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Controllability and Observability:
Special Forms

6.1 Introduction

In this chapter, important special forms for the state-space description of
time-invariant systems are presented. These forms are obtained by means of
similarity transformations and are designed to reveal those features of a system
that are related to the properties of controllability and observability. In Sec-
tion 6.2, special state-space forms that separate the controllable (observable)
from the uncontrollable (unobservable) part of a system are presented. These
forms, referred to as the standard forms for uncontrollable and unobservable
systems, are very useful in establishing a number of results. In particular,
these forms are used in Section 6.3 to derive alternative tests for controllabil-
ity and observability and in Section 7.2 to relate state-space and input–output
descriptions. In Section 6.4 the controller and observer state-space forms are
introduced. These are useful in the study of state-space realizations in Chap-
ter 8 and state feedback and state estimators in Chapter 9.

6.2 Standard Forms for Uncontrollable and
Unobservable Systems

We consider time-invariant systems described by equations of the form

ẋ = Ax+Bu, y = Cx+Du, (6.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. It was shown in the
previous chapter that this system is state reachable if and only if the n×mn
controllability matrix

C � [B,AB, . . . , An−1B] (6.2)

has full row rank n; i.e., rank C = n. If the system is reachable (or controllable-
from-the-origin), then it is also controllable (or controllable-to-the-origin), and
vice versa (see Section 5.3.1).
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It was also shown earlier that system (6.1) is state observable if and only
if the pn× n observability matrix

O �

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ (6.3)

has full column rank; i.e., rankO = n. If the system is observable, then it is
also constructible, and vice versa (see Section 5.4.1).

Similar results were also derived for discrete-time time-invariant systems
described by equations of the form

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k). (6.4)

Again, rankC = n and rankO = n are the necessary and sufficient conditions
for state reachability and observability, respectively. Reachability always im-
plies controllability and observability always implies constructibility, as in the
continuous-time case. However, in the discrete-time case, controllability does
not necessarily imply reachability and constructibility does not imply observ-
ability, unless A is nonsingular (see Sections 5.3.2 and 5.4.2).

Next, we will introduce standard forms for unreachable and unobservable
systems both for the continuous-time and the discrete-time time-invariant
cases. These forms will be referred to as standard forms for uncontrollable
systems, rather than unreachable systems, and standard forms for unobserv-
able systems, respectively.

6.2.1 Standard Form for Uncontrollable Systems

If the system (6.1) [or (6.4)] is not completely reachable or controllable-from-
the-origin, then it is possible to “separate” the controllable part of the system
by means of an appropriate similarity transformation. This amounts to chang-
ing the basis of the state space so that all the vectors in the reachable subspace
Rr have a certain structure. In particular, let rankC = nr < n; i.e., the pair
(A,B) is not controllable. This implies that the subspace Rr = R(C) has
dimension nr. Let {v1, v2, . . . , vnr} be a basis for Rr. These nr vectors can
be, for example, any nr linearly independent columns of C. Define the n × n
similarity transformation matrix

Q � [v1, v2, . . . , vnr , Qn−nr ], (6.5)

where the n × (n − nr) matrix Qn−nr contains n − nr linearly independent
vectors chosen so that Q is nonsingular. There are many such choices. We are
now in a position to prove the following result.
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Lemma 6.1. For (A,B) uncontrollable, there exists a nonsingular matrix Q
such that

Â = Q−1AQ =
[
A1 A12

0 A2

]
and B̂ = Q−1B =

[
B1

0

]
, (6.6)

where A1 ∈ Rnr×nr , B1 ∈ Rnr×m, and the pair (A1, B1) is controllable. The
pair (Â, B̂) is in the standard form for uncontrollable systems.

Proof. We need to show that

AQ = A[v1, . . . , vnr , Qn−nr ] = [v1, . . . , vnr , Qn−nr ]
[
A1 A12

0 A2

]
= QÂ.

Since the subspace Rr is A-invariant (see Lemma 5.19), Avi ∈ Rr, which
can be written as a linear combination of only the nr vectors in a basis of Rr.
Thus, A1 in Â is an nr × nr matrix, and the (n− nr)× nr matrix below it in
Â is a zero matrix. Similarly, we also need to show that

B = [v1, . . . , vnr , Qn−nr ]
[
B1

0

]
= QB̂.

But this is true for similar reasons: The columns of B are in the range of
C or in Rr. �

The n× nm controllability matrix Ĉ of (Â, B̂) is

Ĉ = [B̂, ÂB̂, . . . , Ân−1B̂] =
[
B1 A1B1 · · · An−1

1 B1

0 0 · · · 0

]
, (6.7)

which clearly has rank Ĉ = rank[B1, A1B1, . . . , A
nr−1
1 B1, . . . , A

n−1
1 B1] = nr.

Note that
Ĉ = Q−1C. (6.8)

The range of Ĉ is the controllable subspace of (Â, B̂). It contains vectors only
of the form [αT , 0]T , where α ∈ Rnr . Since dimR(Ĉ) = rank Ĉ = nr, every
vector of the form [αT , 0]T is a controllable (state) vector. In other words, the
similarity transformation has changed the basis of Rn in such a manner so
that all controllable vectors, expressed in terms of this new basis, have this
very particular structure with zeros in the last n− nr entries.

Given system (6.1) [or (6.4)], if a new state x̂(t) is taken to be x̂(t) =
Q−1x(t), then

˙̂x = Âx̂+ B̂u, y = Ĉx̂+ D̂u, (6.9)

where Â = Q−1AQ, B̂ = Q−1B, Ĉ = CQ, and D̂ = D constitutes an equiva-
lent representation (see Section 3.4.3). For Q as in Lemma 6.1, we obtain

[ ˙̂x1

˙̂x2

]
=
[
A1 A12

0 A2

] [
x̂1

x̂2

]
+
[
B1

0

]
u, y = [C1, C2]

[
x̂1

x̂2

]
+Du, (6.10)
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where x̂ = [x̂T1 , x̂
T
2 ]T with x̂1 ∈ Rnr and where (A1, B1) is controllable. The

matrix Ĉ = [C1, C2] does not have any particular structure. This representa-
tion is called a standard form for the uncontrollable system. The state equation
can now be written as

˙̂x1 = A1x̂1 +B1u+A12x̂2, ˙̂x2 = A2x̂2, (6.11)

which shows that the input u does not affect the trajectory component x̂2(t)
at all, and therefore, x̂2(t) is determined only by the value of its initial vector.
The input u certainly affects x̂1(t). Note also that the trajectory component
x̂1(t) is also influenced by x̂2(t). In fact,

x̂1(t) = eA1tx̂1(0) +
∫ t

0

eA1(t−τ)B1u(τ)dτ +
[∫ t

0

eA1(t−τ)A12e
A2τdτ

]
x̂2(0).

(6.12)
The nr eigenvalues of A1 and the corresponding modes are the controllable

eigenvalues and controllable modes of the pair (A,B) or of system (6.1) [or
of (6.4)]. The n− nr eigenvalues of A2 and the corresponding modes are the
uncontrollable eigenvalues and uncontrollable modes, respectively.

It is interesting to observe that in the zero-state response of the system
(zero initial conditions), the uncontrollable modes are completely absent. In
particular, in the solution x(t) = eAtx(0)+

∫ t
0
eA(t−τ)Bu(τ)dτ of ẋ = Ax+Bu,

given x(0), notice that

eA(t−τ)B = [QeÂ(t−τ)Q−1][QB̂] = Q

[
eA1(t−τ)B1

0

]
,

where A1 [from (6.6)] contains only the controllable eigenvalues. Therefore, the
input u(t) cannot directly influence the uncontrollable modes. Note, however,
that the uncontrollable modes do appear in the zero-input response eAtx(0).
The same observations can be made for discrete-time systems (6.4) where the
quantity AkB is of interest.

Example 6.2. Given A =

⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦ and B =

⎡
⎣

1 0
1 1
1 2

⎤
⎦, we wish to reduce

system (6.1) to the standard form (6.6). Here

C = [B,AB,A2B] =

⎡
⎣

1 0 0 1 0 −1
1 1 0 0 0 0
1 2 0 −1 0 1

⎤
⎦

and rankC = nr = 2 < 3 = n. Thus, the subspace Rr = R(C) has dimension
nr = 2, and a basis {v1, v2} can be found by taking two linearly independent
columns of C, say, the first two, to obtain
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Q = [v1, v2, Q1] =

⎡
⎣

1 0 0
1 1 0
1 2 1

⎤
⎦ .

The third column of Q was selected so that Q is nonsingular. Note that the
first two columns of Q could have been the first and fourth columns of C
instead, or any other two linearly independent vectors obtained as a linear
combination of the columns in C. For the above choice for Q, we have

Â = Q−1AQ =

⎡
⎣

1 0 0
−1 1 0

1 −2 1

⎤
⎦
⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦
⎡
⎣

1 0 0
1 1 0
1 2 1

⎤
⎦

=

⎡
⎣

0 −1 1
1 −1 0

−2 4 −2

⎤
⎦
⎡
⎣

1 0 0
1 1 0
1 2 1

⎤
⎦

=

⎡
⎣

0 1 1
0 −1 0
0 0 −2

⎤
⎦ =

[
A1 A12

0 A2

]
,

B̂ = Q−1B =

⎡
⎣

1 0 0
−1 1 0

1 −2 1

⎤
⎦
⎡
⎣

1 0
1 1
1 2

⎤
⎦ =

⎡
⎣

1 0
0 1
0 0

⎤
⎦ =

[
B1

0

]
,

where (A1, B1) is controllable. The matrix A has three eigenvalues at 0, −1,
and −2. It is clear from (Â, B̂) that the eigenvalues 0,−1 are controllable (in
A1), whereas −2 is an uncontrollable eigenvalue (in A2).

6.2.2 Standard Form for Unobservable Systems

The standard form for an unobservable system can be derived in a similar
way as the standard form of uncontrollable systems. If the system (6.1) [or
(6.4)] is not completely state observable, then it is possible to “separate” the
unobservable part of the system by means of a similarity transformation. This
amounts to changing the basis of the state space so that all the vectors in the
unobservable subspace Rō have a certain structure.

As in the preceding discussion concerning systems or pairs (A,B) that are
not completely controllable, we shall select a similarity transformation Q to
reduce a pair (A,C), which is not completely observable, to a particular form.
This can be accomplished in two ways. The simplest way is to invoke duality
and to work with the pair (AD = AT , BD = CT ), which is not controllable
(refer to the discussion of dual systems in Section 5.2.3). If Lemma 6.1 is
applied, then

ÂD = Q−1
D ADQD =

[
AD1 AD12

0 AD2

]
, B̂D = Q−1

D BD =
[
BD1

0

]
,

where (AD1, BD1) is controllable.
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Taking the dual again, we obtain the pair (Â, Ĉ), which has the desired
properties. In particular,

Â = ÂTD = QTDA
T
D(QTD)−1 = QTDA(QTD)−1 =

[
ATD1 0
ATD12 A

T
D2

]
,

Ĉ = B̂TD = BTD(QTD)−1 = C(QTD)−1 = [BTD1, 0],
(6.13)

where (ATD1, B
T
D1) is completely observable by duality (see Lemma 5.7).

Example 6.3. Given A =

⎡
⎣

0 1 0
−1 −2 1

1 1 −1

⎤
⎦ and C =

[
1 1 1
0 1 2

]
, we wish to reduce

system (6.1) to the standard form (6.13). To accomplish this, let AD = AT

and BD = CT . Notice that the pair (AD, BD) is precisely the pair (A,B) of
Example 6.2.

A pair (A,C) can of course also be reduced directly to the standard form
for unobservable systems. This is accomplished in the following.

Consider the system (6.1) [or (6.4)] and the observability matrix O in (6.3).
Let rankO = no < n; i.e., the pair (A,C) is not completely observable. This
implies that the unobservable subspace Rō = N (O) has dimension n−no. Let
{v1, . . . , vn−no} be a basis for Rō, and define an n×n similarity transformation
matrix Q as

Q � [Qno , v1, . . . , vn−no ], (6.14)

where the n×no matrix Qno contains no linearly independent vectors chosen
so that Q is nonsingular. Clearly, there are many such choices.

Lemma 6.4. For (A,C) unobservable, there is a nonsingular matrix Q such
that

Â = Q−1AQ =
[
A1 0
A21 A2

]
and Ĉ = CQ = [C1, 0], (6.15)

where A1 ∈ Rno×no , C1 ∈ Rp×no , and the pair (A1, C1) is observable. The
pair (Â, Ĉ) is in the standard form for unobservable systems.

Proof. We need to show that

AQ = A[Qn0 , v1, . . . , vn−no ] = [Qno , v1, . . . , vn−no ]
[
A1 0
A21 A2

]
= QÂ.

Since the unobservable subspace Rō is A-invariant (see Lemma 5.49), Avi ∈
Rō, which can be written as a linear combination of only the n− no vectors
in a basis of Rō. Thus, A2 in Â is an (n − no) × (n − no) matrix, and the
no × (n − no) matrix above it in Â is a zero matrix. Similarly, we also need
to show that

CQ = C[Qno , v1, . . . , vn−no ] = [C1, 0] = Ĉ.

This is true since Cvi = 0. �
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The pn× n observability matrix Ô of (Â, Ĉ) is

Ô =

⎡
⎢⎢⎢⎣

Ĉ

ĈÂ
...

ĈÂn−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

C1 0
C1A1 0

...
...

C1A
n−1
1 0

⎤
⎥⎥⎥⎦ , (6.16)

which clearly has

rank Ô = rank

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1

C1A1

...
C1A

no−1
1
...

C1A
n−1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= no.

Note that
Ô = OQ. (6.17)

The null space of Ô is the unobservable subspace of (Â, Ĉ). It contains vectors
only of the form [0, αT ]T , where α ∈ Rn−n0 . Since dimN (Ô) = n− rank Ô =
n − n0, every vector of the form [0, αT ]T is an unobservable (state) vector.
In other words, the similarity transformation has changed the basis of Rn in
such a manner so that all unobservable vectors expressed in terms of this new
basis have this very particular structure—zeros in the first no entries.

For Q chosen as in Lemma 6.4,
[ ˙̂x1

˙̂x2

]
=
[
A1 0
A21 A2

] [
x̂1

x̂2

]
+
[
B1

B2

]
u, y = [C1, 0]

[
x̂1

x̂2

]
+Du, (6.18)

where x̂ = [x̂T1 , x̂T2 ]T with x̂1 ∈ Rno and (A1, C1) is observable. The matrix
B̂ = [BT1 , BT2 ]T does not have any particular form. This representation is
called a standard form for the unobservable system.

The no eigenvalues of A1 and the corresponding modes are called observ-
able eigenvalues and observable modes of the pair (A,C) or of the system (6.1)
[or of (6.4)]. The n − no eigenvalues of A2 and the corresponding modes are
called unobservable eigenvalues and unobservable modes, respectively.

Notice that the trajectory component x̂(t), which is observed via the out-
put y, is not influenced at all by x̂2, the trajectory of which is determined
primarily by the eigenvalues of A2.

The unobservable modes of the system are completely absent from the
output. In particular, given ẋ = Ax + Bu, y = Cx with initial state x(0), we
have

y(t) = CeAtx(0) +
∫ t

0

CeA(t−τ)Bu(τ)dτ
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and CeAt = [ĈQ−1][QeÂtQ−1] = [C1e
A1t, 0]Q−1, where A1 [from (6.15)] con-

tains only the observable eigenvalues. Therefore, the unobservable modes can-
not be seen by observing the output. The same observations can be made for
discrete-time systems where the quantity CAk is of interest.

Example 6.5. Given A =
[

0 1
−2 −3

]
and C = [1, 1], we wish to reduce

system (6.1) to the standard form (6.15). To accomplish this, we compute

O =
[
C
CA

]
=
[

1 1
−2 −2

]
, which has rankO = no = 1 < 2 = n. Therefore,

the unobservable subspace Rō = N (O) has dimension n− no = 1. In view of
(6.14),

Q = [Q1, v1] =
[

0 1
1 −1

]
,

where v1 = [1,−1]T is a basis for Rō, and Q1 was chosen so that Q is nonsin-
gular. Then

Â = Q−1AQ =
[

1 1
1 0

] [
0 1

−2 −3

] [
0 1
1 −1

]

=
[
−2 0

1 −1

]
=
[
A1 0
A21 A2

]
,

Ĉ = CQ = [1, 1]
[

0 1
1 −1

]
= [1, 0] = [C1, 0],

where (A1, C1) is observable. The matrix A has two eigenvalues at −1,−2. It
is clear from (Â, Ĉ) that the eigenvalue −2 is observable (in A1), whereas −1
is an unobservable eigenvalue (in A2).

6.2.3 Kalman’s Decomposition Theorem

Lemmas 6.1 and 6.4 can be combined to obtain an equivalent representation
of (6.1) where the reachable and observable parts of this system can readily be
identified. We consider system (6.9) and proceed, in the following, to construct
the n× n required similarity transformation matrix Q.

As before, we let nr denote the dimension of the controllable subspace Rr;
i.e., nr = dimRr = dimR(C) = rankC. The dimension of the unobservable
subspace Rō = N (O) is given by nō = n − rankO = n − no. Let nrō be the
dimension of the subspace Rrō � Rr ∩Rō, which contains all the state vectors
x ∈ Rn that are controllable but unobservable. We choose

Q � [v1, . . . , vnr−nrō+1, . . . , vnr , QN , v̂1, . . . , v̂nō−nrō ], (6.19)

where the nr vectors in {v1, . . . , vnr} form a basis for Rr. The last nrō vectors
{vnr−nrō+1, . . . , vnr} in the basis for Rr are chosen so that they form a basis
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for Rrō = Rr∩Rō. The nō−nrō = (n−no−nrō) vectors {v̂1, . . . , v̂nō−nrō} are
selected so that when taken together with the nrō vectors {vnr−nrō+1, . . . , vnr}
they form a basis for Rō, the unobservable subspace. The remaining N =
n−(nr+nō−nrō) columns in QN are simply selected so that Q is nonsingular.

The following theorem is called the Canonical Structure Theorem or
Kalman’s Decomposition Theorem.

Theorem 6.6. For (A,B) uncontrollable and (A,C) unobservable, there is a
nonsingular matrix Q such that

Â = Q−1AQ =

⎡
⎢⎢⎣
A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44

⎤
⎥⎥⎦ , B̂ = Q−1B =

⎡
⎢⎢⎣
B1

B2

0
0

⎤
⎥⎥⎦ ,

Ĉ = CQ = [C1, 0, C3, 0],

(6.20)

where

(i) (Ac, Bc) with

Ac �
[
A11 0
A21 A22

]
and Bc �

[
B1

B2

]

is controllable, where Ac ∈ Rnr×nr , Bc ∈ Rnr×m;
(ii) (Ao, Co) with

Ao �
[
A11 A13

0 A33

]
and Co � [C1, C3]

is observable, where Ao ∈ Rno×no and Co ∈ Rp×no and where the dimen-
sions of the matrices Aij , Bi, and Cj are as follows:

A11 : (nr − nrō) × (nr − nrō), A22 : nrō × nrō ,

A33 : (n− (nr + nō − nrō)) × A44 : (nō − nrō) × (nō − nrō),
(n− (nr + nō − nrō)),

B1 : (nr − nrō) ×m, B2 : nrō ×m,

C1 : p× (nr − nrō), C3 : p× (n− (nr + nō − nrō));

(iii) the triple (A11, B1, C1) is such that (A11, B1) is controllable and (A11, C1)
is observable.

Proof. For details of the proof, refer to [6] and to [7], where further clarifica-
tions to [6] and an updated method of selecting Q are given. �

The similarity transformation (6.19) has altered the basis of the state space
in such a manner that the vectors in the controllable subspace Rr, the vectors
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in the unobservable subspace Rō, and the vectors in the subspace Rrō ∩ Rō
all have specific forms. To see this, we construct the controllability matrix
Ĉ = [B̂, . . . , Ân−1B̂] whose range is the controllable subspace and the observ-
ability matrix Ô = [ĈT , . . . , (ĈÂn−1)T ]T , whose null space is the unobservable
subspace. Then, all controllable states are of the form [xT1 , x

T
2 , 0, 0]T , all the

unobservable ones have the structure [0, xT2 , 0, xT4 ]T , and states of the form
[0, xT2 , 0, 0]T characterize Rrō; i.e., they are controllable but unobservable.

Similarly to the previous two lemmas, the eigenvalues of Â, or of A, are
the eigenvalues of A11, A22, A33, and A44; i.e.,

|λI −A| = |λI − Â| = |λI −A11||λI −A22||λI −A33||λI −A44|. (6.21)

If we consider the representation {Â, B̂, Ĉ, D̂} given in (6.20), then

⎡
⎢⎢⎣

˙̂x1

˙̂x2

˙̂x3

˙̂x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x̂1

x̂2

x̂3

x̂4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
B1

B2

0
0

⎤
⎥⎥⎦u,

y = [C1, 0, C3, 0]

⎡
⎢⎢⎣
x̂1

x̂2

x̂3

x̂4

⎤
⎥⎥⎦+Du.

(6.22)

This shows that the trajectory components corresponding to x̂3 and x̂4 are
not affected by the input u. The modes associated with the eigenvalues of
A33 and A44 determine the trajectory components for x̂3 and x̂4 (compare
this with the results in Lemma 6.1). Similarly to Lemma 6.4, the trajectory
components for x̂2 and x̂4 are not influenced by x̂1 and x̂3 (observed via y),
and they are determined by the eigenvalues of A22 and A44. The following is
now apparent (see also Figure 6.1):

The eigenvalues of

A11 are controllable and observable,
A22 are controllable and unobservable,
A33 are uncontrollable and observable,
A44 are uncontrollable and unobservable.

Example 6.7. Given A =

⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦, B =

⎡
⎣

1 0
1 1
1 2

⎤
⎦, and C = [0, 1, 0], we

wish to reduce system (6.1) to the canonical structure (or Kalman decom-
position) form (6.20). The appropriate transformation matrix Q is given by
(6.19). The matrix C was found in Example 6.2 and
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u

c

o

c o

c o

c o

c o

c

y

–

– –

–

–

Figure 6.1. Canonical decomposition (c and c̄ denote controllable and uncontrol-
lable, respectively). The connections of the c/c̄ and o/ō parts of the system to the
input and output are emphasized. Note that the impulse response (transfer func-
tion) of the system, which is an input–output description only, represents the part
of the system that is both controllable and observable (see Chapter 7).

O =

⎡
⎣

C
CA
CA2

⎤
⎦ =

⎡
⎣

0 1 0
1 −2 1

−2 4 −2

⎤
⎦ .

A basis for Rō = N (O) is {(1, 0, −1)T }. Note that nr = 2, nō = 1, and
nrō = 1. Therefore,

Q = [v1, v2, QN ] =

⎡
⎣

1 1 0
1 0 0
1 −1 1

⎤
⎦

is an appropriate similarity matrix (check that detQ �= 0). We compute

Â = Q−1AQ =

⎡
⎣

0 1 0
1 −1 0
1 −2 1

⎤
⎦
⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦
⎡
⎣

1 1 0
1 0 0
1 −1 1

⎤
⎦

=

⎡
⎣

0 0 1
0 −1 0
0 0 −2

⎤
⎦ =

⎡
⎣
A11 0 A13

A21 A22 A23

0 0 A33

⎤
⎦ ,

B̂ = Q−1B =

⎡
⎣

0 1 0
1 −1 0
1 −2 1

⎤
⎦
⎡
⎣

1 0
1 1
1 2

⎤
⎦ =

⎡
⎣

1 1
0 −1
0 0

⎤
⎦ =

⎡
⎣
B1

B2

0

⎤
⎦ ,
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and

Ĉ = CQ = [0, 1, 0]

⎡
⎣

1 1 0
1 0 0
1 −1 1

⎤
⎦ = [1, 0, 0] = [C1, 0, C3].

The eigenvalue 0 (in A11) is controllable and observable, the eigenvalue
−1 (in A22) is controllable and unobservable and the eigenvalue −2 (in A33)
is uncontrollable and observable. There are no eigenvalues that are both un-
controllable and unobservable.

6.3 Eigenvalue/Eigenvector Tests for Controllability and
Observability

There are tests for controllability and observability for both continuous- and
discrete-time time-invariant systems that involve the eigenvalues and eigen-
vectors of A. Some of these criteria are called PBH tests, after the initials
of the codiscoverers (Popov–Belevitch–Hautus) of these tests. These tests are
useful in theoretical analysis, and in addition, they are also attractive as com-
putational tools.

Theorem 6.8. (i) The pair (A,B) is uncontrollable if and only if there exists
a 1 × n (in general) complex vector v̂i �= 0 such that

v̂i[λiI −A,B] = 0, (6.23)

where λi is some complex scalar.
(ii) The pair (A,C) is unobservable if and only if there exists an n × 1 (in

general) complex vector vi �= 0 such that
[
λiI −A

C

]
vi = 0, (6.24)

where λi is some complex scalar.

Proof. Only part (i) will be considered since (ii) can be proved using a similar
argument or, directly, by duality arguments.

(Sufficiency) Assume that (6.23) is satisfied. In view of v̂iA = λiv̂i and
v̂iB = 0, v̂iAB = λiv̂iB = 0 and v̂iA

kB = 0 k = 0, 1, 2, . . . . Therefore,
v̂iC = v̂i[B,AB, . . . , An−1B] = 0, which shows that (A,B) is not completely
controllable.

(Necessity) Let (A,B) be uncontrollable and assume without loss of gen-
erality the standard form for A and B given in Lemma 6.1. We will show
that there exist λi and v̂i so that (6.23) holds. Let λi be an uncontrollable
eigenvalue, and let v̂i = [0, α], αT ∈ Cn−nr , where α(λiI − A2) = 0; i.e.,
α is a left eigenvector of A2 corresponding to λi. Then v̂i[λiI − A,B] =
[0, α(λiI −A2), 0] = 0; i.e., (6.23) is satisfied. �
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Corollary 6.9. (i) λi is an uncontrollable eigenvalue of (A,B) if and only if
there exists a 1×n (in general) complex vector v̂i �= 0 that satisfies (6.23).

(ii) λi is an unobservable eigenvalue of (A,C) if and only if there exists an
n× 1 (in general) complex vector vi �= 0 that satisfies (6.24).

Proof. See [1, p. 273, Corollary 4.6]. �

Example 6.10. Given are A =

⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦ , B =

⎡
⎣

1 0
1 1
1 2

⎤
⎦, and C = [0, 1, 0],

as in Example 6.7. The matrix A has three eigenvalues, λ1 = 0, λ2 = −1,
and λ3 = −2, with corresponding right eigenvectors v1 = [1, 1, 1]T , v2 =
[1, 0, −1]T , v3 = [1, 1, −1]T and with left eigenvectors v̂1 = [1/2, 0, 1/2],
v̂2 = [1, −1, 0], and v̂3 = [−1/2, 1, −1/2], respectively.

In view of Corollary 6.9, v̂1B = [1, 1] �= 0 implies that λ1 = 0 is control-
lable. This is because v̂1 is the only nonzero vector (within a multiplication
by a nonzero scalar) that satisfies v̂1(λ1I − A) = 0, and so v̂1B �= 0 implies
that the only 1×3 vector α that satisfies α[λ1I−A,B] = 0 is the zero vector,
which in turn implies that λ1 is controllable in view of (i) of Corollary 6.9.
For similar reasons Cv1 = 1 �= 0 implies that λ1 = 0 is observable; see (ii) of
Corollary 6.9. Similarly, v̂2B = [0,−1] �= 0 implies that λ2 = −1 is control-
lable, and Cv2 = 0 implies that λ2 = −1 is unobservable. Also, v̂3B = [0, 0]
implies that λ3 = −2 is uncontrollable, and Cv3 = 1 �= 0 implies that λ3 = −2
is observable. These results agree with the results derived in Example 6.7.

Corollary 6.11. (Rank Tests)

(ia) The pair (A,B) is controllable if and only if

rank[λI −A,B] = n (6.25)

for all complex numbers λ, or for all n eigenvalues λi of A.
(ib) λi is an uncontrollable eigenvalue of A if and only if

rank[λiI −A,B] < n. (6.26)

(iia) The pair (A,C) is observable if and only if

rank
[
λI −A
C

]
= n (6.27)

for all complex numbers λ, or for all n eigenvalues λi.
(iib) λi is an unobservable eigenvalue of A if and only if

rank
[
λiI −A
C

]
< n. (6.28)
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Proof. The proofs follow in a straightforward manner from Theorem 6.8. No-
tice that the only values of λ that can possibly reduce the rank of [λI −A,B]
are the eigenvalues of A. �

Example 6.12. If in Example 6.10 the eigenvalues λ1, λ2, λ3 of A are known,
but the corresponding eigenvectors are not, consider the system matrix

P (s) =
[
sI − A B
−C 0

]
=

⎡
⎢⎢⎣

s 1 −1 1 0
−1 s+ 2 −1 1 1

0 −1 s+ 1 1 2
0 −1 0 0 0

⎤
⎥⎥⎦

and determine rank[λiI −A,B] and rank
[
λiI −A

C

]
. Notice that

rank
[
sI −A
C

]

s=λ2

= rank

⎡
⎢⎢⎣
−1 1 −1
−1 1 −1

0 −1 0
0 1 0

⎤
⎥⎥⎦ = 2 < 3 = n

and

rank[sI −A,B]s=λ3 = rank

⎡
⎣
−2 2 −1 1 0
−1 0 −1 1 1

0 −1 −1 1 2

⎤
⎦ = 2 < 3 = n.

In view of Corollary 6.11, λ2 = −1 is unobservable and λ3 = −2 is uncon-
trollable.

6.4 Controller and Observer Forms

It has been seen several times in this book that equivalent representations of
systems

ẋ = Ax+Bu, y = Cx+Du, (6.29)

given by the equations

˙̂x = Âx̂+ B̂u, y = Ĉx̂+ D̂u, (6.30)

where x̂ = Px, Â = PAP−1, B̂ = PB, Ĉ = CP−1, and D̂ = D may offer
advantages over the original representation when P (or Q = P−1) is chosen in
an appropriate manner. This is the case when P (or Q) is such that the new
basis of the state space provides a natural setting for the properties of interest.
This section shows how to select Q when (A,B) is controllable [or (A,C) is
observable] to obtain the controller and observer forms. These special forms
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are very useful, in realizations discussed in Chapter 8 and especially when
studying state-feedback control (and state observers) discussed in Chapter 9.
They are also very useful in establishing a convenient way to transition be-
tween state-space representations and another very useful class of equivalent
internal representations, the polynomial matrix representations.

Controller forms are considered first. Observer forms can of course be
obtained directly in a similar manner to the controller forms, or they may be
obtained by duality. This is addressed in the latter part of this section.

6.4.1 Controller Forms

The controller form is a particular system representation where both matrices
(A,B) have a certain special structure. Since in this caseA is in the companion
form, the controller form is sometimes also referred to as the controllable
companion form. Consider the system

ẋ = Ax+Bu, y = Cx+Du, (6.31)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m and let (A,B) be
controllable. Then rank C = n, where

C = [B,AB, . . . , An−1B]. (6.32)

Assume that
rankB = m ≤ n. (6.33)

Under these assumptions, rankC = n and rankB = m. We will show how
to obtain an equivalent pair (Â, B̂) in controller form, first for the single-
input case (m = 1) and then for the multi-input case (m > 1). Before this is
accomplished, we discuss how to deal with two special cases that do not satisfy
the above assumptions that rankB = m and that (A,B) is controllable.

1. If them columns ofB are not linearly independent (rankB = r < m), then
there exists an m×m nonsingular matrix K so that BK = [Br, 0], where
the r columns of Br are linearly independent (rankBr = r). Note that

ẋ = Ax+Bu = Ax+(BK)(K−1u) = Ax+ [Br , 0]
[

ur
um−r

]
= Ax+Brur,

which shows that when rankB = r < m the same input action to the
system can be accomplished by only r inputs, instead of m inputs. The
pair (A,Br), which is controllable when (A,B) is controllable, can now
be reduced to controller form, using the method described below.

2. When (A,B) is not completely controllable, then a two-step approach can
be taken. First, the controllable part is isolated (see Subsection 6.2.1) and
then is reduced to the controller form, using the methods of this section.
In particular, consider the system ẋ = Ax + Bu with A ∈ Rn×n, B ∈
Rn×m, and rankB = m. Let rank[B,AB, . . . , An−1B] = nr < n. Then
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there exists a transformation P1 such that P1AP
−1
1 =

[
A1 A12

0 A2

]
and

P1B =
[
B1

0

]
, where A1 ∈ Rnr×nr , B1 ∈ Rnr×m, and (A1, B1) is con-

trollable (Subsection 6.2.1). Since (A1, B1) is controllable, there exists a
transformation P2 such that P2A1P

−1
2 = A1c, and P2B1 = B1c, where

A1c, B1c is in controller form, defined below. Combining, we obtain

PAP−1 =
[
A1c P2A12

0 A2

]
, and PB =

[
B1c

0

]
(6.34)

[where A1c ∈ Rnr×nr , B1c ∈ Rnr×m, and (A1c, B1c) is controllable], which
is in controller form. Note that

P =
[
P2 0
0 I

]
P1. (6.35)

Single-Input Case (m = 1)

The representation {Ac, Bc, Cc, Dc} in controller form is given by Ac � Â =
PAP−1 and Bc � B̂ = PB with

Ac =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−α0 −α1 · · · −αn−1

⎤
⎥⎥⎥⎦ , Bc =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ , (6.36)

where the coefficients αi are the coefficients of the characteristic polynomial
α(s) of A; that is,

α(s) � det(sI − A) = sn + αn−1s
n−1 + · · · + α1s+ α0. (6.37)

Note that Cc � Ĉ = CP−1 and Dc = D do not have any particular struc-
ture. The structure of (Ac, Bc) is very useful (in control problems), and the
representation {Ac, Bc, Cc, Dc} shall be referred to as the controller form of
the system. The similarity transformation matrix P is obtained as follows.
The controllability matrix C = [B,AB, . . . , An−1B] is in this case an n × n

nonsingular matrix. Let C−1 =
[
×
q

]
, where q is the nth row of C−1 and ×

indicates the remaining entries of C−1. Then

P �

⎡
⎢⎢⎣

q
qA
· · ·

qAn−1

⎤
⎥⎥⎦ . (6.38)
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To show that PAP−1 = Ac and PB = Bc given in (6.36), note first that
qAi−1B = 0 i = 1, . . . , n− 1 and qAn−1 B = 1. This can be verified from the
definition of q, which implies that q C = [0, 0, . . . , 1]. Now

PC = P [B,AB, . . . , An−1B] =

⎡
⎢⎢⎢⎣

0 0 · · · · · · 1
0 0 · · · 1 ×
... 1

...
...

1 × · · · × ×

⎤
⎥⎥⎥⎦ = Cc, (6.39)

which implies that |PC| = |P | |C| �= 0 or that |P | �= 0. Therefore, P qualifies
as a similarity transformation matrix. In view of (6.39), PB = [0, 0, . . . , 1]T =
Bc. Furthermore,

AcP =

⎡
⎢⎢⎢⎣

qA
...

qAn−1

qAn

⎤
⎥⎥⎥⎦ = PA, (6.40)

where in the last row of AcP , the relation −
∑n−1
i=0 αiA

i = An was used [which
is the Cayley–Hamilton Theorem, namely, α(A) = 0].

Example 6.13. Let A =

⎡
⎣
−1 0 0

0 1 0
0 0 −2

⎤
⎦ and B =

⎡
⎣

1
−1

1

⎤
⎦. Since n = 3 and

|sI −A| = (s+1)(s− 1)(s+2) = s3 +2s2 − s− 2, {Ac, Bc} in controller form
is given by

Ac =

⎡
⎣

0 1 0
0 0 1
2 1 −2

⎤
⎦ and Bc =

⎡
⎣

0
0
1

⎤
⎦ .

The transformation matrix P that reduces (A,B) to (Ac = PAP−1, Bc =
PB) is now derived. We have

C = [B,AB,A2B] =

⎡
⎣

1 −1 1
−1 −1 −1

1 −2 4

⎤
⎦ and C−1 =

⎡
⎣

1 −1/3 −1/3
−1/2 −1/2 0
−1/2 −1/6 1/3

⎤
⎦ .

The third (the nth) row of C−1 is q = [−1/2,−1/6, 1/3], and therefore,

P �

⎡
⎣

q
qA
qA2

⎤
⎦ =

⎡
⎣
−1/2 −1/6 1/3

1/2 −1/6 −2/3
−1/2 −1/6 4/3

⎤
⎦ .

It can now easily be verified that Ac = PAP−1, or

AcP =

⎡
⎣

1/2 −1/6 −2/3
−1/2 −1/6 −2/3

1/2 −1/6 −8/3

⎤
⎦ = PA,

and that Bc = PB.
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An alternative form to (6.36) is

Ac1 =

⎡
⎢⎢⎢⎣

−αn−1 · · · −α1 −α0

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

⎤
⎥⎥⎥⎦ , Bc1 =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ , (6.41)

which is obtained if the similarity transformation matrix is taken to be

P1 �

⎡
⎢⎢⎢⎣

qAn−1

...
qA
q

⎤
⎥⎥⎥⎦ , (6.42)

i.e., by reversing the order of the rows of P in (6.38). (See Exercise 6.5 and
Example 6.14.)

In the above, Ac is a companion matrix of the form
[

0 I
× ×

]
or
[
× ×
I 0

]
. It

could also be of the form
[

0 ×
I ×

]
or
[
× 0
× I

]
with coefficients −[α0, . . . , αn−1]T

in the last or the first column. It is shown here, for completeness, how to de-
termine controller forms where Ac are such companion matrices. In particular,
if

Q2 = P−1
2 = [B,AB, . . . , An−1B] = C, (6.43)

then

Ac2 = Q−1
2 AQ2 =

⎡
⎢⎢⎢⎣

0 · · · 0 −α0

1 · · · 0 −α1

...
. . .

...
...

0 · · · 1 −αn−1

⎤
⎥⎥⎥⎦ , Bc2 = Q−1

2 B =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ . (6.44)

Also, if
Q3 = P−1

3 = [An−1B, . . . , B], (6.45)

then

Ac3 = Q−1
3 AQ3 =

⎡
⎢⎢⎢⎣

−αn−1 1 · · · 0
...

...
. . .

...
−α1 0 · · · 1
−α0 0 · · · 0

⎤
⎥⎥⎥⎦ , Bc3 = Q−1

3 B =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ . (6.46)

(Ac, Bc) in (6.44) and (6.46) are also in controller canonical or controllable
companion form. (See also Exercise 6.5 and Example 6.14.)



6.4 Controller and Observer Forms 255

Example 6.14. Let A =

⎡
⎣
−1 0 0

0 1 0
0 0 −2

⎤
⎦ and B =

⎡
⎣

1
−1

1

⎤
⎦, as in Example 6.13.

Alternative controller forms can be derived for different P . In particular, if

(i) P = P1 =

⎡
⎣
qA2

qA
q

⎤
⎦ =

⎡
⎣
−1/2 −1/6 4/3

1/2 −1/6 −2/3
−1/2 −1/6 1/3

⎤
⎦, as in (6.42) (C, C−1, and q

were found in Example 6.13), then

Ac1 =

⎡
⎣
−2 1 2

1 0 0
0 1 0

⎤
⎦ , Bc1 =

⎡
⎣

1
0
0

⎤
⎦ ,

as in (6.41). Note that in the present caseAc1P1 =

⎡
⎣

1/2 −1/6 −8/3
−1/2 −1/6 4/3

1/2 −1/6 −2/3

⎤
⎦ =

P1A, Bc1 = P1B.

(ii) Q2 = C =

⎡
⎣

1 −1 1
−1 −1 −1

1 −2 4

⎤
⎦ , as in (6.43). Then

Ac2 =

⎡
⎣

0 0 2
1 0 1
0 1 −2

⎤
⎦ , Bc2 = Q−1

2 B =

⎡
⎣

1
0
0

⎤
⎦ ,

as in (6.44).

(iii) Q3 = [A2B,AB,B] =

⎡
⎣

1 −1 1
−1 −1 −1

4 −2 1

⎤
⎦, as in (6.45). Then

Ac3 =

⎡
⎣
−2 1 0

1 0 1
2 0 0

⎤
⎦ , Bc3 =

⎡
⎣

0
0
1

⎤
⎦ ,

as in (6.46). Note that Q3Ac3 =

⎡
⎣
−1 1 −1
−1 −1 −1
−8 4 −2

⎤
⎦ = AQ3, Q3Bc3 =

⎡
⎣

1
−1

1

⎤
⎦ = B.
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Multi-Input Case (m > 1)

In this case, the n × mn matrix C given in (6.32) is not square, and there
are typically many sets of n columns of C that are linearly independent
(rankC = n). Depending on which columns are chosen and in what order,
different controller forms (controllable companion forms) are derived. Note
that in the case when m = 1, four different controller forms were derived,
even though there was only one set of n linearly independent columns. In the
present case there are many more such choices. The form that will be used
most often in the following is a generalization of (Ac, Bc) given in (6.36). Fur-
ther discussion including derivation and alternative forms may be found in [1,
Subsection 3.4D].

Let Â = PAP−1 and B̂ = PB, where P is constructed as follows. Consider

C = [B,AB, . . . , An−1B]

= [b1, . . . , bm, Ab1, . . . , Abm, . . . , An−1b1, . . . , A
n−1bm], (6.47)

where the b1, . . . , bm are the m columns of B. Select, starting from the left and
moving to the right, the first n independent columns (rank C = n). Reorder
these columns by taking first b1, Ab1, A2b1, etc., until all columns involving
b1 have been taken; then take b2, Ab2, etc.; and lastly, take bm, Abm, etc., to
obtain

C̄ � [b1, Ab1, . . . , Aμ1−1b1, . . . , bm, . . . , A
μm−1bm], (6.48)

an n× n matrix. The integer μi denotes the number of columns involving bi
in the set of the first n linearly independent columns found in C when moving
from left to right.

Definition 6.15. The m integers μi, i = 1, . . . ,m, are the controllability
indices of the system, and μ � maxμi is called the controllability index of
the system. Note that

m∑
i=1

μi = n and mμ ≥ n. (6.49)

�

An alternative but equivalent definition for μ is that μ is the minimum
integer k such that

rank[B,AB, . . . , Ak−1B] = n. (6.50)

Notice that in (6.48) all columns of B are always present since rank B = m.
This implies that μi ≥ 1 for all i. Notice further that if Akbi is present, then
Ak−1bi must also be present.

Now define

σk �
k∑
i=1

μi, k = 1, . . . ,m; (6.51)
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i.e., σ1 = μ1, σ2 = μ1 + μ2, . . . , σm = μ1 + · · · + μm = n. Also, consider C̄−1

and let qk, where qTk ∈ Rn, k = 1, . . . ,m, denote its σkth row; i.e.,

C̄−1 = [×, . . . ,×, qT1
... · · ·

...×, . . . ,×, qTm]T . (6.52)

Next, define

P �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
q1A

...
q1A

μ1−1

· · ·
...
· · ·
qm
qmA

...
qmA

μm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.53)

It can now be shown that PAP−1 = Ac and PB = Bc with

Ac = [Aij ], i, j = 1, . . . ,m,

Aii =

⎡
⎢⎢⎢⎣

0
... Iμi−1

0
× × · · ·×

⎤
⎥⎥⎥⎦ ∈ Rμi×μi , i = j, Aij =

⎡
⎢⎢⎢⎣

0 · · · 0
...

...
...

0 · · · 0
× × · · · ×

⎤
⎥⎥⎥⎦ ∈ Rμi×μj , i �= j,

and

Bc =

⎡
⎢⎢⎢⎣

B1

B2

...
Bm

⎤
⎥⎥⎥⎦ , Bi =

⎡
⎢⎣

0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 1 × · · · ×

⎤
⎥⎦ ∈ Rμi×m, (6.54)

where the 1 in the last row of Bi occurs at the ith column location, i =
1, . . . ,m, and × denotes nonfixed entries. Note that Cc = CP−1 does not
have any particular structure. The expression (6.54) is a very useful form (in
control problems) and shall be referred to as the controller form of the system.
The derivation of this result is discussed in [1, Subsection 3.4D] .

Example 6.16. Given are A ∈ Rn×n and B ∈ Rn×m with (A,B) controllable
and with rankB = m. Let n = 4 and m = 2. Then there must be two
controllability indices μ1 and μ2 such that n = 4 =

∑2
i=1 μi = μ1 +μ2. Under

these conditions, there are three possibilities:
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(i) μ1 = 2, μ2 = 2,

Ac =
[
A11 A12

A21 A22

]
=

⎡
⎢⎢⎣

0 1 0 0
× × × ×
0 0 0 1
× × × ×

⎤
⎥⎥⎦ , Bc =

[
B1

B2

]
=

⎡
⎢⎢⎣

0 0
1 ×
0 0
0 1

⎤
⎥⎥⎦ .

(ii) μ1 = 1, μ2 = 3,

Ac =

⎡
⎢⎢⎣
× × × ×
0 0 1 0
0 0 0 1
× × × ×

⎤
⎥⎥⎦ , Bc =

⎡
⎢⎢⎣

1 ×
0 0
0 0
0 1

⎤
⎥⎥⎦ .

(iii) μ1 = 3, μ2 = 1,

Ac =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
× × × ×
× × × ×

⎤
⎥⎥⎦ , Bc =

⎡
⎢⎢⎣

0 0
0 0
1 ×
0 1

⎤
⎥⎥⎦ .

It is possible to write Ac, Bc in a systematic and perhaps more transparent
way. In particular, notice that Ac, Bc in (6.54) can be expressed as

Ac = Āc + B̄cAm, Bc = B̄cBm, (6.55)

where Āc = block diag[Ā11, Ā22, . . . , Āmm] with

Āii =

⎡
⎣

0
... Iμi−1

0
0 0···0

⎤
⎦ ∈ Rμi×μi , B̄c = block diag

([ 0
...
0
1

]
∈ Rμi×1, i = 1, . . . ,m

)
,

and Am ∈ Rm×n and Bm ∈ Rm×m are some appropriate matrices with∑m
i=1 μi = n. Note that the matrices Āc, B̄c are completely determined by

the m controllability indices μi, i = 1, . . . ,m. The matrices Am and Bm con-
sist of the σ1th, σ2th, . . . , σmth rows of Ac (entries denoted by ×) and the
same rows of Bc, respectively [see (6.57) and (6.58) below].

Example 6.17. Let A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ and B =

⎡
⎣

0 1
1 1
0 0

⎤
⎦. To determine the

controller form (6.54), consider

C = [B,AB,A2B] = [b1, b2, Ab1, Ab2, A2b1, A
2b2] =

⎡
⎣

0 1 1 1 0 0
1 1 0 0 2 2
0 0 2 2 −2 −2

⎤
⎦ ,
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where rankC = 3 = n; i.e., (A,B) is controllable. Searching from left to right,
the first three columns of C are selected since they are linearly independent.
Then

C̄ = [b1, Ab1, b2] =

⎡
⎣

0 1 1
1 0 1
0 2 0

⎤
⎦

and the controllability indices are μ1 = 2 and μ2 = 1. Also, σ1 = μ1 = 2 and
σ2 = μ1 + μ2 = 3 = n, and

C̄−1 =

⎡
⎣
−1 1 1/2

0 0 1/2
1 0 −1/2

⎤
⎦ .

Notice that q1 = [0, 0, 1/2] and q2 = [1, 0,−1/2], the second and third rows

of C̄−1, respectively. In view of (6.53), P =

⎡
⎣
q1
q1A
q2

⎤
⎦ =

⎡
⎣

0 0 1/2
0 1 −1/2
1 0 −1/2

⎤
⎦, P−1 =

⎡
⎣

1 0 1
1 1 0
2 0 0

⎤
⎦, and Ac = PAP−1 =

[
A11 A12

A21 A22

]
=

⎡
⎣

0 1 0
2 −1 0
1 0 0

⎤
⎦, Bc = PB =

[
B1

B2

]
=

⎡
⎣

0 0
1 1
0 1

⎤
⎦.

One can also verify (6.55) quite easily. We have

Ac =

⎡
⎣

0 1 0
2 −1 0
1 0 0

⎤
⎦ = Āc + B̄cAm =

⎡
⎣

0 1 0
0 0 0
0 0 0

⎤
⎦+

⎡
⎣

0 0
1 0
0 1

⎤
⎦
[

2 −1 0
1 0 0

]

and

Bc =

⎡
⎣

0 0
1 1
0 1

⎤
⎦ = B̄cBm =

⎡
⎣

0 0
1 0
0 1

⎤
⎦
[

1 1
0 1

]
.

It is interesting to note that in this example, the given pair (A,B) could
have already been in controller form if B were different but A were the same.
For example, consider the following three cases:

1. A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , B =

⎡
⎣

1 ×
0 0
0 1

⎤
⎦ , μ1 = 1, μ2 = 2,

2. A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , B =

⎡
⎣

0 0
1 ×
0 1

⎤
⎦ , μ1 = 2, μ1 = 1,
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3. A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , B =

⎡
⎣

0
0
1

⎤
⎦ , μ1 = 3 = n.

Note that case 3 is the single-input case (6.36).

Remarks

(i) An important result involving the controllability indices of (A,B) is the
following: Given (A,B) controllable, then (P (A+BGF )P−1, PBG) will
have the same controllability indices, within reordering, for any P, F , and
G (|P | �= 0, |G| �= 0) of appropriate dimensions. In other words, the con-
trollability indices are invariant under similarity and input transforma-
tions P and G, and state feedback F [or similarity transformation P and
state feedback (F,G)]. (For further discussion, see [1, Subsection 3.4D].)

(ii) It is not difficult to derive explicit expressions for Am and Bm in (6.55).
Using

qiA
k−1bj = 0 k = 1, . . . , μj , i �= j,

qiA
k−1bi = 0 k = 1, . . . , μi − 1, and qiAμi−1bi = 1, i = j, (6.56)

where i = 1, . . . ,m, and j = 1, . . . ,m, it can be shown that the m σ1th,
σ2th, . . . , σmth rows of Ac that are denoted by Am in (6.55) are given by

Am =

⎡
⎢⎣
q1A

μ1

...
qmA

μm

⎤
⎥⎦P−1. (6.57)

Similarly

Bm =

⎡
⎢⎣
q1A

μ1−1

...
qmA

μm−1

⎤
⎥⎦B. (6.58)

The matrix Bm is an upper triangular matrix with ones on the diagonal.
(For details, see [1, Subsection 3.4D].)

Example 6.18. We wish to reduce A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , B =

⎡
⎣

1 1
0 1
0 0

⎤
⎦ to controller

form. Note that A and B are almost the same as in Example 6.17; how-
ever, here μ1 = 1 < 2 = μ2, as will be seen. We have C = [B,AB,A2B] =

[b1, b2, Ab1, Ab2, . . . ] =

⎡
⎣

1 1 0 1
0 1 0 0 · · ·
0 0 0 2

⎤
⎦. Searching from left to right, the first
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three linearly independent columns are b1, b2, Ab2, and C̄ = [b1, b2, Ab2] =⎡
⎣

1 1 1
0 1 0
0 0 2

⎤
⎦, from which we conclude that μ1 = 1, μ2 = 2, σ1 = 1, and

σ2 = 3. We compute C̄−1 =

⎡
⎣

1 −1 −1/2
0 1 0
0 0 1/2

⎤
⎦. Note that q1 = [1,−1,−1/2]

and q2 = [0, 0, 1/2], the first and third rows of C̄−1, respectively. Then

P =

⎡
⎣
q1
q2
q2A

⎤
⎦ =

⎡
⎣

1 −1 −1/2
0 0 1/2
0 1 −1/2

⎤
⎦, P−1 =

⎡
⎣

1 2 1
0 1 1
0 2 0

⎤
⎦, and

Ac = PAP−1 =
[
A11 A12

A21 A22

]
=

⎡
⎣

0 −1 0
0 0 1
0 2 −1

⎤
⎦ ,

Bc = PB =
[
B1

B2

]
=

⎡
⎣

1 0
0 0
0 1

⎤
⎦ .

It is easy to verify relations (6.57) and (6.58).

Structure Theorem—Controllable Version

The transfer function matrix H(s) of the system ẋ = Ax + Bu, y = Cx +
Du is given by H(s) = C(sI − A)−1B + D. If (A,B) is in controller form
(6.54), thenH(s) can alternatively be characterized by the Structure Theorem
stated in Theorem 6.19 below. This result is very useful in the realization of
systems, which is addressed in Chapter 8 and in the study of state feedback
in Chapter 9.

Let A = Ac = Āc + B̄cAm and B = Bc = B̄cBm, as in (6.55), with
|Bm| �= 0, and let C = Cc and D = Dc. Define

Λ(s) � diag[sμ1 , sμ2 , . . . , sμm ], (6.59)

S(s) � block diag([1, s, . . . , sμi−1]T , i = 1, . . . ,m). (6.60)

Note that S(s) is an n ×m polynomial matrix (n =
∑m

i=1 μi), i.e., a matrix
with polynomials as entries. Now define the m ×m polynomial matrix D(s)
and the p×m polynomial matrix N(s) by

D(s) � B−1
m [Λ(s) −AmS(s)], N(s) � CcS(s) +DcD(s). (6.61)

The following is the controllable version of the Structure Theorem.

Theorem 6.19. H(s) = N(s)D−1(s), where N(s) and D(s) are defined in
(6.61).
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Proof. First, note that

(sI −Ac)S(s) = BcD(s). (6.62)

To see this, we write BcD(s) = B̄cBmB
−1
m [Λ(s) − AmS(s)] = B̄cΛ(s) −

B̄cAmS(s) and (sI −Ac)S(s) = sS(s)− (Āc + B̄cAm)S(s) = (sI − Āc)S(s)−
B̄cAmS(s) = B̄cΛ(s)− B̄cAmS(s), which proves (6.62). Now H(s) = Cc(sI −
Ac)−1Bc +Dc = CcS(s)D−1(s) +Dc = [CcS(s) +DcD(s)]D−1(s) = ND−1.

�

Example 6.20. Let Ac =

⎡
⎣

0 1 0
2 −1 0
1 0 0

⎤
⎦, Bc =

⎡
⎣

0 0
1 1
0 1

⎤
⎦, as in Example 6.17. Here

μ1 = 2, μ2 = 1 and Am =
[

2 −1 0
1 0 0

]
, Bm =

[
1 1
0 1

]
. Then Λ(s) =

[
s2 0
0 s

]
,

S(s) =

⎡
⎣

1 0
s 0
0 1

⎤
⎦ and

D(s) = B−1
m [Λ(s) −AmS(s)] =

[
1 −1
0 1

] [[
s2 0
0 s

]
−
[
−s+ 2 0

1 0

]]

=
[

1 −1
0 1

] [
s2 + s− 2 0

−1 s

]
=
[
s2 + s− 1 −s

−1 s

]
.

Now Cc = [0, 1, 1], and Dc = [0, 0],

N(s) = CcS(s) +DcD(s) = [s, 1],

and

H(s) = [s, 1]
[
s2 + s− 1 −s

−1 s

]−1

= [s, 1]
[
s s
1 s2 + s− 1

]
1

s(s2 + s− 2)

=
1

s(s2 + s− 2)
[s2 + 1, 2s2 + s− 1]

= Cc(sI −Ac)−1Bc +Dc.

Example 6.21. Let Ac =

⎡
⎣

0 1 0
0 0 1
2 1 −2

⎤
⎦, Bc =

⎡
⎣

0
0
1

⎤
⎦, Cc = [0, 1, 0], and Dc = 0

(see Example 6.13). In the present case, we have Am = [2, 1,−2], Bm = 1,
Λ(s) = s3, S(s) = [1, s, s2]T , and

D(s) = 1 · [s3 − [2, 1, −2][1, s, s2]T ] = s3 + 2s2 − s− 2, N(s) = s.

Then

H(s) = N(s)D−1(s) = s/(s3 + 2s2 − s− 2) = Cc(sI −Ac)−1Bc +Dc.
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6.4.2 Observer Forms

Consider the system ẋ = Ax + Bu, y = Cx +Du given in (6.1) and assume
that (A,C) is observable; i.e., rankO = n, where

O =

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ . (6.63)

Also, assume that the p× n matrix C has a full row rank p; i.e.,

rankC = p ≤ n. (6.64)

It is of interest to determine a transformation matrix P so that the equiv-
alent system representation {Ao, Bo, Co, Do} with

Ao = PAP−1, Bo = PB, Co = CP−1, Do = D (6.65)

will have (Ao, Co) in an observer form (defined below). As will become clear in
the following discussion, these forms are dual to the controller forms previously
discussed and can be derived by taking advantage of this fact. In particular,
let Ã � AT , B̃ � CT [(Ã, B̃) is controllable], and determine a nonsingular
transformation P̃ so that Ãc = P̃ ÃP̃−1, B̃c = P̃ B̃ are in controller form given
in (6.54). Then Ao = ÃTc and Co = B̃Tc is in observer form.

It will be demonstrated in the following discussion how to obtain observer
forms directly, in a way that parallels the approach described for controller
forms. This is done for the sake of completeness and to define the observability
indices. The approach of using duality just given can be used in each case to
verify the results.

We first note that if rankC = r < p, an approach analogous to the case
when rankB < m can be followed, as in Subsection 6.4.1. The fact that the
rows of C are not linearly independent means that the same information can
be extracted from only r outputs, and therefore, the choice for the outputs
should perhaps be reconsidered. Now if (A,C) is unobservable, one may use
two steps to first isolate the observable part and then reduce it to the observer
form, in an analogous way to the uncontrollable case previously given.

Single-Output Case (p = 1)

Let
P−1 = Q � [q̃, Aq̃, . . . , An−1q̃], (6.66)

where q̃ is the nth column in O−1. Then
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A0 =

⎡
⎢⎢⎢⎣

0 · · · 0 −α0

1 · · · 0 −α1

...
. . .

...
...

0 · · · 1 −αn−1

⎤
⎥⎥⎥⎦ , Co = [0, . . . , 0, 1], (6.67)

where the αi denote the coefficients of the characteristic polynomial α(s) �
det(sI − A) = sn + αn−1s

n−1 + · · · + α1s + α0. Here Ao = PAP−1 =
Q−1AQ,Co = CP−1 = CQ, and the desired result can be established by
using a proof that is completely analogous to the proof in determining the
(dual) controller form presented in Subsection 6.4.1. Note that Bo = PB does
not have any particular structure. The representation {Ao, Bo, Co, Do} will be
referred to as the observer form of the system.

Reversing the order of columns in P−1 given in (6.66) or selecting P to
be exactly O, or to be equal to the matrix obtained after the order of the
columns in O has been reversed, leads to alternative observer forms in a
manner analogous to the controller form case.

Example 6.22. Let A =

⎡
⎣
−1 0 0

0 1 0
0 0 −2

⎤
⎦ and C = [1,−1, 1]. To derive the ob-

server form (6.67), we could use duality, by defining Ã = AT , B̃ = CT , and
deriving the controller form of Ã, B̃, i.e., by following the procedure outlined
above. We note that the Ã, B̃ are exactly the matrices given in Examples 6.13
and 6.14. As an alternative approach, the observer form is now derived di-
rectly. In particular, we have

O =

⎡
⎣

C
CA
CA2

⎤
⎦ =

⎡
⎣

1 −1 1
−1 −1 −2

1 −1 4

⎤
⎦ ,O−1 =

⎡
⎣

1 −1/2 −1/2
−1/3 −1/2 −1/6
−1/3 0 1/3

⎤
⎦ ,

and in view of (6.66),

Q = P−1 = [q̃, Aq̃, A2q̃] =

⎡
⎣
−1/2 1/2 −1/2
−1/6 −1/6 −1/6

1/3 −2/3 4/3

⎤
⎦ .

Note that q̃ = [−1/2,−1/6, 1/3]T , the last column of O−1. Then

Ao = Q−1AQ =

⎡
⎣

0 0 2
1 0 1
0 1 −2

⎤
⎦ , and Co = CQ = [0, 0, 1],

where |sI − A| = s3 + 2s − s − 2 = s3 + α2s
2 + α1s + α0. Hence, QAo =⎡

⎣
1/2 −1/2 1/2

−1/6 −1/6 −1/6
−2/3 4/3 −8/3

⎤
⎦ = AQ.



6.4 Controller and Observer Forms 265

Multi-Output Case (p > 1)

Consider

O =

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
...
cp
c1A

...
cpA

...
c1A

n−1

...
cpA

n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.68)

where c1, . . . , cp denote the p rows of C, and select the first n linearly indepen-
dent rows in O, moving from the top to bottom (rank O = n). Next, reorder
the selected rows by first taking all rows involving c1, then c2, etc., to obtain

Ō �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
c1A

...
c1A

ν1−1

...
cp
...

cpA
νp−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.69)

an n × n matrix. The integer νi denotes the number of rows involving ci in
the set of the first n linearly independent rows found in O when moving from
top to bottom.

Definition 6.23. The p integers νi, i = 1, . . . , p, are the observability indices
of the system, and ν � max νi is called the observability index of the system.
Note that

p∑
i=1

νi = n and pν ≥ n. (6.70)

�

When rankC = p, then νi ≥ 1. Now define

σ̃k �
k∑
i=1

νi k = 1, . . . , p; (6.71)
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i.e., σ̃1 = ν1, σ̃2 = ν1 + ν2, . . . , σ̃p = ν1 + · · · + νp = n. Consider Ō−1 and let
q̃k ∈ Rn, k = 1, . . . , p, represent its σ̃kth column; i.e.,

Ō−1 = [× · · · × q̃1| × · · · × q̃2| · · · | × · · · × q̃p]. (6.72)

Define
P−1 = Q = [q̃1, . . . , Aν1−1q̃1, . . . , q̃p, . . . , A

νp−1q̃p]. (6.73)

Then Ao = PAP−1 = Q−1AQ and Co = CP−1 = CQ are given by

Ao = [Aij ], i, j = 1, . . . , p,

Aii =

⎡
⎢⎣

0 · · · 0 ×

Iνi−1

...
×

⎤
⎥⎦ ∈ Rνi×νi , i = j, Aij =

⎡
⎢⎣

0 · · · 0 ×
...

...
...

0 · · · 0 ×

⎤
⎥⎦ ∈ Rνi×νj , i �= j,

and

Co = [C1, C2, . . . , Cp], Ci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0
...

...
...

0 · · · 0 0
0 · · · 0 1
0 · · · 0 ×
...

...
...

0 · · · 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rp×νi , (6.74)

where the 1 in the last column of Ci occurs at the ith row location (i =
1, . . . , p) and × denotes nonfixed entries. Note that the matrix Bo = PB =
Q−1B does not have any particular structure. Equation (6.74) is a very useful
form (in the observer problem) and shall be referred to as the observer form
of the system.

Analogous to (6.55), we express Ao and Co as

Ao = Āo +ApC̄o, Co = CpC̄o, (6.75)

where Āo = block diag[A1, A2, . . . , Ap] with Ai =

⎡
⎢⎣

0 · · · 0

Iνi−1

...
0

⎤
⎥⎦ ∈ Rνi×νi , C̄o =

block diag([0, . . . , 0, 1]T ∈ Rνi , i = 1, . . . , p), and Ap ∈ Rn×p, and Cp ∈ Rp×p

are appropriate matrices (
∑p

i=1 νi = n). Note that Āo, C̄o are completely
determined by the p observability indices νi, i = 1, . . . , p, and Ap and Cp
contain this information in the σ̃1th, . . . , σ̃pth columns of Ao and in the same
columns of Co, respectively.

Example 6.24. Given A =

⎡
⎣

0 0 0
1 0 2
0 1 −1

⎤
⎦ and C =

[
0 1 0
1 1 0

]
, we wish to reduce

these to observer form. This can be accomplished using duality, i.e., by first
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reducing Ã � AT , B̃ � CT to controller form. Note that Ã, B̃ are the matrices
used in Example 6.17, and therefore, the desired answer is easily obtained.
Presently, we shall follow the direct algorithm described above. We have

O =

⎡
⎣

C
CA
CA2

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0
1 1 0
1 0 2
1 0 2
0 2 −2
0 2 −2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Searching from top to bottom, the first three linearly independent rows are
c1, c2, c1A, and

Ō =

⎡
⎣
c1
c1A
c2

⎤
⎦ =

⎡
⎣

0 1 0
1 0 2
1 1 0

⎤
⎦ .

Note that the observability indices are ν1 = 2, ν2 = 1 and σ̃1 = 2, σ̃2 = 3. We
compute

Ō−1 =

⎡
⎣
−1 0 1
1 0 0

1/2 1/2 −1/2

⎤
⎦ =

⎡
⎣
× 0 1
× 0 0
× 1/2 −1/2

⎤
⎦ .

Then, Q = [q̃1, Aq̃1, q̃2] =

⎡
⎣

0 0 1
0 1 0

1/2 −1/2 −1/2

⎤
⎦ and Q−1 =

⎡
⎣

1 1 2
0 1 0
1 0 0

⎤
⎦. Therefore,

Ao = Q−1AQ =
[
A11 A12

A21 A22

]
=

⎡
⎣

0 2 1
1 −1 0
0 0 0

⎤
⎦ , Co = CQ = [C1

...C2] =
[

0 1 0
0 1 1

]
.

We can also verify (6.47), namely

Ao =

⎡
⎣

0 2 1
1 −1 0
0 0 0

⎤
⎦ = Āo +ApC̄o =

⎡
⎣

0 0 0
1 0 0
0 0 0

⎤
⎦+

⎡
⎣

2 1
−1 0

0 0

⎤
⎦
[

0 1 0
0 0 1

]

and

Co =
[

0 1 0
0 1 1

]
= CpC̄o =

[
1 0
1 1

] [
0 1 0
0 0 1

]
.

Structure Theorem—Observable Version

The transfer function matrix H(s) of system ẋ = Ax + Bu, y = Cx + Du
is given by H(s) = C(sI − A)−1B + D. If (A,C) is in the observer form,
given in (6.74), then H(s) can alternatively be characterized by the Structure
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Theorem stated in Theorem 6.25 below. This result will be very useful in
the realization of systems, addressed in Chapter 8 and also in the study of
observers in Chapter 9.

Let A = Ao = Āo +ApC̄o and C = Co = CpC̄o as in (6.75) with |Cp| �= 0;
let B = Bo and D = Do, and define

Λ̃(s) � diag[sν1 , sν2 , . . . , sνp ], S̃(s) � block diag([1, s, . . . , sνi−1], i = 1, . . . , p).
(6.76)

Note that S̃(s) is a p× n polynomial matrix, where n =
∑p
i=1 νi. Now define

the p× p polynomial matrix D̃(s) and the p×m polynomial matrix Ñ(s) as

D̃(s) � [Λ̃(s) − S̃(s)Ap]C−1
p , Ñ(s) � S̃(s)Bo + D̃(s)Do. (6.77)

The following result is the observable version of the Structure Theorem. It is
the dual of Theorem 6.19 and can therefore be proved using duality arguments.
The proof given is direct.

Theorem 6.25. H(s) = D̃−1(s)Ñ(s), where Ñ(s), D̃(s) are defined in (6.77).

Proof. First we note that

D̃(s)Co = S̃(s)(sI −Ao). (6.78)

To see this, write D̃(s)Co = [Λ̃(s)− S̃(s)Ap]C−1
p CpC̄o = Λ̃(s)C̄o − S̃(s)ApC̄o,

and also, S̃(s)(sI − Ao) = S̃(s)s − S̃(s)(Āo + ApC̄o) = S̃(s)(sI − Āo) −
S̃(s)ApC̄o = Λ̃(s)C̄o− S̃(s)ApC̄o, which proves (6.78). We now obtain H(s) =
Co(sI −Ao)−1Bo+Do = D̃−1(s)S̃(s)Bo +Do = D̃−1(s)[S̃(s)Bo + D̃(s)Do] =
D̃−1(s)Ñ (s). �

Example 6.26. Consider Ao =

⎡
⎣

0 2 1
1 −1 0
0 0 0

⎤
⎦ and Co =

[
0 1 0
0 1 1

]
of Exam-

ple 6.24. Here ν1 = 2, ν2 = 1, Λ̃(s) =
[
s2 0
0 s

]
, and S̃(s) =

[
1 s 0
0 0 1

]
. Then

D̃(s) = [Λ̃(s) − S̃(s)Ap]C−1
p =

⎡
⎣
[
s2 0
0 s

]
−
[

1 s 0
0 0 1

]⎡
⎣

2 1
−1 0

0 0

⎤
⎦
⎤
⎦ .
[

1 0
1 1

]−1

=

⎡
⎣
⎡
⎣ s

2 0
0 s

⎤
⎦−

⎡
⎣−s+ 2 1

0 0

⎤
⎦
⎤
⎦ ·
⎡
⎣ 1 0
−1 1

⎤
⎦=

⎡
⎣ s

2 + s− 2, −1
0 s

⎤
⎦·
⎡
⎣ 1 0
−1 1

⎤
⎦=

⎡
⎣ s

2 + s− 1 −1
−s s

⎤
⎦.

Now if Bo = [0, 1, 1]T , Do = 0, and Ñ(s) = S̃(s)Bo + D̃(s)Do = [s, 1]T , then
H(s) = D̃−1(s)Ñ(s) = 1

s(s2+s−2) [s
2+1, 2s2+s−1]T = Co(sI−Ao)−1Bo+Do.
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6.5 Summary and Highlights

• The standard form for uncontrollable systems is

Â = Q−1AQ =
[
A1 A12

0 A2

]
, B̂ = Q−1B =

[
B1

0

]
, (6.6)

where A1 ∈ Rnr×nr , B1 ∈ Rnr×m, and (A1, B1) is controllable. nr < n is
the rank of the controllability matrix C = [B,AB, . . . , An−1B]; i.e.,

rankC = nr.

• The standard form for unobservable systems is

Â = Q−1AQ =
[
A1 0
A21 A2

]
, Ĉ = CQ =

[
C1

0

]
, (6.15)

where A1 ∈ Rno×no , C1 ∈ Rp×no , and (A1, C1) is observable. no < n is
the rank of the observability matrix

O =

⎡
⎢⎢⎢⎣

Ĉ

ĈÂ
...

ĈÂn−1

⎤
⎥⎥⎥⎦ ;

i.e.,
rankO = no.

• Kalman’s Decomposition Theorem.

Â = Q−1AQ =

⎡
⎢⎢⎣
A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44

⎤
⎥⎥⎦ , B̂ = Q−1B =

⎡
⎢⎢⎣
B1

B2

0
0

⎤
⎥⎥⎦ ,

Ĉ = CQ = [C1, 0, C3, 0],

(6.20)

where (A11, B1, C1) is controllable and observable.
• λi is an uncontrollable eigenvalue if and only if

v̂i[λiI −A,B] = 0, (6.23)

where v̂i is the corresponding (left) eigenvector.
• λi is an unobservable eigenvalue if and only if

[
λiI −A

C

]
vi = 0, (6.24)

where vi is the corresponding (right) eigenvector.
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Controller Forms (for Controllable Systems)

• m = 1 case.

Ac =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−α0 −α1 · · · −αn−1

⎤
⎥⎥⎥⎦ , Bc =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ , (6.36)

where

α(s) � det(sI −A) = sn + αn−1s
n−1 + · · · + α1s+ α0. (6.37)

• m > 1 case.

Ac = [Aij ], i, j = 1, . . . ,m,

Aii =

⎡
⎢⎢⎢⎣

0
... Iμi−1

0
× × · · ·×

⎤
⎥⎥⎥⎦ ∈ Rμi×μi , i = j, Aij =

⎡
⎢⎢⎢⎣

0 · · · 0
...

...
...

0 · · · 0
× × · · · ×

⎤
⎥⎥⎥⎦ ∈ Rμi×μj , i �= j,

and

Bc =

⎡
⎢⎢⎢⎣

B1

B2

...
Bm

⎤
⎥⎥⎥⎦ , Bi =

⎡
⎢⎣

0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 1 × · · · ×

⎤
⎥⎦ ∈ Rμi×m. (6.54)

An example for n = 4, m = 2 and μ1 = 2, μ2 = 2 is

Ac =
[
A11 A12

A21 A22

]
=

⎡
⎢⎢⎣

0 1 0 0
× × × ×
0 0 0 1
× × × ×

⎤
⎥⎥⎦ , Bc =

[
B1

B2

]
=

⎡
⎢⎢⎣

0 0
1 ×
0 0
0 1

⎤
⎥⎥⎦ .

• Ac = Āc + B̄cAm, Bc = B̄cBm. (6.55)

• Structure theorem—controllable version
H(s) = N(s)D−1(s), where

D(s) = B−1
m [Λ(s) −AmS(s)], N(s) = CcS(s) +DcD(s). (6.61)

Note that
(sI −Ac)S(s) = BcD(s). (6.62)
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Observer Forms (for Observable Systems)

• p = 1 case.

A0 =

⎡
⎢⎢⎢⎣

0 · · · 0 −α0

1 · · · 0 −α1

...
. . .

...
...

0 · · · 1 −αn−1

⎤
⎥⎥⎥⎦ , Co = [0, . . . , 0, 1]. (6.67)

• p > 1.
Ao = [Aij ], i, j = 1, . . . , p,

Aii =

⎡
⎢⎣

0 · · · 0 ×

Iνi−1

...
×

⎤
⎥⎦ ∈ Rνi×νi , i = j, Aij =

⎡
⎢⎣

0 · · · 0 ×
...

...
...

0 · · · 0 ×

⎤
⎥⎦ ∈ Rνi×νj , i �= j,

and

Co = [C1, C2, . . . , Cp], Ci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0
...

...
...

0 · · · 0 0
0 · · · 0 1
0 · · · 0 ×
...

...
...

0 · · · 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rp×νi , (6.74)

If (Ac, Bc) is in controller form, (Ao = ATc , Co = BTc ) will be in observer
form.

• Ao = Āo +ApC̄o, Co = CpC̄o. (6.75)

• Structure theorem—observable version
H(s) = D̃−1(s)Ñ(s), where

D̃(s) = [Λ̃(s) − S̃(s)Ap]C−1
p , Ñ(s) = S̃(s)Bo + D̃(s)Do. (6.77)

Note that
D̃(s)Co = S̃(s)(sI −Ao). (6.78)

6.6 Notes

Special state-space forms for controllable and observable systems obtained by
similarity transformations are discussed at length in Kailath [5]. Wolovich [13]
discusses the algorithms for controller and observer forms and introduces the
Structure Theorems. The controller form is based on results by Luenberger [9]



272 6 Controllability and Observability: Special Forms

(see also Popov [10]). A detailed derivation of the controller form can also be
found in Rugh [12].

Original sources for the Canonical Structure Theorem include Kalman [6]
and Gilbert [3].

The eigenvector and rank tests for controllability and observability are
called PBH tests in Kailath [5]. Original sources for these include Popov [10],
Belevich [2], and Hautus [4]. Consult also Rosenbrock [11], and for the case
when A can be diagonalized via a similarity transformation, see Gilbert [3].
Note that in the eigenvalue/eigenvector tests presented herein the uncontrol-
lable (unobservable) eigenvalues are also explicitly identified, which represents
a modification of the above original results.

The fact that the controllability indices appear in the work of Kronecker
was recognized by Rosenbrock [11] and Kalman [8].

For an extensive introductory discussion and a formal definition of canon-
ical forms, see Kailath [5].
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Exercises

6.1. Write software programs to implement the algorithms of Section 6.2. In
particular:
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(a) Given the pair (A,B), where A ∈ Rn×n, B ∈ Rn×m with

rank[B,AB, . . . , An−1B] = nr < n,

reduce this pair to the standard uncontrollable form

Â = PAP−1 =
[
A1 A12

0 A2

]
, B̂ = PB =

[
B1

0

]
,

where (A1, B1) is controllable and A1 ∈ Rnr×nr , B1 ∈ Rnr×m.
(b) Given the controllable pair (A,B), where A ∈ Rn×n, B ∈ Rn×m with

rankB = m, reduce this pair to the controller form Ac = PAP−1, Bc =
PB.

6.2. Determine the uncontrollable modes of each pair (A,B) given below by

(a) Reducing (A,B), using a similarity transformation.
(b) Using eigenvalue/eigenvector criteria:

A =

⎡
⎣

1 0 0
0 −1 0
0 0 2

⎤
⎦ , B =

⎡
⎣

1 0
0 1
0 0

⎤
⎦ and A =

⎡
⎢⎢⎣

0 0 1 0
0 0 1 0
0 0 0 0
0 0 0 −1

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 1
0 0
1 0
0 0

⎤
⎥⎥⎦ .

6.3. Reduce the pair

A =

⎡
⎢⎢⎣

0 0 1 0
3 0 −3 1

−1 1 4 −1
1 0 −1 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 0
1 0
0 1
0 0

⎤
⎥⎥⎦

into controller form Ac = PAP−1, Bc = PB. What is the similarity transfor-
mation matrix in this case? What are the controllability indices?

6.4. Consider

Ac =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−α0 −α1 · · · −αn−1

⎤
⎥⎥⎥⎦ , Bc =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ .

Show that

C = [Bc, AcBc, . . . , An−1
c Bc] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 1
0 0 0 · · · c1
...

...
...

...
0 0 1 · · · cn−3

0 1 c1 · · · cn−2

1 c1 c2 · · · cn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,



274 6 Controllability and Observability: Special Forms

where ck = −
∑k−1
i=0 αn−i−1ck−i−1, k = 1, . . . , n− 1, with c0 = 1. Also, show

that

C−1 =

⎡
⎢⎢⎢⎢⎢⎣

α1 α2 · · · αn−1 1
α2 α3 · · · 1 0
...

...
...

...
αn−1 1 · · · 0 0

1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦
.

6.5. Show that the matrices Ac = PAP−1, Bc = PB are as follows:

(a) Given by (6.41) if P is given by (6.42).
(b) Given by (6.44) if Q(= P−1) is given by (6.43).
(c) Given by (6.46) if Q(= P−1) is given by (6.45).

6.6. Consider the pair (A, b), where A ∈ Rn×n, b ∈ Rn. Show that if more
than one linearly independent eigenvector can be associated with a single
eigenvalue, then (A, b) is uncontrollable. Hint: Use the eigenvector test. Let
v̂1, v̂2 be linearly independent left eigenvectors associated with eigenvalue λ1 =
λ2 = λ. Notice that if v̂1b = α1 and v̂2b = α2, then (α1v̂1 − α1v̂2)b = 0.

6.7. Show that if (A,B) is controllable, where A ∈ Rn×n, and B ∈ Rn×m,
and rankB = m, then rankA ≥ n−m.

6.8. Given A ∈ Rn×n, and B ∈ Rn×m, let rankC = n, where C =
[B,AB, . . . , An−1B]. Consider Â ∈ Rn×n, B̂ ∈ Rn×m with rank Ĉ = n, where
Ĉ = [B̂, ÂB̂, . . . , Ân−1B̂], and assume that P ∈ Rn×n with detP �= 0 exists
such that

P [C, AnB] = [Ĉ, ÂnB̂].

Show that B̂ = PB and Â = PAP−1. Hint: Show that (PA− ÂP )C = 0.

6.9. Let A = Āc + B̄cAm and B = B̄cBm, where the Āc, B̄c are as in (6.55)
with Am ∈ Rm×n, Bm ∈ Rm×m, and |Bm| �= 0. Show that (A,B) is con-
trollable with controllability indices μi. Hint: Use the eigenvalue test to show
that (A,B) is controllable. Use state feedback to simplify (A,B) (see Exer-
cise 6.11), and show that the μi are the controllability indices.

6.10. Show that the controllability indices of the state equation ẋ = Ax +
BGv, where |G| �= 0 and (A,B) is controllable, with A ∈ Rn×n, B ∈ Rn×m,
are the same as the controllability indices of ẋ = Ax + Bu, within re-
ordering. Hint: Write C̄k = [BG,ABG, . . . , Ak−1BG] = [B,AB, . . . , Ak−1B] ·
[block diagG] = Ck · [block diagG] and show that the number of linearly de-
pendent columns in AkBG that occur while searching from left to right in C̄n
is the same as the corresponding number in Cn.

6.11. Consider the state equation ẋ = Ax+Bu, where A ∈ Rn×n, B ∈ Rn×m

with (A,B) controllable. Let the linear state-feedback control law be u =
Fx+Gv, F ∈ Rm×n, G ∈ Rm×m with |G| �= 0. Show that
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(a) (A+BF,BG) is controllable.
(b) The controllability indices of (A+BF,B) are identical to those of (A,B).
(c) The controllability indices of (A+BF,BG) are equal to the controllability

indices of (A,B) within reordering. Hint: Use the eigenvalue test to show
(a). To show (b), use the controller forms in Section 6.4.

6.12. For the system ẋ = Ax + Bu, y = Cx, consider the corresponding
sampled-data system x̄(k + 1) = Āx̄(k) + B̄ū(k), ȳ(k) = C̄x̄(k), where

Ā = eAT , B̄ = [
∫ T

0

eAτdτ ]B, and C̄ = C.

(a) Let the continuous-time system {A,B,C} be controllable (observable),
and assume it is a SISO system. Show that {Ā, B̄, C̄} is controllable (ob-
servable) if and only if the sampling period T is such that

Im (λi − λj) �=
2πk
T

, where k = ±1,±2, . . . whenever Re (λi − λj) = 0,

where {λi} are the eigenvalues of A. Hint: Use the PBH test.
(b) Apply the results of (a) to the double integrator (Example 3.33 in Chap-

ter 3), where A =
[

0 1
0 0

]
, B =

[
0
1

]
, and C = [1, 0], and also to

A =
[

0 1
−1 0

]
, B =

[
0
1

]
, C = [1, 0]. Determine the values of T that

preserve controllability (observability).

6.13. (Spring mass system) Consider the spring mass given in Exer-
cise 3.37.

(a) Is the system controllable from [f1, f2]T ? If yes, reduce (A,B) to controller
form.

(b) Is the system controllable from input f1 only? Is it controllable from f2
only? Discuss your answers.

(c) Let y = Cx with C =
[

1 0 0 0
0 1 0 0

]
. Is the system observable from y? If yes,

reduce (A,C) to observer form.


