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State Feedback and State Observers

9.1 Introduction

Feedback is a fundamental mechanism arising in nature and is present in
many natural processes. Feedback is also common in manufactured systems
and is essential in automatic control of dynamic processes with uncertainties
in their model descriptions and their interactions with the environment. When
feedback is used, the actual values of system variables are sensed, fed back,
and used to control the system. Hence, a control law decision process is based
not only on predictions about the system behavior derived from a process
model, but also on information about the actual behavior. A common example
of an automatic feedback control system is the cruise control system in an
automobile, which maintains the speed of the automobile at a certain desired
value within acceptable tolerances. In this chapter, feedback is introduced and
the problem of pole or eigenvalue assignment by means of state feedback is
discussed at length in Section 9.2. It is possible to arbitrarily assign all closed-
loop eigenvalues by linear static state feedback if and only if the system is
completely controllable.

In the study of state feedback, it is assumed that it is possible to measure
the values of the states using appropriate sensors. Frequently, however, it may
be either impossible or impractical to obtain measurements for all states. It
is therefore desirable to be able to estimate the states from measurements of
input and output variables that are typically available. In addition to feed-
back control problems, there are many other problems where knowledge of
the state vector is desirable, since such knowledge contains useful information
about the system. This is the case, for example, in navigation systems. State
estimation is related to observability in an analogous way that state feedback
control is related to controllability. The duality between controllability and
observability makes it possible to easily solve the estimation problem once
the control problem has been solved, and vice versa. In this chapter, asymp-
totic state estimators, also called state observers, are discussed at length in
Section 9.3.
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Finally, state feedback static controllers and state dynamic observers are
combined to form dynamic output feedback controllers. Such controllers are
studied in Section 9.4, using both state-space and transfer function matrix
descriptions. In the following discussion, state feedback and state estimation
are introduced for continuous- and discrete-time time-invariant systems.

9.2 Linear State Feedback

9.2.1 Continuous-Time Systems

We consider linear, time-invariant, continuous-time systems described by
equations of the form

ẋ = Ax+Bu, y = Cx+Du, (9.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m.

Definition 9.1. The linear, time-invariant, state feedback control law is de-
fined by

u = Fx+ r, (9.2)

where F ∈ Rm×n is a gain matrix and r(t) ∈ Rm is an external input vector.
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Figure 9.1. Linear state feedback configuration

Note that r(t) is an external input , also called a command or reference
input (see Figure 9.1). It is used to provide an input to the compensated
closed-loop system and is omitted when such input is not necessary in a given
discussion [r(t) = 0]. This is the case, e.g., when the Lyapunov stability of a
system is studied. Note that the vector r(t) in (9.2) has the same dimension as
u(t). If a different number of inputs is desired, then an input transformation
map may be used to accomplish this.

The compensated closed-loop system of Figure 9.1 is described by the equa-
tions

ẋ = (A+BF )x+ Br,

y = (C +DF )x+Dr, (9.3)
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which were determined by substituting u = Fx+ r into the description of the
uncompensated open-loop system (9.1).

The state feedback gain matrix F affects the closed-loop system behavior.
This is accomplished by altering the matrices A and C of (9.1). In fact, the
main influence of F is exercised through the matrix A, resulting in the matrix
A + BF of the closed-loop system. The matrix F affects the eigenvalues of
A + BF and, therefore, the modes of the closed-loop system. The effects of
F can also be thought of as restricting the choices for u (= Fx for r = 0)
so that for apppropriate F , certain properties, such as asymptotic Lyapunov
stability, of the equilibrium x = 0 are obtained.

Open- Versus Closed-Loop Control

The linear state feedback control law (9.2) can be expressed in terms of the
initial state x(0) = x0. In particular, working with Laplace transforms, we
obtain û = F x̂+ r̂ = F [(sI−A)−1x0 +(sI−A)−1Bû]+ r̂, in view of sx̂−x0 =
Ax̂+Bû, derived from ẋ = Ax+Bu. Collecting terms, we have [I − F (sI −
A)−1B]û = F (sI −A)−1x0 + r̂. This yields

û = F [sI − (A+BF )]−1x0 + [I − F (sI −A)−1B]−1r̂, (9.4)

where the matrix identities [I − F (sI − A)−1B]−1F (sI − A)−1 ≡ F (sI −
A)−1[I −BF (sI −A)−1]−1 ≡ F [sI − (A+BF )]−1 have been used.

Expression (9.4) is an open-loop (feedforward) control law, expressed in
the Laplace transform domain. It is phrased in terms of the initial conditions
x(0) = x0, and if it is applied to the open-loop system (9.1), it generates
exactly the same control action u(t) for t ≥ 0 as the state feedback u = Fx+r
in (9.2). It can readily be verified that the descriptions of the compensated
system are exactly the same when either control expressions, (9.2) or (9.4),
are used. In practice, however, these two control laws hardly behave the same,
as explained in the following.

First, notice that in the open-loop scheme (9.4), the initial conditions x0

are assumed to be known exactly. It is also assumed that the plant parameters
in A and B are known exactly. If there are uncertainties in the data, this
control law may fail miserably, even when the differences are small, since
it is based on incorrect information without any way of knowing that these
data are not valid. In contrast to the above, the feedback law (9.2) does not
require knowledge of x0. Moreover, it receives feedback information from x(t)
and adjusts u(t) to reflect the current system parameters, and consequently,
it is more robust to parameter variations. Of course the feedback control law
(9.2) will also fail when the parameter variations are too large. In fact, the
area of robust control relates feedback control law designs to bounds on the
uncertainties (due to possible changes) and aims to derive the best design
possible under the circumstances.

The point we wish to emphasize here is that although open- and closed-
loop control laws may appear to produce identical effects, typically they do
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not, the reason being that the mathematical system models used are not
sufficiently accurate, by necessity or design. Feedback control and closed-loop
control are preferred to accommodate ever-present modeling uncertainties in
the plant and the environment.

At this point, a few observations are in order. First, we note that feeding
back the state in synthesizing a control law is a very powerful mechanism,
since the state contains all the information about the history of a system that
is needed to uniquely determine the future system behavior, given the input.
We observe that the state feedback control law considered presently is linear,
resulting in a closed-loop system that is also linear. Nonlinear state feedback
control laws are of course also possible. Notice that when a time-invariant
system is considered, the state feedback is typically static, unless there is
no choice (as in certain optimal control problems), resulting in a closed-loop
system that is also time-invariant. These comments justify to a certain extent
the choice of linear, time-invariant, state feedback control to compensate linear
time-invariant systems.

The problem of stabilizing a system by using state feedback is considered
next.

Stabilization

The problem we wish to consider now is to determine a state feedback con-
trol law (9.2) having the property that the resulting compensated closed-loop
system has an equilibrium x = 0 that is asymptotically stable (in the sense
of Lyapunov) when r = 0. (For a discussion of asymptotic stability, refer to
Subsection 3.3.3 and to Chapter 4.) In particular, we wish to determine a
matrix F ∈ Rm×n so that the system

ẋ = (A+BF )x, (9.5)

where A ∈ Rn×n and B ∈ Rn×m has equilibrium x = 0 that is asymptotically
stable. Note that (9.5) was obtained from (9.3) by letting r = 0.

One method of deriving such stabilizing F is by formulating the problem
as an optimal control problem, e.g., as the Linear Quadratic Regulator (LQR)
problem. This is discussed at the end of this section.

Alternatively, in view of Subsection 3.3.3, the equilibrium x = 0 of (9.5)
is asymptotically stable if and only if the eigenvalues λi of A + BF satisfy
Reλi < 0, i = 1, · · · , n. Therefore, the stabilization problem for the time-
invariant case reduces to the problem of selecting F in such a manner that
the eigenvalues of A + BF are shifted into desired locations. This will be
studied in the following subsection. Note that stabilization is only one of the
control objectives, although a most important one, that can be achieved by
shifting eigenvalues. Control system design via eigenvalue (pole) assignment
is a topic that is addressed in detail in a number of control books.
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9.2.2 Eigenvalue Assignment

Consider again the closed-loop system ẋ = (A+BF )x given in (9.5). We shall
show that if (A,B) is fully controllable (-from-the-origin, or reachable), all
eigenvalues of A+ BF can be arbitrarily assigned by appropriately selecting
F . In other words, “the eigenvalues of the original system can arbitrarily be
changed in this case.” This last statement, commonly used in the literature,
is rather confusing: The eigenvalues of a given system ẋ = Ax + Bu are
not physically changed by the use of feedback. They are the same as they
used to be before the introduction of feedback. Instead, the feedback law
u = Fx+ r, r = 0, generates an input u(t) that, when fed back to the system,
makes it behave as if the eigenvalues of the system were at different locations
[i.e., the input u(t) makes it behave as a different system, the behavior of
which is, we hope, more desirable than the behavior of the original system].

Theorem 9.2. Given A ∈ Rn×n and B ∈ Rn×m, there exists F ∈ Rm×n such
that the n eigenvalues of A+BF can be assigned to arbitrary, real, or complex
conjugate locations if and only if (A,B) is controllable (-from-the-origin, or
reachable).

Proof. (Necessity): Suppose that the eigenvalues ofA+BF have been arbitrar-
ily assigned, and assume that (A,B) in (9.1) is not fully controllable. We shall
show that this leads to a contradiction. Since (A,B) is not fully controllable,
in view of the results in Section 6.2, there exists a similarity transformation
that will separate the controllable part from the uncontrollable part in (9.5).
In particular, there exists a nonsingular matrix Q such that

Q−1(A+BF )Q = Q−1AQ+ (Q−1B)(FQ) =
[
A1 A12

0 A2

]
+
[
B1

0

]
[F1, F2]

=
[
A1 +B1F1 A12 + B1F2

0 A2

]
, (9.6)

where [F1, F2] � FQ and (A1, B1) is controllable. The eigenvalues of A+BF
are the same as the eigenvalues of Q−1(A+BF )Q, which implies that A+BF
has certain fixed eigenvalues, the eigenvalues of A2, that cannot be shifted
via F . These are the uncontrollable eigenvalues of the system. Therefore,
the eigenvalues of A + BF have not been arbitrarily assigned, which is a
contradiction. Thus, (A,B) is fully controllable.

(Sufficiency): Let (A,B) be fully controllable. Then by using any of the
eigenvalue assignment algorithms presented later in this section, all the eigen-
values of A+BF can be arbitrarily assigned. �

Lemma 9.3. The uncontrollable eigenvalues of (A,B) cannot be shifted via
state feedback.

Proof. See the necessity part of the proof of Theorem 9.2. Note that the
uncontrollable eigenvalues are the eigenvalues of A2. �
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Example 9.4. Consider the uncontrollable pair (A,B), where A =
[

0 −2
1 −3

]
,

B =
[

1
1

]
. This pair can be transformed to a standard form for uncontrollable

systems, namely, Â =
[
−2 1

0 −1

]
, B̂ =

[
1
0

]
, from which it can easily be

seen that −1 is the uncontrollable eigenvalue, whereas −2 is the controllable
eigenvalue.

Now if F = [f1, f2], then det(sI−(A+BF )) = det
[
s− f1, 2 − f2
−1 − f1 s+ 3 − f2

]
=

s2 + s(−f1 − f2 + 3) + (−f1 − f2 + 2) = (s+ 1)(s+ (−f1 − f2 + 2)). Clearly,
the uncontrollable eigenvalue −1 cannot be shifted via state feedback. The
controllable eigenvalue −2 can be shifted arbitrarily to (f1 + f2 − 2) by F =
[f1, f2].

It is now quite clear that a given system (9.1) can be made asymptotically
stable via the state feedback control law (9.2) only when all the uncontrollable
eigenvalues of (A,B) are already in the open left part of the s-plane. This is
so because state feedback can alter only the controllable eigenvalues.

Definition 9.5. The pair (A,B) is called stabilizable if all its uncontrollable
eigenvalues are stable. �

Before presenting methods to select F for eigenvalue assignment, it is of
interest to examine how the linear feedback control law u = Fx + r given in
(9.2) affects controllability and observability. We write

[
sI − (A+BF ) B
−(C +DF ) D

]
=
[
sI −A B
−C D

] [
I 0

−F I

]
(9.7)

and note that

rank[λI − (A+BF ), B] = rank[λI −A,B]

for all complex λ. Thus, if (A,B) is controllable, then so is (A + BF,B) for
any F . Furthermore, notice that in view of

CF = [B, (A+BF )B, (A +BF )2B, . . . , (A+BF )n−1B]

= [B,AB,A2B, . . . , An−1B]

⎡
⎢⎢⎢⎢⎢⎣

I FB F (A+BF )B ·
0 I FB ·

I ·
. . .

I

⎤
⎥⎥⎥⎥⎥⎦
, (9.8)
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R(CF ) = R([B,AB, . . . , An−1B]) = R (C). This shows that F does not alter
the controllability subspace of the system. This in turn proves the following
lemma.

Lemma 9.6. The controllability subspaces of ẋ = Ax + Bu and ẋ = (A +
BF )x+Br are the same for any F . �

Although the controllabiliity of the system is not altered by linear state
feedback u = Fx + r, this is not true for the observability property. Note
that the observability of the closed-loop system (9.3) depends on the matrices
(A + BF ) and (C + DF ), and it is possible to select F to make certain
eigenvalues unobservable from the output. In fact this mechanism is quite
common and is used in several control design methods. It is also possible
to make observable certain eigenvalues of the open-loop system that were
unobservable.

Several methods are now presented to select F to arbitrarily assign the
closed-loop eigenvalues.

Methods for Eigenvalue Assignment by State Feedback

In view of Theorem 9.2, the eigenvalue assignment problem can now be stated
as follows. Given a controllable pair (A,B), determine F to assign the n
eigenvalues of A+BF to arbitrary real and/or complex conjugate locations.
This problem is also known as the pole assignment problem, where by the term
“pole” is meant a “pole of the system” (or an eigenvalue of the “A” matrix).
This is to be distinguished from the “poles of the transfer function.”

Note that all matrices A,B, and F are real, so the coefficients of the
polynomial det[sI − (A + BF )] are also real. This imposes the restriction
that the complex roots of this polynomial must appear in conjugate pairs.
Also, note that if (A,B) is not fully controllable, then (9.6) can be used
together with the methods described a little later, to assign all the controllable
eigenvalues; the uncontrollable ones will remain fixed.

It is assumed in the following discussion that B has full column rank; i.e.,

rankB = m. (9.9)

This means that the system ẋ = Ax + Bu has m independent inputs. If
rankB = r < m, this would imply that one could achieve the same result by
manipulating only r inputs (instead of m > r). To assign eigenvalues in this
case, one can proceed by writing

A+BF = A+ (BM)(M−1F ) = A+ [B1, 0]
[
F1

F2

]
= A+B1F1, (9.10)

where M is chosen so that BM = [B1, 0] with B1 ∈ Rn×r and rankB1 = r.
Then F1 ∈ Rr×n can be determined to assign the eigenvalues of A + B1F1,
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using any one of the methods presented next. Note that (A,B) is controllable
implies that (A,B1) is controllable. The state feedback matrix F is given in
this case by

F = M

[
F1

F2

]
, (9.11)

where F2 ∈ R(m−r)×n is arbitrary.

1. Direct Method

Let F = [fij ], i = 1, . . . ,m, j = 1, . . . , n, and express the coefficients of the
characteristic polynomial of A+BF in terms of fij ; i.e.,

det(sI − (A+BF )) = sn + gn−1(fij)sn−1 + · · · + g0(fij).

Now if the roots of the polynomial

αd(s) = sn + dn−1s
n−1 + · · · + d1s+ d0

are the n desired eigenvalues, then the fij , i = 1, . . . ,m, j = 1, . . . , n, must
be determined so that

gk(fij) = dk, k = 0, 1, . . . , n− 1. (9.12)

In general, (9.12) constitutes a nonlinear system of algebraic equations;
however, it is linear in the single-input case, m = 1. The main difficulty in
this method is not so much in deriving a numerical solution for the nonlinear
system of equation, but in carrying out the symbolic manipulations needed
to determine the coefficients gk in terms of the fij in (9.12). This difficulty
usually restricts this method to the simplest cases, with n = 2 or 3 and m = 1
or 2 being typical.

Example 9.7. For A =
[

1/2 1
1 2

]
, B =

[
1
1

]
, we have det(sI−A) = s(s−5/2),

and therefore, the eigenvalues of A are 0 and 5/2. We wish to determine F so
that the eigenvalues of A+BF are at −1 ± j.

If F = [f1, f2], then det(sI−(A+BF )) = det
([

s−1/2 −1
−1 s−2

]
− [ 1

1 ] [f1, f2]
)

=

det
[
s− 1/2 − f1, −1 − f2
−1 − f1, s− 2 − f2

]
= s2 + s(− 5

2 − f1− f2)+ f1− 1
2f2. The desired

eigenvalues are the roots of the polynomial

αd(s) = (s− (−1 + j))(s− (−1 − j)) = s2 + 2s+ 2.

Equating coefficients, one obtains − 5
2 − f1 − f2 = 2, f1 − 1

2f2 = 2, a linear
system of equations. Note that it is linear because m = 1. In general one must
solve a set of nonlinear algebraic equations. We have

F = [f1, f2] = [−1/6,−13/3]

as the appropriate state feedback matrix.
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2. The Use of Controller Forms

Given that the pair (A,B) is controllable, there exists an equivalence trans-
formation matrix P so that the pair (Ac = PAP−1, Bc = PB) is in con-
troller form (see Section 6.4). The matrices A + BF and P (A + BF )P−1 =
PAP−1 +PBFP−1 = Ac+BcFc have the same eigenvalues, and the problem
is to determine Fc so that Ac + BcFc has desired eigenvalues. This problem
is easier to solve than the original one because of the special structures of Ac
and Bc. Once Fc has been determined, then the original feedback matrix F
is given by

F = FcP. (9.13)

We shall now assume that (A,B) has already been reduced to (Ac, Bc) and
describe methods of deriving Fc for eigenvalue assignment.

Single-Input Case (m = 1). We let

Fc = [f0, . . . , fn−1]. (9.14)

In view of Section 6.4, since Ac, Bc are in controller form, we have

AcF � Ac +BcFc

=

⎡
⎢⎢⎢⎣

0 1 . . . 0
...

...
...

0 0 . . . 1
−α0 −α1 · · · −αn−1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ [f0, . . . , fn−1]

=

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−(α0 − f0) −(α1 − f1) · · · −(αn−1 − fn−1)

⎤
⎥⎥⎥⎦ , (9.15)

where αi, i = 0, . . . , n−1, are the coefficients of the characteristic polynomial
of Ac; i.e.,

det(sI −Ac) = sn + αn−1s
n−1 + · · · + α1s+ α0. (9.16)

Notice that AcF is also in companion form, and its characteristic polynomial
can be written directly as

det(sI −AcF ) = sn + (αn−1 − fn−1)sn−1 + · · · + (α0 − f0). (9.17)

If the desired eigenvalues are the roots of the polynomial

αd(s) = sn + dn−1s
n−1 + · · · + d0, (9.18)

then by equating coefficients, fi, i = 0, 1, . . . , n− 1, must satisfy the relations
di = αi − fi, i = 0, 1, . . . , n− 1, from which we obtain
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fi = αi − di, i = 0, . . . , n− 1. (9.19)

Alternatively, note that there exists a matrix Ad in companion form, the
characteristic polynomial of which is (9.18). An alternative way of deriving
(9.19) is then to set AcF = Ac +BcFc = Ad, from which we obtain

Fc = B−1
m [Adm −Am], (9.20)

where Bm = 1, Adm = [−d0, . . . ,−dn−1] and Am = [−α0, . . . ,−αn−1]. There-
fore, Bm, Adm , and Am are the nth rows of Bc, Ad, and Ac, respectively (see
Section 6.4). Relationship (9.20), which is an alternative formula to (9.19), has
the advantage that it is in a form that can be generalized to the multi-input
case studied below.

Example 9.8. Consider the matricesA =
[

1/2 1
1 2

]
, B =

[
1
1

]
of Example 9.7.

Determine F so that the eigenvalues of A+BF are −1± j, i.e., so that they
are the roots of the polynomial αd(s) = s2 + 2s+ 2.

To reduce (A,B) into the controller form, let

C = [B,AB] =
[

1 3/2
1 3

]
and C−1 =

2
3

[
3 −3/2

−1 1

]
,

from which P =
[
q
qA

]
= 1

3

[
−2 2

1 2

]
[see (6.38) in Section 6.4]. Then P−1 =

[
−1 1
1/2 1

]
and

Ac = PAP−1 =
[

0 1
0 5/2

]
, Bc =

[
0
1

]
.

Thus, Am = [0, 5/2] and Bm = 1. Now Ad =
[

0 1
−2 −2

]
and Adm = [−2, −2]

since the characteristic polynomial of Ad is s2 + 2s + 2 = αd(s). Applying
(9.20), we obtain that

Fc = B−1
m [Adm −Am] = [−2,−9/2]

and F = FcP = [−2,−9/2]
[
−2/3 2/3

1/3 2/3

]
= [−1/6,−13/3] assigns the eigen-

values of the closed-loop system at −1± j. This is the same result as the one
obtained by the direct method given in Example 9.7. If αd(s) = s2 +d1s+d0,
then Adm = [−d0,−d1], Fc = B−1

m [Adm −Am] = [−d0,−d1 − 5/2], and

F = FcP =
1
3
[2d0 − d1 −

5
2
, −2d0 − 2d1 − 5].

In general the larger the difference between the coefficients of αd(s) and α(s),
(Adm−Am), the larger the gains in F . This is as expected, since larger changes
require in general larger control action.
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Note that (9.20) can also be derived using (6.55) of Section 6.4. To see
this, write

AcF = Ac +BcFc = (Āc + B̄cAm) + (B̄cBm)Fc = Āc + B̄c(Am +BmFc).

Selecting Ad = Āc + B̄cAdm and requiring AcF = Ad implies

B̄c[Am +BmFc] = B̄cAdm ,

from which Am +BmFc = Adm , which in turn implies (9.20).
After Fc has been found, to determine F so that A + BF has desired

eigenvalues, one should use F = FcP given in (9.13). Note that P , which
reduces (A,B) to the controller form, has a specific form in this (m = 1) case
[see (6.38) of Section 6.4]. Combining these results, it is possible to derive a
formula for the eigenvalue assigning F in terms of the original pair (A,B)
and the coefficients of the desired polynomial αd(s). In particular, the 1 × n
matrix F that assigns the n eigenvalues of A + BF at the roots of αd(s) is
unique and is given by

F = −eTnC−1αd(A), (9.21)

where en = [0, . . . , 0, 1]T ∈ Rn and C = [B,AB, . . . , An−1B] is the controlla-
bility matrix. Relation (9.21) is known as Ackermann’s formula; for details,
see [1, p. 334].

Example 9.9. To the system of Example 9.8, we apply (9.21) and obtain

F = −eT2 C−1αd(A)

= −[0, 1]
[

2 −1
−2/3 2/3

]([
1/2 1
1 2

]2

+ 2
[

1/2 1
1 2

]
+ 2

[
1 0
0 1

])

= −[−2/3, 2/3]
[
17/4 9/2
9/2 11

]
= [−1/6,−13/3],

which is identical to the F found in Example 9.8.

Multi-Input Case (m > 1). We proceed in a way completely analogous to the
single-input case. Assume that Ac and Bc are in the controller form, (6.54).
Notice that AcF � Ac + BcFc is also in (controller) companion form with
an identical block structure as Ac for any Fc. In fact, the pair (AcF , Bc) has
the same controllability indices μi, i = 1, . . . ,m, as (Ac, Bc). This can be seen
directly, since

Ac +BcFc = (Āc + B̄cAm) + (B̄cBm)Fc = Āc + B̄c(Am +BmFc), (9.22)

where Āc and B̄c are defined in (6.55). We can now select an n×n matrix Ad
with desired characteristic polynomial
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det(sI −Ad) = αd(s) = sn + dn−1s
n−1 + · · · + d0, (9.23)

and in companion form, having the same block structure as AcF or Ac; that is,
Ad = Āc+B̄cAdm. Now if AcF = Ad, then in view of (9.22), B̄c(Am+BmFc) =
B̄cAdm. From this, it follows that

Fc = B−1
m [Adm −Am], (9.24)

where Bm, Adm, and Am are the m σjth rows of Bc, Ad, and Ac, respectively,
and σj =

∑j
i=1 μi, j = 1, . . . ,m. Note that this is a generalization of (9.20)

of the single-input case.
We shall now show how to select an n × n matrix Ad in multivariable

companion form to have the desired characteristic polynomial.
One choice is

Ad =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−d0 −d1 · · · −dn−1

⎤
⎥⎥⎥⎦ ,

the characteristic polynomial of which is αd(s). In this case the m×n matrix
Adm is given by

Adm =

⎡
⎢⎢⎢⎣

0 · · · 0 1 · · · 0 · · · 0
...

...
...

...
...

0 · · · 0 0 · · · 1 · · · 0
−d0 · · · −dn−1

⎤
⎥⎥⎥⎦ ,

where the ith row, i = 1, . . . ,m− 1, is zero everywhere except at the σi + 1
column location, where it is one.

Another choice is to select Ad = [Aij ], i, j = 1, . . . ,m, with Aij = 0 for
i �= j, i.e.,

Ad =

⎡
⎢⎢⎢⎣

A11 0 · · · 0
0 A22 · · · 0
...

...
. . .

...
0 0 · · · Amm

⎤
⎥⎥⎥⎦ ,

noting that det(sI −Ad) = det(sI −A11) . . . det(sI −Amm). Then

Aii =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

. . .
...

0 1
× · · · ×

⎤
⎥⎥⎥⎦ ,

where the last row is selected so that det(sI − Aii) has desired roots. The
disadvantage of this selection is that it may impose unnecessary restrictions
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on the number of real eigenvalues assigned. For example, if n = 4,m = 2 and
the dimensions of A11 and A22, which are equal to the controllability indices,
are d1 = 3 and d2 = 1, then two eigenvalues must be real.

There are of course other selections for Ad, and the reader is encouraged
to come up with additional choices. A point that should be quite clear by now
is that Fc (or F ) is not unique in the present case, since different Fc can be
derived for different Adm, all assigning the eigenvalues at the same desired
locations. In the single-input case, Fc is unique, as was shown. Therefore, the
following result has been established.

Lemma 9.10. Let (A,B) be controllable, and suppose that n desired real com-
plex conjugate eigenvalues for A+BF have been selected. The state feedback
matrix F that assigns all eigenvalues of A + BF to desired locations is not
unique in the multi-input case (m > 1). It is unique in the single-input case
m = 1. �

Example 9.11. Consider the controllable pair (A,B), where A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦

and B =

⎡
⎣

0 1
1 1
0 0

⎤
⎦. It was shown in Example 6.17, that this pair can be reduced

to its controller form

Ac = PAP−1 =

⎡
⎣

0 1 0
2 −1 0
1 0 0

⎤
⎦ , Bc = PB =

⎡
⎣

0 0
1 1
0 1

⎤
⎦ ,

where P =

⎡
⎣

0 0 1/2
0 1 −1/2
1 0 −1/2

⎤
⎦. Suppose we desire to assign the eigenvalues ofA+BF

to the locations {−2,−1 ± j}, i.e., at the roots of the polynomial αd(s) =
(s+ 2)(s2 + 2s+ 2) = s3 + 4s2 + 6s+ 4. A choice for Ad is

Ad1 =

⎡
⎣

0 1 0
0 0 1

−4 −6 −4

⎤
⎦ , leading to Adm1

=
[

0 0 1
−4 −6 −4

]
,

and

Fc1 = B−1
m [Adm1 −Am] =

[
1 1
0 1

]−1 [[ 0 0 1
−4 −6 −4

]
−
[

2 −1 0
1 0 0

]]

=
[

1 −1
0 1

] [
−2 1 1
−5 −6 −4

]
=
[

3 7 5
−5 −6 −4

]
.

Alternatively,
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Ad2 =

⎡
⎣

0 1 0
−2 −2 0

0 0 −2

⎤
⎦ , from which Adm2 =

[
−2 −2 0

0 0 −2

]

and

Fc2 = B−1
m [Adm2 −Am] =

[
1 −1
0 1

] [
−4 −1 0
−1 0 −2

]

=
[
−3 −1 2
−1 0 −2

]
.

Both F1 = Fc1P =
[

5 7 −9/2
−4 −6 5/2

]
and F2 = Fc2P =

[
2 −1 −2

−2 0 1/2

]
assign

the eigenvalues of A+BF to the locations {−2,−1± j}.
The reader should plot the states of the equation ẋ = (A + BF )x for

F = F1 and F = F2 when x(0) = [1, 1, 1]T and should comment on the
differences between the trajectories.

Relation (9.24) gives all feedback matrices, Fc (or F = FcP ), that assign
the n eigenvalues of Ac+BcFc (or A+BF ) to desired locations. The freedom
in selecting such Fc is expressed in terms of the different Ad, all in companion
form, with Ad = [Aij ] and Aij of dimensions μi × μj , which have the same
characteristic polynomial. Deciding which one of all the possible matrices
Ad to select, so that in addition to eigenvalue assignment other objectives
can be achieved, is not apparent. This flexibility in selecting F can also be
expressed in terms of other parameters, where both eigenvalue and eigenvector
assignment are discussed, as will now be shown.

3. Assigning Eigenvalues and Eigenvectors

Suppose now that F was selected so that A+BF has a desired eigenvalue sj
with corresponding eigenvector vj . Then [sjI − (A + BF )]vj = 0, which can
be written as

[sjI −A,B]
[

vj
−Fvj

]
= 0. (9.25)

To determine an F that assigns sj as a closed-loop eigenvalue, one could first
determine a basis for the right kernel (null space) of [sjI − A,B], i.e., one

could determine a basis
[

Mj

−Dj

]
such that

[sjI −A,B]
[

Mj

−Dj

]
= 0. (9.26)

Note that the dimension of this basis is (n + m) − rank[sjI − A,B] = (n +
m)− n = m, where rank[sjI −A,B] = n since the pair (A,B) is controllable.
Since it is a basis, there exists a nonzero m× 1 vector aj so that
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[
Mj

−Dj

]
aj =

[
vj

−Fvj

]
. (9.27)

Combining the relations −Djaj = −Fvj and Mjaj = vj , one obtains

FMjaj = Djaj . (9.28)

This is the relation that F must satisfy for sj to be a closed-loop eigenvalue.
The nonzero m×1 vector aj can be chosen arbitrarily. Note that Mjaj = vj is
the eigenvector corresponding to sj . Note also that aj represents the flexibility
one has in selecting the corresponding eigenvector, in addition to assigning an
eigenvalue. The n × 1 eigenvector vj cannot be arbitrarily assigned; rather,
the m×1 vector aj can be (almost) arbitrarily selected. These mild conditions
on aj are discussed below.

Theorem 9.12. The pair (sj , vj) is an (eigenvalue, eigenvector)-pair of A+
BF if and only if F satisfies (9.28) for some nonzero vector aj such that

vj = Mjaj with
[

Mj

−Dj

]
a basis of the null space of [sjI −A,B] as in (9.26).

Proof. Necessity has been shown. To prove sufficiency, postmultiply sjI−(A+
BF ) by Mjaj and use (9.28) to obtain (sjI − A)Mjaj − BDjaj = 0 in view
of (9.26). Thus,

[sjI − (A+BF )]Mjaj = 0,

which implies that sj is an eigenvalue of A + BF and Mjaj = vj is the
corresponding eigenvector. �

If relation (9.28) is written for n desired eigenvalues sj , where the aj
are selected so that the corresponding eigenvectors vj = Mjaj are linearly
independent, then

FV = W, (9.29)

where V � [M1a1, . . . ,Mnan] and W � [D1a1, . . . , Dnan] uniquely specify
F as the solution to these n linearly independent equations. When sj are
distinct, the n vectors Mjaj , j = 1, . . . , n, are linearly independent for almost
any nonzero aj , and so V has full rank. When sj have repeated values, it may
still be possible under certain conditions to select aj so that Mjaj are linearly
independent; however, in general, for multiple eigenvalues, (9.29) needs to be
modified, and the details for this can be found in the literature. Also note that
if sj+1 = s∗j , the complex conjugate of sj , then the corresponding eigenvector
vi+1 = v∗j = M∗

j a
∗
j .

Relation (9.29) clearly shows that the F that assigns all n closed-loop
eigenvalues is not unique (see also Lemma 9.10). All such F are parameterized
by the vectors aj that in turn characterize the corresponding eigenvectors. If
the corresponding eigenvectors have been decided upon—of course within the
set of possible eigenvectors vj = Mjaj—then F is uniquely specified. Note
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that in the single-input case, (9.28) becomes FMj = Dj, where vj = Mj . In
this case, F is unique.

Example 9.13. Consider the controllable pair (A,B) of Example 9.11 given
by

A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , B =

⎡
⎣

0 1
1 1
0 0

⎤
⎦ .

Again, it is desired to assign the eigenvalues of A + BF at −2,−1 ± j. Let
s1 = −2, s2 = −1 + j, and s3 = −1 − j. Then, in view of (9.26),

[
M1

−D1

]
=

⎡
⎢⎢⎢⎢⎣

1 1
−1 0

2 0
−1 −2

1 2

⎤
⎥⎥⎥⎥⎦
,

[
M2

−D2

]
=

⎡
⎢⎢⎢⎢⎣

1 1
j 0
2 0

2 + j −1 + j
1 1 − j

⎤
⎥⎥⎥⎥⎦
,

and
[

M3

−D3

]
=
[
M∗

2

−D∗
2

]
, the complex conjugate, since s3 = s∗2.

Each eigenvector vi = Miai, i = 1, 2, 3, is a linear combination of the
columns of Mi. Note that v3 = v∗2 . If we select the eigenvectors to be

V = [v1, v2, v3] =

⎡
⎣

1 1 1
0 j −j
0 2 2

⎤
⎦ ,

i.e., a1 =
[

0
1

]
, a2 =

[
1
0

]
, and a3 =

[
1
0

]
, then (9.29) implies that

F

⎡
⎣

1 1 1
0 j −j
0 2 2

⎤
⎦ =

[
2 −2 − j −2 + j

−2 −1 −1

]
,

from which we have

F =
1
4j

[
2 −2 − j −2 + j

−2 −1 −1

]⎡
⎣

4j 0 −2j
0 2 j
0 −2 j

⎤
⎦

=
[

2 −1 −2
−2 0 1/2

]
.

As it can be verified, this matrix F is such that A + BF has the desired
eigenvalues and eigenvectors.
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Remarks

At this point, several comments are in order.

1. In Example 9.13, if the eigenvectors were chosen to be the eigenvectors of
A + BF1 (instead of A + BF2) of Example 9.11, then from FV = W , it
follows that F would have been F1 (instead of F2).

2. When si = s∗i+1, then the corresponding eigenvectors are also complex
conjugates; i.e., vi = v∗i+1. In this case we obtain from (9.29) that

FV = F [. . . , viR + jviI , viR − jviI , . . . ]
= [. . . , wiR + jwiI , wiR − jwiI , . . . ] = W.

Although these calculations could be performed over the complex numbers
(as was done in the example), this is not necessary, since postmultiplica-
tion of FV = W by ⎡

⎢⎢⎣
I

1
2 −j 1

2
1
2 +j 1

2

I

⎤
⎥⎥⎦

shows that the above equation FV = W is equivalent to

F [. . . , viR, viI , . . . ] = [. . . , wiR, wiI , . . . ],

which involves only reals.

3. The bases
[

Mj

−Dj

]
, j = 1, . . . , n, in (9.26) can be determined in an alterna-

tive way and the calculations can be simplified if the controller form of the

pair (A,B) is known. In particular, note that [sI−A,B]
[
P−1S(s)
D(s)

]
= 0,

where the n×m matrix S(s) is given by S(s) = block diag[1, s, . . . , sμi−1]
and the μi, i = 1, . . . ,m, are the controllability indices of (A,B). Also, the
m×m matrix D(s) is given by D(s) = B−1

m [diag[sμ1 , · · · sμm ]−AmS(s)].
Note that S(s) and D(s) were defined in the Structure Theorem (con-
trollable version) in Section 6.4. It was shown there that (sI −Ac)S(s) =
BcD(s), from which it follows that (sI−A)P−1S(s) = BD(s), where P is a
similarity transformation matrix that reduces (A,B) to the controller form
(Ac = PAP−1, Bc = PB). Since P−1S(s) and D(s) are right coprime

polynomial matrices (see Section 7.5), we have rank
[
P−1S(sj)
D(sj)

]
= m for

any sj , and therefore,
[
P−1S(sj)
D(sj)

]
qualifies as a basis for the null space

of the matrix [sjI − A,B] (P = I when A,B are in controller form; i.e.,
A = Ac and B = Bc.)
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Example 9.13 continued. Continuing the above example, the controller
form of (A,B) was found in Example 9.11 using

P−1 =

⎡
⎣

1 0 1
1 1 0
2 0 0

⎤
⎦ .

Here S(s) =

⎡
⎣

1 0
s 0
0 1

⎤
⎦ , D(s) =

[
s2 + s− 1 −s

−1 s

]
,

and
[
M(s)

−D(s)

]
=
[
P−1S(s)
−D(s)

]
=

⎡
⎢⎢⎢⎢⎣

1 1
s+ 1 0

2 0
−(s2 + s− 1) s

1 −s

⎤
⎥⎥⎥⎥⎦
.

Then

[
M1

−D1

]
=
[
M(−2)

−D(−2)

]
=

⎡
⎢⎢⎢⎢⎣

1 1
−1 0

2 0
−1 −2

1 2

⎤
⎥⎥⎥⎥⎦
,

[
M2

−D2

]
=
[
M(−1 + j)

−D(−1 + j)

]
=

⎡
⎢⎢⎢⎢⎣

1 1
j 0
2 0

2 + j −1 + j
1 1 − j

⎤
⎥⎥⎥⎥⎦
,

and
[

M3

−D3

]
=
[
M∗

2

−D∗
2

]
, which are precisely the bases used above.

Remarks (cont.)

4. If in Example 9.13 the only requirement were that (s1, v1) = (−2, (1, 0, 0)T ),

then F (1, 0, 0)T = (2, −2)T ; i.e., any F =
[

2 f12 f13
2 f22 f23

]
will assign the

desired values to an eigenvalue of A+BF and its corresponding eigenvec-
tor.

5. All possible eigenvectors v1 and v2(v3 = v∗2) in Example 9.13 are given by

v1 = M1a1 =

⎡
⎣

1 1
−1 0

2 0

⎤
⎦
[
a11

a12

]
and v2 = M2a2 =

⎡
⎣

1 1
j 0
2 0

⎤
⎦
[
a21 + ja31

a22 + ja32

]
,



9.2 Linear State Feedback 369

where the aij are such that the set {v1, v2, v3} is linearly independent (i.e.,
V = [v1, v2, v3] is nonsingular) but otherwise arbitrary. Note that in this
case (sj distinct), almost any arbitrary choice for aij will satisfy the above
requirement; see [1, Appendix A.4].

9.2.3 The Linear Quadratic Regulator (LQR): Continuous-Time
Case

A linear state feedback control law that is optimal in some appropriate sense
can be determined as a solution to the so-called Linear Quadratic Regulator
(LQR) problem (also called the H2 optimal control problem). The LQR prob-
lem has been studied extensively, and the interested reader should consult
the extensive literature on optimal control for additional information on the
subject. In the following discussion, we give a brief outline of certain central
results of this topic to emphasize the fact that the state feedback gain F
can be determined to satisfy, in an optimal fashion, requirements other than
eigenvalue assignment, discussed above. The LQR problem has been studied
for the time-varying and time-invariant cases. Presently, we will concentrate
on the time-invariant optimal regulator problem.

Consider the time-invariant linear system given by

ẋ = Ax+Bu, z = Mx, (9.30)

where the vector z(t) represents the variables to be regulated—to be driven
to zero.

We wish to determine u(t), t ≥ 0, which minimizes the quadratic cost

J(u) =
∫ ∞

0

[zT (t)Qz(t) + uT (t)Ru(t)]dt (9.31)

for any initial state x(0). The weighting matrices Q,R are real, symmetric,
and positive definite; i.e., Q = QT , R = RT , and Q > 0, R > 0. This is the
most common version of the LQR problem. The term zTQz = xT (MTQM)x
is nonnegative, and it minimizes its integral forces z(t) to approach zero as t
goes to infinity. The matrix MTQM is in general positive semidefinite, which
allows some states to be treated as “do not care” states. The term uTRu with
R > 0 is always positive for u �= 0, and it minimizes its integral forces u(t) to
remain small. The relative “size” of Q and R enforces tradeoffs between the
size of the control action and the speed of response.

Assume that (A,B,Q1/2M) is controllable (-from-the-origin) and observ-
able. It turns out that the solution u∗(t) to this optimal control problem
can be expressed in state feedback form, which is independent of the initial
condition x(0). In particular, the optimal control u∗ is given by

u∗(t) = F ∗x(t) = −R−1BTP ∗
c x(t), (9.32)
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where P ∗
c denotes the symmetric positive definite solution of the algebraic

Riccati equation

ATPc + PcA− PcBR
−1BTPc +MTQM = 0. (9.33)

This equation may have more than one solution but only one that is pos-
itive definite (see Example 9.14). It can be shown that u∗(t) = F ∗x(t) is
a stabilizing feedback control law and that the minimum cost is given by
Jmin = J(u∗) = xT (0)P ∗

c x(0).
The assumptions that (A,B,Q1/2M) are controllable and observable may

be relaxed somewhat. If (A,B,Q1/2M) is stabilizable and detectable, then
the uncontrollable and unobservable eigenvalues, respectively, are stable, and
P ∗
c is the unique, symmetric, but now positive-semidefinite solution of the

algebraic Riccati equation. The matrix F ∗ is still a stabilizing gain, but it is
understood that the uncontrollable and unobservable (but stable) eigenvalues
will not be affected by F ∗.

Note that if the time interval of interest in the evaluation of the cost goes
from 0 to t1 <∞, instead of 0 to ∞, that is, if

J(u) =
∫ t1

0

[zT (t)Qz(t) + uT (t)Ru(t)]dt, (9.34)

then the optimal control law is time-varying and is given by

u∗(t) = −R−1BTP ∗(t)x(t), 0 ≤ t ≤ t1, (9.35)

where P ∗(t) is the unique, symmetric, and positive-semidefinite solution of
the Riccati equation, which is a matrix differential equation of the form

− d

dt
P (t) = ATP (t) + P (t)A− P (t)BR−1BTP (t) +MTQM, (9.36)

where P (t1) = 0. It is interesting to note that if (A,B,Q1/2M) is stabiliz-
able and detectable (or controllable and observable), then the solution to this
problem as t1 → ∞ approaches the steady-state value P ∗

c given by the alge-
braic Riccati equation; that is, when t1 → ∞ the optimal control policy is
the time-invariant control law (9.32), which is much easier to implement than
time-varying control policies.

Example 9.14. Consider the system described by the equations ẋ = Ax +

Bu, y = Cx, where A =
[

0 1
0 0

]
, B =

[
0
1

]
, C = [1, 0]. Then (A,B,C) is

controllable and observable and C(sI −A)−1B = 1/s2. We wish to determine
the optimal control u∗(t), t ≥ 0, which minimizes the performance index

J =
∫ ∞

0

(y2(t) + ρu2(t))dt,



9.2 Linear State Feedback 371

where ρ is positive and real. Then R = ρ > 0, z(t) = y(t), M = C, and
Q = 1 > 0. In the present case the algebraic Riccati equation (9.33) assumes
the form

ATPc + PcA−PcBR−1BTPc +MTQM

=
[

0 0
1 0

]
Pc + Pc

[
0 1
0 0

]
− 1
ρ
Pc

[
0
1

]
[0 1]Pc +

[
1
0

]
[1 0]

=
[

0 0
1 0

] [
p1 p2

p2 p3

]
+
[
p1 p2

p2 p3

] [
0 1
0 0

]
− 1
ρ

[
p1 p2

p2 p3

] [
0 0
0 1

] [
p1 p2

p2 p3

]

+
[

1 0
0 0

]
=
[

0 0
0 0

]
,

where Pc =
[
p1 p2

p2 p3

]
= PTc . This implies that

−1
ρ
p2
2 + 1 = 0, p1 −

1
ρ
p2p3 = 0, 2p2 −

1
ρ
p3
3 = 0.

Now Pc is positive definite if and only if p1 > 0 and p1p3 − p2
2 > 0. The

first equation above implies that p2 = ±√
ρ. However, the third equation,

which yields p2
3 = 2ρp2, implies that p2 = +

√
ρ. Then p2

3 = 2ρ
√
ρ and p3 =

±
√

2ρ
√
ρ. The second equation yields p1 = 1

ρp2p3 and implies that only p3 =
+
√

2ρ
√
ρ is acceptable, since we must have p1 > 0 for Pc to be positive

definite. Note that p1 > 0 and p3 − p2
2 = 2ρ− ρ = ρ > 0, which shows that

P ∗
c =

[√
2
√
ρ

√
ρ√

ρ
√

2ρ
√
ρ

]

is the positive definite solution of the algebraic Riccati equation. The optimal
control law is now given by

u∗(t) = F ∗x(t) = −R−1BTP ∗
c x(t) = −1

ρ
[0, 1]P ∗

c x(t).

The eigenvalues of the compensated system, i.e., the eigenvalues of A+BF ∗,
can now be determined for different ρ. Also, the corresponding u∗(t) and y(t)
for given x(0) can be plotted. As ρ increases, the control energy expended to
drive the output to zero is forced to decrease. The reader is asked to verify
this by plotting u∗(t) and y(t) for different values of ρ when x(0) = [1, 1]T .
Also, the reader is asked to plot the eigenvalues of A+BF ∗ as a function of
ρ and to comment on the results.

It should be pointed out that the locations of the closed-loop eigenvalues,
as the weights Q and R vary, have been studied extensively. Briefly, for the
single-input case and for Q = qI and R = r in (9.31), it can be shown that the
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optimal closed-loop eigenvalues are the stable zeros of 1 + (q/r)HT (−s)H(s),
where H(s) = M(sI − A)−1B. As q/r varies from zero (no state weighting)
to infinity (no control weighting), the optimal closed-loop eigenvalues move
from the stable poles of HT (−s)H(s) to the stable zeros of HT (−s)H(s).
Note that the stable poles of HT (−s)H(s) are the stable poles of H(s) and
the stable reflections of its unstable poles with respect to the imaginary axis
in the complex plane, whereas its stable zeros are the stable zeros of H(s) and
the stable reflections of its unstable zeros.

The solution of the LQR problem relies on solving the Riccati equation. A
number of numerically stable algorithms exist for solving the algebraic Riccati
equation. The reader is encouraged to consult the literature for computer
software packages that implement these methods. A rather straightforward
method for determining P ∗

c is to use the Hamiltonian matrix given by

H �
[

A −BR−1BT

−MTQM −AT
]
. (9.37)

Let [V T1 , V T2 ]T denote the n eigenvectors of H that correspond to the n stable
[Re (λ) < 0] eigenvalues. Note that of the 2n eigenvalues of H , n are stable
and are the mirror images reflected on the imaginary axis of its n unstable
eigenvalues. When (A,B,Q1/2M) is controllable and observable, then H has
no eigenvalues on the imaginary axis [Re(λ) = 0]. In this case the n stable
eigenvalues of H are in fact the closed-loop eigenvalues of the optimally con-
trolled system, and the solution to the algebraic Riccati equation is then given
by

P ∗
c = V2V

−1
1 . (9.38)

Note that in this case the matrix V1 consists of the n eigenvectors of A+BF ∗,
since for λ1 a stable eigenvalue of H , and v1 the corresponding (first) column
of V1, we have

[λ1I − (A+BF ∗)]v1 = [λ1I −A+BR−1BTV2V
−1
1 ]v1

=
[
[λ1I, 0]

[
V1

V2

]
− [A,−BR−1BT ]

[
V1

V2

]]
V −1

1 v1

=

[
0 × ··· ×
...

...
...

0 × ··· ×

]
V −1

1 v1 =

[
0 × ··· ×
...

...
...

0 ×···×

][ 1
0
...
0

]
=

[
0
...
0

]
,

where the fact that
[
V1

V2

]
are eigenvectors of H was used. It is worth reflecting

for a moment on the relationship between (9.38) and (9.29). The optimal
control F derived by (9.38) is in the class of F derived by (9.29).

9.2.4 Input–Output Relations

It is useful to derive the input–output relations for a closed-loop system
that is compensated by linear state feedback. Given the uncompensated or
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open-loop system ẋ = Ax+Bu, y = Cx+Du, with initial conditions x(0) = x0,
we have

ŷ(s) = C(sI −A)−1x0 +H(s)û(s), (9.39)

where the open-loop transfer function H(s) = C(sI − A)−1B + D. Under
the feedback control law u = Fx + r, the compensated closed-loop system is
described by the equations ẋ = (A+BF )x+Br, y = (C +DF )x+Dr, from
which we obtain

ŷ(s) = (C +DF )[sI − (A+BF )]−1x0 +HF (s)r̂(s), (9.40)

where the closed-loop transfer function HF (s) is given by

HF (s) = (C +DF )[sI − (A+BF )]−1B +D.

Alternative expressions for HF (s) can be derived rather easily by substituting
(9.4), namely,

û(s) = F [sI − (A+BF )]−1x0 + [I − F (sI −A)−1B]−1r̂(s),

into (9.39). This corresponds to working with an open-loop control law that
nominally produces the same results when applied to the system [see the
discussion on open- and closed-loop control that follows (9.4)]. Substituting,
we obtain

ŷ(s) = [C(sI −A)−1 +H(s)F [sI − (A+BF )]−1]x0

+H(s)[I − F (sI −A)−1B]−1r̂(s). (9.41)

Comparing with (9.40), we see that (C + DF )[sI − (A + BF )]−1 = C(sI −
A)−1 +H(s)F [sI − (A+BF )]−1, and that

HF (s) = (C +DF )[sI − (A+BF )]−1B +D

= [C(sI −A)−1B +D][I − F (sI −A)−1B]−1

= H(s)[I − F (sI −A)−1B]−1. (9.42)

The last relation points out the fact that ŷ(s) = HF (s)r̂(s) can be ob-
tained from ŷ(s) = H(s)û(s) using the open-loop control û(s) = [I − F (sI −
A)−1B]−1r̂(s).

Using Matrix Fractional Descriptions

Relation (9.42) can easily be derived in an alternative manner, using fractional
matrix descriptions for the transfer function, introduced in Section 7.5. In
particular, the transfer function H(s) of the open-loop system {A,B,C,D} is
given by

H(s) = N(s)D−1(s),
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where N(s) = CS(s) +DD(s), with S(s) and D(s) satisfying (sI −A)S(s) =
BD(s) (refer to the proof of the controllable version of the Structure Theo-
rem given in Section 6.4). Notice that it has been assumed, without loss of
generality, that the pair (A,B) is in controller form.

Similarly, the transfer function HF (s) of the compensated system {A +
BF,B,C +DF,D} is given by

HF (s) = NF (s)D−1
F (s),

where NF (s) = (C + DF )S(s) + DDF (s), with S(s) and DF (s) satisfying
[sI − (A + BF )]S(s) = BDF (s). This relation implies that (sI − A)S(s) =
B[DF (s) + FS(s)], from which we obtain DF (s) + FS(s) = D(s). Then
NF (s) = CS(s) +D[FS(s) +DF (s)] = CS(s) +DD(s) = N(s); that is,

HF (s) = N(s)D−1
F (s), (9.43)

where DF (s) = D(s) − FS(s).
Note that I − F (sI − A)−1B in (9.42) is the transfer function of the

system {A,B,−F, I} and can be expressed as DF (s)D−1(s), where DF (s) =
−FS(s) + ID(s). Let M(s) = (DF (s)D−1(s))−1. Then (9.43) assumes the
form

HF (s) = N(s)D−1
F (s) = (N(s)D−1(s))(D(s)D−1

F (s)) = H(s)M(s). (9.44)

Relation HF (s) = N(s)D−1
F (s) also shows that the zeros of H(s) [in

N(s); see also Subsection 7.5.4] are invariant under linear state feedback;
they can be changed only via cancellations with poles. Also observe that
M(s) = D(s)D−1

F (s) is the transfer function of the system {A+BF,B, F, I}.
This implies that HF (s) in (9.42) can also be written as

HF (s) = H(s)[F (sI − (A+BF ))−1B + I], (9.45)

which is a result that could also be shown directly using matrix identities.

Example 9.15. Consider the system ẋ = Ax+Bu, y = Cx, where

A = Ac =

⎡
⎣

0 1 0
2 −1 0
1 0 0

⎤
⎦ and B = Bc =

⎡
⎣

0 0
1 1
0 1

⎤
⎦

as in Example 9.11, and let C = Cc = [1, 1, 0]. HF (s) will now be deter-
mined. In view of the Structure Theorem developed in Section 6.4, the transfer
function is given by H(s) = N(s)D−1(s), where

N(s) = CcS(s) = [1, 1, 0]

⎡
⎣

1 0
s 0
0 1

⎤
⎦ = [s+ 1, 0]
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and

D(s) = B−1
m [Λ(s) −AmS(s)] =

[
1 1
0 1

]−1
⎡
⎣
[
s2 0
0 s

]
−
[

2 −1 0
1 0 0

]⎡
⎣

1 0
s 0
0 1

⎤
⎦
⎤
⎦

=
[

1 −1
0 1

] [
s2 + s− 2 0

−1 s

]
=
[
s2 + s− 1 −s

−1 s

]
.

Then

H(s) = N(s)D−1(s) = [s+ 1, 0]
[
s2 + s− 1 −s

−1 s

]−1

= [s+ 1, 0]
[
s s
1 s2 + s− 1

]
1

s3 + s2 − 2s

=
1

s(s2 + s− 2)
[s(s+ 1), s(s+ 1)] =

s+ 1
s2 + s− 2

[1, 1].

If Fc =
[

3 7 5
−5 −6 −4

]
(which is Fc1 of Example 9.11), then

DF (s) = D(s) − FcS(s) =
[
s2 + s− 1 −s

−1 s

]
−
[

3 7 5
−5 −6 −4

]⎡
⎣

1 0
s 0
0 1

⎤
⎦

=
[
s2 − 6s− 4 −s− 5

6s+ 4 s+ 4

]
.

Note that detDF (s) = s3 + 4s2 + 6s + 4 = (s + 2)(s2 + 2s + 2) with roots
−2,−1 ± j, as expected. Now

HF (s) = N(s)D−1
F (s) = [s+ 1, 0]

[
s+ 4 s+ 5

−6s− 4 s2 − 6s− 4

]
1

(s+ 2)(s2 + 2s+ 2)

=
s+ 1

(s+ 2)(s2 + 2s+ 2)
[s+ 4, s+ 5].

Note that the zeros of H(s) and HF (s) are identical, located at −1. Then
HF (s) = H(s)M(s), where

M(s) = D(s)D−1
F (s) =

[
s2 + s− 1 −s

−1 s

] [
s+ 4 s+ 5

−6s− 4 s2 − 6s− 4

]
1

s3+4s2+6s+4

=
[
s3 + 11s2 + 7s− 4 12s2 + 8s− 5
−6s2 − 5s− 4 s3 − 6s2 − 5s− 5

]
1

s3+4s2+6s+4

= [I − Fc(sI −Ac)−1Bc]−1.

Note that the open-loop uncompensated system is unobservable, with 0 being
the unobservable eigenvalue, whereas the closed-loop system is observable;
i.e., the control law changed the observability of the system.
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9.2.5 Discrete-Time Systems

Linear state feedback control for discrete-time systems is defined in a way that
is analogous to the continuous-time case. The definitions are included here for
purposes of completeness.

We consider a linear, time-invariant, discrete-time system described by
equations of the form

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k), (9.46)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and k ≥ k0, with
k ≥ k0 = 0 being typical.

Definition 9.16. The linear (discrete-time, time-invariant) state feedback
control law is defined by

u(k) = Fx(k) + r(k), (9.47)

where F ∈ Rm×n is a gain matrix and r(k) ∈ Rm is the external input vector.
�

The compensated closed-loop system is now given by

x(k + 1) = (A+BF )x(k) +Br(k),
y(k) = (C +DF )x(k) +Dr(k). (9.48)

In view of Section 3.5, the system x(k + 1) = (A+BF )x(k) is asymptot-
ically stable if and only if the eigenvalues of A + BF satisfy |λi| < 1, i.e., if
they lie strictly within the unit disk of the complex plane. The stabilization
problem for the time-invariant case therefore becomes a problem of shifting
the eigenvalues of A +BF , which is precisely the problem studied before for
the continuous-time case. Theorem 9.2 and Lemmas 9.3 and 9.6 apply without
change, and the methods developed before for eigenvalue assignment can be
used here as well. The only difference in this case is the location of the desired
eigenvalues: They are assigned to be within the unit circle to achieve stability.
We will not repeat here the details for these results.

Input–output relations for discrete-time systems, which are in the spirit of
the results developed in the preceding subsection for continuous-time systems,
can be derived in a similar fashion, this time making use of the z-transform
of x(k + 1) = Ax(k) +Bu(k), x(0) = x0 to obtain

x̂(z) = z(zI −A)−1x0 + (zI −A)−1Bû(z). (9.49)

[Compare expression (9.49) with x̂(s) = (sI −A)−1x0 + (sI −A)−1Bû(s).]
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9.2.6 The Linear Quadratic Regulator (LQR): Discrete-Time Case

The formulation of the LQR problem in the discrete-time case is analogous to
the continuous-time LQR problem. Consider the time-invariant linear system

x(k + 1) = Ax(k) + Bu(k), z(k) = Mx(k), (9.50)

where the vector z(t) represents the variables to be regulated. The LQR prob-
lem is to determine a control sequence {u∗(k)}, k ≥ 0, which minimizes the
cost function

J(u) =
∞∑
k=0

[zT (k)Qz(k) + uT (k)Ru(k)] (9.51)

for any initial state x(0), where the weighting matrices Q and R are real
symmetric and positive definite.

Assume that (A,B,Q1/2M) is reachable and observable. Then the solution
to the LQR problem is given by the linear state feedback control law

u∗(k) = F ∗x(k) = −[R+BTP ∗
c B]−1BTP ∗

c Ax(k), (9.52)

where P ∗
c is the unique, symmetric, and positive definite solution of the

(discrete-time) algebraic Riccati equation, given by

Pc = AT [Pc − PcB[R +BTPcB]−1BTPc]A+MTQM. (9.53)

The minimum value of J is J(u∗) = Jmin = xT (0)P ∗
c x(0).

As in the continuous-time case, it can be shown that the solution P ∗
c can

be determined from the eigenvectors of the Hamiltonian matrix , which in this
case is

H =
[
A+BR−1BTA−TMTQM −BR−1BTA−T

−A−TMTQM A−T

]
, (9.54)

where it is assumed that A−1 exists. Variations of the above method that relax
this assumption exist and can be found in the literature. Let [V T1 , V

T
2 ]T be n

eigenvectors corresponding to the n stable (|λ| < 1) eigenvalues of H . Note
that out of the 2n eigenvalues of H , n of them are stable (i.e., within the unit
circle) and are the reciprocals of the remaining n unstable eigenvalues (located
outside the unit circle). When (A,B,Q1/2M) is controllable (-from-the-origin)
and observable, then H has no eigenvalues on the unit circle (|λ| = 1). In fact
the n stable eigenvalues of H are in this case the closed-loop eigenvalues of
the optimally controlled system.

The solution to the algebraic Riccati equation is given by

P ∗
c = V2V

−1
1 . (9.55)

As in the continuous-time case, we note that V1 consists of the n eigenvectors
of A+BF ∗.
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Example 9.17. We consider the system x(k + 1) = Ax(k) + Bu(k), y(k) =

Cx(k), where A =
[

0 1
0 0

]
, B =

[
0
1

]
, C = [1, 0] and we wish to determine

the optimal control sequence {u∗(k)}, k ≥ 0, that minimizes the performance
index

J(u) =
∞∑
k=0

(y2(k) + ρu2(k)),

where ρ > 0. In (9.51), z(k) = y(k), M = C, Q = 1, and R = ρ. The reader is
asked to determine u∗(k) given in (9.52) by solving the discrete-time algebraic
Riccati equation (9.53) in a manner analogous to the solution in Example 9.14
(for the continuous-time algebraic Riccati equation).

9.3 Linear State Observers

Since the states of a system contain a great deal of useful information, there are
many applications where knowledge of the state vector over some time interval
is desirable. It may be possible to measure states of a system by appropriately
positioned sensors. This was in fact assumed in the previous section, where
the state values were multiplied by appropriate gains and then fed back to
the system in the state feedback control law. Frequently, however, it may be
either impossible or simply impractical to obtain measurements for all states.
In particular, some states may not be available for measurement at all (as in
the case, for example, with temperatures and pressures in inaccessible parts of
a jet engine). There are also cases where it may be impractical to obtain state
measurements from otherwise available states because of economic reasons
(e.g., some sensors may be too expensive) or because of technical reasons
(e.g., the environment may be too noisy for any useful measurements). Thus,
there is a need to be able to estimate the values of the state of a system from
available measurements, typically outputs and inputs (see Figure 9.2). Given
the system parameters A, B, C, D and the values of the inputs and outputs
over a time interval, it is possible to estimate the state when the system is
observable. This problem, a problem in state estimation, is discussed in this
section. In particular, we will address the so-called full-order and reduced-
order asymptotic estimators, which are also called full-order and reduced-order
observers.

9.3.1 Full-Order Observers: Continuous-Time Systems

We consider systems described by equations of the form

ẋ = Ax+Bu, y = Cx+Du, (9.56)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m.
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State Observer

{ A, B, C, D}
u y

x̂

Figure 9.2. Linear state observer configuration

Full-State Observers: The Identity Observer

An estimator of the full state x(t) can be constructed in the following manner.
We consider the system

˙̂x = Ax̂+Bu+K(y − ŷ), (9.57)

where ŷ � Cx̂+Du. Note that (9.57) can be written as

˙̂x = (A−KC)x̂+ [B −KD,K]
[
u
y

]
, (9.58)

which clearly reveals the role of u and y (see Figure 9.3). The error between the
actual state x(t) and the estimated state x̂(t), e(t) = x(t) − x̂(t), is governed
by the differential equation

ė(t) = ẋ(t) − ˙̂x(t) = [Ax+Bu] − [Ax̂+Bu+KC(x− x̂)]

or
ė(t) = [A−KC]e(t). (9.59)

Solving (9.59), we obtain

e(t) = exp[(A−KC)t]e(0). (9.60)

Now if the eigenvalues of A − KC are in the left half-plane, then e(t) → 0
as t → ∞, independently of the initial condition e(0) = x(0) − x̂(0). This
asymptotic state estimator is known as the Luenberger observer .

Lemma 9.18. There exists K ∈ Rn×p so that the eigenvalues of A−KC are
assigned to arbitrary real or complex conjugate locations if and only if (A,C)
is observable.

Proof. The eigenvalues of (A−KC)T = AT − CTKT are arbitarily assigned
via KT if and only if the pair (AT , CT ) is controllable (see Theorem 9.2 of the
previous section) or, equivalently, if and only if the pair (A,C) is observable.

�
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u

+

y

B – KD K

+

A – KC

n

+

+

x(t)^
x̂∫

Σ

Σ

Figure 9.3. Full-state identity observer configuration

Discussion

If (A,C) is not observable, but the unobservable eigenvalues are stable, i.e.,
(A,C) is detectable, then the error e(t) will still tend to zero asymptotically.
However, the unobservable eigenvalues will appear in this case as eigenvalues
of A−KC, and they may affect the speed of the response of the estimator in
an undesirable way. For example, if the unobservable eigenvalues are stable
but are located close to the imaginary axis, then their corresponding modes
will tend to dominate the response, most likely resulting in a state estimator
that converges too slowly to the actual value of the state.

Where should the eigenvalues of A−KC be located? This problem is dual
to the problem of closed-loop eigenvalue placement via state feedback and
is equally difficult to resolve. On the one hand, the observer must estimate
the state sufficiently fast, which implies that the eigenvalues should be placed
sufficiently far from the imaginary axis so that the error e(t) will tend to zero
sufficiently fast. On the other hand, this requirement may result in a high
gain K, which tends to amplify existing noise, thus reducing the accuracy of
the estimate. Note that in this case, noise is the only limiting factor of how
fast an estimator may be, since the gain K is realized by an algorithm and
is typically implemented by means of a digital computer. Therefore, gains of
any size can easily be introduced. Compare this situation with the limiting
factors in the control case, which is imposed by the magnitude of the required
control action (and the limits of the corresponding actuator). Typically, the
faster the compensated system, the larger the required control magnitude.

One may of course balance the tradeoffs between speed of response of the
estimator and effects of noise by formulating an optimal estimation problem
to derive the best K. To this end, one commonly assumes certain probabilistic
properties for the process. Typically, the measurement noise and the initial
condition of the plant are assumed to be Gaussian random variables, and one
tries to minimize a quadratic performance index. This problem is typically
referred to as the Linear Quadratic Gaussian (LQG) estimation problem.
This optimal estimation or filtering problem can be seen to be the dual of
the quadratic optimal control problem of the previous section, a fact that will
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be exploited in deriving its solution. Note that the well-known Kalman filter
is such an estimator. In the following discussion, we shall briefly discuss the
optimal estimation problem. First, however, we shall address the following
related issues.

1. Is it possible to take K = 0 in the estimator (9.57)? Such a choice would
eliminate the information contained in the term y− ŷ from the estimator,
which would now be of the form

˙̂x = Ax̂+Bu. (9.61)

In this case, the estimator would operate without receiving any informa-
tion on how accurate the estimate x̂ actually is. The error e(t) = x(t)−x̂(t)
would go to zero only when A is stable. There is no mechanism to af-
fect the speed by which x̂(t) would approach x(t) in this case, and this
is undesirable. One could perhaps determine x(0), using the methods in
Section 5.4, assuming that the system is observable. Then, by setting
x̂(0) = x(0), presumably x̂(t) = x(t) for all t ≥ 0, in view of (9.61). This
of course is not practical for several reasons. First, the calculated x̂(0) is
never exactly equal to the actual x(0), which implies that e(0) would be
nonzero. Therefore, the method would rely again on A being stable, as
before, with the advantage here that e(0) would be small in some sense
and so e(t) → 0 faster. Second, this scheme assumes that sufficient data
have been collected in advance to determine (an approximation to) x(0)
and to initialize the estimator, which may not be possible. Third, it is as-
sumed that this initialization process is repeated whenever the estimator
is restarted, which may be impractical.

2. If derivatives of the inputs and outputs are available, then the state x(t)
may be determined directly (see Exercise 5.12 in Chapter 5). The esti-
mate x̂(t) is in this case produced instantaneously from the values of the
inputs and outputs and their derivatives. Under these circumstances, x̂(t)
is the output of a static state estimator, as opposed to the above dynamic
state estimator, which leads to a state estimate x̂(t) that only approaches
the actual state x(t) asymptotically as t → ∞ [e(t) = x(t) − x̂(t) → 0
as t → ∞]. Unfortunately, this approach is in general not viable since
noise present in the measurements of u(t) and y(t) makes accurate cal-
culations of the derivatives problematic, and since errors in u(t), y(t) and
their derivatives are not smoothed by the algebraic equations of the static
estimator (as opposed to the smoothing effects introduced by integration
in dynamic systems). It follows that in this case the state estimates may
be erroneous.

Example 9.19. Consider the observable pair

A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , C = [1, 0, 0].
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We wish to assign the eigenvalues of A−KC in a manner that enables us to de-
sign a full-order/full-state asymptotic observer. Let the desired characteristic
polynomial be αd(s) = s3 + d2s

2 + d1s+ d0, and consider

AD = AT =

⎡
⎣

0 0 0
1 0 2
0 1 −1

⎤
⎦ and BD = CT =

⎡
⎣

1
0
0

⎤
⎦ .

To reduce (AD, BD) to controller form, we consider

C = [BD, ADBD, A2
DBD] =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ = C−1.

Then P =

⎡
⎣

q
qAD
qA2

D

⎤
⎦ =

⎡
⎣

0 0 1
0 1 −1
1 −1 3

⎤
⎦ and P−1 =

⎡
⎣
−2 1 1

1 1 0
1 0 0

⎤
⎦,

from which we obtain

ADc = PADP
−1 =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ and BDc = PBD =

⎡
⎣

0
0
1

⎤
⎦ .

The state feedback is then given by FDc = B−1
m [Adm − Am] = [−do,−d1 −

2,−d2 + 1] and FD = FDcP = [−d2 + 1, d2 − d1 − 3, d1 − d0 − 3d2 + 5]. Then

K = −FTD = [d2 − 1, d1 − d2 + 3, d0 − d1 + 3d2 − 5]T

assigns the eigenvalues of A−KC at the roots of αd(s) = s3 +d2s
2 +d1s+d0.

Note that the same result could also have been derived using the direct method
for eigenvalue assignment, using |sI − (A− (k0, k1, k2)TC)| = αd(s). Also, the
result could have been derived using the observable version of Ackermann’s
formula, namely,

K = −FTD = αd(A)O−1en,

where FD = −eTnC−1
D αd(AD) from (9.21). Note that the given system has

eigenvalues at 0, 1,−2 and is therefore unstable. The observer derived in this
case will be used in the next section (Example 9.25) in combination with state
feedback to stabilize the system ẋ = Ax +Bu, y = Cx, where

A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , B =

⎡
⎣

0 1
1 1
0 0

⎤
⎦ , and C = [1, 0, 0]

(see Example 9.11), using only output measurements.
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Example 9.20. Consider the system ẋ = Ax, y = Cx, where A =
[

0 −2
1 −2

]

and C = [0, 1], and where (A,C) is in observer form. It is easy to show that
K = [d0 − 2, d1 − 2]T assigns the eigenvalues of A − KC at the roots of
s2 + d1s+ d0. To verify this, note that

det(sI − (A−KC)) = det
([

s 0
0 s

]
−
[

0 −d0

1 −d1

])
= s2 + d1 + d0.

The error e(t) = x(t)− x̂(t) is governed by the equation ė(t) = (A−KC)e(t)
given in (9.59). Noting that the eigenvalues of A are −1 ± j, select different
sets of eigenvalues for the observer and plot the states x(t), x̂(t) and the error
e(t) for x(0) = [2, 2]T and x̂(0) = [0, 0]T . The further away the eigenvalues of
the observer are selected from the imaginary axis (with negative real parts),
the larger the gains in K will become and the faster x̂(t) → x(t).

Partial or Linear Functional State Observers

The state estimator studied above is a full-state estimator or observer; i.e.,
x̂(t) is an estimate of the full-state vector x(t). There are cases where only
part of the state vector, or a linear combination of the states, is of interest. In
control problems, for example, F x̂(t) is used and fed back, instead of Fx(t),
where F is an m×n state feedback gain matrix. An interesting question that
arises at this point is as follows: Is it possible to estimate directly a linear
combination of the state, say, Tx, where T ∈ Rñ×n, ñ ≤ n? For details of this
problem see materials starting with [1, p. 354].

9.3.2 Reduced-Order Observers: Continuous-Time Systems

Suppose that p states, out of the n state, can be measured directly. This
information can then be used to reduce the order of the full-state estimator
from n to n− p. Similar results are true for the estimator of a linear function
of the state, but this problem will not be addressed here. To determine a
full-state estimator of order n− p, first consider the case when C = [Ip, 0]. In
particular, let

[
ẋ1

ẋ2

]
=
[
A11 A12

A21 A22

] [
x1

x2

]
+
[
B1

B2

]
u

z = [Ip, 0]
[
x1

x2

]
, (9.62)

where z = x1 represents the p measured states. Therefore, only x2(t) ∈
R(n−p)×1 is to be estimated. The system whose state is to be estimated is
now given by
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ẋ2 = A22x2 + [A21, B2]
[
x1

u

]

= A22x2 + B̃ũ, (9.63)

where B̃ � [A21, B2] and ũ �
[
x1

u

]
=
[
z
u

]
is a known signal. Also,

ỹ � ẋ1 −A11x1 −B1u = A12x2, (9.64)

where ỹ is known. An estimator for x2 can now be constructed. In particular,
in view of (9.57), we have that the system

˙̂x2 = A22x̂2 + B̃ũ+ K̃(ỹ −A12x̂2)

= (A22 − K̃A12)x̂2 + (A21z +B2u) + K̃(ż −A11z −B1u) (9.65)

is an asymptotic state estimator for x2. Note that the error e satisfies the
equation

ė = ẋ2 − ˙̂x2 = (A22 − K̃A12)e, (9.66)

and if (A22, A12) is observable, then the eigenvalues of A22 − K̃A12 can be
arbitrarily assigned making use of K̃. It can be shown that if the pair (A =
[Aij ], C = [Ip, 0]) is observable, then (A22, A12) is also observable (prove this
using the eigenvalue observability test of Section 6.3). System (9.65) is an
estimator of order n − p, and therefore, the estimate of the entire state x is[
z
x̂2

]
. To avoid using ż = ẋ1 in ỹ given by (9.64), one could use x̂2 = w+ K̃z

and obtain from (9.65) an estimator in terms of w, z, and u. In particular,

ẇ = (A22−K̃A12)w+[(A22−K̃A12)K̃+A21−K̃A11]z+[B2−K̃B1]u. (9.67)

Then w is an estimate of x̂2 − K̃z and of course w+ K̃z is an estimate for x̂2.
In the above derivation, it was assumed for simplicity that a part of the

state x1, is measured directly; i.e., C = [Ip, 0]. One could also derive a reduced-
order estimator for the system

ẋ = Ax+Bu, y = Cx.

To see this, let rankC = p and define a similarity transformation matrix

P =
[
C

Ĉ

]
, where Ĉ is such that P is nonsingular. Then

˙̄x = Āx̄+ B̄u, y = C̄x̄ = [Ip, 0]x̄, (9.68)

where x̄ = Px, Ā = PAP−1, B̄ = PB, and C̄ = CP−1 = [Ip, 0]. The trans-
formed system is now in an appropriate form for an estimator of order n− p
to be derived, using the procedure discussed above. The estimate of x̄ is



9.3 Linear State Observers 385

[
y
ˆ̄x2

]
, and the estimate of the original state x is P−1

[
y
ˆ̄x2

]
. In particular,

x̄2 = w + K̃y, where w satisfies (9.67) with z = y, [Aij ] = Ā = PAP−1, and[
B1

B2

]
= B̄ = PB. The interested reader should verify this result.

Example 9.21. Consider the system ẋ = Ax + Bu, y = Cx, where A =[
0 −2
1 −2

]
, B =

[
0
1

]
, and C = [0, 1]. We wish to design a reduced n − p =

n− 1 = 2 − 1 = 1, a first-order asymptotic state estimator.

The similarity transformation matrix P =
[
C

Ĉ

]
=
[

0 1
1 0

]
leads to (9.68),

where x̄ = Px and Ā = PAP−1 =
[

0 1
1 0

] [
0 −2
1 −2

] [
0 1
1 0

]
=
[
−2 1
−2 0

]
, B̄ =

PB =
[

1
0

]
, and C̄ = CP−1 = [1, 0]. The system {Ā, B̄, C̄} is now in an

appropriate form for use of (9.67). We have Ā =
[
A11 A12

A21 A22

]
=
[
−2 1
−2 0

]
,

B̄ =
[
B1

B2

]
=
[

1
0

]
, and (9.67) assumes the form

ẇ = (−K̃)w + [−K̃2 + (−2) − K̃(−2)]y + (−K̃)u,

which is a system observer of order 1.
For K̃ = −10 we have ẇ = 10w − 122y + 10u, and w + K̃y = w − 10y is

an estimate for ˆ̄x2. Therefore,
[

y
w − 10y

]
is an estimate of x̄, and

P−1

[
y

w − 10y

]
=
[

0 1
1 0

] [
y

w − 10y

]
=
[
w − 10y

y

]

is an estimate of x(t) for the original system.

9.3.3 Optimal State Estimation: Continuous-Time Systems

The gain K in the estimator (9.57) above can be determined so that it is
optimal in an appropriate sense. This is discussed briefly below. The interested
reader should consult the extensive literature on filtering theory for additional
information, in particular, the literature on the Kalman–Bucy filter.

In addressing optimal state estimation, noise with certain statistical prop-
erties is introduced in the model and an appropriate cost functional is set up
that is then minimized. In the following discussion, we shall introduce some of
the key equations of the Kalman–Bucy filter and we will point out the dual-
ity between the optimal control and estimation problems. We concentrate on
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the time-invariant case, although, as in the LQR control problem discussed
earlier, more general results for the time-varying case do exist.

We consider the linear time-invariant system

ẋ = Ax+Bu + Γw, y = Cx+ v, (9.69)

where w and v represent process and measurement noise terms. Both w and v
are assumed to be white, zero-mean Gaussian stochastic processes; i.e., they
are uncorrelated in time and have expected values E[w] = 0 and E[v] = 0.
Let

E[wwT ] = W, E[vvT ] = V (9.70)

denote their covariances, where W and V are real, symmetric, and positive
definite matrices, i.e., W = WT ,W > 0, and V = V T , V > 0. Assume that
the noise processes w and v are independent; i.e., E[wvT ] = 0. Also assume
that the initial state x(0) of the plant is a Gaussian random variable of known
mean, E[x(0)] = x0, and known covariance, E[(x(0)−x0)(x(0)−x0)T ] = Pe0.
Assume also that x(0) is independent of w and v. Note that all these are
typical assumptions made in practice.

Consider now the estimator (9.57), namely,

˙̂x = Ax̂+Bu +K(y − Cx̂) = (A−KC)x̂+Bu+Ky, (9.71)

and let (A,ΓW 1/2, C) be controllable (-from-the-origin) and observable. It
turns out that the error covariance E[(x− x̂)(x− x̂)T ] is minimized when the
filter gain is given by

K∗ = P ∗
e C

TV −1, (9.72)

where P ∗
e denotes the symmetric, positive definite solution of the quadratic

(dual) algebraic Riccati equation

PeA
T +APe − PeC

TV −1CPe + ΓWΓ T = 0. (9.73)

Note that P ∗
e , which is in fact the minimum error covariance, is the posi-

tive semidefinite solution of the above Riccati equation if (A,ΓW 1/2, C) is
stabilizable and detectable. The optimal estimator is asymptotically stable.

The above algebraic Riccati equation is the dual to the Riccati equation
given in (9.33) for optimal control and can be obtained from (9.33) making
use of the substitutions

A→ AT , B → CT ,M → Γ T and R → V,Q→W. (9.74)

Clearly, methods that are analogous to the ones developed by solving the
control Riccati equation (9.33) may be applied to solve the Riccati equation
(9.71) in filtering. These methods are not discussed here.
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Example 9.22. Consider the system ẋ = Ax, y = Cx, whereA =
[

0 0
1 0

]
, C =

[0, 1], and let Γ =
[

1
0

]
, V = ρ > 0, W = 1. We wish to derive the optimal

filter gain K∗ = P ∗
e C

TV −1 given in (9.72). In this case, the Riccati equa-
tion (9.73) is precisely the Riccati equation of the control problem given in
Example 9.14. The solution of this equation was determined to be

P ∗
e =

[√
2
√
ρ

√
ρ√

ρ
√

2ρ
√
ρ

]
.

We note that this was expected, since our example was chosen to satisfy (9.74).
Therefore,

K∗ = P ∗
e

[
0
1

]
1
ρ

=
[ √

ρ√
2ρ

√
ρ

]
1
ρ
.

9.3.4 Full-Order Observers: Discrete-Time Systems

We consider systems described by equations of the form

x(k + 1) = Ax(k) +Bu(k), y = Cx(k) +Du(k), (9.75)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×m, and D ∈ Rp×m.
The construction of state estimators for discrete-time systems is mostly

analogous to the continuous-time case, and the results that we established
above for such systems are valid here as well, subject to obvious adjustments
and modifications. There are, however, some notable differences. For exam-
ple, in discrete-time systems, it is possible to construct a state estimator that
converges to the true value of the state in finite time, instead of infinite time
as in the case of asymptotic state estimators. This is the estimator known as
the deadbeat observer. Furthermore, in discrete-time systems it is possible to
talk about current state estimators, in addition to prediction state estimators.
In what follows, a brief description of the results that are analogous to the
continuous-time case is given. Current estimators and deadbeat observers that
are unique to the discrete-time case are discussed at greater length.

Full-State Observers: The Identity Observer

As in the continuous-time case, following (9.57) we consider systems described
by equations of the form

x̂(k + 1) = Ax̂(k) +Bu(k) +K[y(k) − ŷ(k)], (9.76)

where ŷ(k) � Cx̂(k) +Dx(k). This can also be written as
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x̂(k + 1) = (A−KC)x̂(k) + [B −KD,K]
[
u(k)
y(k)

]
. (9.77)

It can be shown that the error e(k) � x(k)−x̂(k) obeys the equation e(k+1) =
(A − KC)e(k). Therefore, if the eigenvalues of A − KC are inside the open
unit disk of the complex plane, then e(k) → 0 as k → ∞. There exists K so
that the eigenvalues of A−KC can be arbitrarily assigned if and only if the
pair (A,C) is observable (see Lemma 9.18).

The discussion following Lemma 9.18 for the case when (A,C) is not com-
pletely observable, although detectable, is still valid. Also, the remarks on
appropriate locations for the eigenvalues of A−KC and noise being the lim-
iting factor in state estimators are also valid in the present case. Note that
the latter point should seriously be considered when deciding whether to use
the deadbeat observer described next.

To balance the tradeoffs between speed of the estimator response and noise
amplification, one may formulate an optimal estimation problem as was done
in the continuous-time case, the Linear Quadratic Gaussian (LQG) design
being a common formulation. The Kalman filter (discrete-time case) that is
based on the “current estimator” described below is such a quadratic estima-
tor. The LQG optimal estimation problem can be seen to be the dual of the
quadratic optimal control problem discussed in the previous section. As in
the continuous-time case, optimal estimation in the discrete-time case will be
discussed only briefly as follows. First, however, several other related issues
are addressed.

Deadbeat Observer

If the pair (A,C) is observable, it is possible to select K so that all the
eigenvalues of A − KC are at the origin. In this case e(k) = x(k) − x̂(k) =
(A − KC)ke(0) = 0, for some k ≤ n; i.e., the error will be identically zero
within at most n steps. The minimum value of k for which (A − KC)k = 0
depends on the size of the largest block on the diagonal of the Jordan canonical
form of A−KC. (Refer to the discussion on the modes of discrete-time systems
in Subsection 3.5.5.)

Example 9.23. Consider the system x(k+1) = Ax(k), y(k) = Cx(k), where

A =

⎡
⎣

0 2 1
1 −1 0
0 0 0

⎤
⎦ , C =

[
0 1 0
0 1 1

]

is in observer form. We wish to design a deadbeat observer. It is rather easy
to show (compare with Example 9.11) that

K =

⎡
⎣ATdm −

⎡
⎣

2 1
−1 0

0 0

⎤
⎦
⎤
⎦
[
−1 0

1 −1

]
,
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which was determined by taking the dual AD = AT , BD = CT in controller
form, using FD = B−1

m [Adm −Am] and K = −FTD .
The matrix ATdm

consists of the second and third columns of a matrix

Ad =

⎡
⎣

0 × ×
1 × ×
0 × ×

⎤
⎦ in observer (companion) form with all its eigenvalues at 0.

For Ad1 =

⎡
⎣

0 0 0
1 0 0
0 1 0

⎤
⎦, we have

K1 =

⎡
⎣
⎡
⎣

0 0
0 0
1 0

⎤
⎦−

⎡
⎣

2 1
−1 0

0 0

⎤
⎦
⎤
⎦
[
−1 0

1 −1

]
=

⎡
⎣

1 1
−1 0
−1 0

⎤
⎦ ,

and for Ad2 =

⎡
⎣

0 0 0
1 0 0
0 0 0

⎤
⎦, we obtain

K2 =

⎡
⎣
⎡
⎣

0 0
0 0
0 0

⎤
⎦−

⎡
⎣

2 1
−1 0

0 0

⎤
⎦
⎤
⎦
[
−1 0

1 −1

]
=

⎡
⎣

1 1
−1 0

0 0

⎤
⎦ .

Note that A − K1C = Ad1 , A2
d1

=

⎡
⎣

0 0 0
0 0 0
1 0 0

⎤
⎦, and A3

d1
= 0, and that A −

K2C = Ad2 and A2
d2

= 0. Therefore, for the observer gain K1, the error
e(k) in the deadbeat observer will become zero in n = 3 steps, since e(3) =
(A−K1C)3e(0) = 0. For the observer gain K2, the error e(k) in the deadbeat
observer will become zero in 2 < n steps, since e(2) = (A −K2C)2e(0) = 0.
The reader should determine the Jordan canonical forms of Ad1 and Ad2 and
verify that the dimension of the largest block on the diagonal is 3 and 2,
respectively.

The comments in the discussion following Lemma 9.18 on taking K = 0
are valid in the discrete-time case as well. Also, the approach of determining
the state instantaneously in the continuous-time case, using the derivatives of
the input and output, corresponds in the discrete-time case to determining the
state from current and future input and output values (see Exercise 5.12 in
Chapter 5). This approach was in fact used to determine x(0) when studying
observability in Section 5.4. The disadvantage of this method is that it requires
future measurements to calculate the current state. This issue of using future
or past measurements to determine the current state is elaborated upon next.

Current Estimator

The estimator (9.76) is called a prediction estimator . The state estimate x̂(k)
is based on measurements up to and including y(k− 1). It is often of interest
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in applications to determine the state estimate x̂(k) based on measurements
up to and including y(k). This may seem rather odd at first; however, if the
computation time required to calculate x̂(k) is short compared with the sample
period in a sampled-data system, then it is certainly possible practically to
determine the estimate x̂(k) before x(k + 1) and y(k + 1) are generated by
the system. If this state estimate, which is based on current measurements of
y(k), is to be used to control the system, then the unavoidable computational
delays should be taken into consideration.

Now let x̄(k) denote the current state estimate based on measurements up
through y(k). Consider the current estimator

x̄(k) = x̂(k) +Kc(y(k) − Cx̂(k)), (9.78)

where
x̂(k) = Ax̄(k − 1) +Bu(k − 1); (9.79)

i.e., x̂(k) denotes the estimate based on model prediction from the previous
time estimate, x̄(k − 1). Note that in (9.78), the error is y(k) − ŷ(k), where
ŷ(k) = Cx̂(k) (D = 0), for simplicity.

Combining the above, we obtain

x̂(k) = (I −KcC)Ax̄(k − 1) + [(I −KcC)B,−Kc]
[
u(k − 1)
y(k)

]
. (9.80)

The relation to the prediction estimator (9.76) can be seen by substituting
(9.78) into (9.79) to obtain

x̂(k + 1) = Ax̂(k) +Bu(k) +AKc[y(k) − Cx̂(k)]. (9.81)

Comparison with the prediction estimator (9.76) (with D = 0) shows that it
is clear that if

K = AKc, (9.82)

then (9.81) is indeed the prediction estimator, and the estimate x̂(k) used in
the current estimator (9.78) is indeed the prediction state estimate. In view
of this, we expect to obtain for the error ê(k) = x(k) − x̂(k) the difference
equation

ê(k + 1) = (A−AKcC)ê(k). (9.83)

To determine the error ē(k) = x(k)− x̄(k) we note that ē(k) = ê(k)− (x̄(k)−
x̂(k)). Equation (9.78) now implies that x̄(k) − x̂(k) = KcCe(k). Therefore,

ē(k) = (I −KcC)ê(k). (9.84)

This establishes the relationship between errors in current and prediction
estimators.

Premultiplying (9.81) by I −KcC (assuming |I −KcC| �= 0), we obtain

ē(k + 1) = (A−KcCA)ē(k), (9.85)
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which is the current estimator error equation. The gainKc is chosen so that the
eigenvalues of A−KcCA are within the open unit disk of the complex plane.
The pair (A,CA) must be observable for arbitrary eigenvalue assignment.
Note that the two error equations (9.83) and (9.85) have identical eigenvalues.

Example 9.24. Consider the system x(k+1) = Ax(k), y(k) = Cx(k), where

A =
[

0 −2
1 −2

]
, C = [0, 1], which is in observer form (see also Example 9.20).

We wish to design a current estimator. In view of the error equation (9.85),
we consider

det(sI − (A−KcCA)) = det
([

s 0
0 s

]
−
([

0 −2
1 −2

]
−
[
k0

k1

]
[1 − 2]

))

= det
[
s+ k0 2 − 2k0

k1 − 1 s+ 2 − 2k1

]

= s2 + s(2 − 2k1 + k0) + (2 − 2k1)

= s2 + d1s+ d0 = αd(s),

a desired polynomial, from which Kc = [k0, k1]T = [d1 − d0,
1
2 (2− d0)]T . Note

that AKc = [d0 − 2, d1 − 2]T = K, found in Example 9.20, as noted in (9.82).
The current estimator (9.80) is now given by x̄(k) = (A − KcCA)x̄(k −

1) −KcCBu(k − 1) +Kcy(k), or

x̄(k) =
[

−k0 −2 + 2k0

1 − k1 −2 + 2k1

]
x̄(k − 1) +

[
k0

k1

]
y(k).

Partial or Linear Functional State Observers

The problem of estimating a linear function of the state, Tx(k), T ∈ Rñ×n,
where ñ ≤ n, using a prediction estimator, is completely analogous to the
continuous-time case.

9.3.5 Reduced-Order Observers: Discrete-Time Systems

It is possible to estimate the full state x(k) using an estimator of order n− p,
where p = rankC. If a prediction estimator is used for that part of the state
that needs to be estimated, then the problem in the discrete-time case is
completely analogous to the continuous-time case, discussed before.

9.3.6 Optimal State Estimation: Discrete-Time Systems

The formulation of the Kalman filtering problem in discrete-time is analogous
to the continuous-time case.
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Consider the linear time-invariant system given by

x(k + 1) = Ax(k) +Bu(k) + Γw(k), y(k) = Cx(k) + v, (9.86)

where the process and measurement noises w, v are white, zero-mean Gaus-
sian stochastic processes; i.e., they are uncorrelated in time with E[w] = 0
and E[v] = 0. Let the covariances be given by

E[wwT ] = W, E[vvT ] = V, (9.87)

where W = WT ,W > 0 and V = V T , V > 0. Assume that w, v are indepen-
dent, that the initial state x(0) is Gaussian of known mean (E[x(0)] = x0),
that E[(x(0)− x0)(x(0)− x0)T ] = Pe0, and that x(0) is independent of w and
v.

Consider now the current estimator (9.76), namely,

x̄(k) = x̂(k) +Kc[y(k) − Cx̂(k)],

where x̂(k) = Ax̄(k − 1) + Bu(k − 1) and x̂(k) denotes the prior estimate of
the state at the time of a measurement.

It turns out that the state error covariance is minimized when the filter
gain is

K∗
c = P ∗

e C
T (CP ∗

e C
T + V )−1, (9.88)

where P ∗
e is the unique, symmetric, positive definite solution of the Riccati

equation

Pe = A[Pe − PeC
T [CPeCT + V ]−1CPe]AT + ΓWΓ T . (9.89)

It is assumed here that (A,ΓW 1/2, C) is reachable and observable. This alge-
braic Riccati equation is the dual to the Riccati equation (9.53) that arose in
the discrete-time LQR problem and can be obtained by substituting

A→ AT , B → CT ,M → Γ T and R → V,Q→W. (9.90)

It is clear that, as in the case of the LQR problem, the solution of the alge-
braic Riccati equation can be determined using the eigenvectors of the (dual)
Hamiltonian.

The filter derived above is called the discrete-time Kalman filter. It is
based on the current estimator (9.78). Note that AKc yields the gain K of
the prediction estimator [see (9.82)].

9.4 Observer-Based Dynamic Controllers

State estimates, derived by the methods described in the previous section,
may be used in state feedback control laws to compensate given systems.
This section addresses this topic.
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In Section 9.2, the linear state feedback control law was introduced. There
it was implicitly assumed that the state vector x(t) is available for measure-
ment. The values of the states x(t) for t ≥ t0 were fed back and used to
generate a control input in accordance with the relation u(t) = Fx(t) + r(t).
There are cases, however, when it may be either impossible or impractical
to measure the states directly. This has provided the motivation to develop
methods for estimating the states. Some of these methods were considered in
Section 9.3. A natural question that arises at this time is the following: What
would happen to system performance if, in the control law u = Fx + r, the
state estimate x̂ were used in place of x as in Figure 9.4? How much, if any,
would the compensated system response deteriorate? What are the difficulties
in designing such estimator-(observer-)based linear state feedback controllers?
These questions are addressed in this section. Note that observer-based con-
trollers of the type described in the following are widely used.

r y+

+

F

System

State 
Observer

u

x̂

Figure 9.4. Observer-based controller

In the remainder of this section we will concentrate primarily on full-
state/full-order observers and (static) linear state feedback, as applied to lin-
ear time-invariant systems. The analysis of partial-state and/or reduced-order
observers with static or dynamic state feedback is analogous; however, it is
more complex. In this section, continuous-time systems are addressed. The
discrete-time case is completely analogous and will be omitted.

9.4.1 State-Space Analysis

We consider systems described by equations of the form

ẋ = Ax+Bu, y = Cx+Du, (9.91)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. For such systems,
we determine an estimate x̂(t) ∈ Rn of the state x(t) via the (full-state/full-
order) state observer (9.57) given by

˙̂x = Ax̂+Bu +K(y − ŷ)

= (A−KC)x̂+ [B −KD,K]
[
u
y

]
,

z = x̂, (9.92)
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where ŷ = Cx̂+Du. We now compensate the system by state feedback using
the control law

u = F x̂+ r, (9.93)

where x̂ is the output of the state estimator and we wish to analyze the
behavior of the compensated system. To this end we first eliminate y in (9.92)
to obtain

˙̂x = (A−KC)x̂+KCx+Bu. (9.94)

The state equations of the compensated system are then given by

ẋ = Ax+BFx̂+Br,

˙̂x = KCx+ (A−KC +BF )x̂+Br, (9.95)

and the output equation assumes the form

y = Cx+DFx̂+Dr, (9.96)

where u was eliminated from (9.91) and (9.94), using (9.93). Rewriting in
matrix form, we have

[
ẋ
˙̂x

]
=
[
A BF
KC A−KC +BF

] [
x
x̂

]
+
[
B
B

]
r,

y = [C, DF ]
[
x
x̂

]
+Dr, (9.97)

which is a representation of the compensated closed-loop system. Note that
(9.97) constitutes a 2nth-order system. Its properties are more easily studied if
an appropriate similarity transformation is used to simplify the representation.
Such a transformation is given by

P

[
x
x̂

]
=
[
I 0
I −I

] [
x
x̂

]
=
[
x
e

]
, (9.98)

where the error e(t) = x(t) − x̂(t). Then the equivalent representation is
[
ẋ
ė

]
=
[
A+BF −BF

0 A−KC

] [
x
e

]
+
[
B
0

]
r,

y = [C +DF, −DF ]
[
x
e

]
+Dr. (9.99)

It is now quite clear that the closed-loop system is not fully controllable with
respect to r (this can be explained in view of Subsection 6.2.1). In fact, e(t)
does not depend on r at all. This is of course as it should be, since the error
e(t) = x(t) − x̂(t) should converge to zero independently of the externally
applied input r.
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The closed-loop eigenvalues are the roots of the polynomial

|sIn − (A+BF )||sIn − (A−KC)|. (9.100)

Recall that the roots of |sIn − (A+BF )| are the eigenvalues of A+BF that
can arbitrarily be assigned via F provided that the pair (A,B) is controllable.
These are in fact the closed-loop eigenvalues of the system when the state x
is available and the linear state feedback control law u = Fx+ r is used (see
Section 9.2). The roots of |sIn−(A−KC)| are the eigenvalues of (A−KC) that
can arbitrarily be assigned via K provided that the pair (A,C) is observable.
These are the eigenvalues of the estimator (9.92).

The above discussion points out that the design of the control law (9.93)
can be carried out independently of the design of the estimator (9.92). This is
referred to as the Separation Property and is generally not true for more com-
plex systems. The separation property indicates that the linear state feedback
control law may be designed as if the state x were available and the eigenval-
ues of A+BF are assigned at appropriate locations. The feedback matrix F
can also be determined by solving an optimal control problem (LQR). If state
measurements are not available for feedback, a state estimator is employed.
The eigenvalues of a full-state/full-order estimator are given by the eigenval-
ues of A−KC. These are typically assigned so that the error e(t) = x(t)− x̂(t)
becomes adequately small in a short period of time. For this reason, the eigen-
values of A − KC are (empirically) taken to be about 6 to 10 times further
away from the imaginary axis (in the complex plane, for continuous-time sys-
tems) than the eigenvalues of A + BF . The estimator gain K may also be
determined by solving an optimal estimation problem (the Kalman filter).
In fact, under the assumption of Gaussian noise and initial conditions given
earlier (see Section 9.3), F and K can be found by solving, respectively, op-
timal control and estimation problems with quadratic performance criteria.
In particular, the deterministic LQR problem is first solved to determine the
optimal control gain F ∗, and then the stochastic Kalman filtering problem is
solved to determine the optimal filter gain K∗. The separation property (i.e.,
Separation Theorem—see any optimal control textbook) guarantees that the
overall (state estimate feedback) Linear Quadratic Gaussian (LQG) control
design is optimal in the sense that the control law u∗(t) = F ∗x̂(t) minimizes
the quadratic performance index E[

∫∞
0

(zTQz+uTRu)dt]. As was discussed in
previous sections, the gain matrices F ∗ and K∗ are evaluated in the following
manner.

Consider
ẋ = Ax+Bu+ Γw, y = Cx+ v, z = Mx (9.101)

with E{wwT } = W > 0 and E[vvT ] = V > 0 and with Q > 0, R > 0 denoting
the matrix weights in the performance index E[

∫∞
0 (zTQx+uTRu)dt]. Assume

that both (A,B,Q1/2M) and (A,ΓW 1/2, C) are controllable and observable.
Then the optimal control law is given by

u∗(t) = F ∗x̂(t) = −R−1BTP ∗
c x̂(t), (9.102)
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where P ∗
c > 0 is the solution of the algebraic Riccati equation (9.33) given by

ATPc + PcA− PcBR
−1BTPc +MTQM = 0. (9.103)

The estimate x̂ is generated by the optimal estimator

˙̂x = Ax̂+Bu +K∗(y − Cx̂), (9.104)

where
K∗ = P ∗

c C
TV −1, (9.105)

in which P ∗
e > 0 is the solution to the dual algebraic Riccati equation (9.71)

given by
PeA

T +APe − PeC
TV −1CPe + ΓWΓ T = 0. (9.106)

Designing observer-based dynamic controllers by the LQG control design
method has been quite successful, especially when the plant model is accu-
rately known. In this approach the weight matrices Q, R and the covariance
matricesW , V are used as design parameters. Unfortunately, this method does
not necessarily lead to robust designs when uncertainties are present. This lim-
itation has led to an enhancement of this method, called the LQR/LTR (Loop
Transfer Recovery) method, where the design parameters W and V are se-
lected (iteratively) so that the robustness properties of the LQR design are
recovered.

Finally, as mentioned earlier, the discrete-time case is analogous to the
continuous-time case and its discussion will be omitted.

Example 9.25. Consider the system ẋ = Ax+Bu, y = Cx, where

A =

⎡
⎣

0 1 0
0 0 1
0 2 −1

⎤
⎦ , B =

⎡
⎣

0 1
1 1
0 0

⎤
⎦ , C = [1, 0, 0].

This is a controllable and observable but unstable system with eigenvalues of
A equal to 0,−2, 1. A linear state feedback control u = Fx+ r was derived in
Example 9.11 to assign the eigenvalues ofA+BF at −2,−1±j. An appropriate
F to accomplish this was shown to be

F =
[

2 −1 −2
−2 0 1/2

]
.

If the state x(t) is not available for measurement, then an estimate x̂(t) is
used instead; i.e., the control law u = F x̂ + r is employed. In Example 9.19,
a full-order/full-state observer, given by

˙̂x = (A−KC)x̂+ [B,K]
[
u
y

]
,
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was derived [see (9.58)] with the eigenvalues of A − KC determined as the
roots of the polynomial αd(s) = s3 + d2s

2 + d1s+ d0. It was shown that the
(unique) K is in this case

K = [d2 − 1, d1 − d2 + 3, d0 − d1 + 3d2 − 5]T ,

and the observer is given by

˙̂x =

⎡
⎣

1 − d2 1 0
−d1 + d2 − 3 0 1

−d0 + d1 − 3d2 + 5 2 −1

⎤
⎦ x̂+

⎡
⎣

0 1 d2 − 1
1 1 d1 − d2 + 3
0 0 d0 − d1 + 3d2 − 5

⎤
⎦
[
u
y

]
.

Using the estimate x̂ in place of the control state x in the feedback control law
causes some deterioration in the behavior of the system. This deterioration
can be studied experimentally. (See the next subsection for analytical results.)
To this end, let the eigenvalues of the observer be at, say, −10,−10,−10; let
x(0) = [1, 1, 1]T and x̂(0) = [0, 0, 0]T ; plot x(t), x̂(t), and e(t) = x(t)− x̂(t);
and compare these with the corresponding plots of Example 9.11, where no
observer was used. Repeat the above with observer eigenvalues closer to the
eigenvalues of A+BF (say, at −2,−1± j) and also further away. In general
the faster the observer, the faster e(t) → 0, and the smaller the deterioration
of response; however, in this case, care should be taken if noise is present in
the system.

9.4.2 Transfer Function Analysis

For the compensated system (9.99) [or (9.97)], the closed-loop transfer func-
tion T (s) between y and r is given by

ỹ(s) = T (s)r̃(s) = [(C +DF )[sI − (A+BF )]−1B +D]r̃(s), (9.107)

where ỹ(s) and r̃(s) denote the Laplace transforms of y(t) and r(t), respec-
tively. The function T (s) was found from (9.99), using the fact that the un-
controllable part of the system does not appear in the transfer function (see
Section 7.2). Note that T (s) is the transfer function of {A+BF,B,C+DF,D};
i.e., T (s) is precisely the transfer function of the closed-loop system HF (s)
when no state estimation is present (see Section 9.2). Therefore, the com-
pensated system behaves to the outside world as if there were no estimator
present. Note that this statement is true only after sufficient time has elapsed
from the initial time, allowing the transients to become negligible. (Recall
what the transfer function represents in a system.) Specifically, taking Laplace
transforms in (9.99) and solving, we obtain

[
x̃(s)
ẽ(s)

]
=
[

[sI−(A+BF )]−1 −[sI−(A+BF )]−1BF [sI−(A−KC)]−1

0 [sI−(A+BF )]−1

] [
x(0)
e(0)

]

+
[

[sI−(A+BF )]−1B
0

]
r̃(s),

ỹ(s) = [C +DF,−DF ]
[
x̃(s)
ẽ(s)

]
+Dr̃(s). (9.108)
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Therefore,

ỹ(s) = (C +DF )[sI − (A+BF )]−1x(0)

− [(C +DF )[sI − (A+BF )]−1BF [sI − (A−KC)]−1

+DF [sI − (A+BF )]−1]e(0) + T (s)r̃(s), (9.109)

which indicates the effects of the estimator on the input–output behavior of
the closed-loop system. Notice how the initial conditions for the error e(0) =
x(0) − x̂(0) influence the response. Specifically, when e(0) �= 0, its effect can
be viewed as a disturbance that will become negligible at steady state. The
speed by which the effect of e(0) on y will diminish depends on the location
of the eigenvalues of A+BF and A−KC, as can be easily seen from relation
(9.109).

Two-Input Controller

In the following discussion, we will find it of interest to view the observer-based
controller discussed previously as a one-vector output (u) and a two-vector
input (y and r) controller. In particular, from ˙̂x = (A−KC)x̂+(B−KD)u+
Ky given in (9.92) and u = F x̂+ r given in (9.93), we obtain the equations

˙̂x = (A−KC +BF −KDF )x̂+ [K,B −KD]
[
y
r

]
,

u = F x̂+ r. (9.110)

This is the description of the (nth order) controller shown in Figure 9.4.
The state x̂ is of course the state of the estimator, and the transfer function
between u and y, r is given by

ũ(s) = F [sI − (A−KC +BF −KDF )]−1Kỹ(s)

+ [F [sI − (A−KC +BF −KDF )]−1(B −KD) + I]r̃(s). (9.111)

If we are interested only in “loop properties,” then r can be taken to be zero;
in which case, (9.111) (for r = 0) yields the output feedback compensator,
which accomplishes the same control objectives (that are typically only “loop
properties”) as the original observer-based controller. This fact is used in the
LQG/LTR design approach. When r �= 0, (9.111) is not appropriate for the
realization of the controller since the transfer function from r, which must be
outside the loop, may be unstable. Note that an expression for this controller
that leads to a realization of a stable closed-loop system is given by

ũ(s) = [F [sI−(A−KC+BF−KDF )]−1[K,B−KD]+[0, I]]
[
ỹ(s)
r̃(s)

]
(9.112)

(see Figure 9.5). This was also derived from (9.110). The stability of general
two-input controllers (with two degrees of freedom) is discussed at length in
Chapter 10.
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Controller System
r

Figure 9.5. Two-input controller

At this point, we find it of interest to determine the relationship of the
observer-based controller and the conventional block controller configuration
of Figure 9.6. Here, the requirement is to maintain the same transfer functions
between inputs y and r and output u. (For further discussion of stability and
attainable response maps in system controlled by output feedback controllers,
refer to Chapter 10.) We proceed by considering once more (9.92) and (9.93)
and by writing

ũ(s) = F [sI − (A−KC)]−1(B −KD)ũ(s)

+ F [sI − (A−KC)]−1Kỹ(s) + r̃(s) = Guũ(s) +Gy ỹ(s) + r̃(s).

( I  – Gu ) –1 System
r u y+

+

Gy

Σ

Figure 9.6. Conventional block controller configuration

This yields
ũ(s) = (I −Gu)−1[Gy ỹ(s) + r̃(s)] (9.113)

(see Figure 9.6). Notice that

Gy = F [sI − (A−KC)]−1K; (9.114)

i.e., the controller in the feedback path is stable. The matrix (I − Gu)−1 is
not necessarily stable; however, it is inside the loop and therefore the internal
stability of the compensated system is preserved. Comparing with (9.111), we
obtain

(I −Gu)−1 = F [sI − (A−KC +BF −KDF )]−1(B −KD) + I. (9.115)

Also, as expected, we have

(I −Gu)−1Gy = F [sI − (A−KC +BF −KDF )]−1K. (9.116)

These relations could have been derived directly as well by the use of matrix
identities; however, such derivation is quite involved.
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Example 9.26. For the system ẋ = Ax + Bu, y = Cx with A =
[

0 −2
1 −2

]
,

B =
[

0
1

]
, and C = [0, 1], we have H(s) = C(sI − A)−1B = s

s2+2s+2 . In

Example 9.20, it was shown that the gain matrix K = [d0−2, d1−2]T assigns
the eigenvalues of the asymptotic observer (ofA−KC) at the roots of s2+d1s+

d0. In fact sI − (A−KC) =
[

s d0

−1 s+ d1

]
. It is straightforward to show that

F = [12a0 − 1, 2− a1] will assign the eigenvalues of the closed-loop system (of

A+BF ) at the roots of s2+a1s+a0. Indeed, sI−(A+BF ) =
[

s 2
− 1

2a0 s+ a1

]
.

Now in (9.113) we have

Gy(s) = F (sI − (A−KC))−1K

= s((d0−2)( 1
2a0−1)+(d1−2)(2−a1))+((d0−d1)(a0−2)+(d0−2)(2−a1))

s2+d1s+d0
,

Gu(s) = F (sI − (A−KC))−1 B = s(2−a1)−d0( 1
2a0−1)

s2+d1s+d0
,

(1 −Gu)−1 = s2+d1s+d0
s2+s(d1+a1−2)+ 1

2a0d0
.

9.5 Summary and Highlights

Linear State Feedback

• Given ẋ = Ax + Bu, y = Cx +Du and the linear state feedback control
law u = Fx+ r, the closed-loop system is

ẋ = (A+BF )x+Br, y = (C +DF )x +Dr. (9.3)

• If u were implemented via open-loop control, it would be given by

û = F [sI − (A+BF )]−1x(0) + [I − F (sI −A)−1B]−1r̂. (9.4)

• The eigenvalues ofA+BF can be assigned to arbitrary real and/or complex
conjugate locations by selecting F if and only if the system [or (A,B)] is
controllable. The uncontrollable eigenvalues of (A,B) cannot be shifted
(see Theorem 9.2 and Lemma 9.3).

• Methods to select F to assign the closed-loop eigenvalues in A+BF include
1. the direct method (see (9.12)), and
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2. using controller forms (see (9.20 and (9.24)).
Controller forms are used to derive Ackermann’s formula (m = 1)

F = −eTnC−1αd(A), (9.21)

where en = [0, . . . , 0, 1]T , C = [B, . . . , An−1B] is the controllability
matrix and αd(s) is the desired closed-loop characteristic polynomial
(its roots are the desired eigenvalues).

3. Assigning eigenvalues and eigenvectors (see Theorem 9.12).
The flexibility in choosing F that assigns the n closed-loop eignvalues
(when m > 1) is expressed in terms of desired closed-loop eigenvectors
that can be partially assigned,

FV = W, (9.29)

where V � [M1a1, . . . ,Mnan] and W � [D1a1, . . . , Dnan] uniquely
specify F as the solution to these n linearly independent equations.
When sj are distinct, the n vectors Mjaj, j = 1, . . . , n, are linearly
independent for almost any nonzero aj , and V has full rank.

• Optimal Control Linear Quadratic Regulator. Given ẋ = Ax + Bu, z =
Mx, find u(t) that minimizes the quadratic cost

J(u) =
∫ ∞

0

[zT (t)Qz(t) + uT (t)Ru(t)]dt. (9.31)

Under controllability and observability conditions, the solution is unique
and it is given as a linear state feedback control law

u∗(t) = F ∗x(t) = −R−1BTP ∗
c x(t), (9.32)

where P ∗
c is the symmetric, positive definite solution of the algebraic Ric-

cati equation

ATPc + PcA− PcBR
−1BTPc +MTQM = 0. (9.33)

The corresponding discrete-time case optimal control is described in (9.51),
(9.52), and (9.53).

• The closed-loop transfer function Hf (s) is given by

HF (s) = (C +DF )[sI − (A+BF )]−1B +D

= [C(sI −A)−1B +D][I − F (sI −A)−1B]−1

= H(s)[I − F (sI −A)−1B]−1

= H(s)[F (sI − (A+BF ))−1B + I].

See also (9.42) and (9.45). Also

HF (s) = N(s)D−1
F (s) = [N(s)D−1(s)][D(s)D−1

F (s)]

= H(s)[D(s)D−1
F (s)]. (9.44)



402 9 State Feedback and State Observers

Linear State Observers

• Given ẋ = Ax+Bu, y = Cx+Du, the Luenberger observer is

˙̂x = Ax̂+Bu+K(y − ŷ), (9.57)

where ŷ = Cŷ +D or

˙̂x = (A−KC)x̂+ [B −KD,K]
[
u
y

]
, (9.58)

where K is chosen so that all the eigenvalues of A − KC have negative
real parts. Then the error e(t) = x(t)− x̂(t) will go to zero asymptotically.

• The eigenvalues of A−KC can be assigned to arbitrary real and/or com-
plex conjugate locations by selecting K if and only if the system [or (A,C)]
is observable. The unobservable eigenvalues of (A,C) cannot be shifted.
This is the dual problem to the control problem of assigning eigenvalues
in A+BF , and the same methods can be used (see Lemma 9.18).

• Optimal State Estimation. Consider ẋ = Ax + Bu + Γw, y = Cx + v,
where w, v are process and measurement noise. Let the state estimator be

˙̂x = Ax̂+Bu+K(y − Cx̂) (9.117)
= (A−KC)x̂+Bu+Ky, (9.71)

and consider minimizing the error covariance E[(x − x̂)(x − x̂)T ]. Under
certain controllability and observability conditions, the solution is unique
and it is given by

K∗ = P ∗
e C

TV −1, (9.72)

where P ∗
e is the symmetric, positive definite solution of the quadratic

(dual) algebraic Riccati equation

PeA
T +APe − PeC

TV −1CPe + ΓWΓ T = 0. (9.73)

This problem is the dual to the Linear Quadratic Regulator problem.
• The discrete-time case is analogous to the continuous-time case [see (9.76)].

The current estimator is given in (9.78)–(9.80). The optimal current esti-
mator is given by (9.88) and (9.89).

Observer-Based Dynamic Controllers

• Given ẋ = Ax + Bu, y = Cx + Du with the state feedback u = Fx + r,
if the state is estimated via a Luenberger observer, then the closed-loop
system is

[
ẋ
ė

]
=
[
A+BF −BF

0 A−KC

] [
x
e

]
+
[
B
0

]
r, (9.118)

y = [C +DF, −DF ]
[
x
e

]
+Dr. (9.99)

The error e = x− x̂.
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• The design of the control law (F ) can be carried out independently of the
design of the estimator (K) [see (9.101)–(9.106]. (Separation property)

• The compensated system behaves to the outside world as if there were
no estimator present—after sufficient time so the transients have become
negligible [see (9.109)].

• The observer based dynamic controller is a special case of a two degrees
of freedom controller [see (9.113)–(9.115)].

9.6 Notes

The fact that if a system is (state) controllable, then all its eigenvalues can
arbitrarily be assigned by means of linear state feedback has been known
since the 1960s. Original sources include Rissanen [20], Popov [18], and Won-
ham [24]. (See also remarks in Kailath [11, pp. 187, 195].)

The present approach for eigenvalue assignment via linear state feedback,
using the controller form, follows the development in Wolovich [23]. Acker-
mann’s formula first appeared in Ackermann [2].

The development of the eigenvector formulas for the feedback matrix that
assign all the closed-loop eigenvalues and (in part) the corresponding eigen-
vectors follows Moore [17]. The corresponding development that uses (A,B)
in controller (companion) form and polynomial matrix descriptions follows
Antsaklis [4]. Related results on static output feedback and on polynomial
and rational matrix interpolation can be found in Antsaklis and Wolovich [5]
and Antsaklis and Gao [6]. Note that the flexibility in assigning the eigenvalues
via state feedback in the multi-input case can be used to assign the invariant
polynomials of sI−(A+BF ); conditions for this are given by Rosenbrock [21].

The Linear Quadratic Regulator (LQR) problem and the Linear Quadratic
Gaussian (LQG) problem have been studied extensively, particularly in the
1960s and early 1970s. Sources for these topics include the books by Anderson
and Moore [3], Kwakernaak and Sivan [12], Lewis [13], and Dorato et al. [10].
Early optimal control sources include Athans and Falb [7] and Bryson and
Ho [9]. A very powerful idea in optimal control is the Principle of Optimality,
Bellman [8], which can be stated as follows: “An optimal trajectory has the
property that at any intermediate point, no matter how it was reached, the
remaining part of a trajectory must coincide with an optimal trajectory, com-
puted from the intermediate point as the initial point.” For historical remarks
on this topic, refer, e.g., to Kailath [11, pp. 240–241].

The most influential work on state observers is the work of Luenberger.
Although the asymptotic observer presented here is generally attributed to
him, Luenberger’s Ph.D. thesis work in 1963 was closer to the reduced-order
observer presented above. Original sources on state observers include Luen-
berger [14], [15], and [16]. For an extensive overview of observers, refer to the
book by O’Reilly [19].
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When linear quadratic optimal controllers and observers are combined
in control design, a procedure called LQG/LTR (Loop Transfer Recovery)
is used to enhance the robustness properties of the closed-loop system. For
a treatment of this procedure, see Stein and Athans [22] and contemporary
textbooks on multivariable control.
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2. J. Ackermann, “Der Entwurf linearer Regelungssysteme im Zustandsraum,”

Regelungstechnik und Prozessdatenverarbeitung, Vol. 7, pp. 297–300, 1972.
3. B.D.O. Anderson and J.B. Moore, Optimal Control. Linear Quadratic Methods,

Prentice-Hall, Englewood, Cliffs, NJ, 1990.
4. P.J. Antsaklis, “Some new matrix methods applied to multivariable system

analysis and design,” Ph.D. Dissertation, Brown University, Providence, RI,
May 1976.

5. P.J. Antsaklis and W.A. Wolovich, “Arbitrary pole placement using linear out-
put feedback compensation,” Int. J. Control, Vol. 25, No. 6, pp. 915–925, 1977.

6. P.J. Antsaklis and Z. Gao, “Polynomial and rational matrix interpolation: the-
ory and control applications,” Int. J. Control, Vol. 58, No. 2, pp. 349–404,
August 1993.

7. M. Athans and P.L. Falb, Optimal Control, McGraw-Hill, New York, NY, 1966.
8. R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ,

1957.
9. A.E. Bryson and Y.C. Ho, Applied Optimal Control, Holsted Press, New York,

NY, 1968.
10. P. Dorato, C. Abdallah, and V. Cerone, Linear-Quadratic Control: An Intro-

duction, Prentice-Hall, Englewood Cliffs, NJ, 1995.
11. T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.
12. H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley, New

York, NY, 1972.
13. F.L. Lewis, Optimal Control, Wiley, New York, NY, 1986.
14. D.G. Luenberger, “Observing the state of a linear system,” IEEE Trans. Mil.

Electron, Vol. MIL-8, pp. 74–80, 1964.
15. D.G. Luenberger, “Observers for multivariable systems,” IEEE Trans. Auto.

Control, Vol. AC-11, pp. 190–199, 1966.
16. D.G. Luenberger, “An introduction to observers,” IEEE Trans. Auto. Control,

Vol. AC-16, pp. 596–603, Dec. 1971.
17. B.C. Moore, “On the flexibility offered by state feedback in multivariable sys-

tems beyond closed loop eigenvalue assignment,” IEEE Trans. Auto. Control,
Vol. AC-21, pp. 689–692, 1976; see also Vol. AC-22, pp. 140–141, 1977 for the
repeated eigenvalue case.

18. V.M. Popov, “Hyperstability and optimality of automatic systems with sev-
eral control functions,” Rev. Roum. Sci. Tech. Ser. Electrotech Energ., Vol. 9,
pp. 629–690, 1964. See also V.M. Popov, Hyperstability of Control Systems,
Springer-Verlag, New York, NY, 1973.

19. J. O’Reilly, Observers for Linear Systems, Academic Press, New York, NY,
1983.



Exercises 405

20. J. Rissanen, “Control system synthesis by analogue computer based on the
generalized linear feedback concept,” in Proc. Symp. Analog Comp. Applied to
the Study of Chem. Processes, pp. 1–13, Intern. Seminar, Brussels, 1960. Presses
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Exercises

9.1. Consider the system ẋ = Ax + Bu, where A =
[
−0.01 0

0 −0.02

]
and

B =
[

1 1
−0.25 0.75

]
with u = Fx.

(a) Verify that the three different state feedback matrices given by

F1 =
[
−1.1 −3.7

0 0

]
, F2 =

[
0 0

−1.1 1.2333

]
, F3 =

[
−0.1 0

0 −0.1

]

all assign the closed-loop eigenvalues at the same locations, namely, at
−0.1025 ± j0.04944. Note that in the first control law (F1) only the first
input is used, whereas in the second law (F2), only the second input is
used. For all three cases, plot x(t) = [x1(t), x2(t)]T when x(0) = [0, 1]T

and comment on your results. This example demonstrates how different
the responses can be for different designs even though the eigenvalues of
the compensated system are at the same locations.

(b) Use the eigenvalue/eigenvector assignment method to characterize all F
that assign the closed-loop eigenvalues at −0.1025± j0.04944. Show how
to select the free parameters to obtain F1, F2, and F3 above. What are
the closed-loop eigenvectors in these cases?

9.2. For the system ẋ = Ax + Bu with A ∈ Rn×n and B ∈ Rn×m, where
(A,B) is controllable and m > 1, choose u = Fx as the feedback control
law. It is possible to assign all eigenvalues of A + BF by first reducing this
problem to the case of eigenvalue assignment for single-input systems (m = 1).
This is accomplished by first reducing the system to a single-input controllable
system. We proceed as follows.

Let F = g · f , where g ∈ Rm and fT ∈ Rn are vectors to be selected. Let
g be chosen such that (A,Bg) is controllable. Then f in
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A+BF = A+ (Bg)f

can be viewed as the state feedback gain vector for a single-input controllable
system (A,Bg), and any of the single-input eigenvalue assignment methods
can be used to select f so that the closed-loop eigenvalues are at desired
locations.

The only question that remains to be addressed is whether there exists g
such that (A,Bg) is controllable. It can be shown that if (A,B) is controllable
and A is cyclic, then almost any g ∈ Rm will make (A,Bg) controllable. (A
matrix A is cyclic if and only if its characteristic and minimal polynomials
are equal.) In the case when A is not cyclic, it can be shown that if (A,B,C)
is controllable and observable, then for almost any real output feedback gain
matrix H , A+BHC is cyclic. So initially, by an almost arbitrary choice of H
or F = HC, the matrix A is made cyclic, and then by employing a g, (A,Bg)
is made controllable. The state feedback vector gain f is then selected so that
the eigenvalues are at desired locations.

Note that F = gf is always a rank one matrix, and this restriction on
F reduces the applicability of the method when requirements in addition to
eigenvalue assignment are to be met.

(a) For A,B as in Exercise 9.4, use the method described above to determine
F so that the closed-loop eigenvalues are at −1± j and −2± j. Comment
on your choice for g.

(b) For A =
[

0 1
1 1

]
and B =

[
1 0
0 1

]
, characterize all g such that the closed-

loop eigenvalues are at −1.

9.3. Consider the system x(k + 1) = Ax(k) +Bu(k), where

A =

⎡
⎣

1 4 0
2 −1 0
0 0 1

⎤
⎦ , B =

⎡
⎣

0 0
1 0

−1 1

⎤
⎦ .

Determine a linear state feedback control law u(k) = Fx(k) such that all the
eigenvalues of A+BF are located at the origin. To accomplish this, use

(a) reduction to a single-input controllable system,
(b) the controller form of (A,B),
(c) det(zI − (A+BF )) and the resulting nonlinear system of equations.

In each case, plot x(k) with x(0) = [1, 1, 1]T and comment on your results.
In how many steps does your compensated system go to the zero state?

9.4. For the system ẋ = Ax+Bu, where

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 1 −3 4

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

1 0
0 0
0 0
0 1

⎤
⎥⎥⎦ ,
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determine F so that the eigenvalues of A+BF are at −1± j and −2± j. Use
as many different methods to choose F as you can.

9.5. Consider the SISO system ẋc = Acxc + Bcu, y = Ccxc + Dcu, where
(Ac, Bc) is in controller form with

Ac =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−α0 −α1 · · · −αn−1

⎤
⎥⎥⎥⎦ , Bc =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ , Cc = [c0, c1, . . . , cn−1],

and let u = Fcx + r = [f0, f1, . . . , fn−1]x + r be the linear state feedback
control law. Use the Structure Theorem of Section 6.4 to show that the open-
loop transfer function is

H(s) = Cc(sI −Ac)−1Bc +Dc =
cn−1s

n−1 + · · · + c1s+ c0
sn + αn−1sn−1 + · · · + α1s+ α0

+Dc

=
n(s)
d(s)

and that the closed-loop transfer function is

HF (s) = (Cc +DcFc)[sI − (Ac +BcFc)]−1Bc +Dc

=
(cn−1 +Dcfn−1)sn−1 + · · · + (c1s+Dcf1)s+ (c0 +Dcf0)
sn + (αn−1 − fn−1)sn−1 + · · · + (α1 − f1)s+ (α0 − f0)

+Dc

=
n(s)
dF (s)

.

Observe that state feedback does not change the numerator n(s) of the trans-
fer function, but it can arbitrarily assign any desired (monic) denominator
polynomial dF (s) = d(s) − Fc[1, s, . . . , sn−1]T . Thus, state feedback does not
(directly) alter the zeros of H(s), but it can arbitrarily assign the poles of
H(s). Note that these results generalize to the MIMO case [see (9.43)].

9.6. Consider the system ẋ = Ax+Bu, y = Cx, where

A =

⎡
⎣

0 1 0
0 0 1
1 0 −1

⎤
⎦ , B =

⎡
⎣

0
0
1

⎤
⎦ , C = [1, 2, 0].

(a) Determine an appropriate linear state feedback control law u = Fx +
Gr (G ∈ R) so that the closed-loop transfer function is equal to a given
desired transfer function

Hm(s) =
1

s2 + 3s+ 2
.
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We note that this is an example of model matching, i.e., compensating
a given system so that it matches the input–output behavior of a de-
sired model. In the present case, state feedback is used; however, output
feedback is more common in model matching.

(b) Is the compensated system in (a) controllable? Is it observable? Explain
your answers.

(c) Repeat (a) and (b) by assuming that the state is not available for mea-
surement. Design an appropriate state observer, if possible.

9.7. Design an observer for the oscillatory system ẋ(t) = v(t), v̇(t) = −ω2
0x(t),

using measurements of the velocity v. Place both observer poles at s = −ω0.

9.8. Consider the undamped harmonic oscillator ẋ1(t) = x2(t), ẋ2(t) =
−ω2

0x1(t) + u(t). Using an observation of velocity y = x2, design an ob-
server/state feedback compensator to control the position x1. Place the state
feedback controller poles at s = −ω0±jω0 and both observer poles at s = −ω0.
Plot x(t) for x(0) = [1, 1]T and ω0 = 2.

9.9. A servomotor that drives a load is described by the equation d2θ
dt2 + dθ

dt = u,
where θ is the shaft position (output) and u is the applied voltage. Choose u
so that θ and dθ

dt will go to zero exponentially (when their initial values are
not zero). To accomplish this, proceed as follows.

(a) Derive a state-space representation of the servomotor.
(b) Determine linear state feedback, u = Fx + r, so that both closed-loop

eigenvalues are at −1. Such F is actually optimal since it minimizes J =∫∞
0

[θ2 +
(
dθ
dt

)2
+ u2]dt.

(c) Since only θ and u are available for measurement, design an asymptotic
state estimator (with eigenvalues at, say, −3) and use the state estimate
x̂ in the linear state feedback control law. Write the transfer function and
the state-space description of the overall system and comment on stability,
controllability, and observability.

(d) Plot θ and dθ/dt in (b) and (c) for r = 0 and initial conditions equal to
[1, 1]T .

(e) Repeat (c) and (d), using a reduced-order observer of order 1.

9.10. Consider the LQR problem for the system ẋ = Ax+Bu, where (A,B)
is controllable and the performance index is given by

J̃(u) =
∫ ∞

0

e2αt[xT (t)Qx(t) + uT (t)Ru(t)]dt,

where α ∈ R,α > 0 and Q ≥ 0, R > 0.

(a) Show that u∗ that minimizes J̃(u) is a fixed control law with constant
gains on the states, even though the weighting matrices Q̃ = e2αtQ, R̃ =
e2αtR are time varying. Derive the algebraic Riccati matrix equation that
characterizes this control law.
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(b) The performance index given above has been used to solve the question
of relative stability. In light of your solution, how do you explain this?

Hint : Reformulate the problem in terms of the transformed variables x̃ =
eαtx, ũ = eαtu.

9.11. Consider the system ẋ =
[

0 1
1 1

]
x+

[
1
0

]
u and the performance indices

J1, J2 given by

J1 =
∫ ∞

0

(x2
1 + x2

2 + u2)dt and J2 =
∫ ∞

0

(900(x2
1 + x2

2) + u2)dt.

Determine the optimal control laws that minimize J1 and J2. In each case,
plot u(t), x1(t), x2(t) for x(0) = [1, 1]T and comment on your results.

9.12. Consider the system ẋ =
[

0 1
1 0

]
x+

[
0

−1

]
u, y = [1, 0]x.

(a) Use state feedback u = Fx to assign the eigenvalues of A+BF at −0.5±
j0.5. Plot x(t) = [x1(t), x2(t)]T for the open- and closed-loop system with
x(0) = [−0.6, 0.4]T .

(b) Design an identity observer with eigenvalues at −α ± j, where α > 0.
What is the observer gain K in this case?

(c) Use the state estimate x̂ from (b) in the linear feedback control law u =
F x̂, where F was found in (a). Derive the state-space description of the
closed-loop system. If u = F x̂ + r, what is the transfer function between
y and r?

(d) For x(0) = [−0.6, 0.4]T and x̂(0) = [0, 0]T , plot x(t), x̂(t), y(t), and u(t) of
the closed-loop system obtained in (c) and comment on your results. Use
α = 1, 2, 5, and 10, and comment on the effects on the system response.

Remark: This exercise illustrates the deterioration of system response when
state observers are used to generate the state estimate that is used in the
feedback control law.

9.13. Consider the system

x(k + 1) = Ax(k) +Bu(k) + Eq(k), y(k) = Cx(k),

where q(k) ∈ Rr is some disturbance vector. It is desirable to completely
eliminate the effects of q(k) on the output y(k). This can happen only when
E satisfies certain conditions. Presently, it is assumed that q(k) is an arbitrary
r × 1 vector.

(a) Express the required conditions on E in terms of the observability matrix
of the system.

(b) If A =
[

1 1
1 1

]
, C = [1, 1], characterize all E that satisfy these conditions.
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(c) Suppose E ∈ Rn×1, C ∈ Rp×1, and q(k) is a step, and let the objective
be to asymptotically reduce the effects of q on the output. Note that this
specification is not as strict as in (a), and in general it is more easily
satisfied. Use z-transforms to derive conditions for this to happen.
Hint : Express the conditions in terms of poles and zeros of {A,E,C}.

9.14. Consider the system ẋ = Ax +Bu, y = Cx +Du, where

A =
[

0 0
0 0

]
, B =

[
1 0
0 1

]
, C =

[
1 0
1 2

]
, D =

[
1 0
0 1

]
.

Let u = Fx + r be a linear state feedback control law. Determine F so that
the eigenvalues of A+BF are −1,−2 and are unobservable from y. What is
the closed-loop transfer function HF (s) (ŷ = HF r̂) in this case?
Hint: Select the eigenvalues and eigenvectors of A+BF .

9.15. Consider the controllable and observable SISO system ẋ = Ax + Bu,
y = Cx with H(s) = C(sI −A)−1B.

(a) If λ is not an eigenvalue of A, show that there exists an initial state x0

such that the response to u(t) = eλt, t ≥ 0, is y(t) = H(λ)eλt, t ≥ 0.
What happens if λ is a zero of H(s)?

(b) Assume that A has distinct eigenvalues. Let λ be an eigenvalue of A
and show that there exists an initial state x0 such that with “no input”
( u(t) ≡ 0 ), y(t) = keλt, t ≥ 0, for some k ∈ R.


