt (ΦC) = Φ̇C = [AΦ]C = A(ΦC),

and therefore, ΦC is a solution of the matrix equation (3.3). Furthermore,
since detΦ(t) �= 0 for t ∈ J and detC �= 0, it follows that det[Φ(t)C] =
[detΦ(t)](detC) �= 0, t ∈ J . By Theorem 3.5, ΦC is a fundamental matrix.

Next, let Ψ be any other fundamental matrix of (3.1) and consider
the product Φ−1(t)Ψ . [Notice that since detΦ(t) �= 0 for all t ∈ J , then
Φ−1(t) exists for all t ∈ J .] Also, consider ΦΦ−1 = I where I denotes the
n × n identity matrix. Differentiating both sides, we obtain

(
d
dtΦ
)
Φ−1 +

Φ
(
d
dtΦ

−1
)

= 0 or d
dtΦ

−1 = −Φ−1
(
d
dtΦ

)
Φ−1. Therefore, we can compute

d
dt (Φ

−1Ψ) = Φ−1
(
d
dtΨ

)
+
(
d
dtΦ

−1
)
Ψ = Φ−1AΨ−[Φ−1

(
d
dtΦ

)
Φ−1]Ψ = Φ−1AΨ−

(Φ−1AΦΦ−1)Ψ = Φ−1AΨ − Φ−1AΨ = 0. Hence, Φ−1Ψ = P or Ψ = ΦP . �

Example 3.7. It is easily verified that the system of equations

ẋ1 = 5x1 − 2x2

ẋ2 = 4x1 − x2

(3.4)
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has two linearly independent solutions given by φ1(t) = (e3t, e3t)T , φ2(t) =
(et, 2et)T , and therefore, the matrix

Φ(t) =
[
e3t et

e3t 2et

]
(3.5)

is a fundamental matrix of (3.4).
Using Theorem 3.6 we can find the particular fundamental matrix Ψ of

(3.4) that satisfies the initial condition Ψ(0) = I by using Φ(t) given in (3.5).
We have Ψ(0) = I = Φ(0)C or C = Φ−1(0), and therefore,

C =
[

1 1
1 2

]−1

=
[

2 −1
−1 1

]

and

Ψ(t) = ΦC =
[

(2e3t − et) (−e3t + et)
(2e3t − 2et) (−e3t + 2et)

]
.

3.2.2 The State Transition Matrix

In Chapter 1 we used the method of successive approximations (Theorem 1.15)
to prove that for every (t0, x0) ∈ J ×Rn,

ẋ = A(t)x (3.6)

possesses a unique solution of the form

φ(t, t0, x0) = Φ(t, t0)x0,

such that φ(t0, t0, x0) = x0, which exists for all t ∈ J , where Φ(t, t0) is the
state transition matrix (see Section 1.8). We derived an expression for Φ(t, t0)
in series form, called the Peano–Baker series [see (1.80) of Chapter 1], and we
showed that Φ(t, t0) is the unique solution of the matrix differential equation

∂

∂t
Φ(t, t0) = A(t)Φ(t, t0), (3.7)

where
Φ(t0, t0) = I for all t ∈ J. (3.8)

Of course, these results hold for (3.1) as well.
We now provide an alternative formulation of the state transition matrix,

and we study some of the properties of such matrices. Even though much of the
subsequent discussion applies to system (3.6), we will confine ourselves to sys-
tem (3.1). In the following definition, we use the natural basis {e1, e2, . . . , en}
(refer to Section A.2).
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Definition 3.8. A fundamental matrix Φ of (3.1) whose columns are deter-
mined by the linearly independent solutions φ1, . . . , φn with

φ1(t0) = e1, . . . , φn(t0) = en, t0 ∈ J,

is called the state transition matrix Φ for (3.1). Equivalently, if Ψ is any
fundamental matrix of (3.1), then the matrix Φ determined by

Φ(t, t0) � Ψ(t)Ψ−1(t0) for all t, t0 ∈ J, (3.9)

is said to be the state transition matrix of (3.1). �

We note that the state transition matrix of (3.1) is uniquely determined by
the matrix A and is independent of the particular choice of the fundamental
matrix. To show this, let Ψ1 and Ψ2 be two different fundamental matrices of
(3.1). Then by Theorem 3.6 there exists a constant n× n nonsingular matrix
P such that Ψ2 = Ψ1P . Now by the definition of state transition matrix,
we have Φ(t, t0) = Ψ2(t)[Ψ2(t0)]−1 = Ψ1(t)PP−1[Ψ1(t0)]−1 = Ψ1(t)[Ψ1(t0)]−1.
This shows that Φ(t, t0) is independent of the fundamental matrix chosen.

Properties of the State Transition Matrix

In the following discussion, we summarize some of the properties of state
transition matrix.

Theorem 3.9. Let t0 ∈ J , let φ(t0) = x0, and let Φ(t, t0) denote the state
transition matrix for (3.1) for all t ∈ J . Then the following statements are
true:

(i) Φ(t, t0) is the unique solution of the matrix equation ∂
∂tΦ(t, t0) = AΦ(t, t0)

with Φ(t0, t0) = I, the n× n identity matrix.
(ii) Φ(t, t0) is nonsingular for all t ∈ J .
(iii) For any t, σ, τ ∈ J , we have Φ(t, τ) = Φ(t, σ)Φ(σ, τ) (semigroup property).
(iv) [Φ(t, t0)]−1 � Φ−1(t, t0) = Φ(t0, t) for all t, t0 ∈ J .
(v) The unique solution φ(t, t0, x0) of (3.1), with φ(t0, t0, x0) = x0 specified,

is given by
φ(t, t0, x0) = Φ(t, t0)x0 for all t ∈ J. (3.10)

Proof. (i) For any fundamental matrix of (3.1), say Ψ , we have, by defini-
tion, Φ(t, t0) = Ψ(t)Ψ−1(t0), independent of the choice of Ψ . Therefore,
∂
∂tΦ(t, t0) = Ψ̇(t)Ψ−1(t0) = AΨ(t)Ψ−1(t0) = AΦ(t, t0). Furthermore,
Φ(t0, t0) = Ψ(t0)Ψ−1(t0) = I.

(ii) For any fundamental matrix of (3.1) we have that detΨ(t) �= 0 for all t ∈
J . Therefore, detΦ(t, t0) = det[Ψ(t)Ψ−1(t0)] = detΨ(t) detΨ−1(t0) �= 0
for all t, t0 ∈ J .
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(iii) For any fundamental matrix Ψ of (3.1) and for the state transition matrix
Φ of (3.1), we have Φ(t, τ) = Ψ(t)Ψ−1(τ) = Ψ(t)Ψ−1(σ)Ψ(σ)Ψ−1(τ) =
Φ(t, σ)Φ(σ, τ) for any t, σ, τ ∈ J .

(iv) Let Ψ be any fundamental matrix of (3.1), and let Φ be the state transi-
tion matrix of (3.1). Then [Φ(t, t0)]−1 = [Ψ(t)Ψ(t0)−1]−1 = Ψ(t0)Ψ−1(t) =
Φ(t0, t) for any t, t0 ∈ J .

(v) By the results established in Chapter 1, we know that for every (t0, x0) ∈
D, (3.1) has a unique solution φ(t) for all t ∈ J with φ(t0) = x0. To verify
(3.10), we note that φ̇(t) = ∂Φ

∂t (t, t0)x0 = AΦ(t, t0)x0 = Aφ(t). �

In Chapter 1 we pointed out that the state transition matrix Φ(t, t0) maps
the solution (state) of (3.1) at time t0 to the solution (state) of (3.1) at time
t. Since there is no restriction on t relative to t0 (i.e., we may have t < t0,
t = t0, or t > t0), we can “move forward or backward” in time. Indeed, given
the solution (state) of (3.1) at time t, we can solve the solution (state) of (3.1)
at time t0. Thus, x(t0) = x0 = [Φ(t, t0)]−1φ(t, t0, x0) = Φ(t0, t)φ(t, t0, x0). This
reversibility in time is possible because Φ−1(t, t0) always exists. [In the case
of discrete-time systems described by difference equations, this reversibility in
time does in general not exist (refer to Section 3.5).]

3.2.3 Nonhomogeneous Equations

In Section 1.8, we proved the following result [refer to (1.87) to (1.89)].

Theorem 3.10. Let t0 ∈ J , let (t0, x0) ∈ D, and let Φ(t, t0) denote the state
transition matrix for (3.1) for all t ∈ J . Then the unique solution φ(t, t0, x0)
of (3.2) satisfying φ(t0, t0, x0) = x0 is given by

φ(t, t0, x0) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, η)g(η)dη. (3.11)

�

As pointed out in Section 1.8, when x0 = 0, (3.11) reduces to the zero
state response

φ(t, t0, 0) � φp(t) =
∫ t

t0

Φ(t, s)g(s)ds, (3.12)

and when x0 �= 0, but g(t) ≡ 0, (3.11) reduces to the zero input response

φ(t, t0, x0) � φh(t) = Φ(t, t0)x0 (3.13)

and the solution of (3.2) may be viewed as consisting of a component that is
due to the initial data x0 and another component that is due to the forcing
term g(t). We recall that φp is called a particular solution of the nonhomoge-
neous system (3.2), whereas φh is called the homogeneous solution.
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3.3 The Matrix Exponential eAt, Modes, and
Asymptotic Behavior of ẋ = Ax

In the time-invariant case ẋ = Ax, the state transition matrix Φ(t, t0) equals
the matrix exponential eA(t−t0), which is studied in the following discussion.

Let D = {(t, x) : t ∈ R, x ∈ Rn}. In view of the results of Section 1.8, it
follows that for every (t0, x0) ∈ D, the unique solution of (3.1) with x(0) = x0

specified is given by

φ(t, t0, x0) =

(
I +

∞∑
k=1

Ak(t− t0)k

k!

)
x0

= Φ(t, t0)x0 � Φ(t− t0)x0 � eA(t−t0)x0, (3.14)

where Φ(t − t0) = eA(t−t0) denotes the state transition matrix for (3.1). [By
writing Φ(t, t0) = Φ(t− t0), we are using a slight abuse of notation.]

In arriving at (3.14) we invoked Theorem 1.15 of Chapter 1 in Section 1.5,
to show that the sequence {φm}, where

φm(t, t0, x0) =

(
I +

m∑
k=1

Ak(t− t0)k

k!

)
x0 � Sm(t− t0)x0, (3.15)

converges uniformly and absolutely as m → ∞ to the unique solution
φ(t, t0, x0) of (3.1) given by (3.14) on compact subsets of R. In the process of
arriving at this result, we also proved the following results.

Theorem 3.11. Let A be a constant n × n matrix (which may be real or
complex), and let Sm(t) denote the partial sum of matrices defined by

Sm(t) = I +
m∑
k=1

tk

k!
Ak. (3.16)

Then each element of the matrix Sm(t) converges absolutely and uniformly
on any finite t interval (−a, a), a > 0, as m → ∞. Furthermore, Ṡm(t) =
ASm−1(t) = Sm−1(t)A, and thus, the limit of Sm(t) as t→ ∞ is a C1 function
on R. Moreover, this limit commutes with A. �

3.3.1 Properties of eAt

In view of Theorem 3.11, the following definition makes sense (see also Sec-
tion 1.8).

Definition 3.12. Let A be a constant n × n matrix (which may be real or
complex). We define eAt to be the matrix

eAt = I +
∞∑
k=1

tk

k!
Ak (3.17)

for any −∞ < t <∞, and we call eAt a matrix exponential. �
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We are now in a position to provide the following characterizations of eAt.

Theorem 3.13. Let J = R, t0 ∈ J , and let A be a given constant matrix for
(3.1). Then

(i) Φ(t) � eAt is a fundamental matrix for all t ∈ J .
(ii) The state transition matrix for (3.1) is given by Φ(t, t0) = eA(t−t0) �

Φ(t− t0), t ∈ J .
(iii) eAt1eAt2 = eA(t1+t2) for all t1, t2 ∈ J .
(iv) AeAt = eAtA for all t ∈ J .
(v) (eAt)−1 = e−At for all t ∈ J .

Proof. By (3.17) and Theorem 3.11 we have that d
dt [e

At] = limm→∞ASm(t) =
limm→∞ Sm(t)A = AeAt = eAtA. Therefore, Φ(t) = eAt is a solution of the
matrix equation Φ̇ = AΦ. Next, observe that Φ(0) = I. It follows from Theo-
rem 3.4 that det[eAt] = etrace(At) �= 0 for all t ∈ R. Therefore, by Theorem 3.5
Φ(t) = eAt is a fundamental matrix for ẋ = Ax. We have proved parts (i) and
(iv).

To prove (iii), we note that in view of Theorem 3.9(iii), we have for any
t1, t2 ∈ R that Φ(t1, t2) = Φ(t1, 0)Φ(0, t2). By Theorem 3.9(i) we see that
Φ(t, t0) solves (3.1) with Φ(t0, t0) = I. It was just proved that Ψ(t) � eA(t−t0)

is also a solution. By uniqueness, it follows that Φ(t, t0) = eA(t−t0). For t =
t1, t0 = −t2, we therefore obtain eA(t1+t2) = Φ(t1,−t2) = Φ(t1)Φ(−t2)−1, and
for t = t1, t0 = 0, we have Φ(t1, 0) = eAt1 = Φ(t1). Also, for t = 0, t0 = −t2,
we obtain Φ(0,−t2) = et2A = Φ(−t2)−1. Therefore, eA(t1+t2) = eAt1eAt2 for
all t1, t2 ∈ R.

Finally, to prove (ii), we note that by (iii) we have Φ(t, t0) � eA(t−t0) =
I +

∑∞
k=1

(t−t0)k

k! Ak = Φ(t − t0) is a fundamental matrix for ẋ = Ax with
Φ(t0, t0) = I. Therefore, it is its state transition matrix. �

We conclude this section by stating the solution of ẋ = Ax+ g(t),

φ(t, t0, x0) = Φ(t− t0)x0 +
∫ t

t0

Φ(t− s)g(s)ds

= eA(t−t0)x0 +
∫ t

t0

eA(t−s)g(s)ds

= eA(t−t0)x0 + eAt
∫ t

t0

e−Asg(s)ds, (3.18)

for all t ∈ R. In arriving at (3.18), we have used expression (1.87) of Chapter 1
and the fact that in this case, Φ(t, t0) = eA(t−t0).

3.3.2 How to Determine eAt

We begin by considering the specific case



3.3 The Matrix Exponential eAt, Modes, Asymptotic Behavior of ẋ = Ax 87

A =
[

0 α
0 0

]
. (3.19)

From (3.17) it follows immediately that

eAt = I + tA =
[

1 αt
0 1

]
. (3.20)

As another example, we consider

A =
[
λ1 0
0 λ2

]
(3.21)

where λ1, λ2 ∈ R. Again, from (3.17) it follows that

eAt =

[
1 +

∑∞
k=1

tk

k! λ
k
1 0

0 1 +
∑∞
k=1

tk

k! λ
k
2

]

=
[
eλ1t 0
0 eλ2t

]
. (3.22)

Unfortunately, in general it is much more difficult to evaluate the matrix
exponential than the preceding examples suggest. In the following discussion,
we consider several methods of evaluating eAt.

The Infinite Series Method

In this case we evaluate the partial sum Sm(t) (see Theorem 3.11)

Sm(t) = I +
m∑
k=1

tk

k!
Ak

for some fixed t, say, t1, and for m = 1, 2, . . . until no significant changes
occur in succeeding sums. This yields the matrix eAt1 . This method works
reasonably well if the smallest and largest real parts of the eigenvalues of A
are not widely separated.

In the same spirit as above, we could use any of the vector differen-
tial solvers to solve ẋ = Ax, using the natural basis for Rn as n linearly
independent initial conditions [i.e., using as initial conditions the vectors
e1 = (1, 0, . . . , 0)T , e2 = (0, 1, 0, . . . , 0)T , . . . , en = (0, . . . , 0, 1)T ] and observ-
ing that in view of (3.14), the resulting solutions are the columns of eAt (with
t0 = 0).

Example 3.14. There are cases when the definition of eAt (in series form)
directly produces a closed-form expression. This occurs for example when
Ak = 0 for some k. In particular, if all the eigenvalues of A are at the origin,
then Ak = 0 for some k ≤ n. In this case, only a finite number of terms
in (3.17) will be nonzero and eAt can be evaluated in closed form. This was
precisely the case in (3.19).
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The Similarity Transformation Method

Let us consider the initial-value problem

ẋ = Ax, x(t0) = x0; (3.23)

let P be a real n × n nonsingular matrix, and consider the transformation
x = Py, or equivalently, y = P−1x. Differentiating both sides with respect to
t, we obtain ẏ = P−1ẋ = P−1APy = Jy, y(t0) = y0 = P−1x0. The solution
of the above equation is given by

ψ(t, t0, y0) = eJ(t−t0)P−1x0. (3.24)

Using (3.24) and x = Py, we obtain for the solution of (3.23),

φ(t, t0, x0) = PeJ(t−t0)P−1x0. (3.25)

Now suppose that the similarity transformation P given above has been
chosen in such a manner that

J = P−1AP (3.26)

is in Jordan canonical form (refer to Section A.6). We first consider the case
when A has n linearly independent eigenvectors, say, vi, that correspond to the
eigenvalues λi (not necessarily distinct), i = 1, . . . , n. (Necessary and sufficient
conditions for this to be the case are given in Sections A.5 and A.6. A sufficient
condition for the eigenvectors vi, i = 1, . . . , n, to be linearly independent is
that the eigenvalues of A, λ1, . . . , λn, be distinct.) Then P can be chosen so
that P = [v1, . . . , vn] and the matrix J = P−1AP assumes the form

J =

⎡
⎢⎣
λ1 0

. . .
0 λn

⎤
⎥⎦ . (3.27)

Using the power series representation

eJt = I +
∞∑
k=1

tkJk

k!
, (3.28)

we immediately obtain the expression

eJt =

⎡
⎢⎣
eλ1t 0

. . .
0 eλnt

⎤
⎥⎦ . (3.29)

Accordingly, the solution of the initial-value problem (3.23) is now given by
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φ(t, t0, x0) = P

⎡
⎢⎣
eλ1(t−t0) 0

. . .
0 eλn(t−t0)

⎤
⎥⎦P−1x0. (3.30)

In the general case when A has repeated eigenvalues, it is no longer pos-
sible to diagonalize A (see Section A.6). However, we can generate n lin-
early independent vectors v1, . . . , vn and an n × n similarity transformation
P = [v1, . . . , vn] that takes A into the Jordan canonical form J = P−1AP .
Here J is in the block diagonal form given by

J =

⎡
⎢⎢⎢⎣

J0 0
J1

. . .
0 Js

⎤
⎥⎥⎥⎦ , (3.31)

where J0 is a diagonal matrix with diagonal elements λ1, . . . , λk (not neces-
sarily distinct), and each Ji, i ≥ 1, is an ni × ni matrix of the form

Ji =

⎡
⎢⎢⎢⎢⎢⎢⎣

λk+i 1 0 · · · 0
0 λk+i 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · . . . 1
0 0 0 · · · λk+i

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.32)

where λk+i need not be different from λk+j if i �= j, and where k+n1 + · · ·+
ns = n.

Now since for any square block diagonal matrix

C =

⎡
⎢⎣
C1 0

. . .
0 Cl

⎤
⎥⎦

with Ci, i = 1, . . . , l, square, we have that

Ck =

⎡
⎢⎣
Ck1 0

. . .
0 Ckl

⎤
⎥⎦ ,

it follows from the power series representation of eJt that

eJt =

⎡
⎢⎢⎢⎣

eJ0t 0
eJ1t

. . .
0 eJst

⎤
⎥⎥⎥⎦ , (3.33)
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t ∈ R. As shown earlier, we have

eJ0t =

⎡
⎢⎣
eλ1t 0

. . .
0 eλkt

⎤
⎥⎦ . (3.34)

For Ji, i = 1, . . . , s, we have

Ji = λk+iIi +Ni, (3.35)

where Ii denotes the ni × ni identity matrix and Ni is the ni × ni nilpotent
matrix given by

Ni =

⎡
⎢⎢⎢⎢⎣

0 1 · · · 0
...

. . . . . .
...

...
. . . 1

0 · · · · · · 0

⎤
⎥⎥⎥⎥⎦
. (3.36)

Since λk+iIi and Ni commute, we have that

eJit = eλk+iteNit. (3.37)

Repeated multiplication of Ni by itself results in Nk
i = 0 for all k ≥ ni.

Therefore, the series defining etNi terminates, resulting in

etJi = eλk+it

⎡
⎢⎢⎢⎣

1 t · · · tni−1/(ni − 1)!
0 1 · · · tni−2/(ni − 2)!
...

...
. . .

...
0 0 · · · 1

⎤
⎥⎥⎥⎦ , i = 1, . . . , s. (3.38)

It now follows that the solution of (3.23) is given by

φ(t, t0, x0) = P

⎡
⎢⎢⎢⎣

eJ0(t−t0) 0 · · · 0
0 eJ1(t−t0) · · · 0
...

...
. . .

...
0 0 eJs(t−t0)

⎤
⎥⎥⎥⎦P

−1x0. (3.39)

Example 3.15. In system (3.23), let A =
[
−1 2

0 1

]
. The eigenvalues of A are

λ1 = −1 and λ2 = 1, and corresponding eigenvectors for A are given by

v1 = (1, 0)T and v2 = (1, 1)T , respectively. Then P = [v1, v2] =
[

1 1
0 1

]
, P−1 =

[
1 −1
0 1

]
, and J = P−1AP =

⎡
⎣ 1 −1

0 1

⎤
⎦
⎡
⎣−1 2

0 1

⎤
⎦
⎡
⎣ 1 1

0 1

⎤
⎦=

⎡
⎣−1 0

0 1

⎤
⎦=

⎡
⎣ λ1 0

0 λ2

⎤
⎦, as ex-

pected. We obtain eAt = PeJtP−1 =
⎡
⎣ 1 1

0 1

⎤
⎦
⎡
⎣ e

−t 0
0 et

⎤
⎦
⎡
⎣ 1 −1

0 1

⎤
⎦=

⎡
⎣ e

t et − e−t

0 et

⎤
⎦.
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Suppose next that in (3.23) the matrix A is either in companion form
or that it has been transformed into this form via some suitable similarity
transformation P , so that A = Ac, where

Ac =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1

⎤
⎥⎥⎥⎥⎥⎦
. (3.40)

Since in this case we have xi+1 = ẋi, i = 1, . . . , n− 1, it should be clear that
in the calculation of eAt we need to determine, via some method, only the
first row of eAt. We demonstrate this by means of a specific example.

Example 3.16. In system (3.23), assume that A = Ac =
[

0 1
−2 −3

]
, which

is in companion form. To demonstrate the above observation, let us com-
pute eAt by some other method, say diagonalization. The eigenvalues of A
are λ1 = −1 and λ2 = −2, and a set of corresponding eigenvectors is given

by v1 = (1,−1)T and v2 = (1,−2)T . We obtain P = [v1, v2] =
[

1 1
−1 −2

]
,

P−1 =
[

2 1
−1 −1

]
and J = P−1AcP =

[
−1 0

0 −2

]
, eAt = PeJtP−1 =

⎡
⎣ 1 1
−1 −2

⎤
⎦
⎡
⎣ e

−t 0
0 e−2t

⎤
⎦
⎡
⎣ 2 1
−1 −1

⎤
⎦ =

[
(2e−t − e−2t) (e−t − e−2t)

(−2e−t + 2e−2t) (−e−t + 2e−2t)

]
. Note

that the second row of the above matrix is the derivative of the first row,
as expected.

The Cayley–Hamilton Theorem Method

If α(λ) = det(λI − A) is the characteristic polynomial of an n × n matrix
A, we have that α(A) = 0, in view of the Cayley–Hamilton Theorem; i.e.,
every n× n matrix satisfies its characteristic equation (refer to Sections A.5
and A.6). Using this result, along with the series definition of the matrix
exponential eAt, it is easily shown that

eAt =
n−1∑
i=0

αi(t)Ai (3.41)

[Refer to Sections A.5 and A.6 for the details on how to determine the terms
αi(t).]
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The Laplace Transform Method

We assume that the reader is familiar with the basics of the (one-sided)
Laplace transform. If f(t) = [f1(t), . . . , fn(t)]T , where fi : [0,∞) → R,
i = 1, . . . , n, and if each fi is Laplace transformable, then we define the Laplace
transform of the vector f component-wise; i.e., f̂(s) = [f̂1(s), . . . , f̂n(s)]T ,
where f̂i(s) = L[fi(t)] �

∫∞
0 fi(t)e−stdt.

We define the Laplace transform of a matrix C(t) = [cij(t)] similarly. Thus,
if each cij : [0,∞) → R and if each cij is Laplace transformable, then the
Laplace transform of C(t) is defined as Ĉ(s) = L[cij(t)] = [Lcij(t)] = [ĉij(s)].

Laplace transforms of some of the common time signals are enumerated
in Table 3.1. Also, in Table 3.2 we summarize some of the more important
properties of the Laplace transform. In Table 3.1, δ(t) denotes the Dirac delta
distribution (see Subsection 2.4.3) and p(t) represents the unit step function.

Table 3.1. Laplace transforms

f(t)(t ≥ 0) f̂(s) = L[f(t)]

δ(t) 1
p(t) 1/s

tk/k! 1/sk+1

e−at 1/(s + a)

tke−at k!/(s + a)k+1

e−at sin bt b/[(s + a)2 + b2]
e−at cos bt (s + a)/[(s + a)2 + b2]

Table 3.2. Laplace transform properties

Time different- df(t)/dt sf̂(s) − f(0)
iation dkf(t)/dtk

sk f̂(s)−[sk−1f(0)+···+f(k−1)(0)]

Frequency shift e−atf(t) f̂(s + a)

Time shift f(t − a)p(t− a), a > 0 e−asf̂(s)

Scaling f(t/α), α > 0 αf̂(αs)

Convolution
∫ t

0
f(τ )g(t− τ )dτ = f(t) ∗ g(t) f̂(s)ĝ(s)

Initial value limt→0+ f(t) = f(0+) lims→∞ sf̂(s)†

Final value limt→∞ f(t) lims→0 sf̂(s)‡

† If the limit exists.
‡ If sf̂(s) has no singularities on the imaginary axis or in the right half s plane.

Now consider once more the initial-value problem (3.23), letting t0 = 0;
i.e.,
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ẋ = Ax, x(0) = x0. (3.42)

Taking the Laplace transform of both sides of ẋ = Ax, and taking into account
the initial condition x(0) = x0, we obtain sx̂(s)−x0 = Ax̂(s), (sI −A)x̂(s) =
x0, or

x̂(s) = (sI −A)−1x0. (3.43)

It can be shown by analytic continuation that (sI−A)−1 exists for all s, except
at the eigenvalues of A. Taking the inverse Laplace transform of (3.43), we
obtain the solution

φ(t) = L−1[(sI −A)−1]x0 = Φ(t, 0)x0 = eAtx0. (3.44)

It follows from (3.42) and (3.44) that Φ̂(s) = (sI −A)−1 and that

Φ(t, 0) � Φ(t− 0) = Φ(t) = L−1[(sI −A)−1] = eAt. (3.45)

Finally, note that when t0 �= 0, we can immediately compute Φ(t, t0) = Φ(t−
t0) = eA(t−t0).

Example 3.17. In (3.42), let A =
[
−1 2

0 1

]
. Then

(sI −A)−1 =
[
s+ 1 −2

0 s− 1

]−1

=
[ 1
s+1

2
(s+1)(s−1)

0 1
s−1

]
=

[
1
s+1

(
1
s−1 − 1

s+1

)

0 1
s−1

]
.

Using Table 3.1, we obtain L−1[(sI −A)−1] = eAt =
[
e−t (et − e−t)
0 et

]
.

Before concluding this subsection, we briefly consider initial-value prob-
lems described by

ẋ = Ax+ g(t), x(t0) = x0. (3.46)

We wish to apply the Laplace transform method discussed above in solving
(3.46). To this end we assume t0 = 0 and we take the Laplace transform of both
sides of (3.46) to obtain sx̂(s)− x0 = Ax̂(s) + ĝ(s), (sI −A)x̂(s) = x0 + ĝ(s),
or

x̂(s) = (sI −A)−1x0 + (sI −A)−1ĝ(s)

= Φ̂(s)x0 + Φ̂(s)ĝ(s)

� φ̂h(s) + φ̂p(s). (3.47)

Taking the inverse Laplace transform of both sides of (3.47) and using (3.18)
with t0 = 0, we obtain φ(t) = φh(t) +φp(t) = L−1[(sI −A)−1]x0 +L−1[(sI −
A)−1ĝ(s)] = Φ(t)x0 +

∫ t
0 Φ(t − η)g(η)dη, where φh denotes the homogeneous

solution and φp is the particular solution, as expected.
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Example 3.18. Consider the initial-value problem given by

ẋ1 = −x1 + x2,

ẋ2 = −2x2 + u(t),

with x1(0) = −1, x2(0) = 0, and

u(t) =

{
1 for t > 0,
0 for t ≤ 0.

It is easily verified that in this case

Φ̂(s) =

[
1
s+1

(
1
s+1 − 1

s+2

)

0 1
s+2

]
,

Φ(t) =
[
e−t (e−t − e−2t)
0 e−2t

]
,

φh(t) =
[
e−t (e−t − e−2t)
0 e−t

] [
−1

0

]
=
[
−e−t

0

]
,

φ̂p(s) =

[
1
s+1

(
1
s+1 − 1

s+2

)

0 1
s+2

][
0
1
s

]
=

⎡
⎣

1
2

(
1
s

)
+ 1

2

(
1
s+2

)
− 1

s+1

1
2

(
1
s

)
− 1

2

(
1
s+2

)
⎤
⎦ ,

φp(t) =
[

1
2 + 1

2e
−2t − e−t

1
2 − 1

2e
−2t

]
,

and

φ(t) = φh(t) + φp(t) =
[

1
2 − 2e−t + 1

2e
−2t

1
2 − 1

2e
−2t

]
.

3.3.3 Modes, Asymptotic Behavior, and Stability

In this subsection we study the qualitative behavior of the solutions of ẋ = Ax
by means of the modes of such systems, to be introduced shortly. Although we
will not address the stability of systems in detail until Chapter 4, the results
here will enable us to give some general stability characterizations for such
systems.

Modes: General Case

We begin by recalling that the unique solution of

ẋ = Ax, (3.48)
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satisfying x(0) = x0, is given by

φ(t, 0, x0) = Φ(t, 0)x(0) = Φ(t, 0)x0 = eAtx0. (3.49)

We also recall that det(sI − A) =
∏σ
i=1(s − λi)ni , where λ1, . . . , λσ denote

the σ distinct eigenvalues of A, where λi with i = 1, . . . , σ, is assumed to be
repeated ni times (i.e., ni is the algebraic multiplicity of λi), and Σσ

i=1ni = n.
To introduce the modes for (3.48), we must show that

eAt =
σ∑
i=1

ni−1∑
k=0

Aikt
keλit

=
σ∑
i=1

[Ai0eλit +Ai1te
λit + · · · +Ai(ni−1)t

ni−1eλit], (3.50)

where

Aik =
1
k!

1
(ni − 1 − k)!

lim
s→λi

[[(s− λi)ni(sI −A)−1](ni−1−k)]. (3.51)

In (3.51), [·](l) denotes the lth derivative with respect to s.
Equation (3.50) shows that eAt can be expressed as the sum of terms of

the form Aikt
keλit, where Aik ∈ Rn×n. We call Aiktkeλit a mode of system

(3.48). If an eigenvalue λi is repeated ni times, there are ni modes, Aiktkeλit,
k = 0, 1, . . . , ni−1, in eAt associated with λi. Accordingly, the solution (3.49)
of (3.48) is determined by the n modes of (3.48) corresponding to the n eigen-
values of A and by the initial condition x(0). We note that by selecting x(0)
appropriately, modes can be combined or eliminated [Aikx(0) = 0], thus af-
fecting the behavior of φ(t, 0, x0).

To verify (3.50) we recall that eAt = L−1[(sI − A)−1] and we make use
of the partial fraction expansion method to determine the inverse Laplace
transform. As in the scalar case, it can be shown that

(sI −A)−1 =
σ∑
i=1

ni−1∑
k=0

(k!Aik)(s− λi)−(k+1), (3.52)

where the (k!Aik) are the coefficients of the partial fractions (k! is for scaling).
It is known that these coefficients can be evaluated for each i by multiplying
both sides of (3.52) by (s − λi)ni , differentiating (ni − 1 − k) times with
respect to s, and then evaluating the resulting expression at s = λi. This
yields (3.51). Taking the inverse Laplace transform of (3.52) and using the
fact that L[tkeλit] = k!(s− λi)−(k+1) (refer to Table 3.1) results in (3.50).

When all n eigenvalues λi ofA are distinct, then σ = n, ni = 1, i = 1, . . . , n,
and (3.50) reduces to the expression

eAt =
n∑
i=1

Aie
λit, (3.53)
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where
Ai = lim

s→λi

[(s− λi)(sI −A)−1]. (3.54)

Expression (3.54) can also be derived directly, using a partial fraction expan-
sion of (sI −A)−1 given in (3.52).

Example 3.19. For (3.48) we let A =
[

0 1
−4 −4

]
, for which the eigenvalue

λ1 = −2 is repeated twice; i.e., n1 = 2. Applying (3.50) and (3.51), we obtain

eAt = A10e
λ1t +A11te

λ1t =
[

1 0
0 1

]
e−2t +

[
2 1

−4 −2

]
te−2t.

Example 3.20. For (3.48) we let A =
[

0 1
−1 −1

]
, for which the eigenvalues

are given by (the complex conjugate pair) λ1 = − 1
2 + j

√
3

2 , λ2 = − 1
2 − j

√
3

2 .
Applying (3.53) and (3.54), we obtain

A1 =
1

λ1 − λ2

[
λ1 + 1 1
−1 λ1

]
=

1
j
√

3

[
1
2 + j

√
3

2 1
−1 − 1

2 + j
√

3
2

]

A2 =
1

λ2 − λ1

[
λ2 + 1 1
−1 λ2

]
=

1
−j

√
3

[
1
2 − j

√
3

2 1
−1 − 1

2 − j
√

3
2

]

[i.e., A1 = A∗
2, where (·)∗ denotes the complex conjugate of (·)], and

eAt = A1e
λ1t +A2e

λ2t = A1e
λ1t +A∗

1e
λ∗
1t

= 2(ReA1)(Re eλ1t) − 2(ImA1)(Im eλ1t)

= 2e−
1
2 t

[[
1
2 0
0 − 1

2

]
cos

√
3

2
t−

[
− 1

2
√

3
− 1√

3
1√
3

1
2
√

3

]
sin

(√
3

2
t

)]
.

The last expression involves only real numbers, as expected, since A and eAt

are real matrices.

Example 3.21. For (3.48) we let A =
[

1 0
0 1

]
, for which the eigenvalue λ1 = 1

is repeated twice; i.e., n1 = 2. Applying (3.50) and (3.51), we obtain

eAt = A10e
λ1t +A11te

λ1t =
[

1 0
0 1

]
et +

[
0 0
0 0

]
tet = Iet.

This example shows that not all modes of the system are necessarily present
in eAt. What is present depends in fact on the number and dimensions of the
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individual blocks of the Jordan canonical form of A corresponding to identi-

cal eigenvalues. To illustrate this further, we let for (3.48), A =
[

1 1
0 1

]
, where

the two repeated eigenvalues λ1 = 1 belong to the same Jordan block. Then

eAt =
[

1 0
0 1

]
et +

[
0 1
0 0

]
tet.

Stability of an Equilibrium

In Chapter 4 we will study the qualitative properties of linear dynamical sys-
tems, including systems described by (3.48). This will be accomplished by
studying the stability properties of such systems or, more specifically, the sta-
bility properties of an equilibrium of such systems.

If φ(t, 0, xe) denotes the solution of system (3.48) with x(0) = xe, then xe
is said to be an equilibrium of (3.48) if φ(t, 0, xe) = xe for all t ≥ 0. Clearly,
xe = 0 is an equilibrium of (3.48). In discussing the qualitative properties, it
is often customary to speak, somewhat loosely, of the stability properties of
system (3.48), rather than the stability properties of the equilibrium xe = 0
of system (3.48).

We will show in Chapter 4 that the following qualitative characterizations
of system (3.48) are actually equivalent to more fundamental qualitative char-
acterizations of the equilibrium xe = 0 of system (3.48):

1. The system (3.48) is said to be stable if all solutions of (3.48) are bounded
for all t ≥ 0 [i.e., for any φ(t, 0, x0) = (φ1(t, 0, x0), . . . , φn(t, 0, x0))T of
(3.48), there exist constantsMi, i = 1, . . . , n (which in general will depend
on the solution on hand) such that |φi(t, 0, x0)| < Mi for all t ≥ 0].

2. The system (3.48) is said to be asymptotically stable if it is stable and
if all solutions of (3.48) tend to the origin as t tends to infinity [i.e., for
any solution φ(t, 0, x0) = (φ1(t, 0, x0), . . . , φn(t, 0, x0))T of (3.48), we have
limt→∞ φi(t, 0, x0) = 0, i = 1, . . . , n].

3. The system (3.48) is said to be unstable if it is not stable.

By inspecting the modes of (3.48) given by (3.50), (3.51) and (3.53), (3.54),
the following stability criteria for system (3.48) are now evident:

1. The system (3.48) is asymptotically stable if and only if all eigenvalues of
A have negative real parts (i.e., Reλj < 0, j = 1, . . . , n).

2. The system (3.48) is stable if and only if Reλj ≤ 0, j = 1, . . . , n, and for
all eigenvalues with Reλj = 0 having multiplicity nj > 1, it is true that

lim
s→λj

[(s− λj)nj (sI −A)−1](nj−1−k) = 0, k = 1, . . . , nj − 1. (3.55)

3. System (3.48) is unstable if and only if (2) is not true.
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We note in particular that if Reλj = 0 and nj > 1, then there will be
modes Ajktk, k = 0, . . . , nj−1 that will yield terms in (3.50) whose norm will
tend to infinity as t → ∞, unless their coefficients are zero. This shows why
the necessary and sufficient conditions for stability of (3.48) include condition
(3.55).

Example 3.22. The systems in Examples 3.19 and 3.20 are asymptotically

stable. A system (3.48) with A =
[

0 1
0 −1

]
is stable, since the eigenvalues of

A above are λ1 = 0, λ2 = −1. A system (3.48) with A =
[
−1 0

0 1

]
is unstable

since the eigenvalues of A are λ1 = 1, λ2 = −1. The system of Example 3.21
is also unstable.

Modes: Distinct Eigenvalue Case

When the eigenvalues λi of A are distinct, there is an alternative way to
(3.54) of computing the matrix coefficients Ai, expressed in terms of the cor-
responding right and left eigenvectors of A. This method offers great insight
into questions concerning the presence or absence of modes in the response of
a system. Specifically, if A has n distinct eigenvalues λi, then

eAt =
n∑
i=1

Aie
λit, (3.56)

where
Ai = viṽi, (3.57)

where vi ∈ Rn and (ṽi)T ∈ Rn are right and left eigenvectors of A correspond-
ing to the eigenvalue λi, respectively.

To prove the above assertions, we recall that (λiI−A)vi = 0 and ṽi(λiI −
A) = 0. If Q � [v1, . . . , vn], then the ṽi are the rows of

P = Q−1 =

⎡
⎢⎣
ṽ1
...
ṽn

⎤
⎥⎦ .

The matrix Q is of course nonsingular, since the eigenvalues λi, i =
1, . . . , n, are by assumption distinct and since the corresponding eigenvec-
tors are linearly independent. Notice that Q diag[λ1, . . . , λn] = AQ and that
diag[λ1, . . . , λn]P = PA. Also, notice that ṽivj = δij , where

δij =

{
1 when i = j,

0 when i �= j .



3.3 The Matrix Exponential eAt, Modes, Asymptotic Behavior of ẋ = Ax 99

In view of this, we now have (sI −A)−1 = [sI −Q diag[λ1, . . . , λn]Q−1]−1 =
Q[sI − diag[λ1, · · · , λn]]−1Q−1 = Q diag[(s − λ1)−1, . . . , (s − λn)−1]Q−1 =∑n

i=1 viṽi(s − λi)−1. If we take the inverse Laplace transform of the above
expression, we obtain (3.56).

If we choose the initial value x(0) for (3.48) to be colinear with an eigen-
vector vj of A [i.e., x(0) = αvj for some real α �= 0], then eλjt is the only
mode that will appear in the solution φ of (3.48). This can easily be seen from
our preceding discussion. In particular if x(0) = αvj , then (3.56) and (3.57)
yield

φ(t, 0, x(0)) = eAtx(0) = v1ṽ1x(0)eλ1t + · · ·+ vnṽnx(0)eλnt = αvje
λjt (3.58)

since ṽivj = 1 when i = j, and ṽivj = 0 otherwise.

Example 3.23. In (3.48) we let A =
[
−1 1

0 1

]
. The eigenvalues of A are given

by λ1 = −1 and λ2 = 1 and Q = [v1, v2] =
[

1 1
0 2

]
, Q−1 =

[
ṽ1
ṽ2

]
=
[

1 −1/2
0 1/2

]
.

Then eAt = v1ṽ1e
λ1t + v2ṽ2e

λ2t =
[

1 −1/2
0 0

]
e−t+

[
0 1/2
0 1

]
et. If in particular

we choose x(0) = αv1 = (α, 0)T , then φ(t, 0, x(0)) = eAtx(0) = α(1, 0)T e−t,
which contains only the mode corresponding to the eigenvalue λ1 = −1. Thus,
for this particular choice of initial vector, the unstable behavior of the system
is suppressed.

Remark

We conclude our discussion of modes and asymptotic behavior by briefly con-
sidering systems of linear, nonhomogeneous, ordinary differential equations
ẋ = Ax+ g(t) in (3.2) for the special case where g(t) = Bu(t),

ẋ = Ax +Bu, (3.59)

where B ∈ Rn×m, u : R → Rm, and where it is assumed that the Laplace
transform of u exists. Taking the Laplace transform of both sides of (3.59)
and rearranging yields

x̂(s) = (sI −A)−1x(0) + (sI −A)−1Bû(s). (3.60)

By taking the inverse Laplace transform of (3.60), we see that the solution
φ is the sum of modes that correspond to the singularities or poles of (sI −
A)−1x(0) and of (sI − A)−1Bû(s). If in particular (3.48) is asymptotically
stable (i.e., for ẋ = Ax,Reλi < 0, i = 1, . . . , n) and if u in (3.59) is bounded
(i.e., there is an M such that |ui(t)| < M for all t ≥ 0, i = 1, . . . ,m), then it is
easily seen that the solutions of (3.59) are bounded as well. Thus, the fact that
the system (3.48) is asymptotically stable has repercussions on the asymptotic
behavior of the solution of (3.59). Issues of this type will be addressed in
greater detail in Chapter 4.
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3.4 State Equation and Input–Output Description of
Continuous-Time Systems

This section consists of three subsections. We first study the response of lin-
ear continuous-time systems. Next, we examine transfer functions of linear
time-invariant systems, given the state equations of such systems. Finally, we
explore the equivalence of internal representations of systems.

3.4.1 Response of Linear Continuous-Time Systems

We consider once more systems described by linear equations of the form

ẋ = Ax+Bu, (3.61a)
y = Cx+Du, (3.61b)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and u : R → Rm is
assumed to be continuous or piecewise continuous. We recall that in (3.61),
x denotes the state vector, u denotes the system input, and y denotes the
system output. From Section 2.2 we recall that for given initial conditions
t0 ∈ R, x(t0) = x0 ∈ Rn and for a given input u, the unique solution of
(3.61a) is given by

φ(t, t0, x0) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, s)Bu(s)ds (3.62)

for t ∈ R, where Φ denotes the state transition matrix of A. Furthermore,
by substituting (3.62) into (3.61b), we obtain, for all t ∈ R, the total system
response given by

y(t) = CΦ(t, t0)x0 + C

∫ t

t0

Φ(t, s)Bu(s)ds+Du(t). (3.63)

Recall that the total response (3.63) may be viewed as consisting of the sum
of two components, the zero-input response given by the term

ψ(t, t0, x0, 0) = CΦ(t, t0)x0 (3.64)

and the zero-state response given by the term

ρ(t, t0, 0, u) = C

∫ t

t0

Φ(t, s)Bu(s)ds +Du(t). (3.65)

The cause of the former is the initial condition x0 [and can be obtained from
(3.63) by letting u(t) ≡ 0], whereas for the latter the cause is the input u [and
can be obtained by setting x0 = 0 in (3.63)].
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The zero-state response can be used to introduce the impulse response of
the system (3.61). We recall from Subsection 2.4.3 that by using the Dirac
delta distribution δ, we can rewrite (3.63) with x0 = 0 as

y(t) =
∫ t

t0

[CΦ(t, τ)B +Dδ(t− τ)]u(τ)dτ

=
∫ t

t0

H(t, τ)u(τ)dτ, (3.66)

where H(t, τ) denotes the impulse response matrix of system (3.61) given by

H(t, τ) =

{
CΦ(t, τ)B +Dδ(t− τ), t ≥ τ,

0, t < τ.
(3.67)

Now recall that
Φ(t, t0) = eA(t−t0). (3.68)

The solution of (3.61a) is thus given by

φ(t, t0, x0) = eA(t−t0)x0 +
∫ t

t0

eA(t−s)Bu(s)ds, (3.69)

the total response of system (3.61) is given by

y(t) = CeA(t−t0)x0 + C

∫ t

t0

eA(t−s)Bu(s)ds+Du(t) (3.70)

and the zero-state response of (3.61), is given by y(t) =
∫ t
t0

[CeA(t−τ)B+

Dδ(t−τ)]u(τ)dτ =
∫ t
t0
H(t, τ)u(τ)dτ =

∫ t
t0
H(t−τ)u(τ)dτ , where the impulse

response matrix H of system (3.61) is given by

H(t− τ) =

{
CeA(t−τ)B +Dδ(t− τ), t ≥ τ,

0, t < τ,
(3.71)

or, as is more commonly written,

H(t) =

{
CeAtB +Dδ(t), t ≥ 0,
0, t < 0.

(3.72)

At this point it may be worthwhile to consider some specific cases.

Example 3.24. In (3.61), let A =
[

0 1
0 0

]
, B =

[
0
1

]
, C = [0, 1], D = 0 and

consider the case when t0 = 0, x(0) = (1,−1)T , u is the unit step, and t ≥ 0.
We can easily compute the solution of (3.61a) as
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φ(t, t0, x0) = φh(t, t0, x0) + φp(t, t0, x0) =
[

1 − t
−1

]
+
[

1
2 t

2

t

]

with t0 = 0 and for t ≥ 0. The total system response y(t) = Cx(t) is given by
the sum of the zero-input response and the zero-state response, y(t, t0, x0, u) =
ψ(t, t0, x0, 0) + ρ(t, t0, 0, u) = −1 + t, t ≥ 0.

Example 3.25. Consider the time-invariant system given above in Exam-
ple 3.24. It is easily verified that in the present case

Φ(t) = eAt =
[

1 t
0 1

]
.

Then H(t, τ) = CeA(t−τ)B = 1 for t ≥ τ and H(t, τ) = 0 for t < τ . Thus, the
response of this system to an impulse input for zero initial conditions is the
unit step.

As one might expect, external descriptions of finite-dimensional linear sys-
tems are not as complete as internal descriptions of such systems. Indeed, the
utility of impulse responses is found in the fact that they represent the input–
output relations of a system quite well, assuming that the system is at rest.
To describe other dynamic behavior, one needs in general additional informa-
tion [e.g., the initial state vector (or perhaps the history of the system input
since the last time instant when the system was at rest) as well as the internal
structure of the system].

Internal descriptions, such as state-space representations, constitute more
complete descriptions than external descriptions. However, the latter are sim-
pler to apply than the former. Both types of representations are useful. It is
quite straightforward to obtain external descriptions of systems from internal
descriptions, as was demonstrated in this section. The reverse process, how-
ever, is not quite as straightforward. The process of determining an internal
system description from an external description is called realization and will
be addressed in Chapter 8. The principal issue in system realization is to ob-
tain minimal order internal descriptions that model a given system, avoiding
the generation of unnecessary dynamics.

3.4.2 Transfer Functions

Next, if as in [(2.95) in Chapter 2], we take the Laplace transform of (3.71),
we obtain the input–output relation

ŷ(s) = Ĥ(s)û(s). (3.73)

We recall from Section 2.4 that Ĥ(s) is called the transfer function matrix
of system (3.61). We can evaluate this matrix in a straightforward manner
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by first taking the Laplace transform of both sides of (3.61a) and (3.61b) to
obtain

sx̂(s) − x(0) = Ax̂(s) +Bû(s), (3.74)
ŷ(s) = Cx̂(s) +Dû(s). (3.75)

Using (3.74) to solve for x̂(s), we obtain

x̂(s) = (sI −A)−1x(0) + (sI −A)−1Bû(s). (3.76)

Substituting (3.76) into (3.75) yields

ŷ(s) = C(sI −A)−1x(0) + C(sI −A)−1Bû(s) +Dû(s) (3.77)

and

y(t) = L−1ŷ(s) = CeAtx(0) + C

∫ t

0

eA(t−s)Bu(s)ds+Du(t), (3.78)

as expected.
If in (3.77) we let x(0) = 0, we obtain the Laplace transform of the zero-

state response given by

ŷ(s) = [C(sI −A)−1B +D]û(s)

= Ĥ(s)û(s), (3.79)

where Ĥ(s) denotes the transfer function of system (3.61), given by

Ĥ(s) = C(sI −A)−1B +D. (3.80)

Recalling that L[eAt] = Φ(s) = (sI−A)−1 [refer to (3.45)], we could of course
have obtained (3.80) directly by taking the Laplace transform of H(t) given
in (3.73).

Example 3.26. In Example 3.24, let t0 = 0 and x(0) = 0. Then

Ĥ(s) = C(sI −A)−1B +D = [0, 1]
[
s −1
0 s

]−1 [ 0
1

]

= [0, 1]
[

1/s 1/s2

0 1/s

] [
0
1

]
= 1/s

and H(t) = L−1Ĥ(s) = 1 for t ≥ 0, as expected (see Example 3.24).
Next, as in Example 3.24, let x(0) = (1,−1)T and let u be the unit step.

Then ŷ(s) = C(sI − A)−1x(0) + Ĥ(s)û(s) = [0, 1/s](1,−1)T + (1/s)(1/s) =
−1/s + 1/s2 and y(t) = L−1[ŷ(s)] = −1 + t for t ≥ 0, as expected (see
Example 3.24).
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We note that the eigenvalues of the matrix A in Example 3.26 are the roots
of the equation det(sI−A) = s2 = 0, and are given by s1 = 0, s2 = 0, whereas
the transfer function Ĥ(s) in this example has only one pole (the zero of its
denominator polynomial), located at the origin. It will be shown in Chapter 8
(on realization) that the poles of the transfer function Ĥ(s) (of a SISO system)
are in general a subset of the eigenvalues of A. In Chapter 5 we will introduce
and study two important system theoretic concepts, called controllability and
observability. We will show in Chapter 8 that the eigenvalues of A are precisely
the poles of the transfer function Ĥ(s) = C(sI − A)−1B + D if and only if
the system (3.61) is observable and controllable. This is demonstrated in the
next example.

Example 3.27. In (3.61), let A =
[

0 1
−1 −2

]
, B =

[
0
1

]
, C = [−3, 3], D = 0.

The eigenvalues of A are the roots of the equation det(sI−A) = s2 +2s+1 =
(s+1)2 = 0 given by s1 = −1, s2 = −1, and the transfer function of this SISO
system is given by

Ĥ(s) = C(sI −A)−1B +D = [−3, 3]
[
s −1
1 s+ 2

]−1 [ 0
1

]

= 3[−1, 1]
1

(s+ 1)2

[
s+ 2 1
−1 s

] [
0
1

]
=

3(s− 1)
(s+ 1)2

,

with poles (the zeros of the denominator polynomial) also given by s1 =
−1, s2 = −1.

If in Example 3.27 we replace B = [0, 1]T and D = 0 by B =
[

0 −1/2
1 1/2

]

and D = [0, 0], then we have a multi-input system whose transfer function is
given by

Ĥ(s) =
[
3(s− 1)
(s+ 1)2

,
3

(s+ 1)

]
.

The concepts of poles and zeros for MIMO systems (also called multivariable
systems) will be introduced in Chapter 7. The determination of the poles of
such systems is not as straightforward as in the case of SISO systems. It turns
out that in the present case the poles of Ĥ(s) are s1 = −1, s2 = −1, the same
as the eigenvalues of A.

Before proceeding to our next topic, the equivalence of internal representa-
tions, an observation concerning the transfer function Ĥ(s) of system (3.61),
given by (3.80), Ĥ(s) = C(sI − A)−1B +D is in order. Since the numerator
matrix polynomial of (sI − A)−1 is of degree (n − 1), while its denominator
polynomial, the characteristic polynomial α(s) of A, is of degree n, it is clear
that
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lim
s→∞ Ĥ(s) = D,

a real-valued m× n matrix, and in particular, when the direct link matrix D
in the output equation (3.61b) is zero, then

lim
s→∞ Ĥ(s) = 0,

the m× n matrix with zeros as its entries. In the former case (when D �= 0),
Ĥ(s) is said to be a proper transfer function, whereas in the latter case (when
D = 0), Ĥ(s) is said to be a strictly proper transfer function.

When discussing the realization of transfer functions by state-space de-
scriptions (in Chapter 8), we will study the properties of transfer functions in
greater detail. In this connection, there are also systems that can be described
by models corresponding to transfer functions Ĥ(s) that are not proper. The
differential equation representation of a differentiator (or an inductor) given
by y(t) = (d/dt)u(t) is one such example. Indeed, in this case the system
cannot be represented by (3.61) and the transfer function, given by Ĥ(s) = s
is not proper. Such systems will be discussed in Chapter 10.

3.4.3 Equivalence of State-Space Representations

In Subsection 3.3.2 it was shown that when a linear, autonomous, homoge-
neous system of first-order ordinary differential equations ẋ = Ax is subjected
to an appropriately chosen similarity transformation, the resulting set of equa-
tions may be considerably easier to use and may exhibit latent properties of
the system of equations. It is therefore natural that we consider a similar
course of action in the case of the linear systems (3.61).

We begin by letting
x̃ = Px, (3.81)

where P is a real, nonsingular matrix (i.e., P is a similarity transformation).
Consistent with what has been said thus far, we see that such transformations
bring about a change of basis for the state space of system (3.61). Application
of (3.81) to this system will result, as will be seen, in a system description
of the same form as (3.61), but involving different state variables. We will
say that the system (3.61), and the system obtained by subjecting (3.61) to
the transformation (3.81), constitute equivalent internal representations of an
underlying system. We will show that equivalent internal representations (of
the same system) possess identical external descriptions, as one would expect,
by showing that they have identical impulse responses and transfer function
matrices. In connection with this discussion, two important notions called
zero-input equivalence and zero-state equivalence of a system will arise in a
natural manner.

If we differentiate both sides of (3.81), and if we apply x = P−1x̃ to (3.61),
we obtain the equivalent internal representation of (3.61) given by
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˙̃x = Ãx̃+ B̃u, (3.82a)

y = C̃x̃+ D̃u, (3.82b)

where
Ã = PAP−1, B̃ = PB, C̃ = CP−1, D̃ = D (3.83)

and where x̃ is given by (3.81). It is now easily verified that the system (3.61)
and the system (3.82) have the same external representation. Recall that for
(3.61) and for (3.82), we have for the impulse response

H(t, τ) � H(t− τ, 0) =

{
CeA(t−τ)B +Dδ(t− τ), t ≥ τ,

0, t < τ,
(3.84)

and

H̃(t, τ) � H̃(t− τ, 0) =

{
C̃eÃ(t−τ)B̃ + D̃δ(t− τ), t ≥ τ,

0, t < τ.
(3.85)

Recalling from Subsection 3.3.2 [see (3.25)] that

eÃ(t−τ) = PeA(t−τ)P−1, (3.86)

we obtain from (3.83)–(3.85) that C̃eÃ(t−τ)B̃+D̃δ(t−τ)=CP−1PeA(t−τ)P−1PB+

Dδ(t−τ)=CeA(t−τ)B+Dδ(t−τ), which proves, in view of (3.84) and (3.85), that

H̃(t, τ) = H(t, τ), (3.87)

and this in turn shows that

̂̃
H(s) = Ĥ(s). (3.88)

This last relationship can also be verified by observing that ̂̃H(s) = C̃(sI −
Ã)−1B̃+ D̃ = CP−1(sI −PAP−1)−1PB+D = CP−1P (sI −A)−1P−1PB+
D = C(sI −A)−1B +D = Ĥ(s).

Next, recall that in view of (3.70) we have for (3.61) that

y(t) = CeA(t−t0)x0 +
∫ t

t0

H(t− τ, 0)u(τ)dτ

= ψ(t, t0, x0, 0) + ρ(t, t0, 0, u) (3.89)

and for (3.82) that

y(t) = C̃eÃ(t−t0)x̃0 +
∫ t

t0

H̃(t− τ, 0)u(τ)dτ

= ψ̃(t, t0, x̃0, 0) + ρ̃(t, t0, 0, u) (3.90)
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where ψ and ψ̃ denote the zero-input response of (3.61) and (3.82), respec-
tively, whereas ρ and ρ̃ denote the zero-state response of (3.61) and (3.82),
respectively. The relations (3.89) and (3.90) give rise to the following con-
cepts: Two state-space representations are zero-state equivalent if they give
rise to the same impulse response (the same external description). Also, two
state-space representations are zero-input equivalent if for any initial state
vector for one representation there exists an initial state vector for the second
representation such that the zero-input responses for the two representations
are identical.

The following result is now clear: If two state-space representations are
equivalent, then they are both zero-state and zero-input equivalent. They are
clearly zero-state equivalent since H(t, τ) = H̃(t, τ). Also, in view of (3.89)
and (3.90), we have C̃eÃ(t−t0)x̃0 = (CP−1)[PeA(t−t0)P−1]x̃0 = CeA(t−t0)x0,
where (3.86) was used. Therefore, the two state representations are also zero-
input equivalent.

The converse to the above result is in general not true, since there are
representations that are both zero-state and zero-input equivalent, yet not
equivalent. In Chapter 8, which deals with state-space realizations of transfer
functions, we will consider this topic further.

Example 3.28. System (3.61) with

A =
[

0 1
−2 −3

]
, B =

[
0
1

]
, C = [−1,−5], D = 1

has the transfer function

H(s) = C(sI −A)−1B +D =
−5s− 1

s2 + 3s+ 2
+ 1 =

(s− 1)2

(s+ 1)(s+ 2)
.

Using the similarity transformation

P =
[

1 1
−1 −2

]−1

=
[

2 1
−1 −1

]

yields the equivalent representation of the system given by

Ã = PAP−1 =
[
−1 0

0 −2

]
, B̃ = PB =

[
1

−1

]
, C̃ = CP−1 = [4, 9]

and D̃ = D = 1. Note that the columns of P−1, given by [1,−1]T and [1,−2]T ,
are eigenvectors of A corresponding to the eigenvalues λ1 = −1, λ2 = −2 of A;
that is, P was chosen to diagonalize A. Notice that A (which is in companion
form) has characteristic polynomial s2+3s+2 = (s+1)(s+2). Notice also that
the eigenvectors given above are of the form [1, λi]T , i = 1, 2. The transfer
function of the equivalent representation of the system is now given by
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ˆ̃
H(s) = C̃(sI − Ã)−1B̃ + D̃ = [4, 0]

[ 1
s+1 0
0 1

s+2

] [
1

−1

]
+ 1

=
−5s− 1

(s+ 1)(s+ 2)
+ 1 = H(s).

Finally, it is easily verified that eÃt = PeAtP−1.

From the above discussion it should be clear that systems [of the form
(3.61)] described by equivalent representations have identical behavior to the
outside world, since both their zero-input and zero-state responses are the
same. Their states, however, are in general not identical, but are related by
the transformation x̃(t) = Px(t).

3.5 State Equation and Input–Output Description of
Discrete-Time Systems

In this section, which consists of five subsections, we address the state equa-
tion and input–output description of linear discrete-time systems. In the first
subsection we study the response of linear time-invariant systems described
by the difference equations (2.15) [or (1.8)]. In the second subsection we con-
sider transfer functions for linear time-invariant systems, whereas in the third
subsection we address the equivalence of the internal representations of time-
invariant linear discrete-time systems [described by (2.15)]. Some of the most
important classes of discrete-time systems include linear sampled-data sys-
tems that we develop in the fourth subsection. In the final part of this sec-
tion, we address the modes and asymptotic behavior of linear time-invariant
discrete-time systems.

3.5.1 Response of Linear Discrete-Time Systems

We consider once again systems described by linear time-invariant equations
of the form

x(k + 1) = Ax(k) +Bu(k), (3.91a)
y(k) = Cx(k) +Du(k), (3.91b)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. We recall that in
(3.91), x denotes the state vector, u denotes the system input, and y denotes
the system output. For given initial conditions k0 ∈ Z, x(k0) = xk0 ∈ Rn and
for a given input u, equation (3.91a) possesses a unique solution x(k), which
is defined for all k ≥ k0, and thus, the response y(k) for (3.91b) is also defined
for all k ≥ k0.
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Associated with (3.91a) is the linear autonomous, homogeneous system of
equations given by

x(k + 1) = Ax(k). (3.92)

We recall from Section 2.3 that the solution of the initial-value problem

x(k + 1) = Ax(k), x(k0) = xk0 (3.93)

is given by
x(k) = Φ(k, k0)xk0 = Ak−k0xk0 , k > k0, (3.94)

where Φ(k, k0) denotes the state transition matrix of (3.92) with

Φ(k, k) = I (3.95)

[refer to (2.31) to (2.34) in Chapter 2].
Common properties of the state transition matrix Φ(k, l), such as for ex-

ample the semigroup property (forward in time) given by

Φ(k, l) = Φ(k,m)Φ(m, l), k ≥ m ≥ l,

can quite easily be derived from (3.94), (3.95). We caution the reader, how-
ever, that not all of the properties of the state transition matrix Φ(t, τ) for
continuous-time systems ẋ = Ax carry over to the discrete-time case (3.92).
In particular we recall that if for the continuous-time case we have t > τ , then
future values of the state φ at time t can be obtained from past values of the
state φ at time τ , and vice versa, from the relationships φ(t) = Φ(t, τ)φ(τ)
and φ(τ) = Φ−1(t, τ)φ(t) = Φ(τ, t)φ(t), i.e., for continuous-time systems a
principle of time reversibility exists. This principle is in general not true for
system (3.92), unless A−1(k) exists. The reason for this lies in the fact that
Φ(k, l) will not be nonsingular if A is not nonsingular.

Example 3.29. In (3.94), let A =
[

1 0
0 0

]
, x(0) =

[
1
α

]
, α ∈ R. The initial

state x(0) at k0 = 0 for any α ∈ R will map into the state x(1) =
[

1
0

]
.

Accordingly, in this case, time reversibility will not apply.

Example 3.30. In (3.93), let A =
[
−1 2

0 1

]
. In view of (3.94) we have that

A(k−k0) =
[

(−1)(k−k0) 1 − (−1)(k−k0)

0 1

]
, k ≥ k0; i.e., A(k−k0) = A when

(k − k0) is odd, and A(k−k0) = I when (k − k0) is even. Therefore, given

k0 = 0 and x(0) =
[

2
1

]
, then x(k) = Ax(0) =

[
0
1

]
, k = 1, 3, 5, . . . , and
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x(t)

x1

u1(t)

u2(t)

T1 T2 t0

Figure 3.1. Plots of states for Example 3.30

x(k) = Ix(0) =
[

2
1

]
, k = 2, 4, 6, . . . . A plot of the states x(k) = [x1(k), x2(k)]T

is given in Figure 3.1.

Continuing, we recall that the solutions of initial-value problems deter-
mined by linear nonhomogeneous systems (2.35) are given by expression
(2.36). Utilizing (2.36), the solution of (3.91a) for given x(k0) and u(k) is
given as

x(k) = Φ(k, k0)x(k0) +
k−1∑
j=k0

Φ(k, j + 1)Bu(j), k > k0. (3.96)

This expression in turn can be used to determine the system response for
system (3.91) as

y(k) = CΦ(k, k0)x(k0)

+
k−1∑
j=k0

CΦ(k, j + 1)Bu(j) +Du(k), k > k0,

y(k0) = Cx(k0) +Du(k0), (3.97)

or

y(k) = CA(k−k0)x(k0) +
k−1∑
j=k0

CAk−(j+1)Bu(j) +Du(k), k > k0,

y(k0) = Cx(k0) +Du(k0). (3.98)

Since the system (3.91) is time-invariant, we can let k0 = 0 without loss of
generality to obtain from (3.98) the expression

y(k) = CAkx(0) +
k−1∑
j=0

CAk−(j+1)Bu(j) +Du(k), k > 0. (3.99)
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As in the continuous-time case, the total system response (3.97) may be
viewed as consisting of two components, the zero-input response, given by

ψ(k) = CΦ(k, k0)x(k0), k > k0,

and the zero-state response, given by

ρ(k) =
k−1∑
j=k0

CΦ(k, j + 1)Bu(j) +Du(k), k > k0,

ρ(k0) = Du(k0), k = k0.

⎫⎪⎪⎬
⎪⎪⎭

(3.100)

Finally, in view of (2.67), we recall that the (discrete-time) unit impulse
response matrix of system (3.91) is given by

H(k, l) =

⎧
⎪⎨
⎪⎩

CAk−(l+1)B, k > l,

D, k = l,

0, k < l,

(3.101)

and in particular, when l = 0 (i.e., when the pulse is applied at time l = 0),

H(k, 0) =

⎧⎪⎨
⎪⎩

CAk−1B, k > 0,
D, k = 0,
0, k < 0.

(3.102)

Example 3.31. In (3.91), let

A =
[

0 1
0 −1

]
, B =

[
0
1

]
, CT =

[
1
0

]
, D = 0.

We first determine Ak by using the Cayley–Hamilton Theorem (refer to Sec-
tion A.5). To this end we compute the eigenvalues of A as λ1 = 0, λ2 = −1,
we let Ak = f(A), where f(s) = sk, and we let g(s) = α1s + α0. Then
f(λ1) = g(λ1), α0 = 0 and f(λ2) = g(λ2), or (−1)k = −α1 + α0. There-

fore, Ak = α1A + α0I = −(−1)k
[

0 1
0 −1

]
=
[

0 (−1)k−1

0 (−1)k

]
, k = 1, 2, . . . , or

Ak =
[
δ(k) (−1)k−1p(k − 1)
0 (−1)kp(k)

]
, k = 0, 1, 2, . . . , where A0 = I, and where

p(k) denotes the unit step given by

p(k) =
{

1, k ≥ 0,
0, k < 0.

The above expression for Ak is now substituted into (3.98) to determine
the response y(k) for k > 0 for a given initial condition x(0) and a given input
u(k), k ≥ 0. To determine the unit impulse response, we note that H(k, 0) = 0
for k < 0 and k = 0. When k > 0, H(k, 0) = CAk−1B = (−1)k−2p(k − 2) for
k > 0 or H(k, 0) = 0 for k = 1 and H(k, 0) = (−1)k−2 for k = 2, 3, . . . .
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3.5.2 The Transfer Function and the z-Transform

We assume that the reader is familiar with the concept and properties of the
one-sided z-transform of a real-valued sequence {f(k)}, given by

Z{f(k)} = f̂(z) =
∞∑
j=0

z−jf(j). (3.103)

An important property of this transform, which is useful in solving difference
equations, is given by the relation

Z{f(k + 1)} =
∞∑
j=0

z−jf(j + 1) =
∞∑
j=1

z−(j−1)f(j)

= z

⎡
⎣

∞∑
j=0

z−jf(j) − f(0)

⎤
⎦

= z [Z{f(k)} − f(0)] = zf̂(z) − zf(0). (3.104)

If we take the z-transform of both sides of (3.91a), we obtain, in view of
(3.104), zx̂(z) − zx(0) = Ax̂(z) +Bû(z) or

x̂(z) = (zI −A)−1zx(0) + (zI −A)−1Bû(z). (3.105)

Next, by taking the z-transform of both sides of (3.91b), and by substituting
(3.105) into the resulting expression, we obtain

ŷ(z) = C(zI −A)−1zx(0) + [C(zI −A)−1B +D]û(z). (3.106)

The time sequence {y(k)} can be recovered from its one-sided z-transform
ŷ(z) by applying the inverse z-transform, denoted by Z−1[ŷ(z)].

In Table 3.3 we provide the one-sided z-transforms of some of the com-
monly used sequences, and in Table 3.4 we enumerate some of the more fre-
quently encountered properties of the one-sided z-transform.

The transfer function matrix Ĥ(z) of system (3.91) relates the z-transform
of the output y to the z-transform of the input u under the assumption that
x(0) = 0. We have

ŷ(z) = Ĥ(z)û(z), (3.107)

where
Ĥ(z) = C(zI −A)−1B +D. (3.108)

To relate Ĥ(z) to the impulse response matrix H(k, l), we notice that
Z{δ(k − l)} = z−l, where δ denotes the discrete-time impulse (or unit pulse
or unit sample) defined in (2.51); i.e.,

δ(k − l) =

{
1, k = l,

0, k �= l.
(3.109)
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Table 3.3. Some commonly used z-transforms

{f(k)}, k ≥ 0 f̂(z) = Z{f(k)}
δ(k) 1
p(k) 1/(1 − z−1)
k z−1/(1 − z−1)2

k2 [z−1(1 + z−1)]/(1 − z−1)3

ak 1/(1 − az−1)
(k + 1)ak 1/(1 − az−1)2

[(1/l!)(k + 1) · · · (k + l)]ak l ≥ 1 1/(1 − az−1)l+1

a cos αk + b sin αk
a + z−1(b sin α − a cos α)

1 − 2z−1 cos α + z−2

Table 3.4. Some properties of z-transforms

{f(k)}, k ≥ 0 f(z)

Time shift f(k + 1) zf̂(z) − zf(0)

-Advance f(k + l) l ≥ 1 zlf̂(z) − z
∑l

i=1 zl−if(i − 1)

Time shift f(k − 1) z−1f̂(z) + f(−1)

-Delay f(k − l) l ≥ 1 z−lf̂(z) +
∑l

i=1 z−l+if(−i)

Scaling akf(k) f̂(z/a)

kf(k) −z(d/dz)f̂(z)

Convolution
∑∞

l=0 f(l)g(k − l) = f(k) ∗ g(k) f̂(z)ĝ(z)

Initial value f(l) with f(k) = 0, k < l limz→∞ zlf̂(z)†

Final value limk→∞ f(k) limz→1(1 − z−1)f̂(z)‡

† If the limit exists.
‡ If (1 − z−1)f̂(z) has no singularities on or outside the unit circle.

This implies that the z-transform of a unit pulse applied at time zero is
Z{δ(k)} = 1. It is not difficult to see now that {H(k, 0)} = Z−1[ŷ(z)], where
ŷ(z) = Ĥ(z)û(z) with û(z) = 1. This shows that

Z−1[Ĥ(z)] = Z−1[C(zI −A)−1B +D] = {H(k, 0)}, (3.110)

where the unit impulse response matrix H(k, 0) is given by (3.102).
The above result can also be derived directly by taking the z-transform

of {H(k, 0)} given in (3.102) (prove this). In particular, notice that the z-
transform of {Ak−1}, k = 1, 2, . . . is (zI −A)−1 since

Z{0, Ak−1} =
∞∑
j=1

z−jAj−1 = z−1
∞∑
j=0

z−jAj

= z−1(I + z−1A+ z−2A2 + . . . )

= z−1(I − z−1A)−1 = (zI −A)−1. (3.111)
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Above, the matrix determined by the expression (1−λ)−1 = 1+λ+λ2+· · · was
used. It is easily shown that the corresponding series involving A converges.
Notice also that Z{Ak}, k = 0, 1, 2, . . . is z(zI −A)−1. This fact can be used
to show that the inverse z-transform of (3.106) yields the time response (3.99),
as expected.

We conclude this subsection with a specific example.

Example 3.32. In system (3.91), we let

A =
[

0 1
0 −1

]
, B =

[
0
1

]
, C = [1 0], D = 0.

To verify that Z−1[z(zI−A)−1] = Ak, we compute z(zI−A)−1 = z
[
z −1
0 z+1

]−1

= z

[ 1
z

1
z(z+1)

0 1
z+1

]
=
[

1 1
z+1

0 z
z+1

]
and

Z−1[z(zI −A)−1] =
[
δ(k) (−1)k−1p(k − 1)
0 (−1)kp(k)

]

or

Ak =

{
[ 1 0
0 1 ] , when k = 0,[
0 (−1)k−1

0 (−1)k

]
, when k = 1, 2, . . . ,

as expected from Example 3.31.
Notice that

Z−1[(zI −A)−1] = Z−1

[[
1/z 1/[z(z + 1)]
0 1/(z + 1)

]]

=
[
δ(k − 1)p(k − 1) δ(k − 1)p(k − 1) − (−1)k−1p(k − 1)

0 (−1)k−1p(k − 1)

]

=
[

0 0
0 0

]
for k = 0, and

[
1 0
0 1

]
for k = 1,

and

Z−1[(zI −A)−1] =
[

0 −(−1)k−1

0 (−1)k−1

]
for k = 2, 3, . . . ,

which is equal to Ak, k ≥ 0, delayed by one unit; i.e., it is equal to Ak−1, k =
1, 2, . . . , as expected.

Next, we consider the system response with x(0) = 0 and u(k) = p(k). We
have

y(k) = Z−1[ŷ(z)] = Z−1[C(zI −A)−1B · û(z)]

= Z−1

[
1

(z + 1)(z − 1)

]
= Z−1

[
1/2
z−1 − 1/2

z+1

]
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=
1
2
[(1)k−1 − (−1)k−1]p(k − 1)

=

{
0, k = 0,
1
2 (1 − (−1)k−1), k = 1, 2, . . . ,

=

⎧
⎪⎨
⎪⎩

0, k = 0,
0, k = 1, 3, 5, . . . ,
1, k = 2, 4, 6, . . . .

Note that if x(0) = 0 and u(k) = δ(k), then

y(k) = Z−1[C(zI −A)−1B] = Z−1

[
1

z(z + 1)

]

= δ(k − 1)p(k − 1) − (−1)k−1p(k − 1)

=

{
0, k = 0, 1,
(−1)k−2, k = 2, 3, . . . ,

which is the unit impulse response of the system (refer to Example 3.31).

3.5.3 Equivalence of State-Space Representations

Equivalent representations of linear discrete-time systems are defined in a
manner analogous to the continuous-time case. For systems (3.91), we let P
denote a real nonsingular n× n matrix and we define

x̃(k) = Px(k). (3.112)

Substituting (3.112) into (3.91) yields the equivalent system representation

x̃(k + 1) = Ãx̃(k) + B̃u(k), (3.113a)

y(k) = C̃x̃(k) + D̃u(k), (3.113b)

where

Ã = P−1AP, B̃ = PB, C̃ = CP−1, D̃ = D. (3.114)

We note that the terms in (3.114) are identical to corresponding terms ob-
tained for the case of linear continuous-time systems.

We conclude by noting that if Ĥ(z) and ̂̃H(z) denote the transfer functions
of the unit impulse response matrices of system (3.91) and system (3.113),

respectively, then it is easily verified that Ĥ(z) = ̂̃
H(z).
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3.5.4 Sampled-Data Systems

Discrete-time dynamical systems arise in a variety of ways in the modeling
process. There are systems that are inherently defined only at discrete points
in time, and there are representations of continuous-time systems at discrete
points in time. Examples of the former include digital computers and devices
(e.g., digital filters) where the behavior of interest of a system is adequately
described by values of variables at discrete-time instants (and what happens
between the discrete instants of time is quite irrelevant to the problem on
hand); inventory systems where only the inventory status at the end of each
day (or month) is of interest; economic systems, such as banking, where,
e.g., interests are calculated and added to savings accounts at discrete-time
intervals only; and so forth. Examples of the latter include simulations of
continuous-time processes by means of digital computers, making use of dif-
ference equations that approximate the differential equations describing the
process in question; feedback control systems that employ digital controllers
and give rise to sampled-data systems (as discussed further in the following);
and so forth.

In providing a short discussion of sampled-data systems, we make use of
the specific class of linear feedback control systems depicted in Figure 3.2.
This system may be viewed as an interconnection of a subsystem S1, called
the plant (the object to be controlled), and a subsystem S2, called the digital
controller . The plant is described by the equations

x = A(t)x + B(t)u

y = C(t)x + D(t)u

y(t)

y(k)u(k)

u(t)

w(k + 1) = F(k) w(k) + G(k) y(k)

u(k) = H(k) w(k) + Q(k) y(k)– –

–

––

D/A A/D

Figure 3.2. Digital control system

ẋ = A(t)x +B(t)u, (3.115a)
y = C(t)x +D(t)u, (3.115b)

where all symbols in (3.115) are defined as in (2.3) and where we assume that
t ≥ t0 ≥ 0.

Since our presentation pertains equally to the time-varying and time-
invariant cases, we will first address the more general time-varying case. Next,
we specialize our results to the time-invariant case.

The subsystem S2 accepts the continuous-time signal y(t) as its input, and
it produces the piecewise continuous-time signal u(t) as its output, where t ≥
t0. The continuous-time signal y is converted into a discrete-time signal {ȳ(k)},
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k ≥ k0 ≥ 0, k, k0 ∈ Z, by means of an analog-to-digital (A/D) converter and
is processed according to a control algorithm given by the difference equations

w(k + 1) = F (k)w(k) +G(k)ȳ(k), (3.116a)
ū(k) = H(k)w(k) +Q(k)ȳ(k), (3.116b)

where the w(k), ȳ(k), ū(k) are real vectors and the F (k), G(k), H(k), and Q(k)
are real, time-varying matrices with a consistent set of dimensions. Finally,
the discrete-time signal {ū(k)}, k ≥ k0 ≥ 0, is converted into the continuous-
time signal u by means of a digital-to-analog (D/A) converter. To simplify
our discussion, we assume in the following that t0 = k0.

An (ideal) A/D converter is a device that has as input a continuous-time
signal, in our case y, and as output a sequence of real numbers, in our case
{ȳ(k)}, k = k0, k0 + 1, . . . , determined by the relation

ȳ(k) = y(tk). (3.117)

In other words, the (ideal) A/D converter is a device that samples an in-
put signal, in our case y(t), at times t0, t1, . . . producing the corresponding
sequence {y(t0), y(t1), . . . }.

A D/A converter is a device that has as input a discrete-time signal, in our
case the sequence {ū(k)}, k = k0, k0 + 1, . . . , and as output a continuous-time
signal, in our case u, determined by the relation

u(t) = ū(k), tk ≤ t < tk+1, k = k0, k0 + 1, . . . . (3.118)

In other words, the D/A converter is a device that keeps its output constant at
the last value of the sequence entered. We also call such a device a zero-order
hold .

The system of Figure 3.2, as described above, is an example of a sampled-
data system, since it involves truly sampled data (i.e., sampled signals), making
use of an ideal A/D converter. In practice the digital controller S2 uses dig-
ital signals as variables. In the scalar case, such signals are represented by
real-valued sequences whose numbers belong to a subset of R consisting of
a discrete set of points. (In the vector case, the previous statement applies
to the components of the vector.) Specifically, in the present case, after the
signal y(t) has been sampled, it must be quantized (or digitized) to yield a
digital signal , since only such signals are representable in a digital computer.
If a computer uses, e.g., 8-bit words, then we can represent 28 = 256 distinct
levels for a variable, which determine the signal quantization. By way of a
specific example, if we expect in the representation of a function a signal that
varies from 9 to 25 volts, we may choose a 0.1-volt quantization step. Then 2.3
and 2.4 volts are represented by two different numbers (quantization levels);
however, 2.315, 2.308, and 2.3 are all represented by the bit combination corre-
sponding to 2.3. Quantization is an approximation and for short wordlengths
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may lead to significant errors. Problems associated with quantization effects
will not be addressed in this book.

In addition to being a sampled-data system, the system represented by
(3.115) to (3.118) constitutes a hybrid system as well, since it involves descrip-
tions given by ordinary differential equations and ordinary difference equa-
tions. The analysis and synthesis of such systems can be simplified appreciably
by replacing the description of subsystem S1 (the plant) by a set of ordinary
difference equations, valid only at discrete points in time tk, k = 0, 1, 2, . . . .
[In terms of the blocks of Figure 3.2, this corresponds to considering the plant
S1, together with the D/A and A/D devices, to obtain a system with input
ū(k) and output ȳ(k), as shown in Figure 3.3.] To accomplish this, we apply
the variation of constants formula to (3.115a) to obtain

x(t) = Φ(t, tk)x(tk) +
∫ t

tk

Φ(t, τ)B(τ)u(τ)dτ, (3.119)

where the notation φ(t, tk, x(tk)) = x(t) has been used. Since the input u(t)

x = A(t)x + B(t)u

y = C(t)x + D(t)u

y(t) y(k)u(k) u(t) ––
D/A A/D

Figure 3.3. System described by (3.121) and (3.124)

is the output of the zero-order hold device (the D/A converter), given by
(3.118), we obtain from (3.119) the expression

x(tk+1) = Φ(tt+1, tk)x(tk) +
[∫ tk+1

tk

Φ(tk+1, τ)B(τ)dτ
]
u(tk). (3.120)

Since x̄(k) � x(tk) and ū(k) � u(tk), we obtain a discrete-time version of the
state equation for the plant, given by

x̄(k + 1) = Ā(k)x̄(k) + B̄(k)ū(k), (3.121)

where
Ā(k) � Φ(tk+1, tk),

B̄(k) �
∫ tk+1

tk

Φ(tk+1, τ)B(τ)dτ.

⎫
⎪⎬
⎪⎭

(3.122)

Next, we assume that the output of the plant is sampled at instants t′k
that do not necessarily coincide with the instants tk at which the input to
the plant is adjusted, and we assume that tk ≤ t′k < tk+1. Then (3.115) and
(3.119) yield
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y(t′k) = C(t′k)Φ(t′k, tk)x(tk) +

[
C(t′k)

∫ t′k

tk

Φ(t′k, τ)B(τ)dτ

]
u(tk) +D(t′k)u(tk).

(3.123)
Defining ȳ(k) � y(t′k), we obtain from (3.123),

ȳ(k) = C̄(k)x̄(k) + D̄(k)ū(k), (3.124)

where
C̄(k) � C(t′k)Φ(t′k, tk),

D̄(k) � C(t′k)
∫ t′k

tk

Φ(t′k, τ)B(τ)dτ +D(t′k).

⎫
⎪⎬
⎪⎭

(3.125)

Summarizing, (3.121) and (3.124) constitute a state-space representation,
valid at discrete points in time, of the plant [given by (3.115a)] and including
the A/D and D/A devices [given by (3.117) and (3.118), see Figure 3.3].
Furthermore, the entire hybrid system of Figure 3.2, valid at discrete points
in time, can now be represented by (3.121), (3.124), and (3.116).

Time-Invariant System With Constant Sampling Rate

We now turn to the case of the time-invariant plant, where A(t) ≡ A,B(t) ≡
B,C(t) ≡ C, and D(t) ≡ D, and we assume that tk+1−tk = T and t′k−tk = α
for all k = 0, 1, 2, . . . . Then the expressions given in (3.121), (3.122), (3.124),
and (3.125) assume the form

x̄(k + 1) = Āx̄(k) + B̄ū(k), (3.126a)
ȳ(k) = C̄x̄(k) + D̄ū(k), (3.126b)

where

Ā = eAT , B̄ =

(∫ T

0

eAτdτ

)
B,

C̄ = CeAα, D̄ = C

(∫ α

0

eAτdτ

)
B +D.

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(3.127)

If t′k = tk, or α = 0, then C̄ = C and D̄ = D.
In the preceding, T is called the sampling period and 1/T is called the sam-

pling rate. Sampled-data systems are treated in great detail in texts dealing
with digital control systems and with digital signal processing.

Example 3.33. In the control system of Figure 3.2, let

A =
[

0 1
0 0

]
, B =

[
0
1

]
, C = [1, 0], D = 0,

let T denote the sampling period, and assume that α = 0. The discrete-
time state-space representation of the plant, preceded by a zero-order hold
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(D/A converter) and followed by a sampler [an (ideal) A/D converter], both
sampling synchronously at a rate of 1/T, is given by x̄(k+1) = Āx̄(k)+B̄ū(k),
ȳ(k) = C̄x(k), where

Ā = eAT =
∞∑
j=1

(T j/j!)Aj =
[

1 0
0 1

]
+
[

0 1
0 0

]
T =

[
1 T
0 1

]
,

B̄ =

(∫ T

0

eAτdτ

)
B =

(∫ T

0

[
1 τ
0 1

]
dτ

)[
0
1

]

=
[
T T 2/2
0 T

] [
0
1

]
=
[
T 2/2
T

]
,

C̄ = C = [1 0].

The transfer function (relating ȳ to ū ) is given by

Ĥ(z) = C̄(zI − Ā)−1B̄

= [1 0]
[
z − 1 −T

0 z − 1

]−1 [
T 2/2
T

]

= [1 0]
[

1/(z − 1) T/(z − 1)2

0 1/(z − 1)

] [
T 2/2
T

]

=
T 2

2
(z + 1)
(z − 1)2

.

The transfer function of the continuous-time system (continuous-time descrip-
tion of the plant) is determined to be Ĥ(s) = C(sI−A)−1B = 1/s2, the double
integrator.

The behavior of the system between the discrete instants, t, tk ≤ t < tk+1,
can be determined by using (3.119), letting x(tk) = x(k) and u(tk) = u(k).

An interesting observation, useful when calculating Ā and B̄, is that both
can be expressed in terms of a single series. In particular, Ā = eAT = I+TA+
(T 2/2!)A2+ · · · = I+TAΨ(T ), where Ψ(T ) = I+(T/2!)A+(T 2/3!)A2+ · · · =∑∞

j=0(T
j/(j + 1)!)Aj . Then B̄ = (

∫ T
0
eAτdτ) B = (

∑∞
j=0(T

j+1/(j + 1)!)Aj)
B = TΨ(T )B. If Ψ(T ) is determined first, and then both Ā and B̄ can easily
be calculated.

Example 3.34. In Example 3.33, Ψ(T ) = I + TA =
[

1 T
0 1

]
. Therefore,

Ā = I + TAΨ(T ) =
[

1 T
0 1

]
and B̄ = TΨ(T )B =

[
T 2/2
T

]
, as expected.
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3.5.5 Modes, Asymptotic Behavior, and Stability

As in the case of continuous-time systems, we study in this subsection the
qualitative behavior of the solutions of linear, autonomous, homogeneous or-
dinary difference equations

x(k + 1) = Ax(k) (3.128)

in terms of the modes of such systems, where A ∈ Rn×n and x(k) ∈ Rn for
every k ∈ Z+. From before, the unique solution of (3.128) satisfying x(0) = x0

is given by
φ(k, 0, x0) = Akx0. (3.129)

Let λ1, . . . , λσ, denote the σ distinct eigenvalues of A, where λi with i =
1, . . . , σ, is assumed to be repeated ni times so that

∑σ
i=1 ni = n. Then

det(zI −A) =
σ∏
i=1

(z − λi)ni . (3.130)

To introduce the modes for (3.128), we first derive the expressions

Ak =
σ∑
i=1

[Ai0λki p(k) +
ni−1∑
l=1

Ailk(k − 1) · · · (k − l + 1)λk−li p(k − l)]

=
σ∑
i=1

[Ai0λki p(k) +Ai1kλ
k−1
i p(k − 1) + · · ·

+Ai(ni−1)k(k − 1) · · · (k − ni + 2)λk−(ni−1)
i p(k − ni + 1)], (3.131)

where

Ail =
1
l!

1
(ni − 1 − l)!

lim
z→λi

{[(z − λi)ni(zI −A)−1](ni−1−l)}. (3.132)

In (3.132), [·](q) denotes the qth derivative with respect to z, and in (3.131),
p(k) denotes the unit step [i.e., p(k) = 0 for k < 0 and p(k) = 1 for k ≥ 0].
Note that if an eigenvalue λi of A is zero, then (3.131) must be modified. In
this case,

ni−1∑
i=0

Aill!δ(k − l) (3.133)

are the terms in (3.131) corresponding to the zero eigenvalue.
To prove (3.131), (3.132), we proceed as in the proof of (3.50), (3.51). We

recall that {Ak} = Z−1[z(zI−A)−1] and we use the partial fraction expansion
method to determine the z-transform. In particular, as in the proof of (3.50),
(3.51), we can readily verify that
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z(zI −A)−1 = z

σ∑
i=1

ni−1∑
l=0

(l!Ail)(z − λi)−(l+1), (3.134)

where the Ail are given in (3.132). We now take the inverse z-transform of
both sides of (3.134). We first notice that

Z−1[z(z − λi)−(l+1)] = Z−1[z−lzl+1(z − λi)−(l+1)]

= Z−1[z−l(1 − λiz
−1)−(l+1)] = f(k − l)p(k − l)

=

{
f(k − l), for k ≥ l,

0, otherwise.

Referring to Tables 3.3 and 3.4 we note that f(k)p(k) = Z−1[(1−λiz
−1)−(l+1)] =

[ 1
l!
(k + 1) · · · (k + l)]λk

i for λi �= 0 and l ≥ 1. Therefore, Z−1[l!z(z−λi)−(l+1)] =
l!f(k − l)p(k − l) = k(k − 1) · · · (k − l + 1)λk−li , l ≥ 1. For l = 0, we have
Z−1[(1 − λiz

−1)−1] = λki . This shows that (3.131) is true when λi �= 0.
Finally, if λi = 0, we note that Z−1[l!z−l] = l!δ(k − l), which implies (3.133).

Note that one can derive several alternative but equivalent expressions
for (3.131) that correspond to different ways of determining the inverse z-
transform of z(zI −A)−1 or of determining Ak via some other methods.

In complete analogy with the continuous-time case, we call the terms
Ailk(k − 1) · · · (k − l + 1)λk−li the modes of the system (3.128). There are ni
modes corresponding to the eigenvalues λi, l = 0, . . . , ni − 1, and the system
(3.128) has a total of n modes.

It is particularly interesting to study the matrix Ak, k = 0, 1, 2, . . . using
the Jordan canonical form of A, i.e., J = P−1AP , where the similarity trans-
formation P is constructed by using the generalized eigenvectors of A. We
recall once more that J = diag[J1, . . . , Jσ] � diag[Ji] where each ni×ni block
Ji corresponds to the eigenvalue λi and where, in turn, Ji = diag[Ji1, . . . , Jili ]
with Jij being smaller square blocks, the dimensions of which depend on the
length of the chains of generalized eigenvectors corresponding to Ji (refer to
Subsection 3.3.2). Let Jij denote a typical Jordan canonical form block. We
shall investigate the matrix Jkij , since Ak = P−1JkP = P−1 diag[Jkij ]P .

Let

Jij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λi 1 0 · · · 0

0 λi
. . .

...
...

...
. . . . . .

...
...

...
. . . 1

0 0 · · · · · · λi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= λiI +Ni, (3.135)

where
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Ni =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 0
...

...
. . .

...
...

...
. . . 1

0 0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

and where we assume that Jij is a t× t matrix. Then

(Jij)k = (λiI +Ni)k

= λki I + kλk−1
i Ni +

k(k − 1)
2!

λk−2
i N2

i + · · · + kλiN
k−1
i +Nk

i . (3.136)

Now since Nk
i = 0 for k ≥ t, a typical t×t Jordan block Jij will generate terms

that involve only the scalars λki , λ
k−1
i , . . . , λ

k−(t−1)
i . Since the largest possible

block associated with the eigenvalue λi is of dimension ni×ni, the expression
of Ak in (3.131) should involve at most the terms λki , λ

k−1
i , . . . , λ

k−(ni−1)
i ,

which it does.
The above enables us to prove the following useful fact: Given A ∈ Rn×n,

there exists an integer k ≥ 0 such that

Ak = 0 (3.137)

if and only if all the eigenvalues λi of A are at the origin. Furthermore, the
smallest k for which (3.137) holds is equal to the dimension of the largest
block Jij of the Jordan canonical form of A.

The second part of the above assertion follows readily from (3.136). We
ask the reader to prove the first part of the assertion.

We conclude by observing that when all n eigenvalues λi of A are distinct,
then

Ak =
n∑
i=1

Aiλ
k
i , k ≥ 0, (3.138)

where
Ai = lim

z→λi

[(z − λi)(zI −A)−1]. (3.139)

If λi = 0, we use δ(k), the unit pulse, in place of λki in (3.138). This result is
straightforward, in view of (3.131), (3.132).

Example 3.35. In (3.128) we let A =
[

0 1
− 1

4 1

]
. The eigenvalues of A are

λ1 = λ2 = 1
2 , and therefore, n1 = 2 and σ = 1. Applying (3.131), (3.132), we

obtain

Ak = A10λ
k
1p(k) +A11kλ

k−1
1 p(k − 1)

=
[

1 0
0 1

](
1
2

)k
p(k) +

⎡
⎣
− 1

2 1

− 1
4

1
2

⎤
⎦ (k)

(
1
2

)k−1

p(k − 1).
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Example 3.36. In (3.128) we let A =
[
−1 2

0 1

]
. The eigenvalues of A are

λ1 = −1, λ2 = 1 (so that σ = 2). Applying (3.138), (3.139), we obtain

Ak = A10λ
k
1 +A20λ

k
2 =

[
1 −1
0 0

]
(−1)k +

[
0 1
0 1

]
, k ≥ 0.

Note that this same result was obtained by an entirely different method in
Example 3.30.

Example 3.37. In (3.128) we let A =
[

0 1
0 −1

]
. The eigenvalues of A are

λ1 = 0, λ2 = −1, and σ = 2. Applying (3.138), (3.139), we obtain

A0 = lim
z→0

[z(zI −A)−1] =
1

z + 1

[
z + 1 1

0 z

]
|z=0 =

[
1 1
0 0

]

A1 = lim
z→−1

[
(z + 1)

1
z(z + 1)

[
z + 1 1

0 z

]]
=
[

0 −1
0 1

]

and

Ak = A0δ(k) +A1(−1)k =
[

1 1
0 0

]
δ(k) +

[
0 −1
0 1

]
(−1)k, k ≥ 0.

As in the case of continuous-time systems described by (3.48), various
notions of stability of an equilibrium for discrete-time systems described by
linear, autonomous, homogeneous ordinary difference equations (3.128) will
be studied in detail in Chapter 4. If φ(k, 0, xe) denotes the solution of sys-
tem (3.128) with x(0) = xe, then xe is said to be an equilibrium of (3.128)
if φ(k, 0, xe) = xe for all k ≥ 0. Clearly, xe = 0 is an equilibrium of (3.128).
In discussing the qualitative properties, it is customary to speak, somewhat
informally, of the stability properties of (3.128), rather than the stability prop-
erties of the equilibrium xe = 0 of system (3.128).

The concepts of stability, asymptotic stability, and instability of system
(3.128) are now defined in an identical manner as in Subsection 3.3.3 for
system (3.48), except that in this case continuous-time t (t ∈ R+) is replaced
by discrete-time k (k ∈ Z+).

By inspecting the modes of system (3.128) [given by (3.131) and (3.132)],
we can readily establish the following stability criteria:

1. The system (3.128) is asymptotically stable if and only if all eigenvalues
of A are within the unit circle of the complex plane (i.e., |λj | < 1, j =
1, . . . , n).
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2. The system (3.128) is stable if and only if |λj | ≤ 1, j = 1, . . . , n, and for
all eigenvalues with |λj | = 1 having multiplicity nj > 1, it is true that

lim
z→λj

[[(z − λj)nj (zI −A)−1](nj−1−l)] = 0 for l = 1, . . . , nj − 1. (3.140)

3. The system (3.128) is unstable if and only if (2) is not true.

Example 3.38. The system given in Example 3.35 is asymptotically stable.
The system given in Example 3.36 is stable. In particular, note that the solu-
tion φ(k, 0, x(0)) = Akx(0) for Example 3.36 is bounded.

When the eigenvalues λi of A are distinct, then as in the continuous-time
case [refer to (3.56), (3.57)], we can readily show that

Ak =
n∑
j=1

Ajλ
k
j , Aj = vj ṽj , k ≥ 0, (3.141)

where the vj and ṽj are right and left eigenvectors of A corresponding to λj ,
respectively. If λj = 0, we use δ(k), the unit pulse, in place of λkj in (3.141).

In proving (3.141), we use the same approach as in the proof of (3.56),
(3.57). We have Ak = Q diag[λk1 , . . . , λkn]Q−1, where the columns of Q are the
n right eigenvectors and the rows of Q−1 are the n left eigenvectors of A.

As in the continuous-time case [system (3.48)], the initial condition x(0)
for system (3.128) can be selected to be colinear with the eigenvector vi to
eliminate from the solution of (3.128) all modes except the ones involving λki .

Example 3.39. As in Example 3.36, we let A =
[
−1 2

0 1

]
. Corresponding to

the eigenvalues λ1 = −1, λ2 = 1, we have the right and left eigenvectors
v1 = (1, 0)T , v2 = (1, 1)T , ṽ1 = (1,−1), and ṽ2 = (0, 1). Then

Ak = [v1 ṽ1]λk1 + [v2 ṽ2]λk2

=
[

1 −1
0 0

]
(−1)k +

[
0 1
0 1

]
(1)k, k ≥ 0.

Choose x(0) = α(1, 0)T = αv1 with α �= 0. Then

φ(k, 0, x(0)) =
[
α
0

]
(−1)k,

which contains only the mode associated with λ1 = −1.
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We conclude our discussion of modes and asymptotic behavior by briefly
considering the state equation

x(k + 1) = Ax(k) +Bu(k), (3.142)

where x, u,A, and B are as defined in (3.91a). Taking the Z-transform of both
sides of (3.142) and rearranging yields

x̃(z) = z(zI −A)−1x(0) + (zI −A)−1Bũ(z). (3.143)

By taking the inverse Z-transform of (3.143), we see that the solution φ of
(3.142) is the sum of modes that correspond to the singularities or poles of
z(zI − A)−1x(0) and of (zI − A)−1Bũ(z). If in particular, system (3.128) is
asymptotically stable [i.e., for x(k + 1) = Ax(k), all eigenvalues λj of A are
such that |λj | < 1, j = 1, . . . , n] and if u(k) in (3.142) is bounded [i.e., there
is an M such that |ui(k)| < M for all k ≥ 0, i = 1, . . . ,m], then it is easily
seen that the solutions of (3.142) are bounded as well.

3.6 An Important Comment on Notation

Chapters 1–3 are primarily concerned with the basic (qualitative) properties of
systems of first-order ordinary differential equations, such as, e.g., the system
of equations given by

ẋ = Ax, (3.144)

where x ∈ Rn and A ∈ Rn×n. In the arguments and proofs to establish
various properties for such systems, we highlighted the solutions by using the
φ-notation. Thus, the unique solution of (3.144) for a given set of initial data
(t0, x0) was written as φ(t, t0, x0) with φ(t0, t0, x0) = x0. A similar notation
was used in the case of the equation given by

ẋ = f(t, x) (3.145)

and the equations given by

ẋ = Ax+Bu, (3.146a)
y = Cx+Du, (3.146b)

where in (3.145) and in (3.146) all symbols are defined as in (1.11) (see Chap-
ter 1) and as in (3.61) of this chapter, respectively.

In the study of control systems such as system (3.61), the center of atten-
tion is usually the control input u and the resulting evolution of the system
state in the state space and the system output. In the development of control
systems theory, the x-notation has been adopted to express the solutions of
systems. Thus, the solution of (3.61a) is denoted by x(t) [or x(t, t0, x0) when
t0 and x0 are to be emphasized] and the evolution of the system output y
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in (3.61b) is denoted by y(t). In all subsequent chapters, except Chapter 4,
we will also follow this practice, employing the usual notation utilized in the
control systems literature. In Chapter 4, which is concerned with the stability
properties of systems, we will use the φ-notation when studying the Lyapunov
stability of an equilibrium [such as system (3.144)] and the x-notation when
investigating the input–output properties of control systems [such as system
(3.61)].

3.7 Summary and Highlights

Continuous-Time Systems

• The state transition matrix Φ(t, t0) of ẋ = Ax

Φ(t, t0) � Ψ(t)Ψ−1(t0), (3.9)

where Ψ(t) is any fundamental matrix of ẋ = Ax. See Definitions 3.8 and
3.2 and Theorem 3.9 for properties of Φ(t, t0). In the present time-invariant
case

Φ(t, t0) = eA(t−t0),

where

eAt = I +
∞∑
k=1

tkAk

k!
(3.17)

is the matrix exponential. See Theorem 3.13 for properties.
• Methods to evaluate eAt. Via infinite series (3.17) and via similarity trans-

formation
eAt = P−1eJtP

with J = P−1AP [see (3.25)] where J is diagonal or in Jordan canonical
form; via the Cayley–Hamilton Theorem [see (3.41)] and via the Laplace
transform, where

eAt = L−1[(sI −A)−1], (3.45)

or via the system modes [see (3.50)], which simplify to

eAt =
n∑
i=1

Aie
λit (3.53)

when the n eigenvalues of A, λi, are distinct. See also (3.56), (3.57).
• Modes of the system. eAt is expressed in terms of the modes Aiktkeλit in

(3.50). The distinct eigenvalue case is found in (3.53), (3.54) and in (3.56),
(3.57).

• The stability of an equilibrium of ẋ = Ax is defined and related to the
eigenvalues of A using the expression for eAt in terms of the modes.
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• Given ẋ = Ax+Bu,

x(t) = eAtx(0) +
∫ t

0

eA(t−s)Bu(s)s

is its solution, the variation of constants formula.
If in addition y = Cx +Du, then the total response of the system is

y(t) = CeA(t−t0)x0 + C

∫ t

t0

eA(t−s)Bu(s)ds+Du(t). (3.70)

The impulse response is

H(t) =

{
CeAtB +Dδ(t), t ≥ τ,

0, t < 0,
(3.72)

and the transfer function is

Ĥ(s) = C(sI −A)−1B +D. (3.80)

Note that H(s) = L(H(t, 0)).
• Equivalent representations

˙̃x = Ãx̃+ B̃u,

y = C̃x̃+ D̃u, (3.82)

where
Ã = PAP−1, B̃ = PB, C̃ = CP−1, D̃ = D (3.83)

is equivalent to ẋ = Ax+Bu, y = Cx+Du.

Discrete-Time Systems

• Consider the discrete-time system

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k). (3.91)

Then

y(k) = CAkx(0) +
k−1∑
j=0

CAk−(j+1)Bu(j) +Du(k), k > 0. (3.99)

The discrete-time unit impulse response is

H(k, 0) =

⎧
⎪⎨
⎪⎩

CAk−1B k ≥ 0,
D k = 0,
0 k < 0,

(3.102)

and the transfer function is

Ĥ(z) = C(zI −A)−1B +D. (3.108)

Note that Ĥ(z) = Z{H(k, 0)}.
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• Ak = Z−1(z(zI − A)−1). Ak may also be calculated using the Cayley–
Hamilton theorem. Note that when all n eigenvalues of A, λi, are distinct
then

Ak =
n∑
j=0

Aiλ
k
i , k ≥ 0, (3.138)

Aiλ
k
i are the modes of the system.

• The stability of an equilibrium of x(k + 1) = Ax(k) is defined and related
to the eigenvalues of A using the expressions of Ak in terms of the modes.

Sampled Data Systems

• When ẋ = Ax+Bu, y = Cx+Du is the system in Figure 3.3, the discrete-
time description is

x̄(k + 1) = Āx̄(k) + B̄ū(k),
ȳ(k) = C̄x̄(k) + D̄ū(k), (3.126)

with

Ā = eAT , B̄ =

[∫ T

0

eAτdτ

]
B,

C̄ = C, D̄ = D, (3.127)

where T is the sampling period.

3.8 Notes

Our treatment of basic aspects of linear ordinary differential equations in
Sections 3.2 and 3.3 follows along lines similar to the development of this
subject given in Miller and Michel [8].

State-space and input–output representations of continuous-time systems
and discrete-time systems, addressed in Sections 3.4 and 3.5, respectively, are
addressed in a variety of textbooks, including Kailath [7], Chen [4], Brockett
[3], DeCarlo [5], Rugh [11], and others. For further material on sampled-data
systems, refer to Aström and Wittenmark [2] and to the early works on this
subject that include Jury [6] and Ragazzini and Franklin [9].

Detailed treatments of the Laplace transform and the z-transform, dis-
cussed briefly in Sections 3.3 and 3.5, respectively, can be found in numerous
texts on signals and linear systems, control systems, and signal processing.

In the presentation of the material in all the sections of this chapter, we
have relied principally on Antsaklis and Michel [1].

The state representation of systems received wide acceptance in systems
theory beginning in the late 1950s. This was primarily due to the work of R.
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E. Kalman and others in filtering theory and quadratic control theory and
due to the work of applied mathematicians concerned with the stability the-
ory of dynamical systems. For comments and extensive references on some of
the early contributions in these areas, refer to Kailath [7] and Sontag [12]. Of
course, differential equations have been used to describe the dynamical behav-
ior of artificial systems for many years. For example, in 1868 J. C. Maxwell
presented a complete treatment of the behavior of devices that regulate the
steam pressure in steam engines called flyball governors (Watt governors) to
explain certain phenomena.

The use of state-space representations in the systems and control area
opened the way for the systematic study of systems with multi-inputs and
multi-outputs. Since the 1960s an alternative description is also being used
to characterize time-invariant MIMO control systems that involves usage of
polynomial matrices or differential operators. Some of the original references
on this approach include Rosenbrock [10] and Wolovich [13]. This method,
which corresponds to system descriptions by means of higher order ordinary
differential equations (rather than systems of first-order ordinary differential
equations, as is the case in the state-space description), is addressed in Sec-
tions 7.5 and 8.5 and in Chapter 10.
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Exercises

For the first 12 exercises, the reader may want to refer to the appendix, which
contains appropriate material on matrices and linear algebra.

3.1. (a) Let (V, F ) = (R3, R). Determine the representation of v = (1, 4, 0)T

with respect to the basis v1 = (1,−1, 0)T , v2 = (1, 0,−1)T , and v3 =
(0, 1, 0)T .

(b) Let V = F 3, and let F be the field of rational functions. Determine the
representation of ṽ = (s+2, 1/s,−2)T with respect to the basis {v1, v2, v3}
given in (a).

3.2. Find the relationship between the two bases {v1, v2, v3} and {v̄1, v̄2, v̄3}
(i.e., find the matrix of {v̄1, v̄2, v̄3} with respect to {v1, v2, v3}) where v1 =
(2, 1, 0)T , v2 = (1, 0,−1)T , v3 = (1, 0, 0)T , v̄1 = (1, 0, 0)T , v̄2 = (0, 1,−1), and
v̄3 = (0, 1, 1). Determine the representation of the vector e2 = (0, 1, 0)T with
respect to both of the above bases.

3.3. Let α ∈ R be fixed. Show that the set of all vectors (x, αx)T , x ∈ R,
determines a vector space of dimension one over F = R, where vector addi-
tion and multiplication of vectors by scalars is defined in the usual manner.
Determine a basis for this space.

3.4. Show that the set of all real n × n matrices with the usual operation
of matrix addition and the usual operation of multiplication of matrices by
scalars constitutes a vector space over the reals [denoted by (Rn×n, R)]. De-
termine the dimension and a basis for this space. Is the above statement still
true if Rn×n is replaced by Rm×n, the set of real m×n matrices? Is the above
statement still true if Rn×n is replaced by the set of nonsingular matrices?
Justify your answers.

3.5. Let v1 = (s2, s)T and v2 = (1, 1/s)T . Is the set {v1, v2} linearly indepen-
dent over the field of rational functions? Is it linearly independent over the
field of real numbers?

3.6. Determine the rank of the following matrices, carefully specifying the
field:

(a)

⎡
⎣

j
3j
−1

⎤
⎦ , (b)

[
1 4 −5
7 0 2

]
, (c)

⎡
⎢⎢⎣

(s+ 4) −2
(s2 − 1) 6

0 2s+ 3
s −s+ 4

⎤
⎥⎥⎦ , (d)

(
s+ 1
s2

)
,

where j =
√
−1.

3.7. (a) Determine bases for the range and null space of the matrices

A1 = [1 0 1], A2 =

⎡
⎣

1 1
0 0
1 0

⎤
⎦ , and A3 =

⎡
⎣

3 2 1
3 2 1
3 2 1

⎤
⎦ .
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(b) Characterize all solutions of A1x = 1 (see Subsection A.3.1).

3.8. Show that e(A1+A2)t = eA1teA2t if A1A2 = A2A1.

3.9. Show that there exists a similarity transformation matrix P such that

PAP−1 = Ac =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

−α0 −α1 −α2 · · · −αn−1

⎤
⎥⎥⎥⎥⎥⎦

if and only if there exists a vector b ∈ Rn such that the rank of [b, Ab, . . . , An−1b]
is n; i.e., ρ[b, Ab, . . . , An−1b] = n.

3.10. Show that if λi is an eigenvalue of the companion matrix Ac given in
Exercise 3.9, then a corresponding eigenvector is vi = (1, λi, . . . , λn−1

i )T .

3.11. Let λi be an eigenvalue of a matrix A, and let vi be a corresponding
eigenvector. Let f(λ) =

∑l
k=0 αkλ

k be a polynomial with real coefficients.
Show that f(λi) is an eigenvalue of the matrix function f(A) =

∑l
k=0 αkA

k.
Determine an eigenvector corresponding to f(λi).

3.12. For the matrices

A1 =

⎡
⎣

1 2 0
0 0 2
0 0 1

⎤
⎦ and A2 =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ ,

determine the matrices A100
1 , A100

2 , eA1t, and eA2t, t ∈ R.

3.13. For the system
ẋ = Ax +Bu, (3.147)

where all symbols are as defined in (3.61a), derive the variation of constants
formula (3.11), using the change of variables z(t) = Φ(t0, t)x(t).

3.14. Show that ∂
∂τ Φ(t, τ) = −Φ(t, τ)A for all t, τ ∈ R.

3.15. The adjoint equation of (3.1) is given by

ż = −AT z. (3.148)

Let Φ(t, t0) and Φa(t, t0) denote the state transition matrices of (3.1) and its
adjoint equation, respectively. Show that Φa(t, t0) = [Φ(t0, t)]T .
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3.16. Consider the system described by

ẋ = Ax+Bu, y = Cx, (3.149)

where all symbols are as in (3.61) with D = 0, and consider the adjoint
equation of (3.149), given by

ż = −AT z + CT v, w = BT z. (3.150)

(a) Let H(t, τ) and Ha(t, τ) denote the impulse response matrices of (3.149)
and (3.150), respectively. Show that at the times when the impulse re-
sponses are nonzero, they satisfy H(t, τ) = Ha(τ, t)T .

(b) Show that H(s) = −Ha(−s)T , where H(s) and Ha(s) are the transfer
matrices of (3.149) and (3.150), respectively.

3.17. Compute eAt for

A =

⎡
⎣

1 4 10
0 2 0
0 0 2

⎤
⎦ .

3.18. Given is the matrix

A =

⎡
⎣

1/2 −1 0
0 −1 0
0 0 −2

⎤
⎦ .

(a) Determine eAt, using the different methods covered in this text. Discuss
the advantages and disadvantages of these methods.

(b) For system (3.1) let A be as given. Plot the components of the solution
φ(t, t0, x0) when x0 = x(0) = (1, 1, 1)T and x0 = x(0) = (2/3, 1, 0)T .
Discuss the differences in these plots, if any.

3.19. Show that for A =
[

a b
−b a

]
, we have eAt = eat

[
cos bt sin bt

− sin bt cos bt

]
.

3.20. Given is the system of equations
[
ẋ1

ẋ2

]
=
[
−1 0

0 1

] [
x1

x2

]
+
[

1
1

]
u

with x(0) = (1, 0)T and

u(t) = p(t) =

{
1, t ≥ 0,
0, elsewhere.

Plot the components of the solution of φ. For different initial conditions x(0) =
(a, b)T , investigate the changes in the asymptotic behavior of the solutions.
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3.21. The system (3.1) with A =
[

0 1
−1 0

]
is called the harmonic oscillator

(refer to Chapter 1) because it has periodic solutions φ(t) = (φ1(t), φ2(t))T . Si-
multaneously, for the same values of t, plot φ1(t) along the horizontal axis and
φ2(t) along the vertical axis in the x1-x2 plane to obtain a trajectory for this
system for the specific initial condition x(0) = x0 = (x1(0), x2(0))T = (1, 1)T .
In plotting such trajectories, time t is viewed as a parameter, and arrows are
used to indicate increasing time. When the horizontal axis corresponds to po-
sition and the vertical axis corresponds to velocity, the x1-x2 plane is called
the phase plane and φ1, φ2 (resp. x1, x2) are called phase variables .

3.22. First, determine the solution φ of
[
ẋ1

ẋ2

]
=
[

0 1
1 0

] [
x1

x2

]
with x(0) =

(1, 1)T . Next, determine the solution φ of the above system for x(0) =
α(1,−1)T , α ∈ R,α �= 0, and discuss the properties of the two solutions.

3.23. In Subsection 3.3.3 it is shown that when the n eigenvalues λi of a real
n×n matrix A are distinct, then eAt =

∑n
i=1Aie

λit where Ai = lims→λi [(s−
λi)(sI −A)−1] = viṽi [refer to (3.53), (3.54), and (3.57)], where vi, ṽi are the
right and left eigenvectors of A, respectively, corresponding to the eigenvalue
λi. Show that (a)

∑n
i=1Ai = I, where I denotes the n × n identity matrix,

(b) AAi = λiAi, (c) AiA = λiAi, (d) AiAj = δijAi, where δij = 1 if i = j
and δij = 0 when i �= j.

3.24. Consider the system

ẋ = Ax+Bu, y = Cx, (3.151)

where all symbols are defined as in (3.61) with D = 0. Let

A =

⎡
⎢⎢⎣

0 1 0 0
3 0 0 2
0 0 0 1
0 −2 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎥⎦ , C = [1, 0, 1, 0]. (3.152)

(a) Find equivalent representations for system (3.151), (3.152), given by

˙̃x = Ãx̃+ B̃u, y = C̃x̃, (3.153)

where x̃ = Px, when Ã is in (i) the Jordan canonical (or diagonal) form
and (ii) the companion form.

(b) Determine the transfer function matrix for this system.

3.25. Consider the system (3.61) with B = 0.

(a) Let

A =

⎡
⎣
−1 1 0

0 −1 0
0 0 2

⎤
⎦ and C = [1, 1, 1].

If possible, select x(0) in such a manner so that y(t) = te−t, t ≥ 0.
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(b) Determine conditions under which it is possible to specify y(t), t ≥ 0,
using only the initial data x(0).

3.26. Consider the system given by
[
ẋ1

ẋ2

]
=
[

−1 1
−1/2 0

] [
x1

x2

]
+
[

0
1/2

]
u, y = [1, 0]

[
x1

x2

]
.

(a) Determine x(0) so that for u(t) = e−4t, y(t) = ke−4t, where k is a real
constant. Determine k for the present case. Notice that y(t) does not have
any transient components.

(b) Let u(t) = eαt. Determine x(0) that will result in y(t) = keαt. Determine
the conditions on α for this to be true. What is k in this case?

3.27. Consider the system (3.61) with

A =

⎡
⎢⎢⎣

0 0 1 0
3 0 −3 1

−1 1 4 −1
1 0 −1 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 0
1 0
0 1
0 0

⎤
⎥⎥⎦ , C =

[
1 0 0 0
0 0 0 1

]
.

(a) For x(0) = [1, 1, 1, 1]T and u(t) = [1, 1]T , t ≥ 0, determine the solution
φ(t, 0, x(0)) and the output y(t) for this system and plot the components
φi(t, 0, x(0)), i = 1, 2, 3, 4 and yi(t), i = 1, 2.

(b) Determine the transfer function matrix H(s) for this system.

3.28. Consider the system

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k), (3.154)

where all symbols are defined as in (3.91) with D = 0. Let

A =
[

1 2
0 1

]
, B =

[
2
3

]
, C = [1 1],

and let x(0) = 0 and u(k) = 1, k ≥ 0.

(a) Determine {y(k)}, k ≥ 0, by working in the (i) time domain and (ii) z-
transform domain, using the transfer function H(z).

(b) If it is known that when u(k) = 0, then y(0) = y(1) = 1, can x(0) be
uniquely determined? If your answer is affirmative, determine x(0).

3.29. Consider ŷ(z) = H(z)û(z) with transfer function H(z) = 1/(z + 0.5).

(a) Determine and plot the unit pulse response {h(k)}.
(b) Determine and plot the unit step response.
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(c) If

u(k) =

{
1, k = 1, 2,
0, elsewhere,

determine {y(k)} for k = 0, 1, 2, 3, and 4 via (i) convolution and (ii) the
z-transform. Plot your answer.

(d) For u(k) given in (c), determine y(k) as k → ∞.

3.30. Consider the system (3.91) with x(0) = x0 and k ≥ 0. Determine condi-
tions under which there exists a sequence of inputs so that the state remains
at x0, i.e., so that x(k) = x0 for all k ≥ 0. How is this input sequence deter-
mined? Apply your method to the specific case

A =
[

2 0
0 −1

]
, B =

[
1
1

]
, x0 =

[
−2

1

]
.

3.31. For system (3.92) with x(0) = x0 and k ≥ 0, it is desired to have the
state go to the zero state for any initial condition x0 in at most n steps; i.e.,
we desire that x(k) = 0 for any x0 = x(0) and for all k ≥ n.

(a) Derive conditions in terms of the eigenvalues of A under which the above
is true. Determine the minimum number of steps under which the above
behavior will be true.

(b) For part (a), consider the specific cases

A1 =

⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦ , A2 =

⎡
⎣

0 1 0
0 0 0
0 0 0

⎤
⎦ , A3 =

⎡
⎣

0 0 0
0 0 1
0 0 0

⎤
⎦ .

Hint: Use the Jordan canonical form for A. Results of this type are important
in deadbeat control , where it is desired that a system variable attains some
desired value and settles at that value in a finite number of time steps.

3.32. Consider a continuous-time system described by the transfer function
H(s) = 4/(s2 + 2s+ 2); i.e., ŷ(s) = H(s)û(s).

(a) Assume that the system is at rest, and assume a unit step input; i.e.,
u(t) = 1, t ≥ 0, u(t) = 0, t < 0. Determine and plot y(t) for t ≥ 0.

(b) Obtain a discrete-time approximation for the above system by following
these steps: (i) Determine a realization of the form (3.61) of H(s) (see Ex-
ercise 3.33); (ii) assuming a sampler and a zero-order hold with sampling
period T , use (3.151) to obtain a discrete-time system representation

x̄(k + 1) = Āx̄(k) + B̄ū(k), ȳ(k) = C̄x̄(k) + D̄ū(k) (3.155)

and determine Ā, B̄, and C̄ in terms of T .
(c) For the unit step input, u(k) = 1 for k ≥ 0 and u(k) = 0 for k < 0,

determine and plot ȳ(k), k ≥ 0, for different values of T , assuming the
system is at rest. Compare ȳ(k) with y(t) obtained in part (a).
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(d) Determine for (3.155) the transfer function H̄(z) in terms of T . Note
that H̄(z) = C̄(zI − Ā)−1B̄ + D̄. It can be shown that H̄(z) = (1 −
z−1)Z{L−1[H(s)/s]t=kT }. Verify this for the given H(s).

3.33. Given a proper rational transfer function matrix H(s), the state-space
representation {A,B,C,D} is called a realization of H(s) if H(s) = C(sI −
A)−1B + D. Thus, the system (3.61) is a realizations of H(s) if its transfer
function matrix is equal to H(s). Realizations of H(s) are studied at length
in Chapter 8. When H(s) is scalar, it is straightforward to derive certain
realizations, and in the following, we consider one such realization.

Given a proper rational scalar transfer functionH(s), letD � lims→∞H(s)
and let

Hsp(s) � H(s) −D =
bn−1s

n−1 + · · · + b1s+ b0
sn + an−1sn−1 + · · · + a1s+ a0

,

a strictly proper rational function.

(a) Let

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 1

−a0 −a1 −a2 · · · −an−2 −an−1

⎤
⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎦
,

C = [b0 b1 · · · bn−1],

(3.156)

and show that {A,B,C,D} is indeed a realization of H(s). Also, show
that {Ã = AT , B̃ = CT , C̃ = BT , D̃ = D} is a realization of H(s) as
well. These two state-space representations are said to be in controller
(companion) form and in observer (companion) form, respectively (refer
to Chapter 6).

(b) In particular find realizations in controller and observer form for (i)
H(s) = 1/s2, (ii) H(s) = ω2

n/(s
2 + 2ζωns + ω2

n), and (iii) H(s) =
(s+ 1)2/(s− 1)2.

3.34. Assume that H(s) is a p×m proper rational transfer function matrix.
Expand H(s) in a Laurent series about the origin to obtain

H(s) = H0 +H1s
−1 + · · · +Hks

−k + · · · =
∞∑
k=0

Hks
−k. (3.157)

The elements of the sequence {H0, H1, . . . , Hk, . . . } are called the Markov
parameters of the system. These parameters provide an alternative represen-
tation of the transfer function matrix H(s), and they are useful in Realization
Theory (refer to Chapter 8).
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(a) Show that the impulse response H(t, 0) can be expressed as

H(t, 0) = H0δ(t) +
∞∑
k=1

Hk(tk−1/(k − 1)!). (3.158)

In the following discussion, we assume that the system in question is
described by (3.61).

(b) Show that

H(s) = D + C(sI −A)−1B = D +
∞∑
k=1

[CAk−1B]s−k, (3.159)

which shows that the elements of the sequence {D,CB,CAB,...,CAk−1B,... }
are the Markov parameters of the system; i.e., H0 = D and Hk =
CAk−1B, k = 1, 2, . . . .

(c) Show that

H(s) = D +
1

α(s)
C[Rn−1s

n−1 + · · · +R1s+R0]B, (3.160)

where α(s) = sn + an−1s
n−1 + · · · + a1s + a0 = det(sI − A), the char-

acteristic polynomial of A, and Rn−1 = I, Rn−2 = ARn−1 + an−1I =
A+ an−1I, . . . , R0 = An−1 + an−1A

n−2 + · · · + a1I.

Hint: Write (sI−A)−1 =
1

α(s)
[adjoint(sI−A)] =

1
α(s)

[Rn−1s
n−1 + · · ·+

R1s+R0], and equate the coefficients of equal powers of s in the expression

α(s)I = (sI −A)[Rn−1s
n−1 + · · · +R1s+R0]. (3.161)

3.35. The frequency response matrix of a system described by its p × m
transfer function matrix evaluated at s = jω,

H(ω) � Ĥ(s)|s=jω ,

is a very useful means of characterizing a system, since typically it can be
determined experimentally, and since control system specifications are fre-
quently expressed in terms of the frequency responses of transfer functions.
When the poles of Ĥ(s) have negative real parts, the system turns out to be
bounded-input/bounded-output (BIBO) stable (refer to Chapter 4). Under
these conditions, the frequency response H(ω) has a clear physical meaning,
and this fact can be used to determine H(ω) experimentally.

(a) Consider a stable SISO system given by ŷ(s) = Ĥ(s)û(s). Show that if
u(t) = k sin(ω0t+φ) with k constant, then y(t) at steady-state (i.e., after
all transients have died out) is given by

yss(t) = k|H(ω0)| sin(ω0t+ φ+ θ(ω0)),
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where |H(ω)| denotes the magnitude of H(ω) and θ(ω) = argH(ω) is the
argument or phase of the complex quantity H(ω).
From the above it follows that H(ω) completely characterizes the system
response at steady state (of a stable system) to a sinusoidal input. Since
u(t) can be expressed in terms of a series of sinusoidal terms via a Fourier
series (recall that u(t) is piecewise continuous), H(ω) characterizes the
steady-state response of a stable system to any bounded input u(t). This
physical interpretation does not apply when the system is not stable.

(b) For the p ×m transfer function matrix Ĥ(s), consider the frequency re-
sponse matrix H(ω) and extend the discussion of part (a) above to MIMO
systems to give a physical interpretation of H(ω).

3.36. (Double integrator)

(a) Plot the response of the double integrator of Example 3.33 to a unit step
input.

(b) Consider the discrete-time state-space representation of the double in-
tegrator of Example 3.33 for T = 0.5, 1, 5 sec and plot the unit step
responses. Compare with your results in (a).

3.37. (Spring mass system) Consider the spring mass system of Example 1.1.
For M1 = 1 kg, M2 = 1 kg, K = 0.091 N/m, K1 = 0.1 N/m, K2 = 0.1
N/m, B = 0.0036 N sec/m, B1 = 0.05 N sec/m, and B2 = 0.05 N sec/m, the
state-space representation of the system in (1.27) assumes the form
⎡
⎢⎢⎣
ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
−0.1910 −0.0536 0.0910 0.0036

0 0 0 1
0.0910 0.0036 −0.1910 −0.0536

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 0
1 0
0 0
0 −1

⎤
⎥⎥⎦
[
f1
f2

]
,

where x1 � y1, x2 � ẏ1, x3 � y2, and x4 � ẏ2.

(a) Determine the eigenvalues and eigenvectors of the matrix A of the system
and express x(t) in terms of the modes and the initial conditions x(0) of
the system, assuming that f1 = f2 = 0.

(b) For x(0) = [1, 0,−0.5, 0]T and f1 = f2 = 0, plot the states for t ≥ 0.

(c) Let y = Cx with C =
[

1 0 0 0
0 1 0 0

]
denote the output of the system. Deter-

mine the transfer function between y and u � [f1, f2]T .
(d) For zero initial conditions, f1(t) = δ(t) (the unit impulse), and f2(t) = 0,

plot the states for t ≥ 0 and comment on your results.
(e) It is desirable to explore what happens when the mass ratio M2/M1 takes

on different values. For this, let M2 = αM1 with M1 = 1 kg and α = 0.1,
0.5, 2, 5. All other parameter values remain the same. Repeat (a) to (d)
for the different values of α and discuss your results.
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3.38. (Automobile suspension system) [M.L. James, G.M. Smith, and J.C.
Wolford, Applied Numerical Methods for Digital Computation, Harper and
Row, 1985, p. 667.] Consider the spring mass system in Figure 3.4, which
describes part of the suspension system of an automobile. The data for this
system are given as

m1 = 1
4 × (mass of the automobile) = 375 kg,

m2 = mass of one wheel = 30 kg,
k1 = spring constant = 1500 N/m,
k2 = linear spring constant of tire = 6500 N/m,
c = damping constant of dashpot = 0, 375, 750, and 1125 N sec/m,
x1 = displacement of automobile body from equilibrium position m,
x3 = displacement of wheel from equilibrium position m,
v = velocity of car = 9, 18, 27, or 36 m/sec.

A linear model ẋ = Ax+Bu for this system is given by
⎡
⎢⎢⎣
ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
− k1
m1

− c
m1

k1
m1

c
m1

0 0 0 1
k1
m2

c
m2

−k1+k2
m2

− c
m2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
0
0
k2
m2

⎤
⎥⎥⎦u(t),

where u(t) = 1
6 sin 2πvt

20 describes the profile of the roadway.

(a) Determine the eigenvalues of A for all of the above cases.
(b) Plot the states for t ≥ 0 when the input u(t) = 1

6 sin 2πvt
20 and x(0) =

[0, 0, 0, 0]T for all the above cases. Comment on your results.

Figure 3.4. Model of an automobile suspension system


