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Realization Theory and Algorithms

8.1 Introduction

In this chapter the following problem is being addressed: Given an external
description of a linear system, specifically, its transfer function or its impulse
response, determine an internal, state-space description for the system that
generates the given transfer function. This is the problem of system realization.
The name reflects the fact that if a (continuous-time) state-space description
is known, an operational amplifier circuit can be built in a straightforward
manner to realize (actually simulate) the system response.

There are many ways, an infinite number in fact, of realizing a given trans-
fer function. Presently, we are interested in realizations that contain the least
possible number of energy or memory storage elements, i.e., in realizations
of least order (in terms of differential or difference equations). To accomplish
this, the concepts of controllability and observability play a central role. In-
deed, it turns out that realizations of transfer functions of least order are
both controllable and observable. In Section 8.2, the problem of state-space
realizations of input–output descriptions is defined and the existence of such
realizations is addressed. The minimality of realizations of H(s) is studied in
Section 8.3, culminating in two results, Theorem 8.9 and Theorem 8.10, where
it is first shown that a realization is minimal if and only if it is controllable
and observable, and next, that if a realization is minimal, all other minimal
realizations of a given H(s) can be found via similarity transformations. It is
also shown how to determine the order of minimal realizations directly from
H(s). Several realization algorithms are presented in Section 8.4, and the role
of duality is emphasized in Subsection 8.4.1.

8.2 State-Space Realizations of External Descriptions

In this section, state-space realizations of impulse responses and of transfer
functions for time-invariant systems are introduced. Continuous-time systems
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are discussed first in Subsection 8.2.1, followed by discrete-time systems in
Subsection 8.2.2.

8.2.1 Continuous-Time Systems

Before formally defining the problem of system realization, we first review
some of the relations that were derived in Chapter 3.

We consider a time-invariant system described by equations of the form

ẋ = Ax+Bu, y = Cx+Du, (8.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. The response of this
system is given by

y(t) = CeAtx0 +
∫ t

0

H(t, τ)u(τ)dτ, (8.2)

where, without loss of generality, the initial time t0 was taken to be zero. The
impulse response is now given by the expression

H(t, τ) =

{
CeA(t−τ)B +Dδ(t− τ), fort ≥ τ,

0, fort < τ.
(8.3)

Recall that the time invariance of system (8.1) implies that H(t, τ) = H(t−
τ, 0), and therefore, τ , which is the time at which a unit impulse input is
applied to the system, can be taken to equal zero (τ = 0), without loss of
generality, to yield H(t, 0). The transfer function matrix of the system is the
(one-sided) Laplace transform of H(t, 0), namely,

H(s) = L[H(t, 0)] = C(sI −A)−1B +D. (8.4)

In the time-invariant case, a realization is commonly defined in terms of the
transfer function matrix. We let {A,B,C,D} denote the system description
given in (8.1), and we letH(s) be a p×mmatrix with entries that are functions
of s.

Definition 8.1. A realization of H(s) is any set {A,B,C,D}, the transfer
function matrix of which is H(s); i.e., {A,B,C,D} is a realization of H(s) if
(8.4) is satisfied. (See Figure 8.1.) �

As will be shown in the next section, given H(s), a condition for a real-
ization {A,B,C,D} of H(s) to exist is that all entries in H(s) are proper,
rational functions. Alternative conditions under which a given set {A,B,C,D}
is a realization of some H(s) can easily be derived. To this end, we expand
H(s) in a Laurent series to obtain

H(s) = H0 +H1s
−1 +H2s

−2 + · · · . (8.5)
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Figure 8.1. Block diagram realization of {A, B, C, D}

Definition 8.2. The terms Hi, i = 0, 1, 2, . . . , in (8.5) are the Markov pa-
rameters of the system. �

The Markov parameters can be determined by the formulas

H0 = lim
s→∞H(s), H1 = lim

s→∞ s(H(s)−H0), H2 = lim
s→∞ s2(H(s)−H0−H1s

−1),

and so forth. Recall that relations involving the Markov parameters were used
in Exercise 3.34 of Chapter 3.

Theorem 8.3. The set {A,B,C,D} is a realization of H(s) if and only if

H0 = D and Hi = CAi−1B, i = 1, 2, . . . . (8.6)

Proof. H(s) = D + C(sI − A)−1B = D + Cs−1(I − s−1A)−1B = D +
Cs−1[

∑∞
i=0(s

−1A)i]B = D +
∑∞

i=1[CA
i−1B]s−i, from which (8.6) is derived

in view of (8.5). �

8.2.2 Discrete-Time Systems

The realization theory in the discrete-time case essentially parallels the
continuous-time case. There are of course certain notable differences because
in the present case the realizations are difference equations instead of differ-
ential equations. We point to these differences in the subsequent sections.

Some of the relations derived in Section 3.4 will be recalled next. We
consider systems described by equations of the form

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k), (8.7)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. The response of
this system is given by

y(k) = CAkx0 +
k−1∑
i=0

H(k, i)u(i), k > 0, (8.8)

where, without loss of generality, k0 was taken to be zero. The unit pulse
(discrete impulse) response is now given by
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H(k, i) =

⎧
⎪⎨
⎪⎩

CAk−(i+1)B, k > i,

D, k = i,

0, k < i.

(8.9)

Recall that since the system (8.7) is time-invariant, H(k, i) = H(k− i, 0) and
i, the time the pulse input is applied, can be taken to be zero, to yield H(k, 0)
as the external system description. The transfer function matrix for (8.7) is
now the (one-sided) z-transform of H(k, 0). We have

H(z) = Z{H(k, 0)} = C(zI −A)−1B +D. (8.10)

Now let {A,B,C,D} denote the system description (8.7) and let H(z) be
a p×m matrix with functions of z as entries.

Definition 8.4. A realization of H(z) is any set {A,B,C,D}, the transfer
function matrix of which is H(z); i.e., it satisfies (8.10). �

A result that is analogous to Theorem 8.3 is also valid in the discrete-time
case [with H(s) replaced by H(z)].

8.3 Existence and Minimality of Realizations

The existence of realizations is examined first. Given a p ×m matrix H(s),
conditions forH(s) to be the transfer function matrix of a system described by
equations of the form ẋ = Ax+Bu, y = Cx+Du are given in Theorem 8.5. It
is shown that such realizations exist if and only if H(s) is a matrix of rational
functions with the property that lims→∞H(s) is finite. The corresponding
results for discrete-time systems are also presented.

Realizations of least order, also called minimal or irreducible realizations,
are of interest to us since they realize a system, using the least number of dy-
namical elements (minimum number of elements with memory). The principal
results are given in Theorems 8.9 and 8.10, where it is shown that minimal
realizations are controllable (-from-the-origin) and observable and that all
minimal realizations of H(s) are equivalent representations. The order of any
minimal realization can be determined directly without first determining a
minimal realization, and this can be accomplished by using the characteris-
tic polynomial and the degree of H(s) (Theorem 8.12) or from the rank of a
Hankel matrix (Theorem 8.16). All the results on minimality of realizations
apply to the discrete-time case as well with no substantial changes. This is
discussed at the end of the section.

8.3.1 Existence of Realizations

Continuous-Time Systems. Given a p×mmatrixH(s), the following result es-
tablishes necessary and sufficient conditions for the existence of time-invariant
realizations.
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Theorem 8.5. H(s) is realizable as the transfer function matrix of a time-
invariant system described by (8.1) if and only if H(s) is a matrix of rational
functions and satisfies

lim
s→∞H(s) <∞, (8.11)

i.e., if and only if H(s) is a proper rational matrix.

Proof. (Necessity) If the system ẋ = Ax + Bu, y = Cx +Du is a realization
of H(s), then C(sI − A)−1B +D = H(s), which shows that H(s) must be a
rational matrix. Furthermore,

lim
s→∞H(s) = D, (8.12)

which is a real finite matrix.
(Sufficiency) IfH(s) is a proper rational matrix, then any of the algorithms

discussed in the next section can be applied to derive a realization. �

Discrete-Time Systems. Given a p×m matrix H(z), the next theorem estab-
lishes necessary and sufficient conditions for time-invariant realizations. This
result corresponds to Theorem 8.5 for the continuous-time case. Notice that
the conditions in these results are identical.

Theorem 8.6. H(z) is realizable as the transfer function matrix of a time-
invariant system described by (8.7) if and only if H(z) is a matrix of rational
functions and satisfies the condition that

lim
z→∞H(z) <∞. (8.13)

Proof. Similar to the proof of Theorem 8.5. �

8.3.2 Minimality of Realizations

Realizations of a transfer function matrix H(s) can be expected to generate
only the zero-state response of a system, since the external description H(s)
has, by definition, no information about the initial conditions and the zero-
input response of the system.

A second important point is the fact that if a realization of a given H(s)
exists, then there exists an infinite number of realizations. If (8.1) is a real-
ization of the p×m matrix H(s), then realizations of the same order n, i.e.,
of the same dimension n of the state vector, can readily be generated by an
equivalence transformation. There are, of course, other ways of generating al-
ternative realizations. In particular, if (8.1) is a realization of H(s), then, for
example, the system

ẋ = Ax+Bu, y = Cx+Du,

ż = Fz +Gu
(8.14)
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is also a realization. This was accomplished by adding to (8.1) a state equa-
tion ż = Fz + Gu that does not affect the system output. The dimension of
F, dimF , and consequently the order of the realization, n + dimF , can be
larger than any given finite number. In other words, there may be no upper
bound to the order of the realizations of a given H(s). There exists, however,
a lower bound, and a realization of such lowest order is called a least-order
minimal or irreducible realization.

Definition 8.7. A realization

ẋ = Ax+Bu, y = Cx+Du (8.15)

of the transfer function matrix H(s) of least order n (A ∈ Rn×n) is called a
least-order, or a minimal, or an irreducible realization of H(s). �

Theorems 8.9 and 8.10 below completely solve the minimal realization
problem. The first of these results shows that a realization is minimal if
and only if it is controllable (-from-the-origin or reachable) and observable,
whereas the second result shows that if a minimal realization has been found,
then all other minimal realizations can be obtained from the determined re-
alization, using equivalence of representations.

Controllability (-from-the-origin, or reachability) and observability play
an important role in the minimality of realizations. Indeed, it was shown in
Section 7.2 that only that part of a system that is both controllable and
observable appears in H(s). In other words, H(s) contains no information
about the uncontrollable and/or unobservable parts of the system. To illustrate
this, consider the following specific case.

Example 8.8. Let H(s) = 1/(s + 1). Four different realizations of H(s) are
given by

(i) {A =
[

0 1
1 0

]
, B =

[
0
1

]
, C = [−1, 1], D = 0},

(ii) {A =
[

0 1
1 0

]
, B =

[
−1

1

]
, C = [0, 1], D = 0},

(iii){A =
[

1 0
0 −1

]
, B =

[
0
1

]
, C = [0, 1], D = 0},

(iv){A = −1, B = 1, C = 1, D = 0}.

The eigenvalue +1 in (i) is unobservable, in (ii) is uncontrollable, and in (iii)
is both uncontrollable and unobservable and does not appear in H(s) at all.
Realization (iv), which is of order 1, is a minimal realization. It is controllable
and observable.

Theorem 8.9. An n-dimensional realization {A,B,C,D} of H(s) is minimal
(irreducible, of least order) if and only if it is both controllable and observable.
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Proof. (Necessity) Assume that {A,B,C,D} is a minimal realization but is
not both controllable and observable. Using Kalman’s Canonical Decomposi-
tion (see Subsection 6.2.3), one may find another realization of lower dimen-
sion that is both controllable and observable. This contradicts the assumption
that {A,B,C,D} is a minimal realization. Therefore, it must be both con-
trollable and observable.

(Sufficiency) Assume that the realization {A,B,C,D} is controllable and
observable, but there exists another realization, say, {Ā, B̄, C̄, D̄} of order
n̄ < n. Since they are both realizations of H(s), or of the impulse response
H(t, 0), then

CeAtB +Dδ(t) = C̄eĀtB̄ + D̄δ(t) (8.16)

for all t ≥ 0. Clearly,D = D̄ = lims→∞H(s). Using the power series expansion
of the exponential and equating coefficients of the same power of t, we obtain

CAkB = C̄ĀkB̄, k = 0, 1, 2, . . . ; (8.17)

i.e., the Markov parameters of the two representations are the same (see The-
orem 8.3). Let

Cn � [B,AB, . . . , An−1B] ∈ Rn×mn

and

On �

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ ∈ Rpn×n. (8.18)

Then the pn×mn matrix product OnCn assumes the form

OnCn =

⎡
⎢⎢⎢⎣

CB CAB · · · CAn−1B
CAB CA2B · · · CAnB

...
...

...
CAn−1B CAnB · · · CA2n−2B

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

C̄B̄ C̄ĀB̄ · · · C̄Ān−1B̄
C̄ĀB̄ C̄Ā2B̄ · · · C̄ĀnB̄

...
...

...
C̄Ān−1B̄ C̄ĀnB̄ · · · C̄Ā2n−2B̄

⎤
⎥⎥⎥⎦ = ŌnC̄n. (8.19)

In view of Sylvester’s Rank Inequality, which relates the rank of the prod-
uct of two matrices to the rank of its factors, we have

rankOn + rankCn − n ≤ rank(ŌnC̄n) ≤ min(rankOn, rankCn) (8.20)

and we obtain that rankOn = rankCn = n, rank(ŌnC̄n) = n. This
result, however, contradicts our assumptions, since n = rank(ŌnC̄n) ≤
min(rank Ōn, rank C̄n) ≤ n̄ because n̄ is the order of {Ā, B̄, C̄, D̄}. There-
fore n ≤ n̄. Hence, n̄ cannot be less than n and they can only be equal. Thus,
n = n̄ and {A,B,C,D} is indeed a minimal realization. �
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Theorem 8.9 suggests the following procedure to realize H(s). First, we
obtain a controllable (observable) realization of H(s). Next, using a similar-
ity transformation, we obtain an observable standard form to separate the
observable from the unobservable parts (controllable from the uncontrollable
parts), using the approach of Subsection 6.2.1. Finally, we take the observable
(controllable) part that will also be controllable (observable) as the minimal
realization. We shall use this procedure in the next section.

Is the minimal realization unique? The answer to this question is of course
“no” since we know that equivalent representations, which are of the same
order, give the same transfer function matrix. The following theorem shows
how to obtain all minimal realizations of H(s).

Theorem 8.10. Let {A,B,C,D} and {Ā, B̄, C̄, D̄} be realizations of H(s).
If {A,B,C,D} is a minimal realization, then {Ā, B̄, C̄, D̄} is also a minimal
realization if and only if the two realizations are equivalent, i.e., if and only
if D̄ = D and there exists a nonsingular matrix P such that

Ā = PAP−1, B̄ = PB, and C̄ = CP−1. (8.21)

Furthermore, if P exists, it is given by

P = CC̄T (C̄C̄T )−1 or P = (ŌT Ō)−1ŌTO. (8.22)

Proof. (Sufficiency) Let the realizations be equivalent. Since {A,B,C,D} is
minimal, it is controllable and observable and its equivalent representation
{Ā, B̄, C̄, D̄} is also controllable and observable and, therefore, minimal. Al-
ternatively, since equivalence preserves the dimension of A, the equivalent
realization {Ā, B̄, C̄, D̄} is also minimal.

(Necessity) Suppose {Ā, B̄, C̄, D̄} is also minimal. We shall show that it
is equivalent to {A,B,C,D}. Since they are both realizations of H(s), they
satisfy D = D̄ and

CAkB = C̄ĀkB̄, k = 0, 1, 2 . . . , (8.23)

as was shown in the proof of Theorem 8.9. Here, both realizations are minimal,
and therefore, they are both of the same order n and are both controllable
and observable.

Define C = Cn and O = On, as in (8.18). Then, in view of (8.19), OC = ŌC̄
and premultiplying by ŌT , we obtain ŌTOC = ŌT ŌC̄. Using Sylvester’s
Inequality, we obtain rank ŌT Ō = n, and therefore,

C̄ = [(ŌT Ō)−1ŌTO]C = PC, (8.24)

where P � (ŌT Ō)−1ŌTO ∈ Rn×n. Note that rankP = n since rank ŌTO
is also equal to n as can be seen from rank ŌTOC = n and from Sylvester’s
Inequality. Therefore, P qualifies as a similarity transformation. Similarly,
OC = ŌC̄ implies that OCCT = ŌC̄CT , and
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O = Ō[C̄CT (CCT )−1] = ŌP̄ , (8.25)

where P̄ � C̄CT (CCT )−1 ∈ Rn×n with rank P̄ = n. Note that P =
(ŌT Ō)−1ŌT (ŌP̄ ) = P̄ . To show that P is the equivalence transformation
given in (8.21), we note that OAC = ŌĀC̄ from (8.19). Premultiplying by ŌT

and postmultiplying by CT , we obtain PA = ĀP , in view of (8.24) and (8.25).
To show that PB = B̄ and C = C̄P , we simply use the relations PC = C̄ and
O = ŌP , respectively. �

8.3.3 The Order of Minimal Realizations

One could ask the question whether the order of a minimal realization of
H(s) can be determined directly, without having to actually derive a minimal
realization. The answer to this question is yes, and in the following we will
show how this can be accomplished.

Determination via the Characteristic or Pole Polynomial of H(s).

The characteristic polynomial (or pole polynomial), pH(s), of a transfer func-
tion matrixH(s) was defined in Section 7.4 using the Smith–McMillan form of
H(s). The polynomial pH(s) is equal to the monic least common denominator
of all nonzero minors of H(s). The minimal polynomial of a transfer function
matrix H(s), mH(s), was defined as the monic least common denominator of
all nonzero first-order minors (entries) of H(s).

Definition 8.11. The McMillan degree of H(s) is the degree of pH(s). �

The number of poles in H(s), which are defined as the zeros of pH(s), is
equal to the McMillan degree of H(s). The degree of H(s) is in fact the order
of any minimal realization of H(s), as the following result shows.

Theorem 8.12. Let {A,B,C,D} be a minimal realization of H(s). Then the
characteristic polynomial of H(s), pH(s), is equal to the characteristic polyno-
mial of A,α(s) � |sI−A|; i.e., pH(s) = α(s). Therefore, the McMillan degree
of H(s) equals the order of any minimal realization.

Proof. See [1, p. 397, Chapter 5, Theorem 3.11]. �

It can also be shown that the minimal polynomial of H(s),mH(s), is equal
to the minimal polynomial of A,αm(s), where {A,B,C,D} is any controllable
and observable realization ofH(s). This is illustrated in the following example.

Example 8.13. Let H(s) =
[

1/s 2/s
0 −1/s

]
. The first-order minors, the entries

of H(s), have denominators s, s, and s, and therefore, mH(s) = s. The only
second-order minor is −1/s2 and pH(s) = s2 with deg pH(s) = 2. Therefore,
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the order of a minimal realization is 2. Such a realization is given by ẋ = Ax+

Bu and y = Cx with A =
[

0 0
0 0

]
, B =

[
1 2
0 −1

]
, C =

[
1 0
0 1

]
. We verify first

that this system is a realization of H(s) and then that it is controllable and
observable and, therefore, minimal. Notice that the characteristic polynomial
of A is α(s) = s2 = pH(s) and that its minimal polynomial is αm(s) = s =
mH(s).

In the case whenH(s) is a scalar, the roots ofmH = pH are the eigenvalues
of any minimal realization of H(s).

Corollary 8.14. Let H(s) = n(s)/d(s) be a scalar proper rational function.
If {A,B,C,D} is a minimal realization of H(s), then

kd(s) = α(s) = αm(s), (8.26)

where α(s) = det(sI −A) and αm(s) are the characteristic and minimal poly-
nomials of A, respectively, and k is a real scalar so that kd(s) is a monic
polynomial.

Proof. The characteristic and minimal polynomials ofH(s), pH(s), andmH(s)
are by definition equal to d(s) in the scalar case. Applying Theorem 8.12 proves
the result. �

Determination via the Hankel Matrix

There is an alternative way of determining the order of a minimal realization
of H(s). This is accomplished via the Hankel matrix, associated with H(s).

Given H(s), we express H(s) as a Laurent series expansion to obtain

H(s) = H0 + Ĥ(s) = H0 +H1s
−1 +H2s

−2 +H3s
−3 + . . . , (8.27)

where Ĥ(s) is strictly proper and the real p×m matrices H0, H1, . . . are the
Markov parameters of the system. They can be determined by the formulas

H0 = lim
s→∞H(s), H1 = lim

s→∞ s(H(s)−H0), H2 = lim
s→∞ s2(H(s)−H0−H1s

−1),

and so forth.

Definition 8.15. The Hankel matrix MH(i, j) of order (i, j) corresponding to
the (Markov parameter) sequence H1, H2, . . . is defined as the ip× jm matrix
given by

MH(i, j) �

⎡
⎢⎢⎢⎣

H1 H2 · · · Hj

H2 H3 · · · Hj+1

...
...

...
Hi Hi+1 · · · Hi+j−1

⎤
⎥⎥⎥⎦ . (8.28)

�
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Theorem 8.16. The order of a minimal realization of H(s) is the rank of
MH(r, r) where r is the degree of the least common denominator of the entries
of H(s); i.e., r = degmH(s).

Proof. See [1, p. 399, Chapter 5, Theorem 3.13]. �

Example 8.17. Let H(s) =
[ 1

s+1
2
s+1−1

(s+1)(s+2)
1
s+2

]
. Here the minimal polynomial

is mH(s) = (s + 1)(s + 2), and therefore, r = degmH(s) = 2. The Hankel
matrix MH(r, r) is then

MH(r, r) = MH(2, 2) =
[
H1 H2

H2 H3

]
,

an rp× rm = 4 × 4 matrix, and H1 = lim
s→∞sH(s) = lim

s→∞

[ s
s+1

2s
s+1−s

(s+1)(s+2)
s
s+2

]
=

[
1 2
0 1

]
and H2 = lim

s→∞s
2(H(s) − H1s

−1) = lim
s→∞

[
s2

s+1 − s 2s2

s+1 − 2s
−s2

(s+1)(s+2)
s2

s+2 − s

]
=

lim
s→∞

[ −s
s+1

−2s
s+1

−s2
(s+1)(s+2)

−2s
s+2

]
=
[
−1 −2
−1 −2

]
. Similarly, H3 =

[
1 2
3 4

]
. Now

rankMH(2, 2) = rank

⎡
⎢⎢⎣

1 2 −1 −2
0 1 −1 −2

−1 −2 1 2
−1 −2 3 4

⎤
⎥⎥⎦ = 3,

which is the order of any minimal realization, in view of Theorem 8.16. The
reader should verify this result, using Theorem 8.12.

Example 8.18. Consider the transfer function matrix H(s) =
[

1/s 2/s
0 −1/s

]
,

as in Example 8.13. Here r = degmH(s) = deg s = 1. Now, the Hankel matrix

MH(r, r) = MH(1, 1) = H1 = lims→∞ sH(s) =
[

1 2
0 −1

]
. Its rank is 2, which

is the order of a minimal realization of H(s). This agrees with the results in
Example 8.13.

8.3.4 Minimality of Realizations: Discrete-Time Systems

The fact that the results on minimality of realizations in the discrete-time case
are essentially identical to the corresponding results for the continuous-time
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case is not surprising since we are concentrating here on the time-invariant
cases for which the transfer function matrices have the same forms: H(s) =
C(sI−A)−1B+D and H(z) = C(zI−A)−1B+D. Accordingly, the results on
how to generate 4-tuples {A,B,C,D} to satisfy these relations are, of course,
also the same.

8.4 Realization Algorithms

In this section, algorithms for generating time-invariant state-space realiza-
tions of external system descriptions are introduced. A brief outline of the
contents of this section follows.

Realizations of H(s) can often be derived in an easier manner if duality
is used, and this is demonstrated first in this section. Realizations of mini-
mal order are both controllable and observable, as was shown in the previous
section. To derive a minimal realization of H(s), one typically derives a re-
alization that is controllable (observable) and then extracts the part that is
also observable (controllable). This involves in general a two-step procedure.
However, in certain cases, a minimal realization can be derived in one step,
as for example, when H(s) is a scalar transfer function. Algorithms for re-
alizations in a controller/observer form are discussed first. In the interest of
clarity, the SISO case is presented separately, thus providing an introduction
to the general MIMO case. Realization algorithms, where A is diagonal, are
introduced next. Finally, balanced realizations are addressed.

It is not difficult to see that the above algorithms can also be used to
derive realizations described by equations of the form x(k + 1) = Ax(k) +
Bu(k), y(k) = Cx(k) +Du(k) of transfer function matrices H(z) for discrete-
time time-invariant systems. Accordingly, the discrete-time case will not be
treated separately in this section. Additional details, algorithms, and proofs
may be found in [1, Section 5.4].

8.4.1 Realizations Using Duality

If the system described by the equations ẋ = Ax + Bu, y = Cx + Du is a
realization of H(s), then

H(s) = C(sI −A)−1B +D. (8.29)

If H̃(s) � HT (s), then ˙̃x = Ãx̃+ B̃ũ and ỹ = C̃x̃+ D̃ũ, where Ã = AT , B̃ =
CT , C̃ = BT , and D̃ = DT , is a realization of H̃(s) since in view of (8.29),

H̃(s) = HT (s)

= BT (sI −AT )−1CT +DT

= C̃(sI − Ã)−1B̃ + D̃. (8.30)
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The representation {Ã, B̃, C̃, D̃} is the dual representation to {A,B,C,D},
and if {A,B,C,D} is controllable (observable), then {Ã, B̃, C̃, D̃} is observ-
able (controllable) (see Section 5.2.3). In other words, if a controllable (ob-
servable) realization {A,B,C,D} of the p×m transfer function matrix H(s)
is known, then an observable (controllable) realization of the m × p transfer
function matrix H̃(s) = HT (s) can be derived immediately: It is the dual
representation, namely, {Ã, B̃, C̃, D̃} = {AT , CT , BT , DT }. This fact is used
to advantage in deriving realizations in the MIMO case, since obtaining first
a realization of HT (s) instead of H(s) and then using duality leads sometimes
to simpler, lower order, realizations.

Duality is very useful in realizations of symmetric transfer functions, which
have the property that H(s) = HT (s), as, e.g., in the case of SISO systems
where H(s) is a scalar. Under these conditions, if {A,B,C,D} is a control-
lable (observable) realization ofH(s), then {AT , CT , BT , DT } is an observable
(controllable) realization of the same H(s). Note that in this case,

H(s) = C(sI −A)−1B +D = HT (s) = BT (sI −AT )−1CT +DT .

In realization algorithms of MIMO systems, a realization that is either
controllable or observable is typically obtained first. Next, this realization is
reduced to a minimal one by extracting the part of the system that is both
controllable and observable, using the methods of Subsection 6.2.1. Dual repre-
sentations may simplify this process considerably. In the following discussion,
we summarize the process of deriving minimal realizations for the reader’s
convenience.

Given a proper rational p × m transfer function matrix H(s), with
lims→∞H(s) < ∞, we consider the strictly proper part Ĥ(s) = H(s) −
lims→∞H(s) = H(s) −D [noting that working with Ĥ(s) instead of H(s) is
optional].

1. If a realization algorithm leading to a controllable realization is used, then
the following steps are taken:

Ĥ(s) → (H̃(s) = ĤT (s)) → {Ã, B̃, C̃} → {A = ÃT , B = C̃T , C = B̃T },
(8.31a)

where {Ã, B̃, C̃} is a controllable realization of H̃(s) and {A,B,C} is an
observable realization of Ĥ(s).

2. To obtain a minimal realization,

{A,B,C} →
{[

A1 A12

0 A2

]
,

[
B1

0

]
, [C1, C2]

}
, (8.31b)

where {A,B,C} is an observable realization of Ĥ(s) obtained from step
(1), and (A1, B1) is controllable (derived by using the method of Subsec-
tion 6.2.1), then {A1, B1, C1} is a controllable and observable, and there-
fore, a minimal realization of Ĥ(s), and furthermore, {A1, B1, C1, D}, is
a minimal realization of H(s).
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8.4.2 Realizations in Controller/Observer Form

We shall first consider realizations of scalar transfer functions H(s).

Single-Input/Single-Output (SISO) Systems (p = m = 1)

Let

H(s) =
n(s)
d(s)

=
bns

n + · · · + b1s+ b0
sn + an−1sn−1 + · · · + a1s+ a0

, (8.32)

where n(s) and d(s) are prime polynomials. This is the general form of a proper
transfer function of (McMillan) degree n. Note that if the leading coefficient
in the numerator n(s) is zero, i.e., bn = 0, then H(s) is strictly proper. Also,
recall that

y(n) + an−1y
(n−1) + · · · + a1y

(1) + a0y = bnu
(n) + · · · + b1u

(1) + b0u (8.33a)

or

d(q)y(t) = (qn + an−1q
n−1 + · · · + a1q + a0)y(t)

= (bnqn + . . . b1q + b0)u(t) = n(q)u(t),
(8.33b)

where q � d/dt, the differential operator. This is the corresponding nth-order
differential equation that directly gives rise to the map ŷ(s) = H(s)û(s) if the
Laplace transform of both sides is taken, assuming that all variables and their
derivatives are zero at t = 0.

Controller Form Realizations

Given n(s) and d(s), we proceed as follows to derive a realization in controller
form.

1. Determine CTc ∈ Rn and Dc ∈ R so that

n(s) = CcS(s) +Dcd(s), (8.34)

where S(s) � [1, s, . . . , sn−1]T is an n×1 vector of polynomials. Equation
(8.34) implies that

Dc = lim
s→∞H(s) = bn. (8.35)

Then n(s)−bnd(s) is in general a polynomial of degree n−1, which shows
that a real vector Cc that satisfies (8.34) always exists.
If bn = 0, i.e., if H(s) is strictly proper, then from (8.34) we obtain
Cc = [b0, . . . , bn−1]; i.e., Cc consists of the coefficients of the n− 1 degree
numerator.
If bn �= 0, then (8.34) implies that the entries of Cc are a combination of
the coefficients bi and ai. In particular,

Cc = [b0 − bna0, b1 − bna1, . . . , bn−1 − bnan−1]. (8.36)
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2. A realization of H(s) in controller form is given by the equations

ẋc = Acxc +Bcu =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−a0 −a1 · · · −an−1

⎤
⎥⎥⎥⎦ xc +

⎡
⎢⎢⎢⎣

0
0
...
1

⎤
⎥⎥⎥⎦u,

y = Ccxc +Dcu. (8.37)

The n states of the realization in (8.37) are related by xi+1 = ẋi,
i = 1, . . . , n − 1, or xi+1 = x

(i)
1 , i = 1, . . . , n − 1, and ẋn = −a0x1 −∑n−1

i=1 aixi+1 + u = −a0x1 −
∑n−1
i=1 aix

(i)
1 + u. It can now be shown that

x1 satisfies the relationship

d(q)x1(t) = u(t), y(t) = n(q)x1(t), (8.38)

where q � d/dt, the differential operator. Note that d(q)x1(t) = u(t)
because ẋn = −

∑n−1
i=0 aix

(i)
1 + x

(n)
1 + u = −d(q)x1 + u + x

(n)
1 , which in

view of ẋn = x
(n)
1 , derived from xn = x

(n−1)
1 , implies that −d(q)xi+u = 0.

The relation y(t) = n(q)x1(t) can easily be verified by multiplying both
sides of n(q) = CcS(q) +Dcd(q) given in (8.34) by x1.

Lemma 8.19. The representation (8.37) is a minimal realization of H(s)
given in (8.32).

Proof. We must first show that (8.37) is indeed a realization, i.e., that it
satisfies (8.29). This is of course true in view of the Structure Theorem in
Subsection 6.4.1. Presently, this will be shown directly, using (8.38).

Relation d(q)x1(t) = u(t) implies that x̂1(s) = (d(s))−1û(s). This yields
for the state that x̂(s) = [x̂1(s), . . . , x̂n(s)]T = [1, s, . . . , sn−1]T x̂1(s) =
S(s)(d(s))−1û(s). However, we also have x̂(s) = (sI−Ac)−1Bcû(s). Therefore,

(sI −Ac)S(s) = Bcd(s). (8.39)

Now Cc(sI−Ac)−1Bc+Dc = CcS(s)(d(s))−1+Dc = (CcS(s)+Dcd(s))(d(s))−1

= n(s)
d(s) = H(s); i.e., (8.37) is indeed a realization.
System (8.37) is of order n and is therefore, a minimal, controllable, and

observable realization. This is because the degree of H(s) is n, which in view
of Theorem 8.12, is the order of any minimal realization. Controllability and
observability can also be established directly by forming the controllability
and observability matrices. The reader is encouraged to pursue this approach.

�

According to Definition 8.11, the McMillan degree of a rational scalar
transfer function H(s) = n(s)/d(s) is the degree of d(s) only when n(s) and
d(s) are prime polynomials; if they are not, all cancellations must first take
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place before the degree can be determined. If n(s) and d(s) are not prime,
then the above algorithm will yield a realization that is not observable. Notice
that realization (8.37) is always controllable, since it is in controller form. This
can also be seen directly from the expression

[Bc, AcBc, . . . , An−1
c Bc] =

⎡
⎢⎢⎢⎣

0 0 · · · 1
...

...
...

0 1 · · · ×
1 × · · · ×

⎤
⎥⎥⎥⎦ , (8.40)

which is of full rank. The realization (8.37) is observable if and only if the
polynomials d(s) and n(s) are prime.

In Figure 8.2 a block realization diagram of the form (8.37) for a second-
order transfer function is shown. Note that the states x1(t) and x2(t) are taken
to be the voltages at the outputs of the integrators.

–

–

+u

b2

x2 x1

b1 b2a1

b0 b2a0

a0

a1

+ +
+

+
y∫∫Σ Σ–

–

Figure 8.2. Block realization of H(s) in controller form of the system
[

ẋ1
ẋ2

]
=[

0 1
−a0 −a1

]
[ x1

x2 ] + [ 0
1 ] u, y = [b0 − b2a0, b1 − b2a1] [

x1
x2 ] + b2u; H(s) = b2s2+b1s+b0

s2+a1s+a0

Observer Form Realizations

Given the transfer function (8.32), the nth-order realization in observer form
is given by

ẋo = Aoxo +Bou

=

⎡
⎢⎢⎢⎣

0 · · · 0 −a0

1 0 −a1

...
. . .

...
...

0 · · · 1 −an−1

⎤
⎥⎥⎥⎦ xo +

⎡
⎢⎢⎢⎣

b0 − bna0

b1 − bna1

...
bn−1 − bnan−1

⎤
⎥⎥⎥⎦u,

y = Coxo +Dou = [0, 0, . . . , 0, 1]xo + bnu. (8.41)

This realization was derived by taking the dual of realization (8.37). Notice
that Ao = ATc , Bo = CTc , Co = BTc , and Do = DT

c .
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Lemma 8.20. The representation (8.41) is a minimal realization of H(s)
given in (8.32).

Proof. Note that the observer form realization {Ao, Bo, Co, Do} described by
(8.41) is the dual of the controller form realization {Ac, Bc, Cc, Dc} described
by (8.37), used in Lemma 8.19. �

The realization (8.41) can also be derived directly from H(s), using defin-
ing relations similar to (8.34). In particular, Bo and Do can be determined
from the expression [see Subsection 6.4.2]

n(s) = S̃(s)Bo + d(s)Do, (8.42)

where S̃(s) = [1, s, . . . , sn−1].
It can be shown (by taking transposes) that the corresponding relation to

(8.39) is now given by

S̃(s)(sI −Ao) = d(s)Co (8.43)

and that
d(q)z(t) = n(q)u(t), y(t) = z(t) (8.44)

corresponds to (8.38).
Figure 8.3 depicts a block realization diagram of the form (8.41) for a

second-order transfer function.

–

––

–

+

u

b2

x2x1

b1 b2a1b0 b2a0

a0 a1

++

+

+ y
+

+∫∫ ΣΣΣ

Figure 8.3. Block realization of H(s) in observer form of the system
[

ẋ1
ẋ2

]
=[

0 −a0
1 −a1

]
[ x1

x2 ] +
[

b0−b2a0
b1−b2a1

]
u, y = [0, 1] [ x1

x2 ] + b2u; H(s) = b2s2+b1s+b0
s2+a1s+a0

Example 8.21. We wish to derive a minimal realization for the trans-
fer function H(s) = s3+s−1

s3+2s2−s−2 . Consider a realization {Ac, Bc, Cc, Dc},
where (Ac, Bc) is in controller form. In view of (8.34) to (8.37), Dc =
lims→∞H(s) = 1 and n(s) = s3+s−1 = CcS(s)+Dcd(s), from which we have



330 8 Realization Theory and Algorithms

CcS(s) = (s3 +s−1)− (s3 +2s2−s−2) = −2s2 +2s+1 = [1, 2,−2][1, s, s2]T .
Therefore, a realization of H(s) is ẋc = Acxc +Bcu, y = Ccxc +Dcu, where

Ac =

⎡
⎣

0 1 0
0 0 1
2 1 −2

⎤
⎦ , Bc =

⎡
⎣

0
0
1

⎤
⎦ , Cc = [1, 2,−2], Dc = 1.

This is a minimal realization. Instead of solving n(s) = CcS(s) +Dcd(s) for
Cc as was done above, it is possible to derive Cc by inspection after H(s) is
written as

H(s) = Ĥ(s) + lim
s→∞H(s) = Ĥ(s) +Dc, (8.45)

where Ĥ(s) is now strictly proper. Notice that if H(s) is given by (8.32), then
Dc = bn and

Ĥ(s) =
cn−1s

n−1 + · · · + c1s+ c0
sn + an−1sn−1 + · · · + a1s+ a0

, (8.46)

where in fact, ci = bi − bnai, i = 0, . . . , n − 1. The realization {Ac, Bc, Cc}
of Ĥ(s) has (Ac, Bc) precisely the same as before; however, Cc can now be
written directly as

Cc = [c0, c1, . . . , cn−1]; (8.47)

i.e., given H(s) there are three ways of determining Cc: (i) using formula
(8.36), (ii) solving CcS(s) = n(s) −Dcd(s) as in (8.34), and (iii) calculating
Ĥ(s) = H(s)− lims→∞H(s). The reader should verify that for this example,
(i) and (iii) yield the same Cc = [1, 2,−2] as in method (ii).

Suppose now that it is of interest to determine a minimal realization
{Ao, Bo, Co, Do}, where (Ao, Co) is in observer form. This can be accomplished
in ways completely analogous to the methods used to derive realizations in
controller form. Alternatively, one could use duality directly and show that

Ao = ATc =

⎡
⎣

0 0 2
1 0 1
0 1 −2

⎤
⎦ , Bo = CTc =

⎡
⎣

1
2

−2

⎤
⎦ , Co = BTc = [0, 0, 1], Do = DT

c = 1

is a minimal realization, where the pair (Ao, Co) is in observer form.

Example 8.22. Consider now the transfer function H(s) = s3−1
s3+2s2−s−2 ,

where the numerator is n(s) = s3−1 instead of s3 +s−1, as in Example 8.21.
We wish to derive a minimal realization of H(s). Using the same procedure
as in the previous example, it is not difficult to derive the realization

Ac =

⎡
⎣

0 1 0
0 0 1
2 1 −2

⎤
⎦ , Bc =

⎡
⎣

0
0
1

⎤
⎦ , Cc = [1, 1,−2], Dc = 1.
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This realization is controllable, since (Ac, Bc) is in controller form (see Exer-
cise 8.4); however, it is not observable, since rankO = 2 < 3 = n, where O
denotes the observability matrix given by

O =

⎡
⎣

Cc
CcAc
CcA

2
c

⎤
⎦ =

⎡
⎣

1 1 −2
−4 −1 5
10 1 −11

⎤
⎦ .

Therefore, the above matrix is not a minimal realization. This has occurred be-
cause the numerator and denominator of H(s) are not prime polynomials; i.e.,
s−1 is a common factor. Thus, strictly speaking, the H(s) given above is not
a transfer function, since it is assumed that in a transfer function all cancel-
lations of common factors have taken place. (See also the discussion following
Lemma 8.19.) Correspondingly, if the algorithm for deriving an observer form
would be applied to the present case, the realization {Ao, Bo, Co, Do} would
be an observable realization, but not a controllable one, and would therefore
not be a minimal realization.

To obtain a minimal realization of the above transfer function H(s), one
could either extract the part of the controllable realization {Ac, Bc, Cc, Dc}
that is also observable or simply cancel the factor s−1 in H(s) and apply the
algorithm again. The former approach of reducing a controllable realization
will be illustrated when discussing the MIMO case. The latter approach is
perhaps the easiest one to apply in this case. We have

H(s) =
s3 − 1

s3 + 2s2 − s− 2
=

s2 + s+ 1
s2 + 3s+ 2

=
−2s− 1

s2 + 3s+ 2
+ 1,

and a minimal realization of this is then determined as

Ac =
[

0 1
−2 −3

]
, Bc =

[
0
1

]
, Cc = [−1, −2], Dc = 1.

Multi-Input/Multi-Output (MIMO) Systems (pm > 1)

Let a (p×m) proper rational matrix H(s) be given with lims→∞H(s) <∞.
We now present alogrithms to obtain realizations {Ac, Bc, Cc, Dc} of H(s) in
controller form and realizations {Ao, Bo, Co, Do} of H(s) in observer form.
Minimal realizations can then be obtained by separating the observable (con-
trollable) part of the controllable (observable) realization.

Controller Form Realizations

Consider a transfer function matrix H(s) = [nij(s)/dij(s)], i = 1, . . . , p, j =
1, . . . ,m, and let �j(s) denote the (monic) least common denominator of all
entries in the jth column of H(s). The �j(s) is the least degree polynomial
divisible by all dij(s), i = 1, . . . , p. Then H(s) can be written as
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H(s) = N(s)D−1(s), (8.48)

a ratio of two polynomial matrices, where N(s) � [n̄ij(s)] and D(s) �
diag[�1(s), . . . , �m(s)]. Note that n̄ij(s)/�j(s) = nij(s)/dij(s) for i = 1, . . . , p,
and all j = 1, . . . ,m. Let dj � deg �j(s), and assume that dj ≥ 1. Define

Λ(s) � diag(sd1 , . . . , sdm)

and

S(s) � block diag

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

1
s
...

sdj−1

⎤
⎥⎥⎥⎦ j = 1, . . . ,m

⎞
⎟⎟⎟⎠ , (8.49)

and note that S(s) is an n
(
�
∑m

j=1 dj

)
×m polynomial matrix. Write

D(s) = DhΛ(s) +D�S(s), (8.50)

and note that Dh is the highest column degree coefficient matrix of D(s). Here
D(s) is diagonal with monic polynomial entries, and therefore, Dh = Im. If,

for example, D(s) =
[

3s2 + 1 2s
2s s

]
, then the highest column degree coefficient

matrix Dh =
[

3 2
0 1

]
, and D�S(s) given in (8.50) accounts for the remaining

lower column degree terms in D(s), with D� being a matrix of coefficients.
Observe that |Dh| �= 0, and define the m×m and m× n matrices

Bm = D−1
h , Am = −D−1

h D�, (8.51)

respectively. Also, determine Cc and Dc such that

N(s) = CcS(s) +DcD(s), (8.52)

and note that
Dc = lim

s→∞H(s). (8.53)

We haveH(s) = N(s)D−1(s) = CcS(s)D−1(s)+Dc with CcS(s)D−1(s) being
strictly proper (show this). Therefore, only Cc needs to be determined from
(8.52).

A controllable realization of H(s) in controller form is now given by the
equations

ẋc = Acxc +Bcu, y = Ccxc +Dcu.

Here Cc and Dc were defined in (8.52) and (8.53), respectively,

Ac = Āc + B̄cAm, Bc = B̄cBm, (8.54)
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where Āc = block diag[A1, A2 . . . , Am] with

Aj =

⎡
⎢⎢⎢⎣

0
... Idj−1

0 0 · · · 0

⎤
⎥⎥⎥⎦ ∈ Rdj×dj ,

B̄c = block diag

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ ∈ Rdj , j = 1, . . . ,m

⎞
⎟⎟⎟⎠ ,

and Am, Bm were defined in (8.51). Note that if dj = μj , j = 1, . . . ,m, the
controllability indices, then (8.54) is precisely the relation (6.56) of Section 6.4.

Lemma 8.23. The system {Ac, Bc, Cc, Dc} is an n(=
∑m

j=1 dj)-th-order con-
trollable realization of H(s) with (Ac, Bc) in controller form.

Proof. First, to show that {Ac, Bc, Cc, Dc} is a realization of H(s), we note
that in view of the Structure Theorem given in Subsection 6.4.1, we have
Cc(sI −Ac)−1Bc +Dc = N̄(s)D̄(s)−1, where

D̄(s) � B−1
m [Λ(s) −AmS(s)], N̄(s) � CcS(s) +DcD(s).

However, D̄(s) = D(s) and N̄(s) = N(s), in view of (8.50) to (8.52). There-
fore, Cc(sI −Ac)−1Bc +Dc = N(s)D−1(s) = H(s), in view of (8.48).

It is now shown that (Ac, Bc) is controllable. We write

[sI −Ac, Bc] = [sI − Āc − B̄cAm, B̄cBm]

= [sI − Āc, B̄c]
[

I 0
−Am Bm

]
(8.55)

and notice that rank[sjI − Āc, B̄c] = n for any complex sj . This is so because
of the special form of Āc, B̄c. (This is, in fact, the Brunovski canonical form.)
Now since |Bm| �= 0, Sylvester’s Rank Inequality implies that rank[sjI −
Ac, Bc] = n for any complex sj , which in view of Section 6.3 implies that
(Ac, Bc) is controllable. In addition, since Bm = Im, it follows that (Ac, Bc)
is of the form (6.55) of Section 6.4. With dj = μi, the pair (Ac, Bc) is in
controller form. �

An alternative way of determining Cc is to first write H(s) in the form

H(s) = Ĥ(s) + lim
s→∞H(s) = Ĥ(s) +Dc, (8.56)

where Ĥ(s) � H(s)−Dc is strictly proper. Now applying the above algorithm
to Ĥ(s), one obtains Ĥ(s) = N̂(s)D−1(s), where D(s) is precisely equal to
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the expression given in (8.50). We note, however, that N̂(s) is different. In
fact, N̂(s) = N(s)−DcD(s). In view of (8.52) the matrix Cc is now found to
be of the form

N̂(s) = CcS(s). (8.57)

Note that this is a generalization of the scalar case discussed in Example 8.21
[see (8.45) to (8.47)].

In the above algorithm the assumption that dj ≥ 1 for all j = 1, . . . ,m,
was made. If for some j, dj = 0, this would mean that the jth column of
H(s) will be a real m × 1 vector that will be equal to the jth column of Dc

[recall that Dc = lims→∞H(s)]. The strictly proper Ĥ(s) in (8.56) will then
have its jth column equal to zero, and this zero column can be generated by
a realization where the jth column of Bc is set to zero. Therefore, the zero
column (the jth column) of Ĥ(s) is ignored in this case and the algorithm is
applied to obtain a controllable realization. A zero column is then added to
Bc. (See Example 8.26 below.)

Observer Form Realizations

These realizations are dual to the controller form realizations and can be
obtained by duality arguments. In the following discussion, observer form
realizations are obtained directly for completeness of exposition.

We consider the transfer function matrix H(s) = [nij(s)/dij(s)], i =
1, . . . , p, j = 1, . . . ,m, and let �̃i(s) be the (monic) least common denomi-
nator of all entries in the ith row of H(s). Then H(s) can be written as

H(s) = D̃−1(s)Ñ(s), (8.58)

where Ñ(s) � [n̄ij(s)] and D̃(s) � diag[�̃1(s), . . . , �̃p(s)]. Note that
n̄ij(s)/�̃i(s) = nij(s)/dij(s) for j = 1, . . . ,m, and all i = 1, . . . , p.

Let d̃i � deg �i(s), assume that d̃i ≥ 1, define

Λ̃(s) � diag(sd̃1 , . . . , sd̃p), S̃(s) � block diag([1, s, . . . , sd̃i−1], i = 1, . . . , p),
(8.59)

and note that S̃(s) is a p× n(�
∑p

i=1 d̃i) polynomial matrix. Now, write

D̃(s) = Λ̃(s)D̃h + S̃(s)D̃� (8.60)

and note that D̃h is the highest row degree coefficient matrix of D̃(s). Note
that D̃(s) is diagonal, with entries monic polynomials, so that D̃h = Ip, the

p× p identity matrix. If for example, D̃(s) =
[

3s2 + 1 2s
2s s

]
, then the highest

row degree coefficient matrix is D̃h =
[

3 0
2 1

]
and S̃(s)D̃� in (8.60) accounts for

the remaining lower row degree terms of D̃(s), with D̃� a matrix of coefficients.
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Observe that |D̃h| �= 0, in fact D̃h = Ip. Define the p×p and n×p matrices

Cp = D̃−1
h and Ap = −D̃�D̃

−1
h , (8.61)

respectively. Also, determine Bo and Do such that

Ñ(s) = S̃(s)Bo + D̃(s)Do. (8.62)

Note that
Do = lim

s→∞H(s), (8.63)

and therefore, only Bo needs to be determined from (8.62).
An observable realization of H(s) in observer form is now given by

ẋo = Aoxo +Bou, y = Coxo +Dou,

where Bo and Do were defined in (8.62) and (8.63), respectively, and

Ao = Āo +ApC̄o, Co = CpC̄o, (8.64)

where Āo = block diag[A1, A2, . . . , Ap] with

Ai =

⎡
⎢⎢⎢⎣

0 · · · 0 0
0

Id̃i−1

...
0

⎤
⎥⎥⎥⎦ ∈ Rd̃i×d̃i ,

C̄o = block diag([0, . . . , 0, 1] ∈ R1×d̃i i = 1, . . . , p), and Ap, Cp is defined in
(8.61). Note that (8.64) is exactly relation (6.76) of Section 6.4 if d̃i = νi,
i = 1, . . . , p, the observability indices.

Lemma 8.24. The system {Ao, Bo, Co, Do} is an n(�
∑p
i=1 d̃i)-th-order ob-

servable realization of H(s) with (Ao, Co) in observer form.

Proof. This is the dual result to Lemma 8.23. The proof is completely analo-
gous and is omitted. �

We conclude by noting that results dual to the results discussed after
Lemma 8.23 are also valid here, i.e., results involving (i) a strictly proper
Ĥ(s), (ii) an H(s) with d̃i = 0 for some row i, and (iii) H(s) = D̃−1(s)Ñ(s),
where D̃(s), Ñ(s) are not necessarily determined using (8.58) (refer to the
following examples).

Example 8.25. Let H(s) =
[
s2+1
s2 , s+1

s3

]
. We wish to derive a minimal real-

ization for H(s). To this end we consider realizations {Ac, Bc, Cc, Dc}, where
(Ac, Bc) is in controller form. Here �1(s) = s2, �2(s) = s3 and H(s) can there-
fore be written in the form (8.48) as
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H(s) = N(s)D−1(s) = [s2 + 1, s+ 1]
[
s2 0
0 s3

]−1

.

Here d1 = 2, d2 = 3 and Λ(s) =
[
s2 0
0 s3

]
4, S(s) =

[
1 s 0 0 0
0 0 1 s s2

]T
. Note that

n = d1+d2 = 5, and therefore, the realization will be of order 5. Write D(s) =

DhΛ(s) + D�S(s), and note that Dh = I2, D� =
[

0 0 0 0 0
0 0 0 0 0

]
. Therefore, in

view of (8.51),

Bm =
[

1 0
0 1

]
and Am = −D� =

[
0 0 0 0 0
0 0 0 0 0

]
.

Here Dc = lims→∞H(s) = [1, 0] and (8.52) implies that CcS(s) = N(s) −
DcD(s) = [s2 + 1, s + 1] − [s2, 0] = [1, s + 1], from which we have Cc =
[1, 0, 1, 1, 0]. A controllable realization in controller form is therefore given
by ẋ = Acxc +Bcu and y = Ccxc +Dcu, where

Ac =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, Bc =

⎡
⎢⎢⎢⎢⎣

0 0
1 0
0 0
0 0
0 1

⎤
⎥⎥⎥⎥⎦
,

Cc = [1, 0, 1, 1, 0], and Dc = [1, 0].

Note that the characteristic (pole) polynomial of H(s) is s3 and that the
McMillan degree of H(s) is 3. The order of any minimal realization of H(s) is
therefore 3. This implies that the controllable fifth-order realization derived
above cannot be observable [verify that (Ac, Cc) is not observable]. To derive a
minimal realization, the observable part of the system {Ac, Bc, Cc, Dc} needs
to be extracted, using the method described in Section 6.2. In particular, a
transformation matrix P needs to be determined so that

Â = PAcP
−1 =

[
A1 0
A21 A2

]
and Ĉ = CcP

−1 = [C1, 0],

where (A1, C1) is observable. If B̂ = PBc =
[
B1

B2

]
, then {A1, B1, C1, D1} is

a minimal realization of H(s). To reduce (Ac, Cc) to such a standard form
for unobservable systems, we let AD = AT , BD = CTc , and CD = BTc and
we reduce (AD, BD) to a standard form for uncontrollable systems. Here the
controllability matrix is

CD =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
1 1 0 0 0
0 1 1 0 0

⎤
⎥⎥⎥⎥⎦
.
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Note that rankCD = 3. Now if the first three columns of QD = P−1
D are taken

to be the first three linearly independent columns of CD, whereas the rest are
chosen so that |QD| �= 0, then

QD =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 1
0 1 0 0 0
1 0 0 1 0
1 1 0 0 0
0 1 1 0 0

⎤
⎥⎥⎥⎥⎦

and Q−1
D =

⎡
⎢⎢⎢⎢⎣

0 −1 0 1 0
0 1 0 0 0
0 −1 0 0 1
0 1 1 −1 0
1 1 0 −1 0

⎤
⎥⎥⎥⎥⎦
.

This implies that

ÂD = Q−1
D ADQD =

[
AD1 AD12

0 AD2

]
=

⎡
⎢⎢⎢⎢⎣

0 0 0 1 −1
1 0 0 0 1
0 1 0 0 −1
0 0 0 −1 1
0 0 0 −1 1

⎤
⎥⎥⎥⎥⎦
,

B̂D = Q−1
D BD =

[
BD1

BD2

]
=

⎡
⎢⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎥⎦
, and ĈD = CDQD =

[
0 1 0 0 0
0 1 1 0 0

]
.

Then

Â =
[
A1 0
A21 A2

]
= ÂTD =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
1 0 0 −1 −1

−1 1 −1 1 1

⎤
⎥⎥⎥⎥⎦
,

B̂ = ĈTD =

⎡
⎢⎢⎢⎢⎣

0 0
1 1
0 1
0 0
0 0

⎤
⎥⎥⎥⎥⎦
, and Ĉ = B̂TD = [C1, 0] = [1, 0, 0,

... 0, 0].

Clearly, Â = ÂTD, Ĉ = B̂TD is in standard form. Therefore, a controllable
and observable realization, which is a minimal realization, is given by ẋco =
Acoxco +Bcou and y = Ccoxco +Dcou, where

Aco =

⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦ , Bco =

⎡
⎣

0 0
1 1
0 1

⎤
⎦ , Cco = [1, 0, 0], Dco = [1, 0].

A minimal realization could also have been derived directly in the present
case if a realization {Ao, Bo, Co, Do} of H(s), where (Ao, Bo) is in observer
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form, had been considered first, as is shown next. Notice that the McMillan
degree of H(s) is 3, and therefore, any realization of order higher than 3 will
not be minimal. Here, however, the degree of the least common denominator
of the (only) row is 3, and therefore, it is known in advance that the realization
in observer form, which is of order 3, will be minimal.

A realization {Ao, Bo, Co, Do} of H(s) in observer form can also be de-
rived by considering HT (s) and deriving a realization in controller form.
Presently, {Ao, Bo, Co, Do} is derived directly. In particular, we write H(s) =
D̃−1(s)Ñ (s) = (s3)−1[s(s2 +1), s+1]. Then d̃1 = 3 [= deg �̃1(s) = deg s3] and
Λ̃(s) = s3, S̃(s) = [1, s, s2]. Then D̃(s) = s3 = Λ̃(s)D̃h + S̃(s)D̃� implies that
D̃h = 1 and D̃� = [0, 0, 0]T . In view of (8.61), we have

Cp = 1, Ap = [0, 0, 0]T ,

Do = lims→∞H(s) = [1, 0], and (8.62) implies that S̃(s)Bo = Ñ(s)− D̃(s)Do

= [s(s2 +1), s+1]− [s3, 0] = [s, s+1], from which we have Bo =
[

0 1 0
1 1 0

]T
. An

observable realization of H(s) is the system ẋ = Aoxo+Bou, y = Coxo+Dou,
where

Ao =

⎡
⎣

0 0 0
1 0 0
0 1 0

⎤
⎦ , Bo =

⎡
⎣

0 1
1 1
0 0

⎤
⎦ , Co = [0, 0, 1], Do = [1, 0],

with (Ao, Co) in observer form (see Lemma 8.24). This realization is minimal
since it is of order 3, which is the McMillan degree ofH(s). (The reader should
verify this.) Note how much easier it was to derive a minimal realization, using
the second approach.

Example 8.26. Let H(s) =
[

2
s+1 1
1
s 0

]
. We wish to derive a minimal realiza-

tion. Here �1(s) = s(s+ 1) with d1 = 2 and �2(s) = 1 with d2 = 0. In view of

the discussion following Lemma 8.23, we let Dc = lims→∞H(s) =
[

0 1
0 0

]
and

Ĥ(s) =
[

2
s+1 0
1
s 0

]
. We now consider the transfer function ̂̂

H(s) =
[

2
s+1
1
s

]
and

determine a minimal realization.
Note that the McMillan degree of ̂̂H(s) is 2, and therefore, any realization

of order 2 will be minimal. Minimal realizations are now derived using two
alternative approaches:

1. Via a controller form realization. Here �1(s) = s(s + 1), d1 = 2, and
̂̂
H(s) =

[
2s
s+ 1

]
[s(s + 1)]−1 = N(s)D−1(s). Then Λ(s) = s2 and S(s) =

[1, s]T , D(s) = s(s + 1) = 1s2 + [0, 1][1, s]T = DhΛ(s) + D�S(s).
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Therefore, Bm = 1 and Am = −[0, 1]. Also, Cc =
[

0 2
1 1

]
, which follows

from N(s) =
[

2s
s+ 1

]
=
[

0 2
1 1

] [
1
s

]
= CcS(s). Then a minimal realization

for H(s) is Ac =
[

0 1
0 −1

]
, Bc =

[
0
1

]
, Cc =

[
0 2
1 1

]
. Adding a zero column

to Bc, a minimal realization of H(s) is now derived as

A =
[

0 1
0 −1

]
, B =

[
0 0
1 0

]
, C =

[
0 2
1 1

]
, D =

[
0 1
0 0

]
.

We ask the reader to verify that by adding a zero column to Bc, control-
lability is preserved.

2. Via an observer form realization. We consider ̂̂H
T

(s) = [2/(s + 1), 1/s]
and derive a realization in controller form. In particular, �1 = s +

1, �2 = s,
̂̂
H
T

(s) = [2, 1]
[
s+ 1 0

0 s

]−1

, d1 = d2 = 1, Λ(s) =
[
s 0
0 s

]
, and

S(s) =
[

1 0
0 1

]
. Then D(s) =

[
s+ 1 0

0 s

]
=
[

1 0
0 1

] [
s 0
0 s

]
+
[

1 0
0 0

] [
1 0
0 1

]
=

DhΛ(s)+D�S(s) andBm =
[

1 0
0 1

]
, Am =

[
−1 0

0 0

]
. Also, Cc = [2, 1], from

which we obtain N(s) = [2, 1] = [2, 1]
[

1 0
0 1

]
= CcS(s). Therefore, a min-

imal realization {A,B,C} of ̂̂H
T

(s) is
{[

−1 0
0 0

]
,

[
1 0
0 1

]
, [2, 1]

}
. The dual

of this is a minimal realization of ̂̂H(s), namely, Ao =
[
−1 0

0 0

]
, Bo =

[
2
1

]
,

and Co =
[

1 0
0 1

]
. Therefore, a minimal realization of H(s) is

A =
[
−1 0

0 0

]
, B =

[
2 0
1 0

]
, C =

[
1 0
0 1

]
, D =

[
0 1
0 0

]
.

8.4.3 Realizations with Matrix A Diagonal

When the roots of the minimal polynomial mH(s) of H(s) are distinct, there
is a realization algorithm that provides a minimal realization of H(s) with A
diagonal. Let

mH(s) = sr + dr−1s
r−1 + · · · + d1s+ d0 (8.65)

be the (monic) least common denominator of all nonzero entries of the p×m
matrix H(s), which in view of Section 7.4, is the minimal polynomial of H(s).
We assume that its r roots λi are distinct, and we write
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mH(s) =
r∏
i=1

(s− λi). (8.66)

Note that the pole polynomial of H(s), pH(s), will have repeated roots (poles)
if pH(s) �= mH(s). We now consider the strictly proper matrix Ĥ(s) � H(s)−
lims→∞H(s) = H(s) −D, and we expand it into partial fractions to obtain

Ĥ(s) = N̂(s)/mH(s) =
r∑
i=1

1
s− λi

Ri. (8.67)

The p×m residue matrices Ri can be found from the relation

Ri = lim
s→λi

(s− λi)Ĥ(s). (8.68)

We write
Ri = CiBi, i = 1, . . . , r, (8.69)

where Ci is a p×ρi and Bi is a ρi×m matrix with ρi � rankRi ≤ min(p,m).
Note that the above expression is always possible. Indeed, there is a systematic
procedure of generating it, namely, by obtaining an LU decomposition of Ri.
Then

A =

⎡
⎢⎢⎢⎣

λ1Iρ1
λ2Iρ2

. . .
λrIρr

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

B1

B2

...
Br

⎤
⎥⎥⎥⎦ , (8.70)

C = [C1, C2, . . . , Cr], D = lim
s→∞H(s)

is a minimal realization of order n �
∑r

i=1 ρi.

Lemma 8.27. Representation (8.70) is a minimal realization of H(s).

Proof. It can be verified directly that C(sI − A)−1B + D = H(s), i.e., that
(8.70) is a realization of H(s). To verify controllability, we write

C = [B,AB, . . . , An−1B] =

⎡
⎢⎢⎢⎣

B1

B2

. . .
Br

⎤
⎥⎥⎥⎦

⎡
⎢⎣
Im, λ1Im, . . . , λ

n−1
1 Im

...
...

...
Im, λrIm, . . . , λ

n−1
r Im

⎤
⎥⎦ .

The second matrix in the product is a block Vandermonde matrix of dimen-
sions mr ×mn. It can be shown that this matrix has full rank mr since all
λi are assumed to be distinct. Also note that the (n = Σρi) × mr matrix
block diag[Bi] has rank equal to

∑r
i=1 rankBi =

∑r
i=1 ρi = n ≤ mr. Now,

in view of Sylvester’s Rank Inequality, as applied to the above matrix prod-
uct, we have n + mr −mr ≤ rankC ≤ min(n,mr), from which rankC = n.
Therefore, {A,B,C,D} is controllable. Observability is shown in a similar
way. Therefore, representation (8.70) is minimal. �
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Example 8.28. Let H(s) =
[ 1

s 0
2
s+1

1
s(s+1)

]
. Here mH(s) = s(s+1) with roots

λ1 = 0, λ2 = −1 distinct. We write H(s) = 1
sR1 + 1

s+1R2, where R1 =

lims→0 sH(s) = lims→0

[
1 0
2s
s+1

1
s+1

]
=
[

1 0
0 1

]
, R2 = lims→−1(s + 1)H(s) =

lims→−1

[
s+1
s 0
2 1

s

]
=
[

0 0
2 −1

]
, ρ1 = rankR1 = 2, and ρ2 = rankR2 = 1; i.e.,

the order of a minimal realization is n = ρ1 + ρ2 = 3. We now write

R1 =
[

1 0
0 1

]
=
[

1 0
0 1

] [
1 0
0 1

]
= C1B1,

R2 =
[

0 0
2 −1

]
=
[

0
1

]
[2 − 1] = C2 B2.

Then

A =
[
λ1I2 0

0 λ2

]
=

⎡
⎣

0 0 0
0 0 0
0 0 −1

⎤
⎦ , B =

[
B1

B2

]
=

⎡
⎣

1 0
0 1
2 −1

⎤
⎦ ,

C = [C1, C2] =
[

1 0 0
0 1 1

]

is a minimal realization with A diagonal (show this). Note that the charac-
teristic polynomial of H(s) is pH(s) = s2(s+ 1), and therefore, the McMillan
degree, which is equal to the order of any minimal realization, is 3, as ex-
pected.

8.4.4 Realizations Using Singular-Value Decomposition

Internally Balanced Realizations. Given a proper p×m matrix H(s), we let
r denote the degree of its minimal polynomial mH(s), we write

H(s) = H0 +H1s
−1 +H2s

−2 + . . .

to obtain the Markov parameters Hi, and we define

T � MH(r, r) =

⎡
⎢⎣
H1 · · ·Hr

...
Hr · · ·H2r−1

⎤
⎥⎦ , T̂ �

⎡
⎢⎣
H2 · · ·Hr+1

...
Hr+1 · · ·H2r

⎤
⎥⎦ , (8.71)

where MH(r, r) is the Hankel matrix (see Definition 8.15) and T, T̂ are real
matrices of dimension rp× rm.

Using singular-value decomposition (see Section A.9), we write
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T = K

[
Σ 0
0 0

]
L, (8.72)

where
∑

= diag[λ1, . . . , λn] ∈ Rn×n with n = rankT = rankMH(r, r), which
in view of Theorem 8.16 is the order of a minimal realization of H(s). The λi
with λ1 ≥ λ2 ≥ · · · ≥ λn > 0 are the singular values of T , i.e., the nonzero
eigenvalues of T TT . Furthermore, KKT = KTK = Ipr and LLT = LTL =
Imr. We write

T = K1ΣL1 = (K1Σ
1/2)(Σ1/2L1) = V U, (8.73)

where K1 denotes the first n columns of K, L1 denotes the first n rows of
L,KT

1 K1 = In, and L1L
T
1 = In. Also, V ∈ Rrp×n and U ∈ Rn×rm.

We let V + and U+ denote pseudoinverses of V and U , respectively (see
the appendix); i.e.,

V + = Σ−1/2KT
1 and U+ = LT1Σ

−1/2, (8.74)

where V +V = In and UU+ = In. Now define

A = V +T̂U+, B = UITm,mr, C = Ip,prV, D = H0, (8.75)

where Ik,� � [Ik, 0�−k], k > �; i.e., Ik,� is a k×� matrix with its first k columns
determining an identity matrix and the remaining �− k columns being equal
to zero. Thus, B is defined as the first m columns of U , and C is defined
as the first p rows of V . Note that A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and
D ∈ Rp×m.

Lemma 8.29. The representation (8.75) is a minimal realization of H(s).

Proof. It can be shown that CAi−1B = Hi, i = 1, 2, . . . . Thus, {A,B,C,D} is
a realization. We note that V and U are the observability and controllability
matrices, respectively, and that both are of full rank n. Therefore, the realiza-
tion is minimal. Furthermore, we notice that V TV = UUT = Σ. Realizations
of this type are called internally balanced realizations. �

The term internally balanced emphasizes the fact that realizations of this
type are “as much controllable as they are observable,” since their control-
lability and observability Gramians are equal and diagonal. Using such rep-
resentations, it is possible to construct reasonable reduced-order models of
systems by deleting that part of the state space that is “least controllable”
and therefore “least observable” in accordance with some criterion. In fact, the
realization procedure described can be used to obtain a reduced-order model
for a given system. Specifically, if the system is to be approximated by a q-
dimensional model with q < n, then the reduced-order model can be obtained
from

T = Kq diag[λ1, . . . , λq]Lq, (8.76)

where Kq denotes the first q columns of K in (8.72) and Lq denotes the first
q rows of L.
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8.5 Polynomial Matrix Realizations

It is rather straightforward to derive a realization of H in PMD form [see
Section 7.5]. In fact, realizations in right (left) Polynomial Matrix Fractional
Description (PMFD) form were derived as a step toward determining a state-
space realization in controller (observer) form (see Subsection 8.4.2). However,
these realizations, of the form {DR, Im, NR} and {DL, NL, Ip}, are typically
not of minimal order; i.e., they are not controllable and observable. This im-
plies that the controllable realization {DR, Im, NR}, for example, is not ob-
servable; i.e., DR, NR are not right coprime. Similarly, the observable real-
ization {DL, NL, Ip} is not controllable; i.e., DL, NL are not left coprime. To
obtain a minimal realization, a greatest common right divisor (gcrd) must be
extracted from DR, NR, and similarly, a gcld must be extracted from DL, NL.
This leads to the following realization algorithm, which results in a minimal
realization {D, Im, N} of H . A minimal realization of the form {D,N, Ip} is
obtained in an analogous (dual) manner.

Consider H(s) = [nij(s)/dij(s)], i = 1, . . . , p, j = 1, . . . ,m, and let lj(s)
be the (monic) least common denominator of all entries in the jth column of
H(s). Note that lj(s) is the (monic) least degree polynomial divisible by all
dij(s), i = 1, . . . , p. Then H(s) can be written as

H(s) = NR(s)D−1
R (s), (8.77)

where NR(s) � =[n̄ij(s)] and DR(s) � = diag(l1(s), . . . , lm(s)). Note that
n̄ij/lj(s) = nij(s)/dij(s) for i = 1, . . . , p and all j = 1, . . . ,m. Now

DR(q)zR(t) = u(t), y(t) = NR(q)zR(t) (8.78)

is a controllable realization of H(s). If DR, NR are right coprime, it is ob-
servable as well and therefore minimal. If DR and NR are not right coprime,
let GR be a greatest common right divisor (gcrd) and let D = DRG

−1
R and

N = NRG
−1
R . Then

D(q)z(t) = u(t), y(t) = N(q)z(t) (8.79)

is a controllable and observable, and therefore, minimal realization of H(s)
since D, I and D,N are left and right coprime polynomial matrix pairs, re-
spectively. Note that ND−1 = (NRG−1

R )(DRG
−1
R )−1 = (NRG−1

R )(GRD−1
R ) =

NRD
−1
R = H .

There is a dual algorithm that extracts a left PMFD resulting in

H(s) = D−1
L (s)NL(s), (8.80)

which corresponds to an observable realization of H(s), given by

DL(q)zL(t) = NL(q)u(t), y(t) = zL(t). (8.81)
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The details of this procedure are completely analogous to the above procedure
that led to (8.77). If DL, NL are not left coprime, let GL be a greatest common
left divisor and let D̃ = G−1

L DL and Ñ = G−1
L NL. Then a controllable and

observable and, therefore, minimal realization of H(s) is given by

D̃(q)z̃(t) = Ñ(q)u(t), y(t) = z̃(t). (8.82)

The following example illustrates the above realization algorithms.

Example 8.30. Let us derive a minimal realization for H(s) =
[
s2+1
s2 , s+1

s3

]
.

Note that this is the same H(s) as in Example 8.25 of Section 8.4.2, where
minimal state-space realizations were derived. The reader is encouraged to
compare those results with the realizations derived below. We shall begin
with a controllable realization. In view of (8.77) l1 = s2, l2 = s3, and H =

NRD
−1
R = [s2 + 1, s + 1]

[
s2 0
0 s3

]−1

. Therefore, DRzR = u and y = NRzR

constitute a controllable realization. This realization is not observable since

rank
[
DR(s)
NR(s)

]

s=0

= rank

⎡
⎣

0 0
0 0
1 1

⎤
⎦ = 1 < m = 2; i.e., DR and NR are not right

coprime.
Another way of determining that DR and NR are not right coprime

would have been to observe that deg detD(s) = 5 = order of the realiza-
tion {DR, I,NR}. Now the McMillan degree of H , which is easily derived in
the present case, is three. Therefore, the order of any minimal realization for
this example is three. Since {DR, I,NR} is of order five and is controllable, it
cannot be observable; i.e., DR and NR cannot be right coprime.

We shall now extract a gcrd from DR and NR (using the procedure de-
scribed in [1, Section 7.2D]). We have

[
DR

NR

]
=

⎡
⎣

s2 0
0 s3

s2 + 1 s+ 1

⎤
⎦ −→

⎡
⎣
s2 0
0 s3

1 s+ 1

⎤
⎦ −→

⎡
⎣

1 s+ 1
s2 0
0 s3

⎤
⎦ −→

⎡
⎣

1 s+ 1
0 −s3 − s2

0 s3

⎤
⎦ −→

⎡
⎣

1 s+ 1
0 s2

0 s3

⎤
⎦ −→

⎡
⎣

1 s+ 1
0 s2

0 0

⎤
⎦ .

Therefore, GR =
[

1 s+ 1
0 s2

]
is a gcrd. We now determine D = DRG

−1
R and

N = NRG
−1
R , using DR =

[
s2 0
0 s3

]
=
[
s2 −(s+ 1)
0 s

] [
1 s+ 1
0 s2

]
= DGR and

NR = [s2 + 1, s+ 1] = [s2 + 1,−(s+ 1)]
[
1 s+ 1
0 s2

]
= NGR, and we verify that

they are right coprime. Then



8.6 Summary and Highlights 345

{DR, I,NR} =
{[

q2 −(q + 1)
0 q

]
,

[
1 0
0 1

]
, [q2 + 1,−(q + 1)]

}

is a minimal realization of H(s).
Alternatively, given H , we shall first derive an observable realization. In

view of (8.80),
H = D−1

L NL = (s3)−1[s(s2 + 1), s+ 1].

Here DL(q) and NL(q) are left coprime, and therefore, D̃(q)z̃(t) = Ñ(q)u(t)
and y(t) = z̃(t) with D̃(q) = DL(q) and Ñ(q) = NL(q) is controllable and
observable and is a minimal realization. Note that the order of this realization
is deg detDL(s) = 3, which equals the McMillan degree of H(s).

8.6 Summary and Highlights

Realizations

• ẋ = Ax + Bu, y = Cx + Du is a realization of H(s) (ŷ = H(s)û) if
ŷ = [C(sI −As−1B +D]û.

• Realizations of H(s) exist if and only if H(s) is a proper rational matrix.
lims→∞H(s) = D <∞. (See Theorem 8.5.)

• The Markov parameters Hi of the system in

H(s) = H0 +H1s
−1 +H2s

−2 + . . .

satisfy
H0 = D and Hi = CAi−1B, i = 1, 2, . . . .

(See Theorem 8.3.)
• A realization {A,B,C,D} of H(s) is minimal if and only if it is both

controllable and observable. (See Theorem 8.9.)
• Two realizations of H(s) that are minimal must be equivalent representa-

tions. (See Theorem 8.10.)
• The order of a minimal realization of H(s) equals its McMillan degree, the

order of its characteritic or pole polynomial pH(s). (See Theorem 8.12.)
The order of a minimal realization of H(s) is also given by the rank of the
Hankel matrix MH(r, r). (See Theorem 8.16.)

• Duality can be very useful in obtaining realizations. (See Subsection 8.4.1.)
• Realization algorithms are presented to obtain realizations in controller/

observer form [Subsection 8.4.2], realizations with A diagonal [Subsec-
tion 8.4.3], and balanced realizations via singular-value decomposition
[Subsection 8.4.4].
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8.7 Notes

A clear understanding of the relationship between external and internal de-
scriptions of systems is one of the principal contributions of systems theory.
This topic was developed in the early sixties with original contributions by
Gilbert [3] and Kalman [5]. The role of controllability and observability in min-
imal realizations is due to Kalman [5]. See also Kalman, Falb, and Arbib [6].
The first realization method for MIMO systems is attributed to Gilbert [3]. It
was developed for systems where the matrix A can be taken to be diagonal.
This method is presented in this chapter. For extensive historical comments
concerning this topic, see Kailath [4]. Additional information concerning real-
izations for the time-varying case can be found, for example, in Brockett [2],
Silverman [10], Kamen [7], Rugh [9], and the literature cited in these refer-
ences. Balanced realizations were introduced in Moore [8].
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Exercises

8.1. Consider a scalar proper rational transfer function H(s) = n(s)/d(s),
and let ẋ = Acxc+Bcu, y = Ccxc+Dcu be a realization of H(s) in controller
form.

(a) Show that the realization {Ac, Bc, Cc, Dc} is always controllable.
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(b) Show that {Ac, Bc, Cc, Dc} is observable if and only if n(s) and d(s) do
not have any factors in common; i.e., they are prime polynomials.

(c) State the dual results to (a) and (b) involving a realization in observer
form.

8.2. LetH(s) = n(s)
d(s) = s2−s+1

s5−s4+s3−s2+s−1 . Determine a realization in controller
form. Is your realization minimal? Explain your answer. Hint : Use the results
of Exercise 8.1.

8.3. For the transfer function H(s) = s+1
s2+2 , find

(a) an uncontrollable realization,
(b) an unobservable realization,
(c) an uncontrollable and unobservable realization,
(d) a minimal realization.

8.4. Consider the transfer function matrix H(s) =
[
s−1
s+1

1
s2−1

1 0

]
.

(a) Determine the pole polynomial and the McMillan degree of H(s), using
both the Smith–McMillan form and the Hankel matrix.

(b) Determine an observable realization of H(s).
(c) Determine a minimal realization of H(s). Hint : Obtain realizations for[

s−1
s+1 ,

1
s2−1

]
.

8.5. Consider the transfer function matrix H(s) =
[

(s+1)(−s+5)
(s−1)(s2−9) ,

s
s−1

]T
, and

determine for H(s) a minimal realization in controller form.

8.6. Consider the transfer function H(s) =
[ 1

s
s+3
s+1

1
s+3

s
s+1

]
.

(a) Determine the pole polynomial of H(s) and the McMillan degree of H(s).
(b) Determine a minimal realization {A,B,C,D} of H(s), where A is a diag-

onal matrix.

8.7. Given is the system depicted in the block diagram of Figure 8.4, where
H(s) = s2+1

(s+1)(s+2)(s+3) . Determine a minimal state-space representation for
the closed-loop system, using two approaches. In particular:

(a) First, determine a state-space realization for H(s), and then, determine a
minimal state-space representation for the closed-loop system;

(b) first, find the closed-loop transfer function, and then, determine a minimal
state-space representation for the closed-loop system.

Compare the two approaches.
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+
H(s)

r u y

–
Σ

Figure 8.4. Block diagram of the system in Exercise 8.7

8.8. Consider the system depicted in the block diagram of Figure 8.5, where
H(s) = s+1

s(s+3) and G(s) = k
s+a with k, a ∈ R. Presently, H(s) could be viewed

as the system to be controlled and G(s) could be regarded as a feedback
controller.

(a) Obtain a state-space representation of the closed-loop system by
(i) first, determining realizations for H(s) and G(s) and then combining

them;
(ii) first, determining Hc(s), the closed-loop transfer function.

(b) Are there any choices for the parameters k and a for which your closed-
loop state-space representation is uncontrollable and unobservable? If your
answer is affirmative, state why.

+
H(s)

r u y

G(s)
–

Figure 8.5. Block diagram of the system in Exercise 8.8

8.9. Consider the controllable and observable system given by ẋ = Ax+Bu,
y = Cx+Du, and its equivalent representation ˙̂x = Âx̂+ B̂u, y = Ĉx̂+ D̂u,
where Â = PAP−1, B̂ = PB, Ĉ = CP−1, and D̂ = D. Let Wr and Wo denote
the reachability and observability Gramians, respectively.

(a) Show that Ŵr = PWrP
∗ and Ŵo = (P−1)∗WoP

−1, where P ∗ denotes the
complex conjugate transpose of P . Note that P ∗ = PT when only real
coefficients in the system equations are involved.
Using singular-value decomposition (refer to Section A.9), write

Wr = UrΣrV
∗
r and Wo = UoΣoV

∗
o ,

where U∗U = I, V V ∗ = I, and Σ = diag(σ1, σ2, . . . , σn) with σi the
singular values of W . Define

H = (Σ1/2
o )∗U∗

oUr(Σ
1/2
r ),

and using singular-value decomposition, write

H = UHΣHVH ,

where U∗
HUH = I, VHV ∗

H = I. Prove the following:
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(b) If P = Pin � VH(
∑1/2

r )−1V ∗
r , then Ŵr = I, Ŵo = Σ2

H .
(c) If P = Pout � U∗

H(
∑1/2

o )∗V ∗
o , then Ŵr = Σ2

H , Ŵo = I.
(d) If P = Pib = Pin

∑1/2
H =

∑1/2
H Pout, then Ŵr = Ŵo = ΣH . Note that

the equivalent representations {Â, B̂, Ĉ, D̂} in (b), (c), and (d) are called,
respectively, input-normal, output-normal, and internally balanced repre-
sentations.

8.10. Consider a system described by
[
ŷ1(s)
ŷ2(s)

]
=
[ 1

(s+1)2
2
s2

0 s+1
s

] [
û1(s)
û2(s)

]
.

(a) What is the order of a controllable and observable realization of this sys-
tem?

(b) If we consider such a realization, is the resulting system controllable from
the input u2? Is it observable from the output y1? Explain your answers.

8.11. Consider the system described by H(s) = 1
s−(1+ε) (ŷ(s) = H(s)û(s))

and C(s) = s−1
s+2 (û(s) = C(s)r̂(s)) connected in series (ε ∈ R).

(a) Derive minimal state-space realizations forH(s) andC(s), and determine a
(second order) state-space description for the system ŷ(s) = H(s)C(s)r̂(s).

(b) Let ε = 0, and discuss the implications regarding the overall transfer func-
tion and your state-space representations in (a). Is the overall system now
controllable, observable, asymptotically stable? Are the poles of the over-
all transfer function stable? [That is, is the overall system BIBO stable?
(See Chapter 4.)] Plot the states and the output for some nonzero initial
condition and a unit step input, and comment on your results.

(c) In practice, if H(s) is a given system to be controlled and C(s) is a con-
troller, it is unlikely that ε will be exactly equal to zero and therefore the
situation in (a), rather than (b), will arise. In view of this, comment on
whether open-loop stabilization can be used in practice. Carefully explain
your reasoning.

8.12. Consider the transfer function H(s) =
[

1 1
s

s−1
s

0 s+1
s2 0

]
. Determine a min-

imal realization in

(a) Polynomial Matrix Fractional Description (PMFD) form,
(b) State-Space Description (SSD) form.


